INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UM! directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

nD-SQL: EXTENDING SCHEMASQL TOWARDS
MULTIDIMENSIONAL DATABASES AND OLAP

FREDERIC GINGRAS

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER oF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MoNTREAL, QUEBEC, CANADA

DECEMBER 1998
© FREDERIC GINGRAS, 1999

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre relérence
Our file Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette these sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-39112-4

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Frederic Gingras
Entitled: nD-5QL: Extending SchemaSQL Towards Multidimensional
Databases and OLAP

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science
complies with the regulations of this University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Supervisor

Approved
Chair of Department or Graduate Program Director

19

Dr. Nabil Esmail, Dean
Faculty of Engineering and Computer Science

Abstract

. nD-SQL: Extending SchemaSQL Towards Multidimensional Databases and OLAP

Frédéric Gingras

Decision support systems are becoming tools of basic necessity for corporations big
and small, but the costs in time and money to integrate the various sources containing
the data to be analysed is often prohibitive. In view of those costs, a non-intrusive
solution would be an attractive alternative to porting data and applications from
legacy systems to a common platform. In this context, one of the key problems for
interoperability lies in the heterogeneity in schema of the underlying sources. We
propose a combined solution to the above problems. This thesis proposes a formal
model for a federation of relational databases with possibly heterogeneous schemas.
The Federation Model is comprehensive enough for: (i) capturing the diversity of
schemas arising in practice, allowing a symmetric treatment of data and schema, and
(ii) capturing the complete space of dimensional representations of data, fully exploit-
ing the n logical dimensions structured along the three physical dimensions implicit in
the relational model ~ row, column, and relation. An n-dimensional query language
called nD-SQL is also proposed. This language makes use of the Federation Model and
is capable of: (a) resolving schematic discrepancies among a collection of relational
databases or data marts with heterogeneous schemas, and (b) supporting a whole
range of multiple granularity aggregation queries like CUBE, ROLLUP, and DRILLDOWN,
but, to an arbitrary, user controlled, level of resolution. In addition, nD-SQL can
express queries that restructure data conforming to any particular dimensional repre-
sentation into any other. The semantics of nD-SQL is downward compatible with the
popular SQL language. The thesis also proposes an extension to relational algebra,
capable of restructuring, called restructuring relational algebra (RRA). We use RRA
as a vehicle for efficient processing of nD-SQL queries, and we propose an architecture
for this purpose. We develop query optimisation strategies based on the properties of
RRA operators. We have implemented the operators of the RRA and we have tested
the performance of heuristics developed for query optimisation.

ii

To my mother, my father and Annie.

Each loving and helping me in their own, special way.

Acknowledgments

So many people have shaped who I am today, in small or enormous measures, that
properly acknowledging them all would take more pages than the length of this thesis.
I shall nonetheless endeavour to thank here as many as I can.

I would like to thank my mother and my father, who have always encouraged me
to be true to myself. They believe in me and have taught me to do the same. I could
never thank them enough for the support, love and friendship they have given me
over the last twenty-five years.

I would also like to thank Annie, my love. You have helped me stay sane (that is
as sane as [was before [met you), reaching out to me when I needed it most, bringing
a smile to my face when my troubles seemed overwhelming. Your love sustains and
strengthens me and [hope that my own love can do the same for you.

To all the friends who have endured me over the years, [say thank you (and se-
cretly wonder how you managed it). All of you, fans of science-fiction or fantasy,
role-players, card players, pool players, bowling players or badminton players. Dil-
letantes in movie soundtracks, in theoretical, particle or astro-physics. Critiques who
studied and debated with me the fine points of the impact theory of mass extinc-
tions. All those who shared with me their appreciation of Loreena McKennitt or
Sarah McLachlan. I must thank you all from the bottom of my heart for your friend-
ship, your help, your time and your positive influence on my life. If a person could
be the sum of who his friends are, I know I would be a much better person than I
can ever hope to become.

Over the years, the numerous teachers who taught me have managed to kindle my
interest in each of their subjects of predilection. They also recognised my interests
and abilities and slowly guided me on this marvelous journey of discoveries. I would
like to thank them all for the incredible opportunity they gave me in teaching me to
look at the world in a myriad of different ways.

Special thanks must go to my thesis advisor, Dr. Laks Lakshmanan. Laks’ knack

for taking the best parts of what you said. and massaging those into ideas that can
be worked upon, never ceases to amaze me. His interests are so varied and his mind
so agile that it is always a pleasure to converse with him on any subject. Even when
we do not agree on something, there is always room for discussion and in the end, a
better understanding emerges. Laks, if it was in my power to do so, I would find you
a whole department of students to work on your projects. I know that you would have
something fascinating for each of them to do and that in the end, the next generation
of database technology would become a reality very fast.

[would also like to gratefully acknowledge the financial support I received from the
J.W. McConnell Memorial Fund, and the NSERC grants I obtained through Laks. [
also made use of these awards for attending conferences.

Last, but not least, I would like to thank the members of my extended family, blood
related or otherwise. Your interest in me, kindness and warmth keeps on helping me

along the path of success.

Someone wise once said that when you travel, what should matter is not the
destination but the journey itself. The Chinese people also have a saying, which can
be a blessing as well as a curse: “May you live in interesting times”. Well, life’s
Journey has been incredibly interesting up to now, and I certainly do not want to
reach the destination anytime soon. May I be so lucky as to keep meeting people as
extraordinary as all of you who touched my life up to now. Thank you again everyone.
This is dedicated to all of you.

vi

Contents

List of Figures ix
List of Tables x

1 Imtroduction

1.2 Structure and Contributions of This Thesis 4

2 The Federation Model 7
2.1 The Federation Model: A Formal Model for a Federation of Relational Databases . . 7
2.2 Real Federations and Federation Model Bridged 11

3 The Syntax of nD-SQL 15
3.1 Multi-dimensionality and Restructuring 15
.11 mD-SQL Syntax 15

3.1.2 Allowable Abbreviations 20

3.1.3 Well Typing 21

3.2 Enhancing nD-SQL for OLAP: Multiple Visualisations and Arbitrary Sets of Group-bys 24
3.2.1 Extensions to the nD-SQL Syntax 25

4 The Semantics of nD-SQL 30
4.1 Informal Presentation of the Semantics 30
4.2 SQL Semantics Reviewed 31
4.3 nD-SQL Semantics 35

5 Query Processing 48
5.1 Processing of Queries that Do Not Involve Dimension Variables 48
9.1.1 Restructuring Relational Algebra 49

5.1.2 Translation fromnD-SQLto RRA 56

5.1.3 Optimisation 65

9.2 Processing of Queries With Dimension Variables 70

vii

6 Implementation

6.1 [Implementation Details
6.2 Performance Results
6.2.1 Preliminary Statements . . .
6.2.2 Testing Methodology
6.23 Results

7 Comparison With Other Work

7.1 SQL Extensions
7.1.1 SchemaSQL

8 Summary and Future Work

8.1 Summary
8.2 FutureWork
Bibliography

Appendix: Grammar of nD-SQL

viil

72
72
73
73
T4
75

85

87

88

89
39
90

92

95

List of Figures

A federation of relational databases with heterogeneous schemes, containing stock
market data. oL Lo
The catalog database associated with the federation of Figure 1.
Result of query Q3
Algorithm for verifying if a query is well-formed
Groupingsdone by query Q8
Multiple visualisations resulting from query Q9
The “neighbourhood” operator
The set of instantiations Zg1o corresponding to query Q12
The set aggtupleqg)a corresponding to query Q12
The set of logical instantiations I’°9i°Q13 corresponding to query Q13
The set of logical tuples Iaggloggcqls corresponding to query Q13
(i) The relation structqq3(v) and (ii) the final result after merging
nD-SQL Server Architecture

ny2m::prices.,
Algorithm for RRA operator ADD_REL
Algorithm nD-SQLtoRRA
Result of operation I"pate Tickersm (bSe prices)
Result of operation 6*prjces50.00(bse :prices)
Algorithm for operator IT™
Algorithm for operator o
Performance of ADD_.COL vs REM_COL for varying number of input tuples

Performance of Join vs REM_COL for varying avg join selectivity
Performance of Join vs REM_COL for varying nbr of input tuples
Performance of Join vs REM_COL for varying avg compactness
Performance of Join vs ADD_COL for varying avg join selectivity
Performance of Join vs ADD_COL for varying nbr of input tuples
Performance of Join vs ADD_COL for varying avg compactness

List of Tables

O 00 N O U AW N

b— = e
LI)

New elements of syntax in nD-SQL
Syntax for dimension variables; Xi,..., X, are all the dim_vars declared in the query.
RRA subexpressions for VITs of variables declared in the FROM clause
Rules for select_objects in the SELECT clause

Performance of ADD_COL vs REM_COL for varying number of input tuples

Performance of Join vs REM_COL for varying avg join selectivity
Performance of Join vs REM_COL for varying nbr of input tuples
Performance of Join vs REM_COL for varying avg compactness
Performance of Join vs ADD_COL for varying avg join selectivity
Performance of Join vs ADD_COL for varying nbr of input tuples

Performance of Join vs ADD_COL for varying avg compactness

Chapter 1

Introduction

We are rapidly reaching the end of the twentieth century and in the span of a few
decades, our needs in terms of information processing and analysis have reached a
point where powerful automated systems are no longer a nice thing to have, but a basic
necessity. The database community has thus been forced to adopt new paradigms
centered on the concepts of efficiency, productivity and competitivity, paradigms like
data warehouses, on line analytical processing (OLAP) and data mining. These
paradigms are all proposed as components of decision support systems.

One of the most important facts that has to be dealt with in this context is
interoperability : if it can be helped, users do not want to throw away their existing
systems. Replacing them would involve costs in time and money that must be avoided.
But empowering existing systems with the new functionalities needed, and integrating
these systems in a greater whole that would enable seamless cross-querying, is one of
the biggest challenges faced by today’s database community.

The interoperability problem entails the resolution of incompatibilities and con-
flicts on a number of different fronts, including: the myriad of platforms in use today;
the differences in schema of databases containing information of similar nature; the
variety of transaction management systems; the syntactic differences between lan-
guages used to access data in each system; and numerous others.

Some of these problems arise because the various sources of data, often inside a
single organisation, have been designed by different people, at different points in time,
to cater to different needs, and in most cases to be autonomous. The same autonomy
that was a blessing when it enabled distinct entities to administrate, query, update
and restructure data, has quickly become a curse of a sort. The tradeoff between

autonomy and the need for integration appears clearer today than ever before in

corporations that need powerful, integrated decision support tools. For example. the
Canadian telecommunication company Bell Canada has created over the years numer-
ous systems storing information about different aspects of its network of cables spread
over an immense territory. Today, in order to make sound business decisions about
the assignment of network repair crews and maintenance and installation budgets, the
corporation painstakingly developed an in-house tool that permits it to incorporate
data from its various systems. This tool was designed to analyse in various ways the
data coming from all the different sources, without necessitating any changes in the
individual systems.

As this example tries to illustrate, there is a real need for a sound and formal basis
to facilitate interoperability between different database systems. It would have made
life much easier for Bell Canada if there was a system capable of integrating those
components DBMS and interoperate among them. Such systems should not have to
be built using ad hoc designs, particular to each individual case.

It has been proposed in the literature that data-mining and OLAP being computa-
tionally expensive, they are best supported by a data warehouse. But, as discussed in
[CD97], building a data warehouse is a long, complex, and costly process, often taking
up to several years to complete. Many organisations adopt an intermediate solution,
whereby they create the so-called data marts, which are essentially miniature data
warehouses integrating small subsets of the operational databases. At the opposite
end of the spectrum, some organisations tend to adopt a virtual warehouse approach,
at least for a limited time, before they analyse their needs and customise their sys-
tems. Thus, in the evolutionary life-cycle of a data warehouse, one has to cope with
interoperating among operational databases, among data marts, and among both.
Given the ultimate need to perform OLAP-style computations, it would be desirable
to have one query language that can express not only conventional queries across
component databases (or data marts), but also OLAP-style queries.

It has been recognised that even in the apparently simple context of a federation
consisting of relational databases, the conflict among the component schemas raise
serious challenges for interoperability. For instance, an entry such as “ibm” might
appear as a domain value in one component database, as an attribute in another, and
as a relation name in the third (see Figure 1 for an example federation of relational
databases). It is known that conventional languages like SQL or variants cannot be
used to overcome this conflict (see [LSS96]), without a host language.

This thesis addresses the dual problem of solving the above kinds of interoperability

conflicts between relational sources, while enabling OLAP-style computations to be

performed on that data.

Ticker | Date Measure | Price
}:m ig}g;{g; olpen gggg Stocks | Date open | close
om close : ibm 1027197 | 63.67 | 62.56
ms 11]01|97 { open 4460
ms 11]01]97 | close 46.17 | LTS 11[01]97 | 44.60 | 46.17
(a)nyse: :prices (b)tse: :quotes
Date open_ibm | open_ms | open_... | ... | close_ibm | close_ms | close_...
10|27]97 63.67 50.23 62.56 48.54
11j01]97 65.23 44.60 63.05 46.17
(c) bse::prices
Date open | close | ... Date open | close
10]27{97 | 63.67 | 62.56 | ... 10}27|97 | 50.23 | 48.54
11]01]97 | 65.23 | 63.05 | ... 11]01]97 | 44.60 | 46.17
mse: :ibm mse::ms

(d) relations in mse

Figure 1: A federation of relational databases with heterogeneous schemnes, containing stock market
data.

Only relevant relations from each database are shown. The notation db: :rel means db is a database
containing relation rel. The same data is used in every database to clearly show the schema
correspondence.

To properly contrast the thesis with the existing research, the next section reviews

some of the existing works in the field.

1.1 Current State of Research

The problem of presenting to users an integrated view of the data in multiple database
systems has been studied by researchers for a long time. Surveys on this subject
are found in [ACM90], and [ACM94]. A more focused discussion can be found in
[S97]. Another important reference on the subject is Won Kim ([KCGS93]). The
main approaches are: (i) mapping component databases to a common canonical data,
model and (ii) using a non-procedural language for cross-querying.

The common data model approach consists in mapping the databases of a fed-

eration to a common model that is rich enough (in terms of modelling power) to

3

capture their similarities in information content. Often. users will be presented a
‘view’ of the various sources that all fit the user’s perception of his or her data. This
way a user will not need to know that there exist any schematic discrepancies be-
tween the sources. Examples of the use of the common data model approach are:
the Multibase project([LR9289]), the Mermaid project ([Tem87]), and the Pegasus
project ([ASD*91]).

The non-procedural language-based approach has been very popular over the years.
It consists in using a language that allows users to define and manipulate several
autonomous databases in a non-procedural fashion. This approach has the advantage
of giving more flexibility, since the common data model is not necessary and is, in
some sense, redefined each time dynamically by the use of the language. Much work
has been done following this approach. The following is a selection from those with
which we compare our work in Chapter 7: [Lit89, ASD*91, KKS92, Bee93, CL93,
GLRS93, SSR94, KGK*95, MR95, Cat96, SQLI6].

More recently, a family of related works has been proposed using higher order
languages as vehicles for information integration. We note SchemaLog([Andr*96]), a
logic language, Tabular Algebra ([GLS96]), and the SchemaSQL language ([LSS96]),
a SQL-compatible language which was the starting point for our work. A comparison
of our work with SchemaSQL can also be found in Chapter 7.

Industry efforts to solve the interoperability problem have also made their way
into commercial products. Among those, we note Oracle/SQL (from Oracle Corp.)
([ORA]) and Data Joiner, from IBM ([DB296]). The latter lets users combine relations
coming from different sources, and query them as if they were in one (DB2) source.

The work is promoted as a decision support tool.

1.2 Structure and Contributions of This Thesis

As stated earlier, even in the context of a federation consisting of relational databases,
the conflicts among the component database schemas raise serious challenges for
interoperability.

The body of work pertaining to the interoperability problem is impressive. How-
ever, none of the proposed common data models or non-procedural languages sat-
isfactorily solves the problem. For each of the works mentioned in the preceding
section, either: (i) there is an inherent rigidity present in the common data model

proposed, which means costly changes to a system whenever an additional source

must be integrated, or when changes are made to the schema of one of the sources:
(i1) the language or model proposed is not rich enough to effectively solve the schema
discrepancy problem; (iii) the language is not clearly downward compatible with SQL,
which is the language of choice for most commercial DBMS in use today; (iv) the
approach is intrusive insofar as it demands (sometimes extensive) changes to exist-
ing systems; or (v) the approach does not provide the necessary functionalities to
incorporate OLAP-style computations.

Both of the main approaches have merit, but we contend that a hybrid approach
can make use of the best of both worlds to cleanly resolve the problem. We believe
that the need for mappings to a common schema calls for a high level query language
capable of resolving schema conflicts automatically, assuming additional information
on the component schemas is added to the federation in a non-infrusive manner.

Moreover, given the ultimate need to perform OLAP-style computations, this
query language should not only be able to express conventional queries across com-
ponent databases (or data marts), but also OLAP-style queries.

This thesis proposes a formal model for a federation of relational databases with
possibly heterogeneous schemas. The model is comprehensive enough for: (i) captur-
ing the diversity of schemas arising in practice, allowing a symmetric treatment of
data and schema, and (ii) capturing the complete space of dimensional representations
of data, which fully exploits the three physical dimensions implicit in the relational
model - row, column, and relation. This separation of data dimensions from the
physical dimensions will enable us to both solve the schematic heterogeneity problem
for interoperability and to support OLAP-style computations. The Federation Model
is presented in Chapter 2.

An n-dimensional query language called nD-SQL is then proposed. This language
makes use of the Federation Model and is thus capable of: (a) resolving schematic
discrepancies among a collection of relational databases or data marts with heteroge-
neous schemas, and (b) supporting a whole range of multiple granularity aggregation
queries like CUBE, ROLLUP, and DRILLDOWN, but, to an arbitrary, user controlled, level
of resolution. In addition, nD-SQL can express queries that restructure data con-
forming to any particular dimensional representation into any other. The semantics
of nD-SQL is downward compatible with the popular SQL language. The syntax of
nD-SQL is presented in Chapter 3 while its semantics is presented in Chapter 4.

The thesis also proposes an extension to relational algebra, capable of restruc-
turing, called restructuring relational algebra (RRA). We use RRA as a vehicle for

efficient processing of nD-SQL queries, and we propose an architecture for this purpose.
We develop query optimisation strategies based on the properties of RRA operators.
We have implemented the operators of the RRA and we have tested the performance
of heuristics developed for query optimisation. Chapter 5 presents the RRA and dis-
cusses query processing and optimisation, while Chapter 6 presents and discusses the
performance results for query optimisation. Then, nD-SQL and its approach are com-

pared with related work in Chapter 7. Finally, Chapter 8 summarises and discusses

our future work.

Chapter 2

The Federation Model

This chapter proposes a formal model for collections of relational databases that we
call the Federation Model. The highlights of this model are: (i) It captures het-
erogeneous schemas of relational databases arising in practice, including cases where
domain values in one database may appear as schema components in another; (ii) It
gives a first class status to the three physical dimensions implicit in the traditional
relational model - row, column, and relation; (iii) Using this, it gives a precise mean-
ing to representations of n-dimensional data using three physical dimensions; (iv) it
is straightforward to incorporate (relational) data marts with the federation model,

and this is discussed at the end of the chapter.

2.1 The Federation Model: A Formal Model for a Federa-

tion of Relational Databases

Let us begin with the notion of a scheme. The size of practical database schemas may
not be fixed and may be data dependent (e.g., the number of columns of tse and
the number of relations in mse, in Figure 1). This problem is solved by proposing a
“federation scheme”. This notion makes it possible to view the scheme of a relation,
a database, or a federation, as a fized entity independent of the contents in it, just
as in the classical case. Let us assume pairwise disjoint, infinite, sets of names,
N, values, V, and id’s, ©. Typewriter font is used for names (e.g., Measure) and
Roman for values (e.g., open), regardless of what positions they appear in— data
or relation/column label positions. Ids will always be clear from the context. The
partial function dom : N ~+2V maps names in A to their underlying domains of

values. Names that only correspond to relations or databases do not have associated

domains.

Definition 2.1.1 (Federation Scheme) A federated name is a pair (N, X) where
N € N is a name and X C N is a finite subset of names, such that N¢X. In a
federated name, the component N is referred to as the concept and the set X as the
associated criteria set. A federated name (N, X) is simple (resp., complex) provided
X =0 (resp., X #0). Simple federated names (N,®) are usually denoted just as
N, following the classical convention. A federated attribute or relation name is any
federated name. A federated relation scheme is of the form R(Cy,....Cy), where R is
a federated relation name and the C;s are all federated attribute names. A federated
database scheme is a set of federated relation schemes, and a federation scheme is a

set of named federated database schemes.

The intuition behind the above definition is two-fold: Firstly, a complex attribute
name translates to a set of complex column labels in an instance. Similarly, com-
plex relation names translate to a set of complex relation labels. For example,
the complex attribute name (Price, {Measure, Ticker}) in the scheme might cor-
respond in an instance to the set {Price FOR Measure = low AND Ticker =
tbm, ..., Price FOR Measure = close AND Ticker = hp} of column labels. For

example, the federation scheme of the instance shown in Figure 1 is:

S1 = {nyse :: prices(Ticker, Date, Measure, Price), tse :: quotes(Ticker, Date, (Price, {Measure})),

bse :: prices(Date, (Price, {Measure, Ticker})), mse :: (prices, {Ticker})(Date, (Price, {Measure}))}.

We use the notation db::rel to indicate that a relation rel is from database db. Notice
that in the instance shown in Figure 1, the somewhat cryptic labels like “open” take
the place of the formal label “Price FOR Measure = open”. It will be shown later
that the exact labels used are unimportant, and we will provide a clean mechanism
for keeping track of their meaning.

Secondly, notice that the notion of a federated relation scheme formalises the idea
that certain attribute domains are arranged along each of the three dimensions —
relation, column, and row. Specifically, in an instance of a federated relation scheme
(e.g., mse:: (prices, {Ticker})(Date, (Price, {Measure}))), domain values of rela-
tion criteria (here Ticker) are placed along the relation dimension, domain values of
criteria of complex columns (here Measure) are placed along the row dimension, and

domain values of simple columns (here Date) are placed along the column dimension.

Definition 2.1.2 (Federation Instance) Let S = {di :: B{(C,..... Ce)eeenidm
Rn(Dy,..., D)}, the d; not necessarily distinct, be a federation scheme. Then a
federation instance (instance for short) of this scheme is a 7-tuple T = (D, rel, col, tup,

conc, crit, val), defined as follows.

® D= {d,...,dn}, i.e. D consists exactly of the distinct database names men-

ttoned in the scheme S.

o rel: D—29 isq function that maps each database name in D to a finite set of
relation id’s. Below, R = Uyep rel(d) is used to denote the set of all relation id’s

tn the instance.

e col : R—29 is q function that maps each relation id to a finite set of column
id’s.

e tup is a function that maps each relation id r in R to a finite set of tuples tup(r)

over the set of columns col(r).

e conc : O—=N is a function that maps each id to a name, called its underlying

concept.

o crit : 02N s a function that maps each id to a finite set of names, namely

its underlying set of criteria.

e val: O x N~V is a partial function that maps an id and @ name (viewed as a

possible criterion associated with the id) to a value.

For example, an instance of the scheme S, above is the federation shown in F ig-
ure 1, intuitively speaking. There are four database names— nyse, tse, bse, mse,
each of them having their associated simple/complex relations. For instance, mse has
the relations “ibm, ms, ...”, each having the same set of column labels— “Date, low,
high, ...”. All these labels intuitively correspond to (relation and column) id’s in the
formal definition.

A small subset of the abstract instance corresponding to the federation of F igure 1
would be:

D = {nyse, tse, bse,mse}
rel(nyse) = {prices}
col(nyse :: prices) = {Ticker,Date, Measure, Price}

tup(nyse :: prices) = {(ibm,10—27—97, open, 63.67), ...}

conc(nyse :: prices) = prices
conc(Ticker) = Ticker

rel(bse) = {bse :: prices}

col(bse :: prices) = {Date, open_ibm, open_ms, ...}
conc(open_tbm) = Price

crit(open_ibm) = {Measure, Ticker}
val(open_ibm,Measure) = open

val(open_ibm, Ticker) = ibm

etc.

In an instance, simple columns of relations are denoted as in the classical rela-
tional model, while complex columns are of the form (concept FOR criteria = v),
where criteria is a list of criteria and % is a tuple of values of the appropriate
type for the criteria. In formal definitions, such complex columns are denoted as
(concept, tcriteria), Where fcriteria is the tuple that maps criteria to v. Some-
times, {criteria are referred to as criteria-tuple. A similar remark applies for complex
relations.

The concepts and criteria associated with labels are typically not recorded in real-
life federations. However, intuitively, it can be understood that the concept associated
with the label “low” is Price and that the only associated criterion is Measure.
In the sequel, the formal notion of instances defined above shall be referred to as
abstract instances to distinguish them from the “real” (i.e. real-life) instances, defined
shortly. For an abstract instance to be a legal instance of a federation scheme, certain
consistency conditions should be met.

Definition 2.1.3 (Legal Instances) Let 7 be an abstract instance of a federation
scheme S. Then T is said to be a legal instance provided it satisfies the following
conditions.

1. The following sets are pairwise disjoint: each set of relation id’s associated with

a given database, each set of column id’s associated with a given relation.

2. Whenever a,b € col(r), a # b, and both a,b correspond to compler attribute
names, i.e. crif{a) # 0 # crit(b), it is required thai crit(a) = crit(b). In words,
the criteria sets associated with any two compler columns in a relation must be
identical.

3. For each relation id r, for each tuple t € tup(r), for a € col(r), it is required

that t[a] € dom(conc(a)), i.e. the relations must respect the types of the concepts

10

assoctated with their column labels.

4. Fora € col(r)Urel(d), r being any relation id, and d being any database in D, and
N € crit(a), it is required that val(a, N) € dom(N), i.e. the values associated

with criteria should belong to the appropriate domains.

In the sequel, references to abstract instances should be understood as references to
legal (abstract) instances. The first condition simply ensures that the id’s associated
with columns and relations are unique. Condition 2 ensures that a fixed set of at-
tribute domains are placed along the row dimension, thus making the 3-dimensional
representation of information consistent. Conditions 3 and 4 simply say that the

instance respects attribute types.

2.2 Real Federations and Federation Model Bridged

The notion of abstract instances defined in Definitions 2.1.2 and 2.1.3 makes the idea
of (legal) instances in the federation model precise. In addition, it also makes the
notion of a 3-dimensional representation of data containing several logical dimensions
(attributes) precise. However, the following questions arise: (1) How can real-life
federations be captured in the formal framework? (2) How relevant is the formal
notion of abstract federation instances to practice, and specifically, for the purpose

of interoperability? Let us deal with question 1 first, by defining real instances.

Definition 2.2.1 (Real Instance) A real instance F of a federation scheme S is
simply a named collection of relational databases such that: (i) F contains a database
corresponding to each database name d in S; (ii) each simple (resp., complez) relation
name R associated with a database d in S corresponds to a relation label (resp., set of
relation labels) in F; (iti) each simple (resp., complez) attribute name A associated
with a relation name R in database d in S corresponds to a column label (resp., set of
column labels) in F; (iv) all relation labels corresponding to a relation name R have

the same set of associated column labels.

Given an abstract instance Z of a federation scheme S, it is straightforward to
construct a real instance F by turning the various id’s in Z into labels. Such a real
instance F is called the real instance corresponding to the abstract instance Z. The
federation shown in Figure 1 is indeed the real instance of the federation scheme Sy,

corresponding to the abstract instance sketched following Definition 2.1.2. Notice

11

that (i) the notions of concepts and criteria are not present in the definition of a real
instance; (ii) there is no constraint on the labels chosen for the relations or columns.
Indeed, in real-life federations, users most often have total control over the chosen
labels, and the concept and criteria information may not be explicitly present. Thus,
the notion of real instances captures real-life federations.

Let us next address question 2 above. Abstract and real instances can be connected
by treating the various labels in the real instance as though they were id’s. The actual
concepts and criteria associated with them, which are not explicitly present, can be

attached in a non-intrusive wayin the form of system catalog tables, formalised next.

Definition 2.2.2 (Catalog Database) The catalog database associated with an ab-
stract instance I consists of the following three relations (which are called cata-
log tables): dbscheme(db, relid, rel_label, rel concept), relschemes(relid,
attrid, attr_label, attr_concept), criteria(id, criteria, value) satisfy-

ing the following conditions.

e the relation dbscheme contains a tuple (d,r,¢, c) exactly when, according to T,
database d has a relation with relation id r whose label is ¢ and underlying concept

s c.

e the relation relschemes has a tuple (r,a,?, c) ezactly when, according to I, re-
lation with id v has attrid a as one of its associated attributes, ¢ ts the label of a

while c is its underlying concept.

e the relation criteria has a tuple (2, cr,v) exactly when, according to I, the id i

has cr as one of its criteria which has the associated value v.

The catalog database associated with the federation of Figure | is shown in Fig-

ure 2.
The database catalog can be treated as a distinguished database from a formal

viewpoint in that it always consists of the three catalog tables defined above. Let us
stress that casual users do not have to explicitly manipulate the catalog db. For link-
ing an abstract instance to its corresponding real instance, the notion of an augmented
instance is proposed and defined next. Let F be a real instance corresponding to an
abstract instance Z. The augmented instance associated with F and 7 means the
federation obtained by adding to F the distinguished database catalog, the catalog
database associated with Z. Our first result is that there is a one-to-one correspon-

dence between the (legal) abstract instances of a federation scheme and augmented

12

db relid | rel label | rel_concept relid | attrid | attr_label | attr_concept
nyse ry prices prices r; a Ticker Ticker
tse ro quotes prices .
bse r3 prices prices r3 a; open_ibm Price
mse T4 ibm prices
mse r5 ms prices T4 a;j low Price
mse .
dbschemes relschemes

id | criteria | value

ry4 Ticker ibm

rs Ticker ms

a; Measure open

a; Ticker ibm

a;j | Measure low

criteria

Figure 2: The catalog database associated with the federation of Figure 1.

real instances.

Theorem 2.2.1 Let S be a federation scheme. Then to every abstract instance of S,

there exists an equivalent (augmented) real instance of S, and vice versa.

PROOQF:

For a given abstract instance 7, a simple encoding scheme lets us create an equivalent

augmented real instance.
First, we construct a real instance corresponding to Z in the following manner:

e For each id in Z, we choose a new label that has never been used before;

¢ The real instance has a database d «= d € D;

e Vd € D, database d in the real instance has one relation corresponding to each

relation id r € rel(d);

 Let r be a relation id € rel(d) and let real(r) be the corresponding relation in

the real instance. Then, real(r) has one column corresponding to each column

id ¢ € col(r);

® Let r be a relation id € rel(d) and let real(r) be the corresponding relation in the

real instance. Let ¢ be a column € col(r) and let real(c) be the corresponding

13

colummn in the real instance. Then, V tuple ¢ € tup(r) real(r) has a tuple real(t)

s.t. real(t)[real(c)] = t[c]
Then, we can build the catalog tables for that real instance in the following manner:

o for each database d; in the abstract instance, for each relation id r; ; € rel(d;),

a tuple (d;, i ;,rij, cone(ri;)) is added to table dbschemes;

e for each relation id r; in the abstract instance, for each column id cij € col(r;),

a tuple (r;, ¢;j, ¢ij, conc(ci;)) is added to table relschemes;

o for each relation id r; in the abstract instance, for each criterion k;; € crit(r;),

a tuple (r;, ki ;,val(ri, k; ;)) is added to table criteria;

e for each column id ¢; in the abstract instance, for each criterion &; ; € crit(c;), a

tuple (c;, ki j,val(ci, ki j)) is added to table criteria;

It is obvious that the above construction preserves information.

Going from real augmented instance to abstract instance is simply done by using
the converse of this scheme, which means defining the set D and the various functions
rel, col, tup, crit, conc and val such that they agree with the entries in the catalog
tables and the content of the real instance. E.g., in the abstract instance, tup(r) will
have a tuple <= the corresponding relation in the real instance has that tuple.

Again, the fact that the information is preserved should be obvious. In particular,
the mappings in either direction do not map two instances whose information is not
equivalent to the same target instance. From this the one-to-one correspondence
follows. »

Incorporating data marts: So far, attention has been focused on relational
databases. Many data marts (like data warehouses) that are based on the so-called
ROLAP approach adopt a star schema or a snowflake schema for their implemen-
tation. Let us call such data marts relational data marts. It is easy to see that
such schemas correspond to federated schemas where both relation names and at-
tributes are simple. Thus, the notions of a federation scheme and instance defined in

Definitions 2.1.1 and 2.1.2 subsume relational data marts.

14

Chapter 3

The Syntax of nD-SQL

In this chapter, we present the nD-SQL language, a query language downward compat-
ible with SQL and which takes advantage of the Federation Model to query, restructure
and aggregate data. This language also lets users express queries asking for the com-
putation of arbitrary sets of group-bys and/or multiple visualisations of the same
results. This thesis covers only the non-nested, querying fragment of nD-SQL.

Chapter 3 presents the syntax of nD-SQL by explaining the additions made to SQL.
The semantics of nD-SQL will be illustrated with examples. For a formal description
of the semantics, refer to Chapter 4. The complete syntax of nD-SQL in the form of
a grammar is given in the Appendix.

The first part of this chapter explains the syntactic extensions for multi-dimen-
sionality and restructuring. The second part will present the extensions regarding
multiple granularity aggregations and multiple renderings of the same query result.
Throughout the thesis, the federation of Figure 1 will be used as a running example

to illustrate the nD-SQL queries.

3.1 Multi-dimensionality and Restructuring

3.1.1 nD-SQL Syntax

nD-SQL uses the classic SELECT, FROM, WHERE, GROUP BY and HAVING clauses of SQL,
but adds to the syntax in several manners. Table 1 summaries the syntactic additions
and we refer the reader to that table for details on the following points.

(1) FROM clause: In addition to declaring the usual tuple variables (called ‘aliases’

in SQL), users can now also declarc variables ranging over database names, a set of

15

relations, or a set of columns of relation(s). These new variable types are inspired by
those used with the SchemaSQL language ([LSS96]). The syntax of variable declara-
tions is summarised in Table 1. In that table, db and rel can be either constants or
variables of the appropriate kinds.

(2) WHERE clause: nD-SQL introduces two new interpreted constraints (in Table 1)
which may be used in the WHERE clause to constrain relation or column variables
to range over a “homogeneous” set of schema objects, i.e. over relations/columns
having the same concept and set of criteria. The use of such constraints will help
ensure queries are “well-typed”, a notion that will be formally defined in Section

3.1.3. In Table I (constraining variables), var can be a rel_var or a col_var.

Syntax for... New Element of Syntax
declaring Variable Type Declaration Syntax Variable ranges over...
variables db_var -> var the names of the dbs in the federation
in rel.var db -> var the relations in database(s) db
FROM col_var db::rel -> var the columns of the relation(s) rel in database(s) db
clause tuple.var db::rel var the tuples of the relation(s) rel in database(s) db
constraining
variables Constraint Syntax Variable constrained to range over...
in ISA condition var ISA concept objects representing concept concept
WHERE HASA condition var HASA criterion objects having criterion criterion in their criteria set
clause
extracting
domain Domain Type Values in domain
values db_var database names db_var ranges over
in tuple_var.attribute values of attribute attribute in the tuples tuple_var ranges over
SELECT, col.var.criterion values of criterion criterion of the columns col_var ranges over
WHERE, rel_var.criterion values of criterion criterion of the relations rel_var ranges over
GROUP BY tuple_var.col_var values of concept concept(col_var) under each column
and HAVING col_var ranges over in the tuples tuple.var ranges over
clauses
creating
complex
;::[umns domaing [AS label] FOR (domaim {, domaim}), i > 1
SELECT
clause
creating
complex
lati
:: tons SELECT (select_objects list) [AS label 1 FOR domain; {, domain;}, i > 1
SELECT
clause

Table 1: New elements of syntax in nD~SQL

16

As an example of the use of variable declarations and of proper constraints, here

1s what the FROM and WHERE clauses could contain in order to query the data from
Figure 1(d):

FROM mse ~> R, mse::R T, mse::R -> C
WHERE R HASA Ticker AND C ISA Price

Note how the rel_var R is restricted to range over the relations of database mse
having Ticker values as criteria values, and how the col_var C is restricted to range
over the columns of these relations having Price values as their underlying concept.

(3) Since SQL allows only tuple variables, it has only one type of domain expres-
sion, expressions of the form tuple_var.attr (abbreviated as attr). In addition
to this, nD-SQL also allows the domain expressions db_var, tuple_var.col_var and
V.criterion, where V is a relation (or column) variable and criterion is one of the
criteria of the relations (or columns) the variable ranges over. The expression db_var
extracts the names of the databases in the federation, the next expression extracts
values of the concept in complex columns, while the last expression is used to extract
criteria values from the federated relation schema. All of these domain expressions
can be used in the SELECT and GROUP BY clauses, and in conditions in the WHERE and
HAVING clauses.

Also, the underlying concept of a domain is defined as follows:

Definition 3.1.1 (Underlying concept of a domain)

(db_var if domain is of the form db_var
attribute if domain is of the form tuple_var.attribute
undconc(domain) = { criterion if domain is of the form rel_var.criterion
criterion if domain is of the form col_var.criterion
| conc(colvar) if domain is of the form tuple_var.col_var

where the concept of a complex column over which a col_var ranges is referred to
as conc(col.var). In the rest of this thesis, the set of criteria associated with a column

or relation variable var is referred to as crit(var).
As an example of the use of each kind of domains, the following query “flattens”
the data from the tables of Figure 1(d) into a form similar to table nyse::prices:

SELECT R.Ticker, T.Date, C.Measure, T.C AS Price
(Q1) FROM mse -> R, mse::R T, mse::R -> C
WHERE R HASA Ticker AND C ISA Price

17

Note in this query, in addition to the use cf the HASA/ISA conditions to constrain
the relation and column variables, the extraction of the values of criteria C.Measure
into a column of its own. The multiple columns that C ranges over are aligned into a
single column by the select_object T.C AS Price. Here, each tuple of each table of
Figure 1(d) is broken down into many output tuples, one per value of the criterion
Measure.

(4)In order to create complex columns and relations, a mechanism is needed in
order to deposit data values as criteria values. To deposit data values as column
criteria values the following new type of select_objects is to be used in the SELECT
clause:

domaing [AS label | FOR (domain; {, domain;}), i > 1

The optional labels use the following syntax: any series of constant strings (in
double quotes) or domain expressions among those for the criteria domain;,j > 1,
concatenated together using the ampersand (&) symbol. Examples of labels when
the criteria list (domain, {, domain;}), ¢ > 1 is (T.ticker) could be: “Price for
Year =7 & T.Ticker, “Price for " & T.Ticker, T.Ticker & “’s Price” or even simply
T.Ticker.

If no label (AS sub-clause) is present, then a default should be used. When there is
no FOR sub-clause, it is proposed to use the name of the underlying concept (Definition
3.1.1) of domaing (similar to the SQL convention in the absence of an AS sub-clause).
When one FOR sub-clause is present, the proposed default is a comma separated list
of the criteria values (equivalent to the label domain; & “,” & domain, & “,” &)l
When more than one FOR sub-clause are present in the SELECT clause, that list of
criteria values could be preceded by undconc(domaing), the name of the underlying
concept of the column.

Relating the syntax and the model: The use of the FOR sub-clause with a
select_object indicates that there should be a complex attribute with name:
(undconc(domaing), {undconc(domain;), undconc(domain,), ...}) in the output rela-
tion schema).

The following example illustrates the use of this syntax by transforming the content

of nyse: :prices into a format similar to the one of table tse: : quotes.

SELECT T.Ticker AS Stocks, T.Date, T.Price AS T.Measure FOR T.Measure
(Q2) FROM nyse::prices T

Note in this query how the multiple Price columns are created, one for each

18

Measure values. by the use of the FOR sub-clause. Note also how these Measure
values are used as column labels. This representation of data is an example of what
is commonly called the cross-tab representation.

(5)To deposit data values as relation criteria, the select_objects of the SELECT
clause are enclosed in parentheses and an outer FOR sub-clause is applied:

SELECT (select.objectslist) AS label FOR domain, {, domain;},i>1

Relating the syntax and the model: The use of the outer FOR sub-clause indi-
cates that a relation with name (rely, {undconc(domain,) , undconc(domain,) , ...})
should be created. The relation concept rel; for the output relations should be
system-generated in order to prevent conflicts with other relation concepts in the
catalog.

The following example illustrates the creation of complex relations, while an ag-

gregation is performed.

SELECT (Avg(T.C) AS "AvgPrice FOR Measure = " & C.Measure FOR C.Measure)
AS T.Date FOR T.Date
(Q3) FROM bse::prices -> C, bse::prices T

WHERE C ISA Price
GROUP BY C.Measure, T.Date

This query takes the aggregation of each individual Price for a given Measure on
a given Date (i.e. the aggregation is over Tickers). Here, note that the aggregation
is performed over a subset of the criteria of C. The aggregation is performed on T.C
(i.e. Price values), grouping by C.Measure (extracting the values of Measure) and
T.Date. The inner FOR sub-clause restructures the averages into multiple columns,
one per value of Measure, while the outer FOR sub-clause restructures the result into
multiple relations, one per value of Date. The result of the query is shown in Figure 3,
where the output relations are assumed to be temporarily viewed as members of a

database named “output”.

AvgPrice FOR AvgPrice FOR | ... AvgPrice FOR AvgPrice FOR
Measure = open | Measure = close | ... Measure = open | Measure = close
50.68 52.87 | ... 5905K 6308K

output: :10[27]|97 output::11}01]97

Figure 3: Result of query Q3

19

3.1.2 Allowable Abbreviations

Various abbreviations are acceptable in our syntax. All the abbreviations mentioned
here can be used in the SELECT clause.

(1)The abbreviation V.*, for a rel/col_var V, is a shorthand for the enumeration
V.criteriom, ..., V.criterion,, where crit(V) = {criterion, ..., criterion, }. This can
also be used in the GROUP BY clause in aggregating queries;

(2)The abbreviation T.concept, for a tuple_var T, used as a select_object in the
SELECT clause, is equivalent to the expression T.C FOR C.*, C being a col_var declared
over the same relation(s) and with underlying concept concept. This abbreviation says
to select each instance of a complex column as is, without restructuring;

(3) The abbreviation T.*, for a tuple_var T, used as a select_object, says to select
all columns of the relation that T ranges over, as in classical SQL. As an example of all
these abbreviations, query Q4 selects all the columns of relation bse: :prices. Here,
Q4a uses the simplest abbreviation, Q4b and Q4c are intermediary equivalent queries,

and Q4d is the fully expanded, explicit query equivalent to the other three.

SELECT T.* SELECT T.Date, T.C FOR C.=*
(Q4a) FROM bse::prices T (Q4c) FROM bse::prices T, bse::prices -> C
WHERE C ISA Price

SELECT T.Date, T.Price SELECT T.Date, T.C FOR (C.Measure, C.Ticker)
(Q4b) FROM bse::prices T (Q4d) FROM bse::prices T, bse::prices -> C
WHERE C ISA Price

(4)Suppose the same aggregation is to be performed individually on each column
of a relation that “is a” concept. Then the abbreviation AGG(T. concept) can be used
instead of using the select_object AGG(T.C) FOR C.* and having to explicitly declare
and constrain the column variable. Example Q5a exemplifies the use of this abbrevi-
ation by querying bse: :prices and taking the average of the Prices throughout the

Dates for each Measure and Ticker. Q5b is the equivalent explicit query.

SELECT AVG(T.Price) SELECT AVG(T.C) FOR (C.Measure, C.Ticker)
(Q5a) FROM bse::prices T (Q5b) FROM bse::prices T, bse::prices -> C
WHERE C ISA Price

Note that we will use the term ezplicit query to denote a query for which all

abbreviations are expanded.

20

3.1.3 Well Typing

Intuitively, a query can be meaningful only if it maps legal instances to legal instances.

More precisely, the following definition is used.

Definition 3.1.2 (Well-Typing) An nD-SQL query Q is well-typed provided for ev-
ery legal instance I, Q(T), viewed as an instance is also legal.

Ensuring well-typing is important for query processing, not only to make sure the
result presented to the user is meaningful, but also for ensuring aggregations can
be correctly applied. Thus, an efficient algorithm for testing well-typing is essential.
In order to develop such an algorithm, we define a syntactic notion stronger than

well-typedness, well-formedness:

Definition 3.1.3 (Well-Formedness) An nD-SQL query Q is well-formed provided
that it fulfills the following conditions:

(i) each relation variable is restricted (by ISA and HASA conditions) to range over

relations having the same concept and criteria set;

(1t) each column variable is restricted (by ISA and HASA conditions) to range over

columns having same concept and same set of criteria;
(iii) all the complez columns created in the SELECT clause have the same set of crite-
ria;
As stated above, well-formedness is a stronger notion than well-typedness. For-
mally:

Theorem 3.1.1 If a query is well-formed it is also well-typed.

PROQEF:

Let Q be a query. let 7 be a legal instance and Q(Z) the output of Q on Z.

1. Clearly, condition I of legality will be met by construction of Q(Z), since all id’s

produced will be unique;

2. Suppose that a and b are two column id’s in Q(Z) that correspond to complex
columns. Since Q(Z) has complex columns it implies that Q must involve select
objects of the form domainoe [AS label]l FOR domain_list. By condition (iii) of

21

well-formedness, every list of domains domain_list in inner FOR sub-clauses will
contain the same domains, and thus a and b will have the same criteria set. The

query result will thus meet condition 2 of legality.
3. Conditions (i) and (ii) of well-formedness imply that:

— For each domain expression of the form tuple_var.attr (attr being a con-
stant), the value will come from the domain of attr. The condition on re-
lation variables ensures the tuple_var ranges over relations having identical
schemas, and the type of a given concept (attr) in all these relations must
be fixed by virtue of the legality of T;

— For each domain expression of the form tuple_var.col_var, since col_var is
restricted to range over columns with the same concept, the same argument
as above can be made;

— By virtue of the legality of Z, the condition on relation variables ensures
that, for each domain expression of the form rel_var.crit, the value comes
from the domain of criterion crit;

— By virtue of the legality of T, the condition on column variables ensures
that, for each domain expression of the form col_var.crit, the value comes

from the domain of criterion crit.

Since the arguments above apply to each select expression appearing in the

SELECT clause, we conclude that condition 3 of legality has to be met by Q(Z).

4. Since the arguments from 3 above also apply to each expression appearing in a

criteria position in a FOR sub-clause, we conclude that condition 4 of legality is

also met by Q(Z).

"

Theorem 3.1.1 immediately yields a sufficiency test for testing well-typing: test
whether the query satisfies the conditions for being well-formed. We can test the
latter in time linear in the size of a given query, provided the catalog tables are
properly indexed. The algorithm veryfying a query is well-formed is presented in
Figure 4. The semantics of nD-SQL (presented in the next chapter) is defined for
well-formed queries, and thus not for all well-typed queries (see section 8.2 for an
example of a query which is well-typed but not well-formed and that is thus not

supported by the current semantics). A more complex semantics would be necessary

22

to support all well-typed queries, and developping such a semantics is part of our

ongoing work.

INPUT: An nD-SQL query
The catalog database for the federation being queried

OUTPUT: A boolean value, true if query is well-formed, false if not

still_good = true;
first_for_sub-clause = true;
for each select.object in the SELECT clause do
if the select_object has a FOR sub-clause then
if first_for_sub-clause then
store crit.list in variable criteria;
first _for_sub-clause = false;
else
if critldist is not equivalent to criteria then
still_good = false;
end if
end if
end if
end for

if still_good then
for each condition in the WHERE clause do
if the condition is an ISA or an HASA condition then
associate the condition with the proper variable;
end if
end for

for each variable declaration in the FROM clause do
if still_ good AND the declared variable is a rel_var or a col_var then
if the range of the variable contains a non-instantiated variable then
delay the chack for this variable;

else
using the range of the variable + the associated ISA and HASA conditions,

query the catalog database to instantiate the variable, also getting each instance's
concept and criteria set;
if all instances do not have same concept and criteria set then
still_good = false;
end if
end if
end if
end for
end if

if still_good then
return true;
else
return false;
end if

Figure 4: Algorithm for verifying if a query is well-formed

The algorithm first checks if the criteria set in every FOR sub-clause is the same. If
so, it then associates each ISA and HASA condition in the WHERE clause to the proper
variable and verifies for each rel_var and col_var declared in the FROM clause that
those conditions associated with it, combined with the variable’s declared range, are
sufficient to restrict it to range over objects having same concept and same criteria

set. This ensures that all three conditions for well-formdness are met.

23

As an example of the use of the algorithm, query Q1 is found to be well-formed in
the following manner: (1) since there is no inner FOR sub-clause in the SELECT clause
the query passes the first test; (2) the condition R HASA Ticker is associated with the
rel_var R and the condition C ISA Price is associated with the col_var C; (3) using
the range of R and the condition R HASA Ticker, the catalog database is queried and
all returned instances for R have same concept (prices) and criteria set ({Ticker}).
All possible instances for C are also found to have same concept and criteria set. The

three conditions for well-formdness are thus met.

3.2 Enhancing nD-SQL for OLAP: Multiple Visualisations
and Arbitrary Sets of Group-bys

Since the proposal by Gray et al. [Gray+96] for the powerful CUBE operator, re-
searchers have developed several efficient algorithms for computing this expensive
operator [Agart96, ZDN97]. The CUBE operator corresponds to aggregation at ex-
ponentially many granularities. It has been recognised [Agar*96, ZDN97] that in
practice, a user may be interested in specific subsets of group-bys. Two such ex-
amples are ROLLUP (e.g., {{Date, Ticker}, {Date}, {}) and its converse DRILLDOWN.
While these operators are important, in general, and depending on the application at
hand, users may be interested in subsets that need not be covered by these operators.
See Example 3.2.4 for one such “interesting” subset. In this section, some simple ex-
tensions to nD-SQL are developed which lead to a powerful mechanism for expressing
arbitrary subsets of group-bys. In addition, together with the restructuring capa-
bilities of nD-SQL, these extensions allow for the computation of arbitrary multiple
granularity aggregations and the visualisation of the results in multiple ways.
Following OLAP terminology, each of the names in a federation scheme is referred
to in the sequel as a logical dimension. Each variable declared in the FROM clause of

an nD-SQL query can thus be associated with a set of logical dimensions, as follows:

Definition 3.2.1 (Logical Dimensions associated with a variable) Let Q be an
nD-SQL query and let V be a variable declared in the FROM clause of Q. The set of

24

logical dimensions associated with V is:

{D}, if D =V is a database variable,

{V.crity, V.crity, ..., V.crit, }, if Vis a column or relation vartable,
having criteria crit;, i < p

{T.simpy, T.simps, ..., T.stmp,, T.Cy, wwT.Cs}, if T =V is a tuple variable, the rela-
tions over which T ranges have u
stmple columns with concepts
stmp;,t < u and s complex
columns for which a column variable

C; s declared, j < s

Definition 3.2.2 (Logical Dimensions associated with a query) Let Q be an
nD-SQL query. The logical dimensions associated with Q is the set of logical dimen-

stons associated with the variables declared in the FROM clause of Q.

3.2.1 Extensions to the nD-SQL Syntax

The enhancements to the syntax of nD-SQL permitting the expression of multiple
sub-aggregates and visualisations are summarised in Table 2. The main addition
is a new kind of variable called dimension variable, ranging over the names of all
logical dimensions associated with the query, except those being aggregated. An
nD-SQL query) with dimension variables still maps a federation to a set of relations.
However, for such a query we define the mapping in the following manner: The result
of @ is the same set of relations as the combined result of the set of nD-SQL queries
without dimension variables, obtained by instantiating the dimension variables in Q
to all possible dimension names that satisfy the constraints on the dimension variables,
specified in the WHERE clause of (). Here is an extremely simple example to illustrate

the ideas.

Example 3.2.1

SELECT X, SUM(T.Price)
@7 FROM nyse::prices T, DIM X
GROUP BY X
The only dimension variable is X. The only non-dimension wvariable declared in the
FROM clause is T, whose associated dimensions are T.Date, T.Ticker, T.Measure
and T.Price. Of these, T.Price is being aggregated. So, the dimension variable X

25

ranges over the dimension names T.Date, T.Ticker, and T.Measure. The equiva-

lent set of queries without dimension variables are as follows.

SELECT T.Ticker, SUM(T.Price) SELECT T.Date, SUM(T.Price)
(Q7a) FROM nyse::prices T (Q7b) FROM nyse::prices T
GROUP BY T.Ticker GROUP BY T.Date

SELECT T.Measure, SUM(T.Price)
(Q7c) FROM nyse::prices T
GROQUP BY T.Measure
Thus, this query expresses the aggregation of T.Price with respect to each of the
three possible group-bys — T.Ticker, T.Date, and T.Measure, which corresponds

to the level-1 slice of a CUBE. =
Syntax for... New Element of Syntax
declaring
variables Variable Type Declaration Syntax Variable ranges over...
in dim_var DIM var logical dimensions associated with query,
FROM except those being aggregated
clause
Constraint Syntax Effect
rel-ops var Op dimension, var must satisfy the relationship Op

(Op being one of =, <, ...) w.r.t. dimension

constraining var) Op var; instantiations of var; and var,
variables must satisfy the relationship Op
in membership var I¥ set of dimensions instantiation of var must belong to
WHERE the set of dimensions specified
clause var NOT IN set of dimensions instantiation of var must not belong to
the set of dimensions specified
special var CAK BE HORE range of var includes
the special constant NORE

'abbreVIa.CIons Description Syntax Equivalent to
SELECT Shorthand for declaring DIN Xy, X3, ..., Xn DIN X;, DIN X5, ..., DIN Xn

multiple dimension variables
clause

Description Syntax Equivalent to
abbreviations Shortha_nds for constraints DIMS CAE BE NOEE X{ CAN BE NOKNE AND
in on all dimension variables --. Xn CAN BE HONE

DIMS IN set of dimensions X; IN set of dimensions AND ...

WHERE . .
clause AND X, IFK set of dimensions

Shorthand for transitive X; < X2 < X3 X; < X2 AND

constraints X2 < X3
Table 2: Syntax for dimension variables; X, ..., X, are all the dim_vars declared in the query.

Conceptually, the nD-SQL query Q7 can be thought of as producing as output the

three relations corresponding to the results of queries Q7a-c. An alternative way to

26

think about it is that it produces the union of the three relations mentioned above.
In forming such a union, one can adopt Gray et al.’s approach of using the special
value "All” to correctly represent the union.

Constraints on dimension variables include the standard rel-ops =, <, <, >, >, #.
They are interpreted w.r.t. the lexicographic ordering of the dimension names. E.g.,
T.Date < T.Ticker. Such constraints may be used to eliminate duplicate group-bys
from being presented in the result, similar to the use of the DISTINCT keyword in the
SELECT clause. Also useful will be a special constant, NONE, inspired by the special
constant all introduced by Gray et al. [Gray+96].! The constant NONE is given a
special status w.r.t. the way the rel-ops are interpreted. It is assumed that NONE Op
NONE is always true for all rel-ops Op; furthermore, it is assumed that (dimension) <
NONE is always true, for all dimension names (dimension). Besides rel-ops, constraints
involving the IN operator are also allowed, with the obvious semantics.

Finally, a special type of constraint is introduced using which a dimension variable
is allowed to assume the value NONE. This feature is particularly useful for specifying
multiple granularity aggregations, as several examples will show. Table 2 also explains

the abbreviations allowed in nD-SQL.

Example 3.2.2 Let us now revisit the previous ezample and see how a CUBE of Price
values over the dimensions T.Ticker, T.Date and T.Measure can be expressed.
SELECT X, Y, Z, SUM(T.Price)
FROM nyse::prices T, DIM X,Y,Z
Q8) WHERE X < Y < Z AND DIMS CAN BE NONE
GROUP BY X, Y, Z
In this query, X, Y and Z can each range over the dimension names {T.Ticker,
T.Date, T.Measure, NONE}. The condition X < Y < Z (an abbreviation for X < Y
AND Y < Z) further restricts the possible groupings, thus the only groupings done will
be as shown in Figure 5. This query computes exactly the CUBE operator over the
previously mentioned dimensions. Note that the condition X < Y < Z prevents the
same result from being presented more than once. Without that condition, the query
could be instantiated in one case with X = T.Ticker, Y = T.Date and Z = NONE
and in another with X = T.Date, Y = T.Ticker and Z = NONE. Both groupings are
simply structural permutations of the same logical result.
Finally, note that if the user wants to express ROLLUP, in place of a CUBE, then all

s/he needs to do is modify the constraints on dimension variables to: X IN {T.Date,

! The name EDBE seems more appropriate for the use made of this constant here.

27

NONE} AND Y IN {T.Measure, NCNE} AND Z IN {T.Ticker, NONE} AND X < Y < Z.
The reader can easily verify that this will produce exactly the group-bys {T.Date,

T.Measure, T.Ticker}, {T.Date, T.Measure}, {T.Date}, and {}. "
X Y YA group by...
T.Date T.Measure | T.Ticker | T.Date, T.Measure and T.Ticker
T.Date T.Measure NONE T.Date and T.Measure
T.Date T.Ticker NOKE T.Date and T.Ticker
T.Measure | T.Ticker NONE T.Measure and T.Ticker r
T.Date NONE NONE T.Date
T.Measure NONE NONE T.Measure
T.Ticker NONE NONE T.Ticker
NONE NONE NONE nothing

Figure 5: Groupings done by query Q8

The next example shows the interplay between multiple granularity aggregation

and restructuring.

Example 3.2.3

SELECT X, AVG(T.Price) FOR Y

(Q9) FROM nyse::prices T, DIM X, Y
WHERE DIMS IN {T.Date, T.Measure, T.Ticker}
AND X <> Y

GROUP BY X, Y

This query generates all possible groupings of AVG(T.Price) along two logical di-
mensions among T.Date, T.Measure and T.Ticker. Furthermore, it restructures each
particular grouping in multiple ways along the (physical) row and column dimensions,
such that multiple visualisations of the same data are provided at once. The visualisa-
tions are shown in Figure 6. The instantiated queries thus correspond to the follow-
ing schemas: output(Date, (AVG(Price), {Measure})) output(Date, (AVG(Price),
{Ticker})) output(Measure, (AVG(Price), {Date})) output(Measure, (AVG(Price),
{Ticker})) output(Ticker, (AVG(Price), {Date})) output(Ticker, (AVG(Price),

{Measure})) .
The last example in this section illustrates the power of nD-SQL to generate sets

of multiple granularity aggregations which do not seem to be obviously expressible
using a combination of operators like CUBE and ROLLUP.

Example 3.2.4 Consider a relation db: :rel(A,B,C,D,E,F,G), and suppose a user
is looking at the result of SUM(G) grouped by A,B,C. It is very natural for the user to

28

Measure Ticker Date Ticker ate Measure
AVG (Price) ! AVG (Price) AVG (Price) AVG (Price) AVG (Price) AVG (Price)

Date Date Measure Measure Ticker Ticker

Figure 6: Multiple visualisations resulting from query Q9

want to look at the “neighbourhood” of this group-by, I level below and above {A,B,C}
in the group-by lattice. Specifically, the user might be interested in examining the
group-bys {A,B,C,D}, {4,B,C,E}, {A,B,C,F} (each of which contains exactly one
extra dimension and is one level above {A,B,C}) and the group-bys {A,B}, {A,C},
and {B,C} (which are one level below {A,B,C} and are adjacent to it in the cube
lattice).
This query can be expressed as follows.
SELECT W, X, Y, Z, SUM(G)
(Q10) FROM db::rel T, DIM ¥,X,Y,Z
WHERE W < X < Y < Z AND W IN {A,B,C} AND
X IN {A,B,C} AND Y IN {C, NOKE} ARD
Z 1§ {D,E,F, NONE}
Figure 7 depicts the "shape” of this set of group-bys. [t is not clear how such a

query can be expressed using known operators. .

ABCE
| o
ABC
AB/ l \BC
AC

Figure 7: The “neighbourhood” operator

29

Chapter 4

The Semantics of nD-SQL

[Note: The format of this chapter, and at times the content of section 4.2, follows
that of chapter { of [S97], with permission of the author]

This chapter presents the semantics of the nD-SQL language. In Section 4.2, the
semantics of SQL will be reviewed and in the following section (4.3) the semantics of
nD-SQL will be related to that of SQL. But first, a high level, informal description is

given.

4.1 Informal Presentation of the Semantics

The SQL language is structured in clauses each having a different purpose. The
semantics of SQL is that each table declared in the FROM clause plays the role of a tuple
variable that is to be instantiated to some tuple from that table. Each instance tuple
for a variable is concatenated with those of the other variables, and the conditions
in the WHERE clause are applied to determine whether the concatenated instances
satisfy them. In the case of an aggregation query, the satisfying instantiations are
then grouped into equivalence classes, some aggregate operations are applied, and
one aggregated tuple is produced for each such class. Then, for each of these tuples,
the conditions in the HAVING clause are applied. The aggregated tuples satisfying the
conditions are then restricted to those columns that are enumerated in the SELECT
clause. The restrictions of the (possibly aggregated) tuples so obtained make up the
query result.
The major differences between nD-SQL and SQL are that:

1. nD-SQL allows variables of a higher order than tuple variables;

30

An input to a SQL query is a database, whereas an input to an nD-SQL query is

(O]

a federation, i.e. a set of databases;

3. The output of a SQL query is a relation, whereas the output of an nD-SQL query

is a database, i.e. a set of relations;

4. nD-SQL queries data that is structured along 3 physical dimensions but represents

n logical dimensions;

5. Input databases to mD-SQL queries can structure their data along 3 physical

dimensions, namely row, column and relation;

6. Databases output by nD-SQL queries may be similarly structured.

These differences are reflected in the semantics in the following manner: In nD-SQL,
the variables are instantiated to appropriate entries or “objects”, corresponding to
the 3 physical dimensions. Then, even if the data being queried is structured along
those physical dimensions, it actually corresponds to a set of “logical dimensions”
and we can model the data as being “flat” by instantiating each variable to some
logical tuple over all the logical dimensions associated with the variable. Fach logical
tuple instance for a variable is concatenated with those of the other variables, and
the conditions in the WHERE clause are applied to determine whether the concatenated
instances satisfy them. In the case of an aggregation query, the satisfying logical tuples
are then grouped in equivalence classes, some aggregate operations are applied, and
one aggregated tuple is produced for each such class. Then, for each of these tuples,
the conditions in the HAVING clause are applied. The aggregated tuples satisfying the
conditions are then restricted, and physically structured as dictated by the SELECT
clause, which in general may result in a set of output relations.

The following sections will clarify and formalise the above descriptions.

4.2 SQL Semantics Reviewed

We consider the non-nested, querying fragment of SQL.
Throughout this section, query Q12 will be used as a running example to illustrate

SQL’s semantics. Query Q12 is applied to database nyse.

31

SELECT T.Date, T.Ticker, AVG(T.Price)
(Q12) FROM prices T

WHERE T.Ticker >= 'm’ AND T.Ticker < ’'n’

GROUP BY T.Date, T.Ticker

A query in SQL assumes a fired scheme for the underlying database, and maps each
database to a relation over a fixed scheme, called the output scheme associated with
the query. Let D be the set of all database instances over a fixed scheme. Let a query
@ be of the form

SELECT attr_list, agg_list
FROM from_list

WHERE where_conds

GROUP BY groupby_list

HAVING have_conds

Let R be the set of all relations over the output scheme of the query Q. The query

@ induces a function

Q:D-R

from databases to relations over a fixed scheme, defined as follows. Let D € D
be an input database, and 7p the set of all tuples appearing in any relation in D.
Let 7 be the set of tuple variables declared in the FROM clause of @. We define an
instantiation as a function : : 7—7p which instantiates each tuple variable in Q to
some tuple over its appropriate range. The conditions where_conds in the WHERE
clause induce a boolean function, denoted sat(z,Q), on the set of all instantiations,
reflecting whether the conditions are satisfied by an instantiation. This is defined in
the obvious manner. Let Ty = {2 | ¢ is an instantiation for which sat(z, Q) = true}
denote the set of instantiations satisfying the conditions in the WHERE clause.

The set Iy, is shown in figure 8.

T.Date T.Ticker T.Price
10]27]97 ms 50.23
10]27]97 ms 48.54
11j01|97 ms 44.60
11)01]97 ms 46.17

Figure 8: The set of instantiations Zq12 corresponding to query Q12

32

The query assembles each satisfying instantiation into a tuple for the answer rela-
tion, as follows. Let TattrList, denote the set of all tuples over the scheme attr_list
such that each value in each tuple appears in the database D. Then the tuple assembly

function is a function tupleg : Ig —*Tattr[.istq defined as follows.

tupleq(:) = X o(t)[A]

“t.A"eattr_list
Here, the predicate “¢4.A” € attr_list indicates the condition that the attribute
denotation t.A literally! appears in the list of attributes attr_list in the SELECT
clause. The symbol @ denotes concatenation, and +(t)[A] denotes the restriction of
the tuple ¢(¢) to the attribute A. For an instantiation z, tupleg(:) produces a tuple
over the attributes attr 1ist listed in the SELECT statement. Suppose Q is a regular
query, t.e. a query without aggregation. In this case, the agg-list is empty, the
HAVING and GROUP BY clauses are absent, and the result of the query is captured by
the function
Q(D) = {tupleg(r) | : € Ig}

To account for aggregation, we need the following extension. We define a relation
~ on the instantiations.
Definition 4.2.1 For ¢, j € Ig, ¢ ~ 5 iff V“t.A” € groupby list, 1(¢)[A] = (t)[A].
[t is straightforward to see that ~ is an equivalence relation on Zg. This definition
essentially says that two instantiations (satisfying the conditions in the WHERE clause)
are ~-equivalent provided they agree on all attributes appearing in the GROUP BY

clause.

Let 7;380 denote the set of tuples over the attributes in the groupby_list, the ag-
gregate expressions in agg_list and the aggregate expressions in the HAVING clause.
We define a function aggg : Zg —Tagg,, as follows.

aggo(z) = (%4 2(¢)[C]

“t.C"egroupby.list
aggs(b()Bl 1y € g, 3 ~ 1))

“aggp(t-B)"€agg-list U having_conds

For a given instantiation 2, aggg considers all instantiations equivalent to ¢, and, for
each aggregate operation, say aggp, indicated on the attribute ¢.3 in the agg-list or

the HAVING clause, it performs the operation ¢ggg on the multiset of values associated

! Modulo the abbreviations permitted in SQL.

33

with this attribute by any instantiation equivalent to z. We use [...] instead of {...}
to denote multisets.
Since only those tuples satisfying the having_conds should be used to obtain the

query result, let the set of such tuples be:

aggtupleqg = {aggq(:) |2 € Zg A the tuple aggg(z) satisfies the conditions

have_conds in the having clause}.

As an illustration, the set aggtupleg,; is shown in figure 9.

T.Date C.Measure T.C

10]27[97 open 6367575
10[27{97 close 6368342
10[27[97 low 6360329
11[01]97 open 6367111
11]01|97 close 6368340
11|01{97 low 6366500

Figure 9: The set aggtupleq,, corresponding to query Q12

We may need to discard some extraneous attributes and/or aggregations that are
not mentioned in the SELECT clause in order to obtain the query result.

Let Tobjectustq be the set of tuples over the attributes and aggregates in the
attr_list and the agglist. We define a function discg : Taggq — ZobjectList, as
follows:

Given a tuple A € aggtupleg, then

discg(A) = ® A[A]

A€attr_list U agg.list

where A is any attribute or aggregate expression appearing in the attr_list or
the agg list.
The query result is then defined as:

Q(D) = {discg()) | A € aggtupleg}

For our example, the query result Q12(D) = aggtupleg:, since there are no at-
tributes or aggregations captured by aggtupleg;s that are not selected in the SELECT

clause.

34

4.3 nD-SQL Semantics

In this section we assume without loss of generality that all abbreviations in the given
query have been expanded (i.e. that we are dealing with ezplicit queries).
Throughout this section, query Q13 will be used as a running example to illustrate

nD-SQL’s semantics.

SELECT T.Date, SUM(T.C) FOR C.Measure
(Q13) FROM bse::prices -> C, bse::prices T

WHERE C ISA Price

GROUP BY T.Date, C.Measure

The main difference between nD-SQL and SQL is that nD-SQL allows for querying
data structured along the three physical dimensions underlying the relational model
(that is row, column and relation).

The semantics defines a query result as a mapping between the federation model’s
view of the data in terms of logical dimensions, irrespective of the physical structure,
and the desired output structure. This mapping covers the satisfaction of WHERE
conditions and also covers aggregation.

Let a query @ be of the form

SELECT (simple_col_list, agg_simple_col_list,
complex_col_list, agg_complex_col_list)
FOR outer_for_crit_list

FROM vardec_list
WHERE isa_and_hasa_conds AND other_where_conds

GROUP BY groupby_list
HAVING have_conds
where the complex.col 1ist and the agg_complex._col 1ist are the select_objects

with FOR sub-clauses.
Let F be the set of all possible federation instances and let D be the set of all

possible federated database instances (as defined in Chapter 2).

Then, the query @ induces a function
Q:F—-D
informally defined as follows:
Each variable in Q is mapped to an object (database, relation id, column id or

tuple) over the appropriate range. Then we introduce the notion of a “logical tu-

ple”. A logical tuple consists of a tuple over each of the logical dimensions associated

35

with a query (as per definition 3.2.2). For example, one logical tuple associated with
the query Q13 would be (open, ibm, 10]27(97, 63.67) over the dimensions {C.Measure,
C.Ticker, T.Date, T.C}. Since to each variable’s instance, a set of logical tuples is
associated, the semantics is thus obtained in two phases: (i) sending each variable to
an appropriate object and (ii) extracting the logical tuples associated with the vari-
able’s instance and associating it with the variable. The logical tuple instantiations
are then aggregated, restricted and/or restructured into possibly several relations
which become the query result.

These notions are now formalised.

Preliminary Definitions

Formal federation instances are considered below, using the following definitions:

Let F € F be a given federation instance. Then, let:

Objr = the set of all objects, i.e. dbs, rel ids, col ids and tuples,
appearing in federation instance F.
Vo = the set of all variables declared in Q.

Let there be respectively d, r, c and t database, relation, column and tuple variables

declared in the FROM clause of Q (d, r, ¢ and ¢ > 0 and at least one is >1).

Then, let D € {D, D, ..., Dy}, one of the database variables
R € {Ri, R;, ..., R}, one of the relation variables
C € {Ci, Cy, ..., C.}, one of the column variables
T € {Th, T3, ..., T}, one of the tuple variables

Let us also define the following sets of dimensions by looking at the SELECT clause

of @:

Let Simp = {simp,, simp,, ..., simp,} be the set of selected non-aggregated
and aggregated dimensions in simple_col_list and agg_simple col_ list.

Let Comp = {comp,, comp,, ..., comp,} be the set of selected non-aggregated
and aggregated dimensions in complex_col list and agg_complex_col_list.

Let Colerit = {crity, crit,, ..., crit, } be the set of dimensions in criteria position

in complex.col list and agg complex_col_list (i.e. in inner FOR sub-clauses).
Let Relcrit = {relerit,, relerit,, ..., relcrit,} be the set of dimensions in relation

criteria position in outer for_crit_list.

36

Let NVonAggdim = {dim,, dim,, ... dim,} be the set of non-aggregated di-
mensions in simple col_list and complex_col_list.

Let Aggezpdim = {AGGi(aggdim,), AGGy(aggdims), ..., AGG,(aggdim,)} be
the set of aggregate expressions in agg-simple col_list and agg_complex_col list.

Let Aggdim = {aggdim,, aggdim,, ..., aggdim,} be the set of aggregated

dimensions in agg simple_col_list and agg_complex._col list.

In the following, a vector notation will be used as shorthand to simplify some

enumerations, as follows:

° T.si;np(rel) = T.simp,, T.simp,, ..., T.simp,, where the simps are all the
simple columns of rel;

o C.crit(col) = C.crity, C.crity, ..., C.crit,

and

® val(col, cr-i't(col)) = wval(col, crit,), val(col, crity), ..., val(col, crit,),
where the crits are the criteria of column col;

e Recrit(rel) = R.crity, R.crity, ..., R.crit,

and

e val(rel, crit(rel)) = val(rel, crit;), val(rel, crity), ..., val(rel, crity),

where the crits are the criteria of relation rel;

e (Comp, Colcrit) = (compy, Colcrit), (compa, Colerit), ..., (comp,, Colcrit),
the enumeration of the complex column schema that should appear in the query
output.

As an illustration of the above, for query Q13, we would have:

Simp = {T.Date}

Comp = {T.C}

Colcrit = {C.Measure}

Relerit = {}

NonAggdim = {T.Date)}

Aggezpdim = {SUM(T.C)}

Aggdim = {T.C}

T.simp(bse :: prices) = T.Date
C.c;it(open_ibm) = C.Ticker, C.Measure
val(open_ibm, cr-‘it(open.ibm)) = val(open_ibm, Ticker), val(open_ibm, Measure)
(Comp, Colerit) = (T.C, {C.Measure})

37

Instantiation of Variables

Definition 4.3.1 [Instantiation]

An instantiation : is a function ¢ : V; — Objp such that : maps each variable in Vg
to an object in the appropriate range, i.e. each db var to a db, rel var to a rel id, col
var to a col id, and tuple var to a tuple (see the definition of a federation instance).

Instantiations 2 are also extended such that:
(1) for each literal constant ¢, 1(c) = c;

(i) whenever T is a tuple variable declared as db::rel T and col is one of the
simple columns of z(rel), 1(T.col) appears in column col in relation 1(rel), and

furthermore, 2(T.col) = #(T)[col];?

(iif) whenever C is a col var declared as db::rel -> C and crit is one of the criteria
of the columns that C ranges over, ¢(C.crit) is one of the values of the criterion
crit of the columns that C ranges over, and furthermore,
y(C.crit) = wal(:(C), crit);3

(iv) whenever R is a rel var declared as db -> R and crit is one of the criteria of the
relations that R ranges over, ¢(R.crit) is one of the values of the criterion crit of

the relations that R ranges over, and furthermore t(R.crit) = wval(2(R), crit);

(v) whenever T and C are tuple and col variables declared as db: :rel T and
db::rel -> C respectively, :(T.C) is one of the values appearing in column ¢(C)

in the relation rel, and furthermore, 1(T.C) = (T)[2(C)].

The main intuition behind the above definition is that the : function maps each
variable to an object of the appropriate type in a federation instance. Furthermore, 1

also maps the properties of each object (e.g., columns, or criteria) to the instantiation.

Definition 4.3.2 [Consistent Instantiations]
An instantiation ¢ : Vo — Objr is said to be consistent provided it satisfies the

following conditions.

e Whenever R is a rel var declared as db -> R, 2(R) is mapped to a rel id corre-
sponding to the database 1(db), i.e. ¢(R) € rel(z(db)).

2 As usual, t[col] denotes the restriction of tuple t to column col.
3See Def. 2.2 for the definition of the val function.

38

o Whenever T is a tuple variable declared as db: :rel T, ¢(T) appears in relation

¢(rel) in database ¢(db), i.e. ¢(T) € tup(s(rel)).

® Whenever C is a column variable declared as db::rel -> C, 2(C) is mapped
to a column id corresponding to relation :(rel) in database ¢(db), i.e. 1(C) €
col(z(rel)).
Definition 4.3.3 [Valid Instantiations]
An instantiation 2 : Vg — ObjF is said to be valid provided it satisfies the following

conditions.

e Whenever Vis a rel var or col var declared in the FROM clause, and V ISA concept
is a condition in the WHERE clause, ¢(V) is mapped to a rel id or col id such that

conc(z(V)) = concept.

e Whenever V is a rel var or col var declared in the FROM clause, and V HASA crit
is a condition in the WHERE clause, (V) is mapped to a rel id or col id such that

crit € crit(y(V)).

The set Iy is defined as Zg = {2 | ¢ is a consistent and valid instantiation}.
E.g., for Q13, take the instantiation 2 such that:
(T) = (10{27]97,63.67,50.23, ...,62.56,48.54, ...) and 1(C) = open-ibm.
This instantiation is not bnly consistent but also wvalid since the column with id
open_ibm has concept Price.
Since we only consider well-formed queries (see Section 3.1.3), we thus have that
V rel var R and col var C:
Vi,7 € Iy : crit(y(R)) = crit(3(R))
Vi, 7 € Iy : crit(z(C)) = erit(3(C))
Vi,7 € Iy : col(z(R)) = col(j(R))

Logical Tuples

After having obtained an instantiation for the variables in the query, we must
obtain a logical tuple corresponding to this instantiation, in the following way.
Let the set LogT upg be the set of all possible tuples over the set of logical dimen-

sions associated with query Q.
Let Cy, Cy, ..., C,, be the s; column variables having the same db and rel component

as T; in their declarations (s; > 0).

39

Definition 4.3.4 [Logical [nstantiation]
We define a logical instantiation as a function g : Zg—LogT upg which, given an
instantiation : for the variables in @, produces a tuple over an appropriate set of

dimensions.
The function 254:-(2) produces a logical tuple as follows:

Uogic(1) = Q) ((D:)) Q@ T)lsimpij]) & ((THE(Cr,)])

1<i<d 1<i<t, 1<j<u, 1<i<t, 1<5<l,
® (val(z(Cy), crit; ;) ® (val(2(Ry), crit; ;)
1<i<e 1<j<n, 1<i<r 1<j<u,

where d, r, ¢, and ¢t are respectively the number of database, relation, column
and tuple variables in the query, u; is the number of simple columns associated with
variable T}, [; is the number of column variables Cr,, having the same db and rel
component as T; in their declarations, v; is the number of criteria associated with
column variable C; and w; is the number of criteria associated with relation variable
R;.

If there are no database, relation and column variables in the query, the function

can be simplified and becomes:

Zlo_qic(z) = ® z(T;)[simp.-,j]

1<i<t, 1<j<u;

which corresponds to the SQL case.

Using our earlier example instantiation, one of the logical tuples corresponding
to instantiation 2 is 2,0ic(2) = (10|27|97, open,ibm,63.67), a logical tuple over the

logical dimensions {T.Date, C.Measure, C.Ticker, T.C}.
Satisfying Logical Instantiations

The conditions other _where_conds* in the WHERE clause induce a boolean function,
denoted sat(u1gic(2), @), on the set of all logical tuple instantiations, reflecting whether
the conditions are satisfied by an instantiation. This is defined in the obvious manner.
Let Ilo_,,,-cq = {10gic(2) | 1 €Ty A Uogic(2) 1s a logical tuple for which sat(zi0g:(2), Q) =
true} denote the set of logical tuples satisfying the conditions in the WHERE clause.

The set Z-’°9i°Q13 is shown in figure 10.

*Recall that other shere_conds are similar to the regular conditions allowed in the WHERE clause of SQL queries.

410

T.Date C.Measure C.Ticker T.C

1027197 open ibm 63.67
10[27{97 open ms 50.23
10|27|97 close ibm 62.56
102797 close ms 48.54
11|01{97 open ibm 65.23
11{01|97 open ms 44.60
1101|197 close ibm 63.05
11j01]97 close ms 46.17

Figure 10: The set of logical instantiations I"’”"‘Q 13 corresponding to query Q13

Discarding Extraneous Dimensions

Once the satisfying logical instantiations have been obtained some dimensions
may have to be discarded before structuring the data according to the proper output
structure.

Let the set of dimensions SELECTg be those dimensions mentioned in the SELECT
clause. We define a function discg: LogT upg—SELECTg as follows:

Given a tuple) € Z}ogicq, then

diSCQ(/\) = ® /\[D]
DGSELECTQ

The set of all restricted satisfying logical tuples is then defined to be:

LogiCJestQ = {dZSCQ(/\) I AE LogiCQ}

Aggregation

Similarly to the SQL case, to account for aggregation, we need the following exten-

sion. We define a relation ~ on the logical tuples.

Definition 4.3.1 For A, « two logical tuples € Tiogicqg» A ~ & iff V dimensions
D € groupby.list, A\[D] = «[D]. Itis straightforward to see that ~ is an equivalence

relation on Ziogicq- This definition essentially says that two logical tuples (satisfying

41

the conditions in the WHERE clause) are ~-equivalent provided they agree on all the

GROUP BY dimensions.

Let Taggo denote the set of tuples over the dimensions in groupby list and those
in aggregate expressions in agg_simple.col list, agg_complex_col list and the
HAVING clause. We define a function aggg : Tiogicq ——rﬂggQ as follows.

aggq(}) = = AD]

“D'" € groupby_list
039 aggp([[D] | & € Tiogicy, & ~ A])

“aggp(D)” € Aggerpdim U having_conds

For a given logical tuple A, aggg considers all logical tuples equivalent to A,
and, for each aggregate operation, say aggp, indicated on the dimension D in the
agg-simple_col list, in the agg.complex_col 1ist or in the HAVING clause, it per-
forms the operation aggp on the multiset of values associated with this dimension by
any logical tuple equivalent to A\. We use [...] instead of {...} to denote multisets for
aggregation. The function aggq also appends to the aggregated values the values of
the dimensions grouped by.

Note that if there are no complexcol list, agg complex_col list and
outer for crit list, aggg(A) reduces to:
agge(N)= X AD']

“D'™ € groupby_list
® aggD([K[D] I K € l?oyicc;"Ic ~ /\]

“aggp(D)" € agg-simple _col_list U having_conds

which is equivalent to the SQL case.

We define the set of logical tuples Iagglog,-cq(/\) as:

Laggiogica = {ag9Q(A) | A € Tiogicy, A aggq(A) satisfies the conditions in having list}.

As an illustration, the set Iagglogfcms is shown in figure 11.

Also in the case of aggregation, once the satisfying aggregated tuples have been
obtained some dimensions may have to be discarded before structuring the data
according to the proper output structure.

Let the set of dimensions TseLect, be those dimensions mentioned in the SELECT

clause. We define a function discCaggq: TaggQ—»ﬂ;ELECTQ as follows:

42

T.Date C.Measure T.C

10|27|97 open 6367575
10[27197 close 6368342
10|27|97 low 6360329
11]01|97 open 6367111
11}01|97 close 6368340
11j01]97 low 6366500

Figure 11: The set of logical tuples Iaggloygcqls corresponding to query Q13

Given a tuple r € Iaggloggcq, then

discageo(t) = & (rlaggn(D)]) X (r[D)

D € Aggdim D’ € NonAggdim U Relcrit

The set of all restricted aggregated tuples is then defined to be:

Iagglogic.restQ = {discaggq(T) I T E IagglogiCQ}

Structuring of Data Along the Physical Dimensions

The tuples in Tiogic_restq (OT Zagglogic_resto for aggregation queries) contain all the
data necessary to answer the query. But that data may need to be structured in a
set of relations each having perhaps a number of complex columns.

We need to define another equivalence relation:

Definition 4.3.2 Let v, p be two tuples € Ziogic_restq- We define v = p, provided
v[D] = p[D] ¥V D in outerfor_crit_list. Clearly = is an equivalence relation.

We can define the equivalence relation = on tuples belonging to Z'aggbg,-c_rcstq in a
similar fashion. In the sequel, we will assume that = is defined on both the sets of
tuples Ziogic_restq and Zoggiogic_restq -

We see that the equivalence relation = partitions the logical tuples (or aggregated
logical tuples) in sets of tuples agreeing on all dimensions to be placed in relation
positions.

The logical tuples =-equivalent to (aggregated) logical tuple v will thus contribute
to a relation, structg(v) with schema (output, Relcrit)(Simp, (Comp