
ESTIMATION OF THE SCOPE OF CHANGE

PROPAGATION IN OBJECT-ORIENTED PROGRAMS

ELMIRA RAJINIA

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN QUALITY SYSTEM ENGINEERING

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

DECEMBER 2010

© ELMIRA RAJINIA, 2010

Approved by:

Dr. Abdessamad Ben Hamza, Graduate Program Director,

Concordia Institute for Information Systems Engineering

Dr. Anjali Awasthi, Chairman,

Concordia Institute for Information Systems Engineering

Dr. Simon Li, Supervisor,

Concordia Institute for Information Systems Engineering

Dr. Benjamin Fung, Examiner,

Concordia Institute for Information Systems Engineering

Dr. Yuhong Yan, Examiner,

Department of Computer Science & Software Engineering

http://users.encs.concordia.ca/~awasthi/

iii

ABSTRACT

Estimation of the Scope of Change Propagation in Object-Oriented

Programs

Elmira Rajinia

When minor modifications need to be made in an object-oriented computer program, they

often incur further more changes due to presence of dependency in the codes and the

program structure. Yet, to accommodate the required change, there can also be more than

one option to carry out the initial modifications. To select the modification option in this

context, this thesis proposes a systematic approach to estimate the scope of change

propagation of an object-oriented program given some initial modifications.

The present Master’s thesis seeks to develop an approach to predict the scope of

propagated change through the entities of object-oriented software due to a modification

in the software. Despite the previous works that just studied the change propagation in

object oriented programs from the aspect of high level entities like classes or from the

aspect of UML diagrams, we have studied the finer entities of the object oriented

program and the relationships among them. In this regard, this thesis has focused on the

calculation of probability of change propagation between each two specific types of

entities through the analysis of dependency types among the fundamental entities of

object-oriented program and categorization of existing dependencies between each couple

iv

of entities. Then, we have defined the priority number concept as a representative scale

for the scope of change propagation in software based on the probability rules.

The strategy is to first capture the dependency relationships of the entities, pertaining to

an object-oriented program via the matrix representation. In this work, we have used

Design Structure Matrix to capture and trace dependency among software’s entities.

Based on this matrix-based model, the priority number method is proposed and applied to

estimate the scope of change propagation by assuming some initial modifications. The

core of this method is to estimate the chance of affecting other program entities due to

some modified entities and the matrix structure.

Finally, the obtained results from a case study have been tested to validate the

effectiveness of the change propagation probability numbers and priority number

concept.

v

Acknowledgments

I would like to express my gratitude to Dr. Simon Li, that this endeavour was not possible

without his great support, research guidance, inspiration and patience over the past two

years of my study.

It is also a pleasure to thank those who made this thesis possible such as my husband

Behzad and my parents who gave me the moral support I required.

vi

Contents

List of Figures ... viii

List of Tables .. ix

1. Introduction ... 1

1.1. Background and Motivation ... 2

1.2. Literature Review ... 4

1.3. Thesis Objectives and Organization .. 8

2. Dependency Modeling of Object-Oriented Programs .. 10

2.1. Classification of Entities .. 10

2.2. Classification of Dependencies .. 12

2.3. Matrix Representation .. 17

3. Estimation of Change Propagation .. 20

3.1. Classification of Changes of Entities ... 21

3.2. Change Propagation Mechanism ... 22

3.3. Change Options .. 26

3.4. Formulation of Priority Number .. 30

4. Case Study .. 40

4.1. Problem Descriptions and Change Options ... 46

vii

4.2. Estimation Case 1 .. 47

4.3. Estimation Case 2 ... 54

4.4. Discussion and Verification ... 57

5. Conclusion and Future Work ... 60

References .. 62

Appendix A: Details of the Example Program ... 65

Appendix B: Details of the Case Study ... 69

Appendix C: Trace of Target Entities Related to Solution 2 113

viii

List of Figures

Figure 1: Hierarchy of OOP Entities .. 12

Figure 2: Sample Matrix to Show Different OOP Relationships 19

Figure 3: Dependency Matrix of the Example Program ... 19

Figure 4: Modified Codes Based on Change Option 1 ... 27

Figure 5: Modified Codes Based on Change Option 2 ... 28

Figure 6: Modified Codes Based on Change Option 3 ... 29

Figure 7: Modified Codes Based on Change Option 4 ... 29

Figure 8: Change Propagation Paths for Option 1 .. 34

Figure 9: Change Propagation Paths for Option 2 .. 35

Figure 10: Change Propagation Paths for Option 3 .. 36

Figure 11: Change Propagation Paths for Option 4 .. 37

Figure 12: Comparison of Priority Number Scale vs. Modified Line of Code Scale 39

Figure 13: Workflow of the Two-Phase Decomposition Method 41

Figure 14: Direction of Data Flow among Classes ... 42

Figure 15: Dependency Matrix of the Case Study .. 45

Figure 16: Change Propagation from Target Entity 52 .. 47

Figure 17: Change Propagation from Target Entity 15 .. 47

Figure 18: Change Propagation from Target Entity 4 .. 48

Figure 19: Change Propagation from Target Entity 5 .. 49

Figure 20: Change Propagation from Target Entity 3 .. 50

Figure 21: Change Propagation from Target Entity 2 .. 51

Figure 22: Change Propagation from Target Entity 1 .. 52

Figure 23: Evaluation of Priority Numbers that are Based on Change Propagation

Probability Number (0.5) .. 58

Figure 24: Evaluation of Priority Numbers that are Based on Change Propagation

Probability Numbers (0.5, 0.75 and 1) ... 59

file:///C:\Users\Elmira\Desktop\research\after%20paper\New%20Folder\review\back%20up%20thesis%20(1-5)(3).docx%23_Toc279273786
file:///C:\Users\Elmira\Desktop\research\after%20paper\New%20Folder\review\back%20up%20thesis%20(1-5)(3).docx%23_Toc279273799

ix

List of Tables

Table 1: Java Entity Types and Their Descriptions ... 11

Table 2: OOP Dependency Relationships.. 13

Table 3: Dependencies among OOP Entities ... 14

Table 4: Description of Dependencies among Example Program’s Entities 16

Table 5: Change Types .. 21

Table 6: Change Paths in OOP .. 23

Table 7: Change Propagation Probability among Entities ... 25

Table 8: Comparison of Different Change Options ... 38

Table 9: Case Study’s Involved Classes .. 42

Table 10: Change Probability Numbers for the Involved Entities in Solution 1 Based on

Change Propagation Probability Number (0.5) .. 53

Table 11: Change Probability Numbers for the Involved Entities in Solution 2 Based on

Change Propagation Probability Number (0.5) .. 54

Table 12: Change Propagation Probability among Entities ... 55

Table 13: Change Probability Numbers for the Involved Entities in Solution 1 Based on

Change Propagation Probability Numbers (0.5, 0.75 and 1)............................ 56

Table 14: Change Probability Numbers for the Involved Entities in Solution 2 Based on

Change Propagation Probability Numbers (0.5, 0.75 and 1)............................ 56

Table 15: Comparison of Different Change Options ... 57

1

Chapter 1

1. Introduction

Object-oriented programming is a software development paradigm that is used vastly

from early 1990’s. The main characteristic of object-oriented programming is the use of

objects to construct a program. Particularly, an object in a program is defined by a class,

which can be considered as a blueprint describing the behaviours of that object. Classes

can have relationships like interface or inheritance with each other. Therefore, one can

say that an Object-Oriented Program (OOP) is a collection of interactions among

different objects and classes related to them. The popularity of OOPs can be attributed to

some of its characteristics such as data encapsulation, inheritance, modularity,

modifiability, extensibility, maintainability and re-usability (Sierra and Bates 2005).

To debug and improve an existing OOP, modifications are very common to apply during

a software development process. Yet, how to apply such modifications may not be an

easy task due to the presence of relationships among those classes and objects.

Particularly, even though only minor modifications are made initially, such modifications

can affect some related parts of the program, leading to an intractable propagation of

changes. Moreover, there can be more than one option to modify the program in order to

achieve the same purpose. Due to the intractable propagation, it is difficult to predict

which option will lead the minimum scope of change.

2

Thus, the purpose of this research is to propose a systematic approach to estimate the

scope of change propagation in the context of object-oriented programming. The

methodical strategy is to treat an OOP as a network of interconnected program entities

(e.g., objects and classes). By explicitly identifying their interrelated dependency

relationships, we can analyze how initial modifications can potentially affect some other

parts of the program.

1.1. Background and Motivation

After finding software’s bugs and defects through techniques like program slicing

(Gallagher and Lyle 2002) in testing phase of software life cycle, the software will be

returned to implementation phase for change application. Even after releasing the

software, it will continue to have changes in software maintenance phase.

For successful software systems, more than half of the software lifecycle costs are

dedicated to software maintenance and evolution. Software maintenance is one of the

phases in the software development process. One of the most important characteristics of

software maintenance is making changes to software in order to eliminate the defects and

deficiencies that have been found during the usage of software and also improving the

software features through techniques like code refactoring (Fowler 1999; Mens and

Tourwe 2004).

Due to dependency that exists among different parts of the system, when changes happen

to one part of the system, it will migrate to other living parts. Thus, in order that the

system can continue to work correctly, we should manipulate the affected parts of the

system appropriately. Therefore, change propagation can be defined as migration of

3

change among different parts of the system due to change happening in a particular part.

Most of the time applying change to a system is more complex that it may appear in first

glance. Since usually most parts of the system are connected to each other, changes are

also connected.

A simple mechanical example is that if we have a container with fixed volume, the

volume factor is dependent to surface dimensions and height factors. Now, if we decrease

the dimensions of the container’s surface, we need to increase its height in order that the

volume remains unchanged. Therefore, we can say that change has propagated from

surface dimensions to height.

As an example of change propagation in software systems, we can refer to dependencies

that exist among classes in OOPs. In software that is designed based on OOPs, classes

may be interconnected due to interface and inheritance relationships. Any changes that

happen to a class due to an internal change, like changes in methods, fields,

implementation, etc., may propagate to other classes due to mentioned relationships.

The level of change propagation in systems depends on the complexity of systems. The

more connections exist among parts of the system, the more complex the system will be.

As an example of a complex and highly interconnected system in mechanical

engineering, we can refer to helicopters. For example, any change that happens to the

rotor of helicopter will cause enormous changes on the other parts of the helicopter

(Clarkson, Simons and Eckert 2001).

Most of the time applying changes to the products or software will be so costly for those

projects. The bigger change scope in the system will cause the higher costs for the project

4

up to the point that may lead to negative return of investment. Therefore, change

management in projects is of great importance. For example, in the helicopter example,

any changes that happen to rotor will be so costly. Therefore, changes in any parts that

may affect the rotor should be avoided as much as possible.

In software projects, costs of the project are not just based on expenses. Since the project

may lose its justifiability due to delay in product delivery, time should also be considered

as an important factor. Applying changes for each class will be costly from time and

money aspects. Therefore, for those classes of OOPs that application of change on them

may have a great impact on a large number of other dependent classes, applying changes

to those kinds of classes should be avoided as much as possible.

In this research, we have developed an approach through that we can minimize change

propagation in software systems and also minimize the project costs. In this work, we

have introduced a method to find and choose the change option that imposes the smallest

scope of change to the OOP among existing change options. This task will be done

through predicting the scope of change for each option.

1.2. Literature Review

In literature, some research efforts have been reported in the topic of change propagation

in software. Some efforts have been devoted to the analysis of UML models (a common

modeling language for object-oriented systems) to assess the change-proneness of a

software system (Sharafat and Tahvildari 2007; Sharafat and Tahvildari 2008; Han et al.

2008). Sharafat and Tahvildari (2007, 2008) used dependencies obtained from the UML

diagrams and some other code metrics. Then, they combined it with the change log of the

5

software system and the expected time of next release to assess the probability that each

class will change in a future generation.

Ah-Rim Han and his team (2008) developed Behavioural Dependency Measure (BDM).

They used the obtained structural information of classes and the relationships between

those classes from a class diagram, the behavioural information of UML 2.0 design

models and a Sequence Diagram and an Interaction Overview Diagram for capturing the

behavioural aspects of the software to develop this measure. This measure is used to

predict the change proneness of classes in the software.

Tsantalis et al. (2005) focused on the axes of change among classes in an object-oriented

program and applied a probabilistic approach to estimate the change-proneness of classes.

When change happens to a class, it can propagate to other classes through axes of change.

In his work, first he tried to identify axes of change. Then, through using an improved

correlation coefficient that was obtained from the calculated probabilities and actual

changes for all classes and for all generations of two open source projects, he developed a

measure to assess the probability that each class will change in a future generation.

Several other methods have also been proposed to predict changes in software systems,

such as graph-based modeling (Rajlich 1997), a heuristic approach (Hassan and Holt

2004), an approach combining impact analysis and mining software repositories (Kagdi

and Maletic 2006), and Bayesian belief networks (Mirarab et al. 2007).

Rajlich (1997) discussed about change propagation in software based on the

inconsistencies that will happen to software after applying change to each entity of the

software. Then, he introduced two formal models of change propagation and change-and-

6

fix based on graph rewriting. In these models, the software is represented as a graph of

dependencies among the entities of the software. When change happens to the entities of

software, the entity may no longer fit with the other entities of the software and it will

lead to dependencies that are inconsistent. Each change removes some inconsistencies

and also it may create new ones. This tool will help the programmer to trace the

inconsistencies and changes during the process of software maintenance.

Hassan and Holt (2004) used historical co-change data to develop heuristics that predict

change propagation to address the question “How does a change in one source code

entity propagate to other entities?” and to assist developers during the change

propagation process. They studied changes that happened to five large open source

software systems and using the obtained dataset, first they studied several general

heuristics that predict change propagation and then, they built their enhanced heuristics

and measured their effectiveness in predicting change propagation.

Kagdi and Maletic (2006) focused on Mining Software Repositories (MSR), which is an

approach to support software-change prediction from a historical perspective. Also, they

focused on Impact Analysis (IA), which is an approach to predict the change proneness

of the software through analysis of the current version of a system. Then, they compared

the expressiveness and effectiveness of these two approaches to find exclusive and

synergistic benefits of the two paradigms to improve software-change prediction.

Through combining the two mentioned approach, they developed and evaluated a hybrid

approach to produce more accurate results.

7

Mirarab and his team (2007) used Bayesian Belief Networks as a probabilistic tool to

predict the possibly affected parts of the software due to a change that has happened in

the system. Their approach is based on two main steps:

 Extracting Information step, in which they extract the existent dependencies

among system elements and the change history of the software.

 Predicting Changes steps, in which they develop the Bayesian Belief Network

based on the extracted information from the first step.

Then, through dividing the Bayesian Belief Network in to three different branches, which

are different from the aspect of sources of used information, they made predictions using

probabilistic inference.

The major difference between this work and the mentioned researches is that most of the

jobs that have been done up to now is just a high level prediction of the scope of change

through the architecture of the software and they rarely have gone as deep as the code

level. In contrast to the above efforts, this work is intended to analyze more detailed

entities (rather than just classes or UML diagrams) in the OOP. In previous researches,

the scope of change can be predicted even without having the actual code and only by

knowing the UML diagram of the software or being aware of the architecture of classes.

But, in this research we have analysed the software up to the code level. In this method,

our prediction about the scope of change cannot be completed, unless we can have access

to the code details and the exact specifications of the change that is going to be applied

on the code. Also, in this research we have focused on change options which are the

different solutions that can address a change request. In this regard, we have predicted

8

and compared the scope of change that each change option imposes to the system. It

should be mentioned that this method is original in this research.

The result of previous researches that have been done in this regard can be used in the

design phase of the software development lifecycle and through having access to the

related UML diagram or the software architecture. Despite the other works, in this

method we have focused more on the details of the code. We believe that the result of this

research can help the developers to have more precise estimation about the scope of

change during the implementation and maintenance phases of the software.

The method of approach includes the use of matrix to capture the dependency

information and the probabilistic approach to assess the scope of change propagation.

This combination of the approaches is also original in this research.

1.3. Thesis Objectives and Organization

In this research, we will start through analysis of dependency modeling for OOPs in

Section 2. In this section, we will classify the fundamental entities of OOP and

dependencies that exist among these entities. Also, we will provide the dependency

model that characterizes the relationships in OOPs. Afterwards, matrix-based modeling

will be applied to represent and analyze the dependency information.

Based on the matrix-based modeling effort, Section 3 will show the quantitative

procedure to estimate the scope of change propagation for OOPs. In this section, different

types of change that may happen to an OOP entity will be classified. Then, the

mechanism of change propagation among these entities will be discussed along with an

9

introduction to the meaning of change options and formulation of priority number, which

is a representative scale to the scope of change propagation for each option.

Section 4 will provide a case study to evaluate and verify the proposed method in

previous section and finally Section 5 will conclude this work with closing remarks.

10

Chapter 2

2. Dependency Modeling of Object-Oriented Programs

To analyze the change propagation process, we develop a dependency model for Object-

Oriented Programs (OOP). This dependency model consists of different sets of entities

that are interconnected. Accordingly, this section first discusses the OOP entities and

their relationships involved in the dependency model. Then, matrix-based modeling is

applied to capture the dependency information among the OOP entities.

2.1. Classification of Entities

Most of object oriented programming languages are almost the same from the aspect of

involved entities and their relationships. But, in this research, we need to focus on a

specific language. Therefore, we have chosen Java programming language, exclusively as

the object oriented programming language to work with.

To know the connections and dependencies that exist in Java OOP, first we should know

the types of entities for Java OOP. Table 1 shows the list of involved types of entities in

Java and a brief description for each one. (Korn, Yih-Farn and Koutsofios, 1999)

11

Table 1: Java Entity Types and Their Descriptions

Class Classes are fundamental building blocks of an OOP and they contain

declarations and definitions of a collection of methods and fields.

Method Method is an operation of a particular object or it is a function that is

part of a class.

Field Field is a variable or constant that is part of a class.

Interface An interface is a named collection of method definitions (without

implementations). An interface can also declare constants. Classes

implement the declarations of zero or more interfaces.

Package A set of classes and interfaces.

Each software program may contain zero, one or more from each specified type. In this

research, we will dedicate a set to each type. This set will contain the entities related to

that type. For example, if the program contains three classes that are called C1, C2 and

C3, the set related to Class type will be Class={C1, C2, C3}. To make this concept

clearer, we will introduce a simple example at this stage and then we will continue

through that example.

The example program is a simple object oriented program that is obtained from Sierra

and Bates (2005), and it is a guess-the-numbers game. The game starts from generating

three random integers between 1 and 9. Then, the player is asked to guess the values of

these three numbers. At the end, the program will return the number of guesses that the

player has made.

The code for this short program is shown in Appendix A for reference. Through analysis

of this program, 25 OOP entities are found. The list of these entities can also be found in

Appendix A. The following sets show the classification of entities for this sample OOP

program.

12

Class= { SimpleDotCom, GameHelper}

Method= {main, setlocationCells, checkYourself, getUserInput}

Field= {numOfGuesses, helper, theDotCom, randomNum, locations, isAlive, guess,

result, locationCells, numOfHits, locs, stringGuess, guess, result, cell, prompt, inputLine,

is}

Interface= {}

Package= {java.io}

2.2. Classification of Dependencies

In OOP, entities are related to each other through different types of relationships.

Although the practice of object-oriented programming has the intention to minimize the

dependency among program entities, (as compared to procedural programming), the

dependency cannot be entirely avoided in order to support the functions of the program.

If we demonstrate the relationships among the entity types, which are described in Table

1 in a high level demonstration, we will have the hierarchy model in Figure 1. As it is

shown in this model, we have field and method in the lowest level of hierarchical

structure. At the upper level of the hierarchical structure, both class and interface consist

of field and method. At the end, package contains classes and interfaces.

Package

Class Interface

Field Method

Figure 1: Hierarchy of OOP Entities

13

To understand the connections that exist between each two OOP entities, we should know

the dependency relationships that are among these entities. As it is discussed before, in

this research, five types of dependency relationships are characterized and they are listed

in Table 2. In this table, signs ( and ↔) show the direction of dependency between two

entities. In the change propagation process, any modifications of one entity in OOP, may

lead to change of other OOP entities through one of the mentioned dependency

relationships.

Table 2: OOP Dependency Relationships

OOP

Relationships

Descriptions

Call

 A method use a predefined method in its body (Method 

Method)

 A method use a predefined field in its body (Method  Field)

 A field is equal to return value of a method (Field  Method)

 A field is equal to combination of other fields (Field  Field)

 A class use the contents of another package in its body (Class 

Package)

 A method use the contents of another package in its body

(Method  Package)

Inheritance  Class A has an inheritance relationship with class B when one of

them extends another one. (Class  Class)

Interface  A Class has interface relationship with an interface when that

class implements that interface. (Class ↔ Interface)

 When a class implements an interface the peer methods will be

related to each other through interface relationship (Method ↔

Method)

Composition  A field is defined as an object of a class in the body of a method

or in the body of another class (Field  Class)

 A method use another method of a class through an object of that

class in its body (Method  Method)

 A method use a field of a class through an object of that class in

its body (Method  Field)

 A field is equal to return value of a method from another class

through an object of that class (Field  Method)
Definition  A method is defined in the body of a class (Class  Method)

 A field is defined in the body of a class (Class  Field)

 A field is defined in the body of a method (Method  Field)

 An interface is defined in the body of a package (Package 

Interface)

 A class is defined in the body of a package (Package  Class)

14

 Through application of mentioned OOP relationships in Table 2 to mentioned OOP

entities in Table 1, we can define different types of dependencies among those entities.

Let’s consider A and B as two different entity types and we suppose that relationship D is

the existed relationship among A and B. Therefore, we can define D(A,B) as the

dependency of entity type A to entity type B through relationship D and it will be

formulated as D(A,B)  A × B, that means any entity of type A can be dependent to any

entity of type B through relationship D.

Table 3 has listed most of common and possible dependencies between each two types of

entities through the mentioned relationships along with a brief description for each one.

In this table, C stands for Class, M stands for Method, F stands for Field, I stands for

Interface and P stands for Package.

Back to the described example in Section 2.1 and by referring to the list of the sample

OOP entities, which is cited in Appendix A, Table 4 has listed dependency relationships

among the entities of sample program and a brief description for each of them.

15

Table 3: Dependencies among OOP Entities

Dependency Types Sub-Types Description

Definition (De) De(C, M)  C × M The methods that have been defined in a

class

De(C, F)  C × F The fields that have been defined in a class

De(M, F)  M × F The variables or constants that have been

defined in a method

De(P, I)  P × I The interfaces that have been defined in a

package

De(P, C)  P × C The classes that have been defined in a

package

Call (Ca) Ca(M, M)  M × M A method that uses other methods from the

same class in its body

Ca(M, F)  M × F A method that uses other variables from the

same class in its body

Ca(F, M)  F × M A field that is equal to return value of a

method

Ca(F, F)  F × F A field that is equal to the combination of

other fields

Ca(C, P)  C × P Classes that use classes or interfaces from

other packages in their body

Ca(M, P)  M × P Methods that use classes or interfaces from

other packages in their body

Composition(Co) Co(F,C)  F × C A variable that is defined in form of an object

from a specific class

Co(M,M)  M × M A method that uses other methods from

different classes in its body through the

objects of those classes

Co(M,F)  M × F A method that uses other variables from

different classes in its body through the

objects of those classes.

Co(C,F)  C × F The fields that have been defined in a class in

form of objects

Interface(Int) Int(C,I)  C × I

Int(I,C)  I × C

A class that implements an interface

Int(M1,M2)  M1 × M2

Int(M2,M1)  M2 × M1

The methods that have been defined in an

interface and the methods that have been

defined in the correspondent class that

implement the interface

Inheritance(Inh) Inh(C,C)  C × C A class that extends another class

Inh(I,I)  I × I An interface that extends another interface

16

Table 4: Description of Dependencies among Example Program’s Entities

De(M1, F1) Variable (numOfGuesses) is defined in (main) method.

De(M1, F2) Object (helper) is defined in (main) method.

De(M1, F3) Object (theDotCom) is defined in (main) method.

De(M1, F4) Variable (randomNum) is defined in (main) method.

De(M1, F5) Variable (locations) is defined in (main) method.

De(M1, F6) Variable (isAlive) is defined in (main) method.

De(M1, F7) Variable (guess) is defined in (main) method.

De(M1, F8) Variable (result) is defined in (main) method.

Co(M1,M2) Method (main) uses (setlocationCells) method from

(SimpleDotCom) class in its body through an object of that class

Co(F2,C2) Variable (helper) is defined in form of an object from (GameHelper)

class

Co(F3, C1) Variable (theDotCom) is defined in form of an object from

(SimpleDotCom) class

Ca(F5, F4) Field (locations) is equal to the combination of other fields

(randomNum)

Ca(F7, M4) Field (guess) is equal to return value of method (getUserInput)

Ca(F8,M3) Field (result) is equal to return value of method (checkYourself)

De(C1, F9) Field (locationCells) is defined in class (SimpleDotCom),

De(C1,F10) Field (numOfHits) is defined in class (SimpleDotCom)

De(C1, M2) Method (setlocationCells) is defined in class (SimpleDotCom)

De(C1, M3) Method (checkYourself) is defined in class (SimpleDotCom)

Ca(M2, F9) Method (setlocationCells) uses variable (locationCells) from the

same class in its body

De(M2, F11) Variable (locs) is defined in method (setlocationCells)

Ca(M3,F9) Method (checkYourself) uses variable (locationCells) from the same

class in its body

Ca(M3, F10) Method (checkYourself) uses variable (numOfHits) from the same

class in its body

De(M3,F12) Variable (stringGuess) is defined in method (checkYourself)

De(M3, F13) Variable (guess) is defined in method (checkYourself)

De(M3, F14) Variable (result) is defined in method (checkYourself)

De(M3, F15) Variable (cell) is defined in method (checkYourself)

Ca(F13, F12) Field (guess) is equal to the combination of other field (stringGuess)

Ca(F15, F9) Field (cell) is equal to the combination of other field (locationCells)

Ca(C2,P1) Class (GameHelper) uses classes from package (java.io) in its body

De(C2,M4) Method (getUserInput) is defined in class (GameHelper)

De(M4,F16) Variable (prompt) is defined in method (getUserInput)

De(M4, F17) Variable (inputLine) is defined in method (getUserInput)

De(M4, F18) Object (is) is defined in method (getUserInput)

17

2.3. Matrix Representation

Design Structure Matrix (DSM) has been a common tool to represent the dependency

information in systems modeling and engineering design. Examples include design

structure matrix (Browning 2001) and domain mapping matrix (Daniovic and Bronwing

2007). Furthermore, DSM has been used to facilitate the control of change propagation

in complex designs (Chen et al. 2007; Li and Chen 2010). In this research, we intended

to continue these efforts by using DSM as a tool to represent the interactions and

interdependencies among object oriented program’s elements and extending the matrix-

based techniques to control the change propagation in OOP.

DSM is a tool that provides a compact and clear view of dependencies in systems and

simplifies analysing and management of complex systems. DSM is basically a square

matrix that relates entities of one kind to each other. DSM can be binary or numerical and

at the same time, it can be directed or non-directed. Binary DSM only represents the

existence of relationship between every two entities. Numerical DSM also represents the

strength or weight of each relationship. In non-directed DSM, since dependencies do not

have specific directions, the DSM is a symmetric matrix or it contains two identical upper

triangle and lower triangle parts. Unlike non-directed DSM, in directed DSM, each

relationship has its specific direction. Therefore, in directed DSM, existence of

dependency between two entities in a specific direction will not guarantee the existence

of dependency in the opposite direction between those two entities necessarily. In DSM,

the dependency of an entity to itself is not allowed. The DSM that we use in our work is a

directed binary DSM.

18

Towards the matrix representation effort, an object-oriented program is first analyzed to

identify the OOP entities that are involved. (The OOP entities are described in Table 1.)

All these entities are then labelled and represented in a DSM’s rows and columns. If a

program has n OOP entities, the resulting matrix’s dimension is n-by-n. Each DSM entry

represents the dependency relationship of the corresponding two entities. For instance, if

entity i depends on entity j, the corresponding matrix entry denoted as mij is marked to

indicate the presence of such dependency. It should be noted that the OOP relationships

are directional. Thus, the resulting matrix is not necessarily symmetric.

To illustrate, suppose that we have six different entities {a, b, c, d, e, f}, where a is a field

entity; b, c are method entities; d, e are class entities, and f is an interface entity. The

relationships of these entities are represented in a matrix in Figure 2. For instance, the

matrix entry mbc shows that method entity b calls method entity c (i.e., call relationship).

In turn, by checking the column of c, the presence of mbc implies that any change of c

may lead to the change of b. Similarly, the matrix entry mde represents the inheritance

relationship that class entity d inherits class entity e (e is parent of d). Both matrix entries

mef and mfe represent the reciprocal interface relationship between e and f. The matrix

entry mad shows that field entity a, that is a reference to an object, composes class entity d

(i.e., composition relationship). Lastly, the matrix entry mea shows that class entity e

defines field entity a (i.e., definition relationship).

19

 a b c d e f

a mad

b mbc

c

d mde

e mea mef

f mfe

Figure 2: Sample Matrix to Show Different OOP Relationships

Therefore, if we know all the dependency relationships that exist among the entities of an

OOP, we can create the DSM related to that program. Then, if we accept Table 4 as the

existing dependency relationships among the entities of our sample program, Figure 3

can be considered as its correspondent DSM.

Figure 3: Dependency Matrix of the Example Program

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

20

Chapter 3

3. Estimation of Change Propagation

Estimation of the scope of change propagation in software is an important issue in

software’s change management. Applying changes in software always consumes time

and budget. Therefore, predicting and minimizing the scope of change is of great

importance.

Changes that may happen to software are result of existence of a bug in the software or

need for an improvement or adding a new feature to the software or a new customer

request. Since the entities of object oriented software have dependency relationships with

each other, changes that happen to one of software’s entities may propagate to other

entities of the software. Therefore, in farther levels of change propagation, a large scope

of software may go under changes. Since the size of change scope has direct relationship

with cost and time, finding a method to minimize the scope of change can be helpful in

saving time and money.

In this section, we have calculated the probability of change propagation among different

entity types through classification of entity changes and analysis of the dependencies that

exist among each two types of entities. Then, we will calculate priority number that can

21

be considered as a representative scale for the scope of change propagation after change

application.

3.1. Classification of Changes of Entities

To be able to study changes of software’s entities more closely, we should have a precise

idea about the type of changes that may happen to each type of entity in OOP. By change

type, we mean the actual change that may happen to an entity. For example, the entity

type method can be changed through changing its body, passing arguments, return type

and etc., that each one can be considered as a type of change.

Table 5: Change Types

Change Type 1 (CT1) Change in name

Change Type 2 (CT2) Change in access level(public, protected and private)

Change Type 3 (CT3) Change in being final or not

Change Type 4 (CT4) Change in being abstract or not

Change Type 5 (CT5) Change in type (primitive or user-defined)

Change Type 6 (CT6) Change in passing arguments

Change Type 7 (CT7) Change in per-instance or per-class (static)

Change Type 8 (CT8) Change in being constant or variable

Change Type 9 (CT9) Change in return type (primitive, user-defined, or void)

Change Type 10 (CT10) Change in body

Change Type 11 (CT11) Add or delete field

Change Type 12 (CT12) Add or delete method

Change Type 13 (CT13) Add or delete class

22

Table 5 has listed the change types that may be cause of change for an entity type. Note

that each change type may be or may not be applicable to a specific type of entity. For

example, changes in passing arguments can be applicable to entity type “method” but it is

meaningless for entity type “field”.

3.2. Change Propagation Mechanism

In OOP, changes start through applying a change type (Table 5) to an entity type (Table

1). Then, it will propagate to another entity through a dependency relationship (Table 3).

For each specific change path, the probability of change for the second entity may be

100% (under the situation that we can be sure about changing the second entity) or 50%

(under the situation that we cannot be sure about changing the second entity). For

example, if we change the name of a class (CT1 × Class), due to dependency relationship

Co(F,C), the definition of all the objects that are defined from that class should be

changed with the probability of 100 %. Now, suppose that we change the type of return

value in a method (CT9 × Method). Due to dependency relationship Ca(F, M), the fields

that are equal to return value of that method, may or may not have to be changed. Since

we cannot claim the change until we know the exact conditions of the real code, the

probability of change for the second entity in this situation is 50%.

Table 6 has listed the change paths in OOP and the probability of change for each

affected entity.

23

Table 6: Change Paths in OOP

Initial Entity Change Type Dependency

Relationship

Affected Entity Probability

Method CT1 Ca(F, M) Field 100

Ca(M, M) Method 50

Co(M,M) Method 50

Int(M,M) Method 100

CT9 Ca(F, M) Field 50

Ca(M, M) Method 50

Co(M,M) Method 50

Int(M,M) Method 100

CT6 Ca(F, M) Field 50

Ca(M, M) Method 50

Co(M,M) Method 50

Int(M,M) Method 100

De(C, M) Class 50

CT2 Ca(F, M) Field 50

Co(M,M) Method 50

Int(M,M) Method 100

CT10 Ca(F, M) Field 50

Ca(M, M) Method 50

Co(M,M) Method 50

De(C, M) Class 50

CT7 Ca(F, M) Field 100

Ca(M, M) Method 50

Co(M,M) Method 50

Int(M,M) Method 100

CT4 De(C, M) Class 50
Ca(F, M) Field 100
Ca(M, M) Method 100
Co(M, M) Method 100

CT12 Ca(M, M) Method 100
Co(M, M) Method 100
Ca(F, M) Field 100
Int(M,M) Method 100

Field CT1 Ca(M, F) Method 100

Co(M,F) Method 100

Ca(F, F) Field 100

De(M, F) Method 100

CT5 Co(C,F) Class 50

24

De(C, F) Class 50

Ca(M, F) Method 50

Co(M,F) Method 50

De(M, F) Method 50

CT2 Co(C,F) Class 50

Co(M,F) Method 50

CT7 Ca(M, F) Method 50

Co(M,F) Method 50

Ca(F, F) Field 50

CT8 Ca(M, F) Method 50

Co(M,F) Method 50

De(M, F) Method 50

CT11 Ca(F, F) Field 100
Ca(M,F) Method 100
Co(M,F) Method 100

Class CT1 Co(F,C) Field 100

Inh(C,C) Class 100

Int(I,C) Interface 100

De(P, C) Package 100

CT2 Co(F,C) Field 50

De(P, C) Package 50

CT3 Inh(C,C) Class 100

CT4 Co(F,C) Field 100

CT12 De(P, C) Class 100
Inh(C,C) Class 50
Int(I,C) Interface 50

CT11 Inh(C,C) Class 50

CT13 De(P, C) Package 100
Co(F,C) Field 100

Inh(C,C) Class 50

Interface CT12 Int(C,I) Class 100

De(P, I) Package 100

CT11 Inh(I,I) Interface 50

CT1 Int(C,I) Class 100

Inh(I,I) Interface 50

De(P, I) Package 100

Package CT1 Ca(M, P) Method 100

Ca(C, P) Class 100

25

At this stage, by knowing the probability of change propagation among each two specific

entities through each particular dependency relationship, we can calculate the probability

of change propagation between those two entities by calculating the average of

probability numbers through all different dependency relationships. For example, for the

probability of change propagation among package and class we have:

Class × CT1  De(P, C) Package (100%)

Class × CT2  De(P, C) Package (50%)

Class × CT12  De(P, C) Package (100%)

Class × CT13  De(P, C) Package (100%)

Package × CT1  Ca(C, P) Class (100%)

Therefore, the probability of change propagation among package and class will be

(100+100+100+100+50)/5=90%

In a same way, we can calculate the probability of change propagation among other

entities. Table 7 has listed the probability of change propagation between each two

specific entities.

Table 7: Change Propagation Probability among Entities

Class - Method 50% Field-Field 83.33%

Class-Field 71.42% Class-Interface 87.5%

Field-Method 70.45% Package-Class 90%

Method-Method 73.80% Package-Interface 100%

Class-Class 70% Interface-Interface 50%

26

3.3. Change Options

Change options can be defined as different ways to address the change request. For

example, to decrease the capacity of a box, at least we can have seven different methods.

 Decrease width

 Decrease length

 Decrease height

 Decrease width and decrease length

 Decrease width and decrease height

 Decrease length and decrease height

 Decrease width and decrease length and decrease height

Each mentioned method can be an option to lead to a same result that is reducing the box

capacity. Now, assume that the mentioned box is part of a bigger system. In this situation,

choosing each option can have a different impression on the system. In a same way, for

software programs to reach to a same result from a change request, we may have more

than one option. Also, each option may have different impression on the other parts of the

software and as a result, may have different change scopes.

To make this concept clearer, we will continue by going through the mentioned example

in Section 2.1. In this program there is a need for change. The reason of change in this

program is existence of a bug in the code and we need to modify the program to correct

it. Particularly, the bug lies in the lines 12-14 in the class SimpleDotCom (see Appendix

for the details of the codes). Due to this bug, the program will increase the number of

hits every time the user guesses one of the generated numbers, even if that number had

already been guessed. To remove this bug, we need to distinguish the case if the user has

repeatedly guessed the same number generated by the program. If this is the case, the

27

program will not count it as a new hit. To correct this bug, four change options are

proposed (Sierra and Bates 2005).

In option 1, a second array is created. At each time when the user makes a guess, the

modified program stores the guessed number in the second array. When the user makes

another guess, the program will check the second array for any repeated guesses. Figure

4 shows part of the modified program according to this option (Changed lines are

highlighted).

Public class SimpleDotCom{

 Int[] locationCells;

 Int numOfHits=0;

 boolean[] hitCells=new Boolean[3];

 hitcells[1]=false;

 hitcells[2]=false;

 hitcells[3]=false;

 Public void setLocationCells (int[] locs){

 locationCells=locs;

 }

 Public string checkyourself(string stringGuess){

 Int guess= Integer.parseInt(stringGuess);

 String result=”miss”;

 For (int i=0; i<3; i++){

 Int Cell= locationCells[i];

 If (guess==cell){

 If (hitCells[i]==false){

 result=”hit”;

 numOfHits++;

 hitCells[i]=true;

 break;

 }

 }

 }

 If (numOfHits==locationCells.length){

 Result=”kill”;

 }

 System.out.println(result);

 Return result;

 }

}

Figure 4: Modified Codes Based on Change Option 1

In option 2, the original array (i.e., locationCells) would be kept, but the values of any

correctly guessed numbers in the array would be changed to -1. In this option, there is

only one array to check and manipulate. Since the user is only looking for non-negative

numbers in the locationCells array, a negative value (i.e., -1) at a particular location of

28

this array means that the number in that location has already been guessed. Figure 5

shows part of the modified program according to this option (Changed lines are

highlighted).

Public string checkyourself(string stringGuess){

 Int guess= Integer.parseInt(stringGuess);

 String result=”miss”;

 For (int i=0; i<3; i++){

 Int Cell= locationCells[i];

 If (guess==cell){

 result=”hit”;

 numOfHits++;

 locationCells[i]= -1;

 break;

 }

 }

 If (numOfHits==locationCells.length){

 Result=”kill”;

 }

 System.out.println(result);

 Return result;

 }

Figure 5: Modified Codes Based on Change Option 2

In option 3, the location of each number that is guessed correctly, should be removed

from the locationCells array and the array should be modified to a smaller one. Since the

size of an array cannot be changed, we have to make a new array and copy the remaining

cells from the old array to the new and smaller array. Figure 6 shows part of the

modified program according to this option (Changed lines are highlighted).

Option 4 is similar to option 3, but the difference is use of Arraylist from the Java library.

The Arraylist acts like an array in Java, but it has new features. One of these features is

that it can shrink when we remove any cells from it. Therefore, we do not have to make a

new array and copy the remaining cells from the old array to the new one (as the case in

the option 3). Figure 7 shows part of the modified program according to this option

(Changed lines are highlighted).

29

Public class SimpleDotCom{

 Int[] locationCells;

 Int numOfHits=0;

 Int n=3;

 Int length;

 Public void setLocationCells (int[] locs){

 locationCells=locs;

 length= locationCells.length;

 }

 Public string checkyourself(string stringGuess){

 Int guess= Integer.parseInt(stringGuess);

 String result=”miss”;

 For (int i=0; i<n; i++){

 Int Cell= locationCells[i];

 If (guess==cell){

 n=n-1;

 int k=0;

 int[] sub=new int[n];

 for (int m=0; m<=n; m++)

 If (m!=i){

 sub[k]= locationCells[m];

 K++;

 }

 locationCells=sub;

 result=”hit”;

 numOfHits++;

 break;

 }

 }

 If (numOfHits= =length){

 Result=”kill”;

 }

 System.out.println(result);

 Return result;

 }

}

Figure 6: Modified Codes Based on Change Option 3

 Import java.util.ArrayList;
Public class SimpleDotCom{

 Private ArrayList<String> locationCells;

 Public void setLocationCells (ArrayList<String> loc){

 locationCells=locs;

 }

 Public string checkyourself(string stringGuess){

 String result=”miss”;

 Int index=locationCells.indexOf(stringGuess);

 if (index>=0){

 locationCells.remove(index);

 if (locationCells.isEmpty()){

 result=”kill”;

 }else{

 result=”hit”;

 }

 }

 Return result;

 }

 }

Figure 7: Modified Codes Based on Change Option 4

30

3.4. Formulation of Priority Number

Priority number can provide a scale for comparison among the scopes of change that

different change options impose to the software system. The purpose of priority number

in this context is to estimate the change propagation scope for each change option. The

basic concept behind the computation of priority number is to calculate the expected

number of modified entities for each change option. The change option that has the

smallest value of the priority number will be considered as having a smallest scope of

change propagation. To calculate the priority numbers, first we should determine the

change proposals (options) and identify the target entities for initial modifications. By

target entities, we mean the entities that will go under changes in the first level of change

propagation for each change option. Target entities are not the result of change in any

other entities. It means that, change in target entities is independent from change in any

other entities. After determining the target entities for each change option and by using

the dependency matrix, we are able to trace the change propagation paths and estimate

the number of potentially affected entities. In practice, if the entities are located farther

on a propagation path (or at a higher propagation level), they have less chance to be

actually affected after the implementation of all the changes. In this case, we use a

probabilistic approach to capture this information.

Without losing the generality of the approach, suppose that we have a set of OOP entities

as {a, b, c, d}, and these entities are interrelated. In a change option, the initial

modifications are clearly defined in a sense that we know which entities must be changed

initially. Let us denote this kind of entities as target entities. Then, we denote P(a) as the

probability of changing the entity a due to the implementation of the change option. If

31

the entity a is a target entity, then P(a) = 1 to imply that the entity a must be changed in

the change option.

In a change option, suppose that the entities a and b are target entities. Changing the

entity a will potentially change the entity c. To capture the chance of propagation from

one entity to another, we denote P(c | a) as the propagation probability that the entity c

will be changed due to the change of the entity a (or in a condition that the entity a has

been changed).

In practice, the modifications of entities can propagate in a path. Suppose that changing

the entity a will potentially change the entity c, which will in turn potentially change the

entity d. Intuitively, this propagation path can be represented as a  c  d. Then, the

probability of changing the entity d due to the change of the entity a can be computed as

follows.

Pc(d | a) = P(d | c) * P(c | a) * P(a) (1)

Where the subscript is used to indicate any intermediate entities on the propagation path.

Based on this derivation, we can further define the direct and indirect propagation

probabilities. The direct propagation probability is referred to as the probability that the

change propagation takes place due to a direct relationship (e.g., a  c described above).

The direct propagation probability should be determined based on the application’s

context. That is, as we understand the nature of the entities and their relationships, we

should estimate how likely that changes on an entity will affect another one directly. In

contrast, the indirect propagation probability is calculated from the direct propagation

32

probability. In the above formulation, P(d | a) is indirect in a sense that its value can be

determined via the direct probabilities, i.e., P(d | c) and P(c | a).

Also, the same entity can be affected by different target entities or from different paths of

change propagation. For instance, in addition that the entity d can be affected by the

target entity a (as shown above), the entity d can also be affected by the target entity b

(i.e., b  d). Then, the probability of changing the entity d due to change of the entities a

and b can be computed as follows.

P(d | a and b) = P(d | a) + P(d | b) – P(d | a) * P(d | b) (2)

For simplicity, we denote P(d) as the probability that the entity d will be changed due to

all initial modifications defined in a change option. Given that there are n entities in a

program {a1, a2, …, an}, the priority number (denoted as PN) of the change option 1 can

be computed as follows.

PN(option 1) =


n

i

iaP
1

)(

(3)

P(ai) can be considered as the probability that the entity ai will be changed for a given

change option. Then, the summation of these probabilities in the computation of PN can

be viewed as the expected number of entities to be changed given a change option. If

several change options are present, we can estimate the scope of change propagation for

each option. The change option that has the smallest priority number (i.e., PN) will be

selected for implementation after considering the detailed specifications of that option.

In this level of research we set the direct propagation probability equal to 0.5 for

simplicity. That is, we have a half chance that the change of one entity will directly and

33

actually change another entity. Another assumption in this demonstration is to limit the

length of the change propagation paths up to three levels.

To make the concept of Priority Number clearer, again we will continue through the

example that is introduced in Section 2.1. In Section 3.3, we described the bug that exists

in the mentioned OOP and also we presented four different options to eliminate this bug.

Now, we are going to evaluate each of these options from change propagation aspect. For

this evaluation, we need to know the Priority Number for each option. To calculate the

priority numbers, we need to know the target entities for each option.

In option 1 as seen in Figure 4, we need to change the entity 15 (i.e., CheckYourSelf

method) and the functionality of this method has been changed by adding new lines of

code. Also, the entity 10 (i.e., SimpleDotCom class) has been changed by adding new

variable (i.e., hitCells). Then, the initial changes of this option belong to the entities 10

and 15.

In option 2 as seen in Figure 5, we only need to change the entity 15 (i.e., CheckYourSelf

method) and the functionality of this method has been changed by adding new lines of

code. Then, the initial change of this option only belongs to the entity 15.

In option 3 as seen in figure 6, we need to change the entity 15 (i.e., CheckYourSelf

method) and the functionality of this method has been changed by adding new lines of

code. Also, the entity 10 (i.e., SimpleDotCom class) has been changed by adding new

variables (i.e., n and length). Since the entity 13 (i.e., setLocationCells method) is doing

something new in addition to its previous task, it has been changed by adding new lines

of codes as well. Also the entity 11 (i.e., locationCells) will be changed by being

34

assigned a new array (i.e., sub). Then, the initial changes of this option belong to the

entities 10, 11, 13 and 15.

In option 4 as seen in figure 7, this option requires a change to entity 15 (i.e.,

CheckYourSelf method), and the functionality of this method is changed by adding new

lines of codes. Also, the entities 12 (i.e., numOfHits), 17 (i.e., guess) and 19 (i.e., cell)

have been deleted. The entities 14 (i.e., locs) and 11(i.e., locationCells) have been

modified since they have been changed from int[] to ArrayList<string>. Then, the initial

changes of this option belong to the entities 11, 12, 14, 15, 17and 19.

As discussed, the change option 1 has the target entities 15 and 10. Thus, P(15) = P(10) =

1. By checking the column 15 of the dependency matrix in Figure 3 of Section 2.3, it is

found that any change of entity 15 will potentially change entities 9 and 10. Similarly,

entity 10 will potentially change entity 4. This matrix-based propagation tracing can be

conducted similarly for the potentially-affected entities (i.e., the entities 9 and 4). Figure

8 shows the propagation paths of the change option 1 up to three levels.

Figure 8: Change Propagation Paths for Option 1

By considering the assumption that the direct propagation probability is equal to 0.5, we

can set, for example, P(10|15)= P(9|15)= P(4|10) = 0.5. To determine the probability of

changing the entity 1 in this change option (i.e., P(1)), we first identify the propagation

target
entities

level 1 level2 level3

15
10 4 1

9 1 terminate

10 4 1 terminate

35

paths that involve the entity 1. As such, we can determine the following probabilities

based on different propagation paths.

P10,4(1|15) = P(1|4)*P(4|10)*P(10|15) = 0.5*0.5*0.5 = 0.125 (the first path)

P9(1|15) = P(1|4)*P(4|15) = 0.5*0.5 = 0.25 (the second path)

P4(1|10) = P(1|4)*P(4|10) = 0.5*0.5 = 0.25 (the third path)

To determine the value of P(1), the above probabilities need to be combined by

referencing the formulation (2). For simplicity, let P10,4(1|15) = x, P9(1|15) = y and

P4(1|10) = z. Then, the calculation of P(1) is shown as follows.

P(1) = x + y + z – x*y – x*z – y*z + x*y*z = 0.508

The similar calculation can also be applied to the entities 4 and 9 to determine P(4) and

P(9), respectively. As a result, the priority number of the option 1 can be calculated as

follows.

PN(option 1) = 


n

i

iaP
1

)(= P(15)+P(10)+P(9)+P(4)+P(1)=1+1+0.5+0.625+0.508 = 3.633

In change option 2, the only target entity is the entity 15 .Figure 9 shows the change

propagation paths of this option up to three levels.

Figure 9: Change Propagation Paths for Option 2

target
entities level 1 level2 level3

15
10 4 1

9 1 terminate

36

With the same computations as option 1, we will have the following change probability

number for each involved entity in option 2:

P(15)=1 , P(10)=0.5 , P(4)=0.25 , P(9)=0.5 , P(1) =0.344

Therefore, for this option we will have the Priority number equal to:

Priority Number=1+0.5+0.25+0.5+0.344= 2.6

In the change option 3, the target entities are entities 15, 13, 10 and 11 .Figure 10 shows

the change propagation paths of this option up to three levels.

Figure 10: Change Propagation Paths for Option 3

Again with the same computations, we will have the following change probability

number for each involved entity in option 3:

P(15)=P(10)=P(11)=P(13)=1, P(9)=0.672, P(4)=0.8395, P(1)= 0.8764

target
entities level 1 level2 level3

15
10 4 1

9 1 terminate

13
1 terminate

10 4 1

10 4 1 terminate

11

10 4 1

13
1 terminate

10 4

15
10 4

9 1

19 15
10

9

37

Therefore, for this option we will have the Priority number equal to:

Priority Number=1+1+1+1+0.672+0.8395+0.8764= 6.3879

In change option 4, the target entities are the entities 15, 12, 19, 17, 14 and 11 .Figure 11

shows the change propagation paths of this option up to three levels.

Figure 11: Change Propagation Paths for Option 4

Again with the same computations as previous options, we will have the following

change probability number for each involved entity in option 4:

P(15)=P(17)=P(11)=P(14)=P(12)=P(19)=1, P(9)= 0.8625, P(4)= 0.8125, P(1)= 0.834,

P(10)=0.98

target
entities level 1 level2 level3

15
10 4 1

9 1 terminate

12

10 4 1

15
10 4

9 1

19 15
10 4

9 1

17 15
10 4

9 1

11

10 4 1

13
1 terminate

10 4

15
10 4

9 1

19 15
10

9

14 13
1 terminate

10 4

38

Therefore, for this option we will have the Priority number equal to:

Priority Number=1+1+1+1+1+1+0.8625+0.8125+0.834+0.98= 9.489

From the obtained priority number for each option, we can conclude that option 2 has the

least change propagation on the software system and option 4 has the most change

propagation. Thus, option 2 has the first priority for change while option 4 has the last

priority.

To validate the effectiveness of the priority numbers to estimate the scope of change

propagation, the four change options are implemented. Then, we check the number of

lines of codes that are actually modified (i.e., added, removed or changed). The priority

numbers and the numbers of modified lines of codes for each change option are listed in

Table 8 for comparison.

Table 8: Comparison of Different Change Options

Change

Option

Priority

Number

Number of Modified

Lines of Codes

1 3.633 8

2 2.6 3

3 6.388 14

4 9.489 20

As observed, the rank of the priority numbers corresponds to the rank of the numbers of

modified lines of codes. To further analyze, both the priority numbers and the numbers

of modified lines of codes are normalized between 0 and 1 via the division with the

largest value of their categories. Then, a plot is created in Figure 12, where the y-axis

and x-axis mark the values of the normalized priority numbers and the normalized

numbers of modified lines of codes, respectively. As seen in Figure 12, both sets of

39

values are satisfactorily correlated as the corresponding dots are roughly marked around

the diagonal.

Figure 12: Comparison of Priority Number Scale vs. Modified Line of Code Scale

40

Chapter 4

4. Case Study

To evaluate and verify the effectiveness of using priority number as a representative scale

for the scope of change propagation in a change option, we will introduce a case study in

this section. Our case study is about predicting the scope of change propagation in an

actuall OOP. As the case study, we have developed software to help the user to do

clustering for a dependency matrix. Due to some unefficiencies that exist in our OOP, we

need to have some changes in our software inorder to improve it. Our software is an OOP

that receives the entries of a dependency matrix as input and set the matrix entries along

the main diagonal through reordering of rows and columns. Then, it will return the

manipulated matrix as the output. The output of this software can be used for clustering

purposes.

Complexity is an inseparable characteristic of most of the systems. Therefore to manage

these systems, managing the complexity is inevitable. Dependency matrix is one of the

popular tools that have been used recently to perform both the analysis and the

management of complex systems. Dependency matrix simply captures the relationships

among different parts of the systems and it will let the system managers to study and

analyze the dependencies among the entities of the complex systems. Dependency matrix

41

clustering is a method that partitions the entries of dependency matrix to the categories in

a way that the entries of each category have most dependency with each other and less

dependency with the entries of other categories. Dependency matrix clustering will help

the user to find the subsets of dependency matrix elements that are minimally interacted.

One standard method to do the dependency matrix clustering is a two-phase method that

in first phase, it will set the elements of the Dependency matrix along the main diagonal

of the matrix through reordering of rows and columns. Then, in the second phase, it will

choose n-1 points on the diagonal to divide the matrix to n clusters (Li, 2009). Figure 13

has shown these two phases on a regular dependency matrix.

Figure 13: Workflow of the Two-Phase Decomposition Method. Adapted from (Li,

2009.)

Going through phase 1 and reordering the rows and columns in an appropriate manner is

not always an easy task especially for larger matrices. As it’s mentioned, the software

that we have developed receives the entries of a dependency matrix as input and set the

matrix entries along the main diagonal and will return the manipulated matrix as the

output. The output of this program can be used as input for phase 2 of the mentioned

decomposition method.

The code of this OOP is available in Appendix B. By referring to this code, we can

distinguish five different classes in this program. Table 9 has listed these classes along

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

12 8 9 10 1 5 3 2 4 6 7 11

9

3

5

7

2

10

1

6

4

8

10 2 12 8 9 1 5 3 4 6 7 11

9

3

5

7

2

10

1

6

4

8

Phase 1

Phase 2

42

with a brief description for each on. More detailed description for each class will be in

the following. Figure 14 has provided the direction of data flow among classes of the

mentioned OOP.

Table 9: Case Study’s Involved Classes

Classes Description

Cell Each object of this class acts as a cell of a matrix.

Node Each object of class Node represents a branch and two sub branches of the

constructed tree.

Matrix The object of class matrix is a two dimensional array of objects of Cell class

and it has a specific number of rows and columns.

Cm This class is designed for producing the coupling matrix.

Tree The object of this class has an array of objects of Node class (sequence), which

is designed to keep the sequence of nodes in the tree.

Class Cell:

Each object of this class contains the content of a specific location in the matrix and the

row number and column number of that location. Also, it contains an extra row number

and an extra column number that contain the changes that may eventually happen to the

row number and column number or the sequence of row number and column number of

that specific location.

Matrix Cell

Tree

Node

Cm

Figure 14: Direction of Data Flow among Classes

43

Class Node:

Each object of class Node represents a branch and two sub branches of the constructed

tree based on concatenated coupling matrix.

Class Matrix:

This class has a constructor that asks the user to enter the enteries of matrix, one by one

and then, fill in the matrix cells. Also, this class has a method for printing the enteries of

the matrix.

This class has a method (rearrange) that receives the sequence of rows and columns in

form of a [2][n] array, that first row shows the sequence of rows and second row shows

the sequence of columns. This method will rearrange the rows and columns of the

original matrix based on the received array and will return the new matrix.

Class Cm:

Each Cm object has a two dimensional array of objects of class Cell for the produced

coupling matrix (cm), a two dimensional array of objects of class Cell for row coupling

matrix (cmr), a two dimensional array of objects of class Cell for column coupling matrix

(cmc), a two dimensional array of objects of class Cell for row-column coupling matrix

(cmrc), a two dimensional array of objects of class Cell for the transposed row-column

coupling matrix (trans) and two variables that holds the number of rows and columns,

which are equal to the number of rows and columns of the original matrix.

This class has a constructor that accepts the original matrix as an input and produce cmr,

cmc and cmrc from the original matrix. Also, it has a method that produces the

transposed cmrc from the original cmrc (tcmrc). Also, this class has a method that

44

produces the final coupling matrix from cmr, cmc, cmrc and trans and will return it as a

two dimensional array of objects of class Cell.

Class Tree:

The object of this class has an array of objects of class Node (sequence), which is

designed to keep the sequence of nodes in the tree and it also has two variables, which

contain the original number of rows and columns in the original matrix.

This class has a function (makeRevised), which receives the cm two dimensional array as

the input and produces and returns a lower triangle matrix from the original cm, in form

of a two dimensional array of objects of class Cell, as the output.

This class has a function (findMax), which searches and finds the largest entry in the

produced lower triangle cm matrix and returns it in form of an object of class Cell. This

function acts as a helping function for the method (makeTree).

This class has a function (makeTree), which is designed to find linked sub branches and

the related branch for those two sub branches and put them in a single object of class

Node in the sequence array.

Methods (findLeafs, findDependency and reordering) are designed to put the branches

and sub branches of the tree in a correct order in the sequence array.

This class has a method (findSequence) that retrieves the sequence of rows and columns

from the sequence array, that has been produced in (makeTree) method, and reordered

through (findLeafs, findDependency and reordering) methods, and puts them in a

45

int[2][n] array and then, returns this array. The output of this method will be used as the

input for (rearrange) method in (Matrix) class, to rearrange the original matrix.

The code of this OOP contains 94 entities of type class, method, field and package. The

list of these entities along with a short description for each of them is available in

Appendix B. Figure 15 shows the DSM related to this code. As it is discussed before, this

matrix represents dependencies that exist among the entities of the OOP program.

Figure 15: Dependency Matrix of the Case Study

9 1 2 3 4 5 10 6 7 8 11 12 13 15 17 16 14 18 36 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 39 40 38 50 51 41 42 43 44 45 46 47 48 49 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

Cell (class) 9

rowNum (field) 1

colNum (field) 2

contain (field) 3

extraRow (field) 4

extraCol (field) 5

Matrix (class) 10

row (field) 6

col (field) 7

mat (field) 8

Matrix (cons) 11

row1(field) 12

col1(field) 13

rearrange (method) 15

sequ1 (field) 17

mat1 (field) 16

mat2 (field) 14

showMatrix(method)18

Cm (class) 36

cm (field) 19

cmr (field) 20

cmc(field) 21

cmrc (field) 22

trans (field) 23

cmrow (field) 24

cmcol (field) 25

Cm(cons) 26

max(field) 27

min (field) 28

h (field) 29

max1(field) 30

min1 (field) 31

h1 (field) 32

sumr(field)33

sumc(field)34

h3 (field) 35

tcmrc (method) 37

makeCm(method)39

rc(field)40

Node (class) 38

first (field) 50

second (field) 51

branch (field) 41

Tree (class) 42

sequence (field)43

originRow(field) 44

originCol(field) 45

makeRevised(method)46

fc (field) 47

nr(field)48

nc(field) 49

makeTree(method)52

revisedCm(field)53

counter(field)54

counter1(field)55

newnode(field)56

findMax(method)57

findLeafs(method)58

seqq(field)59

point(field)60

leafs(field)61

nonLeafs(field)62

toFind(field)63

findSequence(method)64

se(field)65

seq(field) 66

findDependency(method)67

point1(field)68

point2(field)69

revisedCm1(field)70

point1List(field)71

point2List(field)72

dep(field)73

findIndex(method)74

m(field)75

o(field)76

reordering(method)77

revisedCm2(field)78

sequence1(field)79

adding(field)80

sequence2(field)81

pr(field)82

adding1(field)83

fdis(field)84

sdis(field)85

main(method)86

row2(field)87

col2(field)88

matrix1(field)89

cm1(field)90

finalCm(field)91

mtree(field)92

seque(field)93

seq2(field)94

46

4.1. Problem Descriptions and Change Options

Efficiency is one of the most important characteristics that every software program

should have. In the mentioned OOP, there is a problem that may affect the efficiency of

the program. The problem is that every single time the code tries to reach the content of

each entry of mat matrix or cm, cmr, cmc, cmrc and trans matrices, it should go through

an object of class Cell and this will reduce the efficiency of the program. To solve this

problem, we should stop using class Cell in order to keep the order of entries in matrices

and we should use the mathematical address of each entry of the matrix instead of that.

To apply this solution, we have suggested three different solutions:

First solution:

In this solution, we eliminate class Cell completely and we use two auxiliary int[][] array

to keep the order of rows and columns of the Cm matrix in makeTree method. Here, we

need to change findMax method in an appropriate way.

Second solution:

In this method, we do not eliminate Cell class, but we do not use it in any other classes

and methodes except makeTree method. In makeTree method, we copy the matrix that is

based on int[][] to a matrix based on Cell[][] and we let the rest of makeTree method

continue like before. Here, we do not need to change findMax method at all.

Third solution:

In this method, we eliminate class Cell completely and we use two Arraylists of Integers

to keep the branches in makeTree method. Here, we eliminate findMax method and we

enter this method to makeTree method.

47

The code for all three solutions is available in Appendix B.

4.2. Estimation Case 1

In this section, we will calculate the priority number for each suggested solution in

Section 4.1., based on the change propagation probability number 0.5 for all dependency

relationships.

Priority number calculation for solution 1:

In solution 1, entities number 1, 2, 3, 4, 5, 52 and 15 are the target entities or the entities

that change starts from those entities. Figures 16 to 22 demonstrate the trace of these

entities up to three levels based on the related dependency matrix of figure 15.

Figure 16: Change Propagation from Target Entity 52

 Figure 17: Change Propagation from Target Entity 15

48

 Figure 18: Change Propagation from Target Entity 4

49

 Figure 19: Change Propagation from Target Entity 5

50

 Figure 20: Change Propagation from Target Entity 3

51

 Figure 21: Change Propagation from Target Entity 2

52

 Figure 22: Change Propagation from Target Entity 1

53

Now, we have other entities that are predicted to be involved in change for solution 1. If

we use the change propagation probability number (0.5) to predict the probability of

change for each of these entities based on formula 1 and 2 of Section 3.4, we will have

the change probability numbers that are listed in Table 10 for each involved entity (note

that the probability of change for the target entities is equal to 1).

Table 10: Change Probability Numbers for the Involved Entities in Solution 1 Based on

Change Propagation Probability Number 0.5

P(8)= 0.955 P(10)= 0.935 P(11)= 0.981 P(16)= 0.963 P(18)= 0.957

P(26)= 0.97 P(6)= 0.578 P(7)= 0.578 P(89) =0.578 P(14)= 0.945

P(86)= 0.98 P(25)= 0.498 P(90)= 0.498 P(39)= 0.957 P(36)= 0.98

P(20)= 0.881 P(21)= 0.881 P(22)= 0.92 P(24)= 0.498 P(19)= 0.975

P(47)= 0.414 P(91)= 0.968 P(23)= 0.918 P(53)= 0.763 P(56)= 0.971

P(61)= 0.763 P(62)= 0.763 P(63)= 0.763 P(70)= 0.763 P(71)= 0.932

P(72)= 0.931 P(78)= 0.818 P(46)= 0.944 P(57)= 0.984 P(58)= 0.868

P(73)= 0.958 P(42)= 0.98 P(43)= 0.896 P(9)= 0.969 P(37)= 0.77

P(55)= 0.487 P(67)= 0.94 P(84)= 0.551 P(85)= 0.551 P(93)= 0.799

P(44)= 0.578 P(45)= 0.578 P(92)= 0.899 P(76)= 0.615 P(80)= 0.615

P(83)= 0.615 P(81)= 0.125 P(94)= 0.125 P(66)= 0.551 P(40)= 0.234

P(48)= 0.125 P(49)= 0.125 P(74)= 0.125 P(79)= 0.125

Refer to formula 3 of Section 3.4., if we add the change probability numbers of target

entities and change probability numbers of predicted involved entities, we will have the

priority number for solution 1, (with change propagation probability number 0.5), which

is equal to (49.407).

Priority number calculation for solution 2:

In solution 2, entities number 8, 16, 14, 18, 20, 21, 22, 23, 19, 46, 53, 61, 62, 70, 71, 72

and 78 are the target entities or the entities that change starts from those entities.

Appendix C demonstrates the trace of these entities up to three levels based on the related

dependency matrix of Figure 15.

54

Now, we have other entities that are predicted to be involved in change for solution 2. If

we use the change propagation probability number (0.5) to predict the probability of

change for each of these entities based on formula 1 and 2 of Section 3.4., we will have

the change probability numbers that are listed in Table 11 for each involved entity (note

that the probability of change for the target entities is equal to 1).

Table 11: Change Probability Numbers for the Involved Entities in Solution 2 Based on

Change Propagation Probability Number 0.5

P(10) = 0.749 P(11)= 0.665 P(26) = 0.99 P(15) =0.877 P(86)= 0.99

P(36) = 0.99 P(37) = 0.904 P(39) = 0.879 P(42) = 0.989 P(44) =0.617

P(45) = 0.617 P(91) = 0.914 P(43) = 0.562 P(58) = 0.75 P(67) = 0.976

P(73)= 0.944 P(84) = 0.917 P(85) = 0.917 P(6) = 0.25 P(7) = 0.25

P(89) = 0.25 P(24) = 0.677 P(25) = 0.677 P(90) = 0.677 P(47) = 0.945

P(92) = 0.808 P(66) =0.437 P(93) = 0.498 P(76) = 0.25 P(80) =0.25

P(83) =0.25 P(81) = 0.779 P(40) = 0.551 P(48) = 0.330 P(49) = 0.330

P(94) = 0.330 P(64) = 0.234 P(74) = 0.125 P(79) = 0.330

Refer to formula 3 of Section 3.4., if we add the change probability numbers of target

entities and change probability numbers of predicted involved entities, we will have the

priority number for solution 2, (with change propagation probability number 0.5), which

is equal to (41.475).

For the third solution, although it is different from the first solution, but the target entities

are exactly the same as first solution. Therefore, the predicted entities and the priority

number for the third solution will be the same as first solution too.

4.3. Estimation Case 2

In previous section, we considered change propagation probability number equal to (0.5).

Therefore, we have the probability of (0.5) for the first level of change trace, (0.25) for

the second level of change trace and (0.125) for the third level of change trace. If we need

55

to have a more precise prediction about the probability of change for each predicted

entities, we need to have a more precise change propagation probability number than

(0.5). In this regard, by refer to Table 7 of Section 3.2., we will consider the change

propagation probability numbers that are obtained for each two type of entities in Section

3.2., as the reference change propagation probability numbers in this section. For

simplicity, we have categorized these numbers in three ranges (0% to 62%), (63% to

88%) and (89% to 100%) and we will consider all the numbers in the first range as 50%,

the numbers in second range as 75%, and the numbers in third range as 100%. With this

consideration, we will have the change propagation probability numbers that are listed in

Table 12 for each two entities.

Table 12: Change Propagation Probability among Entities

Class - Method 50% Field-Field 75%

Class-Field 75% Class-Interface 75%

Field-Method 75% Package-Class 100%

Method-Method 75% Package-Interface 100%

Class-Class 75% Interface-Interface 50%

Based on the change propagation probability numbers that are listed in Table 12, if we

calculate the change probability numbers for predicted involved entities in solution 1, we

will have the results that are listed in Table 13. Also, the change probability numbers for

predicted involved entities in solution 2 are listed in Table 14. Again for the third

solution, since the target entities are exactly the same as first solution, the predicted

entities and the priority number for the third solution will be the same as first solution

too.

56

Table 13: Change Probability Numbers for the Involved Entities in Solution 1 Based on

Change Propagation Probability Numbers 0.5, 0.75 and 1

P(8)= 0.999 P(10)= 0.999 P(11)= 0.999 P(16)= 0.999 P(18)= 0.999

P(26)= 0.999 P(6)= 0.915 P(7)= 0.915 P(89) =0.915 P(14)= 0.999

P(86)= 0.999 P(25)= 0.914 P(90)= 0.914 P(39)= 0.999 P(36)= 0.999

P(20)= 0.998 P(21)= 0.998 P(22)= 0.999 P(24)= 0.914 P(19)= 0.999

P(47)= 0.731 P(91)= 0.999 P(23)= 0.999 P(53)= 0.983 P(56)= 0.999

P(61)= 0.983 P(62)= 0.983 P(63)= 0.983 P(70)= 0.983 P(71)= 0.999

P(72)= 0.999 P(78)= 0.994 P(46)= 0.999 P(57)= 0.999 P(58)= 0.998

P(73)= 0.999 P(42)= 0.999 P(43)= 0.997 P(9)= 0.999 P(37)= 0.997

P(55)= 0.934 P(67)= 0.999 P(84)= 0.962 P(85)= 0.962 P(93)= 0.998

P(44)= 0.915 P(45)= 0.915 P(92)= 0.999 P(76)= 0.971 P(80)= 0.971

P(83)= 0.971 P(81)= 0.42 P(94)= 0.42 P(66)= 0.962 P(40)= 0.663

P(48)= 0.42 P(49)= 0.42 P(74)= 0.42 P(79)= 0.42

If we add the change probability numbers of target entities and change probability

numbers of predicted involved entities, we will have the priority number for solution 1,

(with change propagation probability number 0.5, 0.75 and 1), which is equal to 60.835.

Table 14: Change Probability Numbers for the Involved Entities in Solution 2 Based on

Change Propagation Probability Number 0.5, 0.75 and 1

P(10) = 0.970 P(11)= 0.951 P(26) = 0.999 P(15) =0.993 P(86)= 0.999

P(36) = 0.999 P(37) = 0.998 P(39) = 0.997 P(42) = 0.999 P(44) =0.916

P(45) = 0.916 P(91) = 0.999 P(43) = 0.855 P(58) = 0.937 P(67) = 0.999

P(73)= 0.999 P(84) = 0.999 P(85) = 0.999 P(6) = 0.56 P(7) = 0.56

P(89) = 0.56 P(24) = 0.971 P(25) = 0.971 P(90) = 0.971 P(47) = 0.999

P(92) = 0.990 P(66) =0.806 P(93) = 0.914 P(76) = 0.56 P(80) =0.56

P(83) =0.56 P(81) = 0.996 P(40) = 0.962 P(48) = 0.805 P(49) = 0.805

P(94) = 0.805 P(64) = 0.664 P(74) = 0.42 P(79) = 0.805

If we add the change probability numbers of target entities and change probability

numbers of predicted involved entities, we will have the priority number for solution 2,

(with change propagation probability number 0.5, 0.75 and 1), which is equal to 50.768.

57

4.4. Discussion and Verification

To validate the obtained priority numbers for solution 1 and solution 2, from case 1 and

case 2, we should have a real change parameter from the actual code. In this work, we

have chosen the number of changed lines of code for each solution. The number of

changed lines of code means the sum of the number of lines of code which are added,

deleted and changed. Therefore, we have 178 changed LOC (Lines Of Code) for the first

solution and 140 changed LOC for the second solution. The priority numbers and the

numbers of modified lines of code for each change option are listed in Table 15 for

comparison.

Table 15: Comparison of Different Change Options

 Number of Modified

Line of Code

Priority Number

(0.5)

Priority Number

(0.5, 0.75, 1)

Solution 1 178 49.407 60.835

Solution 2 140 41.475 50.768

To be able to have a comparison between the obtained priority numbers and LOC which

are actually changed, we need to normalize all the priority numbers and changed LOC

between 0 and 1. To do this, we have divided each number by the sum of both numbers.

For example, for changed LOC, we should divide 178 by (178+140) and also, we should

divide 140 by (178+140). Therefore, we have the normalized numbers 0.5597 for the

actual changed LOC for the first solution and 0.4402 for the actual changed LOC for the

second solution. In a same way, if we normalize the obtained priority numbers with

change propagation probability number 0.5, we will have 0.5436 for the first solution and

0.4564 for the second solution. Also, if we normalize the obtained priority numbers with

change propagation probability number (0.5, 0.75 and 1), we will have 0.5451 for the

58

first solution and 0.4549 for the second solution. The difference between the normalized

changed LOC is (0.1195). The difference between the normalized priority numbers, with

change propagation probability number 0.5, is (0.0872) and the difference between the

normalized priority numbers for the improved evaluation is (0.0902). Since the difference

between 0.0902 and 0.1195 is less than the difference between 0.0872 and 0.1195, we

can say that the priority numbers, which are obtained with change propagation

probability number (0.5, 0.75 and 1), are more precise. To make it clearer, we have

plotted both sets of priority numbers against the actual changed LOC. We can see that in

figure 24, that demonstrates the priority numbers obtained from change propagation

probability numbers (0.5, 0.75 and 1), the corresponding dots are closer to the diagonal

compare to figure 23, which shows the priority numbers obtained from change

propagation probability number 0.5.

Figure 23: Evaluation of Priority Numbers that are Based on Change Propagation

Probability Number 0.5

59

Figure 24: Evaluation of Priority Numbers that are Based on Change Propagation

Probability Numbers (0.5, 0.75 and 1)

60

Chapter 5

5. Conclusion and Future Work

This work reports our effort on the application of matrix-based modeling to manage

change propagation in an object-oriented system. The contribution can be viewed in

three aspects.

 Firstly, a dependency model is derived for object-oriented programs and the

dependency information can be compactly captured in a matrix format. Through

the use of matrix, we can trace the propagation paths from the initial changes on

a program. The propagation paths can be utilized to estimate of the scope of

change propagation.

 Secondly, through the analysis and classification of dependency types among

the fundamental entities of OOP and categorization of existing dependencies

between each couple of entities, we can calculate the values of direct

propagation probabilities for different dependency relationships.

 In third step, the notion of priority number is proposed to estimate the expected

number of changed entities based on a change proposal. A case study program

has been used to demonstrate and validate the use of matrix-based modeling, the

obtained results for direct propagation probability and the priority number.

61

The future work of this research can include two directions.

 Firstly, as it is mentioned, the primary step in calculation of priority number is

detection of target entities. If the detected target entities for two different change

options be the same, although the change options may be completely different, the

calculated priority numbers will be the same for both of them. In our case study,

first suggested solution and third suggested solution can be an example for this

situation. As it’s seen, although the application of change is completely different

for each solution, the target entities are equal for both solutions and we have the

same priority numbers for both of them too. However, we need to have a

guideline to distinguish the difference among the scope of propagated change in

the software for each suggested solution in these specific situations.

 Secondly, in the context of matrix-based modeling, matrix patterns and

structuring have been utilized to control the propagation of changes (Li and Chen

2009), and this method of approach is rarely found in the context of OOP. Thus,

we need to incorporate the matrix-based structural characteristics to effectively

address the issue of change management in OOP.

62

References

Browning, T.R., 2001, “Applying the Design Structure Matrix to System Decomposition

and Integration Problems: A Review and New Directions,” IEEE Transaction on

Engineering Management, Vol. 48, No. 3, pp. 292-306.

Chen, L., Macwan, A., and Li, S., 2007, “Model-based Rapid Redesign using

Decomposition Patterns,” ASME Journal of Mechanical Design, (129), pp. 283-294.

Carl A, G., 2000, “Abstracting dependencies between software configuration items”

ACM Transactions on Software Engineering and Methodology (TOSEM) Journal, Vol.9,

Issue 1, pp.94-131.

Clarkson, J., and Simons, C., and Eckert, C., 2001, “Predicting Change Propagation In

Complex Design”, Journal of Mechanical Design, Vol.126, Issue 5, pp. 788-797

 Danilovic, M. and Browning, T.R., 2007, “Managing Complex Product Development

Projects with Design Structure Matrices and Domain Mapping Matrices,” International

Journal of Project Management, Vol. 25, pp. 300-314.

Dam, K.H., and Winikoff, M., and Padgham, L., 2006, “An agent-oriented approach to

change propagation in software evolution” Australian Software Engineering Conference,

Melbourne, Vic., Australia, pp. 309-318

Fowler, M., 1999, “Refactoring: Improving the Design of Existing Code”, Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA

Gallagher, K.B., and Lyle, J.R., 2002, “Using program slicing in software maintenance”

IEEE Transactions on Software Engineering, Vol. 17, Issues 8, pp. 751-761

Giffin, M., and Weck, O., and Bounova, G., 2009, “Change Propagation Analysis in

Complex Technical Systems” Journal of Mechanical Design, Vol.131, Issue 8, 081001.

Greg J, B., 2000, “JavaML: A Markup Language for Java Source Code” Computer

Networks, Vol. 33, Issues 1-6, pp. 159-177

Han, A.H., and Jeon, S.U., and Bae, D.H., and Hong, J.E., 2008, “Behavioral

Dependency Measurement for Change-proneness Prediction in UML 2.0 Design Models”

http://portal.acm.org/citation.cfm?id=332740.332743
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Clarkson%2C+P.+John&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Simons%2C+Caroline&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Eckert%2C+Claudia&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236234%232000%23999669998%23195650%23FLA%23&_cdi=6234&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=7992accad25e294e79eb4d1e3b7e67b0
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Giffin%2C+Monica&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=de+Weck%2C+Olivier&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Bounova%2C+Gergana&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://www.sciencedirect.com/science/journal/13891286
http://www.sciencedirect.com/science/journal/13891286
http://www.sciencedirect.com/science/journal/13891286
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236234%232000%23999669998%23195650%23FLA%23&_cdi=6234&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=7992accad25e294e79eb4d1e3b7e67b0

63

Proceedings of the 2008 32nd Annual IEEE International Computer Software and

Applications Conference, IEEE Computer Society, Washington, DC, USA, pp.76 - 83.

Han, J., 1997, “Supporting Impact Analysis and Change Propagation in Software

Engineering Environments” Proceedings Eighth IEEE International Workshop on

Software Technology and Engineering Practice incorporating Computer Aided Software

Engineering, London, UK, pp.172-182.

Hassan, A.E., and Holt, R.C., 2004, “Predicting Change Propagation in Software

Systems” Proceedings of the 20th IEEE International Conference on Software

Maintenance, IEEE Computer Society, Washington, DC, USA, pp. 284 – 293.

Kagdi, H., and Maletic, J.I., 2006, “Software-Change Prediction: Estimated+Actual”

Proceedings of the Second International IEEE Workshop on Software Evolvability, IEEE

Computer Society, Washington, DC, USA, pp.38 – 43.

Korn, J., and Yih-Farn, C., and Koutsofios, E., 1999, “Chava: Reverse Engineering and

Tracking of Java Applets” Sixth Working Conference on Reverse Engineering, Atlanta,

GA, USA, pp. 314-325.

 Li, S., and Chen, L., 2009, “Pattern-based Reasoning for Rapid Redesign: A Proactive

Approach,” Research in Engineering Design, 21(1), pp. 25-42.

Li, S., 2010, "Extensions of the Two-Phase Method for Decomposition of Matrix-based

Design Systems," ASME Journal of Mechanical Design, Vol. 132, 061003.

Mens, T., and Tourwe, T., 2004, “A survey of software refactoring”, IEEE Transactions

on Software Engineering, Vol. 30, Issues 2, pp. 126 – 139

Mirarab, S., and Hassouna, A., and Tahvildari, L., 2007, “Using Bayesian Belief

Networks to Predict Change Propagation in Software Systems”, Proceedings of the 15th

IEEE International Conference on Program Comprehension, IEEE Computer Society,

Washington, DC, USA, pp.177-188.

Rajlich, V., 1997, “A Model for Change Propagation Based on Graph Rewriting”,

Proceedings of the international Conference on Software Maintenance, IEEE Computer

Society, Washington, DC, USA, pp. 84 – 91.

Rayside, D., and Kontogiannis, K., 1999, “Extracting Java Library Subsets for

Deployment on Embedded Systems” Proceedings of the Third European Conference on

Software Maintenance and Reengineering, Amsterdam, Netherlands, pp. 102-110

Ren, X., and Shah, F., and Tip, F., and Ryder, B., and Chesley, O., 2004, “Chianti: a tool

for change impact analysis of java programs” Proceedings of the 19th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, Vol.39, Issue.10.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=615458
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=615458
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=615458
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=615458
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=806941
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236234%232000%23999669998%23195650%23FLA%23&_cdi=6234&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=7992accad25e294e79eb4d1e3b7e67b0
http://portal.acm.org/author_page.cfm?id=81100597887&coll=DL&dl=ACM&trk=0&cfid=113258307&cftoken=72547548
http://portal.acm.org/author_page.cfm?id=81100650965&coll=DL&dl=ACM&trk=0&cfid=113258307&cftoken=72547548
http://portal.acm.org/author_page.cfm?id=81100333471&coll=DL&dl=ACM&trk=0&cfid=113258307&cftoken=72547548
http://portal.acm.org/author_page.cfm?id=81100632248&coll=DL&dl=ACM&trk=0&cfid=113258307&cftoken=72547548
http://portal.acm.org/author_page.cfm?id=81100299986&coll=DL&dl=ACM&trk=0&cfid=113258307&cftoken=72547548

64

Sharafat, A.R., and Tahvildari, L., 2008 “Change Prediction in Object-Oriented Software

Systems: A Probabilistic Approach” journal of software, 3(5), pp. 26-39.

Sharafat, A.R., and Tahvildari, L., 2007, “A Probabilistic Approach to Predict Changes

in Object-Oriented Software Systems”, Proceedings of the 11th European Conference on

Software Maintenance and Reengineering, IEEE Computer Society, Washington, DC,

USA,pp. 27-38

Sangal, N., and Jordan, E., and Sinha, V., and Daniel, D., 2005, “Using Dependency

Models to Manage Complex Software Architecture” Proceedings of the 20th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, Vol.40, Issue 10, pp. 167 - 176

Sierra, K., and Bates, B., 2005, “Head First Java”, O’Reilly Media, Inc, Sebastopol, CA,

USA, pp.103-112 Chap.5 and pp.127-130 Chap.6.

Sosa, M., 2008, “A structured approach to predicting and managing technical

interactions in software development” Research in Engineering Design Journal, Vol.19,

Number 1, pp.47-70.

Tsantalis, N., and Chatzigeorgiou, A., and Stephanides, G., 2005, “Predicting the

Probability of Changein Object-Oriented Systems” IEEE Transactions on Software

Engineering, 31(7), pp. 601-614.

Tan, X., and Feng, T., and Zhang, J., 2007, “Mapping Software Design Changes to

Source Code Changes” Eighth ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing-Cover, Qingdao,

pp. 650-655

Xia, F., and Srikanth, P., 2005, “A Change Impact Dependency Measure for Predicting

the Maintainability of Source Code” Proceedings of the 28th Annual International

Computer Software and Applications Conference, Rolla, MO, USA, Vol.2, pp.22-23.

Zhifeng, Yu., and Rajlich, V., 2001, “Hidden Dependencies in Program Comprehension

and Change Propagation”, Proceedings of IWPC2001, IEEE Computer Society Press,

Los Alamitos, CA, pp. 293 - 299.

http://portal.acm.org/author_page.cfm?id=81100457728&coll=DL&dl=ACM&trk=0&cfid=113258307&cftoken=72547548
http://portal.acm.org/author_page.cfm?id=81342499157&coll=DL&dl=ACM&trk=0&cfid=113258307&cftoken=72547548
http://portal.acm.org/author_page.cfm?id=81100335707&coll=DL&dl=ACM&trk=0&cfid=113258307&cftoken=72547548
http://www.springerlink.com/content/0934-9839/
http://www.springerlink.com/content/0934-9839/19/1/
http://www.springerlink.com/content/0934-9839/19/1/
http://www.springerlink.com/content/0934-9839/19/1/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1342786
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1342786
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1342786

65

Appendix A: Details of the Example Program

This appendix includes the original code of the example program, which is shown in

Figure A1. In addition, this appendix includes the list of OOP entities of this program,

which is shown in Table A1.

public static void main(String[] args){

 int numOfGuesses=0;

GameHelper helper=new GameHelper();

 SimpleDotCom theDotCom=new SimpleDotCom();

int randomNum=(int)(Math.random()*5); // generate a random number

int[] locations={ randomNum, RandomNum+1, RandomNum+2}; // put the generated number

and two following number in an int array

theDotCome.setLocationCells(locations);

boolean isAlive=true;

while (isAlive==true){

 string guess=helper.getUserInput(“enter a number”); // ask user for a guess

 string result=theDotCom.checkYourself(guess); // compare the user guess with the

numbers in the int array

 numofGuesses++; // increase the number of guesses that user made

 if (result.equals(“kill”)){ // check if all the numbers in the int array are

guessed by the user or not and if yes then

 isAlive=false;

 system.out.println (“you took”+numofGuesses+”guesses”); // print the number of

guesses that the user made

 }

 }

}

66

public class SimpleDotCom{

 int[] locationCells;

 int numOfHits=0;

 public void setLocationCells (int[] locs){ // this function will receive the

random numbers that are generated by the system and will put them in the int array

related to this class

 locationCells=locs;

 }

 public string checkYourself(string stringGuess){ // receive the guess that is made

by the user

 int guess= Integer.parseInt(stringGuess);

 string result=”miss”;

 for (int cell: locationCells){ // compare the guess that is made by the user

with all the random numbers that are generated by system

 if (guess==cell){ // if the guess was equal to each of the generated

numbers then

 result=”hit”;

 numOfHits++; // increase the number of hits

 break;

 }

 }

 if (numOfHits==locationCells.length){ // check if all the numbers that are

generated by the system are guessed by the user

 result=”kill”;

 }

 system.out.println(result);

 return result; // print and return the result as the output of the function

 }

 }

import java.io.*

public class GameHelper{ // this class will help the system to receive the input

from user

 public String getUserInput(String prompt){

 string inputLine=null;

 system.out.print(prompt+” “);

67

 try{

 BufferedReader is=new BufferedReader(

 new InputStreamReader(System.in));

 inputLine=is.readLine();

 if(inputLine.length()==0) return null;

 }catch(IOException e){

 system.out.println(“IOException:”+e);

 } return inputLine;

 } }

Figure A1. A Sample of an Object-Oriented Program

Table A1. List of 25 OOP Entities of the Sample Program

 Label Name Description

1 M1 main this method is the main execution part of the program

2 F1 numOfGuesses a variable (field) of type int that is defined in main

method

3 F2 helper an object (field) of class gamehelper that is defined in

main method

4 F3 theDotCom an object (field) of class simpledotcom that is defined

in main method

5 F4 randomNum a variable (field) of type int that is defined in main

method

6 F5 locations a variable (field) of type int array that is defined in main

method

7 F6 isAlive a variable (field) of type boolean that is defined in main

method

8 F7 guess a variable (field) of type string that is defined in main

method

9 F8 result a variable (field) of type string that is defined in main

method

68

10 C1 SimpleDotCom a class

11 F9 locationCells a variable (field) of type int array that is defined in

simpledotcom class

12 F10 numOfHits a variable (field) of type int that is defined in

simpledotcom class

13 M2 setlocationCells a method that is defined in simpledotcom class

14 F11 locs a variable (field) of type int array that is defined in

setlocationcells method in simpledotcom class

15 M3 checkYourself a method that is defined in simpledotcom class

16 F12 stringGuess a variable (field) of type string that is defined in

checkyourself method in simpledotcom class

17 F13 guess a variable (field) of type int that is defined in

checkyourself method in simpledotcom class

18 F14 result a variable (field) of type string that is defined in

checkyourself method in simpledotcom class

19 F15 cell a variable (field) of type int that is defined in

checkyourself method in simpledotcom class

20 P1 java.io a package

21 C2 GameHelper a class

22 M4 getUserInput a method that is defined in gamehelper class

23 F16 prompt a variable (field) of type string that is defined in

getuserinput method in gamehelper class

24 F17 inputLine a variable (field) of type string that is defined in

getuserinput method in gamehelper class

25 F18 is an object (field) of class BufferedReader* that is

defined in getuserinput method in gamehelper

class

* BufferReader is one of the classes of java.io

package

69

Appendix B: Details of the Case Study

This appendix includes the original code of the case study OOP, which is shown in

Figure B1, along with the modified code of the mentioned software based on solution1,

solution2 and solution3, which are shown in Figures B2, B3 and B4 respectively. In

addition, this appendix includes the list of OOP entities of the mentioned OOP, which is

shown in Table B1.

package clustering;

import java.text.DecimalFormat;

import java.util.*;

class Cell

 {

 int rowNum;

 int colNum;

 float contain;

 int extraRow;

 int extraCol;

}

class Matrix

{ int row;

 int col;

 Cell[][] mat;

 public Matrix(int row1, int col1){

 row=row1;

 col=col1;

 mat= new Cell[row][col];

 for (int i=0; i<row; i++){

 int p=i+1;

 System.out.println("enter the entities of row number"+ p);

 for (int j=0; j<col; j++){

 Scanner getEntity= new Scanner(System.in);

 int next;

 next= getEntity.nextInt();

70

 mat[i][j]=new Cell();

 mat[i][j].contain=next;

 mat[i][j].rowNum=i+1;

 mat[i][j].colNum=j+1;

 }

 }

 }

public Cell[][] rearrange(int[][] sequ1)

 {

 Cell[][] mat1=new Cell[row][col];

 for(int d=0; d<row; d++){

 for (int f=0; f<col; f++){

 int h=(sequ1[0][d])-1;

 mat1[d][f]=new Cell();

 mat1[d][f].contain=mat[h][f].contain;

 mat1[d][f].colNum=mat[h][f].colNum;

 mat1[d][f].rowNum=mat[h][f].rowNum;

 }

 }

 Cell[][] mat2=new Cell[row][col];

 for(int d1=0; d1<col; d1++){

 for (int f1=0; f1<row; f1++){

 int h8=(sequ1[1][d1])-1;

 mat2[f1][d1]=new Cell();

 mat2[f1][d1].contain=mat1[f1][h8].contain;

 mat2[f1][d1].rowNum=mat1[f1][h8].rowNum;

 mat2[f1][d1].colNum=mat1[f1][h8].colNum;

 }

 }

 for(int d5=0; d5<row; d5++){

 for (int f5=0; f5<col; f5++){

 System.out.print(mat2[d5][f5].contain+" ");

 System.out.print(mat2[d5][f5].rowNum+" ");

 System.out.print(mat2[d5][f5].colNum+" ");

 }

 System.out.println();

 }

 return mat2;

}

public void showMatrix()

 { System.out.println("this is the original matrix");

 for (int i=0; i<row; i++){

 for (int j=0; j<col; j++){

 System.out.print(mat[i][j].rowNum);

 System.out.print(mat[i][j].colNum);

 System.out.print((int)mat[i][j].contain+" ");

 }

 System.out.println();

 }

}

}

class Cm

{

 Cell[][] cm;

 Cell[][] cmr;

 Cell[][] cmc;

 Cell[][] cmrc;

 Cell[][] trans;

 int cmrow;

 int cmcol;

 public Cm(Matrix matrixIn)

 {

71

 cmrow= matrixIn.row;

 cmcol= matrixIn.col;

 cmr=new Cell[matrixIn.row][matrixIn.row];

 for (int m=0; m<matrixIn.row; m++)

 for (int n=0; n<matrixIn.row; n++)

 {

 if (m==n)

 {

 cmr[m][n]=new Cell();

 cmr[m][n].contain=0;

 }

 else

 {

 int max=0;

 int min=0;

 for (int k=0; k<matrixIn.col; k++)

 { if ((matrixIn.mat[m][k].contain==1) ||

(matrixIn.mat[n][k].contain==1))

 {

 max++;}

 if ((matrixIn.mat[m][k].contain==1) &&

(matrixIn.mat[n][k].contain==1))

 {

 min++;}

 }

 float h=(float)min/max;

 cmr[m][n]=new Cell();

 cmr[m][n].contain=h;

 }

 }

 //show the matrix CMr

 System.out.println();

 System.out.println("this is the CMr Matrix");

 for (int q=0; q<matrixIn.row; q++){

 for (int h=0; h<matrixIn.row; h++){

 DecimalFormat df1 = new DecimalFormat("#.##");

 System.out.print(df1.format(cmr[q][h].contain)+" ");

 }

 System.out.println();

 }

 cmc=new Cell[matrixIn.col][matrixIn.col];

 for (int m1=0; m1<matrixIn.col; m1++)

 for (int n1=0; n1<matrixIn.col; n1++)

 {

 if (m1==n1)

 {

 cmc[m1][n1]=new Cell();

 cmc[m1][n1].contain=0;

 }

 else

 {

 int max1=0;

 int min1=0;

 for (int k1=0; k1<matrixIn.row; k1++)

 { if ((matrixIn.mat[k1][m1].contain==1) ||

(matrixIn.mat[k1][n1].contain==1))

 {

 max1++;}

 if ((matrixIn.mat[k1][m1].contain==1) &&

(matrixIn.mat[k1][n1].contain==1))

 {

 min1++;}

 }

 float h1=(float)min1/max1;

 cmc[m1][n1]=new Cell();

 cmc[m1][n1].contain=h1;

 }

 }

 // show the matrix CMc

72

 System.out.println();

 System.out.println("this is the CMc Matrix");

 for (int q1=0; q1<matrixIn.col; q1++){

 for (int h2=0; h2<matrixIn.col; h2++){

 DecimalFormat df2 = new DecimalFormat("#.##");

 System.out.print(df2.format(cmc[q1][h2].contain)+" ");

 }

 System.out.println();

 }

 cmrc=new Cell[matrixIn.row][matrixIn.col];

 for (int m2=0; m2<matrixIn.row; m2++)

 for (int n2=0; n2<matrixIn.col; n2++)

 {

 int sumr=0;

 int sumc=0;

 for (int k2=0; k2<matrixIn.col; k2++)

 { if ((matrixIn.mat[m2][k2].contain==1))

 {

 sumr++;}}

 for (int k3=0; k3<matrixIn.row; k3++)

 { if ((matrixIn.mat[k3][n2].contain==1))

 {

 sumc++;}}

 float h3=(float)((2*matrixIn.mat[m2][n2].contain)/(sumr+sumc));

 cmrc[m2][n2]=new Cell();

 cmrc[m2][n2].contain=h3;

 }

 //show the matrix CMrc

 System.out.println();

 System.out.println("this is the CMrc Matrix");

 for (int q3=0; q3<matrixIn.row; q3++){

 for (int h4=0; h4<matrixIn.col; h4++){

 DecimalFormat df3 = new DecimalFormat("#.##");

 System.out.print(df3.format(cmrc[q3][h4].contain)+" ");

 }

 System.out.println();

 }

 }

 public void tcmrc()

 { trans= new Cell[cmcol][cmrow];

 for (int i1=0; i1<cmrow; i1++){

 for (int j1=0; j1<cmcol; j1++)

 {trans[j1][i1]=cmrc[i1][j1];}}

 //show the matrix TCMrc

 System.out.println();

 System.out.println("this is the transposed CMrc Matrix");

 for (int q4=0; q4<cmcol; q4++){

 for (int h5=0; h5<cmrow; h5++){

 DecimalFormat df4 = new DecimalFormat("#.##");

 System.out.print(df4.format(trans[q4][h5].contain)+" ");

 }

 System.out.println();

 }

 }

public Cell[][] makeCm()

 { int rc=cmrow+cmcol;

 cm= new Cell[rc][rc];

 for (int cr=0; cr<cmcol; cr++)

 {

 for (int cc = 0; cc < cmcol; cc++){

 cm[cr][cc]=new Cell();

 cm[cr][cc].contain=cmc[cr][cc].contain;

73

 cm[cr][cc].rowNum=cr+1;

 cm[cr][cc].colNum=cc+1;}}

 for (int tr=0;tr<cmcol; tr++){

 for(int tc=cmcol; tc<rc; tc++){

 cm[tr][tc]=new Cell();

 cm[tr][tc].contain=trans[tr][tc-cmcol].contain;

 cm[tr][tc].rowNum=tr+1;

 cm[tr][tc].colNum=tc+1;}}

 for (int rcr=cmcol; rcr<rc; rcr++){

 for(int rcc=0; rcc<cmcol; rcc++){

 cm[rcr][rcc]=new Cell();

 cm[rcr][rcc].contain=cmrc[rcr-cmcol][rcc].contain;

 cm[rcr][rcc].rowNum=rcr+1;

 cm[rcr][rcc].colNum=rcc+1;}}

 for (int rr=cmcol; rr<rc; rr++){

 for(int rc1=cmcol; rc1<rc; rc1++){

 cm[rr][rc1]=new Cell();

 cm[rr][rc1].contain=cmr[rr-cmcol][rc1-cmcol].contain;

 cm[rr][rc1].rowNum=rr+1;

 cm[rr][rc1].colNum=rc1+1;}}

 //show the matrix CM

 System.out.println();

 System.out.println("this is the CM Matrix");

 for (int q5=0; q5<rc; q5++){

 for (int h6=0; h6<rc; h6++){

 DecimalFormat df5 = new DecimalFormat("#.##");

 System.out.print(df5.format(cm[q5][h6].contain)+" ");

 }

 System.out.println();

 }

 return cm; } }

 class Node
 {

 int first;

 int second;

 int branch;

 }

class Tree

 {

 ArrayList<Node> sequence= new ArrayList<Node>();

 int originRow;

 int originCol;

 public Cell[][] makeRevised(Cm fc)

 {int nr=fc.cmrow;

 int nc=fc.cmcol;

 originRow=nr;

 originCol=nc;

 int to=nr+nc;

 Cell[][] revised=new Cell[to][to];

 for (int i=0; i<to; i++)

 for (int j=0; j<to; j++)

 {if (i<j)

 {

 revised[i][j]= new Cell();

 revised[i][j].contain=0;

 revised[i][j].rowNum=fc.cm[i][j].rowNum;

 revised[i][j].colNum=fc.cm[i][j].colNum;

 revised[i][j].extraRow=0;

 revised[i][j].extraCol=0;

 }

 else

 {

 revised[i][j]= new Cell();

 revised[i][j].contain=fc.cm[i][j].contain;

74

 revised[i][j].rowNum=fc.cm[i][j].rowNum;

 revised[i][j].colNum=fc.cm[i][j].colNum;

 revised[i][j].extraRow=0;

 revised[i][j].extraCol=0;

 }

 }

//show the revised of matrix CM

 System.out.println();

 System.out.println("this is the revised of CM Matrix");

 for (int q6=0; q6<to; q6++){

 for (int h7=0; h7<to; h7++){

 DecimalFormat df6 = new DecimalFormat("#.##");

 System.out.print(revised[q6][h7].rowNum);

 System.out.print(revised[q6][h7].colNum+" ");

 System.out.print(df6.format(revised[q6][h7].contain)+"

");

 }

 System.out.println();}

 return revised;

 }

 public void makeTree(Cell[][] revisedCm)

 {

 int counter=10000;

 int counter1=revisedCm.length;

 while (counter1 != 1)

 {

 Cell newnode=findMax(revisedCm);

 Node n=new Node();

 if(newnode.extraRow==0)

 {

 n.first = newnode.rowNum;}

 else { n.first=newnode.extraRow;}

 if(newnode.extraCol==0)

 {

 n.second = newnode.colNum;}

 else {n.second=newnode.extraCol;}

 n.branch=counter;

 counter++;

 sequence.add(n);

 revisedCm[(newnode.rowNum)-1][(newnode.colNum)-1].contain=0;

 revisedCm[(newnode.colNum)-1][(newnode.rowNum)-1].contain=0;

 for(int jn=0; jn<revisedCm.length; jn++)

 {revisedCm[(newnode.colNum)-1][jn].contain=((revisedCm[(newnode.colNum)-

1][jn].contain)+(revisedCm[(newnode.rowNum)-1][jn].contain))/2;

 revisedCm[jn][(newnode.colNum)-1].contain=((revisedCm[jn][(newnode.colNum)-

1].contain)+(revisedCm[jn][(newnode.rowNum)-1].contain))/2;

 revisedCm[(newnode.colNum)-1][jn].extraRow=n.branch;

 revisedCm[jn][(newnode.colNum)-1].extraCol=n.branch;

 }

 for(int in=0; in<revisedCm.length; in++)

 {

 revisedCm[in][(newnode.rowNum) - 1].contain = 0;

 revisedCm[(newnode.rowNum)-1][in].contain=0;

 }

 for (int ir=0; ir<revisedCm.length; ir++){

 for (int jr=0; jr<revisedCm.length; jr++)

 {if (ir<jr)

 {

 revisedCm[ir][jr].contain=0;

 }

 }

 }

 counter1--;

75

 }

 }

 public ArrayList<Cell> findLeafs(ArrayList<Node> seqq, int point)

 {

 int y5=0;

 int fi;

 int se;

 ArrayList<Cell> leafs=new ArrayList<Cell>();

 ArrayList<Cell> nonLeafs=new ArrayList<Cell>();

 if (point>9999){

 for (int x5=0; x5<seqq.size();x5++)

 {

 if (seqq.get(x5).branch==point)

 {

 y5=x5;

 break;

 }

 }

 fi=seqq.get(y5).first;

 se=seqq.get(y5).second;

 if (fi<9999)

 {

 Cell newLeaf = new Cell();

 newLeaf.contain=fi;

 leafs.add(newLeaf);

 }

 else

 {

 Cell newNonLeaf=new Cell();

 newNonLeaf.contain=fi;

 nonLeafs.add(newNonLeaf);

 }

 if (se<9999)

 {

 Cell newLeaf = new Cell();

 newLeaf.contain=se;

 leafs.add(newLeaf);

 }

 else

 {

 Cell newNonLeaf=new Cell();

 newNonLeaf.contain=se;

 nonLeafs.add(newNonLeaf);

 }

 while (!nonLeafs.isEmpty())

 {

 for (int x9=0; x9<nonLeafs.size(); x9++)

 {int point1=(int)nonLeafs.get(x9).contain;

 for(int y9=0; y9<seqq.size(); y9++)

 {

 if (seqq.get(y9).branch==point1)

 {

 nonLeafs.remove(x9);

 if (seqq.get(y9).first<9999)

 {

 Cell newLeaf=new Cell();

 newLeaf.contain=seqq.get(y9).first;

 leafs.add(newLeaf);

 }

 else

 {

 Cell newLeaf=new Cell();

 newLeaf.contain=seqq.get(y9).first;

 nonLeafs.add(newLeaf);

 }

 if (seqq.get(y9).second<9999)

 {

76

 Cell newLeaf=new Cell();

 newLeaf.contain=seqq.get(y9).second;

 leafs.add(newLeaf);

 }

 else

 {

 Cell newLeaf=new Cell();

 newLeaf.contain=seqq.get(y9).second;

 nonLeafs.add(newLeaf);

 }

 break;

 }

 }

 }

 }

 }

 else

 {

 Cell newLeaf2=new Cell();

 newLeaf2.contain=point;

 leafs.add(newLeaf2);

 }

 // print leafs

 System.out.println();

for (int x10=0; x10<leafs.size(); x10++)

{

 System.out.println(leafs.get(x10).contain+" ");

}

return leafs;

 }

 public Cell findMax(Cell[][] toFind)

 { Cell choose=new Cell();

 float max=toFind[0][0].contain;

 for(int it=0; it<toFind.length; it++)

 for (int jt=0; jt<toFind.length; jt++)

 {

 if (toFind[it][jt].contain>max)

 {

 max = toFind[it][jt].contain;

 choose.colNum=toFind[it][jt].colNum;

 choose.rowNum=toFind[it][jt].rowNum;

 choose.extraRow=toFind[it][jt].extraRow;

 choose.extraCol=toFind[it][jt].extraCol;

 choose.contain=max;

 }

 }

 return choose;

 }

public int[][] findSequence (ArrayList<Node> se)

 {

 int irow=0;

 int jcol=0;

 int[][] seq;

 if (originRow>originCol)

 {seq=new int[2][originRow];}

 else

 { seq = new int[2][originCol];}

 for (int u = 0; u < se.size(); u++)

 {

 if ((se.get(u).first<= originCol)&&(se.get(u).first>0))

 {

 seq[1][jcol] = se.get(u).first;

 jcol++;

 }

77

 if (se.get(u).first> originCol && se.get(u).first<9999 &&

se.get(u).first>0)

 {

 seq[0][irow]= se.get(u).first - originCol;

 irow++;

 }

 if (se.get(u).second<= originCol && se.get(u).second>0)

 {

 seq[1][jcol] = se.get(u).second;

 jcol++;

 }

 if (se.get(u).second> originCol && se.get(u).second<9999 &&

se.get(u).second>0)

 {

 seq[0][irow]= se.get(u).second - originCol;

 irow++;

 }

 if (se.get(u).branch<= originCol && se.get(u).branch>0)

 {

 seq[1][jcol] = se.get(u).branch;

 jcol++;

 }

 if (se.get(u).branch> originCol && se.get(u).branch<9999 &&

se.get(u).branch>0)

 {

 seq[0][irow]= se.get(u).branch - originCol;

 irow++;

 }

 }

 // show seq array

 for (int z=0; z<originRow; z++)

 {System.out.print(seq[0][z]+" ");

 }

 System.out.println();

 for (int y=0; y<originCol; y++)

 {System.out.print(seq[1][y]+" ");

 }

 return seq;

 }

 public float findDependency(int point1, int point2, Cell[][] revisedCm1)

 {

 float dep=0;

 ArrayList <Cell> point1List=findLeafs(sequence, point1);

 ArrayList <Cell> point2List=findLeafs(sequence, point2);

 for (int k=0; k<point1List.size(); k++)

 for(int k1=0; k1<point2List.size(); k1++)

 {

 dep=dep+revisedCm1[((int)point1List.get(k).contain)-

1][((int)point2List.get(k1).contain)-1].contain;

 }

 return dep;

 }

 public int findIndex(int m)

 { int o=-1;

 for (int s=0; s<sequence.size(); s++)

 if (sequence.get(s).branch==m)

 { o=s;

 break;}

 return o;

 }

 public ArrayList<Node> reordering(Cell[][] revisedCm2)

78

 {

 ArrayList<Node> sequence1= new ArrayList<Node>();

 int count=1;

 int a=sequence.size();

 Node adding=new Node();

 adding.branch=sequence.get(a-1).branch;

 adding.first=sequence.get(a-1).first;

 adding.second=sequence.get(a-1).second;

 sequence1.add(adding);

 while(count!= sequence.size())

 { ArrayList<Node> sequence2= new ArrayList<Node>();

 for(int b=0; b<sequence1.size();b++)

 { if

((sequence1.get(b).first>9999)||(sequence1.get(b).second>9999)){

 if (sequence1.get(b).first>9999)

 { int pr=findIndex(sequence1.get(b).first);

 Node adding1=new Node();

 adding1.branch=sequence.get(pr).branch;

 adding1.first=sequence.get(pr).first;

 adding1.second=sequence.get(pr).second;

 sequence2.add(adding1);

 count++;

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).first;

 adding1.first=-1;

 adding1.second=-1;

 sequence2.add(adding1);

 }

 if (sequence1.get(b).second>9999)

 { int pr=findIndex(sequence1.get(b).second);

 Node adding1=new Node();

 adding1.branch=sequence.get(pr).branch;

 adding1.first=sequence.get(pr).first;

 adding1.second=sequence.get(pr).second;

 sequence2.add(adding1);

 count++;

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).second;

 adding1.first=-1;

 adding1.second=-1;

 sequence2.add(adding1);

 }

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).branch;

 adding1.first=sequence1.get(b).first;

 adding1.second=sequence1.get(b).second;

 sequence2.add(adding1);

 }

 }

 if(sequence2.size()>2)

 { int co=sequence2.size()+100;

 while(co!=0){

 for (int u=1; u<(sequence2.size())-1;u++)

 { float fdis;

 float sdis;

 fdis=findDependency(sequence2.get(u-1).branch,

sequence2.get(u).branch, revisedCm2);

 sdis=findDependency(sequence2.get(u-1).branch,

sequence2.get(u+1).branch, revisedCm2);

 if(sdis>fdis)

 {

79

 Node sub=new Node();

 sub.branch=sequence2.get(u+1).branch;

 sub.first=sequence2.get(u+1).first;

 sub.second=sequence2.get(u+1).second;

 sequence2.get(u+1).branch= sequence2.get(u).branch;

 sequence2.get(u+1).first=sequence2.get(u).first;

 sequence2.get(u+1).second=sequence2.get(u).second;

 sequence2.get(u).branch=sub.branch;

 sequence2.get(u).first=sub.first;

 sequence2.get(u).second=sub.second;

 }

 }

 co--;

 }

 }

 sequence1=sequence2;

 }

 return sequence1;

 }

 }

public class Main {

 public static void main(String[] args) {

 System.out.println("enter the number of rows");

 Scanner getRow= new Scanner(System.in);

 int row2=getRow.nextInt();

 System.out.println("enter the number of columns");

 Scanner getCol= new Scanner(System.in);

 int col2=getCol.nextInt();

 Matrix matrix1=new Matrix(row2,col2);

 System.out.println();

 matrix1.showMatrix();

 Cm cm1=new Cm(matrix1);

 cm1.tcmrc();

 Cell[][] finalCm=cm1.makeCm();

 Tree mtree= new Tree();

 finalCm=mtree.makeRevised(cm1);

 mtree.makeTree(finalCm);

 mtree.printSequence();

 ArrayList<Node> seque=mtree.reordering(finalCm);

 int[][] seq2=mtree.findSequence(seque);

 System.out.println();

 matrix1.rearrange(seq2);

 }

}

Figure B1. The Original Code for the Case Study OOP

80

package clustering1;

import java.text.DecimalFormat;

import java.util.*;

class Matrix

{ int row;

 int col;

 int[][] mat;

 public Matrix(int row1, int col1){

 row=row1;

 col=col1;

 mat= new int[row][col];

 for (int i=0; i<row; i++){

 int p=i+1;

 System.out.println("enter the entities of row number"+ p);

 for (int j=0; j<col; j++){

 Scanner getEntity= new Scanner(System.in);

 int next;

 next= getEntity.nextInt();

 mat[i][j]=next;

 }

 }

 }

 public int[][] rearrange(int[][] sequ1)

 {

 int[][] mat1=new int[row][col];

 for(int d=0; d<row; d++){

 for (int f=0; f<col; f++){

 int h=(sequ1[0][d])-1;

 mat1[d][f]=mat[h][f];

 }

 }

 int[][] mat2=new int[row][col];

 for(int d1=0; d1<col; d1++){

 for (int f1=0; f1<row; f1++){

 int h8=(sequ1[1][d1])-1;

 mat2[f1][d1]=mat1[f1][h8];

 }

 }

 int [][] mat3=new int[row+1][col+1];

 mat3[0][0]=0;

 for (int px=0; px<row; px++)

 mat3[px+1][0]=sequ1[0][px];

 for (int py=0; py<col; py++)

 mat3[0][py+1]=sequ1[1][py];

 for (int xy=0; xy<row; xy++)

 for (int xy1=0; xy1<col; xy1++)

 {

 mat3[xy+1][xy1+1]=mat2[xy][xy1];

 }

 for(int d5=0; d5<row+1; d5++){

 for (int f5=0; f5<col+1; f5++){

 System.out.print(mat3[d5][f5]+" ");

 }

 System.out.println();

 }

 return mat2;

}

 public void showMatrix()

 { System.out.println("this is the original matrix");

 for (int i=0; i<row; i++){

 for (int j=0; j<col; j++){

 System.out.print(mat[i][j]+" ");

81

 }

 System.out.println();

 }

}

}

class Cm

{

 float[][] cm;

 float[][] cmr;

 float[][] cmc;

 float[][] cmrc;

 float[][] trans;

 int cmrow;

 int cmcol;

 public Cm(Matrix matrixIn)

 {

 cmrow= matrixIn.row;

 cmcol= matrixIn.col;

 cmr=new float[matrixIn.row][matrixIn.row];

 for (int m=0; m<matrixIn.row; m++)

 for (int n=0; n<matrixIn.row; n++)

 {

 if (m==n)

 {

 cmr[m][n]=0;

 }

 else

 {

 int max=0;

 int min=0;

 for (int k=0; k<matrixIn.col; k++)

 { if ((matrixIn.mat[m][k]==1) || (matrixIn.mat[n][k]==1))

 {

 max++;}

 if ((matrixIn.mat[m][k]==1) && (matrixIn.mat[n][k]==1))

 {

 min++;}

 }

 float h=(float)min/max;

 cmr[m][n]=h;

 }

 }

 //show the matrix CMr

 System.out.println();

 System.out.println("this is the CMr Matrix");

 for (int q=0; q<matrixIn.row; q++){

 for (int h=0; h<matrixIn.row; h++){

 DecimalFormat df1 = new DecimalFormat("#.##");

 System.out.print(df1.format(cmr[q][h])+" ");

 }

 System.out.println();

 }

 cmc=new float[matrixIn.col][matrixIn.col];

 for (int m1=0; m1<matrixIn.col; m1++)

 for (int n1=0; n1<matrixIn.col; n1++)

 {

 if (m1==n1)

 {

 cmc[m1][n1]=0;

 }

 else

 {

 int max1=0;

 int min1=0;

 for (int k1=0; k1<matrixIn.row; k1++)

 { if ((matrixIn.mat[k1][m1]==1) || (matrixIn.mat[k1][n1]==1))

 {

 max1++;}

82

 if ((matrixIn.mat[k1][m1]==1) && (matrixIn.mat[k1][n1]==1))

 {

 min1++;}

 }

 float h1=(float)min1/max1;

 cmc[m1][n1]=h1;

 }

 }

 // show the matrix CMc

 System.out.println();

 System.out.println("this is the CMc Matrix");

 for (int q1=0; q1<matrixIn.col; q1++){

 for (int h2=0; h2<matrixIn.col; h2++){

 DecimalFormat df2 = new DecimalFormat("#.##");

 System.out.print(df2.format(cmc[q1][h2])+" ");

 }

 System.out.println();

 }

 cmrc=new float[matrixIn.row][matrixIn.col];

 for (int m2=0; m2<matrixIn.row; m2++)

 for (int n2=0; n2<matrixIn.col; n2++)

 {

 int sumr=0;

 int sumc=0;

 for (int k2=0; k2<matrixIn.col; k2++)

 { if (matrixIn.mat[m2][k2]==1)

 {

 sumr++;}}

 for (int k3=0; k3<matrixIn.row; k3++)

 { if (matrixIn.mat[k3][n2]==1)

 {

 sumc++;}}

 float h3=matrixIn.mat[m2][n2];

 cmrc[m2][n2]=(float)((2*h3)/(sumr+sumc));

 }

 //show the matrix CMrc

 System.out.println();

 System.out.println("this is the CMrc Matrix");

 for (int q3=0; q3<matrixIn.row; q3++){

 for (int h4=0; h4<matrixIn.col; h4++){

 DecimalFormat df3 = new DecimalFormat("#.##");

 System.out.print(df3.format(cmrc[q3][h4])+" ");

 }

 System.out.println();

 }

 }

 public void tcmrc()

 { trans= new float[cmcol][cmrow];

 for (int i1=0; i1<cmrow; i1++){

 for (int j1=0; j1<cmcol; j1++)

 {trans[j1][i1]=cmrc[i1][j1];}}

 //show the matrix TCMrc

 System.out.println();

 System.out.println("this is the transposed CMrc Matrix");

 for (int q4=0; q4<cmcol; q4++){

 for (int h5=0; h5<cmrow; h5++){

 DecimalFormat df4 = new DecimalFormat("#.##");

 System.out.print(df4.format(trans[q4][h5])+" ");

 }

 System.out.println();

 }

83

 }

public float[][] makeCm()

 { int rc=cmrow+cmcol;

 cm= new float[rc][rc];

 for (int cr=0; cr<cmcol; cr++)

 {

 for (int cc = 0; cc < cmcol; cc++){

 cm[cr][cc]=cmc[cr][cc];

 }}

 for (int tr=0;tr<cmcol; tr++){

 for(int tc=cmcol; tc<rc; tc++){

 cm[tr][tc]=trans[tr][tc-cmcol];

 }}

 for (int rcr=cmcol; rcr<rc; rcr++){

 for(int rcc=0; rcc<cmcol; rcc++){

 cm[rcr][rcc]=cmrc[rcr-cmcol][rcc];

 }}

 for (int rr=cmcol; rr<rc; rr++){

 for(int rc1=cmcol; rc1<rc; rc1++){

 cm[rr][rc1]=cmr[rr-cmcol][rc1-cmcol];

 }}

 //show the matrix CM

 System.out.println();

 System.out.println("this is the CM Matrix");

 for (int q5=0; q5<rc; q5++){

 for (int h6=0; h6<rc; h6++){

 DecimalFormat df5 = new DecimalFormat("#.##");

 System.out.print(df5.format(cm[q5][h6])+" ");

 }

 System.out.println();

 }

 return cm;

}

 }

class Node

 {

 int first;

 int second;

 int branch;

 }

class Tree

 {

 ArrayList<Node> sequence= new ArrayList<Node>();

 int originRow;

 int originCol;

 public float[][] makeRevised(Cm fc)

 {int nr=fc.cmrow;

 int nc=fc.cmcol;

 originRow=nr;

 originCol=nc;

 int to=nr+nc;

 float[][] revised=new float[to][to];

 for (int i=0; i<to; i++)

 for (int j=0; j<to; j++)

 {if (i<j)

 {

 revised[i][j]=0;

 }

 else

 {

 revised[i][j]=fc.cm[i][j];

84

 }

 }

//show the revised of matrix CM

 System.out.println();

 System.out.println("this is the revised of CM Matrix");

 for (int q6=0; q6<to; q6++){

 for (int h7=0; h7<to; h7++){

 DecimalFormat df6 = new DecimalFormat("#.##");

 System.out.print(df6.format(revised[q6][h7])+" ");

 }

 System.out.println();}

 return revised;

 }

 public void makeTree(float[][] revisedCm)

 {

 int y5=revisedCm.length;

 int[][] helpr=new int[y5][y5];

 int[][] helpc=new int[y5][y5];

 for(int l3=0; l3<y5; l3++)

 for (int l4=0; l4<y5; l4++)

 {

 helpr[l3][l4]=0;

 helpc[l3][l4]=0;

 }

 int counter=10000;

 int counter1=revisedCm.length;

 while (counter1 != 1)

 {

 int [][] newnode=new int[1][2];

 newnode=findMax(revisedCm);

 int hr=newnode[0][0];

 int hc=newnode[0][1];

 Node n=new Node();

 if(helpr[hr][0]==0)

 {

 n.first = hr+1;}

 else { n.first=helpr[hr][0];}

 if(helpc[0][hc]==0)

 {

 n.second = hc+1;}

 else {n.second=helpc[0][hc];}

 n.branch=counter;

 counter++;

 sequence.add(n);

 revisedCm[hr][hc]=0;

 revisedCm[hc][hr]=0;

 for(int jn=0; jn<revisedCm.length; jn++)

 {revisedCm[hc][jn]=((revisedCm[hc][jn])+(revisedCm[hr][jn]))/2;

 revisedCm[jn][hc]=((revisedCm[jn][hc])+(revisedCm[jn][hr]))/2;

 helpr[hc][jn]=n.branch;

 helpc[jn][hc]=n.branch;

 }

 for(int in=0; in<revisedCm.length; in++)

 {

 revisedCm[in][hr]= 0;

 revisedCm[hr][in]=0;

 }

 for (int ir=0; ir<revisedCm.length; ir++){

 for (int jr=0; jr<revisedCm.length; jr++)

 {if (ir<jr)

 {

 revisedCm[ir][jr]=0;

85

 }

 }

 }

 counter1--;

 }

 }

 public int[][] findMax(float[][] toFind)

 { int[][] choose=new int[1][2];

 float max=toFind[0][0];

 for(int it=0; it<toFind.length; it++)

 for (int jt=0; jt<toFind.length; jt++)

 {

 if (toFind[it][jt]>max)

 {

 max = toFind[it][jt];

 choose[0][0]=it;

 choose[0][1]=jt;

 }

 }

 return choose;

 }

 public ArrayList<Float> findLeafs(ArrayList<Node> seqq, int point)

 {

 int y5=0;

 int fi;

 int se;

 ArrayList<Float> leafs=new ArrayList<Float>();

 ArrayList<Float> nonLeafs=new ArrayList<Float>();

 if (point>9999){

 for (int x5=0; x5<seqq.size();x5++)

 {

 if (seqq.get(x5).branch==point)

 {

 y5=x5;

 break;

 }

 }

 fi=seqq.get(y5).first;

 se=seqq.get(y5).second;

 if (fi<9999)

 {

 float newLeaf = fi;

 leafs.add(newLeaf);

 }

 else

 {

 float newNonLeaf=fi;

 nonLeafs.add(newNonLeaf);

 }

 if (se<9999)

 {

 float newLeaf =se;

 leafs.add(newLeaf);

 }

 else

 {

 float newNonLeaf=se;

 nonLeafs.add(newNonLeaf);

 }

 while (!nonLeafs.isEmpty())

 {

 for (int x9=0; x9<nonLeafs.size(); x9++)

 {float point11=nonLeafs.get(x9);

 int point1=(int)point11;

86

 for(int y9=0; y9<seqq.size(); y9++)

 {

 if (seqq.get(y9).branch==point1)

 {

 nonLeafs.remove(x9);

 if (seqq.get(y9).first<9999)

 {

 float newLeaf=seqq.get(y9).first;

 leafs.add(newLeaf);

 }

 else

 {

 float newLeaf=seqq.get(y9).first;

 nonLeafs.add(newLeaf);

 }

 if (seqq.get(y9).second<9999)

 {

 float newLeaf=seqq.get(y9).second;

 leafs.add(newLeaf);

 }

 else

 {

 float newLeaf=seqq.get(y9).second;

 nonLeafs.add(newLeaf);

 }

 break;

 }

 }

 }

 }

 }

 else

 {

 float newLeaf2=point;

 leafs.add(newLeaf2);

 }

 // print leafs

 System.out.println();

for (int x10=0; x10<leafs.size(); x10++)

{

 System.out.println(leafs.get(x10)+" ");

}

return leafs;

 }

 public int[][] findSequence (ArrayList<Node> se)

 {

 int irow=0;

 int jcol=0;

 int[][] seq;

 if (originRow>originCol)

 {seq=new int[2][originRow];}

 else

 { seq = new int[2][originCol];}

 for (int u = 0; u < se.size(); u++)

 {

 if ((se.get(u).first<= originCol)&&(se.get(u).first>0))

 {

 seq[1][jcol] = se.get(u).first;

 jcol++;

 }

 if (se.get(u).first> originCol && se.get(u).first<9999 &&

se.get(u).first>0)

 {

 seq[0][irow]= se.get(u).first - originCol;

 irow++;

 }

87

 if (se.get(u).second<= originCol && se.get(u).second>0)

 {

 seq[1][jcol] = se.get(u).second;

 jcol++;

 }

 if (se.get(u).second> originCol && se.get(u).second<9999 &&

se.get(u).second>0)

 {

 seq[0][irow]= se.get(u).second - originCol;

 irow++;

 }

 if (se.get(u).branch<= originCol && se.get(u).branch>0)

 {

 seq[1][jcol] = se.get(u).branch;

 jcol++;

 }

 if (se.get(u).branch> originCol && se.get(u).branch<9999 &&

se.get(u).branch>0)

 {

 seq[0][irow]= se.get(u).branch - originCol;

 irow++;

 }

 }

 // show seq array

 for (int z=0; z<originRow; z++)

 {System.out.print(seq[0][z]+" ");

 }

 System.out.println();

 for (int y=0; y<originCol; y++)

 {System.out.print(seq[1][y]+" ");

 }

 return seq;

 }

 public float findDependency(int point1, int point2, float[][] revisedCm1)

 {

 float dep=0;

 ArrayList <Float> point1List=findLeafs(sequence, point1);

 ArrayList <Float> point2List=findLeafs(sequence, point2);

 for (int k=0; k<point1List.size(); k++)

 for(int k1=0; k1<point2List.size(); k1++)

 {

 float hy=point1List.get(k)-1;

 int hy1=(int)hy;

 float hx=point2List.get(k1)-1;

 int hx1=(int)hx;

 dep=dep+revisedCm1[hy1][hx1];

 }

 return dep;

 }

 public int findIndex(int m)

 { int o=-1;

 for (int s=0; s<sequence.size(); s++)

 if (sequence.get(s).branch==m)

 { o=s;

 break;}

 return o;

 }

 public ArrayList<Node> reordering(float[][] revisedCm2)

 {

 ArrayList<Node> sequence1= new ArrayList<Node>();

 int count=1;

88

 int a=sequence.size();

 Node adding=new Node();

 adding.branch=sequence.get(a-1).branch;

 adding.first=sequence.get(a-1).first;

 adding.second=sequence.get(a-1).second;

 sequence1.add(adding);

 while(count!= sequence.size())

 { ArrayList<Node> sequence2= new ArrayList<Node>();

 for(int b=0; b<sequence1.size();b++)

 { if

((sequence1.get(b).first>9999)||(sequence1.get(b).second>9999)){

 if (sequence1.get(b).first>9999)

 { int pr=findIndex(sequence1.get(b).first);

 Node adding1=new Node();

 adding1.branch=sequence.get(pr).branch;

 adding1.first=sequence.get(pr).first;

 adding1.second=sequence.get(pr).second;

 sequence2.add(adding1);

 count++;

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).first;

 adding1.first=-1;

 adding1.second=-1;

 sequence2.add(adding1);

 }

 if (sequence1.get(b).second>9999)

 { int pr=findIndex(sequence1.get(b).second);

 Node adding1=new Node();

 adding1.branch=sequence.get(pr).branch;

 adding1.first=sequence.get(pr).first;

 adding1.second=sequence.get(pr).second;

 sequence2.add(adding1);

 count++;

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).second;

 adding1.first=-1;

 adding1.second=-1;

 sequence2.add(adding1);

 }

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).branch;

 adding1.first=sequence1.get(b).first;

 adding1.second=sequence1.get(b).second;

 sequence2.add(adding1);

 }

 }

 if(sequence2.size()>2)

 { int co=sequence2.size()+100;

 while(co!=0){

 for (int u=1; u<(sequence2.size())-1;u++)

 { float fdis;

 float sdis;

 fdis=findDependency(sequence2.get(u-1).branch,

sequence2.get(u).branch, revisedCm2);

 sdis=findDependency(sequence2.get(u-1).branch,

sequence2.get(u+1).branch, revisedCm2);

 if(sdis>fdis)

 {

 Node sub=new Node();

 sub.branch=sequence2.get(u+1).branch;

 sub.first=sequence2.get(u+1).first;

89

 sub.second=sequence2.get(u+1).second;

 sequence2.get(u+1).branch= sequence2.get(u).branch;

 sequence2.get(u+1).first=sequence2.get(u).first;

 sequence2.get(u+1).second=sequence2.get(u).second;

 sequence2.get(u).branch=sub.branch;

 sequence2.get(u).first=sub.first;

 sequence2.get(u).second=sub.second;

 }

 }

 co--;

 }

 }

 sequence1=sequence2;

 }

 // print sequence

 System.out.println();

 for (int kh = 0; kh < sequence1.size(); kh++)

 {

 System.out.println(sequence1.get(kh).first+"

"+sequence1.get(kh).second+" "+sequence1.get(kh).branch);

 }

 return sequence1;

 }

 }

public class Main {

 public static void main(String[] args) {

 System.out.println("enter the number of rows");

 Scanner getRow= new Scanner(System.in);

 int row2=getRow.nextInt();

 System.out.println("enter the number of columns");

 Scanner getCol= new Scanner(System.in);

 int col2=getCol.nextInt();

 Matrix matrix1=new Matrix(row2,col2);

 System.out.println();

 matrix1.showMatrix();

 Cm cm1=new Cm(matrix1);

 cm1.tcmrc();

 float[][] finalCm=cm1.makeCm();

 Tree mtree= new Tree();

 finalCm=mtree.makeRevised(cm1);

 mtree.makeTree(finalCm);

 mtree.printSequence();

 ArrayList<Node> seque=mtree.reordering(finalCm);

 int[][] seq2=mtree.findSequence(seque);

 System.out.println();

 matrix1.rearrange(seq2);

 }

}

Figure B2. The Modified Code of the Case Study OOP Based on Solution 1

90

package clustering2;

import java.text.DecimalFormat;

import java.util.*;

class Cell

 {

 int rowNum;

 int colNum;

 float contain;

 int extraRow;

 int extraCol;

}

class Matrix

{ int row;

 int col;

 int[][] mat;

 public Matrix(int row1, int col1){

 row=row1;

 col=col1;

 mat= new int[row][col];

 for (int i=0; i<row; i++){

 int p=i+1;

 System.out.println("enter the entities of row number"+ p);

 for (int j=0; j<col; j++){

 Scanner getEntity= new Scanner(System.in);

 int next;

 next= getEntity.nextInt();

 mat[i][j]=next;

 }

 }

 }

 public int[][] rearrange(int[][] sequ1)

 {

 int[][] mat1=new int[row][col];

 for(int d=0; d<row; d++){

 for (int f=0; f<col; f++){

 int h=(sequ1[0][d])-1;

 mat1[d][f]=mat[h][f];

 }

 }

 int[][] mat2=new int[row][col];

 for(int d1=0; d1<col; d1++){

 for (int f1=0; f1<row; f1++){

 int h8=(sequ1[1][d1])-1;

 mat2[f1][d1]=mat1[f1][h8];

 }

 }

 int [][] mat3=new int[row+1][col+1];

 mat3[0][0]=0;

 for (int px=0; px<row; px++)

 mat3[px+1][0]=sequ1[0][px];

 for (int py=0; py<col; py++)

 mat3[0][py+1]=sequ1[1][py];

 for (int xy=0; xy<row; xy++)

 for (int xy1=0; xy1<col; xy1++)

 {

 mat3[xy+1][xy1+1]=mat2[xy][xy1];

 }

 for(int d5=0; d5<row+1; d5++){

 for (int f5=0; f5<col+1; f5++){

 System.out.print(mat3[d5][f5]+" ");

 }

 System.out.println();

 }

91

 return mat2;

}

 public void showMatrix()

 { System.out.println("this is the original matrix");

 for (int i=0; i<row; i++){

 for (int j=0; j<col; j++){

 System.out.print(mat[i][j]+" ");

 }

 System.out.println();

 }

}

}

class Cm

{

 float[][] cm;

 float[][] cmr;

 float[][] cmc;

 float[][] cmrc;

 float[][] trans;

 int cmrow;

 int cmcol;

 public Cm(Matrix matrixIn)

 {

 cmrow= matrixIn.row;

 cmcol= matrixIn.col;

 cmr=new float[matrixIn.row][matrixIn.row];

 for (int m=0; m<matrixIn.row; m++)

 for (int n=0; n<matrixIn.row; n++)

 {

 if (m==n)

 {

 cmr[m][n]=0;

 }

 else

 {

 int max=0;

 int min=0;

 for (int k=0; k<matrixIn.col; k++)

 { if ((matrixIn.mat[m][k]==1) || (matrixIn.mat[n][k]==1))

 {

 max++;}

 if ((matrixIn.mat[m][k]==1) && (matrixIn.mat[n][k]==1))

 {

 min++;}

 }

 float h=(float)min/max;

 //cmr[m][n]=new Cell();

 cmr[m][n]=h;

 }

 }

 //show the matrix CMr

 System.out.println();

 System.out.println("this is the CMr Matrix");

 for (int q=0; q<matrixIn.row; q++){

 for (int h=0; h<matrixIn.row; h++){

 DecimalFormat df1 = new DecimalFormat("#.##");

 System.out.print(df1.format(cmr[q][h])+" ");

 }

 System.out.println();

 }

 cmc=new float[matrixIn.col][matrixIn.col];

 for (int m1=0; m1<matrixIn.col; m1++)

 for (int n1=0; n1<matrixIn.col; n1++)

 {

 if (m1==n1)

 {

92

 cmc[m1][n1]=0;

 }

 else

 {

 int max1=0;

 int min1=0;

 for (int k1=0; k1<matrixIn.row; k1++)

 { if ((matrixIn.mat[k1][m1]==1) || (matrixIn.mat[k1][n1]==1))

 {

 max1++;}

 if ((matrixIn.mat[k1][m1]==1) && (matrixIn.mat[k1][n1]==1))

 {

 min1++;}

 }

 float h1=(float)min1/max1;

 cmc[m1][n1]=h1;

 }

 }

 // show the matrix CMc

 System.out.println();

 System.out.println("this is the CMc Matrix");

 for (int q1=0; q1<matrixIn.col; q1++){

 for (int h2=0; h2<matrixIn.col; h2++){

 DecimalFormat df2 = new DecimalFormat("#.##");

 System.out.print(df2.format(cmc[q1][h2])+" ");

 }

 System.out.println();

 }

 cmrc=new float[matrixIn.row][matrixIn.col];

 for (int m2=0; m2<matrixIn.row; m2++)

 for (int n2=0; n2<matrixIn.col; n2++)

 {

 int sumr=0;

 int sumc=0;

 for (int k2=0; k2<matrixIn.col; k2++)

 { if (matrixIn.mat[m2][k2]==1)

 {

 sumr++;}}

 for (int k3=0; k3<matrixIn.row; k3++)

 { if (matrixIn.mat[k3][n2]==1)

 {

 sumc++;}}

 float h3=matrixIn.mat[m2][n2];

 cmrc[m2][n2]=(float)((2*h3)/(sumr+sumc));

 }

 //show the matrix CMrc

 System.out.println();

 System.out.println("this is the CMrc Matrix");

 for (int q3=0; q3<matrixIn.row; q3++){

 for (int h4=0; h4<matrixIn.col; h4++){

 DecimalFormat df3 = new DecimalFormat("#.##");

 System.out.print(df3.format(cmrc[q3][h4])+" ");

 }

 System.out.println();

 }

 }

 public void tcmrc()

 { trans= new float[cmcol][cmrow];

 for (int i1=0; i1<cmrow; i1++){

 for (int j1=0; j1<cmcol; j1++)

 {trans[j1][i1]=cmrc[i1][j1];}}

 //show the matrix TCMrc

 System.out.println();

93

 System.out.println("this is the transposed CMrc Matrix");

 for (int q4=0; q4<cmcol; q4++){

 for (int h5=0; h5<cmrow; h5++){

 DecimalFormat df4 = new DecimalFormat("#.##");

 System.out.print(df4.format(trans[q4][h5])+" ");

 }

 System.out.println();

 }

 }

public float[][] makeCm()

 { int rc=cmrow+cmcol;

 cm= new float[rc][rc];

 for (int cr=0; cr<cmcol; cr++)

 {

 for (int cc = 0; cc < cmcol; cc++){

 cm[cr][cc]=cmc[cr][cc];

 }}

 for (int tr=0;tr<cmcol; tr++){

 for(int tc=cmcol; tc<rc; tc++){

 cm[tr][tc]=trans[tr][tc-cmcol];

 }}

 for (int rcr=cmcol; rcr<rc; rcr++){

 for(int rcc=0; rcc<cmcol; rcc++){

 cm[rcr][rcc]=cmrc[rcr-cmcol][rcc];

 }}

 for (int rr=cmcol; rr<rc; rr++){

 for(int rc1=cmcol; rc1<rc; rc1++){

 cm[rr][rc1]=cmr[rr-cmcol][rc1-cmcol];

 }}

 //show the matrix CM

 System.out.println();

 System.out.println("this is the CM Matrix");

 for (int q5=0; q5<rc; q5++){

 for (int h6=0; h6<rc; h6++){

 DecimalFormat df5 = new DecimalFormat("#.##");

 System.out.print(df5.format(cm[q5][h6])+" ");

 }

 System.out.println();

 }

 return cm;

}

 }

class Node

 {

 int first;

 int second;

 int branch;

 }

class Tree

 {

 ArrayList<Node> sequence= new ArrayList<Node>();

 int originRow;

 int originCol;

 public float[][] makeRevised(Cm fc)

 {int nr=fc.cmrow;

 int nc=fc.cmcol;

 originRow=nr;

 originCol=nc;

 int to=nr+nc;

 float[][] revised=new float[to][to];

 for (int i=0; i<to; i++)

 for (int j=0; j<to; j++)

94

 {if (i<j)

 {

 revised[i][j]=0;

 }

 else

 {

 revised[i][j]=fc.cm[i][j];

 }

 }

//show the revised of matrix CM

 System.out.println();

 System.out.println("this is the revised of CM Matrix");

 for (int q6=0; q6<to; q6++){

 for (int h7=0; h7<to; h7++){

 DecimalFormat df6 = new DecimalFormat("#.##");

 System.out.print(df6.format(revised[q6][h7])+" ");

 }

 System.out.println();}

 return revised;

 }

 public void makeTree(float[][] revisedCm1)

 {

 int hr1=originRow+originCol;

 Cell[][] revisedCm= new Cell[hr1][hr1];

 for(int ss=0; ss<hr1; ss++)

 for(int yy=0; yy<hr1; yy++)

 {

 revisedCm[ss][yy]=new Cell();

 revisedCm[ss][yy].colNum=yy+1;

 revisedCm[ss][yy].rowNum=ss+1;

 revisedCm[ss][yy].extraRow=0;

 revisedCm[ss][yy].extraCol=0;

 revisedCm[ss][yy].contain=revisedCm1[ss][yy];

 }

 int counter=10000;

 int counter1=revisedCm.length;

 while (counter1 != 1)

 {

 Cell newnode=findMax(revisedCm);

 Node n=new Node();

 if(newnode.extraRow==0)

 {

 n.first = newnode.rowNum;}

 else { n.first=newnode.extraRow;}

 if(newnode.extraCol==0)

 {

 n.second = newnode.colNum;}

 else {n.second=newnode.extraCol;}

 n.branch=counter;

 counter++;

 sequence.add(n);

 revisedCm[(newnode.rowNum)-1][(newnode.colNum)-1].contain=0;

 revisedCm[(newnode.colNum)-1][(newnode.rowNum)-1].contain=0;

 for(int jn=0; jn<revisedCm.length; jn++)

 {revisedCm[(newnode.colNum)-1][jn].contain=((revisedCm[(newnode.colNum)-

1][jn].contain)+(revisedCm[(newnode.rowNum)-1][jn].contain))/2;

 revisedCm[jn][(newnode.colNum)-1].contain=((revisedCm[jn][(newnode.colNum)-

1].contain)+(revisedCm[jn][(newnode.rowNum)-1].contain))/2;

 revisedCm[(newnode.colNum)-1][jn].extraRow=n.branch;

 revisedCm[jn][(newnode.colNum)-1].extraCol=n.branch;

 }

 for(int in=0; in<revisedCm.length; in++)

 {

 revisedCm[in][(newnode.rowNum) - 1].contain = 0;

 revisedCm[(newnode.rowNum)-1][in].contain=0;

 }

95

 for (int ir=0; ir<revisedCm.length; ir++){

 for (int jr=0; jr<revisedCm.length; jr++)

 {if (ir<jr)

 {

 revisedCm[ir][jr].contain=0;

 }

 }

 }

 counter1--;

 }

 for(int ss1=0; ss1<hr1; ss1++)

 for(int yy1=0; yy1<hr1; yy1++)

 {

 revisedCm1[ss1][yy1]=revisedCm[ss1][yy1].contain;

 }

 }

 public Cell findMax(Cell[][] toFind)

 { Cell choose=new Cell();

 float max=toFind[0][0].contain;

 for(int it=0; it<toFind.length; it++)

 for (int jt=0; jt<toFind.length; jt++)

 {

 if (toFind[it][jt].contain>max)

 {

 max = toFind[it][jt].contain;

 choose.colNum=toFind[it][jt].colNum;

 choose.rowNum=toFind[it][jt].rowNum;

 choose.extraRow=toFind[it][jt].extraRow;

 choose.extraCol=toFind[it][jt].extraCol;

 choose.contain=max;

 }

 }

 return choose;

 }

 public ArrayList<Float> findLeafs(ArrayList<Node> seqq, int point)

 {

 int y5=0;

 int fi;

 int se;

 ArrayList<Float> leafs=new ArrayList<Float>();

 ArrayList<Float> nonLeafs=new ArrayList<Float>();

 if (point>9999){

 for (int x5=0; x5<seqq.size();x5++)

 {

 if (seqq.get(x5).branch==point)

 {

 y5=x5;

 break;

 }

 }

 fi=seqq.get(y5).first;

 se=seqq.get(y5).second;

 if (fi<9999)

 {

 float newLeaf = fi;

 leafs.add(newLeaf);

 }

 else

 {

 float newNonLeaf=fi;

 nonLeafs.add(newNonLeaf);

 }

96

 if (se<9999)

 {

 float newLeaf =se;

 leafs.add(newLeaf);

 }

 else

 {

 float newNonLeaf=se;

 nonLeafs.add(newNonLeaf);

 }

 while (!nonLeafs.isEmpty())

 {

 for (int x9=0; x9<nonLeafs.size(); x9++)

 {float point11=nonLeafs.get(x9);

 int point1=(int)point11;

 for(int y9=0; y9<seqq.size(); y9++)

 {

 if (seqq.get(y9).branch==point1)

 {

 nonLeafs.remove(x9);

 if (seqq.get(y9).first<9999)

 {

 float newLeaf=seqq.get(y9).first;

 leafs.add(newLeaf);

 }

 else

 {

 float newLeaf=seqq.get(y9).first;

 nonLeafs.add(newLeaf);

 }

 if (seqq.get(y9).second<9999)

 {

 float newLeaf=seqq.get(y9).second;

 leafs.add(newLeaf);

 }

 else

 {

 float newLeaf=seqq.get(y9).second;

 nonLeafs.add(newLeaf);

 }

 break;

 }

 }

 }

 }

 }

 else

 {

 float newLeaf2=point;

 leafs.add(newLeaf2);

 }

return leafs;

 }

 public int[][] findSequence (ArrayList<Node> se)

 {

 int irow=0;

 int jcol=0;

 int[][] seq;

 if (originRow>originCol)

 {seq=new int[2][originRow];}

 else

 { seq = new int[2][originCol];}

 for (int u = 0; u < se.size(); u++)

 {

 if ((se.get(u).first<= originCol)&&(se.get(u).first>0))

97

 {

 seq[1][jcol] = se.get(u).first;

 jcol++;

 }

 if (se.get(u).first> originCol && se.get(u).first<9999 &&

se.get(u).first>0)

 {

 seq[0][irow]= se.get(u).first - originCol;

 irow++;

 }

 if (se.get(u).second<= originCol && se.get(u).second>0)

 {

 seq[1][jcol] = se.get(u).second;

 jcol++;

 }

 if (se.get(u).second> originCol && se.get(u).second<9999 &&

se.get(u).second>0)

 {

 seq[0][irow]= se.get(u).second - originCol;

 irow++;

 }

 if (se.get(u).branch<= originCol && se.get(u).branch>0)

 {

 seq[1][jcol] = se.get(u).branch;

 jcol++;

 }

 if (se.get(u).branch> originCol && se.get(u).branch<9999 &&

se.get(u).branch>0)

 {

 seq[0][irow]= se.get(u).branch - originCol;

 irow++;

 }

 }

 // show seq array

 for (int z=0; z<originRow; z++)

 {System.out.print(seq[0][z]+" ");

 }

 System.out.println();

 for (int y=0; y<originCol; y++)

 {System.out.print(seq[1][y]+" ");

 }

 return seq;

 }

 public float findDependency(int point1, int point2, float[][] revisedCm5)

 {

 float dep=0;

 ArrayList <Float> point1List=findLeafs(sequence, point1);

 ArrayList <Float> point2List=findLeafs(sequence, point2);

 for (int k=0; k<point1List.size(); k++)

 for(int k1=0; k1<point2List.size(); k1++)

 {

 float hy=point1List.get(k)-1;

 int hy1=(int)hy;

 float hx=point2List.get(k1)-1;

 int hx1=(int)hx;

 dep=dep+revisedCm5[hy1][hx1];

 }

 return dep;

 }

 public int findIndex(int m)

 { int o=-1;

98

 for (int s=0; s<sequence.size(); s++)

 if (sequence.get(s).branch==m)

 { o=s;

 break;}

 return o;

 }

 public ArrayList<Node> reordering(float[][] revisedCm6)

 {

 ArrayList<Node> sequence1= new ArrayList<Node>();

 int count=1;

 int a=sequence.size();

 Node adding=new Node();

 adding.branch=sequence.get(a-1).branch;

 adding.first=sequence.get(a-1).first;

 adding.second=sequence.get(a-1).second;

 sequence1.add(adding);

 while(count!= sequence.size())

 { ArrayList<Node> sequence2= new ArrayList<Node>();

 for(int b=0; b<sequence1.size();b++)

 { if

((sequence1.get(b).first>9999)||(sequence1.get(b).second>9999)){

 if (sequence1.get(b).first>9999)

 { int pr=findIndex(sequence1.get(b).first);

 Node adding1=new Node();

 adding1.branch=sequence.get(pr).branch;

 adding1.first=sequence.get(pr).first;

 adding1.second=sequence.get(pr).second;

 sequence2.add(adding1);

 count++;

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).first;

 adding1.first=-1;

 adding1.second=-1;

 sequence2.add(adding1);

 }

 if (sequence1.get(b).second>9999)

 { int pr=findIndex(sequence1.get(b).second);

 Node adding1=new Node();

 adding1.branch=sequence.get(pr).branch;

 adding1.first=sequence.get(pr).first;

 adding1.second=sequence.get(pr).second;

 sequence2.add(adding1);

 count++;

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).second;

 adding1.first=-1;

 adding1.second=-1;

 sequence2.add(adding1);

 }

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).branch;

 adding1.first=sequence1.get(b).first;

 adding1.second=sequence1.get(b).second;

 sequence2.add(adding1);

 }

 }

 if(sequence2.size()>2)

 { int co=sequence2.size()+100;

 while(co!=0){

 for (int u=1; u<(sequence2.size())-1;u++)

99

 { float fdis;

 float sdis;

 fdis=findDependency(sequence2.get(u-1).branch,

sequence2.get(u).branch, revisedCm6);

 sdis=findDependency(sequence2.get(u-1).branch,

sequence2.get(u+1).branch, revisedCm6);

 if(sdis>fdis)

 {

 Node sub=new Node();

 sub.branch=sequence2.get(u+1).branch;

 sub.first=sequence2.get(u+1).first;

 sub.second=sequence2.get(u+1).second;

 sequence2.get(u+1).branch= sequence2.get(u).branch;

 sequence2.get(u+1).first=sequence2.get(u).first;

 sequence2.get(u+1).second=sequence2.get(u).second;

 sequence2.get(u).branch=sub.branch;

 sequence2.get(u).first=sub.first;

 sequence2.get(u).second=sub.second;

 }

 }

 co--;

 }

 }

 sequence1=sequence2;

 }

 // print sequence

 System.out.println();

 for (int kh = 0; kh < sequence1.size(); kh++)

 {

 System.out.println(sequence1.get(kh).first+"

"+sequence1.get(kh).second+" "+sequence1.get(kh).branch);

 }

 return sequence1;

 }

}

public class Main {

 public static void main(String[] args) {

 System.out.println("enter the number of rows");

 Scanner getRow= new Scanner(System.in);

 int row2=getRow.nextInt();

 System.out.println("enter the number of columns");

 Scanner getCol= new Scanner(System.in);

 int col2=getCol.nextInt();

 Matrix matrix1=new Matrix(row2,col2);

 System.out.println();

 matrix1.showMatrix();

 Cm cm1=new Cm(matrix1);

 cm1.tcmrc();

 float[][] finalCm=cm1.makeCm();

 Tree mtree= new Tree();

 finalCm=mtree.makeRevised(cm1);

 mtree.makeTree(finalCm);

 mtree.printSequence();

 ArrayList<Node> seque=mtree.reordering(finalCm);

 int[][] seq2=mtree.findSequence(seque);

 System.out.println();

 matrix1.rearrange(seq2);

 }

}

Figure B3. The Modified Code of the Case Study OOP Based on Solution 2

100

package clustering3;

import java.text.DecimalFormat;

import java.util.*;

class Matrix

{ int row;

 int col;

 int[][] mat;

 public Matrix(int row1, int col1){

 row=row1;

 col=col1;

 mat= new int[row][col];

 for (int i=0; i<row; i++){

 int p=i+1;

 System.out.println("enter the entities of row number"+ p);

 for (int j=0; j<col; j++){

 Scanner getEntity= new Scanner(System.in);

 int next;

 next= getEntity.nextInt();

 mat[i][j]=next;

 }

 }

 }

 public int[][] rearrange(int[][] sequ1)

 {

 int[][] mat1=new int[row][col];

 for(int d=0; d<row; d++){

 for (int f=0; f<col; f++){

 int h=(sequ1[0][d])-1;

 mat1[d][f]=mat[h][f];

 }

 }

 int[][] mat2=new int[row][col];

 for(int d1=0; d1<col; d1++){

 for (int f1=0; f1<row; f1++){

 int h8=(sequ1[1][d1])-1;

 mat2[f1][d1]=mat1[f1][h8];

 }

 }

 int [][] mat3=new int[row+1][col+1];

 mat3[0][0]=0;

 for (int px=0; px<row; px++)

 mat3[px+1][0]=sequ1[0][px];

 for (int py=0; py<col; py++)

 mat3[0][py+1]=sequ1[1][py];

 for (int xy=0; xy<row; xy++)

 for (int xy1=0; xy1<col; xy1++)

 {

 mat3[xy+1][xy1+1]=mat2[xy][xy1];

 }

 for(int d5=0; d5<row+1; d5++){

 for (int f5=0; f5<col+1; f5++){

 System.out.print(mat3[d5][f5]+" ");

 }

 System.out.println();

 }

 return mat2;

}

 public void showMatrix()

 { System.out.println("this is the original matrix");

 for (int i=0; i<row; i++){

 for (int j=0; j<col; j++){

 System.out.print(mat[i][j]+" ");

 }

101

 System.out.println();

 }

}

}

class Cm

{

 float[][] cm;

 float[][] cmr;

 float[][] cmc;

 float[][] cmrc;

 float[][] trans;

 int cmrow;

 int cmcol;

 public Cm(Matrix matrixIn)

 {

 cmrow= matrixIn.row;

 cmcol= matrixIn.col;

 cmr=new float[matrixIn.row][matrixIn.row];

 for (int m=0; m<matrixIn.row; m++)

 for (int n=0; n<matrixIn.row; n++)

 {

 if (m==n)

 {

 cmr[m][n]=0;

 }

 else

 {

 int max=0;

 int min=0;

 for (int k=0; k<matrixIn.col; k++)

 { if ((matrixIn.mat[m][k]==1) || (matrixIn.mat[n][k]==1))

 {

 max++;}

 if ((matrixIn.mat[m][k]==1) && (matrixIn.mat[n][k]==1))

 {

 min++;}

 }

 float h=(float)min/max;

 cmr[m][n]=h;

 }

 }

 //show the matrix CMr

 System.out.println();

 System.out.println("this is the CMr Matrix");

 for (int q=0; q<matrixIn.row; q++){

 for (int h=0; h<matrixIn.row; h++){

 DecimalFormat df1 = new DecimalFormat("#.##");

 System.out.print(df1.format(cmr[q][h])+" ");

 }

 System.out.println();

 }

 cmc=new float[matrixIn.col][matrixIn.col];

 for (int m1=0; m1<matrixIn.col; m1++)

 for (int n1=0; n1<matrixIn.col; n1++)

 {

 if (m1==n1)

 {

 cmc[m1][n1]=0;

 }

 else

 {

 int max1=0;

 int min1=0;

 for (int k1=0; k1<matrixIn.row; k1++)

 { if ((matrixIn.mat[k1][m1]==1) || (matrixIn.mat[k1][n1]==1))

 {

 max1++;}

 if ((matrixIn.mat[k1][m1]==1) && (matrixIn.mat[k1][n1]==1))

102

 {

 min1++;}

 }

 float h1=(float)min1/max1;

 cmc[m1][n1]=h1;

 }

 }

 // show the matrix CMc

 System.out.println();

 System.out.println("this is the CMc Matrix");

 for (int q1=0; q1<matrixIn.col; q1++){

 for (int h2=0; h2<matrixIn.col; h2++){

 DecimalFormat df2 = new DecimalFormat("#.##");

 System.out.print(df2.format(cmc[q1][h2])+" ");

 }

 System.out.println();

 }

 cmrc=new float[matrixIn.row][matrixIn.col];

 for (int m2=0; m2<matrixIn.row; m2++)

 for (int n2=0; n2<matrixIn.col; n2++)

 {

 int sumr=0;

 int sumc=0;

 for (int k2=0; k2<matrixIn.col; k2++)

 { if (matrixIn.mat[m2][k2]==1)

 {

 sumr++;}}

 for (int k3=0; k3<matrixIn.row; k3++)

 { if (matrixIn.mat[k3][n2]==1)

 {

 sumc++;}}

 float h3=matrixIn.mat[m2][n2];

 cmrc[m2][n2]=(float)((2*h3)/(sumr+sumc));

 }

 //show the matrix CMrc

 System.out.println();

 System.out.println("this is the CMrc Matrix");

 for (int q3=0; q3<matrixIn.row; q3++){

 for (int h4=0; h4<matrixIn.col; h4++){

 DecimalFormat df3 = new DecimalFormat("#.##");

 System.out.print(df3.format(cmrc[q3][h4])+" ");

 }

 System.out.println();

 }

 }

 public void tcmrc()

 { trans= new float[cmcol][cmrow];

 for (int i1=0; i1<cmrow; i1++){

 for (int j1=0; j1<cmcol; j1++)

 {trans[j1][i1]=cmrc[i1][j1];}}

 //show the matrix TCMrc

 System.out.println();

 System.out.println("this is the transposed CMrc Matrix");

 for (int q4=0; q4<cmcol; q4++){

 for (int h5=0; h5<cmrow; h5++){

 DecimalFormat df4 = new DecimalFormat("#.##");

 System.out.print(df4.format(trans[q4][h5])+" ");

 }

 System.out.println();

 }

 }

public float[][] makeCm()

103

 { int rc=cmrow+cmcol;

 cm= new float[rc][rc];

 for (int cr=0; cr<cmcol; cr++)

 {

 for (int cc = 0; cc < cmcol; cc++){

 cm[cr][cc]=cmc[cr][cc];

 }}

 for (int tr=0;tr<cmcol; tr++){

 for(int tc=cmcol; tc<rc; tc++){

 cm[tr][tc]=trans[tr][tc-cmcol];

 }}

 for (int rcr=cmcol; rcr<rc; rcr++){

 for(int rcc=0; rcc<cmcol; rcc++){

 cm[rcr][rcc]=cmrc[rcr-cmcol][rcc];

 }}

 for (int rr=cmcol; rr<rc; rr++){

 for(int rc1=cmcol; rc1<rc; rc1++){

 cm[rr][rc1]=cmr[rr-cmcol][rc1-cmcol];

 }}

 //show the matrix CM

 System.out.println();

 System.out.println("this is the CM Matrix");

 for (int q5=0; q5<rc; q5++){

 for (int h6=0; h6<rc; h6++){

 DecimalFormat df5 = new DecimalFormat("#.##");

 System.out.print(df5.format(cm[q5][h6])+" ");

 }

 System.out.println();

 }

 return cm;

}

 }

class Node

 {

 int first;

 int second;

 int branch;

 }

class Tree

 {

 ArrayList<Node> sequence= new ArrayList<Node>();

 int originRow;

 int originCol;

 public float[][] makeRevised(Cm fc)

 {int nr=fc.cmrow;

 int nc=fc.cmcol;

 originRow=nr;

 originCol=nc;

 int to=nr+nc;

 float[][] revised=new float[to][to];

 for (int i=0; i<to; i++)

 for (int j=0; j<to; j++)

 {if (i<j)

 {

 revised[i][j]=0;

 }

 else

 {

 revised[i][j]=fc.cm[i][j];

 }

 }

//show the revised of matrix CM

 System.out.println();

 System.out.println("this is the revised of CM Matrix");

 for (int q6=0; q6<to; q6++){

104

 for (int h7=0; h7<to; h7++){

 DecimalFormat df6 = new DecimalFormat("#.##");

 System.out.print(df6.format(revised[q6][h7])+" ");

 }

 System.out.println();}

 return revised;

 }

 public void makeTree(float[][] revisedCm)

 {

 ArrayList<Integer> helpRow= new ArrayList<Integer>();

 ArrayList<Integer> helpCol= new ArrayList<Integer>();

 for (int oi=0; oi<revisedCm.length; oi++)

 {

 helpRow.add(0);

 helpCol.add(0);

 }

 int counter=10000;

 int counter1=revisedCm.length;

 while (counter1 != 1)

 {

 int[][] newnode=new int[1][2];

 float max=revisedCm[0][0];

 for(int it=0; it<revisedCm.length; it++)

 for (int jt=0; jt<revisedCm.length; jt++)

 {

 if (revisedCm[it][jt]>max)

 {

 max = revisedCm[it][jt];

 newnode[0][0]=it;

 newnode[0][1]=jt;

 }

 }

 Node n=new Node();

 if(helpRow.get(newnode[0][0])==0)

 {

 n.first = newnode[0][0]+1;}

 else { n.first=helpRow.get(newnode[0][0]);}

 if(helpCol.get(newnode[0][1])==0)

 {

 n.second = newnode[0][1]+1;}

 else {n.second=helpCol.get(newnode[0][1]);}

 n.branch=counter;

 counter++;

 sequence.add(n);

 helpRow.set(newnode[0][1],n.branch);

 helpCol.set(newnode[0][1],n.branch);

 helpRow.remove(newnode[0][0]);

 helpCol.remove(newnode[0][0]);

 int kk=helpCol.size();

 float[][] helpRevised=new float[kk][kk];

 for(int yy=0; yy<kk+1; yy++)

 for(int xx=0; xx<kk+1; xx++)

 {

 if (xx<newnode[0][0] && yy<newnode[0][0])

 helpRevised[yy][xx]=revisedCm[yy][xx];

 if (yy<newnode[0][0] && xx>newnode[0][0])

 helpRevised[yy][xx-1]=revisedCm[yy][xx];

 if (yy>newnode[0][0] && xx<newnode[0][0])

 helpRevised[yy-1][xx]=revisedCm[yy][xx];

 if (yy>newnode[0][0] && xx>newnode[0][0])

 helpRevised[yy-1][xx-1]=revisedCm[yy][xx];

 }

 revisedCm=helpRevised;

 for (int ir=0; ir<revisedCm.length; ir++){

105

 for (int jr=0; jr<revisedCm.length; jr++)

 {if (ir<jr)

 {

 revisedCm[ir][jr]=0;

 }

 }

 }

 counter1--;

 }

 }

 public ArrayList<Float> findLeafs(ArrayList<Node> seqq, int point)

 {

 int y5=0;

 int fi;

 int se;

 ArrayList<Float> leafs=new ArrayList<Float>();

 ArrayList<Float> nonLeafs=new ArrayList<Float>();

 if (point>9999){

 for (int x5=0; x5<seqq.size();x5++)

 {

 if (seqq.get(x5).branch==point)

 {

 y5=x5;

 break;

 }

 }

 fi=seqq.get(y5).first;

 se=seqq.get(y5).second;

 if (fi<9999)

 {

 float newLeaf = fi;

 leafs.add(newLeaf);

 }

 else

 {

 float newNonLeaf=fi;

 nonLeafs.add(newNonLeaf);

 }

 if (se<9999)

 {

 float newLeaf =se;

 leafs.add(newLeaf);

 }

 else

 {

 float newNonLeaf=se;

 nonLeafs.add(newNonLeaf);

 }

 while (!nonLeafs.isEmpty())

 {

 for (int x9=0; x9<nonLeafs.size(); x9++)

 {float point11=nonLeafs.get(x9);

 int point1=(int)point11;

 for(int y9=0; y9<seqq.size(); y9++)

 {

 if (seqq.get(y9).branch==point1)

 {

 nonLeafs.remove(x9);

 if (seqq.get(y9).first<9999)

 {

 float newLeaf=seqq.get(y9).first;

 leafs.add(newLeaf);

 }

 else

106

 {

 float newLeaf=seqq.get(y9).first;

 nonLeafs.add(newLeaf);

 }

 if (seqq.get(y9).second<9999)

 {

 float newLeaf=seqq.get(y9).second;

 leafs.add(newLeaf);

 }

 else

 {

 float newLeaf=seqq.get(y9).second;

 nonLeafs.add(newLeaf);

 }

 break;

 }

 }

 }

 }

 }

 else

 {

 float newLeaf2=point;

 leafs.add(newLeaf2);

 }

return leafs;

 }

 public int[][] findSequence (ArrayList<Node> se)

 {

 int irow=0;

 int jcol=0;

 int[][] seq;

 if (originRow>originCol)

 {seq=new int[2][originRow];}

 else

 { seq = new int[2][originCol];}

 for (int u = 0; u < se.size(); u++)

 {

 if ((se.get(u).first<= originCol)&&(se.get(u).first>0))

 {

 seq[1][jcol] = se.get(u).first;

 jcol++;

 }

 if (se.get(u).first> originCol && se.get(u).first<9999 &&

se.get(u).first>0)

 {

 seq[0][irow]= se.get(u).first - originCol;

 irow++;

 }

 if (se.get(u).second<= originCol && se.get(u).second>0)

 {

 seq[1][jcol] = se.get(u).second;

 jcol++;

 }

 if (se.get(u).second> originCol && se.get(u).second<9999 &&

se.get(u).second>0)

 {

 seq[0][irow]= se.get(u).second - originCol;

 irow++;

 }

 if (se.get(u).branch<= originCol && se.get(u).branch>0)

 {

 seq[1][jcol] = se.get(u).branch;

 jcol++;

 }

107

 if (se.get(u).branch> originCol && se.get(u).branch<9999 &&

se.get(u).branch>0)

 {

 seq[0][irow]= se.get(u).branch - originCol;

 irow++;

 }

 }

 // show seq array

 for (int z=0; z<originRow; z++)

 {System.out.print(seq[0][z]+" ");

 }

 System.out.println();

 for (int y=0; y<originCol; y++)

 {System.out.print(seq[1][y]+" ");

 }

 return seq;

 }

 public float findDependency(int point1, int point2, float[][] revisedCm5)

 {

 float dep=0;

 ArrayList <Float> point1List=findLeafs(sequence, point1);

 ArrayList <Float> point2List=findLeafs(sequence, point2);

 for (int k=0; k<point1List.size(); k++)

 for(int k1=0; k1<point2List.size(); k1++)

 {

 float hy=point1List.get(k)-1;

 int hy1=(int)hy;

 float hx=point2List.get(k1)-1;

 int hx1=(int)hx;

 dep=dep+revisedCm5[hy1][hx1];

 }

 return dep;

 }

 public int findIndex(int m)

 { int o=-1;

 for (int s=0; s<sequence.size(); s++)

 if (sequence.get(s).branch==m)

 { o=s;

 break;}

 return o;

 }

 public ArrayList<Node> reordering(float[][] revisedCm6)

 {

 ArrayList<Node> sequence1= new ArrayList<Node>();

 int count=1;

 int a=sequence.size();

 Node adding=new Node();

 adding.branch=sequence.get(a-1).branch;

 adding.first=sequence.get(a-1).first;

 adding.second=sequence.get(a-1).second;

 sequence1.add(adding);

 while(count!= sequence.size())

 { ArrayList<Node> sequence2= new ArrayList<Node>();

 for(int b=0; b<sequence1.size();b++)

 { if

((sequence1.get(b).first>9999)||(sequence1.get(b).second>9999)){

 if (sequence1.get(b).first>9999)

 { int pr=findIndex(sequence1.get(b).first);

 Node adding1=new Node();

 adding1.branch=sequence.get(pr).branch;

 adding1.first=sequence.get(pr).first;

108

 adding1.second=sequence.get(pr).second;

 sequence2.add(adding1);

 count++;

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).first;

 adding1.first=-1;

 adding1.second=-1;

 sequence2.add(adding1);

 }

 if (sequence1.get(b).second>9999)

 { int pr=findIndex(sequence1.get(b).second);

 Node adding1=new Node();

 adding1.branch=sequence.get(pr).branch;

 adding1.first=sequence.get(pr).first;

 adding1.second=sequence.get(pr).second;

 sequence2.add(adding1);

 count++;

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).second;

 adding1.first=-1;

 adding1.second=-1;

 sequence2.add(adding1);

 }

 }

 else

 {Node adding1=new Node();

 adding1.branch=sequence1.get(b).branch;

 adding1.first=sequence1.get(b).first;

 adding1.second=sequence1.get(b).second;

 sequence2.add(adding1);

 }

 }

 if(sequence2.size()>2)

 { int co=sequence2.size()+100;

 while(co!=0){

 for (int u=1; u<(sequence2.size())-1;u++)

 { float fdis;

 float sdis;

 fdis=findDependency(sequence2.get(u-1).branch,

sequence2.get(u).branch, revisedCm6);

 sdis=findDependency(sequence2.get(u-1).branch,

sequence2.get(u+1).branch, revisedCm6);

 if(sdis>fdis)

 {

 Node sub=new Node();

 sub.branch=sequence2.get(u+1).branch;

 sub.first=sequence2.get(u+1).first;

 sub.second=sequence2.get(u+1).second;

 sequence2.get(u+1).branch= sequence2.get(u).branch;

 sequence2.get(u+1).first=sequence2.get(u).first;

 sequence2.get(u+1).second=sequence2.get(u).second;

 sequence2.get(u).branch=sub.branch;

 sequence2.get(u).first=sub.first;

 sequence2.get(u).second=sub.second;

 }

 }

 co--;

 }

 }

 sequence1=sequence2;

 }

 // print sequence

109

 System.out.println();

 for (int kh = 0; kh < sequence1.size(); kh++)

 {

 System.out.println(sequence1.get(kh).first+"

"+sequence1.get(kh).second+" "+sequence1.get(kh).branch);

 }

 return sequence1;

 }

}

public class Main {

 public static void main(String[] args) {

 System.out.println("enter the number of rows");

 Scanner getRow= new Scanner(System.in);

 int row2=getRow.nextInt();

 System.out.println("enter the number of columns");

 Scanner getCol= new Scanner(System.in);

 int col2=getCol.nextInt();

 Matrix matrix1=new Matrix(row2,col2);

 System.out.println();

 matrix1.showMatrix();

 Cm cm1=new Cm(matrix1);

 cm1.tcmrc();

 float[][] finalCm=cm1.makeCm();

 Tree mtree= new Tree();

 finalCm=mtree.makeRevised(cm1);

 mtree.makeTree(finalCm);

 mtree.printSequence();

 ArrayList<Node> seque=mtree.reordering(finalCm);

 int[][] seq2=mtree.findSequence(seque);

 System.out.println();

 matrix1.rearrange(seq2);

 }

}

Figure B4. The Modified Code of the Case Study OOP Based on Solution 3

110

Label Name Description

1 rowNum a variable (field) of type int that is defined in Cell class

2 colNum a variable (field) of type int that is defined in Cell class

3 contain a variable (field) of type float that is defined in Cell class

4 extraRow a variable (field) of type int that is defined in Cell class

5 extraCol a variable (field) of type int that is defined in Cell class

6 row a variable (field) of type int that is defined in Matrix class

7 col a variable (field) of type int that is defined in Matrix class

8 mat a variable (object) of type Cell 2D array that is defined in Matrix
class

9 Cell a class

10 Matrix a class

11 Matrix a method (constructor) that is defined in Matrix class

12 row1 a variable (field) of type int that is defined in Matrix method

13 col1 a variable (field) of type int that is defined in Matrix method

14 mat2 a variable (object) of type Cell 2D array that is defined in
rearrange method

15 rearrange a method that is defined in Matrix class

16 mat1 a variable (object) of type Cell 2D array that is defined in
rearrange method

17 sequ1 a variable (field) of type int 2D array that is defined in
rearrange method

18 showMatrix a method that is defined in Matrix class

19 cm a variable (object) of type Cell 2D array that is defined in Cm class

20 cmr a variable (object) of type Cell 2D array that is defined in Cm class

21 cmc a variable (object) of type Cell 2D array that is defined in Cm class

22 cmrc a variable (object) of type Cell 2D array that is defined in Cm class

23 trans a variable (object) of type Cell 2D array that is defined in Cm class

24 cmrow a variable (field) of type int that is defined in Cm class

25 cmcol a variable (field) of type int that is defined in Cm class

26 Cm a method (constructor) that is defined in Cm class

27 max a variable (field) of type int that is defined in Cm method

28 min a variable (field) of type int that is defined in Cm method

29 h a variable (field) of type float that is defined in Cm method

30 max1 a variable (field) of type int that is defined in Cm method

31 min1 a variable (field) of type int that is defined in Cm method

32 h1 a variable (field) of type float that is defined in Cm method

33 sumr a variable (field) of type int that is defined in Cm method

34 sumc a variable (field) of type int that is defined in Cm method

35 h3 a variable (field) of type float that is defined in Cm method

36 Cm a class

37 tcmrc a method that is defined in Cm class

38 Node a class

39 makeCm a method that is defined in Cm class

40 rc a variable (field) of type int that is defined in makeCm method

41 branch a variable (field) of type int that is defined in Node class

42 Tree a class

111

43 sequence a variable (object) of type Node ArrayList that is defined in Tree
class

44 originRow a variable (field) of type int that is defined in Tree class

45 originCol a variable (field) of type int that is defined in Tree class

46 makeRevised a method that is defined in Tree class

47 fc a variable (object) of type Cm that is defined in makeRevised method

48 nr a variable (field) of type int that is defined in makeRevised method

49 nc a variable (field) of type int that is defined in makeRevised method

50 first a variable (field) of type int that is defined in Node class

51 second a variable (field) of type int that is defined in Node class

52 makeTree a method that is defined in Tree class

53 revisedCm a variable (object) of type Cell 2D array that is defined in

makeTree method
54 counter a variable (field) of type int that is defined in makeTree method

55 counter1 a variable (field) of type int that is defined in makeTree method

56 newnode a variable (object) of type Cell that is defined in makeTree method

57 findMax a method that is defined in Tree class

58 findLeafs a method that is defined in Tree class

59 seqq a variable (object) of type Node ArrayList that is defined in

findLeafs method
60 point a variable (field) of type int that is defined in findLeafs method

61 leafs a variable (object) of type Cell ArrayList that is defined in

findLeafs method

62 nonLeafs a variable (object) of type Cell ArrayList that is defined in

findLeafs method

63 toFind a variable (object) of type Cell 2D array that is defined in

findMax method

64 findSequence a method that is defined in Tree class

65 se a variable (object) of type Node ArrayList that is defined in

findSequence method

66 seq a variable (field) of type int 2D array that is defined in

findSequence method

67 findDependency a method that is defined in Tree class

68 point1 a variable (field) of type int that is defined in findDependency
method

69 point2 a variable (field) of type int that is defined in findDependency
method

70 revisedCm1 a variable (object) of type Cell 2D array that is defined in

findDependency method
71 point1List a variable (object) of type Cell ArrayList that is defined in

findDependency method
72 point2List a variable (object) of type Cell ArrayList that is defined in

findDependency method
73 dep a variable (field) of type float that is defined in findDependency

method
74 findIndex a method that is defined in Tree class

75 m a variable (field) of type int that is defined in findIndex method

76 o a variable (field) of type int that is defined in findIndex method

112

77 reordering a method that is defined in Tree class

78 revisedCm2 a variable (object) of type Cell 2D array that is defined in

reordering method
79 sequence1 a variable (object) of type Node ArrayList that is defined in

reordering method
80 adding a variable (object) of type Node that is defined in reordering

method
81 sequence2 a variable (object) of type Node ArrayList that is defined in

reordering method
82 pr a variable (field) of type int that is defined in reordering method

83 adding1 a variable (object) of type Node that is defined in reordering
method

84 fdis a variable (field) of type float that is defined in reordering
method

85 sdis a variable (field) of type float that is defined in reordering
method

86 main this method is the main execution part of the program

87 row2 a variable (field) of type int that is defined in main method

88 col2 a variable (field) of type int that is defined in main method

89 matrix1 a variable (object) of type Matrix that is defined in main method

90 cm1 a variable (object) of type Cm that is defined in main method

91 finalCm a variable (object) of type Cell 2D array that is defined in main
method

92 mtree a variable (object) of type Tree that is defined in main method

93 seque a variable (object) of type Node ArrayList that is defined in main
method

94 seq2 a variable (field) of type int 2D array that is defined in main
method

Table B1. List of 94 OOP Entities of the Case Study OOP

113

Appendix C: Trace of Target Entities Related to Solution 2

This Appendix demonstrates the trace of entities number 8, 16, 14, 18, 20, 21, 22, 23, 19,

46, 53, 61, 62, 70, 71, 72 and 78, from the case study OOP, up to three levels

Figure C1: Change Propagation from Target Entity 16

Figure C2: Change Propagation from Target Entity 14

Figure C3: Change Propagation from Target Entity 18

114

Figure C4: Change Propagation from Target Entity 19

 Figure C5: Change Propagation from Target Entity 62

Figure C6: Change Propagation from Target Entity 78

115

 Figure C7: Change Propagation from Target Entity 8

116

 Figure C8: Change Propagation from Target Entity 20

 Figure C9: Change Propagation from Target Entity 61

117

 Figure C10: Change Propagation from Target Entity 21

 Figure C11: Change Propagation from Target Entity 72

118

Figure C12: Change Propagation from Target Entity 22

Figure C13: Change Propagation from Target Entity 23

 Figure C14: Change Propagation from Target Entity 71

119

Figure C15: Change Propagation from Target Entity 46

Figure C16: Change Propagation from Target Entity 52

120

Figure C17: Change Propagation from Target Entity 70

