INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UM films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directiy to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailabie from the author or university. The
manuscript was microfilmed as received.

This reproduction is the best copy available.

UMI

SOFTWARE COMPREHENSION: THEORY AND
METRICS

TuoMas KLEMOLA

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

DECEMBER 1998
© Tuvomas KLEMOLA, 1999

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fle Votre référence

Qur filg Notre relérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette theése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimeés
ou autrement reproduits sans son
autorisation.

0-612-39115-9

Canada

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The
manuscript was microfilmed as received.

This reproduction is the best copy available.

UMI

Abstract

Software Comprehension: Theory and Metrics

"Tuomas Klemola

The understandability of a program specification has a direct bearing on sev-
eral important aspects of software quality. These include reliability, modifiability,
reusability, and maintainability to name a few.

The process of comprehension has been studied by psychologists. Their findings
have implications for software engineering practises. A survey of pertinent studies
in memory usage and comprehension processes reveals motivators for good software
engineering practices.

Software metrics are used in software engineering to predict human performance,
for instance faults per thousand lines of code. A survey of software metrics which are
related to human performance is included. Recently proposed metrics are examined.

Rules for developing software that respect human limitations are derived based
on psychological research and software engineering practises.

An empirical study of human performance against a newly proposed metric based
on comprehension processes is done using the performance of students on final exam-

inations. The metric, identifier density, is found to predict human error.

i1l

Acknowledgments

I would like to acknowledge professors Deborah Boehm-Davis and K. A. Ericsson for
providing me with relevant psychological research; Professors Deborah Boehm-Davis,
K. A. Ericsson, and Lynn Reder for answering questions on psychological issues;
Professor Brian Henderson-Sellers for directing me to relevant metrics research and
for writing Object Oriented Metrics: Measures of Complexity which was a catalyst

for this work.

iv

Contents

List of Figures vi
List of Tables vii
1 Introduction 1
I.1 Motivation Lo L e e e e e e e 2
1.2 Background 3
1.3 Expected Benefits L. 4

2 Cognitive Complexity and Understandability 5
21 CognitiveIssueso)
2.1.1 Operationalizing Understandability 5

2.1.2 Short Term Memory 6

2.1.3 Long-Term Memory 7

2.2 Comprehensiono e e e e 7
2.3 Memory Capacity and Comprehension 9
231 Conclusion L e 10

2.4 Modelling Working Memory 11
2.5 Empirical Measurement of Software Comprehension 11
2.6 Simulation of Memory Models 12
2.6.1 Modeling Episodic Indexing 12

2.6.2 Modeling Software Design 12

2.6.3 Capacity Constrained Comprehension 12

26.4 Conclusion 13

2.7 Software Understandability 13
2.8 Levels of Understandability 14

2.8.1 Conceptual Modelling 14
28.2 Formal Methods. 15
2.8.3 Paradigm Shifts 15
2.9 Object Orientation and Understandability _ ... 15
2.9.1 Object/Action Model in GUT 15
2.9.2 Hierarchies 16
2.9.3 Functional Modelling vs. Object Oriented Modelling 16
210 Conclusion 16
Metrics 18
3.1 Weyuker’s axioms for Complexity Metrics 18
3.2 A Moller and Paulish Guide to Using Metrics 20
3.3 Linesof Code: LOC 21
3.4 Halstead’s Software Science 22
3.4.1 Conclusion. L. 23
3.5 McCabe’s Cyclomatic Complexity 23
3.6 Function Points 24
3.7 Chunking Metrics 25
3.8 Object Oriented Metrics of Mark Lorenz 26
3.8.1 Project Metrics 26
3.8.2 Design Metrics 27
3.83 Conclusion. 30
3.9 Object Oriented Metrics of Ebert and Morschel 31
3.9.1 Volume 31
3.9.2 Structure 31
3.9.3 Cohesion and Coupling 32
3.9.4 Inheritance 32
3.9.5 Class Organization 32
3.96 Discussion 32
3.10 Object Oriented Metrics of de Champeaux 32
3.10.1 Analysis Metrics 32
3.10.2 Design Metrics 37
3.10.3 Implementation Metrics 39
3.10.4 Discussion 44

vi

3.11 Object-Oriented Cognitive Complexity Metries
3.11.1 Factors Affecting R: The Complexity of the Immediate Chunk
3.11.2 Factors Affecting T', the Difficulty of Tracing
3.11.3 Discussiono

3.12 Conclusion e e e e e e e

Analysis: Comprehension' Constrained Software Engineering

4.1 Understanding the Comprehension Process
4.1.1 Limiting Errors Due to Statement Size
4.1.2 Comprehension Affected by Size of Block of Text
4.1.3 Ambiguity Affects Comprehension
4.1.4 Complexity Magnifies Differences in Comprehension Skills
4.1.5 Encapsulate to Improve Simplicity
4.1.6 Optimize Value of Expertise Through Simplicity
4.1.7 Documentation Should be Adequately Detailed
4.1.8 Documentation Should Include Expert Level Summary
4.1.9 Applications Should be Domain Oriented
4.1.10 Variable Tracing is the Main Comprehension Activity
4.1.11 Function use Source of Comprehension Difficulty.
4.1.12 Conclusion o i i e e e e e e e e

4.2 Visual Representation of Programs

4.3 Comprehension and Software Metrics

44 Development Tools,

4.5 Other Implications for Software Engineering

4.6 Cognitive Issues in Programmer Productivity

Analysis: Designing Metrics

Comprehension Metrics o o o e

(1] o
‘ h
N

An Empirical Studyo oo

5.2.1 The Experiment.

5.2.2 Computed Metrics o v i it e e
5.23 Results e e
3.24 Conclusion e

vii

44
46
48
48

Ut Wt
[C-T SV T ()

(W]

Future Directions

6.1 Cognitive Modelling

6.2 Directions in Computer Languages

6.3 Directions in Cognitive Complexity Metrics

Examination Questions

Solutions

B.l Exam 1 . . - . & o o e e e e e e e e e e e

Test Scores

Halstead Metrics and LOC

Correlations

viil

List of Figures

1 Solution of question 4, exam 2. 63

2 Solution of question 3(b),exam 3.o L. 69

1x

List of Tablesl

Scores and metricsof first exam.

Scores and metricsof secondexam.

[

Scores and metricsof third exam.

Chapter 1
Introduction

This thesis is the result of searching for an answer to the question: “Is it possible to
identify objective criteria for choosing a programming style, a programming language,
and a software methodology for large scale software development? If so, what are
they?” Opinions are usually formed with experience, and different experiences often
lead to different opinions. Some answers can be found by considering the human
factors in software development. Deborah Boehm-Davis, a psychologist who has

researched software comprehension processes in programmers states:

The limited capacity of short term memory provides one of our greatest

limitations in developing large scale computer systems.[3]

One of the most significant challenges of Software Engineering remains the spec-
ification of design in such a way that computer programs can easily be understood,
changed, and their components reused. Understandability is highly subjective, and
depends on factors such as familiarity with the application domain and language of
implementation. Nevertheless, there are attributes of any specification which can be
measured that correspond with important aspects of its understandability.

Some of the most significant delays in software development occur when an indi-
vidual attempts to understand a specification that they either did not write or wrote
a long time ago. By better understanding the processes involved in human compre-
hension, and applying this understanding to software development, one can aim to
reduce the influence of such human limitations. One goal would be to develop tools
that help with the comprehension process. This includes evaluating software speci-

fications for their expected understandability, and isolating potential problem areas

before beginning to read the specification.

Improving the understandability of software specifications has two steps. As-
suming that we can arrive at a definition of the characteristics of understandable
software, we must then determine how to create software with those characteristics.
Creating understandable software specifications implies a conception of understand-
ability. This in turn necessitates a model of the thought processes associated with
software development.

Cognitive ergonomics is a term that is used to conceptualize ease of thought. The
software industry has been indirectly concerned with cognitive ergonomics from the
beginning. When languages such as COBOL and FORTRAN were conceived, it was
with the idea of making the thinking of programming solutions to particular classes
of problems (business and scientific) more natural.

A successful approach has been to use metrics within a set of applications and for
programmers to identify problem code and clean it up. Understandability is highly
subjective. The only sure way to evaluate the understandability of a specification is
to have the programmers who must understand them read the specifications to judge
their understandability. Some work has been done toward automating the processes
involved in software comprehension, which could point the way to implementing an

automated comprehension effort estimation system.

1.1 Motivation

Program understandability has a significant effect on the effort required to maintain
software, and the programmer’s ability to produce correct software. The ability to
predict program understandability would be an aid to the developer who wants his
product to be maintainable and verifiable. It would also assist the manager who needs
to estimate the manpower required to successfully complete a project on time.
When the programmers who must understand the code can verify it for under-
standability, one can be confident that their evaluation reflects their own comprehen-
sion process. Having a programmer read code simply to understand it is too costly
and time consuming for most organizations. If one could reliably predict the un-
derstandability of a given code segment to a given programmer, then one could get

valuable data to assist in estimating the difficulty and time required to understand a

body of code.
Some model of understanding is essential if one is to design meaningful predictors
of understandability. Works in the domain of psychology, as well as computer science,

offer direction as to where solutions may come from.

1.2 Background -

In the process of software development, every developer must eventually understand
and modify a previously created artefact. Sometimes it will have been created by
another developer. Often it will be the developer himself who created the artefact
in question. Especially during large software projects, developers may be faced with
comprehending work that is in progress in order to fulfil change requests, or to correct
errors.

The success of the software developer in these situations will be influenced by
the complexity of the specification he must understand. If the complexity of that
specification can be known beforehand, or better yet constrained, the developer may
be able to proceed in a more efficient way.

Description of the complexity of an artefact can be used in different ways. During
development, it can be used to limit the complexity of new specifications to predefined
organizational standards so that reuse and maintenance can be facilitated. With
existing software artefacts that must be modified, problem areas can be identified
at the earliest stages, creating the opportunity for the invention and application of
strategies that can relieve these bottlenecks, minimizing secondary effects such as
errors of interpretation.

To understand cognitive complexity metrics, there are three areas that must be
covered. First, cognitive psychology provides us with an understanding of issues
such as short-term memory capacity and attention span which help us to explain
when a description reaches a level of complexity that most people cannot deal with
efficiently. Next, complexity theory helps us to describe, in mathematical terms, how
two documents may differ in complexity. Finally, metrics provides a set of software

artefact attributes that can be computed.

1.3 Expected Benefits

If one can capture the effects of short term memory limitations in the form of a
metric which corresponds to memory demands in such a way as to predict human
error, then one may be able to improve the quality of software by simplifying where
possible and isolating code which is complex due to the domain of application. By
applying the metric as part of a qluality control process, code can be constructed with
an objective valuation of understandability, simplifying the job of producing code
others can understand.

Metrics programs involve gathering data for about two years before they can be
used to predict productivity trends and error rates. A metric which predicts error
based on human factors may not require extensive data gathering. Data gathering
could provide the basis for predicting debugging time, potentially very useful.

In software development, we work with different kinds of specifications: analysis
documents, design documents, software artefacts and so on. By verifying the un-
derstandability of a specification, it should be possible to limit errors and improve
software production.

A metric which predicts the understandability of code can probably be adapted
to work on analysis, design, and other documents involved in software development.
It may also find applications in other areas such as standards for technical documents

and textbooks.

Chapter 2

Cognitive Complexity and
Understandability

2.1 Cognitive Issues

Human beings have a limited capacity to deal with information. As the structure
of the information becomes more intricate and as the amount of the information
grows, the performance of human beings decreases. Understanding something about
human limitations is essential to designing, choosing and using design paradigms (e.g.
programming languages) in ways that minimize the effects of human limitations. Such
knowledge can also be useful for designing software metrics.

There are a number of results from cognitive psychology that can serve to guide
the design of measures that can estimate the amount of cognitive effort a task would
require. They can also serve to help understand the behaviour of metrics.

Different models of thought processes have been researched. They generally in-
volve testing the limits of human memory in some way, and then explaining the

behaviour when errors occur.

2.1.1 Operationalizing Understandability

Chunking

Chunking is a term used to describe the process of grouping and understanding related

single entities that can be processed more easily when grouped under one name.

(1]

Program segments with more than seven subparts will likely require the reader to do
implicit chunking. Limiting the subparts reduces the cognitive work load [34].
Different programming languages offer different styles of chunking. The principle

of limiting the size of the chunks can be applied to any programming language.

Tracing

In software development, the process of chunking often involves searching for def-
initions of variables or procedures. This process of finding relevant code is called
tracing.

Tracing involves searching for an instance of a name. The search may be for a
definition, the reading of a value or the assignment of a value. The search may involve
a series of parameter declarations at different levels or in different modules, where
a naming convention may or may not have been applied. The search may also be
simply a look at another file where the definition is known to be. A case that is of
high complexity arises in an object oriented program where inheriting code rather

than interface is occurring [3].

Landscapes

The process of chunking and tracing can be viewed so that each trace from the top
level takes us one level down. Each chunk is delineated by a pair of markers. In
this way a visual representation of the chunking and tracing process can be used to

evaluate the complexity of a given code segment [S].

2.1.2 Short Term Memory

Perhaps the most familiar result of research in cognitive psychology which has appli-
cations to computing is that of Miller where he found that subjects could remember
on average 7 numbers or 5 words for up to 30 seconds[36]. When the number of
itemns to remember exceeds the individual’s limits he/she must use memorization and
categorization techniques to perform chunking on the information. This process may
depend on the patterns the subject is familiar with. Knowledge and experience govern

the size and complexity of chunks that can be recalled.[17]

2.1.3 Long-Term Memory

Long-term memory is generally considered to be limitless in capacity[36]. Long-term
memory distinguishes itself from short-term memory in that it is durable, and retrieval

cues are needed in attention to access information[l4].

2.2 Comprehensioln

Walter Kintsch is a psychologist who has extensively researched comprehension[27].
Kintsch puts forward a theory of comprehension, the construction-integration theory:
“A context-insensitive construction process is followed by a constraint-satisfaction,
or integration, process that yields if all goes well. an orderly mental structure out of
initial chaos.” This may be analogous to a bottom-up discovery process followed by
a top-down resolution process. This is similar to the object oriented design process
described by Wirfs-Brock et. al.[44].

A study by Ericsson and Kintsch[14] of how experts use memory has found that the
ability to store domain specific information can exceed the usual limits of short term
memory (STM), however this improved performance is always specific to the domain
of expertise. Domain specific retrieval structures are developed with experience. This
has some parallels with chunking, in the sense that an expert will have chunked a
great amount of information. Patterns of information specific to their domain may
become chunks which will facilitate their recognition. When experts read a text with
the aim of understanding it, if it is in their domain, their immediate recall of what
has just been read will be virtually perfect. For instance, chess masters exhibit the
ability to follow as many as 20 games with their eyes closed. However, when an expert
is asked to remember something out of his domain, his memory follows typical STM
patterns.[27]

Domain knowledge plays an important role in text comprehension. When a reader
encounters text which does not fit well with what they know, an appropriate retrieval
cue must be generated and this may be a difficult problem-solving task.[27]

Tests have shown that when an expert on a subject writes a text which lacks some
basic background, other experts will understand the text while readers unfamiliar with
the missing background will not understand it. Providing explicit bridging material

in text is necessary for the understanding and learning of readers without background

=1

knowledge. It is difficult to know exactly the right amount of coherence in a text,
since too much may be confusing (e.g., legal documents){27].

Readers with good domain knowledge learn better from texts which require them
to relate what they know with the presented information. An experiment by McNa-
mara et. al. (1996) pitted high knowledge and low knowledge readers reading high

coherence and low coherence texts. An example of low coherence text would be:
The heart is connected to the arteries. The blood in the aorta is red.

Low knowledge readers might not know the relationship between arteries and

aorta[27]. A corresponding high-coherence text might be:
p D (=] o

The heart is connected to the arteries. The blood in the aorta. the artery

that carries blood from the heart to the body, is red.

The subjects are then put to answer questions of four types: “(1) text-based
questions, (2) elaboration questions that required relating text information to the
reader’s background knowledge, (3) bridging inference questions that required con-
necting two or more separate text segments, and (4) problem-solving questions that
required applying text information in a novel situation.”[27]

In the first two tests, both high knowledge readers and low knowledge readers
performed better with the high-coherence text. In the third and fourth tests, high
knowledge readers scored better with the low-coherence text than with the high-
coherence text, and the low knowledge readers scored better with the high coherence
text and very poorly with the low coherence text. The results suggest that learning
for problem solving and deeper understanding is aided by low coherence rather than
high coherence provided that the reader has adequate background knowledge. This
is explained by the fact that the reader must make an effort to construct an internal
representation of the meaning of the text when confronted with less than complete
coherence. This internal representation then facilitates processes which require a
deeper understanding.[27]

Comprehension is a simpler activity than problem solving, except for expert prob-
lem solvers who can recognize problems they have seen before and solve them easily.
These experts rely on their long-term working memory for problem solving whose

difficulty is reduced to that of text comprehension.[14]

(¢4

2.3 Memory Capacity and Comprehension

Differences in language comprehension and differences in memory capacity have been
studied together and reveal a significant relationship. In [24], Just and Carpenter
propose a theory that links processing and storage potential with memory capacity,
and how individual differences in memory capacity can affect performance in com-
prehension tests. l

An empirical study demonstrated that when STM demands are coincidentally
increased. processing is compromised. This suggests that STM is used for both storage
and processing.

A study of college students found that their performance differences are small when
the comprehension task is easy, but large and systematic when the comprehension
task is demanding. This suggests that code which is easy to understand has a much
better chance of being maintained without the introduction of errors than code which
is complex.

The test used was designed to simultaneously draw on the processing and storage
resources of working memory. After reading a pair of sentences, the subject tries to
recall the final word of each sentence. The test determines the maximum number of
pairs of sentences per set such that the subject can recall all the final words. Reading
spans varied from 2 to 3.5 sentences.

The rationale behind the test is that subjects with greater memory capacity will
be able to remember more words since the reading of the sentences would require less
of their total capacity. The results were found to have a high correlation with other
measures of reading comprehension such as the verbal standard aptitude test (SAT).
The ability to recall a list of digits or unrelated words is not significantly correlated
with reading comprehension.

Processing sentences with a single concept associated with two different roles
simultaneously, such as “The reporter that the senator attacked admitted the error.”,
poses a difficulty in language comprehension. Individual differences were most evident
when the subject read difficult or complex portions of a text. In a test modulating
the complexity of the sentence read, much of the quantitative difference that results

from working memory capacity can be localized to the parts that are more capacity

demanding.

Individuals with lower memory capacity were not slower in all reading compre-
hension tests. When an ambiguous verb was used, the subjects with higher memory
capacity spent more time. This supports the hypothesis that subjects with greater
memory capacity maintain the ambiguity in working memory for a longer time than
the other subjects. This result was found to persist when the sentences were embed-
ded in paragraphs. The comprehension of subjects with low memory capacity was
found to be lower than those with high memory capacity. This demonstrates that
individual differences in memory capacity can lead to differences in comprehension.

When a series of words or digits is required to be retained while reading. it is called
an extrinsic memory load. As the load increases, the reading rate and the ability to
recall items is degraded. This is typical of what is involved in reading code.

If two related sentences have unrelated sentences between them, the text will take
longer to read. This underscores the importance of reducing large blocks of code into
distinct smaller ones that accomplish a single task. Otherwise, more time will be
needed to understand a program segment.

When a sentence ends with an ambiguous word, better comprehenders ignored it

while poorer comprehenders would retain it in memory.

2.3.1 Conclusion

Individual differences in memory capacity can explain differences in comprehension
performance. When memory resources are completely occupied, additional processing
cannot occur.

Just and Carpenter suggest that the results of this study have implications in
areas other than language such as problem solving, complex decision making, and
areas which involve sequential symbol manipulation. Individual differences within a
task domain will be explained in large part in terms of working memory capacity.
In tasks which involve no language use at all such as arithmetic, working memory
capacity will have a lower correlation than with reading performance.

Other sources of individual differences include the speed of word decoding, vo-
cabulary size, and higher level comprehension processes such as syntactic, semantic,
and referential-level processes. Individuals with a larger memory capacity may also

exhibit better vocabulary acquisition.

10

2.4 Modelling Working Memory

There are several models that have been used to describe working memory. One
measures the load a subject can maintain while performing a task. Another involves
matching production rules with currently available information. Both of these are an
influence in a theory called ACT elaborated by Anderson, Reder, and Lebiere in[2].

In one experiment it was found that substituting fractions for integers in a sim-
ple arithmetic transformation increased the error rate. The increase in error was
attributed to increased memory load.

A series of experiments with randomly generated arithmetic transformations were
performed (e.g. solve for x when x + 6 = 9). Varying the number of digits found
that when the number of digits is increased from 4 to 6 the error increases more than
when the digits are increased from 2 to 4. Also that when the digits are increased
from 6 to 8, the effect is greater than when they are increased from 2 to 6. More

complex equations (e.g. 3/4 + x = -7/2) generated slightly more errors.

2.5 Empirical Measurement of Software Compre-
hension

Essential to arriving at meaningful cognitive complexity measures, is the study of
how programmers understand software. A study consisting of two experiments was
undertaken by psychologists at George Mason University[6)].

In the first experiment, subjects with little experience, some experience, and signif-
icant experience were given software comprehension tasks involving programs which
were either object oriented or functionally decomposed. The purpose of the study was
to better understand chunking activity. It was found that programmers developed
hierarchical representations of the programs, with the more experienced programmers
having more levels of nesting and a greater number of units in their internal repre-
sentations. The study also found that programmers tend to chunk code based on
program scopes identified with begin-end delimiters.

In the second experiment, inexperienced subjects were paired , and their activities
were monitored as they studied the same two programs as in the first experiment.

It was found that programmers made frequent use of variable tracing to construct a

11

model of how a program worked.

2.6 Simulation of Memory Models

A number of models of human memory have been created whose behaviour closely re-
sembles human behaviour in controlled experiments. Some experiments involve using
the SOAR architecture, developed by Newell and his colleagues, which implements a

model of learning based on productions and chunking(1].

2.6.1 Modeling Episodic Indexing

Altmann investigated programmer behaviour, then designed a simulation of mental
indexing based on how programmers will scroll to off-screen targets while under-
standing a program[l]. He calls the behaviour episodic indezing, and its theory is
implemented using SOAR and compared to actual programmer behaviour. The goal
is to develop a model which can help explain tracing behaviour in programmers by
maintaining a mental index to what objects exist in the environment. During a com-
prehension task, the view of the programmer is controlled to one screenful at a time

and what he looks at and for how long it is monitored.

2.6.2 Modeling Software Design

Using the SOAR architecture and the study of how humans design algorithms, a
theory of the algorithm design process is implemented.[42] The SOAR architecture
constrains the system to learn by chunking. The system successfully designs some

algorithms such as Insertion sort, which required 35 minutes on a Sun3/260.

2.6.3 Capacity Constrained Comprehension

A simulation of language comprehension with constrained memory capacity is com-
pared with the performance of human test subjects. The premise for the simulation
is that cognitive processing requires resources, which if unavailable, results in cog-
nitive error. The results of the simulation closely match human performance and
demonstrate the hypothesis that qualitative and quantitative differences in language

comprehension can be accounted for by differences in working memory capacity.[24]

12

2.6.4 Conclusion

Some cognitive activities involved in various stages of software development have
been simulated closely enough to suggest that it is feasible to implement an auto-
mated model of comprehension to assist in evaluating software specifications. Such a
program could reveal ambiguities, contradictions, and other aspects of bad design in
its attempt to construct a consistent and correct internal representation of a specifi-
cation. It could be a step in further automating software development, especially in

domains which are stable.

2.7 Software Understandability

The influence of software understandability in software engineering is manifold. As an
internal product quality it is linked to evolvability and verifiability[19]. This suggests
that understandability is important during the initial product development when it is
evolving and being tested, as well as during the product’s lifetime as it is maintained
and reused.

Recognizing cognitive limitations in some quantitative form is something that
has become more prevalent in software development as the size and complexity of
applications increases. Notably, user interface design has become more responsive to
cognitive limitations.[17]

Long term memory is involved in software development in remembering such
things as computer languages and how to use software development tools. Some
short term memory is involved in the use of software development tools. The less
short term memory that is needed to use the tool, the more that will be available for
understanding and reasoning about the specification at hand.

A specification is like an interface to an implementation. It provides the pro-
grammer with a hierarchical structure to use as a guide to navigate the details of
the implementation. Depending on the methodology, differing amounts of short term
memory will be required to understand the various parts of a specification. Much
like user interfaces give access to an application, implementations can be made more
accessible by specifications designed with human limitations in mind.

Minimizing the short term memory demands of the software developer, will en-

hance his comprehension, and reduce the error rate of the software he produces. It

13

will also improve his efficiency where the most difficult tasks are concerned. It is by
relieving the point of greatest stress in the software development process, that the
conscious application of standards for cognitive ergonomics can improve the efficiency
of the software developer.

This improvement in efficiency is significant when one considers the improvement
in software quality that is realized. Errors will be much more easy to identify, since
often errors are hidden inside a complex sequence of instructions whose understanding
is unreliable.

If one is to talk of understandability, then one should have a definition to work from
so that ambiguity can be limited. If a software system is understandable, then each
of its components is understandable, as is the structure that relates the components.
The domain of application should be part of the specification, and the structure of

the system domain-oriented.

2.8 Levels of Understandability

A programmer developing a large program will typically use an architecture, a method-
ology, and a programming style. Each will play a role in the understandability of the
final product.

The architecture has a significant influence on the understandability of large sys-
tems. Software architecture is defined as the structure of the components of a pro-
gram/system, their interrelationships, and principles and guidelines governing their
design and evolution over time.[23] An architecture is essentially a software design
pattern which is used when constructing software of a known design, such as a com-
piler, where a particular architecture, such as pipes and filters, works well.[41]

The process of understanding software has many levels. At the lowest level, the
programmer must understand the programming language, data types, variable defini-
tions, module specification, and so on. At higher levels of abstraction, the programmer

must relate the program to the problem which is being solved.

2.8.1 Conceptual Modelling

Understanding a system involves the building of a conceptual model. We build a

conceptual model by starting with a familiar analogy, and learning the differences

14

from the system. The conceptual model is an aid in learning about, and predicting

the behaviour of systems [10].

Limiting the complexity of the conceptual models used in designing and coding a

system results in improved understandability.

2.8.2 Formal Methods

Formal methods reduce the complexity of software development in the sense that
large blocks of specification can be abstracted to a correct interpretation of a higher

level specification.

2.8.3 Paradigm Shifts

Kuhn has identified 'paradigm shifts’ as discontinuous, disruptive changes in the evo-
lution of scientific thinking [29]. This is of particular concern to software developers
since many paradigms are involved in a typical project. There may be different pro-
cesses for analysis, design, and implementation. Several languages may be used in an

implementation.

2.9 Object Orientation and Understandability

Hsia et al. found that software is easier to maintain when inheritance hierarchies are
broad and that reuse is easier when the hierarchies are deep(23]. Deep inheritance
hierarchies result in smaller classes, a more complex design, and greater dependency
among objects. Isolating a problem area is more difficult when the level of inheri-
tance is high. Broad inheritance hierarchies result in simpler debugging than deep

hierarchies since problem areas are easier to isolate.

2.9.1 Object/Action Model in GUI

The user is supplied with a set of objects on which he can perform a set of actions.
Use of this model has resulted in the observation that “it leads to relatively simple
models of complex systems, which are flexible to use, and easy to change (e. g. by

adding new objects, adding or changing actions)” [10].

2.9.2 Hierarchies

Hierarchies have become an important part of computer programming. Object ori-
ented libraries are built using inheritance hierarchies. Analysis and experiments have
shown that when backtracking across abstraction levels is required to arrive at a
concrete-level solution, hierarchical problem solving is less effective [3]. This is the
case where a trace through a hierarchy does not end with an immediate parent, but
rather with another child of an ancestor. This suggests that the use of inheritance
hierarchies with anything but abstract inheritance should be limited in the interest
of maintaining understandability.

The idea of backtracking is analogous to the process required in object oriented
programming when chunking and tracing to understand an object’s behaviour. Clearly,
there will be more chunking and tracing when an inheritance hierarchy is large and
involves inheriting from concrete classes. Consequently, cognitive complexity is in-
creased.

Gamma et al. suggest object composition or black-box reuse is a style of pro-
gramming that limits the possibility of hierarchies with dependencies due to parent
class internals being visible to the child class, that require the programmer to trace

through hierarchies to understand system behavior[18].

2.9.3 Functional Modelling vs. Object Oriented Modelling

A study by Kim and Lerch published in 1992 concluded object orientation (OOD)
offers a better mapping of problem entities than the procedures and data structures
utilized in traditional functional decomposition (TFD) methodologies. A mental sim-
ulation is defined as a cognitive process where either the programmer is traversing the
problem space in the task domain or running logical design constructs in the solution
domain. The results of a pilot study suggest that a tenfold reduction in time spent

in mental simulation was achieved using OOD over TFD [26].

2.10 Conclusion

We know that all specifications are not equally understandable. We also have some
knowledge of the comprehension process. Specifications which are hard to understand

take more time to read and correctly interpret than specifications which are easy to

16

understand. They are also more likely to result in human error, especially when time
is constrained.

We have seen that individuals’ short term memory (STM) capacity is a limiter
on comprehension skill, and that it varies between individuals. When an individual
becomes an expert in a domain, his long-term working-memory acquires structures
which perform much like STM for the domain of expertise. We should therefore
respect individual differences if we expect different individuals to understand a spec-
ification.

Another factor in the way we understand specifications is the abstraction method-
ology employed to create the specification. If different paradigms are used together.
the reader must translate between paradigms to understand the document. This
added burden compromises comprehension.

Experienced software developers think of applications in terms of the domain of
application. If the software system can be structured like the domain of application,
it removes an important paradigm shift.

Object orientation has proved to be a paradigm which can be used to represent
software systems in terms of domain concepts. It has been observed that programmers
are better able to perform mental simulations which are part of the design process
when using object orientation.

Inheritance, a feature of object orientation, has been shown to be a hindrance to
the understandability of programs when code is inherited.

When we are choosing or designing specification standards such as design method-
ologies or programming languages, we can use knowledge of the human comprehension
process to improve the understandability of the specifications we create. This can re-
sult in fewer errors, time saved, and a more agreeable experience for the user of the

specification.

Chapter 3

Metrics

When estimating the duration and cost of a software project, it is helpful to have mea-
sures of software size and complexity. The time or effort required to complete a given
project can depend on many factors. These include program size, program complex-
ity, language of implementation; the programmer’s familiarity with the language, with
the domain of application, and perhaps familiarity with an existing implementation,
to name a few.

Metrics are used at various stages of the software lifecycle.

3.1 Weyuker’s axioms for Complexity Metrics

Axiom sets to aid in the evaluation of complexity metrics have been proposed by
Weyuker[28].

Weyuker states that the axioms specify a desirable model for complexity measures,
adding that things which are not complexity measures may satisfy the axioms. If
something does not satisfy the axioms, then it is not a complexity measure. In
mathematics axiom sets are necessary and sufficient to define a set. Weyuker’s axioms
are necessary but not sufficient.

Terminology: The complexity of a program x is |z| . The set of programs is P.
The concatenation operator is “;”

Axiom 1: There exist x and y in P such that |z| # |y]-
Axiom 1 excludes measures which give all programs the same value.

Axiom 2: For a nonnegative number c, there are only a finite number of programs

18

of that complexity.

Properties 2 and 3 ensure sufficient resolution.

Axiom 3: There exist x and y in P such that z # y and |z| = [y|.

Axiom 4: There exist x and y in P such that their behaviour is equivalent, and
2l # lyl.

Axiom 4 suggests that different implementations of the same functionality, such
as different sorting algorithms, can have different complexity.

Axiom 5: Forall x.yin P, |z| < |z;y| and |y] < |z;y].

Axiom 5 expresses that the complexity of the sum of two parts is at least as great
as the complexity of either part.

Axiom 6: There exist x, y, and z in P, such that |z| = |y| and |z; 2| # |y; =].

Axiom 6 states that the complexity of the concatenation of code segments x and
y of the same complexity, with a third code segment z. will sometimes result in code
segments of different complexity.

Axiom 7: There exist x and y in P such that y can be derived by permuting the
statements of x vet |z| # [y|-

Axiom T states that changing the order of the statements can change the com-
plexity.

Axiom 8: For programs x and y in P, if y is a renaming of x then [z]| = |y]|.

Axiom 8 states that changing the names in a program does not change its com-
plexity.

Axiom 9: There exist programs x and y in P such that (|z]| + |y|) < |z; y]-

Axiom 9 states that in some cases, the concatenation of two programs will result
in a program more complex than the sum of the complexities of the components.

Fenton notes that Weyuker’s axiom attempt to describe aspects of both psycholog-
ical and structural complexity, and suggests that these are fundamentally incompat-
ible and cannot be represented by the same set of axioms[28]. In particular, Fenton
is concerned that Axiom 5 is specific to complexity and Axiom 6 is appropriate for
comprehension[22].

Axioms 6, 7, 8 and 9 seem most easily supported when semantics are a factor,
vet axiom 8 seems to explicitly nullify the effect of semantics. The axioms seem to
suffer from the weaknesses of recursive definition since complexity is being defined
in terms of complexity. A psychological model is needed to provide an unambiguous

perspective where complexity is defined.

19

3.2 A Moller and Paulish Guide to Using Metrics

Moller and Paulish survey active metrics programs in [32]. Metric are used for the
improvement of the development process. By identifying the origin of a fault, it is
possible to improve the process which caused the fault. In one survey, companies
which implemented a metrics program saw a 25% reduction in production costs and
a 10% improvement in productilon time. It normally takes about two vears for a
company to acquire enough data about their processes and products to begin to see
the benefits of a metrics program.

Metrics offer a means of measuring software quality. Improving software quality
using metrics leads to reduced production times, reduced fault rates, reduced costs,
and more satisfied customers. The first step to using metrics is to identify specific
goals for improving software quality and productivity. For example, to reduce high-
level design faults by half.

Software quality and productivity can be improved with software metrics. This
leads to better profit margins and a faster time to market.

Metrics can be applied to the various phases of software development. By com-
paring previous trends with a current project, estimation and planning of resource
requirements can be more accurate.

If a high number of faults are found at an early stage, efforts can be made to
improve the output of that stage to help ensure a timely completion.

It is suggested that initially, a small number of metrics be chosen. Metrics that
measure program size such as lines of code or function points, are used to set other
metrics into perspective such as faults per thousand lines of code. They are often
counted by in-house tools. They may be indicators of complexity since bigger pro-
grams are usually more complex.

Effort can be measured in terms of person-days, and is a productivity indicator.
Elapsed time can be measured for each phase. The number of faults can be counted
during each phase of software development. The definition of a fault and the pe-
riod during which faults are counted must be specified. Fault counts are a primary
indicator of product quality.

The effort spent due to faults can be tracked to help assess the importance of
different kinds of faults.

Additional metrics can be defined and implemented as the need becomes more

20

clear.

Various software development teams in Siemens have benefited from the appli-
cation of metrics. The recognized improvements include product quality, staff pro-
ductivity and motivation, and customer satisfaction. In providing a perspective that
identifies the effect of quality between phases, the software development process as
well as communication between developers is improved.

Most metrics used by Siemens are based on faults found during various stages,
schedule information, and product size data. With these values productivity (i.e.
size/time) and quality (i.e. faults/size) metrics are computed and used to track the
progress of the project.

Moller and Paulish demonstrate the value of using metrics. Even simple met-
rics such as LOC/Time and Faults/KLOC provide feedback which can motivate im-
provements in the way programmers work. These improvements result in reduced
development times, increased product quality, improved customer satisfaction, and
better programmer morale. The two year investment that is needed to start a metrics

rogram seems to be a good one.
=] S

3.3 Lines of Code: LOC

LOC is the oldest software measure. It was first used to measure the size of fixed-
format assembly languages. Since programming languages have evolved to support
multiple instructions per line, and abstraction as with high-level languages, the use
of LOC as a metric has become problematic. For instance, a compound conditional
statement will be counted as a single line of code of a high level language, but would
require many assembly instructions, whereas an assignment statement would require
two assembly language statements. In each case, one line of code is counted.

Some studies suggest that for some language/application situations, LOC is at
least as good as Halstead’s metric and McCabe’s cyclomatic complexity metric.

The most accepted definition of LOC is as follows:

A line of code is any line of program text that is not a comment or blank
line, regardless of the number of statements or fragments of statements on
the line. This specifically includes all lines containing program headers,

declarations, and executable and non-executable statements.

21

However, LOC is not useful as an effective measure for understandability since it

does not account for the complexity of a line of code[22].

3.4 Halstead’s Software Science

Halstead developed a series of metrics based in part on a study of highly refined
algorithms in early forms of Algol, PL/1, FORTRAN, and assembly language[21]. He
offers experimental results which are surprisingly supportive of his conclusions.

His metrics are computed from the total and unique numbers of operators and
operands. Operands are defined as ”variables or constants”. Operators are defined as
“symbols or combinations of symbols that affect the value or ordering of an operand”.
He treats opening and closing parenthesis. as well as BEGIN and END program

grouping pairs as single operators.

n; = the number of unique operators
n, = the number of unique operands
N; = the total number of operators

N, = the total number of operands

The vocabulary of a program, n, is defined as the sum of the operators and
operands (n = nj +n2), and the length of the program, N, is equal to the sum of the
total number of operators and operands (N = N; + N,).

Using these basic metrics, Halstead defines several different metrics, some of which
are intended to correspond with or predict human behaviour measures. These are the
difficulty D, the intelligence content I, and the programming effort E.

Difficulty (D) D = (i) « (“_’2)

ni no
2
Intelligence (I) I = nl% * (N1 + N3) log, (n1 + n2)
1-Y2
N
Effort (E) E= rf)_l__z' X (-]vl + .’Vz) log,_, (Tll + 77.2)
n

The difficulty is the inve:rsezof level: L = 1/D. L is intended to give a relative
measure which is greater for succinct expressions of algorithms. Consequently, more
voluminous representations have a higher value of D.

Intelligence content, I, is a value that Halstead speculated might have the same

value for any particular algorithm expressed in different languages.

[S)
V]

Programming effort E, represents the "total number of elementary mental dis-
criminations...required to generate a given program.” Halstead assumes that human
beings use binary search in their mental discriminations and that all mental discrim-

inations require the same amount of time.

3.4.1 Conclusion .

The idea that a programmer must think about how operands and operators relate
while coding algorithms is a sensible beginning to creating metrics. However, we
know that individuals vary widely in their performance both in time and error rate.

In one of Halstead’s experiments, he had several programmers familiarize them-
selves with certain programs over a period of months, and then asked them to perform
tasks which involved understanding the code. This negates the learning difficulty
which could arguably be the most significant component of what is measured as
complexity.

Halstead believed that metrics could be developed to measure the complexity of
technical documents by classifying words as operators and operands, and applying
the same metrics he used to measure software.

A type of token, the function that returns a value, is not given special treatment
by Halstead’s metrics which are intended for the analysis of algorithm implementa-
tions. A function can be both an operator and an operand in the sense that it takes
arguments and has a value in an expression.

A study by Fitzsimmons and Love (1978) found that Halstead’s effort metric did
correlate well with programmer performance on various software comprehension tasks,

averaging 0.75 across 7 studies[3].

3.5 McCabe’s Cyclomatic Complexity

McCabe’s metric is based on an analysis of the control flow graph of a program and

is defined as
C=e-n+2p

where e is the number of edges, n is the number of nodes, and p is the number

of connected components of the graph (usually 1). The metric can also be calculated

23

by counting the number of decision statements (predicate nodes) in the program and
adding 1.[19]

A limit for the cyclomatic complexity of a code segment of ten is proposed by
McCabe. Code segments with larger values should be split. The current trend is
to write smaller code segments and lower values are preferred. Intuitively, any code
segment with ten decision statements could be hard to understand.

McCabe’s measure does not account for the complexity of the condition. Since
there are several ways of writing conditional statements, the metric is not neutral to
programming style, as it should be. However, if the metric is applied on programs
from the same set of programmers, the utility of the metric is improved.

For instance, the following code segment

IF (A and B)
I :=1

is logically equivalent to

IF A
IF B
I :=1

McCabe’s cyclomatic complexity would suggest that the second code segment
is more complex than the first even though they achieve the same purpose. This

compromises the value of the metric.

3.6 Function Points

The function point counting is used to estimate development effort. It is considered to
be somewhat language independent. It has been found to be useful in predicting sys-
tem size early in the development life cycle[22]. It is based on the following weighted
items, where the weighting is determined through a sample of existing applications:

Number of external inputs

Number of external outputs

Number of external inquiries

Number of internal master files

Number of external interfaces

Function points have been criticized for not being orthogonal and for being more
complex than other predictors which are as good. Function points have been used
mainly in business applications where the domain is relatively contained.

The accuracy of function point metrics is dependent on the similarity between
the domain and set of programmers involved in the sample to determine the weights.
As with most metrics, as time passes, the samples become out of date, and the
accuracy of the metrics are degraded. In order to maintain accurate function point
metrics, weights should be recomputed with current samples that reflect the set of
programmers and the domain of application. With function point metrics, more work

is involved in such maintenance.

3.7 Chunking Metrics

In one study, an operational definition for chunks is used to compute several metrics[11].

A chunk is a sequence of one or more contiguous program statements
Siy Sig1y .-y Sien with the property that there is no expiicit transfer of

control to any statement in the sequence other than S;.

There are two interchunk dependencies which form the basis for the metrics. Data
dependencies occur when a variable can be updated in one chunk and is referenced
in another. Control dependencies between chunks exist if there is a potential transfer
of control between chunks.

Metrics are tested for debugging time, error rate, and construction time. A data
dependency exists between two chunks if a variable that can be set in one chunk can
be read in another. The metric DATFAN, the total number of data dependency con-
nections between chunks seemed to follow a non-linear relationship with the number
of errors. After exploring transformations of the number of errors, DATFAN was

found to correlate well (r = 0.92) with the square of the number of error occurrences.

3.8 Object Oriented Metrics of Mark Lorenz

Lorenz describes two categories of metrics: project and design metrics[30]. Project

metrics are used to predict staffing needs and total effort. Design metrics look at the

25

quality of the way the system is constructed.

3.8.1 Project Metrics

Three kinds of metrics are offered. pertaining to application size, staffing size, and
scheduling.

Application size metrics inclide NSS, the number of scenario scripts; NKC, the
number of key classes; NSC, the number of support classes; and NOS, the number of
subsystems.

A scenario script is "a sequence of steps the user and system take to accomplish
some task. Each step consists of an initiator, an action, and a participant.” Scenario
scripts are useful as a form of specification which both the user and developer can
understand and agree on. Lorenz suggests at least one script per subsystem contract.

A key class is "a class that is central to the business domain being automated. A
key class is one that would cause great difficulties in developing and maintaining a
system if it did not exist.” Key classes are a good indicator of how much effort will be
required. They are specific to the problem domain of the client and are often targeted
for reuse. Lorenz suggests that 20-40 percent of classes should be key classes.

A support class is "a class that is not central to the business domain being auto-
mated but provides basic services or interface capabilities to the key classes.” Support
classes are discovered later in the development process. Their number is an indication
of effort. High numbers may be an indication of poor factoring into classes. There
should be at least as many support classes as key classes.

A subsystem is "a group of classes that work together to provide a related group
of end-user functions.” It should be possible to develop a subsystem independently
of other subsystems. The number of subsystems can help to plan the development
schedule. The subsystems can define the architecture of the system.

Staffing size metrics include PDC, person-days per class and CPD, classes per
developer.

Lorenz estimates ten to fifteen days per class. The value comes down as the ratio
of OO experts to novices increases. Reuse is also a factor. The number of classes per
developer depends on the duration of the project and the experience per developer.
Lorenz suggests giving key classes to the most experienced developers.

Scheduling metrics include NMI, number of major iterations, and NCC, number

'26

of contracts completed.

An iteration is "a single circle of an iterative process, consisting of planning,
production, and assessment phases over a multimonth period of time.” Iterations
improve designs and allows user feedback to be a stronger influence on the final
product. Lorenz suggests three to six major iterations.

A contract is "a simplifying abstraction of a group of related public responsibilities
that are to be provided by subsystems and classes to their clients.” Contracts corre-
spond well to end-user functionality. Lorenz believes that contract based estimation

is more accurate than class based estimation.

3.8.2 Design Metrics

There are many kinds of design metrics described. They include measures for method
size, method internals, class size, class inheritance, method inheritance, class internals
and class externals. They are used to improve the quality of the product, especially
during development.

Method size metrics include NOM, the number of message sends, the number of
statements, and LOC, the lines of code.

There are three types of messages. Unary messages are messages with no argu-
ments, binarv messages have one argument separated by a selector name such as
math functions, and keyword messages have one or more arguments. Their counts
are added together to make NOM. It is a less biased measure of method size than
LOC which may be affected by style differences. Methods with 9 or more message
sends should be checked for poor design.

Methods with more than 7 statements are considered candidates for review.

LOC is a measure which does not take coding style into account. C+4 methods
with 24 lines or more should be reviewed.

An average method size of no more than 9 message sends is recommended.

Metrics for method internals include MCX, method complexity, and SMS, strings
of message sends.

Object oriented methods are shorter, have no case statements, and fewer [F state-
ments than functional programs. Consequently, traditional measures of complexity do

not apply. Lorenz uses a system of assigning weights which have been derived through

8V
-~

experience to compute method complexity. He considers it a practical though tem-

porary measure until a better solution is found. The weights are as follows:

e API calls 5.0

e Assignments 0.5

e Binary expressions 2.0

e Kevword messages 3.0

e Nested expressions 0.3
e Parameters 0.3

e Primitive calls 7.0

e Temporary variables 0.5
e Unary expressions 1.0

Based on past experience, a threshold of 65 is used for MCX.

SMS is a proposed metric to help in assessing a method’s ability to recover from
errors. When messages are strung together, the possibility of trapping errors may
be compromised. This metric has not been empirically tested and no quantitative
recommendations are offered.

Class size metrics include PIM, the number of public instance methods; NIM,
the number of instance methods; NIV, the number of instance variables; NCM, the
number of class methods; and NCV, the number of class variables.

The number of public instance methods, PIM, is a good indication of the amount
of work being done by the class. A threshold of 20 is suggested.

The number of instance methods, NIM, can be used as an indicator of classes
which should made smaller since too many responsibilities have been assumed. A
threshold of 40 for user interface classes and 20 for other classes is suggested. An
average of 25 for user interface classes and twelve for other classes is suggested.

The number of instance variables, NIV, is recommended threshold of 9 for user
interface classes and 3 otherwise. Reuse is facilitated by a low value.

NCM, the number of class methods, is the number of methods for use within the

class. A threshold of 20% of NIM is suggested.

28

The number of class variables or objects common to all instances of a class, NCV,
are suggested a threshold of 3 and an average less than 0.1.

Class inheritance metrics include HNL, the hierarchy nesting level; the number of
abstract classes; and MUI, multiple inheritance.

The hierarchy nesting level, HNL, is suggested to be limited to 6. Deep nesting
makes testing more difficult. .

The number of abstract classes is suggested a threshold of ten to fifteen percent.

Multiple inheritance, MU, is a flag to indicate its presence. It is not recommended
due to the extra effort required to understand a class and the risk of name collisions.

Method inheritance metrics include NMO, the number of methods overridden;
NMI, the number of methods inherited; NMA, the number of methods added; and
SIX, the specialization index.

Larger numbers (> 3) of the number of methods overridden metric, may indicate
subclassing by convenience, something to be avoided.

The number of methods inherited, NMI, is an indicator of good subclassing. A
high value is recommended.

The number of methods added has a threshold on a declining scale based on the
class hierarchy nesting level. Empirical results are not detailed. The author suggests
at least one and no more than 4 when the nesting level is at the suggested maximum
of 6.

The specialization index, SIX, is computed as:

NumberO fOverriddenM ethods=ClassHierarchyNestingLevel
TotalNumberQO fMethods

Lorenz uses 15% as an anomaly threshold. This metric is intended to promote
subclassing where a new type of object is-a superset of the superclasses.

Metrics for class internals include CCO, class cohesion; GUS, global usage; PPM,
parameters per method; FFU, friend functions; FOC, function-oriented code; CLM,
comment lines per method; PCM, percentages of commented methods; and PRC,
problem reports per class.

The purpose of the class cohesion metricis to aid in identifying classes that should
be split up. No actual metric is proposed.

Global usage should be minimized. Lorenz suggests justifying any globals other

than one system global required to bootstrap the system at start-up..

29

Based on project results, an upper threshold of 0.7 parameters per method is
suggested. Gross differences in the use of parameters between classes may suggest
different design styles.

The use of friend functions for anything other than mathematical operators should
be justified.

The use of function oriented code is considered undesirable and should be justified.

There should be at least one comment line per method.

At least 65 percent of methods should have a descriptive comment.

If more than one problem per contract or two per class is reported, a closer look
at the situation is suggested.

Metrics for ciass externals include CCP, class coupling; CRE, class reuse; and
NCT, number of classes thrown away.

No empirical results are available for CCP which is intended to indicate the degree
of collaboration with other classes. Reuse encourages lower levels of coupling and
inheritance encourages higher levels of coupling.

No numbers are recommended for CRE at the time of writing, only that there
should be some reuse in every project, and each project should produce some reusable
classes.

Classes being thrown away (NCT > 0) is a sign that the iteration process is
refining the design. If none are being thrown away then it is possible that functionality
is simply being added. Lorenz believes that an application under development will
undergo refinement which will result in the restructuring of classes so that some classes
are thrown away. If no classes are thrown away, then the developer may simply be
patching and not thinking about reuse, compromising the potential maintainability

of the system.

3.8.3 Conclusion

Lorenz covers many aspects of object oriented software development with his met-
rics. His recommendations as to thresholds appear to be intuitive. Inexperienced
developers would probably benefit from following his guidelines, provided that their
domain of application is not much different. Metrics use is always tempered by expe-
rience and the local development environment. Developers would probably refine his

recommendations for their own purposes as their experience grows.

30

One would expect that a project where every metric is at or near the suggested

threshold would not be ideal. Some guidelines in that regard would be useful.

3.9 Object Oriented Metrics of Ebert and Morschel

Ebert and Morschel focus on metrics which can be used as quality indicators during
the development process[13].

Correcting faults during module testing and code reading is at least ten times less
expensive than making the same corrections at system test time. Twenty percent of
modules contain forty percent of errors, of which sixty percent can theoretically be
detected before system integration. Therefore, one can predict the early detection
of twenty four percent of faults vielding a twenty percent cost reduction for fault
correction.

Metrics are divided into five categories: volume, structure, cohesion and coupling,
inheritance, and class organization. An empirical study was conducted comparing

metrics with human performance.

3.9.1 Volume

The number of object attributes or instance variables per class makes one metric.

The number of methods per class is another, with a suggested maximum of 30.

3.9.2 Structure

Message passing is suggested a limit of 30, cyclomatic complexity a limit of 5, and
nesting depth within methods a limit of 3, for each method. The number of pa-
rameters per method and the number of temporary variables per method are also

measured. Structure metrics are helpful in forecasting debugging and testing effort.

3.9.3 Cohesion and Coupling

The existence of a cohesion violation, a variable access that does not use an accessor
method, is noted. The number of external messages passed per method is suggested
a limit of 5. A Smalltalk specific metric which counts the number of external accesses

of private methods is suggested a limit of 5.

31

3.9.4 Inheritance

The number of predecessors is limited to 5. The number of successor classes has a
minimum of 2 and a maximum of 10. The number of changes to inherited methods

is recommended 0 though a limit of 3 is given.

3.9.5 Class Organization

These metrics are intended to capture comprehensibility. The number of characters
of an identifier should be at least 7. There should be about one comment line for

every five lines. The editing distance of identifiers should be at least 3.

3.9.6 Discussion

Ebert and Morschel provide an example of metrics use. Their set of metrics is smaller
yet they report a reduction of faults. It serves as evidence that metrics can help raise

the quality of object oriented software.

3.10 Object Oriented Metrics of de Champeaux

In [12], Dennis de Champeaux discusses many metrics. He categorizes them in differ-

ent ways, notably as they apply to the analysis, design, and implemertation phases.

3.10.1 Analysis Metrics

Function point analysis is a popular choice for estimating development effort. How-
ever, it uses historical data which is based mostly on MIS applications, and is not

recommended for estimating OO project metrics.

Analysis Effort Estimation

The following terms are used:
to = start time of the analysis
te = end time of the analysis
T = a time "now ” between the start and end

A(T) = actual development cost from tg to T’

32

B(T) = estimated development cost from T to t.

C(T) = A(T) + B(T), effort cost function

The functions A(T') and B(T') are computed based on a model of the OO analysis
process. There are several types of artefacts that must be completed that comprise
the analysis. A(T) consists of the sum of completed efforts measured in person-hours.
B(T) is the sum of predicted artefact effort requirements.

The set of artefact types is {Use Case, Scenario, Subsystem. Vocabulary, Inher-
itance Diagram, Subsystem Diagram, Class-Relationship Diagram, Class, Relation-
ship, Instance, Scenario Diagram}. There are dependencies between artefacts which
are used to estimate the effort requirements of incomplete artefacts using known or
already estimated efforts.

The set of dependencies is as follows:

< Scenario,Use Case >

< Vocabulary, Scenario, Subsystem, Requirements Document >

< Inheritance Diagram, Vocabulary >

< Subsystem Diagram, Vocabulary, Subsystem >

< Class Relationship Diagram, Vocabulary, Subsystem Diagram >

< Class, Inheritance Diagram, Vocabulary, Class Relationship Diagram >

< Relationship, Class Relationship Diagram, Class >

< Instance, Vocabulary, Class, Relationship >

< Scenario Diagram, Scenario, Class, Instance >

The functions used to estimate one artefact based on the values of others is de-
termined from historical data in the implementation environment.

Artefacts which are partially complete can be estimated as the sum of the time
spent and the remaining fraction multiplied by the estimate.

The development of a new artefact is, statistically, not a linear function of its size,
but rather a quadratic or exponential one.

Discussion

By including a set of dependencies in the documentation process, de Champeaux
is able to predict effort with a finer granularity than simply counting classes, for
instance. His approach is based on his OO analysis model which relies in part on Use

Cases, a proven methodology.

33

Analysis Artefact Metrics

Theory

A metric is a function that maps from the artefact domain to the domain of
positive real numbers. Certain characteristics are desirable but not necessary for a
metric. Chidamber and Kemerer refined those of Weyuker.

Order property ‘

We would like our metric to correspond with our intuitive sense of ordering, so
that a value for artefact a; would be less than that for a, if that is what our intuition
tells us.

Relative metric

The numeric values of our metric do not have an absolute interpretation. This
makes it easy to scale metrics according to their influence when combining them.

Artefact separation

Different artefacts will generally produce different values. Weyuker calls this gran-
ularity and Chidamber and Kemerer call it non-coarseness.

Incidental collusion

It is acceptable if two different artefacts happen to score the same on a particular
metric.

Artefact composition

In certain cases, it may be meaningful to combine measures. We expect the
combination of two parts to be at least as large as the artefacts by themselves. We
must be careful to avoid combining measures of components which are identical in
some way.

Artefact structure

Weyuker requires that the metric of an artefact change when program statements
are permuted.

Artefact renaming

Weyuker argues that renaming an artefact should not affect its complexity.

Form versus meaning

Metrics depend on the syntactic and not the semantic aspects of artefacts.

Monotonicity

The values of an artefacts metrics do not decrease when something is added to

the artefact.

34

Composition instability

If two artefacts have the same value of a particular metric, adding the same thing
to each of them may not result an equal change in the metric.

Metrics

Use case

The number of sentences that, describe the use case is the metric.

Scenario

Scenarios are structurally the same as use cases and the same metric applies.

Subsystem

One metric is to count the number of subsystems, so each subsystem gets a value

Another involves quantifying template attributes such as "number of children
subsystems” and combining them in a linear polynomial with appropriate weighting
coefficients.

Vocabulary

The vocabulary is a central artefact and describes relationships, object classes.
ensemble classes, (parametric) relationship instances, (parametric) objects, and en-
sembles (which correspond to subsystems). The metric design can be similar to that
of subsystems. Either counting the number of entries, or exploiting fields that can be
quantified.

Inheritance diagram

A metric for the inheritance diagram can be constructed by counting the number of
nonroot nodes in the inheritance lattice, and if multiple inheritance is used, weighting
each node by an exponential function.

Subsystem diagram

Two metrics are offered. The first is a weighted sum of the number of nodes
and the number of arcs. The second consists of the sum of the number of links
each subsystem has with its peers. No empirical data exists to decide which is more
informative.

Class relationship diagram

The graph consists of relationship nodes and class nodes, where the arity of a
relationship is at least 2. One metric involves the counting of class nodes and adding
the arity of each relationship. A more sophisticated measure would involve weighting

the contributions of the class nodes and the relationship nodes.

35

Class

Several metrics apply to classes. Notably the attribute count, the number of class
constraints, the number of disjoint transition networks, and the numbers of event and
service requests in the class’s transitions.

Depth of Inheritance Tree This metric is defined as the distance from the class
to the root. In the case of multiple inheritance, the longest path is used.

Number of Ancestors This metric is a count of the ancestors. In the case
of single inheritance, this is the same as the previous metric. It provides a more
accurate indication of the class’s dependencies on other classes in the case of multiple
inheritance.

Number of Children This is defined as the number of immediate subclasses.

Number of all Children This metric counts all immediate and indirect sub-
classes.

Coupling Between Object Classes This is defined as the number of couples
the class has with other classes. An instance of coupling is defined as a service
request, the sending of an event, the transmission of an instance, or the reception of
an instance.

Response For a Class This metric is the size of the set of service requests and
events.

Lack Of Cohesion This metric is intended to measure how “splittable™ a class
is, and its definition is suggested as a topic for research.

Relationship

A metric for relationship can simply be the sum of the arities of the relationships.
A more sophisticated approach is to assign a weight to each relationship depending
on its cardinality.

Instance

Two metrics are defined. One for the number of stable or enduring objects, and
the other for the number of transient objects.

Scenario diagram

A scenario diagram consists of class instances and their transition networks. A
measure is to add the number of objects and the number of arcs using weights to

compensate for their relative importance.

36

Discussion

Weyuker’s principles are controversial, even after the refinements of Chidamber and
Kemerer. In particular the requirement that the metric of an artefact change when
program statements are permuted is questionable. If one reverses the order of two
initialization statements, has the complexity changed?

Also, the composition of metrics is fraught with pitfalls. Metrics are intended to
be used to compare software artefacts. When metrics are composed the reliability
is compromised. We are pleased when a metric correlates by a factor of 0.75. If we
compose two metrics of similar accuracy then we may be lucky to get a correlation
of 0.75 * 0.73, though it could be better or worse.

There is no discussion of experience to support or justify the set of metrics. however

it appears to be thorough and the mere documentation process is likely to be of value.

3.10.2 Design Metrics

Design metrics relate more to quality aspects of software.

Effort Estimation

Effort estimation for design can use what is known from the analysis phase. A simple
estimation would be to multiply the analysis effort by an empirically determined
multiplier. A finer estimation could be determined using the number of classes and
relationships. '

The level of granularity can be further increased. For instance, an effort estimate
could be the weighted sum of the number of transition diagrams. For predetermined
constants {c;}, an estimated design time for a class could be

c1#(#attributes)+ Y paTransitionDiagram(C2* (Fstatesined)* +cax(F T ransitionsInT D))

Estimating the design effort of other components is similar. Factors affecting

design effort include:

—

The use of design tools

o

Domain complexity

Domain familiarity

Ll

Availability of domain specific library components

Availability of low level library components

Ot

Discussion
The metric of estimated design time hinges on accurately determined constants.
There is no specification as to how these constants would be determined and no

experience to back up the accuracy of the metric.

Quality Assessment

Size

In general, smaller is better.

Flexibility

Also called robustness, flexibility is a desirable software quality. For instance the
ability to add numbers of different types in C+4+ is an example of flexibility.

Rule based systems are inherently more flexible. No metric to measure flexibility
is proposed.

Modifiability

Consistency of descriptions is one attribute which facilitates maintenance. Various
tools can improve modifiability. These include version control systems and integrated
tools with some kind of hyperlinks.

Modifications happen inside objects, at the object level, and systems wide.

Changes inside objects

Transition diagrams are transformed into functions as part of the design pro-
cess. Factors affecting the modifiability of a member function include its size, control
complexity, and to a lesser degree the number and complexity of arguments, the com-
plexity of a return value, whether a function is inherited, and the number of calls to
other member functions.

Changing objects

Changes to objects can be internal, or can affect how they interact in the system.

First we consider objects in isolation. Larger classes are more difficult to grasp
than smaller ones. The size of the local members and the size when factoring inherited
members can be considered separately. Some proposed measures:

Ut assaeB (class) = distance of class from the furthest root class

ul.snp (class) = # direct and indirect super classes of class

Other metrics can be designed. A desirable feature which is difficult to measure

is splitability. Ideally a class should have a minimal size.

38

Object interaction can be measured in terms of communication connections. A
high fan-in/fan-out may suggest that some objects have too much responsibility, es-
pecially if cohesion is low. A proposed metric is

UsystemContezt (€lass) = €1 * Ugantn (class) + ca * Ufenout (class) + w (class)

where w (class) is a value which is high when garbage collection is explicit, such
as with C++. \

Changing the system

Systemn maintenance is mainly a function of size. The number of classes is one
measure. More elaborate approximations can be developed using class characteristics
such as class size complexity.

Discussion

The system context metric is a composite metric which combines fan-in and fan-
out. A high fan-in implies a class which does too many things whereas a high fan-out
implies a class where reuse of other classes has been applied. While de Champeaux
notes the importance of the distinction the proposed metric seems insensitive to it,
contrary to his stated intention.

Otherwise, he points out important aspects of quality, though no experience using

metrics to achieve quality is offered.

3.10.3 Implementation Metrics

Since no single metric always provides all the useful information about an implemen-
tation, several are computed.

Metrics incorporated in the CPPSTATS tool used inside IBM include:

Method details LOC in a method, the method’s access scope, return type and
parameters.

Class instance variables The variable’s name, type, and access scope.

Class LOC

File LOC If no class is defined, the LOC of the file is recorded.

Superclass Subclass/superclass relationships.

Method complexity This is the McCabe complexity measure.

An OO tool from McCabe Associates provides another set of metrics:

Encapsulation

- Lack of Cohesion in Methods

39

- Percent of Public and Protected
- Access to Public Data

Polymorphism

- Percent of Non-overloaded Calls
- Weighted Methods per Class

- Response for a Class

Inheritance

- Number of Roots

- Fan-in
- Number of Children
- Depth
Quality

- Maximum Cyclomatic Complexity of Methods in a Class

- Maximum Essential Complexity of Methods in a Class

- Number of Classes Dependent on Descendants

Effort Metrics

If design efforts have been recorded for each class, an estimate of implementation

effort could be obtained with the function:
efes (ic) = uy x efm (de) + up x pr(de) + v

where ic is the implementation class, dc is the design class, efm (de) is the actual

effort used to develop de, pr (dc) is a product metric that takes aspects of the design

into account; and u;, us2, and v are empirically determined constants.

Product Metrics

Member function metrics

Size of a member function

Different metrics for size exist:

1.

2

-

(8]

LOC

The number of statements

3. The number of semicolons in a member function
4.

The number of input and output parameters

The number of member variables

40

6. Halstead’s length

Complexity of a member function

McCabe’s cyclomatic complexity is used.

Fan-in of a member function

This is the number of instances that the function is invoked outside the class.

Fan-out of a member function

This is the number of external objects referred to within the function.

Class metrics

Class attributes

There are different ways to count attributes. We have

locally defined attributes = private + protected + public attributes

total attributes = inherited attributes + friendship attributes + locally defined
attributes

or

total attributes = object-valued + non-object-valued attributes

From these secondary metrics can be defined:

attribute closure = (private attributes) / (total attributes)

attribute external dependence = (inherited attributes + friendship attributes) /
(total attributes)

attribute OO-ness = (object valued attributes) / (total attributes)

attribute incorporation = (value attributes) / (total attributes)

The existence of public attributes violates encapsulation and should be noted.

Number of static attributes of a class

The static attributes of a class are shared by all instances of the class. The ratio
of static versus regular attributes is offered as a possibly useful metric.

Number of member functions of a class

Of interest is the access control, the type of any returned value, and whether the
function is inherited, inherited and modified, or locally defined.

Weighted methods for a class

Chidamber and Kemerer suggest the sum of weighted methods as a metric. They
are not committed to any particular weighting scheme.

Fan-in of a class

This is the sum of the fan-ins of the methods.

Fan-out per class

41

This is the sum of the fan-out of the member functions, referred to as coupling by
Chidamber and Kemerer.

Response for a class

This is the size of the set of member functions and the member functions that can
be invoked directly by them.

Lack of cohesion in methods

This 1s the difference between the number of member functions that share at least
one variable and member functions that share no variable. While it is useful to look
at which member functions share which variables. this metric will only trap specific
cases and is not generally meaningful.

Number of member function clusters for a class

This metric clusters member functions where any two share a variable. This avoid
the problems of the previous metric.

Number of comment lines

This can be counted for attributes, member functions, and classes.

Inheritance metrics

Inheritance depth of a class

This is the distance to the root class. The maximum length is used when there is
multiple inheritance.

Number of ancestors of a class

This is equal to the depth when single inheritance is used.

Number of direct subclasses of a class

This indicates how many direct descendants will be affected by modifications to
the class.

Number of direct and in-direct subclasses of a class

This measures all descendants.

Implementation system metrics

Number of global enduring instances

These are created during initialization and exist during program execution.

Min, max, median, and average number of attributes per class

Lorenz suggests an average less than 6.

Min, max, median, and average number of member functions per class

Lorenz suggests an average less than 20.

Min, max, median, and average size of member functions

42

Lorenz suggests an average less than 15 for C++.

Min, max, median, and average complexity of member functions
This number should be minimized.

Min, max, median, and average inheritance depth of the classes
Lorenz suggests a maximum less than 6.

Min, max, median, and average fan-in of the classes

High fan-in classes should be carefully checked for correctness.

Min, max, median, and average fan-out of the classes

High fan-out classes should represent system-specific features.

Number of classes

Of interest are

- Number of reused as-is classes

- Number of reused but modified classes

- Number of newly developed classes

Reuse metrics can be defined:

pure reuse rate = (reused as-is) / (number of classes)

leveraged reuse rate = (reused as-is + modified classes) / (number of classes)
Number of root classes

This metric gives an idea of system size. A derived metric

1 - (number of root classes) / (total number of classes)

gives a perspective on how much inheritance is involved in the system.
Average number of comment lines

Lorenz suggests averages for classes, attributes, and member functions greater

than 1.

3.10.4 Discussion

De Champeaux gives us a broad view of OO metrics. He does not refer to any of
his own experiences which would help in deciding which metrics are most valuable.
This is understandable in part due to the lack of experience using OO metrics in the

software industry at the time of writing.

3.11 Object-Oriented Cognitive Complexity Met-
rics

The most comprehensive model of cognitive complexity metrics to date is by Brian
Henderson-Sellers[22]. As of this writing, empirical tests have not yet been completed
and implementation specifications are not complete. They serve as an indication of

the directions research has taken so far. The following is a summary.

3.11.1 Factors Affecting R: The Complexity of the Imme-
diate Chunk

The complexity of the immediate chunk, R, is a composite of several metrics:
R= (357 RC7 RE: RR: RV, RDs RF)

where Rs is the size, R is the difficulty of comprehending the control structure
the chunk is contained in, Rg is the difficulty of comprehending Boolean expressions
contained in the chunk, Rpg is the recognizability, Rv is the effect of the visual struc-
ture or layout of the program, Rp represents the disruptions caused by dependencies,
and Rf is the familiarity that influences speed of recall.

Empirical research is needed to validate this hypothesis.

Chunk Size (Rs)
This metric was is computed as follows
Rs = aS,-, if Si <= Lmax,

[S Lma.\‘
and Rs = aS; + b (S———)
lf Si > Lma.x

max

where Rs is the complexity resulting from chunk size, S; is the size of the chunk,
Lax is some programmer dependent limit on the size of a chunk that may be esti-

mated, and a and b are empirically determined coefficients.

44

Type of Enclosing Control Structure (Rc¢)

Complexity varies with the control structure.

Re = yif ng)p21-1-1

1=1 "t

where C}j) is the complexity of the :th chunk after the jth iteration and p is the
probability of failure after the first iteration.

Difficulty of Understanding Complex Boolean and Other Expressions (Rg)

This metric is defined as

RE = bl Z.—illBooIcanE.rpressions Bi

where B; is the number of predicates in the ith Boolean and &, an empirical
constant. McCabe assumes that each conditional within a Boolean expression adds
the same level of difficulty as an entire control structure. This important issue is not
settled. Further research including empirical evaluation is needed to better estimate
the influence of program complexity.

Recognizability of a Chunk (Rpg)

Recognizability is based on the program’s conformance with rules of discourse and

cohesion.
RR =rr+rc

where rp represents rules and r¢ represents cohesion. Computing this value is

considered to involve a lot of work such as compiling the rules of discourse.

Effects of Visual Structure (Ry)

Chunks that are separable from the rest of the program reduce the difficulty of com-

prehending a chunk. The metric is defined by
RV = a ‘/

where V is one of {1, 2, 3} representing three levels of difficulty and a;, an empirical

constant to be evaluated experimentally.

45

Disruptions in Chunking Caused by Dependencies (Ep)

When tracing a call or definition is required, the current process of understanding is

interrupted. The metric’s computation is offered as
RBp =dYjian C; + € X jinn T

where N is the set of chunks on which the 7th chunk is directly dependent for a
given task; T is the difficulty of tracing a particular dependency; and d and e are

empirically determined constants.

Speed of Review or Recall (RFf)

The more often a programmer reviews a chunk, the more familiar he is with it and

less effort is needed to understand or recall it. For the ith chunk. the recall factor
Re, =T jian 7

where f is a review constant (about 2/3) which represents the speed up of under-

standing on successive reviews. RF is the only multiplicative factor.

3.11.2 Factors Affecting T, the Difficulty of Tracing
The difficulty of tracing is defined as
T = T(TL~ I-'A’T57 TC7TF)

where T is the localization of the dependencies, T4 is the ambiguity of the de-
pendency, Ts is the spatial dependency of the dependency, T¢ is the level of cueing

of the dependency, and Tr is the familiarity of the dependency.

Localization (I7)

The degree to which a dependency may be resolved locally. Three levels are embedded,

local, and remote.
TL = agL
where L is one of {1,2,3}, and a; is an empirical coeflicient to be determined.

46

Ambiguity (T4)

Where there are several alternative chunks on which a section of code may be de-
pendent. T4 has value 0 when no alternatives exist, otherwise the value is a3, an

empirical coefficient to be determined.

Spatial Distance Ts .

This metric is expressed as
TS - b'_)dS

where b, is an empirical constant, and dS represents the distance between two

chunks for which there is a dependency.

Level of Cueing (T¢)

The name of a procedure is easy to find in the declaration, but may be obscured at

the site of a call. The metric is expressed as
TC = a4B

where B is 1 if there are obscure references, 0 otherwise.

Dependency Familiarity (TF)

Similar to chunk familiarity, the multiplicative factor is defined as
Tri = Tjinn 7

where f is the review constant (2/3).

3.11.3 Discussion

Henderson-Sellers’ metrics relie heavily on empirically derived constants, vet there
is no guarantee that the values that would make the metrics meaningful are in fact

constants.
He makes frequent use of composition in computing metrics. For instance R¢, the

type of enclosing control structure is a sum of the complexities of chunks multiplied

47

by probabilities. Evidently empirical testing is needed to determine if the metric is
meaningful when two different programs have the same value for this metric.

A lot of testing is needed to support the value of the proposed metrics.

3.12 Conclusion

'

As none of Henderson-Sellers metrics have been tested, it is difficult to draw con-
clusions about their accuracy in predicting human performance. However, they do
provide insight into the kinds of factors that need to be considered. Combining mea-
surements also leads to inaccuracy since no single measure is completely reliable,
weakening the potential value of compound metrics and making them more difficult
to validate.

Complexity metrics are useful when they predict the fault rate of a program,
and guide us to the changes that improve the reliability of software. Complexity
measures such as McCabe’s cyclomatic complexity and Halstead’s effort, show a high
correlation with program size and are therefore weak indicators of complexity[33].

The science of software metrics is still immature. The goal of metrics is to es-
timate human performance, yet human performance can vary from day to day, not
to mention from one individual to another. Nevertheless, organizations applying a
metrics program have reaped considerable benefits in terms of improved product and
productivity[16].

If one is to estimate human performance, then one should restrict ones estimations
to humans whose performance is known so that our estimations can be calibrated
accordingly. In organizations a given set of experienced programmers will perform in
a more predictable way since they will have similar kinds of knowledge and experience.

As far as specifving how to implement cognitive complexity measures, there is
little that is well defined. While it may be difficult to predict how long it would
take an individual to perform a cognitive task, it is feasible to identify passages in a
specification which are likely to be hard to understand, and are therefore candidates

for simplification.

48

Chapter 4

s

Analysis: Comprehension

Constrained Software Engineering

Software development is a thought intensive activity, and the products of software
development include many documents which must then be understood. If their under-
standing can be improved by respecting human performance limitations, then many
benefits can be realised. Linking research in comprehension performance to software
engineering is an opportunity that should not be missed, therefore we will develop
rules for developing software that respect the limits of human comprehension.
Software engineering methodology has evolved according to the experience of soft-
ware engineers. When a different method has been found to work well in one project,
it has been tried by others seeking to improve their productivity. A trend has been
that methods which have gained acceptance have improved certain aspects of software
comprehensibility which made it easier to create larger and more complex software
systems. We will now re-examine the current understanding of human comprehension

and see how software development is vulnerable to human limitations.

4.1 Understanding the Comprehension Process

The first limiter of comprehension is short term memory (STM). Short term memory
is estimated as being 7 digits or 5 words for about 30 seconds, on average. It is

estimated that a human being can maintain 4 chunks in STM[14].

49

4.1.1 Limiting Errors Due to Statement Size

With such limitations, one would expect that processes involving an increasing num-
ber of words or chunks may result in an increasing number of errors on the part of
human subjects. This was in fact demonstrated in a study of problem solving by
Anderson et. al.[2]. Their study found that arithmetic problems with more digits
produced more errors in the responses of the subjects, and these errors increased
at a greater than linear rate with respect to the number of digits. This suggests a
specification rule:

1) PROGRAM STATEMENTS SHOULD BE AS SIMPLE AS POSSIBLE.

When memory was more scarce, programmers might avoid the declaration of a
variable and write statements that would fill a line. Such programs are difficult
to decipher. Correctness has a strong association with clarity, therefore statement

simplicity is highly desirable when time is short.

4.1.2 Comprehension Affected by Size of Block of Text

A different measure of memory called reading span is measured by putting subjects
to read a series of sentences and remember something, usually a word, from each
sentence. A study by Just and Carpenter found that individuals vary in performance
from 2 to 5.5 sentences[24]. This type of memory was not found to correlate with
the subject’s ability to remember a list of unrelated digits or words. They found that
when STM is loaded with something the subject must remember while performing a
comprehension task, comprehension performance was degraded. This suggests that
even modestly large specifications can be difficult to understand when the size reaches
a subject specific threshold. This suggests a second specification rule:

2) KEEP GROUPS OF STATEMENTS SMALL.

Occasional comments facilitate chunking and reduce the effect of size. This rule

also motivates modularization.

4.1.3 Ambiguity Affects Comprehension

Just and Carpenter also found that when an ambiguous word occurs at the end of a
sentence, better comprehenders ignored it while poor comprehenders would retain it

in memory. It was also found that an ambiguous reference in the text would cause

50

better comprehenders to slow down and arrive at the correct conclusion, while poorer
comprehenders would not be slowed down and would be more likely to arrive at an
incorrect conclusion. This suggests a third specification rule:

3) LIMIT THE SCOPE OF NECESSARY AMBIGUITY, AND AVOID UNNECESSARY
AMBIGUITY.

Compilers warn the programmer of unused variables and unreachable code. These
represent a form of ambiguity it is preferable to avoid. A programmer may search
for the use of a variable from the point of declaration. If the variable use is not
immediate, one may consider that code as having undesirable ambiguity. When code

that accomplishes different tasks is mixed, conceptual ambiguity can result.

4.1.4 Complexity Magnifies Differences in Comprehension

Skills

Differences in comprehension performance were found to be most pronounced when
reading difficult or complex portions of text. This precipitates the fourth rule:

4) AVOID UNNECESSARY COMPLEXITY.

Necessary complexity is determined by the domain. When computers were slower
and had little memory, programmers were often preoccupied with making programs
do as much as possible in the least space. Hence "obfuscation” became a popular

term.

4.1.5 Encapsulate to Improve Simplicity

When two related sentences are separated by unrelated sentences, the text takes
longer to read than when all the text is related. This suggests a fifth rule:

5) DO NOT MIX UNRELATED SPECIFICATIONS IN THE SAME BLOCK.

This is one motivator for modularization. For instance, we do not need to know
all the low level details of displaying text on the screen, and if we showed them, the

intent of the program segment would be obscured in detail.

4.1.6 Optimize Value of Expertise Through Simplicity

Studies, especially by K. A. Ericsson, into how experts use memory found that

with experience, experts develop domain-specific retrieval structures which work like

51

STM][14]. This he refers to as long-term working memory (LT-WM). LT-WM can pro-
vide a significant difference in performance between experts and novices, for instance
within an experts domain, problem solving occurs at the speed of text comprehension,
about ten times faster than problem solving in an unfamiliar domain. It is estimated
that about ten years of experience is required to achieve expert performance. Since
an important part of the domain of software development is the paradigm that one
works with, a sixth rule is derived:

6) USE A GENERAL PARADIGM WHERE PATTERNS IN THE DOMAIN OF APPLI-
CATION CAN BE REPRESENTED.

The use of design patterns as suggested by Gamma et. al. [18] and Pree [35]
demonstrate the value of using familiar patterns. Using an abstraction paradigm that
encourages the repetition of patterns such as object orientation, entity diagrams, or

data flow diagrams, promotes the portability of expertise from one domain to another.

4.1.7 Documentation Should be Adequately Detailed

Such large differences between expert and non-expert performance, and the fact that
the higher performance levels are highly domain-specific, can have a significant impact
on software development. For instance, when an expert writes a text which lacks
background information, other experts will understand it completely, but non-experts
will not. This suggests the seventh rule:

7) INCLUDE NECESSARY BACKGROUND INFORMATION IN THE DOCUMENTATION.

Determining what is necessary and what is superfluous is probably domain specific.
All users of the documentation should participate in setting specification standards

since in many cases, one user does not know what the other is doing.

4.1.8 Documentation Should Include Expert Level Sum-
mary

Tests involving high-coherence text, or text with supporting background, and low-
coherence text, or text lacking supporting background, with high-knowledge and low-
knowledge readers found that low knowledge readers fare better with high-coherence
text, whereas high-knowledge readers fared better in some activities with high-coherence

text, and fared better in other activities such as problem solving with low-coherence

[)]
o

text[27]. This leads to the eighth rule:
8) PROVIDE BOTH NOVICE-LEVEL AND EXPERT-LEVEL DOCUMENTATION.
When documentation is written an expert for himse;lf, a novice will likely be frus-
trated by the lack of detail. Conversely, when a novice has made the documentation,
it may include details that are only useful during the early stages of learning the
application. Hypertext provides the means of having more than one level of detail in

the same document, and may be a solution.

4.1.9 Applications Should be Domain Oriented

Altmann’s study of programmer behaviour found that the programmer’s understand-
ing of the program is organized around domain knowledge[l]. This leads to the ninth
rule:

9) ORGANIZE THE PROGRAM AND ITS DOCUMENTATION ACCORDING TO THE
DOMAIN OF APPLICATION.

Object orientation tends to organize the program around concepts in the domain
of application. This enables the programmer to plan the program according to the
domain, and to quickly find the code that pertains to a part of the domain of appli-

cation.

4.1.10 Variable Tracing is the Main Comprehension Activ-
ity

A study at George Mason University of software comprehension processes found that
programmers made frequent use of variable tracing to construct a model of how a
program works[6]. This motivates the tenth rule:

10) MINIMIZE THE TRACING DISTANCE OF VARIABLES (E. G. KEEP DECLARA-
TION AND USES CLOSE TOGETHER).

This rule motivates encapsulation. Encapsulation keeps related data and functions
together and limits the tracing required to understand the program segment. This
also enforces the principle of not using global variables which represent a worst-case

tracing scenario.

4.1.11 Function use Source of Comprehension Difficulty

Just and Carpenter found that when a single concept is associated with two different
roles simultaneously, that reader had difficulty in comprehending the text. Functions
that take arguments and return values are performing two roles simultaneously. If
in addition, the function has side effects, then three roles are associated with the
function. and the likelihood of ertor is increased. This motivated the next two rules:

11) AVOID WRITING FUNCTIONS WITH SIDE EFFECTS.

When a function call results side effects such as the hidden change of the value
of a variable, a programmer unaware of this dependency is likely to make an error
before they discover it.

12) LIMIT USE OF FUNCTIONS.

For example

is better than

a = add(b,c)

Of course, function use is a part of the programmers toolkit, so they must be
familiar with it. Function usage can also improve clarity in cases where a code segment
would otherwise become large and complicated. They also improve conciseness by
providing a means to avoid needless repetition. Nevertheless, one can go overboard
with function use. Writing short single-use functions at every opportunity will result
in a lot of programmer tracing and increase the time to understand a program, and

increase the risk of misunderstanding.

4.1.12 Conclusion

It is clear from these derived rules that comprehension capacity is a significant pa-

rameter in the success of software specification practises. There exists a substantial

o4

amount of research in comprehension which can aid in evaluating and choosing new
and existing software specification languages. Most of all, it helps to understand how
there can be so many convincing differing opinions about software methodology when
one realizes that experts can be much more efficient in their domain of expertise (e.g.
using a particular methodology).

Here is a summary of the derived rules of software development:

1) Program statements should be as simple as possible.

2) Keep groups of statements small.

3) Limit the scope of necessary ambiguity, and avoid unnecessary ambiguity.

4) Avoid unnecessary complexity.

5) Do not mix unrelated specifications in the same block.

6) Use a general paradigm where patterns in the domain of application can be
represented.

7) Include necessary background information in the documentation.

8) Provide both novice-level and expert-level documentation.

9) Organize the program and its documentation according to the domain of
application.

10) Minimize the tracing distance of variables (e. g. keep declaration and
uses close together).

11) Avoid writing functions with side effects.

12) Limit use of functions.

4.2 Visual Representation of Programs

An experimental investigation of the value of flowcharting techniques at Indiana Uni-
versity published in 1977 concluded that detailed flowcharts are not useful in pro-
gram composition, comprehension, debugging, or modification [39]. Consequently,
flowcharting was ignored by the software engineering community{13].

Scanlan, motivated by his teaching experience with flowcharts, performed an ex-
periment to determine if flowcharts assist in the comprehension of complex algorithms([37].

He found that significantly less time was required to understand algorithms as flowcharts

than as pseudocode, and that students understood the algorithms more correctly. He
also found that some students comprehended simple algorithms faster with pseu-
docode, but their number was reduced to zero as the algorithm increased in complex-
ity.

Scanlan’s study considered only comprehension and not development. Neverthe-
less. his results are important ip that he measured the time subjects spent using
a flowchart or pseudocode in understanding a program. No such measurement was
made in the University of Indiana study. Scanlan identifies other weaknesses in their
experiment.

This result would suggest that the flowchart should be a standard part of program
documentation, to facilitate comprehension.

The success of graphical user interfaces demonstrates that human beings are more
efficient when a visual rather than a textual representation is used. Various studies
have found that visual or graphical representations of programming languages make
abstractions easier to understand [9]. Representing specifications graphically also
naturally limits the complexity of the structure in question, since very complex things
are messy when represented visually. Complexity in textual specifications is not

immediately identified since one must read the specification to realize its complexity.

4.3 Comprehension and Software Metrics

Software metrics such as size/time are used in practise to evaluate human perfor-
mance. The process of software development necessarily involves the comprehension
process.

From the research of expert memory processes, it is apparent that individuals will
develop an expertise particular to their experience, will perform an order of magnitude
better in tasks that fall in their domain, and will perform in an average way in other
areas. This helps to explain why measures such as program-size/time will vary a lot,
why metrics programs must be within company, and why quantitative results from
one study are not generally portable to other software development environments.

Since programmers think of applications in terms of the application domain, a
part of their expertise will be application domain specific. Therefore, placing these

otherwise productive programmers into projects outside their domain will not result

immediately in the same levels of productivity.

Most errors in software other than syntactical occur due to a lack of comprehension
of the domain, or the application environment. Therefore one would expect that
metrics which are good indicators of faults are also good indicators of software that
is hard to understand. It is known that large specifications are harder to understand
than small specifications, so size metrics will indicate fault rate.

More interesting are errors due to cognitive complexity. Defining cognitive com-
plexity completely is difficult. Some complexity will be due to semantic issues in the
domain, and the complexity may be due to the programmer’s ignorance of the do-
main. However, some aspects of complexity should be predictable. Another challenge
in accurately measuring the effect of complexity, is that a complex code sequence may
be embedded in a large program, and its influence may be difficult to identify.

Adding different metrics together, given the nature of human performance vari-
ation, is unlikely to produce the desired effect except in special circumstances. For
instance, when de Champeaux adds states and transitions in a transition diagram as
part of an effort estimation metric, the implicit assumption is that a transition and
a state require the same amount of effort. There is also the assumption that larger
transition diagrams require a linear increase in effort. There is the additional assump-
tion that two transition diagrams with different number of states and transitions but
the same total number of states and transitions require the same effort. Each of
these assumptions must be carefully verified with the individuals whose performance
is being measured to have the necessary confidence to add these values together.

The accuracy of complexity metrics is related to the granularity of the measure-
ments made. If one would like to identify certain effects of complexity such as time
spent understanding complex code sequences, then one must measure the time spent
on each program component. This may be an important determinant as to the set of

metrics that an organization gathers.

4.4 Development Tools

Software development tools are generally constructed using the latest graphical in-

terface techniques. A tool designer can use the understanding of human thought

w
=~

processes to reduce the cognitive load associated with the use of the tool and search-
ing through the specification, so that the developer has more freedom of thought to
understand what he is doing and thinks less about how he is doing it. The executable
icon is one example of such an application.

In graphical user interface design, the user’s cognitive limitations are respected
to ensure that the system will be easy to use. Respecting the developer’s cognitive
limitations in choosing understandability standards for system specifications, should
result in specifications that are as "easy to use” as current knowledge of human
limitations allow.

The most meaningful set of metrics will vary depending on the individuals and
applications in question. Style can play a significant role in the complexity of software.
Measures such as Fan-in and Fan-out of Yourdon and Constantine help identify poorly
designed modules. [23]

Paradigm shifts during and in between the phases of software development have
been observed to be a source of error and complexity. Ideally, a single methodology
would encompass the entire development lifecycle, simplifying the job of the software
developer. If this methodology were formally validatable, that would be helpful. If,
in addition the specifications are executable and the representations are visual then
the methodology is nearly ideal. A product that nearly achieves this ideal in addition
to concurrency is a product called ROOM (Real-Time Object-Oriented Modelling)
[40].

4.5 Other Implications for Software Engineering

Software specification languages, including programming languages, can be designed
and/or chosen according to their suitability to the task and their facility of com-
prehension. Since language acquisition ability is a factor of memory capacity, the
simplicity of the languages used is important. The simplicity refers not only to the
language but also to the specifications created with the language.

When functions and types are defined, the language is in fact extended. Therefore
abstraction competes with language complexity to reduce overall complexity.

Perhaps a solution to the problems of hierarchies reported earlier that would yield

reuse benefits without a great penalty would be to use deep hierarchies only in the

portion of the application, such as the interface, where reuse is intense, and broad or
no hierarchies elsewhere.
In prototype-based object-oriented languages there are no classes. Objects are

created by cloning with no parental ties. Reuse is accomplished by delegation.[20]

4.6 Cognitive Issues in Programmer Productiv-
ity

When programmers are in the process of understanding an application, they are

processing information and learning how the application is written. If we want to

capture a measure of a programmer’s cognitive behaviour, we need a model of it.

From earlier discussions, it has been observed that the quantity of information
that a human being can retain at a given moment varies between individuals. Mem-
ory limitation has been shown to affect an individual’s ability to learn language. A
program, by defining new variables and functions, is extending the programming lan-
guage and is therefore new to the programmer. A measure which reflects a program-
mer’s performance would be related to the short-term memory demands associated
with understanding an application.

There are a few areas where the complexity that relates to programmer com-
prehension can be observed: the domain complexity, the problem complexity, the
complexity of the language of implementation, and the complexity of the implemen-
tation. Programmer performance is then related to a number of independent factors
such as their own memory capacity, domain knowledge, familiarity with the language
of implementation, related programming experience, and familiarity with the imple-
mentation.

Programmer experience is one influence that changes with time. Also, the kind of
experience may play a strong role in how efficient a particular programmer is with a
particular problem. For instance a network operating system programmer may have
trouble with graphical user interfaces, or a business system programmer may have
trouble with flight simulator programming. The effects can be more subtle within a
particular domain.

It would be useful to have complexity metrics for not only the implementation,

but also for the requirements and for the design. This would help in localizing the

59

phase.

60

Chapter 5
Analysis: Designing Metrics

A widely used framework for the design of metrics is the goal/question/metric (GQM)
paradigm of Basili and Rombach[22]. The first step is to identify the goal, such as to
identify error-prone code. Next, appropriate questions must be chosen such as how
to limit the likelihood of error in code. From these questions, metrics are defined.

In this case, the goal is to identify error prone code through metrics. We expect
that code segments which pose a comprehension challenge will result in a greater error
rate. Therefore metrics whose determination is closely related to factors involved in
the comprehension process would hopefully predict error.

University examination results represent data of human comprehension perfor-

mance. We will use them to identify a metric that predicts human error.

5.1 Comprehension Metrics

Boehm-Davis observed that programmers understand a program by tracing references
[6]. One metric would involve counting all the traceable references, that is, the number
of occurrences of names defined in the scope. This would include variable names,
constant names, function names, procedure names, and class names. Another could
involve only the names that are associated with a data type, that is, the number of
occurrences of variables, constants, and function names where the function returns a
value.

Of possible interest is the density of defined names. With a greater density of

defined names, chunking would be more difficult since chunks would tend to contain

61

more traceable terms.

For data, we have the results of final examinations on a question by question basis.
Results that could be meaningful would include a close association between a high
density of traceable terms and a low mean score. Another relationship of interest
would be a close association between a large standard deviation and an increasing
density of traceable terms. Just,and Carpenter observed that individual differences
were most pronounced when the subjects read difficult or complex passages. There-
fore, more difficult questions should result in a wider range of marks and a larger
standard deviation. If a metric follows the standard deviation then it should be an

indicator of complexity.

5.2 An Empirical Study

It would be useful if one could predict code segments which pose a comprehension
challenge. This would make it possible to improve the maintainability of code where
complex code can be identified and simplified. It could also speed up debugging efforts
by finding code segments where errors are more likely. In addition, it may help in
the evaluation of the maintainability of legacy software by predicting the likelihood
of error, and therefore the debugging time.

In a university we have access to final examinations and the results, and these
results constitute measures of human performance. Here we will look at how exami-
nation results correspond to various metrics of the solutions.

As we have seen, studies of comprehension processes have shown that human
beings can become better at specific activities, such as digit memorization, with
practise[14]. Consequently, differences in the material that students are exposed to is
likely to create differences in the way classes of students perform. Also, the similarity
of the exam questions to class material varies from class to class and year to year.

The hoped for result of this metrics study is to identify one or more metrics that
reliably predict error rate. The predictive property that is required in this case is a

metric which increases when scores go down.

5.2.1 The Experiment

The course in question is the first programming course in the undergraduate cur-
riculum. The data comes from two sections from each of three semesters. The first
semester used a different book and the course took place during a compressed sum-
mer term. The two sections of the last semester were different in that one consisted
entirely of graduate students se€king to be admitted to a graduate degree program
through their performance in the course, the other section consisted of undergraduate
students who had a full course load. The middle two sections were mixed graduate
and undergraduate students.

The first of the three exams was judged to be the most difficult. The second was
much easier, and the third was moderately difficult. The grades of students who did
not pass the final were omitted from analysis. Finals were marked one question per
marker, as usual, at a time to minimize the effect of marking style differences. The
decision to use the exams for this purpose was made after the exams were corrected
so neither students nor markers were aware of the experiment.

Due to the textbook, the students who wrote the first exam had a strong prepa-
ration in class design and a weak preparation in function design. Students who wrote
the second and third exams had a strong preparation in function design and a weak
preparation in class design. Teachers had freedom as to how material was covered,
consequently different sections received slightly different emphasis on various parts of
the material. The exams reflect the course content. The mean and standard deviation
are computed. .

Since it is the metrics of the solutions which are computed, the influence of style
differences cannot be measured. The students are not restricted as to the time they
spend on any given question, so the effect of program size is diminished. Thus program
complexity factors independent of size should be the dominating theme of students’

€ITOorsS.

5.2.2 Computed Metrics

Since the questions are small, many metrics, such as fan-in and fan-out do not apply.
Size metrics such as LOC, and Halstead metrics effort E, difficulty D, volume V and
vocabulary are computed and can be found in the appendix.

Several metrics which capture different aspects of computer programs were tested.

63

EXAM: i

QUESTION LOC E D v ID MEAN1 STDDEV1 MEAN2 STDDEV2
lab 36 30980 .038 150 1.00 .78 .18 .79 .16
2a 18 21027 .067 98 1.61 .64 .16 .68 .26
2bc 17 7394 .114 72 1.53 .51 .34 .48 .27
3abc 45 44400 .151 207 .26 .71 .24 .62 .24
4a 10 2034 .095 34 1.00 .88 .14 .83 .21
4b 17 5859 .121 69 1.29 .86 .16 .79 .17
5ab 36 16458 .031 113 1.08 .70 .16 .60 .17

Table 1: Scores and metrics of first exam.

Initially, variable density was tested. The results were interesting but not inspiring.
It occurred to me that other identifiers such as function and class names would also
require tracing. A new metric, identifier density (ID), the number of identifiers di-
vided by LOC, was tested and found to behave in a more consistent way, frequently
predicting when code is easy or hard to understand. This represents the discovery of a
cognitive complexity metric through both psychological theory and empirical testing.

Several metrics were tested

5.2.3 Results
First Data Set

The first exam was held during the summer, when the term is compressed from 13 to 7
weeks. The range of experience of the students was from undergraduates with no pro-
gramming background to people with graduate degrees in other disciplines and some
programming background. The course emphasized class design over fundamentals.
See table 1.

The tables contain the metrics LOC, E, D, V, and ID as well as the mean and
standard deviation for each of the two sections that wrote the exam.

Questions 4a and 4b which have contiguous solutions have means and standard

deviations which behave as expected with the metrics LOC and DTN. Namely, higher

64

EXAM: 2

QUESTION LOC E D V' ID MEAN1 STDDEV1 MEAN2 STDDEV2
la 27 13534 .058 133 1.48 .89 .20 .91 .22
1b 17 7661 .096 7 .84 .86 .26 .95 .17
2 12 7672 .065 63 1.25 .50 .35 .38 .27
3 23 14332 .078 89 1.35 .87 .13 .89 .21
4 20 4531 .060 57 .80 .87 .12 .95 .12
5abc 26 27792 .042 125 1.81 .80 .16 .83 .17

Table 2: Scores and metrics of second exam.

values of the metrics correspond with lower means and higher standard deviations.

Second Data Set

The students for these sections were a mix of undergraduate Computer Science and
students with a degree in another subject. The duration of the course was the normal
13 weeks of lecture. A new text was used which emphasized fundamentals more than
program design.

The exam was perceived as easy. The results of the second question should be
ignored since the correct answer was beyond the scope of the course and the marking
did not reflect the students’ abilities. See table 2.

Questions 1b, 3 and 4 have a single block of code for their solutions. It is interesting
to note that the smallest values of ID occur with the highest mean (4), and the highest

values correspond with the lowest score (5abc).

Third Data Set

For this exam, the first class consisted entirely of undergraduate students and the
second entirely of students with a Bachelors or higher. Students in the second group
were competing for a limited number of graduate diploma positions. The exam was
of moderate difficulty. See table 3.

Here again, the highest scores for ID correspond with the lowest mean (3b) and

the lowest scores for ID correspond with the highest mean (1c). Questions 1(a), 1(c),

65

EXAM: 3

QUESTION LOC E D \'f ID MEAN1 STDDEV1 MEAN2 STDDEV2
la 8 2688 .130 32 1.50 .82 .38 .75 .38
ib 29 9257 .042 119 .76 .82 .24 .84 .22
ic 26 9057 .040 98 .42 .97 .08 .90 .28
1d 9 3879 .135 72 1.44 .85 .14 .84 .15
2a 30 29700 .032 120 1.37 .93 .15 .83 .28
2b 9 2059 .103 36 1.22 .81 .37 .82 .33
3a 12 15388 .117 88 2.50 .83 .24 .83 .23
3b 11 9206 .111 74 2.64 .78 .23 .64 .27
3c 9 8847 .079 62 2.11 .80 .21 .67 .33
4 35 23471 .044 165 1.34 .90 .12 .87 .19
5 30 26021 .025 127 1.47 .85 .17 .65 .26

Table 3: Scores and metrics of third exam.

2(b). 3(a) .3(b) and 3(c) have contiguous code.

Analyzing the Data

LOC was not found to predict error in general, as would be expected f{or such small(10-
30 line) programs. The Halstead metrics proved erratic as well, the most promising
being E which showed a Pearson correlation in the -.3 to -.5 range on three of the six
exams.

ID is most useful when applied to individual methods, as the density of tracable
names is most meaningful when considering a particular scope. The metrics correlated
well with the third exam with 11 questions. giving -.6279 with p = .039 for the first
section and -.6233 with p=.040 for the second. For other exams, the correlations were
-.6091 with p=.147 for exam 1. section 1; -.4146 with p=.355 for exam I, section 2;

-.7805 with p=.119 for exam 2, section l; and -.9358 with p=.019 for exam 2, section

[SV]
.

The first exam involved many solutions without contiguous code. This may ex-

plain in part why the metric was not as accurate in predicting error.

66

void perfect(int p)
{
int sum=0,n=1;
while (n <= p/2)
{
if ((p % n) ==0)
sum += n;
n++;

b

}
if (sum == p)

cout << "Input number is perfect" << endl;
else

cout << "Input number is not perfect" << endl;

Figure 1: Solution of question 4, exam 2.

Understanding the Results

It may be instructive to look at programs which rated easy and those which rated
difficult. We will look at an easy solution and a difficult solution.

The solution in figure 1 comes from the second exam, and solves question 4.

The solution requires reasoning with three variables, sum, n, and p. It is not a
difficult solution. There are 16 defined names over 20 lines of code.

The solution in figure 2 comes from question 3(b) of the third exam, and was the
most difficult of that exam.

This solution has a nested loop and involves copying data elements from one array
location to another. It is obviously more complex than the easy solution. There are

29 defined names over 11 lines of code.

5.2.4 Conclusion

ID, the density of tracable names is interesting since it is designed based on the
study of how programmers think, it often predicts good or poor performance in final

examinations, and it is relatively easy to compute. If one is to makea recommendation

67

void Transpose(int **X, int n)
{
int i,j,t;
for(i=0;i<(n-1) ;i++)
for(j=(i+1);j<m;j++)
{
t=X[i] [j]1;
X[i][j1=Xx[j1[i];
X[j10i)=¢;
}

Figure 2: Solution of question 3(b), exam 3.

as to how this metric can be used, one can notice that most solutions with a ID greater
than 1.50 resulted in averages lower than 0.80 and relatively high standard deviations
suggesting they are of higher complexity.

Style was not an issue in this experiment, though it can easily be significant in
software comprehension. Further testing is needed to establish the utility of the metric
in industry. It may prove to be a good indicator of fault rate and debugging time.

The results of the experiment should be of interest to psychologists researching
comprehension. They may wish to test this metric in general text comprehension ex-
periments. Such a study could yield information on how to structure text to minimise
error and improve learning.

This metric is supported by cognitive theory and empirical study. As such it has
the priviledge of have a theoretical basis. It may prove to be at least as valuable and
less domain sensitive than metrics such as LOC, which would give it credibility. It
may also be possible to use this metric without extensive data gathering since it is

sensitive to differences in domain and style.

68

Chapter 6
Future Directions

Experiments with the kind of measurement of time and observation of what the sub-
ject is viewing as employed by Boehm-Davis [6] and Scanlan [37] could probably yield
more interesting and accurate results than those possible with final examinations.

Simulation of thought processes could predict with greater precision how and
where errors occur, could be used to identify code which is likely to produce error,
and help programmers understand unfamiliar code by identifying comprehension re-
quirements such as global declarations.

It would be very useful to have a virtual programmer which could report informa-
tion such as the knowledge required to be memorized in order to understand a given
module. This would make it possible to set standards that would control the human
memory requirements associated with a set of modules, and thereby improve human

performance.

6.1 Cognitive Modelling

Addressing the issue of cognitive complexity will be greatly improved when thought
processes are modelled in software, so that one can test models of thinking by imple-
menting them and running them on programs for which empirical data exists. In this
way, refinement as to the description and identification of complexity in software will
move forward with more tangible points of reference, namely, the cognitive models.
This sets the stage for what might be called the thought-space or code-space that

a programmer can work with. On the one hand, the capacity of short term memory

69

(STM) is a limiter. On another, the language skill is a factor. The language skill is a
function of memory capacity, previous knowledge, and time spent working with the
language. The program a programmer can understand is a factor of variables such as
the programmer’s STM capacity, his related knowledge, his language skills, and the
time available for the task.

Domain knowledge is a factor, as to the complexity of a program in the sense that
a more complex problem involving more domain knowledge results in a more complex
program. Ideally, a program’s complexity at the highest level should not exceed the
complexity of the problem, and should mirror the problem as closely as possible. This
allows the programmer to think about the program in terms of the domain without
paradigm shifts.

The time available is a factor in the same way it causes a variation in performance
in timed exams. If the exams had no time limit, more students would answer more
questions correctly. In a practical situation, the same individuals are likely to produce
more errors when timeis constrained. Reducing the complexity of the implementation
can thus reduce the error rate when time is constrained.

With so many independent factors affecting the performance of programmers, if
measures are to be at all reliable, then some variables must be controlled. In practical
situations many factors will be constant. The set of implementations to be tested can
be restricted to the same domain, programming language, and programmers. The
remaining variables are then the problem complexity and the implementation com-
plexity. Ideally, one should have separate complexity measures for the domain aspects
and the implementation aspects. Implementation complexity which is independent
of domain complexity may be possible to reduce, while domain complexity may be
fixed. Additionally, knowledge of the domain complexity can be used to choose people
to work on a project. Some programmers may be particularly familiar with certain
important domain aspects. while others may be familiar with certain important im-
plementation details. Such factors can make a big difference when choosing team
members to work on a given project, and can influence performance metrics.

Many metrics measure a combination of domain complexity and implementation
complexity. Since these may not be equally related in all applications, the relationship

of such measures to human performance is less reliable.

6.2 Directions in Computer Languages

Languages that facilitate more expression with respect to software architecture are
evolving. The language Genoa studied at Stanford involves the use of situation theory
to improve the flexibility of high-level components. Finding a balance between sim-
plicity and expressiveness that minimizes complexity is easier when we understand

more about simplicity and complexity.

6.3 Directions in Cognitive Complexity Metrics

Studies in programmer behavior which observe tracing activities and record the time
spent on each name may reveal trends as to the relative importance of function names
versus variable names and so on. This could result in more precise comprehension
metrics.

Inter module tracing could be linked to intermodule dependencies. Measurement
of this effect could help in defining intermodule metrics. If the usual tracing behavior
is measured at the same time and a sufficient variety of programmers are tested, then
we may be able to define intermodule metrics which can be added to metrics such as
ID defines in this thesis.

Domain complexity metrics could also be highly useful, as well as structuring

techniques such as object orientation to simplify domain knowledge.

Bibliography

[1] Erik M. Altmann, Modeling Episodic Indexing of External Information, Cogni-

tive Science, (in press), Nov. 1997.

[2] John R. Anderson, Lynne M. Reder, and Christian Lebiere, Working Memory:

Activation Limitations on Retrieval, Cognitive Psychology Vol. 30, 221-256, 1996.

[3] Faheim Bacchus, Qiang Yang, Downward refinement and the efficiency of hierar-

chical problem solving, Artificial Intelligence, Elsevier Science, 1994, pp. 43-100.

[4] James M. Bieman, Metric Development for Object-Oriented Software, Software

Measurement, International Thompson Computer Press, 1996.

[5] Deborah A. Boehm-Davis, ”Software Comprehension”, Handbook of Human-

Computer Interaction, Elsevier Science Publishers B. V., 1988, pp.107-121.

[6] Deborah A. Boehm-Davis, Jean E. Fox, Brian H. Phillips, Techniques for Explor-
ing Program Comprehension, Empirical Studies of Programmers: Sixth Work-

shop, pp3-37, Ablex Publishing, 1996.

[7] L. Briand, C. Bunse, J. Daly, C. Differding, An Experimental Comparison of the
Maintainability of Object-Oriented and Structured Design Documents, [EEE

Conference on Software Maintenenance, 1997, pp. 130-138.

[8] S. N. Cant, D. R. Jeffrey and B. Henderson-Sellers, A Conceptual Model of
Cognitive Complexity of Elements of the Programming Process, Information

and Software Technology, 1995, pp. 351-362.
[9] Dimitris N. Chorafas, Visual Programming Technology, McGraw-Hill, 1997.

[10] K. Cox, D. Walker, User Interface Design, Prentice Hall, 1993.

~I
N

[11] John Stephen Davis and Richard J. LeBlanc. A Study of the Applicability of

Complexity Measures, IEEE Transactions on Software Engineering, Vol. 14, No.

9, 1988.

[12] Dennis de Champeaux, Object-Oriented Development Process and Metrics,

Prentice Hall, 1997.

K4

[13] Christof Ebert, Ivan Morschel, Metrics for Quality Analysis and Improvement of
Object-Oriented Software, Information and Software Technology, vol. 39, pp497-
509, 1997.

[14] K. Anders Ericsson and Walter Kintsch, Long-Term Working Memory, Psycho-

logical Review, 1995, Vol 102, No. 2, pp. 211-245.

[15] Norman Fenton and Shari Lawrence Pfleeger, Science and Substance: a Chal-

lenge to Software Engineers, IEEE Software, July 1994, pp. 86-95.

[16] Norman Fenton, Shari Lawrence Pfleeger, Software Metrics: A Rigorous and

Practical Approach, International Thomson Computer Press, 1996.
[17] Wilbert O. Galitz,User-Interface Screen Design, QED Publishing Group,1993.

[18] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns:

elements of reusable object oriented software, Addison-Wesley, 1994.

[19] Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, Fundaamentals of Software En-

gineering, Prentice Hall, 1991.

[20] Bob Hallman, Are Classes Necessary?, Journal of Object-Oriented Programming,

September 1997, pp. 16-21.

[21] Maurice H. Halstead, Elements of Software Science, Elsevier North-Holland, Inc.,
1977.

[22] Brian Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity,

Prentice Hall, 1996.

[23] P. Hsia, A. Gupta, C. Kung, J. Peng, S. Liu, A Study on the Effect of Ar-
chitecture on Maintainability of Object-Oriented Systems, IEEE Conference on

Software Maintenenance, 1995, pp.4-11.

73

[24]

23]

[33]

34]

35]

[36]

Marcel Adam Just and Patricia A. Carpenter, A Capacity Theory of Compre-
hension: Individual Differences in Working Memory, Psychological Review, 1992,
Vol. 99, NO. 1, pp. 122-149.

Stephen H. Kan, Metrics and Models in Software Quality Engineering, Addison-

Wesley Longman, Inc. 1995.

x

J. Kim, F. J. Lerch, Towards a Model of Cognitive Process in Logical Design:
Comparing Object-Oriented and Traditional Functional Decomposition Software
Methodologies, CHI "92, 1992.

Walter Kintsch, Comprehension: a paradigm for cognition, Cambridge University

Press, 1998.

B. A. Kitchenham and J. G. Stell, The danger of using axioms in software metrics,
IEE Proceedings - Software Engineering, Vol 144, No. 5-6, October-December
1997.

Thomas S. Kuhn, The Structure of Scientific Revolutions, Chicago: University
of Chicago Press, 1962.

Mark Lorenz, Jeff Kidd, Object Oriented Software Metrics, Prentice Hall, 1994.

Austin Melton, editor, Software Measurement,International Thomson Computer
Press, 1996.

K. H. Moller and D. J. Paulish, Software Metrics: A practitioner’s guide to

improved product development, IEEE Press, 1993.

John D. Musa, Anthony Iannino, Kazuhira Okumoto, Software Reliability: Mea-

surement, Prediction, Application, McGraw Hill, 1987.

P. R. Newsted, The Principle of Chunking in Programming and Design: a

Threshold for Acceptable Complexity, University of Calgary, 1977.

Wolfgang Pree, Design Patterns for Object-Oriented Software Development,
Addison-Wesley, 1995.

Stephen K. Reed, Cognition, Brooks/Cole Publishing Company, 1996.

4

[37]

David A. Scanlan, Structured Flowcharts Outperform Pseudocode: An Experi-
mental Comparison, IEEE Software, September 1989, pp. 28-36.

Stephen R. Schach, Software Engineering, Richard D. Irwin, Inc., and Asken

Associates, Inc., 1993, pp. 38-40.

Ben Schneiderman, Richard Mayer, Don McKay, and Peter Heller, Experimental
Investigations of the Utility of Detailed Flowcharts in Programming, Communi-
cations of the ACM, June 1977, Vol 20, pp. 373-381.

Bran Selic, Garth Gullekson, and Paul T. Ward, Real-Time Object-Oriented
Modeling, John Wiley & Sons, 1994.

Mary Shaw, David Garlan, Software Architecture: Perspectives on an Emerging
Discipline, Prentice-Hall, 1996.

David Steier, Automating Algorithm Design within a General Architecture for
Intelligence, Automating Software Design, Lowry and McCartney editors, MIT
press, 1991, pp. 577-602.

M. Tambe and P. S. Rosenbloom, The Soar Papers, vol. 2, The Problem of Ex-
pensive Chunks and its Solution by Restricting Expressiveness, The MIT Press,
1993.

Rebecca Wirfs-Brock, Brian Wilkerson and Lauren Wiener, Designing Object-
Oriented Software, Prentice Hall, 1990.

~]
(31}

Appendix A
Examination Questions

First Exam

Question 1. (Arrays and strings.) The declaration of the class Person is shown

below.

class Person {

public:

char *GetName() ; // Returns the person’s name

int VowelsInName() ; // Returns the number of vowels in the name
private:

char name[25];

};

The main program sets up and initializes an array of 20 Persons to represent a group

(the initializing code is not shown):

void main () {
Person group[20];
..... // Code to initialize the group

(a) [10%] Implement the member function int VowelsInName() that counts and
returns the number of vowels in the name of the person. The vowels of English

are 'a’, ’e’, 1', °0’, 'w’, 'A, 'E’, T, '0’, and “U”.

76

(b) [10%] Write a code segment which finds the name with the most vowels in the

group array, and displays it on the screen.

Question 2. (Coding)

(a) [8%] The code below is a partial declaration for a class of matrices.

class Matrix {
public:
Mztrix (int n);
private:
int M[20] [20];
+s;

The constructor creates a matrix of size n X . You can assume that the
argument corresponding to n will never be greater than 20. Write a definition
for the constructor, given that the elements of this class Matrix are as follows.
By default the element M;; of the Matrix M is zero. If the sum of 7 and j is
divisible by 7, then add 1 to the element Af;;. If the sum of ¢ and j is divisible by
j then add 2 to the element M;;. Perform these calculations for all the elements

M;; of the matrix M, where:=0,1,...,n -1 and 7 =0,1,...,n —1.

(b) [8%] What value will p have after the following code has been executed?

int p =0, m =15, n = 7,a=2, b=1;
while (m || n)

{
if (m % a == b)
{
P=Pp+Db;
m -= b;
}

(c) [4%] What does the code in part (b) compute for general values of m and n?

Question 3. (Design and implementation) Design and implement a class for

storing and manipulating dates. A user of the class must be able to:
(a) [6%)] set the value of a date,
(b) [6%] display a date in the format "21 Dec 96", and
(c) [8%] decrement the date by one day.
Use a constant array with the value
{31, 28,31, 30, 31, 30, 31, 31, 30,31, 30, 31}

to store the number of days in each month. Note, however, that February has 29
days in a leap year. The year Y is a leap year if Y is a multiple of 4 but is not a

multiple of 400. For example, 1900 was a leap year but 2000 will not be a leap year.

Question 4. (Coding)

(a) [10%] Write initialization statements and a while statement that have the same

effect as the following statement:

for (j =x; j>=vy; j——) {
cout << x * (j + y) << ’\n’;

(b) [10%] Write a program that uses a for statement to compute the sum

displaystylefracll +

3 4 n!
3

1-2.
+3'3' +‘4-4+...+—

RS

[V

Question 5. (Design and implementation) Design and implement a class called

InventoryItem.

(2)

[10%] For an InventoryItemobject, one should be able to find out the quantity
of the item, buy items (increment the quantity), and sell items (decrement
the quantity). Declare the member functions that enable the user to perform
these actions and then write definitions for them. You should also declare the

necessary data members for the class.

[10%] There is a minimum and maximum quantity for an Inventoryltem
object. When the quantity falls below its minimum, an order is placed to
restore the quantity to the maximum. Add the necessary member data and

member functions to make this possible.

— End of Examination —

Second Exam

Question 1. (Reading code.)

(a) [10%] Write do
C++ program.

#include <i

void f(int
int t =

X = Y;

y=t;
cout <<
cout <<
return;

}

void f(int
if (x >
els

return;

int main()

int 1

int j
int k =
cout <<
£(1,3);
cout <<

<<
£k, j,

wn the output that would be obtained by running the following

ostream.h>

& x, int y) {

X3

"f(int ,int) says x is" << x << endl;

"£(int ,int) says y is" << y << endl;

x, int y, comst int z} {
y) £(y, x-2);
e} f(x, y-2);

{

5;

16

6;

" £(int, int) is called with values" << i << j << endl;

* £(int, int, comnst int) is called with values"
k << j << 1 << endl;

i);

(b) [10%] Write down the output that would be obtained by running the following

C++ program.

#include <jiostream>

int main() { .
int number = 161;
int rem = 0;
int index = 0;
cout << '"the input number is" << number << endl;
if (number % 2 = 1) {
rem = 1;
number = number -1;
}

while (number % 2

0) {
number = number % 2:
index = index + 1;

by

cout << "index is" << index << "multiplier is" << number

<< "aader is" << rem << endl;

Question 2. [20%] (Iteration.) Write a program that uses a while statement

to compute the sum
1 = + L + (-1)" L
2 3 n

such that the value of sum is accurate to three places of decimals.

Continued

Question 3. [20%] (Arrays.) Implement a function int Outlier(double list([10])

that expects an array of positive real numbers, and returns 1 if there is at least one
number in the array that “significantly deviates” from the other numbers in the array.
We say that z; “significantly deviates™ from the set of positive real numbers zo, ..., zo

if the difference between z; and the average of the set is larger than the average itself:

1 2 1 2
%~ g 2% > 1g 2. %
1= 1=

If there is no such number in the set (i.e., all the numbers are between 0 and twice

the average), the function returns 0.

Question 4. [20%] (Program.) A positive integer n is said to be “perfect” if the
sum of its proper divisors equals the number itself. (Proper divisors include 1 but
not the number itself.) For example, 6 is a perfect number, since the proper divisors
of 6 are 1, 2, and 3, furthermore, 6=1+4+2+3.

Write a program that reads a positive integer, and determines if the integer is
perfect. If the input is a perfect number then the program should print out a message
“Input number is perfect”, otherwise it should print out a message “Input number is
not perfect”. You can assume that the input integer is greater than 1 and less than

32500.

Continued

Question 5. [20%)] (Class.) Class Point is designed to represent points on the
plane. A point on the plane is represented by its two coordinates, z and y. The class

declaration is the following:

class Point

{
public: ’

Point (double xi, double yi);
void Rotate(double arc);
friend double Dist(Point pi,Point p2);
double x;
double y;

+;

(a) [4%] Write a definition for the constructor. The constructor initializes the data

members so that z = z¢ and y = yz.

(b) [8%] Write a definition for the friend function double Rotate(double angle).
The function should rotate the point by angle degrees. The coordinates z' and

y’ of the rotated point are given by the following expressions:

' = zcos(angle) + ysin(angle),

y' = —zsin(angle) + y cos(angle).

You can use the library functions double cos(double d) and double sin

(double d) to compute the sine and the cosine of an arc.

(c) [8%] Write a definition for the member function double Dist(Point pl,Point
p2). The function should calculate the distance between two points. The
distance of the two points pi(z1,¥1) and p2(z2,y2) is given by the following

formula:

d(p1,p2) = \/(z1 — 22)2 + (31 — ¥2)%-

You can use the library function double sqrt(double x)tocompute the square

root of a number.

Third Exam

Question 1. (Program Tracing)

(a) [4%] What value will m have after the following code has been executed?

int m = 35, n = 14;
while (m !'= n)
{
if (m > n)
m=m - n;
else

n=n-m;

(b) [4%] What is the output produced by the following program?

#include <iostream.h>
int 1i;

void £Q);

void main(){

cout << i << endl;
i=25;

£0;

+

void £() {

cout << i << endl;
char i;

i="’a’;

cout << i << endl;
cout << ::i << endl;
11 = 3;

{ cout << i << endl;

int 1 = 9;
cout << ::i << endl;
cout << i << endl;
}
cout << 1 << endl;
cout << ::1 << endl; .
cout << i << endl;
::1 = 90;
cout << i << endl;
cout << ::1 << endl;

by

(c) [4%] Give the exact range of values of X for which the following code segment

prints the string Belgian .

int X;
cout << "Enter an integer: " << flush;

cin >> X;

char ch;

if (X <= 300)
if (X < 200)
if (X <= 100)
ch = ’A’;
else
ch = 'B’;
else
ch = ’C’;
else

ch = 'D’;

switch(ch)

case ’'D’:

break;

case 'C’:

break;

case 'B’:

break;

case ’A’:

break;

cout <<

cout <<

coyt <<

cout <<

"Danish' << endl;

"Canadian'" << endl;

"Belgian'' << endl;

"American' << endl;

(d) [8%] Consider the following prototype:

void Msg(int I, double D =

78.9, char C = 'F’, string S = "Hello");

For each function invocation below indicate whether or not it is legal.

0 N O O bW N e

Msg(11, 78.9, 'F’, "Hello™);
Msg(11, 6.5, ’H’, “"Bye");

Msg(6.5, ’H’,

"Bye");

Msg(1i, ’'H’, "Bye");
Msg(11,6.5,’H’);

Msg(11,’H’);
Msg(11,6.5);
Msg(11);

Question 2. (Coding)

(2)

(b)

[12%] The code below is a partial declaration for a class of matrices.

class Matrix {
public:
Matrix (int n); ’
void DisplayMatrix(int n);
private:
int M[20][20];

int n;

The constructor creates a matrix of size n x n. You can assume that the

argument corresponding to n will never be greater than 20.
1. Write a definition for the constructor, given that the elements of an n x n

matrix A are given by

. 7, ifi=j;
.4,'] = N N
¢+ j, otherwise

for:=20,1,...,n—1and y=0,1,...,n — L.

2. Write a definition for the member function DisplayMatrix(), which outputs
the elements of the matrix row by row.

[8%] Design and implement a C++ function int SumofDivisors(int n) that
returns the sum of the divisors of n. If n < 0, the function should return 0.

HINT: For n = 15, the divisors are 1. 3, 5, 15. The function should return 24.

Question 3. (Arrays) An integer array is defined as
A[i][0] = i + 1; A[0](j] = 7 + 1: Al3][j] = A[][0] + A[0][]. forz.; >0

For example, using the above definition the 9z9 array is shown below:

.1 2 3 4 5 6 T 8 9
5 4 5 6 T 8 9 10 11
35 6 7 8 9 10 11 12
16 T 8 10 11 12 13
s 7 s 9 10 11 12 13 14
6 S 9 10 11 12 13 14 15
;9 10 11 12 13 14 15 16

§ 10 11 12 13 14 15 16 17

g 11 12 13 14 15 16 17 18
Write the following declarations and function definitions. Each function below

takes two parameters. The first parameter is an array X . and the second parameter
is an integer n , where n is the size of the array. That is, the number of rows equals

the number of columns n .

(a) [4%] Write a function definition InitArray which initializes the array X ac-

cording to the definition above.

(b) [8%] Write a function definition Transpose which modifies the array X 1n
which the rows and columns are respectively the columns and rows of the orig-

inal array. For exampleifn =3

and the array X is

7 -10 26
3 19 0
18 -6 21

then, after the invocation of Transpose(X, n) , the array X should be

7 3 18
210 19 -6
26 0 21

(c) [8%] Write a function IsAscending which returns true if every row of array

X is in increasing order. For example, every row in the array A defined above

is in increasing order. Hence, IsAscending(A,n) should return true; however,

the function IsAscending should return false for the array in part (b) above.

Question 4. (Design)

s

(a) [4%] A truck company that moves parcels across towns wants a design for its
boxes. Consider Box as a class. Give the attributes and member functions of
the class Box so that (1) box objects may be constructed; (2) the dimensions
of a box can be displayed; (3) the color of a box can be modified; (4) the volume

of a box, the surface area of a box, and the sum of its edges can be calculated.
(b) [6%)] Give an interface description of the C++ class Box .

(c) [10%] Give definitions for all the member functions listed in the Box class.

Question 5. (Complete Program)

Write a complete C++ program with headers, preprocessor directives, and in
correct syntax to implement the following:

1. Define a class Distance for distances; Distance has a private part containing
two data items, one is feet of type int , the other is inches of type int . The
public part of the class Distance contains a constructor which will be executed
automatically whenever an object of type Distance 1is created, and three other
member functions. The first function called get () is for the user to input, through
the input stream cin , feet and inches of an object of class Distance . The
second member function called show() is to output to the screen the distances in
feet and inches . The third member function called add() isto add two distances.
The first two functions get () and show() should be defined within the class while
the third function add(Distance, Distance) should be declared within the class
declaration but defined outside.

2. Write the member function add(Distance u, Distance v) to add two dis-
tances u , and v . You should add feet to feet and inches to inches and
convert inches to feet if the resulting inches is greater than or equal to 12.

3. Write function main() which creates three Distance objectsu , v , and w

Then use the member function get() to input the data to these three objects.
Use the member function add() to add u and v to produce w . Use show() to

output u , v and the sum w in feet and inches.

Appendix B

x

Solutions

B.1 Exam 1

#include <iostream.h>
class Person {
public:
char *GetName() ;
int VowelsInName();
private:

char name[25];

+;
// 1.(a)
int Person::VowelsInName()
{
int v=0;
for(int i=0;((i<25) && (name[i] != ’\0’));i++)
{
switch(name[i]) {
case ’a’: case ’e’: case ’i’: case ’o’: case 'u’:
vt
}
}
return v;

}
void Questionib()
{
Person group[20];
// init group
/7 1.(b) ‘
int max=0,v=0,mi=0;

for(int i=0;i<20;i++)

{
=group[i] . VowelsInName();
if (v>max) {
max=v;
mi=1i;
}
+

cout << group[i] .GetName() << endl;

// 2.(a)
class Matrix {
public:
Matrix (int n);
private:
int M[20] [20];
};

Matriz::Matrix(int n)
{
for (int i = 0;i<n;i++)
for(int j=0;j<n;j++)
{
M[i1[j1=0;
if(((i+3)%i)==0)
MIiJ [j]++;

1£(((1+j)%j)==0)

MI[i] [j1+=2;
>
}
void Question2bc() ‘
{
int p=0, m=15, n=7, a=2, b=1;
while (m || n)
{
if (m % a == b)
{
P=pP*Db;
m ~= b;
+
if (n % a == b)
{
P=PpP*b;
n -=b;
}
b=a;
a *= 2;
+
}
// 3

class Dates {
public:
void SetDate(int, int, int);
void Display();
void Decrement();
private:

int Year;

int Month;
int Day;
};

void Dates::SetDate(int d, int m, int y)
{ p
Year=y;
Month=m;
Day=d;
}
/7 3.(®)
void Dates::Display()
{
char *Days[12]={"Jan","Feb","Mar","Apr","May","Jun",
"Jul","Aug","Sep","0ct","Nov","Dec"};
cout << Day << " " << Days[Month-1] << " " << Year << endl;
}
// 3.(c)
void Dates::Decrement()
{
int Mdays(J]={31,28,31,30,31,30,31,31,30,31,30,31};
int 1ly=0;
if((Year % 4==0) && (Year % 400 !=0))
ly=1;
Mdays[1]+=1y;
if (Day > 1)
Day--;
else
{
if (Month>1)
Month--;
else
{
Month=12;

Year--;
}
Day=Mdays[Month-1];

void Question4a()
{
// 4. (2)
int x=1,y=2;
int j=x;
while(j>=y)
{

cout << x \times (j + y) << ’\n’;

i

void Question4b()
{
long nn;
long nf;
float s=0;
long ni=1;
long 1n=10;
for(i=1;i<=1ln;i++)
{
nf=1;
nn=1;
for(ni=1;ni<=i;ni++)
{
nf*=ni;

nn*=i;

s+=(float)nf/(float)nn;

// 5
class InventoryItem { .
public:
InventoryItem(int, int, int);
int GetQty(Q);
void AddQty(int);
int SellQty(int);
private:
int Qty;
int Min;
int Max;

};

InventoryItem::InventoryItem(int q, int min, int max)
{

Qty=q;

Min=min;

Max=max;

int InventoryItem::GetQty()
{

return Qty;

void InventoryItem::AddQty(int a)

{
Qty += a;

int InventoryItem::SellQty(int s)

{

if (s <= Qty)

{
Qty-=s;
if (Qty < Min) .
cout << "Quantity below minimum, order " << (Max - Qty) << endl;
return s;

}

return O;

B.2 Exam 2

#include <iostream.h>

#tinclude <math.h>

void f(int &x, int y) {
int t = x;
X = y;
y=t;
cout << "f(int, int) says x is " << x << endl;
cout << "f(int, int) says y is " << y << endl;

return;

void f(int x, int y, comst int z) {
if (x > y) £(y, x-2);
else f(x,y-z);

return;

void Questionia() {
int 1 = 5;
int j = 16;
6;
cout << " f(int, int) is called with values " << i

int k

<< " and " << j << endl;

£, §);

cout << " f(int, int, comst int) is called with values "
<Kk« " <K< j<', and " << 1 << endl;

£k, j, 1);

void Questionib() {

int number = 161;

int rem = 0;
int index = 0;
cout << "The input number is " << number << endl;
if (number % 2 == 1) {
rem = 1;

number = number - 1; -

}

while (number % 2 == 0) {
number = number / 2;
index = index + 1;

}

cout << "index is " << index << ", multiplier is " << number

<< ", adder is " << rem << endl;

float Question2() {
float n=1.0,s=0.0,p=1.0;
while (n<1000.0)

{
s=s+p/n;
P="P;
n+=1.0;
if (fmod(n,100)==0)
cout << "m = " << n << "'s =" <K s << endl;
}
return s;
}

int Outlier(double list[10])

{
float diff,x,avg=0.0;
int i;
for(i=0;i<10;i++)

avg=avg+list[i];

avg/=10.0;

for(i=0;i<10;i++)

{
x=1ist[i];
diff=x-avg;
if (diff < 0) .
diff=-diff;
if (diff>avg)
return 1;
}
return O;

void Question3()

{
double 1ist[10]={1.0,2.0,3.0,4.0,5.0,1.5,2.5,3.5,4.5,15.5};

cout << "Outlier = " << Outlier(list) << emndl;;

void perfect(int p)
{
int sum=0,n=1;

while (n <= p/2)

{

if ((p % n) == 0)

sum += n;

n++;
t
if (sum == p)

cout << "Input number is perfect" << endl;
else

cout << "Input number is not perfect” << endl;

void Question4()

{
perfect(28);
perfect(6);
perfect(25);

//5

class Point

{
public:

Point(double xi, double yi);
void Rotate(double angle);
double Dist(Point p1, Point p2);
double x;
double y;

};

Point: :Point (double xi, double yi)
{
X=x1;

y=yi;

void Point::Rotate(double angle)
{
double xp,yp;
xp=x*cos (angle)+y*sin(angle) ;
yp=-x*sin(angle)+y*cos(angle);
X=Xp;

Y=yp;

double Dist(Point pl, Point p2)
{
return (sqrt(pow(pl.x-p2.x,2)+pow(pl.y-p2.y,2)));

void Question5() .
{
Point p1(3.0,4.0), p2(2.0,5.0);
pl.Rotate(1);
p2.Rotate(2);
cout << "Distance = " << Dist(pi,p2) << endl;

B.3 Exam 3

#include <iostream.h>

void Questionia()

{
int m = 35, n = 14;

while (m ‘= n)

{
if (m > n)
m=m-Dn;
else
n=n-m;
}
+
/7 1 ()
int 1i;
void £Q);

void main(){

cout << i << emndl;
i = b;

£0O;

}

void £() {

cout << 1 << endl;

cout << 1 << endl;
cout << ::i << endl;
111 = 3;

{ cout << i << endl;

int 1 = 9;

cout << ::1 << endl;
cout << i << endl;
3 -
cout << i << endl;
cout << ::1 << endl;
cout << i << endl; .
::1 = 90;
cout << i << endl;
cout << ::1i << endl;

}

// 1 (c)

void main()
{
int X;
cout << "Enter an integer: " << flush;

cin >> X;
char ch;
if (X <= 300)

if (X < 200)
if (X <= 100)

ch = ’A’;
else
ch = ’B’;
else
ch = 'C’;
else
ch = 'D’;
switch(ch)

{

case ’D’: cout << "Danish" << endl;
break;

case ’C’: cout << "Canadian" << endl;
break;

case 'B’: cout << "Belgian" << endl;
break; .

case ’A’: cout << "American" << endl;

break;

/71 (d)

void Msg(int I, double D = 78.9, char C = ’F’, string S = "Hello");

void main()

{
Msg(11, 78.9, °F’, "Hello");
Msg(11, 6.5, 'H’, "Bye");
Msg(6.5, ’H’, "Bye");
Msg(11, ’H’, “Bye");
Msg(11,6.5,°H’);
Msg(11,’H’);
Msg(11,6.5);
Msg(11);

}

// Spring 98 2.(a)

#tinclude <iostream.h>

class Matrix {
public:
Matrix (int n);
void DisplayMatrix(int n);
private:

int M[20] [20];

int n;

};

Matrix::Matrix(int n)
{
for (int i = 0;i<n;i++)

for(int j=0;j<m;j++)

{
if(1i==3)
M[i][j]=1;
else
M1l [j1=i+]5;
+

void Matrix::DisplayMatrix(int n)
{

for (int i = 0;i<n;i++)

{
for(int j=0;j<n;j++)
{
cout << M[il[j] << flush;
¥
cout << endl;
}
}
// 2 (b)

int SumofDivisors(int n)
{

int s=0;

for(int i = 1;i==n;i++)

{

if ((n%i)==0)

s += 1;

// 3 (a)

void InitArray(int **X, int n)
{
int 1,3;
for(i=0;i<n;i++)
{
X[iJ [0]=i+1;
X0l [i]=i+1;
}
for(i=1;i<n;i++)
for(j=1;j<n;j++)
X[i1[j1=x[iJ [o]+x[0] [j];

// 3 (b)

void Transpose(int **X, int n)
{
int i,j,t;
for(i=0;i<(n-1);i++)

for(j=(i+1);j<m;j++)

{
t=X[1] [j1;
X[iJ[31=x[31[1i];
X[j1Lil=t;

+

// 3 (<)

int IsAscending(int **A, int n)
{
int i,j; :
for(i=0;i<kn;i++)
for(j=0;j<(n-1);j++)
if(Ali] [31<=A[1i] [j+11)
return 0;

return 1;

// 4

class Box {
public:
Box(int h,int 1,int w,int c);
void Display(void);
void SetColor(int c);
void BoxStats(void);
private:
int h;
int 1;
int w;
int c;

};

Box: :Box(int ih, int il, int iw, int ic)
{

h=ih;

1=il;

W=1iw;

c=ic;

void Box::Display(void)

{
cout << "Height = " << h << endl;
cout << 'Length = " << 1 << endl;
cout << "Width = " << w << endl;
}

void Box::SetColor(int ic)

void Box::BoxStats(void)

{
cout << "Volume = " << hx*l*w << endl;
cout << "Surface area = " << 2*x(h*l+h*w+l*w) << endl;
cout << "Sum of edges = " << 4x(1l+h+w) << endl;

}

// 5

class Distance {

public:
Distance(int £=0, int i=0);
void get(void){cin >> feet >> inches;};
void show(void){cout << feet << " feet " << inches << " inches" << endl;};
Distance add(Distance u, Distance v);
int GetFeet(void) {return feet;};
int GetInches(void) {return inches;};

private:
int feet;

int inches;

};

Distance Distance::add(Distance u, Distance v)
{
int tf, ti;
tf = u.GetFeet() + v.GetFeet();
ti = u.GetInches() + v.GetInches();
if (ti >= 12)
{
tf++;
ti-=12;
}

return Distance(tf,ti);

Appendix C .

Test Scores

Exam 1, Section 1
MARK

STUD

101
103
106
107
109
110
111
112
113
114
115
117
118
119
121
122
124
125
126
128
130

65.
53.
87.
81.
56.
82.
53.
68.
74.
52.
50.
82.
85.
69.
59.
87.
76.
91.
79.
70.

64.

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Q1AB Q24 Q2BC
13.
11.
.00
17.
12.
19.
10.
15.
.00

6.
12.
18.
16.
15.
14.
18.
14.
20.
18.
13.
16.

19

19

00
00

00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00

4

L & I e T T« T Y o WO Y ~Se S o Y >SN &) N s Y S BN B

9
3

H
0 W O W & 00 N N = i 0 O = O N

=
NN

Q3ABC Q4A Q4B

12.
8.
16.
14.
6.
19.
7.
15.
.00

10

00
00
00
00
00
00
00
00

9.00
3.00

18.
20.
18.
11.
.00
15.
18.
16.
15.
17.

19

00
00
00
00

00
00
00
00
00

8

o O W O,

10

(o]

10
10

10
10
10

10
10

8
7
10
10
7
10

10

10
10

10

10

10

Q5AB

11.
13.
14.
17.
i8.
13.
.00
13.
18.
14.
12.
15.
.00

19

15.
10.
15.
16.
16.
12.
11.
.00

00
00
00
00
00
00

00
00
00
00
00

00
00
00
00
00
00
00

131
132
133
136

78.00
92.00
99.00
61.00

19.00
19.00
20.00
17.00

w ~N 0

12
12

19.00
19.00
20.00
11.00

8
10
10
10

10

10

15.00
15.00
20.00
13.00

Exam 1, Section 2
MARK

STUD

201
202
203
204
205
206
208
209
210
211
212
213
215
216
218
220
223
224
225
227
228
229

87.
80.
69.
59.
.00
51.
.00
.00
63.
.00
68.
59.
58.
.00
.00
.00

67

75
80

51

56
61
63

61.
54.
.00
.00
.00
82.

69
92
83

00
00
00
00

00

00

00

00
00

00
00

00

Q1AB Q2A Q2BC
18.
16.
13.
14.
15.
14.
19.
20.

8.
17.
12.
10.
16.
16.
.00
18.
18.
16.
13.
20.
20.
15.

19

00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00

8

0O N N O b kN RN NN O D

7

-

W W W W O O © W W W i 0 O W i b p»

S S =
N =N

Q3ABC Q4A Q4B

18.
17.
15.
11.
11.

6.
14.
17.
15.

4.
14.
14.
17.

2.
11.

9.
11.

5.
17.
22.
10.
14.

6o
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

10
10
8

10

©w 0 O N 00 0 00 0w

e
o o

10

9
10

10

[—
o N o

D OO W o W N N N

[y
oo O

Q5AB

17
14

12

10
11
10
11
12
12
11

10

12.
.00
11.
12.
18.
14.

.00
.00
14.
13.
17.
.00
14.
.00
.00
.00
.00
.00
.00
.00
.00
.00

00
00
00

00

00

00
00
00
00

Exam 2, Section 1

STUD MARK Q1A Q1B Q2
301 81.00 10 10 S
302 81.00 10 10 6
303 83.00 10 10 12
304 65.00 5 4
305 81.00 10 10
306 70.00 10 10
307 80.00 10 10
308 82.00 10 10
309 61.00 10 4
311 83.00 10 10
312 69.00 5 10 10
314 78.00 10 10 8
315 94.00 7 10 18
316 78.00 10 4 10
317 98.00 10 10 20
318 93.00 10 10 20
319 97.00 10 10 20
320 57.00 7 10 8
321 88.00 10 4 20
322 100.00 10 10 20
323 98.00 10 10 20
324 72.00 5 4 15
325 96.00 10 10 20
326 92.00 10 10 12
327 64.00 4 5
328 84.00 10 10
329 82.00 10 10
330 65.00 5 10
331 66.00 10 10
332 67.00 8 3 10

o O OO U1 O p» W

Q O 0 0o O

Q4
20
17
20
20
20
20
20
20
17
20
20
20
20
20
20
20
20

20
20
20
20
20
20
20
20
20
20
20
20

Q5ABC
16.00
18.00
17.00
13.00
18.00
12.00
17.00
18.00
16.00
20.00

6.00
16.00
19.00
18.00
18.00
13.00
18.00
14.00
16.00
20.00
18.00
14.00
18.00
20.00
14.00
16.00
18.00
16.00
12.00
10.00

Exam 2, Section 2

STUD
401
402
403
404
406
407
408
409
410
412
413
414
415
416
417
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

MARK Q1A Q1B

82.
60.
90.
98.
85.
84.
90.
92.
72.
78.
100.
61.
85.
85.
72.
79.
69.
88.
79.
80.
88.
90.

69

85

82

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

.00
88.
80.
g2.
50.
.00
69.
70.

00
00
00
00

00
00

.00
67 .

00

10

1
10
10
10
10
10
10

5
10
10
10
10
10

8
10
10
10
10
10
10
10
10
10
10
10

5
10

3

10
10

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

4
10
10
10
10
10
10

2
10
10
10
10

7

Q3
19

20
19
20
20
20
20
20
20
20
14
20
20
20
15

0 16

20

4 18

16
10

12

12

0 O O O O O

20
18
20
15
19
20
20
14
20
18
20
19
14

Q4
19
20
20
20
20
20
20
20
20
20
20
19
20
20

20
17
20
20
20
18
20
20
19
20
20
18
19
20
18
18
12

Q5ABC

14.
15.
18.
19.
19.
18.
18.
20.
11.
18.
.00
.00
20.
.00

20

15

18.
12.
16.
.00

20

17.
20.
16.
20.
14.
18.
.00
20.
11.
18.
12.
15.
20.
16.

20

00
00
00
00
00
00
00
00
00
00

00

00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00

436 58.00 10 10 8 0 20 10.00
437 86.00 10 10 10 18 20 18.00
438 85.00 10 10 6 20 20 19.00

Exam 3, Section 1

MARK Q1A

STUD
502
503
504
505
506
507
508
510
511
512
513
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

86.
89.
83.
89.
.00
98.
94.
95.
94.
92.
94.
92.
94.
66.
95.
94.
85.
98.
93.
97.
87.
88.
92.
69.
67.
95.
55.
57.
92.
70.
76.
95.

99

00
50
00
00

50
00
00
00
00
50
00
00
00
00
50
50
00
50
00
00
50
00
00
00
00
00
50
00
50
00
00

1.0

(@]

O O O O O O O O O O 0O O O 0O O O O O 1 o O O O O O O o o o o

N N N N N N N N N N N N N N N N N . T T T T~

Q1B

B W R W W W R W R NWWW DLW W W WD W

w

.50
.50
.00
.50
.00
.50
.00
.50
.00
.00
.00
.00
.00
.50
.50
.50
.50
.00
.50
.00
.50
.00
.50
.00
.00
.00
.00
.50

4.00

.50
.00
.00

O
Q

R T I I N S e R e I T T T S N P R
O 0O O O o O O ©Oo o o

QiD

N O N NN NSNBDANNNNOONNSN®©®ON~NOOSNSN~NO0N 0NN oo o N
O O O O O 0O 0O 0O 0O O 0O O O O 0O 0O 0O O 0O O 0O 0O O O 0 O o 0o o o o o

Q24
11.0
12.
11.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.

12.
12.
12.
11.
12.
12.
12.
12.
11.
12.
11.
12.

O O O O O O 0O 0O O 0O 0O O 0O O O O 0O 0O O O O O © O O o o o

11.
12.0
11.0
11.0

Q2B

0 0 0 0 0 0 0 0 00 0w 0 0 ™

O O O O O O © © © © O O 0O O 0O 0O O O O O O O O O O O o o o o o o

0 0 0 ~N 00 00 00 00 o

W 0 U1 0 N N 00 N

Q3a

B R R LN WD W WD DD DD ND W WWR WD R RR R D W
O O O O O O O O O M UOh O O O O O O U1 © © O Ut o o U1 O O O O O O o

Q3B

W O H N W O o ;o O ~N 00w oo N N O 000 0n 0 0 0
O O O O O O O 0O 0O 0 O 0O 0O 0O 0O 0O 0O 0O O O 0O O O 0O O O o o o o o o,

Q3C

0 ~N W 0 o W NN N0 U 0 N U N 0NN NN oo NN e
O O O O O 0O O O O O O 1 O O © © O O 0O O 0O O O 0O © O o © »uu o o O

o
B

20.
18.
18.
19.
20.
20.
18.
18.
19.
19.
19.
20.
19.
18.
19.
18.
18.
20.
20.
20.
17.
20.
18.
18.
18.
20.
13.
10.
i8.
18.
14.
18.

O O O O O O O © © O O O © © O O © 0O 0 0O 0O O O O O O O o o oo o o

O
n

20.
18.
20.
18.
20.
20.
18.
20.
8.
20.
20.
17.
18.
14.
20.
20.
i7.
20.
18.
20.
16.
14.
20.
13.

20.

11.
17.
12.
15.
19.

OOOOOOOOOOOOOOOOOOOOOOOOOOOO0.000

536 91.00 4.0 4.00 4.0 7.0 12.0 0 4.0 8.0 8.0 20.0 20.0
537 71.00 .0 2.00 4.0 7.0 12.0 0 3.0 5.0 5.0 18.0 15.0
538 60.50 .0 2.50 4.0 7.0 6.0 8.0 1.0 3.0 4.0 12.0 13.0

Exam 3, Section 2

STUD MARK

602
603
604
605
606
608
609
610
612
613
614
615
619
620
621
623
625
626
627
628
629
631
632
633
634
635
636
637
638
639
640
641

92.
51.
62.
55.
50.
89.
72.
.00
.00
87.
91.
64.
99.
91.
60.
82.
51.
93.
.00
66.
94.
85.
71.
96.
.00
86.
86.
77.
66.
73.
85.
91.

96
50

92

70

00
50
00
00
50
00
50

00
00
50
00
00
50
50
00
00

50
00
50
50
50

00
50
00
00
50
00
50

Q1A

Q1B

DB N R R W R DN R W R W R WL W

g OO o1 O Ul O U Ol 1 O O O U1 O O U O O O O O O © U © O O O O o u o

W W W W WP www

QicC
4.0
4.0
4.0
4.0

T T N O N T T T T T T NN
OOOOOOOOOOOOOOOU\OOOOU\OOOO'C)O

Q1D

© NN ® O NN NN NN N NNNSNSNNNRE NSNS NN NN N NN
©O O O O O O O O O O O O O O O © © O O O O O O O O O 0o o o o o o

Q24

12.

12.
11.
12.
10.
10.
12.
11.
12.
12.

11.

12.
12.
10.
12.
10.
12.
11.
11.
11.
12.
11.

11.
12.
12.

O O O O O O O O O O O O O O 0O O O O O O O O 0O © O M © © O o o o©o

Q2B

0]
o

» 00

~N 00w 00 00 0 00 00 » um

0 ~N 00 W 00 0 0 N 0 00 00 W W 00 0 o

o

©O O O O O O O O O O O O O O 0 0O O O O O O O 0O O © O o O o ©

Q3A

i T I N R O AT A T e R N R e R I SIS

©O O O O O U ;1 1 O O U ©O O O © © Ul Ul O © O © © O O © O U O O O O

Q3B

(00

O O O O O O O O O 0”1 O O O O 0O O 0O O 0O O 0O O O B o 1 0o O o o o o

0 P N0 N DR 0D R D W0 N N O]

Q3C

N

© O O O O O O O O © O O O © O O O O O 0O 0O O O O O U O O O O O o

0 00 1 B W N 00 & N N 00 oo 0NN P00 NN O W N

o
Y

20.
18.
15.
15.

20.
14.
20.

19.
20.
20.
20.
20.
16.
20.
i8.
20.
17.
14.
20.
20.

20.
15.
19.
20.
18.
20.
i8.
19.
18.

©O O O © Ul O O O O O O O O O 0O O O O O O O O O O O O O O O o o o

0
(1}

12.

16.
14.
18.

18.
18.
13.
20.
16.
10.
18.

18.
16.
10.
18.
16.
12.
20.
12.
13.
13.
15.
10.
10.
16.
18.

O O ©O © O O O O O O O O O O O O 0O O 0O O O O O 0o O O O 0O o o o o

Appendix D

Halstead Metrics and LOC

UCPER = Unique operators
UOPRA = Unique operands
TOPER = Total operators
TOPRA = Total operands

HVOCAB = UOPER + UOPRA
HSIZE = TOPER + TOPRA

EXAM: 1

QUESTION HDIFF HEFFORT HSIZE LOC TOPER TOPRA UOPER UOPRA HVOCAB
lab .038 30980.74 150 36 97 53 29 21 50

2a .067 21027.30 98 18 60 38 19 8 27

2bc .114 73%94.63 72 17 40 32 14 10 24

3abc .062 31606.14 182 81 99 83 27 39 66

4a .095 2034.05 34 10 21 13 13 6 19

4b .121 5859.35 69 17 40 29 12 9 21

5ab .031 16458.83 113 36 85 28 21 10 31

EXAM: 2
QUESTION HDIFF HEFFORT HSIZE LOC TOPER TOPRA UOPER UOPRA HVOCAB

la .058 13534.86 133 27 89 44 17 19 36
1b .096 7661.01 77 17 46 31 14 10 24
2 .065 7672.54 63 12 39 24 19 S 28
3 .078 14332.14 89 23 51 38 19 11 30
4 .060 4531.17 57 20 37 20 18 11 29
5abc .042 27792.52 125 26 88 37 20 8 28
EXAM: 3
QUESTION HDIFF HEFFORT HSIZE LOC TOPER TOPRA UOPER UOPRA HVOCAB
la .130 2688.00 32 8 18 14 12 4 16
ib .042 9257.57 119 29 95 24 12 8 20
1lc .040 9057.21 98 26 71 27 19 14 33
id .135 3879.71 72 9 43 29 10 12 22
2a .032 29700.00 120 30 87 33 24 8 32
2b .103 2059.20 36 9 23 13 11 5 16
3a .117 15388.83 88 12 50 38 13 6 19
3b .111 9206.32 74 11 43 31 13 7 20
3c .079 8847.51 62 9 38 24 16 6 22
.044 23471.57 165 35 118 a7 18 15 33

5 .025 26021.57 127 30 94 33 28 12 40

Appendix E

Correlations

Here are the bivariate Pearson correlations.

EXAM:

MEAN

STDDEV

LoC

HEFFORT

ID

i,

Section 1
MEAN
1.0000
(7)
P=
-.7859
(7)
P= .036
-.1107
(7)
P= .813
-.1551
(7)
P= .740
-.6091
(7)
P= .147

Correlation Coefficients

STDDEV
-.7859
(7)
P= .036
1.0000
(7
P=
.1208
(7
P= .796
.1375
(7
P= .769
.3255
(7
P= .476

Lac
-.1107
¢ O
P= .813
.1208
¢
P= .796
1.0000
¢
P=
.8746
¢ 7
P= .010
-.5462
C 0
P= .205

123

HEFFORT
-.1551
¢ m
P= .740
.1375
¢ D
P= .769
.8746
¢ D
P= .010
1.0000
¢ 0
P=
-.3679
¢ 7D
P= .417

ID
-.6091
(7)
P= .147
.3255
(7)
P= .476
-.5462
(7)
P= .205
-.3679
(7)
P= .417
1.0000
(7)
P=

EXAM:

MEAN

STDDEV

Loc

HEFFORT

ID

1, Section 2

MEAN
1.0000
¢ D

-.6216
¢ D
P= .136
-.2411
¢ n
P= .603
-.0994
« m
P= .832
-.4146
« m
P= .355

-~ Correlation Coefficients

STDDEV
-.6216
¢ 7
P= .136
1.0000
¢ 7
P=
-.2108
¢ 7
P= .650
-.0219
(7)
P= .963
.5837
(7)
P= .169

LOC
-.2411
¢ 7
P= .603
-.2108
(7)
P= .650
1.0000
(7)
P=
.8479
¢ 7
P= .016
-.5462
(7)
P= .205

HEFFORT
-.0994
¢ 7N
P= .832
-.0219
¢ n
P= .963
.8479
¢ m
P= .016
1.0000
¢ ™
P=
-.2993
¢
P= .514

1D
-.4146
(7)
P= .355
.5837
([0
P= .169
-.5462
(7)
P= .205
-.2993
(7)
P= .514
1.0000
(7)
P=

EXAM:

MEAN

STDDEV

LOoC

HEFFORT

ID

2, Section 1

MEAN
1.0000
(5)
P=
-.3061
(5)
P= .616
-.3622
(5)
P= .549
-.8452
(5)
P= .071
-.7805
(5)
P= .119

- Correlation Coefficients

STDDEV
-.3061
(5)
P= .616
1.0000
(5)
P=
-.3013
(5)
P= .622
~.1427
(5)
P= .819
-.1015
(5)

P= .871

Loc
-.3622
¢ 5
P= .549
-.3013
¢ 5
P= .622
1.0000
¢ 5
P=
.7068
¢ 5
P= .182
.8604
¢ 5)
P= .061

HEFFORT
-.8452
¢ 8
P= .071
-.1427
¢ 8
P= .819
.7068
¢ 8
P= .182
1.0000
¢ 8
P=
.9503
¢ 9
P= .013

ID
-.7805
(5)
P= .119
-.1015
(5)
P= .871
.8604
(5)
P= .061
.9503
(5)
P= .013
1.0000
(5)
P=

EXAM:

MEAN

STDDEV

LGoC

HEFFORT

ID

2, Section 2

MEAN
1.0000

(5)

-.3031
(5)
P= .620
-.7349
(5)
P= .157
-.9785
(5)
P= .004
-.9358
(5)
P= .019

- Correlation Coefficients

STDDEV
-.3031
(5)
P= .620
1.0000
(5)
P=
.5230
(5)
P= .366
.2931
(5)
P= .632
.5284
(5)
P= .360

LOC

-.7349
(5)
P= .157
.5230
(5)
p= .366
1.0000
(5)

p=
.7068
(5)
P= .182
.8604
(5)
P= .061

HEFFORT
-.9785
(5)
P= .004
.2931
(5)
P= .632
.7068
(5)
P= .182
1.0000
(5)
P=
.9503
(5)
P= .013

ID
-.9358
(5)
P= .019
.5284
(5)
P= .360
.8604
(5)
P= .061
.9503
(5)
P= .013
1.0000
(5)
P=

EXAM:

MEAN

STDDEV

LOC

HEFFORT

ID

3, Section 1

MEAN
1.0000
(11)
P= .
-.7202
(11)
P= .012
.6636
(¢ 11
P= .026
.4799
(¢ 11)
P= .135
-.6279
(¢ 11)

.039

-~ Correlation Coefficients

STDDEV
-.7202
¢ 11)
P= .012
1.0000
¢ 11
P=
-.5993
(11)
P= .051
-.5367
(11
P= .089
.2347
(11
P= .487

LOC
.6636
11)

= .026
~-.5993
11)

= .051
1.0000
11)

.7605

(¢ 11)
P= .007

-.5238

¢ 11
P= .098

HEFFORT
L4799
11)
= .135
-.5367
11)
= .089
.7605
11)
= .007
1.0000
11)

.0291

(¢ 11)
P= .932

1D
-.6279
¢ 11)
P= .039
.2347
¢ 11
P= .487
-.5238
(11)
P= .098
.0291
(¢ 11)
P= .932
1.0000
¢ 11)
P=

EXAM:

MEAN

STDDEV

LocC

HEFFORT

ID

3, Sectiocn 2

MEAN

1.0000
¢ 11)

P= .
-.3691
(11)
P= .264
.3084
(11)
P= .356
-.0303
(11)
P= .929
-.6233
(11D

P= .040

- Correlation Coefficients -

STDDEV
-.3691
(11
P= .264
1.0000
(11)
P=
-.3758
(11
P= .255
-.2811
(11
P= .402
.0502
(11)
P= .883

LoC
.3084
11)
= .356
-.3758
11)
= .255
1.0000
11)

.7605
11)
= .007
-.5238
11)
= .098

HEFFORT
-.0303
¢ 11)
P= .929
-.2811
¢ 11)
P= .402
.7605
(¢ 11)
P= .007
1.0000
¢ 1D
P=
.0291
(11)
P= .932

ID
-.6233
¢ 1D
P= .040
.0502
¢ 11
P= .883
-.5238
¢ 11
P= .098
.0291
¢ 1D
P= .932
1.0000
¢ 11)
P=

