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Abstract

The risk of a global avian flu or influenza A (H1N1) pandemic, and the emergence

of the worldwide SARS epidemic in 2002–03 have led to a revived interest in the study

of infectious diseases. Mathematical models have become important tools in analyzing

the transmission dynamics and in measuring the effectiveness of controlling strategies.

Research on infectious diseases in the actuarial literature only goes so far as to set

up epidemiological models which better reflect the transmission dynamics. This paper

attempts to build a bridge between epidemiological and actuarial modeling and set

up an actuarial model which provides financial arrangements to cover the expenses

resulting from the medical treatments of infectious diseases.

Based on classical epidemiological compartment models, the first part of this paper

proposes insurance policies and models to quantify the risk of infection and formulates

financial arrangements, between an insurer and insureds, using actuarial methodology.

For practical purposes, the second part employs a variety of numerical methods to

calculate premiums and reserves. The last part illustrates the methods by designing

insurance products for two well known epidemics: the Great Plague in England and

the SARS epidemic in Hong Kong.

Keywords: epidemiological compartment models; SIR model; actuarial mathematics; in-

fectious diseases; health insurance; Runge–Kutta method; ratemaking; reserves.
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1 Introduction

The Severe Acute Respiratory Syndrome (SARS) epidemic in 2002–03 drew tremendous

attention to the treatment and prevention of infectious diseases and their impact on our

society’s welfare. The adverse economic impact caused by SARS in East Asia has often been

compared with that of the 1998 financial market crisis in that area.

From a social point of view, an effective protection against diseases depends not only on

the development of medical technology, to identify viruses and to treat infected patients, but

also on a well–designed health–care system. The latter can reduce the financial impact of a

sudden pandemic outbreak, such as surging costs of medications, hospital infrastructures and

medical equipments, prevention measures like vaccination and quarantine. Broader insurance

programs can even cover financial losses resulting from the interruption in regular business

operations. As a profession with the reputation in applying mathematical techniques to

model and quantify financial risk, actuaries are certainly well placed to expand their expertise

and deal with epidemics within health–care systems.

Due to their front–line experience with SARS epidemic, many health insurers in Asia

provided coverage to compensate for medical costs of SARS treatment, by listing the disease

as an extended liability on regular health insurance policies. Still many problems arose.

Traditional actuarial models for human mortality lack the flexibility required to model in-

fectious diseases, which in many respects are significantly different from natural causes of

death.

One of these remarkable differences is that in a population exposed to an epidemic out-

break there are several mutually dependent groups involved, with different levels of vulner-

ability to the disease. This contrasts with mortality rates that are often assumed to be

constant among homogeneous age-specific groups.

How fast an infectious disease spreads within a population relies on the number of sus-

ceptible individuals, the number of infectious individuals and the social structure between

these two groups. To be more specific, in the context of a health insurance for an initially

complete susceptible group, the number of insureds bearing premiums would actually de-

crease in time, whereas the number of insureds claiming benefits due to infection increases

as the epidemic breaks out. Applying traditional life table methods overlooks epidemiolog-

ical dynamics and dependence between insurance payers and beneficiaries. It consequently

violates the fair premium principle.

Other than the traditional life table methods, there have been developments in the recent

actuarial literature of alternative multi–state Markov models. These partition a population

according to the status the insured can be in; for instance alive, disabled, and dead. Multi–

state Markov models are well suited for traditional insurance products in which payments
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made differ according to the particular status an insured is in. For instance, death benefits

are payable upon the death of an insured in life insurance, while annuities are payable as

long as an insured stays alive. For detailed accounts of multi–state Markov models, readers

can consult Waters (1984), Hoem (1988) and Jones (1994). While the multi–state model

has its own merits in the mathematics of traditional insurance, we propose here actuarial

calculations based on epidemiological models. We believe that these present some advantages

in modelling insurance against infectious diseases, such as:

1. Compartment models in the epidemiology are constructed in accordance to the law of

mass action widely used in many areas of biology, chemistry and physics. As alluded to

earlier, the unique feature of the infectious disease, with its dynamics of transmission

depending on the interactions of two subgroups of a population, can only be reflected

in the utilization of the law of mass action.

2. There have been extensive studies and substantial empirical data analysis on the va-

lidity and parameter estimations of compartment models. Actuaries have also been

involved and gained expertise in fitting of these models to data, as seen in Jia and Tsui

(2005).

3. Epidemiological models can be used in sensitivity tests for prevention and intervention

measures and hence can be used to analyze the impact on the financial obligations of

insurance products for infectious diseases.

Therefore, we present in this paper a new approach that uses epidemiological models

as building blocks, and develop a framework for actuarial calculations with applications to

insurance coverages targeting infectious diseases.

To make the paper self–contained, Section 2 is devoted to a brief review of a simple

model from the mathematics of epidemiology, the three–compartment model. An insurance

model is developed to make arrangement between an insurer and insurance policy–holders

in order to protect the insured from the potential financial burden resulting from infection

by a disease.

To apply the ideas in an insurance context, Section 3 formulates the epidemiological

model in standard actuarial notation and analyzes the quantitative relations among some

insurance concepts, namely the actuarial present value of continuous payments for hospital

and medical services, death benefits and premium income.

In Section 4, several ratemaking methods are presented for various infectious disease

insurance policies. Thanks to an algorithm that calculates premiums under the fair premium

principle, we then look at the solvency of these insurance plans.
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Since benefit reserves generally reflect a policy’s cash value that is refundable to the

policy–holders, it is expected for the benefit reserves to remain positive throughout the life

of the policy. However, as one shall see, level net premiums lead to negative reserves, due to

the distinct nature of infectious diseases. Therefore Section 5 analyzes the reasons behind

the negative reserves and proposes a numerical method developed to determine adjusted

premiums that keep benefit reserves from falling below a minimum tolerance level.

Based on models calibrated in the epidemiological literature, we analyze in Section 6

the dynamics of the Great Plague in Eyam, England and that of the SARS epidemic in

Hong Kong. This leads to insurance policy designs to cover the resulting financial losses.

The analytical procedures could easily be adapted to enable an analysis of a wide range of

scenarios.

2 Epidemiological compartment model

Over the last century, many contributions to the mathematical modeling of infectious dis-

eases have been made by a great number of public health physicians, epidemiological math-

ematicians and statisticians. Their brilliant work ranges from empirical data analysis to

the theory of differential equations. Many have been applied successfully in clinical data

analysis to make effective predictions. For a complete review of a variety of mathematical

and statistical models, see Hethcote (2000) and Mollison et al. (1994). Building on the work

of such pioneers, actuaries can add economical considerations to epidemiological models and

design insurance policies which can provide financial means to protect the general public

against the adverse economic impact of epidemics. For an account of existing co–operative

opportunities for actuaries and epidemiologists, readers are referred to a report by Cornall

et al. (2003). More recently epidemiological models have been used in applications to En-

treprise Risk Management (ERM), see for instance Chen and Cox (2007), while pandemic

risks are frequently discussed in actuarial circles, see Stracke and Heinen (2006) for influenza,

Mäkinen (2009) for H1N1 and CIA (2009) for pandemic scenarios.

To illustrate the possible actuarial applications, we first look at a simple deterministic

epidemiological model, which could lead to a straightforward actuarial analysis. Although

most infectious diseases, like SARS, are far too complex to fit such a three–compartment

model, the generalization to multi–dimensional models follows similar procedures. A detailed

account of compartment models can be found in Anderson and May (1991), Brauer and

Castillo–Chávez (2001) and Hethcote et al. (1981).

In epidemiological models, the whole population is usually separated into compartments

for different individuals. They are often labeled by acronyms, such as S, I and R, in
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different patterns according to the transmission dynamics of the studied disease. Generally

speaking, class S denotes the group of healthy individuals without immunity, or in other

words, those who are susceptible to a certain disease or virus. In an environment exposed

to the disease, some of these individuals come into contact with the virus. The individuals

who are infected and able to transmit the disease are classified in class I . Through medical

treatment, individuals, removed from the epidemic due to either death or recovery, are all

counted in class R. The upper part of Figure 1 gives the transferring dynamics among the

three compartments.

Another merit of this partition, from an actuarial perspective, is that the three compart-

ments play significantly different roles in an insurance model. As shown in the lower part

of Figure 1, susceptibles facing the risk of being infected in an epidemic form a market that

could contribute premiums to an insurance fund, in return for the coverage for medical ex-

penses incurred if infected. During the outbreak of an epidemic, the infected policy–holders

would benefit from the claim payments provided by the insurance fund. Furthermore, fol-

lowing an insured individual’s death, a death benefit for funeral and burial expenses may

also be paid to the beneficiaries designated by the insured person. Once the insurance fund

is set up, interest accrues at a certain rate on the unpaid reserves.

Figure 1: The transmission and insurance dynamics among compartments S, I and R

We first look at a simple mathematical (SIR) model that characterizes the interaction

among the three compartments. Let S(t) denote the number of susceptible individuals at

time t, whereas I(t) is the number of infected and R(t) the number of removed individuals

from class I . According to the law of mass action which is commonly used in chemistry

and biological studies, the rate of change of reactions is proportional to the concentration

of participants. In the context of epidemiology, the rate of increase in the number of the
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infected is hence proportional to the number of susceptible individuals and the number of

individuals previously infected. Translated into mathematical languages, the rate of changes

in the size of compartments can be interpreted as respective derivatives. Therefore, the

evolution of compartment sizes is driven by the following system of ordinary differential

equations (ODE’s) known as the SIR model:

S ′(t) = −β S(t) I(t)/N , t ≥ 0 , (2.1)

I ′(t) = β S(t) I(t)/N − α I(t) , t ≥ 0 , (2.2)

R′(t) = α I(t) , t ≥ 0 , (2.3)

with given initial values S(0) = S0, I(0) = I0, S0 + I0 = N and constant rates α ∈ [0, 1],

β > 0. The model is based on the following assumptions:

1. The total number of individuals remains constant, N = S(t)+I(t)+R(t), representing

the total population size.

2. An average susceptible makes an average number β of adequate contacts (i.e. contacts

sufficient to transmit infection) with others per unit time.

3. At any time a fraction α of the infected leave class I due to death and α is considered

to be the fatality rate of the specific disease.

4. There is no entry into or departure from the population, except possibly through death

from the disease. For our purpose of setting up an insurance model, the demographic

factors like natural births and deaths are negligible, as the time scale of an epidemic

is generally shorter than the demographic time scale.

Since the probability of a random contact by an infected person with a susceptible individ-

ual is S/N , then the instantaneous increase of new infected individuals is β(S/N)I = βSI/N .

The third assumption implies that the instantaneous rate of death in the number of infected

individuals is proportional to the current size of compartment R.

3 Actuarial analysis

The idea of insurance coverage against the financial impact due to infectious diseases is

akin to that of coverage for other contingencies, like accidental death and destruction of

properties. Yet it is distinctive in nature from property and casualty insurance, because the

number of policy–holders bearing the premiums and the number of policy–holders eligible

for compensations vary over time throughout the epidemic.
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Since mortality analysis is based on ratios instead of absolute counts, we now introduce

the deterministic functions s(t), i(t) and r(t), interpreted respectively as the fractions of the

population in each of class S, I and R. Dividing equations (2.1)–(2.3) by the constant total

population size N yields

s′(t) = −β i(t) s(t) , t ≥ 0 , (3.1)

i′(t) = β i(t) s(t)− α i(t) , t ≥ 0 , (3.2)

r(t) = 1 − s(t)− i(t) , t ≥ 0 , (3.3)

where s(0) = s0 and i(0) = i0, given that s0 + i0 = 1.

One can actually interpret the ratio functions s(t), i(t) and r(t) as the probability of an

individual being susceptible, infected or removed from infected class respectively at the time

t. However, it should be noted that due to the law of mass action, movements between the

compartments depend on the relative sizes of one another. Thus these probabilities corre-

spond to mutually dependent risks for the SIR model, as opposed to the usual independent

hazards in multiple decrement life insurance models. With these probability density func-

tions s(t), i(t) and r(t), we now incorporate actuarial methods to formulate the quantities

of interest for an infectious disease insurance.

3.1 Annuity premium and claim payments

We assume that an infectious disease insurance plan collects premiums in the form of con-

tinuous annuities from the susceptibles. In other words, policy–holders are committed to

paying premiums continuously as long as they remain healthy and susceptible. Meanwhile,

medical expenses are continuously reimbursed for each infected policy–holder during the

whole period of treatment. Once the individual dies from the disease, the plan terminates

immediately.

Following the principles of International Actuarial Notation, we denote the actuarial

present value (APV) of premium payments from an insured person for a t-year period by

as
t

with the superscript indicating payments from class S. The APV of benefits paid by the

insurer to the infected at the rate of one monetary unit per time unit is denoted by ai
t

with

the superscript indicating payments to class I .

We shall use the current payment technique to evaluate the annuities. In other words,

we identify the present value of payments due at time t, which is the discounted value of one

monetary unit for a basic annuity, multiply by the probability of making such a payment

and then integrate these actuarial present value for all payment times t. A detailed account

of evaluations of annuities can be found in Bowers et al. (1997).
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Hence, on the insurance liability side, the total discounted value of a t-year annuity of

benefit payments is given by

ai
t

,

∫ t

0

e−δx i(x) dx , (3.4)

where δ > 0 is the discounting force of interest. While on the revenue side, the total

discounted value of a t-year annuity premium of payments is

as

t
,

∫ t

0

e−δx s(x) dx . (3.5)

Our study is based on the fundamental notion of the Equivalence Principle for the determi-

nation of level premiums, which requires that

E[present value of benefits] = E[present value of benefit premiums] .

Therefore, the level premium for a unit annuity claim payment plan is determined by

P (ai
t
) ,

ai

t

as
t

. (3.6)

As in life insurance, where the force of mortality is defined as the additive inverse of the

ratio of the derivative of the survival function to the survival function itself, we define here

the force of infection (leaving class S) as

µs
t , −

s′(t)

s(t)
, t ≥ 0 ,

and the force of removal (leaving class I) as

µi
t , −

i′(t)

i(t)
, t ≥ 0 .

Consequently from (3.1)–(3.2), we see that µs
t = β i(t) and µi

t = −β s(t) + α .

Note that the above definitions imply that

s(t) = exp{−

∫ t

0

µs
x dx} = exp{−β

∫ t

0

i(x) dx} , t ≥ 0 , (3.7)

and

i(t) = exp{−

∫ t

0

µi
x dx} = exp{β

∫ t

0

s(x) dx + αt} , t ≥ 0 . (3.8)

For mathematical convenience, we shall first analyze the policy with an infinite term.

When the policy term is relatively long, the premium based on an infinite term may serve

as a rough estimation of the cost of the insurance.
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Proposition 3.1. In the SIR model in (3.1)–(3.2),

(1 +
α

δ
) ai

∞
+ as

∞
=

1

δ
. (3.9)

Note that the right hand side of (3.9) represents the present value of a unit perpetual

annuity. The intuitive interpretation of the left hand side is that, if each insured in the whole

insured population is provided with a unit perpetual annuity, the APV of payments to class

S is given by as
∞

and the APV of payments to class I is given by ai
∞

. Recall that at any

time a fraction α of the infected moves to class R. To be fair, each one in class R is also

entitled to a perpetuity worth a value of 1/δ at the time of transition. Hence the APV of

payments to the group leaving class I is given by (α/δ) ai
∞

. It is reasonable that all three

types of annuity payments should add up to the present value of a unit perpetual annuity,

1/δ, paid regardless of which compartment a policy–holder lies in.

From relation (3.9), we easily find the net level premium in (3.6) for a policy of an infinite

term with both premium and claim annuity payments given by the formula

P (ai
∞

) =
ai
∞

as
∞

=
δ ai

∞

1 − (δ + α)ai
∞

. (3.10)

3.2 Annuity premium and lump sum claim payments

An insurance plan that pays a lump sum compensation would be analogous to a whole life

insurance in actuarial mathematics. When an insured person is diagnosed with the infectious

disease and immediately hospitalized, the medical expenses are to be paid immediately in a

lump sum and the insurance plan terminates as its obligation is fulfilled. Then the APV of

benefit payments, denoted by A
i

∞
, is given by

A
i

∞
, β

∫

∞

0

e−δt s(t) i(t) dt , (3.11)

since the probability of being newly infected at time t is β s(t) i(t).

Proposition 3.2. In the SIR model in (3.1)–(3.2),

1

δ
A

i

∞
+ as

∞
=

1

δ
s0 , (3.12)

and

1

δ
i0 +

1

δ
A

i

∞
=

α

δ
ai
∞

+ ai
∞

. (3.13)
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Equation (3.12) also provides insight into the break-down of expenses in each class.

Assuming that every susceptible individual who initially enters the policy claims a unit

perpetual annuity, then APV of the total cost is s0/δ. From a different perspective, it is

equivalent to give every one a unit of annuity as long as the insured remains healthy in the

group and then grant each a unit perpetuity immediately as they become infected. The

APV of these two types of payments is exactly given by (1/δ)A
i

∞
+ as

∞
.

If one thinks of class I as a transit stage, then we can count the costs of payments on

both the incoming and outgoing sources. Assume that every one currently or previously in

class I receives a unit of perpetuity. From the incoming sources, the left hand side of (3.13)

gives the expenses for initial members i0/δ and the expenses for those who just entered the

class (1/δ)A
i

∞
. For the outgoing sources, the costs for individuals who continue to stay in

the class is given by ai
∞

and those deceased are compensated with a perpetuity worth 1/δ.

Thus the right hand side sums up to (α/δ)ai
∞

+ ai
∞

.

Therefore the net level premium P (A
i

∞
) for the plan of an infinite term insurance with

lump sum compensation and annuity premium payments is given by the equivalence princi-

ple:

P (A
i

∞
) ,

A
i

∞

as
∞

=
(α + δ)ai

∞
− i0

1 − (α + δ)ai
∞

.

3.3 Death benefit

Note that in the epidemiological literature the class R is composed of all individuals removed

chronologically from a previous compartment, who either recover with immunity or die

from the disease. A more refined model would have separate compartments for deaths

and recovered individuals. For our purpose of investigating actuarial implications of the

epidemiological model, we keep the simple assumption of only one R compartment exclusively

for deaths caused by the disease.

Health insurance plans often have death benefits that differ in value from health-care

benefits. In this infectious disease plan, we assume a death benefit of a monetary unit paid

immediately at the moment of death. Thus, the APV of a lump sum death benefit payment,

denoted by A
d

∞
, is given by

A
d

∞
, α

∫

∞

0

e−δt i(t) dt = α ai
∞

.

Therefore, the net level premium for the plan of an infinite term with both a unit lump sum

death benefit and health-care claim is obtained by:

P (ai
∞

+ A
d

∞
) ,

ai
∞

+ A
d

∞

as
∞

=
δ(1 + α)ai

∞

1 − (α + δ)ai
∞

.
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Finally, the net level premium for a plan with both, a lump sum benefit for hospitalization

costs and a lump sum death benefit is given by:

P (A
i

∞
+ A

d

∞
) ,

A
i

∞
+ A

d

∞

as
∞

=
(δ + α + δα)ai

∞
− i0

1 − (α + δ)ai
∞

.

4 Ratemaking

So far net premiums have only been expressed in terms of ai
∞

, which is a Laplace transform

of i(t). An implicit integral solution to the SIR model in (3.1)–(3.2) is as follows,

s(t) =
1

N
exp {−β

∫ t

0

exp {β N

∫ u

0

s(x) dx − αu} du} , t ≥ 0 ,

i(t) =
1

N
exp {β

∫ t

0

exp{β N

∫ u

0

i(x) dx} − αu du} , t ≥ 0 .

No general explicit solution is available for s(t) and i(t). Therefore we propose numerical

methods and approximations that can provide satisfactory solutions for insurance applica-

tions. The estimation of i(t) enables us to compute ai
∞

, which in turn gives as
∞

via the

relation between ai
∞

and as
∞

.

In addition the proposed techniques are extended to the more realistic finite term policy.

These numerical methods generally apply to the calculations of both the infinite and finite

term policy.

4.1 Infection table based approximation

In practice it is difficult to keep record of susceptible individuals, partly because of their

large numbers in a population and partly due to the difficulty in distinguishing a person

susceptible to a certain disease from one with immunity. But we can keep track of infected

people using public data from government health agencies and hospitals. Hence we rely on

the function i(t), instead of s(t), for all premium rating calculations.

A natural analogy here is with the life table in life insurance mathematics, which virtually

describes an empirical survival distribution of an average person’s longevity. Similarly, an

infection table can be generated to keep record of the number of infected cases reported

during each sampling period (e.g., every day for SARS). Table 2 in Section 6.1 is a simple

example of an infection table dated back to the 17th century.

Now from the infection table, we have a piecewise constant empirical approximation of

the continuous function i(t) given by

ı̃(t) =

{

ik , k − 1 < t ≤ k

0 , otherwise
,
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where ik is the rate of infection in the k-th period on the infection table.

Using this function in place of i(t) in (3.4) gives an approximation to ai

t
,

ai
t

=

∫ t

0

e−δx i(x) dx ≈

∫ t

0

e−δx ı̃(x) dx ≈
n

∑

k=1

e−δ(k−1) − e−δk

δ
ik ,

where n = [t] is the integer part of t, and n is large enough. To compute a perpetuity

ai
∞

, one needs to choose a sufficiently large term n and hence find P (ai
∞

) by (3.10) as an

approximate asymptotic values.

Following the same logic as in Proposition 3.1, the following relation between as
t

and ai
t

is easily obtained:

as
t

=
1

δ
(1 − e−δt) +

α

δ
e−δt

∫ t

0

i(r)dr − (
α

δ
+ 1)ai

t
.

Therefore, the premium for the policy with annuity claims and payments can be calcu-

lated by

πt =
ai

t

as
t

≈
(1/δ)

∑n

k=1[e
−δ(k−1) − e−δk] ik

(1/δ)(1 − e−δt + (α/δ)e−δt
∑n

k=1 ik − (α/δ2 + 1/δ)
∑n

k=1[e
−δ(k−1) − e−δk] ik

.

4.2 Power series solutions

The power series method is one of the oldest techniques used to solve linear differential

equations. This method can be adapted well to our SIR model.

Since every point in the system is an ordinary point, in particular, t = 0, we look for

solutions of the form

s(t) =

∞
∑

n=0

an tn , t ≥ 0 , (4.1)

i(t) =
∞

∑

n=0

bn tn , t ≥ 0 . (4.2)

Therefore, differentiating term by term yields

s′(t) =
∞

∑

n=1

nan tn−1 =
∞

∑

n=0

(n + 1) an+1 tn , t ≥ 0 ,

i′(t) =
∞

∑

n=1

n bn tn−1 =
∞

∑

n=0

(n + 1) bn+1 tn , t ≥ 0 .

Multiplying (4.1) by (4.2) gives,

s(t) i(t) =

∞
∑

n=0

cn tn , t ≥ 0 ,
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where

cn = a0 bn + a1 bn−1 + · · · + an−1 b1 + an b0 .

From (3.1), we obtain
∞

∑

n=0

(n + 1) an+1 tn + β
∞

∑

n=0

cn tn = 0 ,

∞
∑

n=0

(n + 1) bn+1 tn − β

∞
∑

n=0

cn tn + α

∞
∑

n=0

bn tn = 0 .

To satisfy these equations for all t, it is necessary that the coefficient of each power of t be

zero. Hence we obtain the following recursion relation:

an+1 = −
β

n + 1
(a0 bn + a1 bn−1 + · · · + an−1 b1 + an b0) ,

bn+1 = −an+1 −
α

n + 1
bn .

Therefore,

ai
t

=
∞

∑

n=0

∫ t

0

bn e−δx xn dx =
∞

∑

n=0

bnΓ(n + 1)Γ(n + 1, t),

as

t
=

∞
∑

n=0

∫ t

0

an e−δx xn dx =
∞

∑

n=0

anΓ(n + 1)Γ(n + 1, t),

where Γ(n, t) is the incomplete gamma function

Γ(n, t) =
1

Γ(n)

∫ t

0

xn−1e−tdt, n > 0, t > 0.

which is readily available numerically in most mathematical or statistical software.

Hence the premium for the policy with annuity claims and payments can be calculated

by

πt =
ai

t

as
t

=

∑

∞

n=0 bnΓ(n + 1)Γ(n + 1, t)
∑

∞

n=0 anΓ(n + 1)Γ(n + 1, t)
.

Interestingly, when t → ∞, these formulas simplify to

ai
∞

=

∞
∑

n=0

(n!)bn and as
∞

=

∞
∑

n=0

(n!)an ,

which implies that

P (ai
∞

) =

∑

∞

n=0(n!)bn
∑

∞

n=0(n!)an

.
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4.3 Insurance related quantities and Runge–Kutta method

Among many numerical methods for solving ODE’s, the Runge–Kutta method is the most

popular. It can be adapted for any order of accuracy. For applications in insurance, the

fourth order Runge–Kutta method (RK–4), given by the following recursion formulas, rep-

resents a good compromise between simplicity and accuracy:

yi+1 = yi +
1

6
(k1i + 2k2i + 3k3i + k4i) , i = 1, 2, . . . , n ,

k1i = hf(ti, yi) , k2i = hf(ti +
h

2
, yi +

1

2
k1i) ,

k3i = hf(ti +
h

2
, yi +

1

2
k2i) , k4i = hf(ti + h, yi + k3i) ,

where yi is given by the ODE:
dy

dt
= f(t, y) ,

evaluated at t = ti, and where h = ti − ti−1 is the time step, for i = 1, 2, . . . , n. The

Runge–Kutta method is discussed in detail by Boyce and DiPrima (1986).

Actuaries will be interested particularly in the properties of insurance–related quantities,

such as the total discounted benefits, the total discounted premiums and the premium re-

serves. Based on the RK–4 method, we need to express these quantities into a system of

differential equations. Let P (t) denote the accumulated value of premiums collected up to

time t and B(t) the corresponding accumulated value of benefits paid up to time t. Using a

retrospective approach, we consider V (t), the accumulated benefit reserve at time t, as the

difference between the accumulated value of premiums and the accumulated value of claims.

Assume that the infectious disease plan with annuity premium payments provides one

monetary unit of compensation per time unit for infected policy–holders. Then the connec-

tions among these insurance-related and epidemiological quantities could be described by

the following ODE system:

P ′(t) = πs(t) + δP (t) , t > 0 , (4.3)

B ′(t) = i(t) + δB(t) , t > 0 , (4.4)

V (t) = P (t)− B(t) , t > 0 , (4.5)

where P (0) = πs0, B(0) = i0 and p is a testing premium rate. The rationale behind the ODE

is as follows. The instantaneous change in the accumulated value of total premiums P ′(t) is

given by the sum of the instantaneous rate of premium income πs′(t) and the instantaneous

rate of interest return on the current total premiums δP (t). The instantaneous change in the

accumulated value of total claims is the sum of the instantaneous rate of claims i′(t) and the

instantaneous rate of interest return on the current total claims δS(t).
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These ODE systems can be readily solved in most mathematical software such as Maple.

Information about programming with the ODE tool kits in Maple can be found in Barnes

and Fulford (2008) and Coombes et al. (1997).

We first use π = P (A
i

∞
) as a starting point to test the behaviour of the reserve function.

Then we can gradually increase the premium rate π in order to produce an acceptable reserve

schedule.

5 Premium adjustments

We shall first investigate the demographic changes in the insured group over time.

Proposition 5.1. For the SIR model in (3.1)-(3.3), s(t) is monotonically decreasing in t,

and r(t) is monotonically increasing. If s0 ≤ α/β, then i(t) is monotonically decreasing,

while if s0 > α/β, i(t) increases up to the time t∗ at which point s(t∗) = α/β, and then

decreases afterwards.

In actuarial mathematics mortality rates mostly rise with age. If premiums are held

constant, the insurer’s future liability exceeds the future premium revenue. To cover future

liabilities, life insurers set aside benefit reserves. Unlike the “U” shape of mortality curves, a

unique feature of epidemics is that the infection rates increase rapidly at the beginning but

then drop after reaching a peak, as proved in Proposition 5.1. Figure 4 illustrates a typical

path of a benefit reserve function obtained for the policy in (4.3)–(4.5), where the benefit

premium is determined by (3.6). As one can see, because infection rates increase rapidly

in the early stage and drop significantly at the later stage, an insurer’s liability is larger at

the beginning but decreases over the time. Level premiums over a long term imply negative

benefit reserves, as claims exceed premiums in the early stages of the epidemic, as well as

the reserve at the later stage. Since there is a likelihood of policy withdrawal after the peak

of infection, an insurer may not be able to collect enough premiums. Hence the need to

increase the premium to a level that guarantees positive benefit reserve even if this means

that the insurer will have to pay a cash–value to policy–holders at the term of the policy.

We shall now investigate how the premium rate π affects the shape of benefit reserve

function using the example of a plan with both, annuity premiums and claim payments.

It follows immediately from (4.3)-(4.5) that

V ′(t) = π s(t) − i(t) + δV (t), t ≥ 0.

For simplicity, consider the case where the force of interest δ = 0, in order to better grasp the

connection between π and the shape of the benefit reserve. We leave the more complicated

case δ > 0 for the numerical analysis at the end of this section.
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Since the sign of the instantaneous change in V (t) depends on two competing forces, the

monotonically decreasing π s(t) and the decreasing or increasing-then-decreasing i(t). There

are four possible shapes of the graph of the benefit reserve V (t), namely, strictly increasing

concave, strictly increasing concave–then–convex, non–monotonic concave–then–convex and

non–monotonic convex, as shown in Figures 2–5, respectively. The following propositions

provide conditions under which the four scenarios appear (see the Appendix for the proofs).

Proposition 5.2. (Convexity) In (4.3)–(4.5) with δ = 0, the shape of benefit reserve V (t)

is determined by the premium rate π as follows:

1. V (t) is concave, if

π ≥
α

βs∞
− 1 , (5.1)

where the constant s∞ = limt→∞ s(t).

2. V (t) changes from concave to convex, if

α

β s0
− 1 < π <

α

β s∞
− 1 . (5.2)

The point of inflection tf is given by

s(tf) =
α

(1 + π)β
. (5.3)

3. V (t) is convex, if

π ≤
α

β s0
− 1 . (5.4)

Figure 2: Benefit reserve function V (t) of the Great Plague plan with π = 0.86
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Figure 3: Benefit reserve function V (t) of the Great Plague plan with π = 0.25.

Figure 4: Benefit reserve function V (t) of the Great Plague plan with π = 0.10.

Proposition 5.3. (Monotonicity) In (4.3)–(4.5), the reserve V (t) is strictly increasing, if

π >
α

β
exp (

βc

α
− 1) − 1 , (5.5)

where the constant c = 1 − α ln(s0)/β.

Since s(t) is a decreasing function, it is easy to see that

α

βs∞
− 1 ≤

α

β
exp

{

βc

α
− 1

}

− 1 ≤
α

βs0
− 1.

Table 1 summarizes the four possible shapes that result for reserve functions.

When δ is small relative to βi(r), for r ∈ [0, t), the shape of the reserve function does

not change significantly. Hence we can use the relation between π and V (t), when δ = 0, as

our starting approximation to search for an accurate premium in the case when δ > 0.

As we can see from Figures 4 and 5, premium rates are quite low but there might be

undesirable negative reserves during the policy term. On the other hand the insurer may not

favour a policy design with the strictly increasing liability shown in Figure 3, as premiums

are relatively high, increasing moral hazard. It means that healthy policy–holders are more
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Figure 5: Benefit reserve function V (t) of the Great Plague plan with π = 0.03

Shape of V (t) Interval for Values of π

Increasing concave [α/(βs0) − 1,∞)

Increasing concave–then–convex [α/β exp {βc/α − 1} − 1, α/(βs0) − 1)

Non–monotonic concave–then–convex [α/(βs∞) − 1, α/β exp {βc/α − 1} − 1)

Non–monotonic convex [0, α/(βs∞) − 1)

Table 1: Possible Shapes of V (t) when δ = 0

likely to shop for lower premium rates while unhealthy ones keep the policy, ultimately

increasing insurance costs. Hence the need for a design with more marketable premiums

that produce a bell–shaped reserve, that is a concave–then–convex shape, with the relatively

low final cash–values shown in Figure 7.

The above analysis shows the importance of determining whether the reserve function

is concave at the term of the policy. If so, premiums can gradually increase so that the

reserve reaches zero at the term of the policy, producing a bell–shaped reserve. Otherwise, a

premium that produces a bell-shaped reserve might not exist, hence the need to settle down

for a concave–then–convex reserve function, producing a positive cash–value paid out at the

end of the policy term.

The following algorithm calculates a premium rate for a t-year policy with non–negative

cash–values over the whole policy term. The main idea of the algorithm is summarized

as follows: It starts with an initial premium rate that ensures that V (t) is in its concave

phase at the end of the policy if δ = 0. Since a small δ will not affect the shape of V (t) in a

significant way, this step gives a tractable initial premium that can be used for other δ values.

As Step 1 is part of a loop, it is later used to check whether V (t) is still in a concave phase

with the newly adjusted premium rate. If so, proceed to Step 2.1 which adjusts premium

rates according to the sign of V (t). If a premium with zero final cash–value is feasible, it

will be obtained in Step 2.1. Step 2.2 deals with the case when V (t) is in a convex phase.
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If V (t) < 0, it means that the reserve has not yet reached its lowest level at the policy

term. Hence it is necessary to increase the premium until V (t) ≈ 0. If V (t) increases from

negative to positive in one step, it simply means that a policy with zero final cash–value is

not feasible, but the premium is as low as possible with non–negative reserves.

• Step 0: Set n := 1 and π(1) is set to be relatively small such that α/(β s(t)) − 1 <

π(1) < α/(β s∞) − 1 .

• Step 1: If π(n) > [βi(t)s(t) + δi(t) − αi(t)]/[δs(t) − βs(t)i(t)], proceed to Step 2.1.

Otherwise, proceed to Step 2.2.

• Step 2.1: If V (t) < 0, then π(n+1) := π(n) + 0.01, set n := n + 1 and go to Step 1. If

V (t) > 0, then π(n+1) := π(n) − 0.01, set n := n + 1 and go to Step 1. If V (t) ≈ 0, stop

and π(n) is the premium rate with zero final cash–value.

• Step 2.2: If V (t) < 0, then π(n+1) := π(n) + 0.01, set n := n + 1 and go to Step 2.2. If

V (t) ≈ 0, stop and π(n) is the premium rate with zero final cash–value. If V (t) > 0,

stop and π(n) is the smallest premium rate with positive final cash–value V (t) at the

end of the policy.

If the algorithm produces a positive value of V (t), it implies that the reserve function

reaches its lowest point, a non–negative value, prior to the end of the policy. By the Equiv-

alence Principle, the cash–value V (t) should be paid back to all surviving policy–holders at

the policy term.

6 Numerical examples

The epidemiological model in our first numerical example of the Great Plague in Eyam was

originally studied by Raggett (1982). It is included as a classical case study in many text-

books because predictions from the model are remarkably close to actual data. The second

example of a six compartment model comes from Chowell et al. (2003), where parameters

are primarily used for measuring the mean numbers of secondary cases a single infected will

cause in a population with no immunity, in the absence of interventions to control the infec-

tion. However, our focus is on the insurance arrangement to alleviate the financial burden

on the population, rather than model fitting and selection. These two datasets and compart-

ment models are assumed to give an accurate depiction of the dynamics of corresponding

diseases upon which actuarial models are built.
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6.1 Great Plague in Eyam

The village of Eyam near Sheffield, England, suffered a severe outbreak of bubonic plague

in 1665–1666. The plague was survived by only 83 of an initial population of 350 villagers.

Detailed records were preserved as shown, in Table 2. In Raggett (1982), the SIR model

is fitted to the Eyam data, over the period from mid–May to mid–October 1666. Time is

measured in months, with an initial population of 7 infectives and 254 susceptibles, and

a final population of 83. Since the disease was fatal at the time, all infected individuals

eventually died from to the disease.

Date Susceptibles Infectives

Initial 254 7

July 3–4 235 14.5

July 19 201 22

August 3–4 153.5 29

August 19 121 21

September 3–4 108 8

September 19 97 8

October 4–5 Unknown Unknown

October 20 83 0

Table 2: Eyam plague susceptible and infective populations in 1666. Data source: Raggett

(1982), Table II.

In order to set up an actuarial model based on the arrangement proposed in Figure 1,

we shall base the actuarial analysis on an accurately calibrated SIR model.

According to (7.5),

i0 + s0 −
α

β
ln s0 = i∞ + s∞ −

α

β
ln s∞ ,

from which we obtain an expression for β/α in terms of measurable quantities s0 and s∞,

β

α
≈

ln(s0/s∞)

1 − s∞
. (6.1)

It is generally difficult to estimate the contact rate β due to its dependency on social and be-

havioural factors. Hence it is important that we can estimate β from (6.1) with an estimation

of the fatality rate α.

Since s0 = 254/261 = 0.97318, i0 = 7/261 = 0.02682 and s∞ = 83/261 = 0.31801, the

equation (6.1) gives β/α = 1.64004. The parameter α is determined by its reciprocal, which
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Figure 6: Percentage of the susceptibles s(t) and percentage of the infected i(t)

has the clinical interpretation of the average infectious period. From clinical observations,

an infected person stays infectious for an average of 11 days or 0.3667 months before death,

so that α = 1/0.3667 = 2.73 and β = 4.4773. The resulting graphs of s(t) and i(t) are given

in Figure 6.

Insurance coverage will not directly reduce the transmission of the disease, if an epidemic

similar to that described in Table were to occur today. But a well–designed insurance

program could provide financial incentives for prevention measures and compensations for

hospitalization and other medical costs/services. To develop this insurance model, we assume

that everyone in the village participates in a mutual insurance fund set up at the beginning

of the epidemic. The insurance fund earns interest at the force of interest of 0.2%. The

insurance term lasts 5 months, which matches the duration of the epidemic.

The insurance plan provides infection benefits continuously at the rate of $1, 000 per

month until death, for every infected individual, for the whole period when he or she has

been infected and hospitalized. The insurance liability is terminated after death. It is

purchased by susceptible individuals, through continuous premium payments.

Using the algorithm provided in Section 5, we start with an initial premium rate π(1) =

1000α/[β s(5)]−1 = 917.37. The initial premium is quite high because the algorithm requires

the reserve to stay in its concave phase at the start, to then gradually reduce the premium

to a desired level. After many rounds of premium reduction, we reach the final premium

rate of π = 114.58. Such a premium rate avoids the reserve from ever being negative and

keeps the cash–value at policy end at a reasonable level of V (5) = 49.44, which means each

survivor receives a reward of $49.44 at the end of the epidemic to clear off the insurance

fund. The reserve function of such a policy is given in Figure 7.
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Figure 7: Cash–values of the Great Plague plan

6.2 SARS epidemic in Hong Kong

In the classical SIR model, the implicit assumption that the mixing of members from different

compartments is geographically homogeneous is probably unrealistic. The susceptible people

in geographical neighborhoods of an infectious virus-carrier are more likely to be infected

than those who are remote from the carrier. For instance, during the SARS epidemic in

Hong Kong, it was observed that health care workers were at higher risk of infection than

most other groups in the population.

To distinguish different levels of vulnerability or infectiousness within different social

groups, spatial structures are introduced and developed in epidemiological studies. A typical

example of a spatial structure applied to the SARS epidemic in Hong Kong is defined by

Chowell et al. (2003) in the following ODE system,

S ′

1(t) = −β S1(t)
[I(t) + qE(t) + lJ(t)

N

]

, t ≥ 0 , (6.2)

S ′

2(t) = −β pS2(t)
[I(t) + qE(t) + lJ(t)

N

]

, t ≥ 0 , (6.3)

E ′(t) = β (S1(t) + pS2(t))
[I(t) + qE(t) + lJ(t)

N

]

− kE(t) , t ≥ 0 , (6.4)

I ′(t) = kE(t) − (α + γ1 + τ ) I(t) , t ≥ 0 , (6.5)

J ′(t) = αI(t) − (γ2 + τ )J(t) , t ≥ 0 , (6.6)

R′(t) = γ1I(t) + γ2J(t) , t ≥ 0 . (6.7)

In this model, there are two distinct susceptible compartments with different levels of

exposure to SARS, namely S1 for the most susceptible urban community and S2 for the

less susceptible rural population. Initially, S1(0) = ρN and S2(0) = (1 − ρ)N , where ρ is

the proportion of urban individuals in the total population. An average highly susceptible

person (in Class S1) makes an average number of β risky contacts (i.e. contacts sufficient to

transmit infection) with others per unit time. Because of less frequent visits to public areas
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where viruses concentrate, an average lower susceptible person (in Class S2) would only be

exposed to an average number of pβ risky contacts with others per unit time.

Since individuals infected with SARS experience incubation periods of 2–7 days before

the onset of any visible symptoms, an infectious class is set up for those infected but not

yet symptomatic. The parameter q is used to measure the lower level of infectivity during

the incubation. With time, the infected individual develops observable symptoms and be-

comes fully infectious, in Class I with q = 1. In order to distinguish their potential disease

transmission to the general public, Class I is separated for those infectious individuals still

un-diagnosed. Since almost all diagnosed cases are quarantined in hospitals, Class J has a

lower infectivity level reflected by a reduction factor l.

The population rates transferring from E, I and J to their chronologically adjacent

compartments I , J and the recovered Class R, are respectively k, α and γ2. Considering

that even before being diagnosed, SARS patients may either recover naturally at the rate of

γ1 or die at the force of death τ , we also have Class D, tallying deaths as a result of SARS,

from sources I and J . The patients under medical treatment in Class J suffer death at the

rate assumed to be the same as the mortality rate in Class I .

Notice that both E and I are un-diagnosed phases, there is literally no statistical data for

estimating their parameters. Therefore, another compartment C for reported probable cases

is used to trace back, by a time series, the original time of incidence. Figure 8 illustrates the

possible transfer vectors among the different compartments.

Figure 8: Transfer diagram of the SARS epidemic dynamics (reprint of Figure 1 in Chowell

et al. 2003).

Leaving aside the detailed parameter inference analysis, we use the parameter estimates

in Chowell et al. (2003), summarized in Table 3. These allow the computation of the basic

reproductive number R0 in the original article. A drawback of this model is that it can lead
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to some negative counts in Classes I and J .

Parameter Moving from/to Value

β S1, S2/E 0.75

q reduced infectiousness 0.1

l reduced infectiousness 0.38

p reduced susceptibility 0.1

k E/I 1/3

α I/J 1/3

γ1 I/R 1/8

γ2 J/R 1/5

τ I, J/R 0.006

ρ reduced contacts 0.4

Table 3: Parameter values fitted to the SARS model for Hong Kong (see Table 1 in Chowell

et al. 2003).

From an insurer’s point of view, this model presents interesting business opportunities.

On the one hand, individuals in Classes S1 and S2 are potential buyers facing the risk of

infection with SARS. On the other hand, there is an evident need for insurance covering

vaccination costs in both S1 and S2, medical examination expenses for probable cases in

Class I , hospitalization and quarantine expenses for Class J and death benefits for Class D.

Several parties have stakes in our health care systems, such as insurance companies,

policy–holders, government health agencies, and hospitals. Numerous business models could

be designed to reduce the overall financial impact to a minimum level. With a simple

illustrative example of an infectious disease insurance, we revisit the two following plans:

1. Annuity for Hospitalization (AH) Plan

Every participant in the mutual insurance fund purchases the coverage by means of an

annuity. Insureds in rural areas are charged lower premiums proportional to their re-

duced susceptibility. From the time of policy issue to the end of the epidemic, insureds

can claim a medical examination fee of $100,000, once diagnosed with suspicious symp-

toms, plus hospitalization expenses of $100,000 per day, in the form of a life annuity

for the period under medical treatment in hospital. Specified beneficiaries are entitled

to a death benefit of $100,000 if the insured’s death is due to the infectious disease.

The protection ends at the earliest of the insured’s time of death or the end of the

epidemic.
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2. Lump Sum for Hospitalization (SH) Plan

This plan provides all of the same benefits as in the previous AH plan, with the

life annuity being replaced by a lump sum payment of $100,000 when the insured is

diagnosed positive with the disease. The protection also ends here at the earliest of

the policy–holder’s death or the end of the epidemic.

The discounted total benefits and premiums in Table 4 are calculated under the assump-

tion that all Hong Kong residents during the pandemic participate in the fund. This yields

surprisingly low net level premiums, determined for both plans by the equivalence principle.

This reinforces our assertion that a fairly low cost insurance plan could cushion the high

impact such pandemics would have on our health care systems when they occur.

Plan P.V. Benefits P.V. Premiums Level Premium

AH 3.0571 × 108 1.71604 × 108 1.78

SH 1.3231 × 108 1.71604 × 108 0.77

Table 4: SARS insurance premium rating (per $100,000 unit of benefits)

7 Future work

Research in this emerging type of insurance is at the infancy stage. More work is needed to

generalize models that could fit different aspects and features of other pandemics. There have

been numerous and extensive studies in epidemiological stochastic modeling. We envision

that some of these stochastic models can be incorporated in a more pragmatic way for

actuarial applications.

Appendix

A1 Proof of Proposition 3.1

From (3.1) and (3.2), we obtain that

s′(t) + i′(t) = −α i(t) , t ≥ 0 .

Integrating from 0 to a fixed t gives

s(t) + i(t)− 1 = −α

∫ t

0

i(r) dr , t ≥ 0 .
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Multiplying both sides by e−δt and integrating with respect to t, from 0 to ∞, yields

∫

∞

0

e−δts(t) dt +

∫

∞

0

e−δti(t) dt −
1

δ
= −α

∫

∞

0

e−δt

∫ t

0

i(r) dr dt, t ≥ 0.

Exchanging the order of integrals and using the integration by parts gives

∫

∞

0

exp (−δt)

∫ t

0

i(r) dr dt = −
1

δ

∫

∞

0

∫ t

0

i(r) dr d
(

exp (−δt)
)

=
1

δ

∫

∞

0

exp (−δr) i(r) dr =
1

δ
ai
∞

with the fact that

lim
t→∞

e−δt

∫ t

0

i(r) dr ≤ lim
t→∞

te−δt = 0.

Hence (3.9) is obtained upon rearrangement.

�

A2 Proof of Proposition 3.2

Substituting (3.1) into (3.11), we have that

A
i

∞
= −

∫

∞

0

e−δt s′(t) dt = s(0) − δ

∫

∞

0

e−δt s(t) dt = s0 − δ as
∞

.

It follows from (3.9) that

A
i

∞
= (δ + α) ai

∞
− 1 + s0 .

�

A3 Proof of Proposition 5.1

Since s(t) and i(t) are all non-negative, from (3.1) and (3.3) we know that s′(t) = −β s(t) i(t) <

0, for t > 0, and r′(t) = α i(t) > 0. Hence s is a monotonically decreasing function and r is

monotonically increasing.

If s0 ≤ α/β, then i′(t) = i(t) [β s(t) − α] < 0, which means that i(t) is monotonically

decreasing. If s0 > α/β, because s is monotonically decreasing, then i′(t) = i(t) [β s(t) −

α] > 0, as long as s(t) > α/β. Thus i(t) reaches a local maximum at the point t∗ where

s(t∗) = α/β. As s(t) continues to decrease after reaching α/β, we must have i′(t) < 0 and

hence i(t) is monotonically decreasing thereafter.

�
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A4 Proof of Proposition 5.2

To check the concavity of V , consider V ′′(t):

V ′′(t) = πs′(t)− i′(t) = −β π s(t) i(t) − β s(t) i(t) + α i(t)

= i(t) [α − β (π + 1)s(t)] . (7.1)

It follows that when

π >
α

β s(t)
− 1 , for all t > 0 ,

V ′′(t) < 0 and hence V ′′(t) is concave. Since s is monotonically decreasing, thus condition

(5.1) is required. Similarly, we derive the conditions (5.2) and (5.4) according to the changes

in the sign of (7.1). Since the point of inflection tf is where V (t) changes from concave to

convex, then it is determined by

V ′′(tf) = i(tf)[α − β(π + 1)s(tf )] = 0,

which implies the condition (5.3).

�

A5 Proof of Proposition 5.3

To ensure that V ′(t) > 0, we need

π >
i(t)

s(t)
, for all t , (7.2)

or equivalently,

lnπ > ln i(t)− ln s(t) , for all t .

Let f(t) = ln i(t)− ln s(t), then

f ′(t) =
i′(t)

i(t)
−

s′(t)

s(t)
= β [s(t) + i(t)] − α , by (2.1) and (2.2) .

Since s(t)+i(t) = 1−r(t) is monotonically decreasing, we see that f ′(t) changes from positive

to negative at time tm, when

s(tm) + i(tm) = α/β , (7.3)

and f(t) reaches its maximum at time tm. Thus, in order for (7.2) to hold π must satisfy

π >
i(tm)

s(tm)
. (7.4)

27



Now, since
i′(t)

s′(t)
=

(β s(t) − α) i(t)

−β s(t) i(t)
= −1 +

α

βs(t)
,

integrating both sides to find the orbits of the (s, i)-plane, gives:

i(t) + s(t) −
α

β
ln s(t) = c , (7.5)

where c is a constant of integration for each specific orbit, say c = i0 + s0 − α/β ln(s0).

Combining (7.3) and (7.5), we can solve for s(t) and i(t). The solutions are given by

s(tm) = exp
(

1 −
β c

α

)

, (7.6)

i(tm) =
α

β
− exp

(

1 −
β c

α

)

. (7.7)

Substituting (7.6) and (7.7) into (7.4) gives condition (5.5).

�
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81. José Garrido and Manuel Morales, On the Expected Discounted Penalty
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