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Preserving Privacy and Utility in RFID Data
Publishing

Noman Mohammed, Benjamin C. M. Fung, and Mourad Debbabi

Abstract—Radio Frequency IDentification (RFID) is a technology that helps machines identify objects remotely. The RFID technology
has been extensively used in many domains, such as mass transportation and healthcare management systems. The collected RFID
data capture the detailed movement information of the tagged objects, offering tremendous opportunities for mining useful knowledge.
Yet, publishing the raw RFID data for data mining would reveal the specific locations, time, and some other potentially sensitive
information of the tagged objects or individuals. In this paper, we study the privacy threats in RFID data publishing and show that
traditional anonymization methods are not applicable for RFID data due to its challenging properties: high-dimensional, sparse, and
sequential. Our primary contributions are (1) to adopt a new privacy model called LKC-privacy that overcomes these challenges, and
(2) to develop an efficient anonymization algorithm to achieve LKC-privacy while preserving the information utility for data mining.
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1 INTRODUCTION

Radio Frequency IDentification (RFID) is a technology
for objects automatic identification. Figure 1 depicts an
overview of a RFID system, which typically consists of a
large number of tags and readers, and a database server.
A tag is a small device attached to a moving object.
A reader broadcasts a radio signal to the tag, which
then transmits its unique identifier back to the reader.
Streams of RFID data entries, in the format of (ID, loc, t),
are then stored in a RFID database, where ID is the
unique identifer of a RFID tag, loc is the location of
the reader, and t is the time of detection. The database
system answers queries by joining the trajectory data
with some object-specific data that describes the object.

Initial applications of RFID focus on tracking items
in supply-chain management or baggage in airports.
Recently, it has been used to track individuals. Publi-
cation of these RFID data threatens individuals’ privacy
since these raw data provide location information that
identifies individuals and, potentially, their sensitive in-
formation. Below, we present some real-life applications
of publishing RFID data.

Transit company: Transit companies have started to
use contactless smart cards or RFID cards, such as the
Octopus card in Hong Kong, the OPUS card in Montreal,
and the Oyster Travel card in London. In some transit
systems, passengers register personal information when
they first purchase their cards, so that appropriate fare
is charged based on their status. The personal journey
data together with the passengers’ personal informa-
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tion provide a valuable source of information for data
mining with the goal of improving the transportation
services. For example, the IT department of STM (Transit
Company of Montreal) owns the journey data. They
want to share the data internally with their marketing
department and externally with other transit companies
for analysis purposes.

Hospital: Some hospitals have adopted RFID sensory
system to track the positions of patients, doctors, and
medical equipment inside the hospital with the goals
of minimizing life-threatening medical errors and im-
proving the management of patients and resources [35],
[19]. Analyzing RFID data, however, is a non-trivial task.
Hospitals often do not have the expertise to perform
the analysis themselves but outsource this process and,
therefore, require granting a third party access to the
patient-specific location and health data.

Most previous work on privacy-preserving RFID tech-
nology addressed the threats caused by the physical
RFID tags in the data collection phase [19], [30]. These
techniques do not address the privacy threats in the data
publishing phase, when a large volume of RFID data is
released to a third party for data mining.

In this paper, we study the privacy threats in the
data publishing phase and define a practical privacy
model to accommodate the special challenges of RFID
data. We propose an anonymization algorithm (the data
anonymizer in Figure 1) to transform the underlying
raw RFID data into a version that is immunized against
privacy attacks but still supports effective data mining.
Data “publishing” includes sharing the data with specific
recipients and releasing the data for public download;
the recipient could be an ordinary user who wants to
perform legitimate data analysis, or could potentially
be an adversary who attempts to associate sensitive
information in the published data with a target victim.
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Fig. 1. Data flow in RFID system

TABLE 1
Raw passenger-specific trajectory data

ID Trajectory Status ...
1 ⟨b2→ d3→ c4→ f6→ c7⟩ On-welfare ...
2 ⟨f6→ c7→ e8⟩ Student ...
3 ⟨d3→ c4→ f6→ e8⟩ Retired ...
4 ⟨b2→ c5→ c7→ e8⟩ Student ...
5 ⟨d3→ c7→ e8⟩ Retired ...
6 ⟨c5→ f6→ e8⟩ Full-time ...
7 ⟨b2→ f6→ c7→ e8⟩ Full-time ...
8 ⟨b2→ c5→ f6→ c7⟩ On-welfare ...

1.1 Motivating Example

We illustrate the privacy threats of publishing raw RFID
data by an example.

Example 1: A transit company wants to release the
passenger-specific trajectory data (Table 1) to a data
miner for research purposes. Each record contains a tra-
jectory and some passenger-specific information, where
the trajectory is a sequence of pairs (lociti) indicating the
passenger’s visited location loci at time ti. For example,
ID#2 has a trajectory ⟨f6 → c7 → e8⟩, meaning that the
passenger has visited locations f , c, and e at time 6, 7,
and 8, respectively. Without loss of generality, we assume
that each record contains only one sensitive attribute,
namely, status, in this example. We address two types of
privacy threats:

Identity linkage: If a trajectory in the table is so specific
that not many passengers match it, releasing the data
may lead to linking the victim’s record and, therefore,
her status. Suppose the adversary knows that the data
record of a target victim, Alice, is in Table 1, and Alice
has visited b2 and d3. Alice’s record, together with her
sensitive value (On-welfare in this case), can be uniquely
identified because ID#1 is the only record that contains
b2 and d3. Besides, the adversary can also determine the
other visited locations of Alice, such as c4, f6, and c7.

Attribute linkage: If a sensitive value occurs frequently
together with some sequence of pairs, then the sensi-
tive information can be inferred from such sequence
even though the exact record of the victim cannot be
identified. Suppose the adversary knows that Bob has
visited b2 and f6. Since two out of the three records
(ID#1,7,8) containing b2 and f6 have sensitive value
On-welfare, the adversary can infer that Bob is on welfare
with 2/3 = 67% confidence.

Many privacy models, such as K-anonymity [29][31]
and its extensions [21][25][36][37], have been proposed
to thwart privacy threats caused by identity and at-
tribute linkages in the context of relational databases.
These models are based on the notion of quasi-identifier
(QID), which is a set of attributes that may be used for
linkages. The basic idea is to disorient potential linkages
by generalizing the records into equivalent groups that
share the same values on QID. These privacy models
are effective for anonymizing relational data, but they
are not applicable to RFID data due to the following
challenges.

(1) High dimensionality: Consider a transit system
having 50 stations that operate 24 hours per day. There
are 50 × 24 = 1200 possible combinations (dimensions)
of locations and timestamps. Each dimension could be
a potential QID attribute used for identity and attribute
linkages. Traditional K-anonymity would require every
trajectory to be shared by at least K records. Due to
the curse of high dimensionality [2], most of the data have
to be suppressed in order to achieve K-anonymity. For
example, to achieve 2-anonymity on the trajectory data
in Table 1, all instances of {b2, d3, c4, c5} have to be
suppressed even though K is small.

(2) Data sparseness: Consider passengers in a public
transit system or patients in a hospital. They usually
visit only a few locations compared to all available lo-
cations, so each trajectory is relatively short. Anonymiz-
ing these short, little-overlapping trajectories in a high-
dimensional space poses a significant challenge for tra-
ditional anonymization techniques because it is difficult
to identify and group the trajectories together. Enforc-
ing traditional K-anonymity on high-dimensional and
sparse data would render the data useless.

(3) Sequential: Time is an essential factor of RFID data,
which may incur unique privacy threats. Consider two
trajectories b3 → e6 and e3 → b6. Both the trajectories
have same locations but different timestamps; and thus,
they are different from each other. Furthermore, the
same location when associated with different timestamps
should be considered different in the context of RFID
data. For example, b2 → e8 and b3 → e6 are different
due to different timestamps. These differences may pro-
vide an adversary more opportunities to succeed in a
privacy attack, and therefore require more efforts in the
anonymization algorithm.
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TABLE 2
Anonymous data with L = 2, K = 2, C = 50%

ID Trajectory Status ...
1 ⟨d3→ f6→ c7⟩ On-welfare ...
2 ⟨f6→ c7→ e8⟩ Student ...
3 ⟨d3→ f6→ e8⟩ Retired ...
4 ⟨c5→ c7→ e8⟩ Student ...
5 ⟨d3→ c7→ e8⟩ Retired ...
6 ⟨c5→ f6→ e8⟩ Full-time ...
7 ⟨f6→ c7→ e8⟩ Full-time ...
8 ⟨c5→ f6→ c7⟩ On-welfare ...

1.2 Privacy and Utility
Traditional K-anonymity and its extended privacy mod-
els assume that an adversary could potentially use any or
even all of the QID attributes as background knowledge
to perform identity or attribute linkages. However, in
real-life privacy attacks, it is very difficult for an adver-
sary to acquire all the visited locations and timestamps
of a victim because it requires non-trivial effort to gather
each piece of background knowledge from so many pos-
sible locations at different times. Thus, it is reasonable
to assume that the adversary’s background knowledge
is bounded by at most L pairs of (lociti) that the victim
has visited.

Based on this reasonable assumption, we adopt a new
privacy model called LKC-privacy [27] for anonymiz-
ing high-dimensional and sparse RFID trajectory data.
The general idea of LKC-privacy has been previously
applied on relational data [27], but this paper modifies
the model to address the high-dimensional, sparse, and
sequential RFID data. Although the intuition of LKC-
privacy is applied here, the privacy model, the algo-
rithm, and the data structures are completely different.
The general intuition is to ensure that every sequence q
with maximum length L of any trajectory in a data table
T is shared by at least K records in T , and the confidence
of inferring any sensitive value in S from q is not greater
than C, where L and K are positive integer thresholds,
C is a positive real number threshold, and S is a set
of sensitive values specified by the data holder. LKC-
privacy bounds the probability of a successful identity
linkage to be ≤ 1/K and the probability of a successful
attribute linkage to be ≤ C. Table 2 shows an example
of an anonymous table that satisfies (2, 2, 50%)-privacy
by suppressing b2 and c4 from Table 1. Every possible
sequence q with maximum length 2 in Table 2 is shared
by at least 2 records and the confidence of inferring the
sensitive value On-welfare from q is not greater than 50%.

While protecting privacy is a critical element in data
publishing, it is equally important to preserve the utility
of the published data because this is the primary reason
for publication. In this paper, we aim at preserving
the maximal frequent sequences (MFS) because MFS often
serves as the information basis for different primitive
data mining tasks on trajectory data. MFS represents the
set of longest sequences of visited locations by some
minimum number of moving objects within a particular

time interval. In the context of RFID data, frequent
sequences can capture the major trajectories of moving
objects [4]. MFS is also useful for trajectory pattern
mining [15] and workflow mining [16].

One frequently raised question is: Given that the fre-
quent sequence mining task is known in advance, why
not publish the frequent sequences instead of the data
records? The goal is to allow data sharing for frequent
sequence mining in the presence of privacy concern.
This problem is very different from secure multiparty
computation [23], which allows “result sharing”(e.g., the
frequent sequences in our case) but completely prohibits
data sharing. In many applications, data sharing gives
greater flexibility than result sharing because data re-
cipients can perform their required analysis and data
exploration, such as, mine patterns in a specific group
of records, and try different modeling methods and
parameters.

1.3 Contributions
Our contributions can be summarized as follows. First,
based on the practical assumption that adversary has
limited knowledge, we adopt LKC-privacy model to
address the special challenges of anonymizing high-
dimensional, sparse, and sequential RFID data. We fur-
ther show that LKC-privacy is a generalized model of
K-anonymity [29][31], confidence bounding [34], and
(α, k)-anonymity [36] (Section 2). Second, we present
an efficient anonymization algorithm to achieve LKC-
privacy while preserving maximal frequent sequences in
the anonymous RFID data (Section 3). Finally, extensive
experimental results support that our proposed privacy
model and anonymization method outperform the tra-
ditional approaches in terms of data quality, efficiency,
and scalability (Section 4). To the best of our knowledge,
this is the first work addressing the anonymization
problem for RFID data and preserving maximal frequent
sequences for data mining.

2 PROBLEM DEFINITION

We first describe the format of RFID data and then
formally define the problem based on the privacy and
utility requirements.

2.1 RFID Data Table
RFID data is generated in the form of (ID, loc, t), where
ID is the unique identifier of a tag, loc is the location
of the reader that reads the tag, and t is the time of
reading. We assume that the RFID tags are carried by
or attached to some moving persons or objects, such
as patients in the hospitals or passengers in the public
transit systems. A reader reads a tag either continuously
or in a fix interval basis. Thus, the database may have
duplicate entries showing the same location if the object
has not moved. Gonzalez et al. [16] suggested some
preprocessing methods to compress RFID data.
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A pair (lociti) represents the visited location loci of
an object at time ti. The trajectory of an object, denoted
by ⟨(loc1t1) → . . . → (locntn)⟩, is a sequence of pairs
that can be obtained by first grouping the RFID entries
by ID and then sorting the entries in each group by
their timestamps. A timestamp is the entry time to a
location, so the object is assumed to be staying in the
same location until it has been detected again. An object
may revisit the same locations at different time. At any
time, an object can appear at only one location, so ⟨a1 →
b1⟩ is not a valid sequence and timestamps in a trajectory
increase monotonically.

A RFID data table T is a collection of records in the
form ⟨(loc1t1) → . . . → (locntn)⟩ : s1, . . . , sp : d1, . . . , dm,
where ⟨(loc1t1) → . . . → (locntn)⟩ is the trajectory,
si ∈ Si are the sensitive attributes, and di ∈ Di are
the quasi-identifying attributes (QID) of an object. The
sensitive and QID attributes are the object-specific data
in the form of relational data. Identity and attribute
linkages via the QID attributes can be avoided by ap-
plying existing anonymization methods for relational
data [12][20][22][25][34]. In this paper, we focus on
eliminating identity and attribute linkages via the RFID
trajectory data as illustrated in Example 1.

2.2 Privacy Model

Suppose a data holder wants to publish a RFID data ta-
ble T (e.g., Table 1) to some recipient(s) for data mining.
Explicit identifiers, e.g., name, SSN, and ID, are removed.
Note, we keep the ID in our examples for discussion
purpose only. The trajectory, the object-specific QID, and
sensitive attributes are assumed to be important for the
data mining task; otherwise, they should be removed.

One recipient, who is an adversary, seeks to identify
the record or sensitive values of some target victim V in
T . As explained earlier, we assume that the adversary
knows at most L pairs of location and timestamp that
V has previously visited. We use q to denote such prior
known sequence of pairs, where |q| ≤ L. Based on the
prior knowledge q, the adversary could identify a group
of records, denoted by T (q), that “contains” q. A record
in T contains q if q is a subsequence of the trajectory in the
record. For example in Table 1, records with ID#1, 2, 7, 8
contain q = ⟨f6 → c7⟩, written as T (q) = {ID#1, 2, 7, 8}.
The prior knowledge q, may consist of any L pairs, not
necessarily consecutive, such as q = ⟨b2 → c7⟩. Based on
T (q), the adversary could launch two types of privacy
attacks:

• Identity linkage: Given prior knowledge q, T (q) is a
set of candidate records that contains the victim V ’s
record. If the group size of T (q), denoted by |T (q)|,
is small, then the adversary may identify V ’s record
from T (q) and, therefore, V ’s sensitive value. For
example, if q = ⟨b2 → d3⟩ in Table 1, T (q) = {ID#1}.
Thus, the adversary can easily infer that V ’s sensitive
value is On-welfare.

• Attribute linkage: Given prior knowledge q, the adver-
sary can identify T (q) and infer that V has sensitive
value s with confidence P (s|q) = |T (q∧s)|

|T (q)| , where
T (q ∧ s) denotes the set of records containing both
q and s. P (s|q) is the percentage of the records in
T (q) containing s. The privacy of V is at risk if
P (s|q) is high. For example, given q = ⟨b2 → f6⟩
in Table 1, T (q∧On-welfare) = {ID#1, 8} and T (q) =
{ID#1, 7, 8}; therefore, P (On-welfare|q) = 2/3 = 67%.

To thwart the identity and attribute linkages, we re-
quire that every sequence with a maximum length L in
the RFID trajectory data has to be shared by at least
a certain number of records, and the ratio of sensitive
value(s) in every group cannot be too high. LKC-privacy
reflects this intuition.

Definition 1 (LKC-privacy): Let L be the maximum
length of the prior knowledge. Let S be a set of sensitive
values. A RFID data table T satisfies LKC-privacy if and
only if for any sequence q with |q| ≤ L of any trajectory
in T ,

1) |T (q)| ≥ K, where K > 0 is an integer anonymity
threshold, and

2) P (s|q) ≤ C for any s ∈ S, where 0 < C ≤ 1 is a
real number confidence threshold.

The data holder specifies the thresholds L, K, and
C. The maximum length L reflects the assumption of
the adversary’s power. LKC-privacy guarantees that the
probability of a successful identity linkage to be ≤ 1/K
and the probability of a successful attribute linkage
to be ≤ C. LKC-privacy has several nice properties
that make it suitable for anonymizing high-dimensional
sparse RFID data. First, it only requires subsequences of
a trajectory to be shared by at least K records. This is
a major relaxation from traditional K-anonymity based
on a very reasonable assumption that the adversary has
limited power. Second, LKC-privacy generalizes several
traditional privacy models. K-anonymity [29][31] is a
special case of LKC-privacy with C = 100% and L = |d|,
where |d| is the number of dimensions, i.e., number
of distinct pairs, in the RFID data table. Confidence
bounding [34] is a special case of LKC-privacy with
K = 1 and L = |d|. (α, k)-anonymity [36] is also a special
case of LKC-privacy with L = |d|, K = k, and C = α.
Thus, the data holder can still achieve the traditional
models, if needed. Third, it is flexible to adjust the trade-
off between data privacy and data utility, and between
an adversary’s power and data utility. Increasing L and
K, or decreasing C, would improve the privacy at the
expense of data utility. Finally, LKC-privacy is a general
privacy model that thwarts both identity linkage and
attribute linkage, i.e., the privacy model is applicable
to anonymize RFID data with or without sensitive at-
tributes.

2.3 Utility Measure
The measure of data utility varies depending on the data
mining task to be performed on the published data. In
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this paper, we aim at preserving the maximal frequent
sequences. A sequence q = ⟨(loc1t1) → . . . → (locntn)⟩
is an ordered set of locations. A sequence q is frequent
in a RFID data table T if |T (q)| ≥ K ′, where T (q) is
the set of records containing q and K ′ is a minimum
support threshold. Frequent sequences (FS) capture the
major trajectories of the moving objects [4], and often
form the information basis for different primitive data
mining tasks on sequential data, e.g., association rules
mining [3]. In the context of RFID data, association rules
can be used to determine the subsequent locations of
the moving object given the previously visited locations.
This knowledge is important for workflow mining [16].

There is no doubt that FS are useful. Yet, mining all
FS is a computationally expensive operation. When the
data volume is large and FS are long, it is infeasible to
identify all FS because all subsequences of an FS are
also frequent. Since RFID data is high-dimensional and
in large volume, a more feasible solution is to preserve
only the maximal frequent sequences (MFS).

Definition 2 (Maximal frequent sequence): For a given
minimum support threshold K ′ > 0, a sequence x is
maximal frequent in a RFID data table T if x is frequent
and no super sequence of x is frequent.

The set of MFS in T , denoted by U(T ), is much smaller
than the set of FS in T given the same K ′. MFS still
contains the essential information for different kinds
of data analysis [24]. For example, MFS captures the
longest frequently visited trajectories. Any subsequence
of an MFS is also a FS. Once all the MFS have been
determined, the support counts of any particular FS can
be computed by scanning the database once. Our data
utility goal is to preserve as many MFS as possible, i.e.,
maximize |U(T )|, in the anonymous RFID data table.

2.4 Problem Statement

LKC-privacy can be achieved by performing a sequence
of generalization and/or suppression operations on the
RFID data table. Generalization replaces a specific value
with a more general value for a given attribute according
to a taxonomy tree. For example, location a can be
generalized into a broader location ab according to the
taxonomy tree in Figure 2. Similarly, ab can be further
generalized into abcd. The same generalization can be
performed on the time dimension. Suppression removes
a pair from one or more trajectories in the RFID data ta-
ble T . For example, Table 2 is the result of suppressing b2
and c4 from Table 1. In both the above schemes, if all the
instances of a value are generalized or suppressed, then
it is called global recoding. In contrast, if some instances
of a value remain unchanged while other instances are
generalized or suppressed, then it is called local recoding.
Refer to [20] for detailed descriptions on different global
and local recoding schemes.

In this paper, we employ global suppression, meaning
that if a pair p is chosen to be suppressed, all instances of
p in T are suppressed. Global suppression offers several

a b c d

ab cd

abcdLevel 0

Level 1

Level 2

Fig. 2. Taxonomy tree on location

advantages over generalization and local suppression.
First, suppression does not require a predefined taxon-
omy tree for generalization, which often is unavailable
in real-life databases. Second, RFID data could be ex-
tremely sparse. Enforcing global generalization on RFID
data will result in generalizing many sibling location
or time values even if there is only a small number
of outlier pairs, such as c4 in Table 1. Suppression
offers the flexibility of removing those outliers without
affecting the rest of the data. Note, we do not intend
to claim that global suppression is always better than
other schemes. For example, LeFevre et al. [20] present
some local generalization schemes that may result in less
data loss depending on the utility measure. Third, global
suppression retains exactly the same support counts
of the preserved MFS in the anonymous RFID data
table as there were in the raw data. In contrast, a local
suppression scheme may delete some instances of the
chosen pair and, therefore, change the support counts
of the preserved MFS. For example, if the support count
of a sequence ⟨(loc1t1)⟩ is 20 and the support count of
its super sequence ⟨(loc1t1) → (loc2t2)⟩ is 10, then the
confidence of inferring the occurrence of (loc2t2) from
(loc1t1) is 10/20 = 50%. Now, suppose we suppress
only 10 instances of (loc1t1) from T . The support of
⟨(loc1t1) → (loc2t2)⟩ will vary from 0 to 10 and the
confidence of inferring the occurrence of (loc2t2) from
(loc1t1) will vary from 0% to 100% depending on which
instances have been suppressed. Hence, employing local
suppression cannot preserve the truthful support counts
of the preserved frequent sequences, implying that the
derived knowledge, such as association rules, is not
truthful, too.

Definition 3 (Anonymity for MFS in RFID): Given a
RFID data table T , a LKC-privacy requirement, a
minimum support threshold K ′, a set of sensitive
values S, the problem of anonymity for MFS in RFID
is to identify a transformed version of T that satisfies
the LKC-privacy requirement while preserving the
maximum number of MFS.

3 THE ANONYMIZATION ALGORITHM

Given a RFID data table T , our first step is to iden-
tify all sequences that violate the given LKC-privacy
requirement. Section 3.1 describes a method to identify
violating sequences efficiently. Section 3.2 presents a
greedy algorithm to eliminate the violating sequences
with the goal of preserving as many maximal frequent
sequences as possible.
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3.1 Identifying Violating Sequences
An adversary may use any sequence with length not
greater than L as background knowledge to launch a
linkage attack. Thus, any non-empty sequence q with
|q| ≤ L in T is a violating sequence if its group T (q) does
not satisfy condition 1, condition 2, or both in LKC-
privacy in Definition 1.

Definition 4 (Violating sequence): Let q be a sequence of
a trajectory in T with |q| ≤ L. q is a violating sequence
with respect to a LKC-privacy requirement if (1) q is
non-empty, and (2) |T (q)| < K or P (s|q) > C for any
sensitive value s ∈ S.

Example 2: Let L = 2, K = 2, C = 50%, and S =
{On-welfare}. In Table 1, a sequence q1 = ⟨b2 → c4⟩
is a violating sequence because |T (q1)| = 1 < K. A
sequence q2 = ⟨b2 → f6⟩ is a violating sequence because
P (On-welfare|q2) = 67% > C. However, a sequence
q3 = ⟨b2 → c5 → f6 → c7⟩ is not a violating sequence
even if |T (q3)| = 1 < K and P (On-welfare|q3) = 67% > C
because |q3| > L.

A RFID data table satisfies a given LKC-privacy
requirement, if all violating sequences with respect to
the privacy requirement are removed, because all pos-
sible channels for identity and attribute linkages are
eliminated. A naive approach is to first enumerate all
possible violating sequences and then remove them. This
approach is infeasible because of the huge number of vi-
olating sequences. Consider a violating sequence q with
|T (q)| < K. Any super sequence of q with length less
than or equal to L, denoted by q′′, in the database T is
also a violating sequence because |T (q′′)| ≤ |T (q)| < K.

One incorrect approach to achieve LKC-privacy is to
ignore the sequences with size less than L and assume
that if a table T satisfies LKC-privacy, then T satisfies
L′KC-privacy where L′ < L. Unfortunately, this mono-
tonic property with respect to L does not hold in LKC-
privacy.

Theorem 1: LKC-privacy is not monotonic with respect to
adversary’s knowledge L.

Proof. To prove that LKC-privacy is not monotonic
with respect to L, it is sufficient to prove that one of
the conditions of LKC-privacy in Definition 1 is not
monotonic. Following we provide a counter example for
both the conditions.

Condition 1: Anonymity threshold K is not monotonic
with respect to L. If all the size-L sequences are non-
violating, it does not guarantee that a sequence with
size L′ ≤ L is also non-violating. In Table 3, though the
size-3 sequences satisfy privacy requirement for K = 2,
the size-2 sequence, q = ⟨a1 → d2⟩ does not satisfy the
requirement.

Condition 2: Confidence threshold C is not monotonic
with respect to L. If q is a non-violating sequence with
P (s|q) ≤ C and |T (q)| ≥ K, its subsequence q′ may
or may not be a non-violating sequence. We use a
counter example to show that P (s|q′) ≤ P (s|q) ≤ C
does not always hold. In Table 3, the sequence q =
⟨a1 → b2 → c3⟩ satisfies P (On-welfare|q) = 50% ≤ C.

TABLE 3
Counter example for monotonic property

ID Trajectory Status ...
1 ⟨a1→ d2⟩ Student ...
2 ⟨a1→ b2⟩ On-welfare ...
3 ⟨a1→ b2→ c3⟩ On-welfare ...
4 ⟨a1→ b2→ c3⟩ Retired ...

However, its subsequence q′ = ⟨a1 → b2⟩ does not satisfy
P (On-welfare|q′) = 100% > C.

To satisfy LKC-privacy, it is insufficient to ensure that
every sequence q with only length L in T satisfies both
the conditions of Definition 1. Instead, we need to ensure
that every sequence q with length not greater than L in T
satisfies both the conditions. To overcome this bottleneck
of violating sequence enumeration, our insight is that
there exists some “minimal” violating sequences among
the violating sequences, and it is sufficient to achieve
LKC-privacy by removing only the minimal violating
sequences.

Definition 5 (Minimal violating sequence): A violating
sequence q is a minimal violating sequence (MVS) if every
proper subsequence of q is not a violating sequence.

Example 3: In Table 1, given L = 3, K = 2, C = 50%,
S = {On-welfare}, the sequence q = ⟨b2 → d3⟩ is a MVS
because ⟨b2⟩ and ⟨d3⟩ are not violating sequences. The
sequence q = ⟨b2 → d3 → c4⟩ is a violating sequence
but not a MVS because its subsequence ⟨b2 → d3⟩ is a
violating sequence.

Every violating sequence is either a MVS or it contains
a MVS. Thus, if T contains no MVS, then T contains no
violating sequences.

Lemma 1: A RFID data table T satisfies LKC-privacy if
and only if T contains no MVS.

Proof. Suppose a data table T does not satisfy LKC-
privacy even if T contains no MVS. Then, by Defini-
tion 4, the table T contains violating sequence. But, a
violating sequence must be a MVS or its subset is MVS,
which is the contradiction of the initial assumption.
Therefore, the data table T must satisfy LKC-privacy.

Next, we propose an algorithm to efficiently identify
all MVS in T with respect to a LKC-privacy require-
ment. Based on Definition 5, we generate all MVS of
size i + 1, denoted by Vi+1, by incrementally extending
a non-violating sequence of size i, denoted by Wi, with
an additional pair.

Algorithm 1 presents a method to efficiently generate
all MVS. Line 1 puts all the size-1 sequences, i.e., all
distinct pairs, as candidates X1 of MVS. Line 4 scans T
once to compute |T (q)| and P (s|q) for each sequence q ∈
Xi and for each sensitive value s ∈ S. If the sequence q
violates the LKC-privacy requirement in Line 6, then we
add q to the MVS set Vi (Line 7); otherwise, add q to the
non-violating sequence set Wi (Line 9) for generating the
next candidate set Xi+1, which is a self-join of Wi (Line
12). Two sequences qx = ⟨(locx1tx1) → . . . → (locxi t

x
i )⟩ and

qy = ⟨(locy1t
y
1) → . . . → (locyi t

y
i )⟩ in Wi can be joined

only if the first i − 1 pairs of qx and qy are identical
and txi < tyi . The joined sequence is ⟨(locx1tx1) → . . . →
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Algorithm 1 MVS Generator
Input: Raw RFID data table T
Input: Thresholds L, K, and C
Input: Sensitive values S
Output: Minimal violating sequence V (T )

1: X1 ← set of all distinct pairs in T ;
2: i = 1;
3: while i ≤ L and Xi ̸= ∅ do
4: Scan T to compute |T (q)| and P (s|q), for ∀q ∈ Xi, ∀s ∈

S;
5: for ∀q ∈ Xi where |T (q)| > 0 do
6: if |T (q)| < K or P (s|q) > C then
7: Add q to Vi;
8: else
9: Add q to Wi;

10: end if
11: end for
12: Xi+1 ←Wi on Wi;
13: for ∀q ∈ Xi+1 do
14: if q is a super sequence of any v ∈ Vi then
15: Remove q from Xi+1;
16: end if
17: end for
18: i++;
19: end while
20: return V (T ) = V1 ∪ . . . ∪ Vi−1;

(locxi t
x
i ) → (locyi t

y
i )⟩. Lines 13-17 remove a candidate q

from Xi+1 if q is a super sequence of any sequence in
Vi because any proper subsequence of a MVS cannot be
a violating sequence. The set of MVS, denoted by V (T ),
is the union of all Vi.

Example 4: Consider Table 1 with L = 2, K =
2, C = 50%, and S = {On-welfare}. X1 =
{b2, d3, c4, c5, f6, c7, e8}. After scanning T , we divide X1

into V1 = ∅ and W1 = {b2, d3, c4, c5, f6, c7, e8}. Next,
from W1 we generate the candidate set X2 = {b2d3, b2c4,
b2c5, b2f6, b2c7, b2e8, d3c4, d3c5, d3f6, d3c7, d3e8, c4c5,
c4f6, c4c7, c4e8, c5f6, c5c7, c5e8, f6c7, f6e8, c7e8}. We
scan T again to determine V2 = {b2d3, b2c4, b2f6, c4c7,
c4e8}. We do not further generate X3 because L = 2.

Lemma 2: Algorithm 1 generates all the minimal violating
sequences (MVS) of size ≤ L.

Proof. We use a loop invariant to proof the correctness
of Algorithm 1.
Loop Invariant: At the start of each iteration i of the while
loop (Line 3), the MVS set V (T ) contains all the MVS of
size ≤ (i− 1).
Initialization: Prior to the first iteration of the loop, i = 1,
the MVS set V (T ) is empty. Invariant is true because by
Definition 4 violating sequence can not be of size-0.
Maintenance: During the iteration, every candidate se-
quence q ∈ Xi that does not satisfy |T (q)| ≥ K or
P (s|q) ≤ C is added to the MVS set V (T ). Since,
the candidate set contains all size-i sequences and the
algorithm verifies all candidates, we conclude that loop
invariant indeed remains true before the next iteration
i+ 1.
Termination: At termination, i = L+1, by loop invariant,
the MVS set V (T ) contains all the MVS of size ≤ L.

Definition 6 (Violating pair): A pair p is a violating pair
if it is part of a violating sequence.

Example 5: Given the set of minimal violating se-
quence, V (T ) = {b2d3, b2c4, b2f6, c4c7, c4e8}, the
violating pairs are {b2, d3, c4, f6, c7, e8}.

From Lemma 1, we have to remove all the MVS to
satisfy LKC-privacy requirement. We can remove all the
MVS by suppressing a subset of violating pairs. Given,
V (T ) = {b2d3, b2c4, b2f6, c4c7, c4e8}, we can either
suppress {b2, c4} or {b2, c7, e8} and so on. Next, we
prove that it is NP-hard to find an optimal subset of
violating pairs.

Theorem 2: Given a RFID data table T and a LKC-privacy
requirement, it is NP-hard to find the optimal anonymous
solution.

Proof. The problem of finding the optimal anonymous
solution can be converted into the vertex cover problem [7].
The vertex cover problem is a well-known problem in
which, given an undirected graph G = (V,E), it is NP-
hard to find the smallest set of vertices S such that
each edge has at least one endpoint in S. To reduce our
problem into the vertex cover problem, we consider the
set of violating pairs as the set of vertices V . The set of
MVS, denoted by V (T ), is analogous to the set of edges
E. Hence, the optimal vertex cover, S, means finding the
smallest set of violating pairs that must be suppressed to
obtain the optimal anonymous data set T ′. Given that it
is NP-hard to determine the smallest set of vertices S, it
is also NP-hard to find the optimal set of violating pairs
for suppression.

Finding an optimal solution for LKC-privacy is NP-
hard. Thus, we propose a greedy algorithm to efficiently
identify a reasonably “good” sub-optimal solution.

3.2 Eliminating Violating Sequences

We propose a greedy algorithm to transform the raw
RFID data table T to an anonymous table T ′ with respect
to a given LKC-privacy requirement by a sequence
of suppressions. In each iteration, the algorithm selects
a violating pair p for suppression based on a greedy
selection function. In general, a suppression on a vio-
lating pair p in T increases privacy because it removes
minimal violating sequences (MVS), and decreases data
utility because it eliminates maximal frequent sequences
(MFS) in T . Therefore, we define the greedy function,
Score(p), to select a suppression on a violating pair p that
maximizes the number of MVS removed but minimizes
the number of MFS removed in T . Score(p) is defined
as follows:

Score(p) =
PrivGain(p)

UtilityLoss(p) + 1
(1)

where PrivGain(p) and UtilityLoss(p) are the number
of MVS and the number of MFS containing the violating
pair p, respectively. A violating pair p may not belong
to any MFS, resulting in UtilityLoss(p) = 0. To avoid
dividing by zero, we add 1 to the denominator. The
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Algorithm 2 Data Anonymizer
Input: Raw RFID data table T
Input: Thresholds L, K, C, and K ′

Input: Sensitive values S
Output: Anonymous T ′ that satisfies LKC-privacy

1: Generate V (T ) by Algorithm 1 and build MVS-tree;
2: Generate U(T ) by MFS algorithm and build MFS-tree;
3: while PG table is not empty do
4: Select a pair w that has the highest Score to suppress;
5: Delete all MVS and MFS containing w from MVS-tree

and MFS-tree;
6: Update the Score(p) if both w and p are contained in

the same MVS or MFS;
7: Remove w from PG Table;
8: Add w to Sup;
9: end while

10: For ∀w ∈ Sup, suppress all instances of w from T ;
11: return the suppressed T as T ′;

violating pair p with the highest Score(p) is called the
winner pair, denoted by w.

Algorithm 2 summarizes the anonymization algorithm
that removes all MVS. Line 1 calls Algorithm 1 to iden-
tify all MVS, denoted by V (T ), and then builds a MVS-
tree with a PG table that keeps track of the PrivGain(p)
of all violating pairs for suppressions. Line 2 calls a
maximal frequent sequence mining algorithm to identify
all MFS, denoted by U(T ), and then builds a MFS-tree
with a UL table that keeps track of the UtilityLoss(p)
of all candidate pairs. We modified MAFIA [6], which
was originally designed for mining maximal frequent
itemsets, to mine MFS. Any alternative MFS algorithm
can be used as a plug-in to our method. At each iteration
in Lines 3-9, the algorithm selects the winner pair w that
has the highest Score(w) from the PG table, removes all
the MVS and MFS that contain w, incrementally updates
the Score of the affected violating pairs, and adds w to
the set of suppressed values, denoted by Sup. Values in
Sup are collectively suppressed in Line 10 in one scan
of T . Finally, Algorithm 2 returns the anonymized T as
T ′. The most expensive operations are identifying the
MVS and MFS containing w and updating the Score
of the affected candidates. Below, we propose two tree
structures to efficiently perform these operations.

Definition 7 (MVS-tree): MVS-tree is a tree structure
that represents each MVS as a tree path from root-to-
leaf. Each node keeps track of a count of MVS sharing
the same prefix. The count at the root is the total num-
ber of MVS. MVS-tree has a PG table that maintains
every violating pair p for suppression, together with its
PrivGain(p). Each violating pair p in the PG table has
a link, denoted by Linkp, that links up all the nodes in
an MVS-tree containing p. PrivGain(p) is the sum of the
counts of MVS on Linkp.

Definition 8 (MFS-tree): MFS-tree is a tree structure
that represents each MFS as a tree path from root-to-
leaf. Each node keeps track of a count of MFS sharing
the same prefix. The count at the root is the total

TABLE 4
Initial Score

b2 d3 c4 f6 c7 e8
PrivGain 3 1 3 1 1 1
UtilityLoss (+1) 4 4 2 5 6 5
Score 0.75 0.25 1.5 0.2 0.16 0.2

TABLE 5
Score after suppressing c4

b2 d3 f6
PrivGain 2 1 1
UtilityLoss (+1) 4 3 4
Score 0.5 0.33 0.25

number of MFS. MFS-tree has a UL table that keeps the
UtilityLoss(p) for every violating pair p. Each violating
pair p in the UL table has a link, denoted by Linkp,
that links up all the nodes in MFS-tree containing p.
UtilityLoss(p) is the sum of the counts of MFS on
Linkp.

Example 6: Figure 3 depicts both MVS-tree and MFS-
tree generated from Table 1, where V (T ) = {b2d3, b2c4,
b2f6, c4c7, c4e8} and U(T ) = {b2c5c7, b2f6c7, b2c7e8,
d3c4f6, f6c7e8, c5f6, c5e8, d3c7, d3e8} with L = 2, K =
2, C = 50%, and K ′ = 2. Each root-to-leaf path represents
one sequence of MVS or MFS. To find all the MVS (or
MFS) containing c4, follow Linkc4 starting from the PG
(or UL) table. For illustration purposes, we show PG
and UL as a single table.

Table 4 shows the initial Score(p) of every violating
pair. Identify the winner pair c4 from violating pairs.
Then traverse Linkc4 to identify all MVS and MFS
containing c4 and delete them from the MVS-tree and
MFS-tree accordingly. These links are the key to efficient
Score updates and suppressions. When a winner pair w
is suppressed from the trees, the entire branch of w is
trimmed. The trees provide an efficient structure for up-
dating the counts of MVS and MFS. For example, when
c4 is suppressed, all its descendants are removed as well.
The counts of c4’s ancestor nodes are decremented by the
counts of the deleted c4 node. If a violating pair p and
the winner pair w are contained in some common MVS
or MFS, then UtilityLoss(p), PrivGain(p), and Score(p),
have to be updated by adding up the counts on Linkp.
A violating pair p is removed from the PG table if
PrivGain(p) = 0 because there is no more any MVS
containing this pair. The resultant MVS-tree and MFS-
tree are shown in Figures 4 after suppressing c4. Table 5
shows the updated Score of the remaining violating
pairs. In the next iteration, b2 is suppressed and thus
all the remaining MVS are removed. Table 2 shows the
resulting anonymous table T ′ for (2, 2, 50%)-privacy.

Lemma 3: Algorithm 2 eliminates all MVS without gener-
ating new MVS.

Proof. By Definition 7, MVS-tree represents all the MVS
in a tree structure. Thus by suppressing the violating
sequences iteratively, the algorithm eliminates all the
MVS. However, global suppression does not generate
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Fig. 3. MVS-tree and MFS-tree for efficient Score updates
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Fig. 4. MVS-tree and MFS-tree after suppressing c4

any new MVS. Consider a new sequence q, which re-
sulted from the suppression of its super sequence. The
sequence q can not be a MVS since by Definition 5, all
the subsequence of a MVS is a non-violating sequence.

We now prove that the anonymous data table T ′ is the
LKC-private version of the raw data table T .

Theorem 3: Given a RFID data table T , the anonymous
data table T ′ produced by the anonymization algorithm satis-
fies LKC-privacy.

Proof. The proof follows directly from Lemmas 1, 2 and
3. Since, the anonymization algorithm can enumerate all
the MVS (Lema 2) and subsequently remove them with-
out generating new MVS (Lema 3), the anonymous table
contains no MVS. Finally, according to Lemma 1, the
anonymous data table T ′ satisfies LKC-privacy because
it has no MVS.

3.3 Complexity Analysis
Our anonymization algorithm has two steps. In the first
step, we determine the set of MVS and the set of MFS.
In the second step, we build the MVS-tree and MFS-tree,
and suppress the violating pairs iteratively according
to their Score. The most expensive operation of our
algorithm is scanning the raw RFID data table T once
to compute |T (q)| and P (s|q) for all sequence q in the
candidate set Xi. This operation takes place during MVS
generation. The cost of this operation is approximated
as Cost =

∑L
i=1 mii, where mi = |Xi|. Note that the

searching cost depends on the value of L and size of
the candidate set. When i = 1, the candidate set Xi is
the set of all distinct pairs in T . Hence, the upper limit
of mi = |d|, where |d| is the number of dimensions. It
is unlikely to have any single pair violating the LKC-
privacy; therefore, m2 = |d|(|d| − 1)/2. In practice, most
of the candidate sets are of size-2; therefore, the lower
bound of the Cost ≤ m1 + 2m2 = |d|2. Finally, including
the dependence on the data size, the time complexity of
our algorithm is O(|d|2n).

TABLE 6
Data sets statistics

Dataset Records Avg. trajectory Dimensions Data size
|T | length |d| (K bytes)

City80K 80,000 8 624 2,297
Metro100K 100,000 8 3,900 6,184

In the second step, we insert the MVS and MFS
into the respective trees and delete them iteratively
afterward. This operation is proportional to the number
of MVS and thus in the order of O(|V (T )|) . Due to
MVS-tree and MFS-tree data structures, our approach
can efficiently calculate and update the the score of the
violating pairs.

4 EMPIRICAL STUDY

The main objective of our empirical study is to evaluate
the performance of our proposed algorithm in terms of
utility loss caused by anonymization, and scalability for
handling large data sets. The utility loss is defined as
|U(T )|−|U(T )′|

|U(T )| , where |U(T )| and |U(T )′| are the numbers
of maximal frequent sequences before and after the
anonymization of the data set T . It measures the per-
centage of MFS loss due to suppressions, so lower utility
loss implies better data quality. We could not directly
compare our methods with others because no method
exists that can anonymize high-dimensional RFID data
while preserving maximal frequent sequences. We con-
vert the RFID data into relational data and attempt
to apply the state-of-the-art anonymization algorithms,
such as [12][20][34]. Unfortunately, all these methods are
not scalable to high dimensionality and fail to finish the
anonymization. We evaluate our algorithm with three
different Score functions:

• Score1(p) = PrivGain(p)
UtilityLoss(p)+1 (from Equation 1)

• Score2(p) = PrivGain(p)
• Score3(p) = 1

UtilityLoss(p)+1



10

0%

20%

40%

60%

80%

100%

10 20 30 40 50

U
ti
li
ty
 L
o
s
s

Minimum Anonymity K

(a) K′ = 0.5%

0%

20%

40%

60%

80%

100%

10 20 30 40 50

U
ti
li
ty
 L
o
s
s
 

Minimum Anonymity K

(b) K′ = 1%

0%

20%

40%

60%

80%

100%

10 20 30 40 50

U
ti
li
ty
 L
o
s
s

Minimum Anonymity K

(c) K′ = 1.5%

Fig. 5. Utility loss vs. K on City80K (L = 3, C = 60%)
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Fig. 6. Utility loss vs. C on City80K (L = 3,K = 30)
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Fig. 7. Utility loss vs. L on City80K (K = 30, C = 60%)

We used two data sets for the experiments: City80K
and Metro100K. City80K is a data set simulating the
routes of 80,000 citizens in a metropolitan area with
26 city blocks in 24 hours, thus forming 624 dimen-
sions (different possible pairs). Metro100K is a data
set simulating the travel routes of 100,000 passengers
in the Montreal subway transit system with 65 stations
in 60 minutes, forming 3,900 dimensions. Each record
in the data set corresponds to the route of one pas-
senger. The passengers’ traffic patterns are simulated
based on information obtained from the Montreal metro
information website1. Based on the published annual
report, all the passengers have an average trajectory
length of 8 stations. The data generator also simulates
the trajectories according to the current metro map and
passengers’ flow in each station. In both data sets, each
record contains an attribute with five possible values,

1. http://www.metrodemontreal.com

where one of them is considered to be sensitive.
Following the convention for extracting MFS, we spec-

ify the minimum support threshold K ′ as the percentage
of the total number of records in the database. For
both data sets, we set K ′ = 0.5%, and 1.5% and vary
the thresholds of minimum anonymity K, maximum
confidence C, and maximum adversary’s knowledge
L to evaluate the performance of the algorithm. All
experiments are conducted on a PC with Intel Core2 Duo
1.6GHz CPU with 2GB of RAM.

4.1 Utility Loss
Figure 5. We vary the threshold K from 10 to 50 while
fixing L = 3 and C = 100% on City80K. This setting
allows us to measure the performance of the algorithm
against identity linkages without considering attribute
linkages. The utility loss of Score1 and Score3 generally
increases as K increases, so it exhibits some trade-off
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Fig. 8. Utility loss vs. K on Metro100K (L = 3, C = 60%)
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Fig. 9. Utility loss vs. C on Metro100K (L = 3,K = 30)

between data privacy and data utility. The utility loss,
sometimes, has a slight drop when K increases. This is
due to the fact that the greedy algorithm finds only the
sub-optimal solution. Score2 has higher utility loss than
Score1 and Score3 because Score2 does not take into
account the number of MFS lost during the elimination
of MVS.

As K ′ increases, the utility loss decreases because
the number of MFS decreases and there is less over-
lapping between V (T ) and U(T ), so suppressions
have less effect on MFS. Though none of the tradi-
tional K-anonymization algorithms can handle the high-
dimensional RFID data in our experiments, our method
can achieve K-anonymity by setting L = |d|, where |d| is
the number of dimensions. The result strongly suggests
that applying LKC-privacy would result in significantly
lowering the utility loss than would applying traditional
K-anonymity.

Figure 6. We vary the threshold C from 20% to 100%
while fixing L = 3 and K = 30 on City80K. This allows
us to examine the effect of attribute linkages. Approx-
imately 1/5 of the records contain a sensitive value,
so the utility loss is high at C = 0.2. As C increases,
the effect of attribute linkages becomes insignificant. As
K ′ increases, the utility loss drops quickly due to less
overlapping between V (T ) and U(T ). The traditional
confidence bounding anonymization method [34] can-
not handle high-dimensional RFID data, so we achieve
confidence bounding by setting L = |d|. Again, the tradi-
tional confidence bounding model results in significantly
higher utility loss.

Figure 7. We vary the threshold L from 1 to 5 while
fixing K = 30 and C = 60% on City80K. This allows
us to quantify the utility loss with the increment of an
adversary’s background knowledge. The result suggests
that up to L = 2, there is no utility loss. As L increases,
the loss increases quickly due to the increase in the
number of violating sequences.

Figure 8. Metro100K is a relatively higher dimen-
sional data set (3,900 dimensions) compared to City80K
(624 dimensions). Unlike in City80K, passengers follow
predefined tracks based on the metro map. In Figure 8,
following the same setting of City80K, we vary the
value of K from 10 to 50, while fixing L = 3 and
C = 100% on Metro100K. Metro100K has a large
number of violating sequences and thus many pairs are
suppressed during anonymization. The general trend
in Metro100K is more obvious than in City80K. For
example, in Figure 8(a), as K increases from 10 to 50, the
utility loss of Score1 increases from 29% to 66%. As K ′

increases from 0.5% to 1.5%, the utility loss of Score1 at
K = 30 drops from 66% to 21%. In all test cases, Score1
and Score3 consistently outperform Score2, suggesting
that it is vital to consider the loss of MVS in the greedy
function. Interestingly, the utility loss is the same for
L = 3 and L = |d| because most of the MVS are of size-
3 or less. In other words, there is no difference between
L = 3 and L = 4 or above in terms of the generated MVS.
Hence, the utility loss for L ≥ 3 remains unchanged;
therefore, we omit the figure on utility loss vs. L.

Figure 9. We vary the value of C from 20% to 100%
while fixing L = 3 and K = 30 on Metro100K. The
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Fig. 10. Scalability (K = 30, C = 60%,K ′ = 1%)

results have characteristics similar to those in Figure 6.
The utility loss increases when C < 40%. Moreover, as
K ′ increases, the utility loss decreases significantly.

4.2 Scalability
One major contribution of our work is the develop-
ment of an efficient and scalable algorithm for achieving
LKC-privacy, traditional K-anonymity, and confidence
bounding on high-dimensional RFID data. Every previ-
ous test case can finish the entire anonymization process
within 15 seconds. We further evaluate scalability with
respect to data volume and dimensionality. We conduct
all the experiments on the data set Metro100K since it
is larger in size and dimensionality. Unless otherwise
specified, we fix L = 3, K = 30, C = 60%, and K ′ = 1%.

Figure 10(a) depicts the runtime in seconds from
200,000 to 1 million records. The total runtime for
anonymizing 1 million records is 125 seconds, of which
46 seconds are spent identifying MVS and 79 seconds are
spent reading the raw data set and writing the anony-
mous data set. It takes less than 1 second to suppress all
the MVS due to our efficient MVS-tree and MFS-tree. As
the number of records increases from 200,000 towards 1
million, the runtime for read/write and identifying MVS
also increases linearly, suggesting that our algorithm
is scalable to anonymize large datasets. Figure 10(b)
compares the total runtime for L = 2, L = 3, and
L = |d|. L = |d| represents the runtime for achieving
traditional K-anonymity and confidence bounding. The
runtime for achieving those models is much longer than
ours because L = |d| requires verifying many sequences
up to L = |d|. In Figure 10(c), we increase the dimension
on the data set with 1 million records. As the number of
dimensions increases, the number of MVS also increases
due to sparseness; therefore, the runtime for identifying
MVS also increases.

4.3 Summary
(1) As anonymity threshold K or an adversary’s knowl-
edge L increases, the data utility decreases. The trend
is less obvious on C. (2) As minimum support thresh-
old K ′ increases, the set of MVS and the set of MFS
have less overlapping, so suppressing pairs in MVS has
less effect on MFS. (3) Score1 and Score3 outperforms

Score2, suggesting it is important to consider the loss of
MFS in the greedy function. (4) High-dimensional data
generally has more violating sequences and, therefore,
higher utility loss. (5) Our proposed method is scalable
with respect to the data size.

5 DISCUSSION
In this section, we provide answers to the following
frequently raised questions: Why does the data holder
want to publish the sensitive attributes when the goal
is to preserve maximal frequent sequences? Can the
proposed algorithm be applied to anonymize any data
set involving moving objects? What if the adversary only
uses time or location to identify an individual?

Sensitive Attribute. The data hold may publish the
sensitive attributes because some data mining tasks on
RFID data require both trajectory and object-specific
data. Analyzing the workflow (traffic flow) without
understanding what the objects are often meaningless.
For example, transit companies like to understand the
characteristics of the passengers’ traffic. However, if
there is no such data mining purpose, the sensitive
attributes should be removed. Our proposed anonymiza-
tion algorithm (Section 3) is flexible enough to handle
RFID data with or without sensitive attributes. Note that,
none of the previous works consider the privacy threats
caused by attribute linkages between the trajectory and
the sensitive attributes.

Trajectory from Moving Objects. Our algorithm
requires the trajectories to have the following form
⟨(loc1t1) → . . . → (locntn)⟩. If the trajectory of a mov-
ing object does not have this form, then preprocess-
ing is needed before applying the proposed algorithm.
For example, the trajectory from a mobile device is
as a sequence of spatio-temporal points in the form
⟨(x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn)⟩, where t1 < t2 <
. . . tn and the coordinate (xi, yi) represents the location
of the device at time ti, obtained with the help of GPS
devices and/or by localization techniques. In the prepro-
cessing step, the space can be divided into ϵ × ϵ grids,
where each coordinate is represented by a grid. Thus, the
continuous spatio-temporal points can be transformed
into discrete (lociti) pairs, where each grid is represented
by loci. Once the trajectories are transformed into the
(lociti) pairs, the proposed algorithm can be used.
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Time and Location. It is possible that the adversary’s
background knowledge q′ contains only the location
loci or only the timestamp ti. This type of attack is
obviously weaker than the attack based on background
knowledge q containing (lociti) because the identified
group |T (q′)| ≥ |T (q)|. Thus, an LKC-privacy preserved
table that can thwart linkages on q can also thwart
linkages on q′.

6 RELATED WORK

Privacy-preserving techniques on RFID can be broadly
grouped into two categories: data collection and data
publishing. While the work on data collection focuses
on the privacy and security issues of the RFID tags and
readers at the communication level [19], the work on
data publishing phase focuses on the privacy and utility
at the data level [16]. Below, we briefly summarize the
techniques applicable to RFID data privacy.

Location Privacy. Different solutions have been pro-
posed to protect the privacy of location-based service
(LBS) users. The anonymity of a user in LBS is achieved
by mixing the user’s identity and request with other
users. Example of such techniques are Mix Zones [5],
cloaking [17], and location-based k-anonymity [13]. The
objective of these techniques is very different from ours.
First, their goal is to anonymize an individual user’s
identity resulting from a set of LBS requests, but our
goal is to anonymize a high-dimensional RFID data set.
Second, they deal with small dynamic groups of users
at a time, but we anonymize a large static data set.
Hence, their problem is very different from RFID data
publishing.

Privacy Models. Traditional K-anonymity [29], [31],
ℓ-diversity [25], confidence bounding [34], and (α, k)-
anonymity [36] are based on a predefined set of QID
attributes. As discussed earlier, a traditional QID-based
approach suffers from the curse of high dimensional-
ity [2] and renders the high-dimensional data useless
for data mining. In this paper, we solve the prob-
lem of dimensionality by assuming that the adversary
knows at most L pairs of a victim’s locations and
the corresponding times. In [27], Mohammed et al.
propose LKC-privacy model that addresses the pri-
vacy issues on high-dimensional relational data. They
adopt top-down approach to generalize relational data
while preserving data utility for classification analy-
sis. Unlike [27], the proposed algorithm suppresses
the violating pairs based on a heuristic that pre-
serves maximal frequent sequences. This is the first
paper that propose an anonymization algorithm to
achieve LKC-privacy model on RFID data. Furthermore,
none of the tested traditional QID-based anonymization
methods, namely [12][20][25], are scalable to handle
the high-dimensional data in our experiments. Since
K-anonymity [29][31], confidence bounding [34], and
(α, k)-anonymity [36] are special cases of the LKC-
privacy model, our anonymization algorithm can also be

viewed as a scalable solution for achieving a traditional
privacy model for RFID data.

Dwork [9] proposes a privacy model called differential
privacy, which ensures that the removal or addition of a
single data record does not significantly affect the overall
privacy of the database. Most of the works in differential
privacy are based on interactive privacy model, where
the result of a query is in the form of aggregation [8],
[10].

Anonymizing High-Dimensional Data. There are
some recent works on anonymizing high-dimensional
transaction data [14][33][38][39]. The methods presented
in [33][38][39] model the adversary’s power by a max-
imum number of known items as background knowl-
edge. This assumption is similar to ours, but our problem
has two major differences. First, a transaction is a set
of items, but a moving object’s trajectory is a sequence
of visited location-time pairs. Sequential data drastically
increases the computational complexity for counting the
support counts as compared to transaction data because
⟨a → b⟩ is different from ⟨b → a⟩. Hence, their proposed
models are not applicable to spatio-temporal data. Sec-
ond, we have different privacy and utility measures. The
privacy model of [33] is based on only K-anonymity and
does not consider attribute linkages. Xu et al. [38][39]
measure their data utility in terms of preserved item
instances and frequent itemsets, respectively, while we
measure the utility based on the number of preserved
maximal frequent sequences.

Anonymizing Moving Objects. Some recent works
[1], [18], [32], [28], [40], [11] address the anonymity of
moving objects. Abul et al. [1] propose a new privacy
model called (k, δ)-anonymity that exploits the inherent
uncertainty of moving objects’ locations. Their method
relies on a basic assumption that every trajectory is
continuous. Though this assumption is valid for GPS-
like devices where the object can be traced all the time,
it does not hold for RFID-based moving objects. Another
major difference is that [1] achieves the anonymity by
space translation that changes the actual location of an
object. In contrast, our approach employs suppression
for anonymity and thus preserves the data truthful-
ness and maximal frequent sequences with true support
counts. Hoh et al. [18] present an uncertainly-aware
privacy algorithm for GPS traces. They selectively re-
move trajectory pairs to increase uncertainly between
trajectories to hinder identification. Both the works target
GPS traces and can not be employed for anonymizing
RFID data.

The privacy model proposed in [32] assumes that dif-
ferent adversaries have different background knowledge
about the trajectories, and thus their objective is to pre-
vent adversaries from gaining any further information
from the published data. They consider the locations in
a trajectory as sensitive information and assume that the
data holder has the background knowledge of all the
adversaries. In reality, such information is difficult to
obtain. Pensa et al. [28] propose a k-anonymity notion
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for sequence datasets. The proposed algorithm also aims
to preserve frequent sequential patterns. However to
achieve anonymity, they transform a sequence into the
other by insertion, deletion or substitution of a single
item. Thus, their approach also spoils data truthfulness.
Yarovoy et al. [40] consider time as a QID attribute.
However, there is no fixed set of time for all moving
objects. Each trajectory has its own set of times as its
QID. It is unclear how the data holder can determine the
QID attributes for each trajectory. Finally, Fung et al. [11]
propose a method for anonymizing RFID data without
preserving maximal frequent sequences. As shown in
Section 4, it is important to consider the loss of MFS
in order to preserve MFS.

This paper is the extension of our previous work [26],
where we address the problem of achieving anonymity
and preserving maximal frequent sequences. In this pa-
per, we propose an efficient data structure for eliminat-
ing violating sequences (Section 3.2). We also evaluate
our proposed algorithm though experiments to demon-
strate that our anonymization algorithm can effectively
retain the essential information in anonymous data and
is scalable for anonymizing high-dimensional data sets.

7 CONCLUSION

We have studied the problem of anonymizing high-
dimensional RFID data and have illustrated that tra-
ditional QID-based anonymization methods, such as
K-anonymity and its variants, are not suitable for
anonymizing RFID data, due to the curse of high dimen-
sionality. Applying K-anonymity on high-dimensional
data would result in a high utility loss. To overcome
the problem, we adopt LKC-privacy model based on
a practical assumption that an adversary has limited
background knowledge about the victim. We also pre-
sented an efficient algorithm for achieving LKC-privacy
with the goal of preserving maximal frequent sequences,
which serves as the basis of many data mining tasks on
sequential data. One future work is to address privacy
threats caused by the combination of QID attributes and
RFID trajectory data of the moving objects.
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