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Abstract 

The purpose of this research was to study the impact of direct current (DC) application on 

activated sludge (AS) properties. A control reactor without an electrical field and a series 

of 1.5L batch reactors were filled with activated sludge at two levels of mixed liquor 

suspended solid concentrations (LR MLSS: 5000-7000 mg/L and HR MLSS: 10000-

12000 mg/L) and were subjected to four electrical modes (continuous, 5ON:5OFF, 

5ON:10OFF and 5ON:15OFF) for 48 hours. Experiments were performed for both AS 

alone and AS mixed with different concentrations of calcium salt (250 and 750 mg/L). 

The sludge volume index (SVI), time to filtration (TTF), particle sizes, specific oxygen 

consumption rate, soluble microbial products (SMP) and phosphate concentrations were 

measured before and after the experiments. Designed reactors’ parameters permitted the 

microorganisms to preserve their bioactivity. Results showed that the continuous 

electrical mode achieved the highest reduction in SVI. At all electrical modes, over 75% 

reduction in phosphate concentration was achieved. For most of the AS properties, the 

impact of EC at LR MLSS was higher than that at HR MLSS. A longer exposure time to 

DC resulted in smaller particle sizes. As the exposure time to DC decreased, the amount 

of SMP deposited on the anode surface increased. More calcium was deposited on the 

cathode surface at a longer exposure time. Furthermore, the addition of 250 mg Ca2+/L to 

AS, in the absence of an electrical field, resulted in 33% and 63 % higher SMP and 

phosphate removal efficiency. The results can be applied to better control 

electrocoagulation processes within various wastewater treatment system including MBR 

and SMEBR. 
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Chapter 1        Introduction  
 

1.1. Problem Statement 

The discharge of low quality effluents to surface water has created severe water pollution, 

which has affected the aquatic life and decreased the availability of water resources. 

Therefore, efficient and effective wastewater treatment technologies have become the 

main challenge all over the world in order to increase the quality of the effluent obtained 

from wastewater treatment plants (WWTP). Moreover, WWTP design should follow 

sustainable development principles. Therefore, there is a tendency to decrease the 

consumed energy, footprint and emission of waste materials from different parts of the 

operational units within WWTP. As a result, new approaches to improve the performance 

of wastewater treatment units are required. One of the modern approaches is the 

introduction of electrokinetic systems such as electrocoagulation processes (EC) instead 

of conventional chemical coagulation. The other modern approach is the application of 

membranes to overcome the disadvantages of secondary clarifiers in conventional 

activated sludge process and achieve higher effluent quality. 

Electrocoagulation process has been proven to be highly effective in the removal of 

impurities and nutrients from wastewater. The short operation time, minimum chemical 

requirement, easy operation and low sludge production are the advantages of EC 

technology over chemical coagulation. EC has been applied to a variety of wastewaters 

with different characteristics. Furthermore, EC has also been implemented as a separate 

unit before or after activated sludge process in order to achieve higher effluent quality. 
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The most common compounds that can be removed by EC are colloidal particles, metals 

and soluble inorganic compound present in the wastewater. 

EC is the in situ generation of metallic ions (coagulant) by electro-oxidation of a proper 

sacrificial anode for coagulation/flocculation processes. Moreover, during the 

electrocoagulation process several electrokinetic phenomena take place: 

electrodissolution, electroosmosis, electrophoresis and electromigration, which have a 

direct impact on the EC performance and the media which is being treated. However up 

to date, investigations have been devoted to the physical/chemical aspect of 

electrocoagulation process and not sufficient research was performed regarding the 

impact of electrical field on major wastewater components (e.g. microbial by). Therefore, 

studying the impact of direct application of DC on the media which is being treated is an 

essential need. 

The introduction of EC within activated sludge process, to enhance the performance of 

the system, could be one of the approaches to reach the sustainable development in 

wastewater treatment units. However, since microbial community are generally 

negatively charged, their behaviour might be affected in the presence of an electrical 

field. Furthermore, electrical field could also have impact on the components of activated 

sludge. Therefore, direct application of DC current to aerobic activated sludge might 

influence the activated sludge characteristics and its performance. EC system within 

biological processes can be improved by investigating the impact of direct application of 

DC on aerobic activated sludge. This would result in better control over its performance 
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even within the application of various wastewater treatment technologies including 

membrane bioreactors. 

The integration of membrane module into conventional activated sludge process 

(membrane bioreactor-MBR) is a notable innovation in the field of biological wastewater 

treatment. However, the major drawback of MBR is the membrane-fouling phenomenon, 

which has significantly limited its applications. One of the most principal parameters that 

affect the permeability of membranes are the activated sludge components and properties 

such as mixed liquor suspended solids, particle size, sludge volume index, microbial by-

products (SMP and EPS), sludge retention time, hydraulic retention time, soluble 

inorganics and etc. Overall, membrane fouling has been characterized as bio-fouling and 

inorganic fouling. The membrane biofouling is due to a formation of biofilm on the 

membrane surface and the inorganic fouling is due to the formation of inorganic 

precipitates (e.g. calcium carbonate) on the surface or in the pores of membrane. 

Furthermore, divalent cations such as calcium, as one of the components of wastewater 

and activated sludge, have been reported to have the potential to reduce the membrane 

biofouling. Therefore, knowing that the characteristics of activated sludge have a direct 

impact on membrane fouling, the integration of electrocoagulation process into MBR 

system can permit to achieve the most successful results. As current study of 

Elektorowicz’s Research Team on submerged membrane electro-bioreactor (SMEBR 

system, Patent No. 12/553,680) demonstrated this combination could achieve a high 

reduction in membrane fouling and an excellent effluent quality. In order to optimize 

SMEBR system and due to lack of adequate studies on wastewater component’s behavior 
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under electrical field, an investigation to fully understand the impact of DC field on 

activated sludge properties should be performed. 

1.2. Study Objectives 

1.2.1.  Main Objective 

The scope of this research was defined to focus mainly on variations in activated sludge 

properties through the application of different electrical modes and in the presence of 

different concentrations of salt. The overall objective of this research was investigating 

the impact of different operational conditions (electrical parameters, wastewater 

composition and MLSS) on the activated sludge characteristics. The specific research 

objectives are listed in section 1.2.2. 

1.2.2.  Detailed Objectives 

• Observation of the impact of electrocoagulation process on activated sludge 

properties 

• Assessment of electrocoagulation process in the removal of inorganic substances 

present in wastewater which cause irreversible fouling of membranes in SMBR 

systems 

• Studying the impact of divalent cations such as calcium on the removal of soluble 

microbial product from wastewater 

• Evaluating EC process at higher conductivities for removal of soluble microbial 

products and inorganic pollutants 

• Achieving better sludge characteristics and conditioning properties through the 

addition of calcium salt 
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• Analysing electrodes’ surface for the deposition of organics and inorganics 

1.3. Thesis Organization 

In this section an overview of the contents of various parts of this research has been 

presented. This thesis has been organized into five chapters and the subject matters 

discussed in each chapter are as follow: 

Chapter One: This introductory chapter covers the statement of problem and 

objectives of this study. 

Chapter Two: A review of the existing relevant literature on the topic has been 

presented. This chapter demonstrates the available information and fundamentals of 

MBR and EC process and their advantages/disadvantages. Furthermore, it reveals the 

gaps in the knowledge related to the topic under study.  

Chapter Three: This chapter details the experimental approaches and methodologies 

followed throughout this research work. 

Chapter Four: This chapter represents and discusses the results obtained from different 

experimental works performed in the laboratory. 

Chapter Five: This conclusive chapter is a summary of the entire research performed. 

Moreover, recommendations for the future works have also been presented.
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Chapter 2        Literature Review  
 

2.1. Wastewater Treatment 

Nowadays, legislative laws, regarding the effluent wastewater, are becoming extremely 

stringent and restricted. In addition, due to the discharge of many pollutants into the 

water resources such as rivers, estuaries, etc., there is an absolute need of reuse of 

wastewater around the world. A variety of biological (as secondary treatment) and 

physico-chemical processes (as primary and tertiary treatment) have been applied for 

wastewater treatment such as activated sludge process, filtration, chemical coagulation, 

ion-exchange, membranes, carbon adsorption and etc. (Mollah et al. 2001). One of the 

most common biological wastewater treatment used in the world is the activated sludge 

process that was first presented back in 1880s. This process involves the oxidation of 

organic matters present in wastewater by an activated mass of microorganisms. There are 

several activated sludge processes, which among them, the more common and applied 

one is the conventional activated sludge (CAS) process. 

After the primary treatment, approximately 60% of total solids (TS) and 40% of 

biological oxygen demand (BOD) are removed and wastewater enters the activated 

sludge process. 

Activated sludge processes involve several components, which the basics consist of: 

• Biological reactor where microorganisms, kept in suspension by mixing, are 

responsible for the treatment of wastewater 
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• Settling tank where the liquid and solid fractions of activated sludge would be 

separated 

• Return activated sludge line which recycles a mass of activated 

microorganisms from the bottom of settling tank to the biological reactor to 

perform further treatment 

The supply of air or pure oxygen to microorganisms in the reactor enhances the removal 

of organic content present in wastewater. The mixture of raw wastewater with the 

suspended biomass present in the reactor is commonly known as Mixed Liquor 

Suspended Solids (MLSS).  

Figure 2-1 illustrates the primary treatment and CAS processes. Moreover, due to the 

importance of nutrient removal, CAS was improved by designing a staged reactor which 

combines several complete-mix reactors in series where some of the reactors are not 

aerated (anaerobic or anoxic), some are aerated and also some internal recycle activated 

sludge flows are used (Metcalf and Eddy 2003). However, there are several operational 

problems that exist in conventional activated sludge process such as high operational 

costs (e.g. labor), high sensitivity against shock toxic loads, and production of large 

amount of sludge, which requires disposal and long treatment times.  
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Figure 2-1 Conventional Activated Sludge process 

2.2. Overview of Membrane Bioreactor (MBR) 

Conventional activated sludge treatment systems are widely used in wastewater treatment 

and it has achieved a high removal efficiency of organic matters. Despite its advantages, 

CAS process has several disadvantages. Due to sensitivity of CAS process, its 

performance would be highly affected by sudden changes in physical or chemical nature 

of wastewater, such as changes in pH or organic loading rate. Consequently, high amount 

of suspended solids would be present in the effluent, which results in turbidity, lower 

organic removal efficiency, lower biomass activity and settling characteristics (Lerner et 

al. 2007). Other studies have also indicated that one of the most important operational 

issues in CAS is the biomass washout during the process (Yoon et al. 2000). To solve this 

problem, recently membranes have been used as a replacement for conventional clarifiers 

as solid/liquid separators. Membrane bioreactors (MBR) are the combination of 

conventional activated sludge process and membrane technology. By applying this 
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process, the settling characteristics of biomass do not have impact on the effluent quality 

(Song et al. 2008). Moreover, this system is capable to adopt itself to a wide range of 

fluctuations in influent quality; therefore, it can be applied to any kind of wastewater 

without affecting the quality of the effluent. In addition, complete solids–liquid 

separation, small footprint and production of high-quality effluent has eliminated the 

weakest link in the conventional activated sludge process (Choi and Yong Ng 2008). 

 

Figure 2-2 a) Side-stream membrane bioreactor b) Submerged membrane bioreactor 

The effluent produced by MBR has been found to have excellent quality that can be 

discharged to coastal, surface waters or be reclaimed. MBR was first introduced in 1960s 

by Dorr-Olivier Inc., which they used an activated sludge process combined with a cross 

flow membrane filtration loop. Due to the high cost of membranes its application was 

limited but in 1989 an immersed membrane in the bioreactor was introduced which gain a 
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lot of attention. (Yamamoto et al. 1989) and recently, MBR has been widely exploited. It 

was reported that, based on the increasing number of products and their capacity, the 

MBR market had a value of US$ 216 million in 2006 and it is expected to reach US$ 363 

million in 2010 (Atkinson 2006). There are two configurations to this technology, which 

are side stream membrane bioreactor where the membrane module is placed after the 

activated sludge process and submerged membrane bioreactor (SMBR), which the 

membrane module is immersed in the activated sludge reactor (Figure 2-2). 

SMBR are preferred over side-stream configuration due to the advantages of its design. 

In mid 90s, the exponential decrease in membrane costs and high effluent quality 

increased the application of this technology. Mixing is performed by aeration in SMBR, 

which creates coarse bubbles that also decrease membrane fouling. The energy required 

for SMBR is half the energy consumed for side stream membrane. Aeration in SMBR is 

one of the most important parameter that affects the performance of the system. 

Following is the tasks performed by aeration in SMBR:  

• Keep the solids in suspension 

• Decrease membrane fouling by scouring the surface of membrane and 

• Provide oxygen for biomass present in the reactor for maximum biodegradation.  

The membrane module can consist of hollow fibers or flat sheets. The idea in MBR is to 

use two-phase bubbly flow to control membrane fouling (Lerner et al. 2007). 

The following points represent the characteristics of MBR, which has dominated this 

technology over conventional activated sludge process:   
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1. Superior effluent quality. The typical removal efficiency of chemical oxygen 

demand (COD), biological oxygen demand (BOD) and total suspended solids 

(TSS) are higher than 95% (Manem and Sanderson 1996). Nitrification efficiency 

may be very high as well. 

2. Sludge retention time (SRT) and hydraulic retention time (HRT) can be controlled 

separately resulting in manageable biological treatment (Manem and Sanderson 

1996).  

3. Due to high removal rates, MBR can treat high volumetric loads. An amount of 

5.7 kg COD/m3 was reported for an aerobic MBR treating dairy effluent 

(Bouhabila et al. 2001). 

4. Long SRT (10-60 days) and high MLSS concentrations (10-30 g/L). 

5. Low food to microorganisms (F/M) ratio resulting in lower sludge production 

since microorganisms are in endogenous phase and MBR acts as aerobic sludge 

digester.  

6. Since membrane is used to separate biomass from liquid phase, the concerns 

regarding settleability and sludge bulking have been solved (Ramphao et al. 

2005). 

Figure 2-3 indicates the separation of biomass from the liquid phase by membranes. 
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Figure 2-3 Biomass/Liquid separation in membrane processes 

Membrane bioreactors have higher energy consumption in comparison to CAS, which is 

attributed to the recirculation of mixed liquor and air supply in SMBR (Van Dijk and 

Roncken 1997).  

However, membrane fouling has been one the most major technical issues which has 

limited the MBR application for wastewater treatment. 

2.2.1.  Membrane Fouling 

Fouling has been defined as “Membrane resistance as a result of adsorption of substances 

on the surface or in the pores of membrane”. Factors affecting the fouling are as follow 

(Figure 2-4): biological parameters, which affect the efficiency of MBR, membrane 

parameters, which affect the treatment ability of MBR, environmental and technological 

parameters (temperature, SRT, etc.). Exocelluar polymeric substances (EPS) and soluble 

microbial products (SMP) are the macromolecules produced as a result of biological 

processes. They can form a microbial biofilm (gel layer) on membrane surface by 

forming colloidal groups that can accumulate on membrane surface and reduce the 
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efficient pore diameter (Liao et al. 2004; Sombatsompop et al. 2006). The impact of 

MLSS on fouling was also studied for different MLSS ranges. It was found that the direct 

impact of MLSS concentration between 2 to 24 g/L on membrane filterability is minimal. 

However, MLSS have destructive secondary effects on membrane fouling (Rosenberger 

et al. 2005; Rosenberger and Kraume 2002). Furtheremore, the impact of particle size on 

filterability of sludge was also studied. Some researchers believe that a larger size particle 

can be easily deatached from membrane surface whereas smaller paritcles have higher 

permanent fouling characteristics. Mikkelsen and Keiding 2002 state that floc size 

increases when the concentration of EPS is high; therefore it improves the sludge 

dewaterability. 

 

Figure 2-4 Different parameters affecting fouling 

Membrane fouling is mainly defined as the decline in permeate flux or increase in Trans 

Membrane Pressure (TMP) due to the accumulation of foulants on the membrane pores 

and surface (Hong et al. 2002). In pressure driven membranes like MBR, the permeate 

production capacity is an important factor affecting the process since it illustrates the 
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membrane fouling. Under steady state conditions, permeate flux can be calculated by 

dividing permeate volumetric flow rate by the membrane surface area. This flux is 

proportional to the pressure drop, which takes place across the membrane surface, and is 

called trans membrane pressure (TMP). In other words, fouling or membrane clogging is 

the increase of membrane hydraulic resistance that leads to higher energy consumption 

and frequent membrane cleaning. Therefore, in order to be able to present fouling control 

strategies, understanding the fouling mechanisms are the first step that has to be taken. 

There are two different forms of fouling: 1) reversible, which can be eliminated by 

simple physical cleaning since the bonds that exist between the foulants and membrane 

surface are week 2) irreversible fouling. In the latter form of fouling, the foulants are 

attached to the membrane surface and inside the pores therefore, intensive chemical 

cleaning should be applied in order to be able to remove them. Van Bentem et al. (2001) 

indicate that there are four major fouling mechanisms that lead to the decrease in 

membrane performance. These fouling mechanisms are shown in Table 2-1. Biofouling is 

mainly due to the microbial cells aggregation and their bio-product on membrane surface, 

which mainly result in irreversible fouling. Organic adsorption can be prevented by 

pretreatment of wastewater. Scaling is caused by deposition of mineral precipitates on 

membrane surface or in its pores. In other words, membrane fouling can be as a result of 

internal fouling or external fouling of membrane. External fouling is the formation of a 

cake/gel layer on the membrane surface by solutes due to concentration gradient, where 

as internal fouling is due to pore blocking since the fine colloids, which have the same 
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size of the membrane pores, can clog the pores. Figure 2-5 indicates the mechanisms of 

fouling on membrane surface. 

Table 2-1 Fouling mechanisms in MBR  

Fouling Description 

Biofouling Biofilm formation of membrane surface due to 
microorganisms accumulation 

Organic Adsorption Deposition of dissolve organic matters 

Scaling Deposition of dissolved minerals due to excess in 
solute 

Particle and Colloidal Fouling Deposition of particulate matters 

 

 

 

Figure 2-5 Fouling mechanism on membrane surface  
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2.2.2.  Membrane Biofouling 

Due to high concentration of microbial organisms in activated sludge, biofouling is the 

predominant fouling mechanism that takes place on membrane surface. Ridgway and 

Flemming (1996) reported that bacterial bonding to membrane surfaces is enhanced and 

mediated by extracellular polymeric substances. These substances are microorganism’s 

products, which are released to the exo-cellular environment due to cell metabolisms and 

autolysis (Lee et al. 2001). They contain protein, carbohydrate, polysaccharides, lipids 

and also humic substances. The concentration of EPS is affected by different operational 

factors such as sludge retention time, MLSS concentration, wastewater type and 

microbial growth rate (Drews et al. 2006). Liao, et al. (2004) report that EPS is first 

adsorbed to membrane surface following the adsorption of microorganisms on the surface 

of membrane, which results in formation of sludge cake. EPS acts as nutrient for 

microorganisms and protect them from adverse environmental changes by forming a 

protective buffer zone around them.  

Soluble macromolecules, colloids and slimes are called soluble EPS or soluble microbial 

products (SMP). These compounds can also originate from the influent feed substrate 

(Le-Clec et al. 2005). SMP adsorb on membrane surface and after blocking the 

membrane pores, they create a gel structure on membrane surface, which provide the 

necessary nutrients for microorganisms to grow and form a biofilm (Rosenberger et al. 

2005). In the study conducted by Cabassud et al. (2004) for MBR, SMP levels in the 

effulent remained the same while the fouling was increasing. They concluded that the 

parameter which is responsible for membrane fouling is SMP components. Same 

conclusion was obtained by other reseraches that SMP concentration have a considerable 
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impact on the memrbane fouling and performance (Ng and Hermanowicz 2005). 

Furtheremore, Lesjean et al. (2005) performed a comparison between the mixed liqour 

supernatant and the permeate obtained from MBR. They revealed that the subtances 

present mixed liquor supernatant are the ones responsible for MBR fouling.  

2.2.3. Divalent Cation Bridging Theory  

Bioflocculation is one the most important phenomenon in wastewater treatment since it 

determines the solid/liquid separation due to microbial colloids aggregation. The higher 

the bioflocculation, the better the settling and separation properties of activated sludge. 

The mechanism of bioflocculation has been under study by many researchers in order to 

improve separation of solids from liquid (Sobeck and Higgins 2002). EPS form a matrix 

that can trap microbes and help the aggregation of microorganisms and therefore form 

bioflocs. It was found that 80% of the mass of bioflocs is EPS (Frolund et al. 1996). 

Therefore, it can be concluded that the interactions taking place between EPS are very 

important with regards to bioflocculation. It has been widely reported in the literature that 

EPS carry a negative charge due to the functional groups within EPS such as carboxyl 

groups (Sobeck and Higgins 2002; Kim and Jang 2006; Arabi and Nakhla 2008). With 

respect to the latter statement, the role of cations in bioflocculation becomes an important 

parameter to be investigated.  

Three theories that were proposed regarding this matter are double layer theory or the 

DLVO theory, Alginate theory and Divalent Cation Bridging (DCB) theory. Sobeck and 

Higgins (2002) compared these theories to better undertand the model, which applies to 

biofloc formation in the presence of cations. DLVO theory, based on the fact that 
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colloidal particles have a counter ion double layer surrounding them, describes that 

addition of cations to the solution would decreases the size of double layer and repulsive 

forces between the particles and therefore improve bioflocculation. DLVO theory 

includes all cations (monovalent and divalent). Alginate theory is only limited to calcium 

which describes that Alginate (a kind of polysaccharide), due to its specific composition, 

can form a gel layer in the presence of calcium and promote bioflocculation where as 

DCB suggests a non-specific binding of divalent cations with EPS. The latter theory 

demonstrates that high concentration of sodium (monovalent cation), results in 

deterioration of floc properties. Due to ion exchange phenomenon, Na in high 

concentrations displaces Ca bonded to bioflocs. Consequently, due to the lack of bridging 

with monovalent cations, resulting in reduction of the floc strength, floc structure would 

be loosed. Higgins and Novak (1997a) showed that ratios of monovalent (Na+, NH4
+, K+) 

to divalent cation (concentrations expressed in meq/L) higher than 2 would deteriorate 

the floc properties.   

Several conclusions were achieved as follow: addition of calcium and magnesium 

separately with the same concentration improved the floc properties and increasing their 

concentrations lead to further improvements. The opposite results were found for sodium, 

which indicated its detrimental effects on flocculation. DCB was found to be the best 

theory to describe this phenomenon. Furthermore, it was found that continuous flow 

would lead to more accurate results than batch experiments. The Dupont company 

applied this theory to the treatment plant by displacing NaOH (which is used for pH 

control) with Mg(OH)2. They had significant improvement in their floc properties; 



 

 

                                                                                                                                               

19 

subsequently, their chemical requirement for further clarification was decreased due to 

better flocculation in the presence of Mg instead of Na (Sobeck and Higgins 2002). 

Murthy and Novak (2001) also investigated the impact of inorgnic cations on effluent 

quality of an activated sludge process. It was found that as the concentration of 

biopolymers in effluent increases, soluble COD in effluent would also increase and the 

ratio between them is 1:1. Morover, addition of cations affected the quality of effluent: 

higher monovlant concentrations promoted the release if biopolymers whereas higher 

concentration of divalent cations improved the settling and dewatering characteristics of 

activated sludge and resulted in less amount of biopolymers in the effluent. Another 

research was also performed on activated sludge to investigate the impact of Na+ and Ca2+ 

on the floc structure. Batch reactors were filled with waste acitvated sludge and were 

exposed to different Ca/Na ratios (0, 0.5, 1, 1.5, 2 and 2.5) for 15 minutes. It was 

observed that Ca/Na > 1 resulted in less small flocs and more larger microbial flocs. 

Addition of calcium caused an initial defloculation in the activated sludge but as Ca/Na > 

1, the floc sizes started to increase as well. They also stated that Na can also increase the 

floc size (Cousin and Ganczarczyk 1999), which is in contradiction with the work of 

Sobeck and Higgins (2002) who revealed that Na has detrimental impacts on floc struture 

and will deteriorate it. Cousin and Ganczarczyk (1999) also described the behaviour of 

calcium and sodium in activated sludge. They assumed that interactions between calcium 

and sodium (at Ca/Na > 1) would result in higher ionic strenght and subsequent 

compression of electrical double layer. Consequenly larger flocs would be formed  due to 

calcium bridging with mirobial flocs.  
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Sludge dewaterability is also one of the most important properties of activated sludge that 

was studied by some researchers. Time to filtration (TTF) is one of the parameters that 

indicate this property. Lo et al. (2001) studied the impact of salinity on sludge 

dewaterablity and found out that as the concentration of salts in activated sludge 

increases, the TTF would decrease. Addition of coagulant in the presence of salinity 

slightly increased the TTF. In addition, they stated that higher final solid content 

represents lower bound water content. In this regard, 27%  and  34% in final solid content 

was obsereved when salinity alone and salinity with conditioner was applied respectively. 

On the other hand, the study performed by Wu et al. (2008) for a sequencing batch 

reactor revealed that addition of NaCl to the reactor resulted in better sludge volume 

index (SVI) value but higher suspended solids were present in the effluent. Furtheremore, 

it was concluded that salinity did not have any significant impact on organic matter 

removal. Impact of salinity was also studied for nitrogen removal from wastewater. 

Salinity at higher coencentration than 2% (w/v) inhibited the nitrite oxidizing bacteria 

and caused their activity rate to decrease above 1%. On the other hand, salinity effect on 

ammonia oxidizing bacteria,when the concentration of ammonia was higher than 2% 

(w/v), reduced their viability by half in comparison to their activity when medium 

concentration of salt was present in the wastewater. In this study sodium chloride (NaCl) 

was added to wastewater to increase the salinity (Ye et al. 2009). 

Impact of salinity was further studied for submerged membrane bioreactors (SMBR). In a 

research conducted by Reid et al. (2006) effect of salinity shocks on a pilot scale SMBR 

performance was scrutinized. SMBR was exposed to high concentration of NaCl (30 g/L) 
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in a period of 10 minutes. Initially COD and NH3 removal efficiency was reduced but 

after the concentration of salt was reduced, their efficiency was restored. Same behavior 

was observed for SMP and EPS. Higher SMP resulted in less membrane permeability, 

which was confirmed by previous researches. Kim and Jang (2006) studied membrane 

fouling with respect to biomass characteristics based on EPS and SMP. Due to the fact 

that smaller particles result in higher fouling rates, the conditions where bioflocculation 

would take place would be a beneficial to membrane permeability. As described above, 

bioflocculation has been described by three different theories in which divalent cation 

bridging theory best describes the bioflocculation phenomenon with divalent cations. 

Bioflocculation can be attributed to membrane fouling based on EPS and SMP 

characteristics; therefore in this study the effect of calcium on membrane biofouling has 

been under investigation. A bench scale submerged membrane bioreactor was fed with 

synthetic wastewater with two different calcium concentrations. The concentrations were 

chosen to be 0.026 mM (LC) and 2.86 mM (OC) in order to obtain the monovalent to 

divalent ratio of 33 and 1.3 respectively. Higgins and Novak (1997a) had reported that 

M/D ratio higher than 2 will result in floc deterioration and higher fouling rates. 

Experimental results indicated that SVI was lower for OC than LC, which reveals that 

better bioflocculation had taken place in OC, resulting in denser sludge formation. As 

expected, EPS concentration obtained from OC was lower than LC sludge had settled 

better. FTIR analysis was also performed to specify which type of foulants is dominant in 

membrane fouling. Results indicated that protein and carbohydrates were the major 

foulants but intensities were lower for OC i.e. less biofouling for OC membrane. 

Scanning electron microscopy (SEM) pictures of virgin membrane and fouled membrane 
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showed that the LC membrane was fully covered with a biofilm (gel layer) whereas OC 

membrane pores were partially blocked. Low hydrophobicity of SMP and lower 

concentration of SMP resulted in lower fouling rate for OC membrane. It was assumed 

that due to higher calcium concentration in OC, more SMP and EPS were bind with 

calcium through calcium bridging and therefore better bioflocculation had taken place. 

Moreover, calcium can act as a coagulant and form colloidal flocs by charge 

neutralization. It is assumed in this work that these SMP would aggregate through 

calcium bridging and form larger flocs that are not able to block the membrane pores. On 

the other hand, alkalinity and phosphates present in wastewater can react with calcium 

and form calcium carbonates and phosphate scales, subsequently reducing the 

permeability of membrane due to inorganic fouling. These authors did not investigate this 

aspect of fouling.  

Arabi and Nakhla (2008) investigated the impact of calcium on membrane bioreactors to 

better understand the cation induced bioflocculation phenomenon and their effect on 

fouling either biofouling and inorganic fouling of membranes. Calcium was added to 

influent in concentration of 250 mg/L and 800 mg/L. SMP analysis revealed that when 

higher calcium concentration was added, 52% reduction was obtained while lower 

concentration reduced SMP by only 37% in comparison to control sample. Therefore, it 

can be concluded that higher calcium concentrations resulted in improvement of 

bioflocculation. However, when higher concentration was applied, the permeability of 

membrane decreased. This was due to the formation of CaCO3 scaling on the membrane 

surface as a result of inorganic fouling. These results were confirmed by particle size 
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analysis which indicated that in lower concentration of calcium, larger particles are 

formed where as in higher concentrations of calcium, the size of particles were almost the 

same as the control reactor. In the latter case, they postulated that this behavior is due to 

the formation of calcium carbonates precipitates since they have a smaller size than 

microbial flocs. Inorganic fouling was mainly due to calcium carbonate precipitation on 

the membrane surface, which is said to be an irreversible fouling due to the cohesive 

characteristic of this compound (Ould-Dris et al. 2000). MINTEQ modeling results 

gained comparable results with experimental data (Arabi and Nakhla 2008). Modeling 

indicated around 8% of calcium is in the form of calcium bicarbonate and calcium 

sulfate. Also calcium phosphate and magnesium phosphate are well presented as 

inorganic foulants in MBR but these are only present when pH is higher than 7. Since 

magnesium is also a divalent cation, same analysis was performed with Mg for SMBR 

(Arabi and Nakhla 2009). Therefore, the inoganic fouling of membrane bioarectors is 

also an important factor affecting membrane perfomance. 

2.2.4.  Membrane Inorganic Fouling 

The membrane resistant (Rf) can be attributed to organic and inorganic fouling and is 

calculated base on the following equation: 

€ 

Rf = Rm + Rc + Rorganic− f + RInorganic− f                                                                            (Eq. 1) 

Where Rm is the intrinsic resistant of membrane, Rc is the cake resistance, R(organic-f) is the 

organic fouling of membrane whereas R(inorganic-f) is the resistance caused by inorganic 

scales and requires chemical cleaning of membrane. EDTA and/or an acidic solution with 

air flushing are usually used to clean the membrane for inorganic fouling whereas NaOCl 
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and air flushing is used for organic removal. The EPS present in wastewater bears a 

negative charge whereas carbonate compounds are slightly positive. Therefore, the 

bioflocs formed by EPS can be adsorbed onto carbonate crystals and reduce the potential 

for fouling resulting in bioflocculation (Yoon et al. 1999). Inorganic fouling of membrane 

have been studied by some authors but still requires further research to fully undestand 

the behaviour of inorganics in MBR. You et al. (2006) operated two different 

configurations of membranes (SMBR and external membrane module) to study the effect 

on fouling mechanism. Analysis of membrane surface was also performed by SEM-EDS 

and X-ray diffraction. Two different concentrations of calcium were added (50 and 350 

mg/L). The concentration of calcium in the permeate flow was 20 and 80 mg/L 

respectively. During the operation the variation in flux and TMP were measured, before 

addition of calcium the TMP and flux were fairly stable but after the addition of calcium: 

1) SMBR: the increase in TMP occurred in two different phases, in the first phase, a 

gradual increase was observed in TMP (and decrease in flux), whereas in the 

second phase an abrupt increase in TMP and a sudden decrease in flux appeared 

(more than 70% reduction of flux) 

2) External membrane: no significant effect were detected in flux due to the presence 

of calcium 

These results revealed that when there is a concern regarding scale formation on 

membrane surface, the application of the external membrane systems is more effective. 

Scaling can be a result of two mechanisms: crystallization (which itself have two 

mechanisms) and hydrodynamic transportation. In the crystallization process, “bulk 
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crystallization” refers to the supersaturated systems where the agglomeration of scale 

forming ions is promoted due to random collisions of ions in motion.  The cluster of ions 

coalesces to form a crystal inducing precipitation upon reaching a critical size. On the 

other hand, “surface crystallization” is caused by foreign bodies such as membrane 

surface, which creates a surface for deposition of crystals, therefore, promoting scale 

formation of membrane surface. It can be concluded that the scale formation on 

membrane surface is either as a result of inorganic crystal formation in the bulk phase 

and/or the lateral growth of crystals on the membrane surface. In order to prevent the 

fouling caused by metal ions present in wastewater, the cluster of ions or free ions should 

be free of contact from each other (You et al. 2006). Moreover, calcium carbonate 

precipitates are cohesive, which means they seek for a surface to deposit on. Therefore, 

they have a high potential to be attached to membrane surface and cause irreversible 

fouling. At the initial stage of MBR operation, crystallization takes place on membrane 

surface, which later would be developed, tending to form larger crystals with a deformed 

shape. The scale will grow in all directions resulting in thick deposit, which is mainly on 

the membrane surface due to its cohesive nature. T-EDXA, FT-IR, SEM-EDS and XRD 

analysis confirms that Ca is the predominant element present in the external part of 

membrane scale (Lee and Kim 2009; You et al. 2006; Arabi and Nakhla 2008). Scales 

formed by calcium are mainly in the form of CaCO3 and CaSO4, which cause irreversible 

pore plugging (Choi et al. 2009). The fouling caused by calcium carbonate is due to the 

fact that their size is larger than membrane pores resulting in external fouling of 

membrane. Scaling has also been observed in anaerobic MBR systems due to high partial 

pressure of CO2 in the reactor, which intensify the formation of scales. It is known that 
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the concentration of solutes increase in the direction of feed flow, therefore, it can exceed 

the solubility limit and promote the formation of precipitates, either in bulk or on 

membrane surface by depositions (Lee and Kim 2009). Other reported inorganic foulants 

are Ca3(PO4)2 and Mg3(PO4)2, which have the ability to affect the structure of membranes 

and shear off the active layer of membrane surface (Cicek et al. 1999). In addition, the 

main inorganic foulant for anaerobic MBR have been reported to be Struvite 

(MgNH4PO4.6H2O), which it appears as white precipitates on membrane surface (Choo 

and Lee 1996). Figure 2-6 depicts the membrane surface while being fouled by calcium 

deposition on its surface and inside its pores. Accordingly, the control of membrane 

fouling to prevent a decrease in membrane efficiency, while treating wastewater, is 

essential. 

 

Figure 2-6 Calcium carbonate scales on membrane surface and inside the pores (Lee and Kim 2009) 
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2.2.5.  Fouling Prevention and Control Strategies 

Membrane fouling has been one of the major issues confronting the application of MBR 

for wastewater treatment. As mentioned before, the colloidal and soluble substances, 

particulates, inorganic and organic materials, present in either influent or activated 

sludge, are important factors affecting the membrane performance by blocking membrane 

pores. Several conventional methods have been proposed to prevent membrane fouling 

such as coagulation, flocculation, adsorbents and filtration techniques. Wastewater 

pretreatment have also been performed in order to eliminate the membrane scaling. The 

adjustment of pH (by addition of acid) and using antiscalants or scale inhibitors products 

are the common pretreatments under research (Choia et al. 2009; Lee and Kim 2009). 

Addition of adsorbents and coagulants has been widely reported to be an effective 

method in reducing membrane fouling (Le-Clech et al. 2006). One of the most common 

adsorbent used is powdered activated carbon (PAC). PAC reduces membrane fouling 

either by up taking soluble organic matters or by adsorbing EPS on its surface (Seo et al. 

2005). Furthermore, coagulation process has been widely reported to enhance phosphorus 

removal from wastewater and membrane filtration performance (Lee et al. 2001). 

Colloidal fraction in wastewater has a net negative surface charge and their size is in the 

range of 0.01 to 1 µm. They create stable suspension conditions and it is not possible to 

remove them by sedimentation. Coagulation is a process where these particles would be 

destabilized so that particles’ collision can take place and larger floc can be formed 

(Metcalf and Eddy 2003). In other words, the neutralization of charged colloidal particles 

in suspension by mutual collision with counter ions in  wastewater provokes coagulation 
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which later results in colloids’ aggregation. This process is due to the reduction of the net 

surface charge on colloidal particles (reduction of repulsive characteristic of the electrical 

double layer) and allowing the van der Waal’s forces to bring them together (Mollah et 

al. 2001). Coagulant is the chemical, which is added to wastewater in order to destabilize 

the colloidal particles. The most common coagulants added are usually organic polymers 

or metal salts such as alum and ferric sulphate. The destabilization and aggregation of 

colloidal particles through coagulation can be described in steps: charge neutralization 

and adsorption of particles to metal hydroxides, the inter-particle bridging and 

enmeshment of colloidal particles in the floc and sweep. In these processes, free Al3+ and 

Fe3+ (as coagulants) are not the only elements causing the particles aggregation and metal 

hydroxides, which are formed during coagulation process, have a significant impact on 

floc formation (Metcalf and Eddy 2003). It has been shown that alum addition has 

resulted in 25% reduction in SMP and further membrane hydraulic performance. 

However, the optimization of alum was performed for precipitating phosphate and not for 

membrane filterability (Holbrook et al. 2004). Song et al. (2008) investigated the 

membrane fouling and removal efficiency of phosphorus for a submerged membrane 

bioreactor by addition of the chemical inorganic coagulants. In order to analyze the 

particle size in the reactor, due to addition of coagulant, the MLSS sampling was grabbed 

from the inside of the reactor. They concluded that the fouling have significantly 

decreased since the permeate flow increased. Also high phosphate removal efficiency 

was achieved when alum or ferric chloride was used as coagulants. When coagulant was 

added in concentration above 200 mg/L, the permeate flow was twice the amount 

obtained from the reactor where no coagulant was added. Since addition of ferric chloride 
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resulted in a decrease in pH, they did not recommend its application, although a high 

efficiency of the phosphorus removal was obtained. No significant effect was observed 

regarding nitrogen removal by alum but fouling was minimized due to aggregation of 

small particles that could cause blockage of membrane pores. Lee et al. (2001) studied 

the impact of zeolite and alum as coagulants on membrane fouling and phosphorus 

removal and optimized the alum concentration based on phosphorus removal. They kept 

the molar ratio of Al/P to 1.5 and attributed the effective decrease in membrane fouling to 

higher particle size distribution in MBR. In another study ferric chloride was used as 

coagulant since it was found to have higher efficiency than alum; unfortunately, it was 

more expensive. Furtheremore, among ferric chloride, alum and organic polymers, the 

latter was found to be more effective in increasing the MLSS particle size and obtaning 

more efficient time to filtration (Le-Clech et al. 2006; Fan et al. 2007). Wu et al. (2006) 

conducted research on the impact of four types of coagulants (alum, ferric chloride, 

polymeric aluminum sulfate and polymeric ferric chloride) on the properties of activated 

sludge. Polymeric coagulant gained much more effective results compared to monovalent 

coagulant since they produced more positive charges and longer chain supplies. It was 

stated that the decrease in mambrane fouling, when adding coagulants, can be attributed 

to three subsequent processes: preventing the gel layer formation on membrane surface, 

decreasing the rate of foulant development in the reactor, and eliminating the foulants 

formed on membrane surface. It was also concluded that it is better to add the coagulant 

to wastewater before entering the MBR in order to obtain higher efficiency in reduction 

of foulants from MBR. Ferric chloride has been shown to be slightly more effective in the 

removal of SMP and EPS compared to alum. It was found that FeCl3 concentrations 
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higher than 250 mg/L yields a significant decrease in membrane resistancy. Addition of 

ferric choride to MBR resulted in 92% and 97% removal in phophorus and COD removal 

respectively (Mishima and Nakajima 2009).  

Although, chemical coagulation has achieved good efficiency in removal of colloidal 

particles, addition of chemicals has negative effects as well. Addition of chemicals to 

wastewater generates products and even by-products, which eventually result in large 

volume of sludge in the reactors (Clark and Stephenson 1998). The following are the 

disadvantages of chemical coagulation: 

1. Considerable consumption of chemicals 

2. Production of voluminous and large amount of sludge  

3. High operating costs (Patterson 1989) 

4. Generation of secondary pollutant as a result of chemical addition (Adhoum et al. 

2004) 

5. Generation of solid sludge which results in severe environmental issues (Parga et 

al. 2005) 

In this regard, electrocoagulation processes has been proposed as an alternative solution 

for chemical coagulation (Bani-Mehlem and Elektorowicz 2010). Chen et al. (2007) 

investigated the impact of electrical field on membrane flux (wastewater flow passing the 

membrane surface). They designed a reactor with two compartments, one containing the 

electrocoagulation system (having 5 cm gap between the electrodes) and the other 

holding the hollow fiber membrane. Using direct current (DC), applying 15 to 20 V/cm 

achieved significant increase in membrane flux in comparison to the system without 
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electrocoagulation process. The optimal value for voltage gradient obtained was 20 

V/cm, where there was no concern regarding membrane flux decline. In this condition, 

80% reduction in wastewater COD accomplished and the layer deposited on membrane 

surface was much more thinner. They concluded that electrical field is an effective 

technology to improve membrane performance was reducing membrane resistancy. 

Furthermore, combination of electrocoagulation with SMBR system as one unit was 

proposed by Elektorowicz et al. (2009) which was named submerged membrane electro-

bioreactor (SMEBR). 

2.3.  Electrocoagulation (EC) 

2.3.1.  Introduction to the EC 

A variety of  physico-chemical processes have been applied for wastewater treatment 

such as filtration, chemical precipitation, ion-exchange, membranes, carbon adsorption 

and etc. (Mollah et al. 2001). Electrochemical techniques (e.g. electrocoagulation, 

electroflotation) have been widely under study due to the fact that they do not require the 

addition of chemicals. Among them electrocoagulation (EC) process has received a lot of 

attention due to the improvement of electrochemical technologies and the reduction in its 

capital cost. There is a high potential for EC to be applied to various wastewater 

treatments and other water related topics, based on economical and environmental values 

(Kobya and Delipinar 2008). Electrocoagulation has proven to be very effective in 

removal of impurities without the need of addition of chemicals while minimum sludge is 

produced. Commercially, it has been very profitable but in the scientific way, it requires 

further research.  
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In general, EC is the in situ generation of coagulant by electro-oxidation of  proper anode 

electrode, therefore no chemicals are added and minimum sludge is produced. The 

colloidal particles in wastewater are either removed by binding with opposite charges 

ions or by adsorption to metallic hydroxides which are generated in the solution. The 

most common compounds that can be removed by EC are colloidal particles, metals and 

soluble inorganic compound present in wastewater (Mollah et al. 2001). One of the 

differences between chemical coagulation and electrocoagulation processes is in the form 

which metallic ions are presented to wastewater. In electrocoagulation metallic ions, 

which can be referred as coagulants, are delivered to the wastewater by electrical 

processes. As the base of EC, the supplied electrical field in EC process affects the 

negative surface charge of colloidal particle and their stability. If high electrical current is 

applied, more charge would be neutralize and more particles can agglomerate and form 

efficient flocs (Ogutveren and Koparal 1997). EC has been proven to be a cost effective 

and reliable technology that can be applied to wastewater treatments (Hu et al. 2003). The 

short operation time, no addition of chemicals, easy operation and low sludge production 

are the parameters that have brought the attention of industry to this technology. In 

addition, the sludge produced by EC is a metallic sludge and therefore the flocs are larger 

and have less bound water. As a consequence, the volume of the sludge generated is 

modest and much more easier to handle (Mollah et al. 2001).  It was found that EC has 

higher potential in removal of suspended soilds (SS) and COD in comparison to 

conventional chemical coagulation (Jiang et al. 2002). Therefore, in order to be able to 

improve the efficiency of the EC process, deep understanding of the EC mechanisms and 

processes is required. 
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2.3.2.  Principle Mechanisms in EC 

In general, EC is consisted of three consecutive steps. Electrolytic oxidation of sacrificial 

anode generates coagulants and the particles present in bulk solution destabilize and 

further aggregate to form flocs. Due to the passage of electrical current through the 

solution and formation of coagulant, the diffuse double layer around the suspended 

charges particles compresses. In addition, the electrostatic interparticle repulsion reduces 

due to the interactions taking place between the ionic species and the counter ions 

generated from the sacrificial anode. Furthermore, the flocs formed create a sludge 

blanket that can enmesh the remaining pollutions in wastewater (Mollah et al. 2001). 

There are several major phenomena taking place during EC: 

a) Electrophoresis; when particles migrate toward the oppositely charged 

electrode and as a consequence of charge neutralization, adhere to each 

other and form larger flocs. 

b) Electroosmosis; movement of water under the influence of imposed 

electric gradient. Due to the presence of more cations than anions in the 

water, the flow of water is toward the cathode. 

c) Electromigration; transport of ions and polar molecules in the direction of 

the opposite electrode under electrical field. 

d) Metallic cations released from anode material and hydroxyl ions generated 

from cathode can react with impurities such as metals present in 

wastewater, form precipitates and settle.  
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e) The metallic ions generated from anode material reacts with OH- and 

forms hydroxide compounds providing a high adsorption surface for 

impurities including soluble organic compounds.  

f) Sweep coagulation: the generated metallic hydroxides form long chains, 

which can trap the impurities such as colloidal particles within the chain 

and sweep them (Kobya et al. 2006) 

g) Oxidation of organic impurities and formation of less toxic compounds 

(Kobya and Delipinar 2008)  

h) Removal by settling, adhesion to bubbles generated during the EC process 

(electroflotation)  (Chen 2004; Canizares et al. 2005)  

The two metals, which have been widely used as an anode in EC process, are aluminum 

and iron which are cheap, easily accessible and effective (Mouedhen et al. 2006; Mollah 

et al. 2001; Kurt et al. 2008). Canizares et al. (2007) performed several EC tests to 

compare these two electrodes. They found that in electrocoagulation processes, which are 

not continuous, aluminum anode is preferred upon iron anode since iron can easily 

oxidizes and further corrode when the cell is not connected to electricity. The 

mechanisms of removal of ions and particles by EC process have been described as 

follow in Section 2.2.3. 

2.3.3.  Reactions at the Electrodes  

The electrochemical reactions at the electrodes during EC process are explained in this 

section.  

Reactions at the cathode:  
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2H2O + 2e−   H2 +2OH−                                                                                          (Eq. 2) 

Due to the generation of OH- and hydrogen evolution (bubble formation), the pH of the 

vicinity around cathode increases and the solution becomes alkali. Reactions that take 

place at the sacrificial anode are as follow, which M represents the material of anode: 

M    M3+ + 3e-                                                                                                          (Eq.3) 

When the M3+ is generated, several complex mechanisms occur and result in metal 

hydroxide floc production. General simplified mechanisms are shown further (Kobya and 

Delipinar 2008): 

M3+    monomeric species    polymeric species   Amorphous M(OH)3         (Eq. 4) 

Treatment of wastewater by aluminum electrode results in generation of monomeric and, 

at appropriate pH, polymeric species of aluminum: 

Al (s)   Al3+
(aq) + 3e-                                                                                                  (Eq. 5) 

Due to spontaneous hydrolysis of the aluminum ion produced, monomeric compound are 

formed: (Mouedhen et al. 2006) 

Al 3+ (aq) + H2O   Al(OH)2+
(aq)  + H+

(aq)                                                                    (Eq. 6) 

Al(OH)2+
(aq)  + H2O   Al(OH)2

+
(aq) + H+

(aq)                                                             (Eq. 7) 

Al(OH)2
+ (aq) + H2O    Al(OH)3 (s) + H+ 

(aq)                                                              (Eq. 8) 

At low pH, Al3+ and Al(OH)2
+ is generated but when the pH becomes more suitable, 

these species convert to Al(OH)3. Due to the fact that diametric and polynuclear 
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hydrolysis of aluminum can also occur, the following reaction can also emanate which 

results in formation of Al2(OH)2
4+, Al3(OH)4

5+, Al6(OH)15
3+, Al7(OH)17

4+, Al8(OH)20
4+ 

and etc. and finally polymerized Aln(OH)3n: 

nAl(OH)3    Aln(OH)3n                                                                                            (Eq. 9) 

Furthermore, it has also been postulated that if the anode potential is sufficiently high, 

secondary reactions might take place too. These reactions can be evolution of oxygen, 

direct oxidation of organic compounds and also oxidation of Cl- by the following 

reactions (Mouedhen et al. 2006; Kobya et al. 2006): 

2H2O   O2 + 2H+ + 4e-                                                                                          (Eq. 10) 

2 Cl-   Cl2 + 2e-                                                                                                     (Eq. 11) 

As indicated above, generation of H+ in anode vicinity results in low pH, therefore, acidic 

region around anode area is created while pH increases in the cathode vicinity. The 

generation of these hydroxo cationic complexes depends on the pH of the medium. Both 

compounds, cationic hydrolysis products and amorphous Al(OH)3, can remove the 

pollutants from the aqueous medium. The charges hydroxo cationic complexes have a 

adsorptive gelatinous nature and can remove the colloidal impurities either by surface 

charge neutralization or by adsorption. It is also possible that the amorphous aluminum 

hydroxides entrap the impurities within themselves (Mouedhen et al. 2006; Mollah et al. 

2001).  
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The removal of pollutants has also been reported by cathodic reactions as well. Pollutants 

can be removed either by deposition to cathode surface or by flocculation due to 

formation of hydrogen gas bubbles (Chen 2004). The described mechanisms strongly 

depend on the pH and the concentration of metals released from the anode to the medium 

(Duan and Gregory 2003). Figure 2-7 illustrates the interactions taking place in an 

electrocoagulation process. 

2.3.4.  Factors Affecting EC Process 

The current density (current (A) distributed over effective surface area (m2) of an 

electrode) affects the amount of ions released from the electrodes to the solution; as the 

Figure 2-7 Interaction within EC process 
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current density increases, the amount of ions increases as well. The electrochemical 

equivalent mass for aluminum is 335 mg/Ah and for iron is 1041 mg/Ah (Chen 2004). 

Although higher current density results in higher generation of ions however it might 

result in loss of energy for heating up the water (Chen 2004). Furthermore, current 

efficiency (CE) decreases when high current densities are applied. For aluminum 

electrodes the CE can reach up to 120 to 140% where as for iron it can reach 100%. 

Higher CE of aluminum can be attributed to the pitting of electrode surface due to the 

oxidation of chlorine anions as explained in Section 2.2.3. Current density is suggested to 

be 20-25 A/m2 in order to have optimal operation for along period of time. However, 

selection of an accurate current density depends on pH, temperature and other 

parameters, which must also be taken into account (Kovatcheva and Parlapanski 1999). 

The mechanisms of EC strongly depend on the chemical characteristics of the aqueous 

medium. Many researchers have studied the impact of conductivity and have 

demonstrated that conductivity is one of the most important parameters affecting the EC 

processes (Ilhan et al. 2008). Conductivity is defined by the concentration of salts 

(including NaCl) in the aqueous media. It was found that chlorine ions could reduce the 

negative effects of other anions such as HCO3
- and SO4

2-. These anions react with Mg 

and Ca in the solution and precipitate on the electrodes surface (creating an insulative 

layer on the electrodes), leading to higher potential between the electrode, a decrease in 

current efficiency and higher power consumption. It is suggested that 20% Cl- ions, 

among the rest of components in water, should be present to reduce the passivation of 

electrodes (Chen 2004).  
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One of the most important parameters that have direct impact on EC mechanisms is pH. 

The pH value affects EC process from two different aspects: CE and solubility of metal 

hydroxides. It was found that aluminum electrodes have higher CE either in acidic or 

alkaline conditions rather than neutral conditions. On the other hand, neutral pH results in 

higher consumption of energy due to changes in conductivity. Therefore at higher 

conductivities, pH influence is insignificant. Furthermore, EC process can affect the pH 

of the wastewater. If the pH of present wastewater is acidic, evolution of hydrogen at 

cathode surface and the release of OH- result in an increase in pH. Also, in acidic 

conditions, CO2 is oversaturated in wastewater and due to the presence of hydrogen 

bubbles; they escape from the wastewater leading higher pH. On the other hand, in 

conditions where the pH of wastewater is high, Ca2+ and Mg2+ co-precipitate with 

Al(OH)3 as hydroxides leading to a decrease in pH. Pollutants e.g. COD, oil and great 

removal has been investigated to be optimal in neutral pH for aluminum electrodes (Chen 

et al. 2000). 

The impact of temperature on EC has not been widely investigated. Based on current 

literature, it was only found that increase in temperature up to 60 degrees would increase 

the CE and therefore minimize the power consumption (Chen 2004). The increase in CE 

was attributed to the destruction of aluminum oxide layer, which is formed on the anode 

surface. It was concluded that at higher temperatures, the flocs become denser due to the 

Al(OH)3 gel shrinking and formation of more compact flocs, which have higher affinity 

to deposit on electrode’s surface. In addition, higher temperature results in higher 

conductivities and therefore less energy consumption. Power supply for EC process is 
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also another important parameter. Mostly direct current (DC) has been applied but in this 

case oxidation of anode and passivation of cathode might take place. It is recommended 

that in order to diminish the oxidation and passivation of aluminum electrodes, the 

direction of current should be changes every fifteen minutes (Chen 2004). In another 

study the on/off electrical modes were implemented to reduce these unfavorable 

phenomenon (Ibeid et al. 2010; Bani-Mehlem and Elektorowicz 2010). Moreover, Mao et 

al. (2008) found that alternating current prevents the fomartion of aluminum oxides 

(passivation) on the anode surface. The type of material used, as electrodes are very 

important since it generates the coagulants. Both aluminum and iron electrodes have been 

used for water and wastewater treatment. However, due to the high coagulation potential 

of Al3+, Al electrodes have gained a great deal of attention in wastewater treatment. They 

can be used for both anode and cathode or in a combination with iron, aluminum as an 

anode and stainless steel as a cathode.  The stainless steel cathode is recommended in 

case of high Mg and Ca ion concentrations in wastewater. Other important parameters 

that affect the EC process are particle size, retention time between electrodes, and 

electrode spacing (Kul’skii et al. 1978). 

2.3.5.  Advantages and Disadvantages 

The advantages and disadvantages of electrocoagulation process have been illustrated in 

Table 2-3 and Table 2-4 (Chen 2004; Mollah et al. 2001).  
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Table 2-2 Advantages of EC technology 

 

 

 

a. The quality of treated wastewater obtained from EC process is excellent: 

minimum suspended solids, clear, odorless and edible 

b. Close to 100% removal of colloidal particles; due to the electrical field 

that is passing through the wastewater, colloidal particles are forced to 

move faster and therefore coagulation is enhanced 

c. Presence of minimum total dissolved solids (TDS); therefore, the cost of 

water recovery would be minimal 

d. Easy to operate, manage and control  

e. Minimum sludge production and good settling characteristics in case 

where appropriate current density is applied. The sludge produced by EC 

is mainly metallic oxide/hydroxide sludge which is readily dewaterable 

and settelable  

f. Chemical addition is minimized. Secondary pollutants are not generated 

while in chemical coagulation, the high concentrations of chemicals result 

in generation of the secondary pollution 

g. Flocs formed in EC process are much more dense and contain less 

bound water. In comparison to chemical coagulation, they are more 

compact, larger and stable in acidic conditions and readily separated from 

the wastewater  

h. In contrast to chemical coagulation, the bubble formation in EC process 

promotes the removal of some impurities by conveying them to the 

surface. Removal can be performed by skimming the surface of 

wastewater 

i. Solar energy can be used to create electrical energy for EC functioning 

Advantages 

j. Requires minimum and relatively simple maintenance  
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Table 2-3 Disadvantages of EC technology 

a. Its application is not beneficial where the cost of electricity is high  

b. Frequent replacement of electrodes; sacrificial anodes dissolute into 

wastewater due to corrosion of anode by electrochemical oxidation.  

c. Passivation of cathode and oxidation of anode; deposition of 

calcium carbonate and magnesium hydroxide on cathode surface 

decreases the electrical current efficiency and results in higher power 

consumption  

d. Requiring a high conductivity; if the wastewater does not contain 

substantial amount of salt ions (to increase the conductivity), higher 

electrical voltage is required to achieve the objectives 

Disadvantages 

e. Dissolution of coagulant hydroxides; pH changes might affect the 

generated hydroxides  

 

2.3.6.  Applications of EC 

Electrocoagulation (EC) has been widely applied to remove a large range of pollutants 

from water and wastewater. Adhoum et al. (2004) investingated the EC potential (using 

aluminum electrodes) for the removal of heavy metals (e.g. Cu2+, Zn2+ and Cr (VI)) in 

wastewater and found it to be highly effective. Optimum pH and current density was 

found to be 4-8 and 0.8-4.8 A/m2 respectively while keeping the charge loading constant.  

Furtheremore, metal removal from acidic soil leachate was also studied using stainless 

steel electrodes and significant removal efficiency was obtained fro Pb, Cr and Cu (more 
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than 99.8% removal). It was also found that the total cost of elecrocoagulation is five 

times lower than the conventional chemical coagulation (Meunier et al. 2006). The 

removal of chromium (VI) from synthetic wastewater by EC revealed that this 

technology was a cost effective technology and highly potential for the removal of heavy 

metals from wastewater. The time required to reduce the concnetration of heavy metals to 

less than admissible legal levels was only 20-40 minutes. Also, application of iron as 

anode had better results in removal of Cr in comparison to aluminum (Bazrafshan et al. 

2008). Arsenic was also removed by electrocoagulation to less than 2 mg/L while the 

initial concnetration was 100 mg/L (Hansen et al. 2007). Removal of Zn, Cu, Ni, Ag in 

EC process was also studied while assessing many parameters that can affect the process. 

Initial concentration of 500 to 5000 mg/L of these metals did not have any impact on 

their removal rate. Higher current densities increased the rate of processes but reduced 

the efficiency (Heidmann and Calmano 2008).  

Electrocoagulation has also been applied for the treatment of textile effulents. A level of 

86% removal was obtained for COD (3 minutes opeartion time and at 600 mV electrical 

potential) while 100% color removal was achieved (Zaroual et al. 2006). Moreover, EC 

efficiency in organic pollutant removal from highly complex industrial wastewater yield 

84% reduction in COD. The optimal conditions were found to be pH 8 and 45.45 A/m2 

current density. Color and turbidity were removed by percentage over 97% (Linares-

Hernandez et al. 2007). Application of EC to potato chips manufacturing wasewater was 

investigated as well. Aluminum electrodes were found to have higher efficiency in 

removal of COD, turbidity and TSS in comparison to iron electrodes (Kobya et al. 2006). 
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Different EC operational parameters of EC was also studied to enhance phosphate 

removal. Disregard of the initial concentration of phosphate in wastewater, 100% 

removal of phosphate was achieved when aluminum electrodes were used. Increasing 

current density resulted in higher CE and removal rate however it increased the power 

consumption. In general, pH 7 was an optimal value for the removal of phosphate while 

other parameters were varing. It was concluded that aluminum electrodes are 

recommended in the aeras where phosphate removal is required (Irdemez et al. 2006).  

In addition, hybrid processes, i.e. employing two or more treatments at the same time, 

have been recently investigated to enhance and improve the quality of wastewater. In this 

regard, Alshawabkeh et al. (2004) integrated the EC process into mixed liqour and 

appraised the effect of direct electric fields on physicochemical and biochemical 

properties of aerobic mixed sludge. Different charge loadings (0, 0.28, 0.57, and 1.14 

V/cm) and direct currents (13-70 mA) were applied to activated sludge for a period of 50 

hours. The values of pH and dissolved oxygen (DO) did not vary in different electrical 

fields, which indicated that EC does not have impact on them. Furthermore, applying 

voltage gradient lower than 0.28 V/cm did not have any impact on COD removal while 

the application of higher voltages than 1.14 V/cm had harmful effects and decreased the 

rate of COD removal. Therefore, the optimum electrical voltages were found to be in the 

range of 0.28 and 1.14 V/cm. In another batch study, the impact of EC on enhancement 

of nutrient removal from aerated culture was studied (Yu et al. 2006). Electricity 

requirement was less when iron electrodes were used and in terms of phosphorus 

removal, the electrolysis in aerobic conditions achieved higher removal than in anoxic 
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conditions. It was concluded that phosphorus removal could be highly enhanced if 

intermittent electrocoagulation is combined with an intermittent aerated bioreactor. A 

sudden rise in the amount of produced sludge was observed when continuous electrolysis 

was applied to both aerobic and anoxic conditions (Yu et al. 2006). However, deep 

understanding of the impact of EC on reducing MBR fouling and enhancing its 

efficiency, as a hybrid, unit is missing in the literature. Hence, attention is directed to 

extension of knowledge concerning the processes and mechanisms, which take place in 

EC combined with MBR. 

2.3.7.  Electro-coagulation Applied to Membrane Processes 

New approaches to improve the performance of wastewater treatment units are required. 

One of the modern approaches is usage of membranes due to higher quality of effluents, 

and other approach is to decrease the usage of chemicals for coagulation processes. 

Therefore, application of electrocoagulation to MBR, as one operation unit, permits to 

achieve the most successful results. 

2.3.8.  Submerged Membrane Electro-Bioreactor (SMEBR) 

Direct implementation of electrocoagulation unit inside submerged membrane bioreactor 

has accomplished promising achievements towards the reduction of membrane fouling 

and increasing its efficiency (Bani-Mehlem and Elektorowicz 2010). This hybrid novel 

system is called submerged membrane electro bioreactor (SMBER) (Elektorowicz et al. 

2009). In SMBER, the EC unit is incorporated inside the submerged membrane 

bioreactor allowing direct interactions between different processes. These processes 

consist of biological treatment, electrocoagulation processes and membrane filtration. 



 

 

                                                                                                                                               

46 

Aluminum electrode has gained better results; therefore, this metal has been applied as an 

anode material to release Al3+ for coagulation processes and stainless steel for the 

cathode material. These electrodes are submerged in the MBR system while surrounding 

the submerged membrane.   

The SMEBR system has many advantages such as (Elektorowicz et al. 2009): 

1. Small footprints 

2. No addition of chemicals (no secondary pollutant generation) 

3. Reduction in operating costs (less aeration requirement in comparison to 

conventional SMBR and no costs for chemicals) 

4. High quality sludge (better dewatering and conditioning) 

5. Introduction of a new sustainable design for wastewater treatment system 

However, optimal functioning of SMBER requires further research from different 

aspects. As discussed in Section 2.1.2., the major issue that has restricted the application 

of membranes is fouling. Membrane fouling can be as a result of biofouling and 

inorganic fouling of membranes. The major inorganic foulant in aerobic MBRs was 

found to be calcium carbonate scaling (Jude 2004). On the other hand, calcium was 

shown to have beneficial effects on membrane filterability from the biofouling point of 

view according to DCB theory. Arabi and Nakhla (2008) discovered that 250 mg Ca2+/L 

in influent wastewater resulted in higher filterability of membrane due to divalent cations 

bridging with negatively charges functional groups and reduction in SMP whereas 750 

mg Ca2+/L clogged the membrane due to formation of calcium carbonate precipitates 

which deposited on membrane surface. Furtheremore, presence of calcium salts affects 
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the electrical conductivity of the medium used which, as dicussed in Section 2.2.4., is one 

of the most important factors influencing the EC process. Therefore, investigations are 

required to undertand the impact of different direct electrical fields and conductivities on 

actiavted sludge characteristics, in the zone between anode and cathode in EC process. 

Evaluation of the impact of calcium either on sludge properties or on electrocoagulation 

process through direct application of DC field to activated sludge is missing throughout 

the literature. It is assumed that increasing the conductivity, by addition of calcium salt, 

can reduce the electrical charge loading and enhance EC pollutant removal efficiency. In 

addition, it might be able to improve the sludge characteristics through bridging with 

negatively charged collidal particles and enhance bioflocculation, which later results in 

improvement of membrane filterability. Therefore, the main objective of this research is 

to evaluate the activated sludge properties under different DC electrical fields and 

calcium concentrations. From the literature it was found that MLSS is also one of the 

factors that has significant impact on sludge characteristics and membrane fouling. 

Therefore, the impact of MLSS was also studied for different variations of electrical 

fields and conductivities. 
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Chapter 3        Methodology 

 

3.1. Introduction 

In order to achieve the objectives of this research outlined in Chapter 2, a series of bench 

scale laboratory tests were performed. The detailed approach for performing these tests in 

order to obtain the required data was set based on a literature review and previous 

experience generated by Dr. Elektorowicz’s research team. The experiments were 

implemented in a manner to reveal the following information: a) impact of different DC 

electrical fields on activated sludge properties, b) impact of different calcium 

concentrations on activated sludge properties, c) impact of different calcium 

concentrations on electrocoagulation process, d) impact of activated sludge composition 

on the deposition on the electrodes’ surface. Figure 3-1 is a schematic diagram indicating 

the approaches developed and followed throughout this laboratory study: I. Preparation 

and set up, II. Laboratory experiments III. Analyses. In order to investigate the impact of 

the MLSS concentration, all laboratory experiments were carried out for both low and 

high concentration ranges of MLSS where:   

Low Range MLSS (abbreviated LR MLSS): 5 000-7 000 mg/L 

High Range MLSS (abbreviated HR MLSS): 10 000-12 000 mg/L 

The above-mentioned ranges are provided in the literature on membrane bioreactors.  
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• Studying the impact of DC on activated sludge properties 
• Studying the impact of calcium addition on EC process 
• Electrode's surface analysis 

Electrocoagulation Experiments 

• Studying the impact of calcium on activated sludge characteristics 

Impact of Divalent Cations  

                       I. Preparation and Set Up 

 

                           II. Laboratory Experiments  

 

 

 

 

   

                                   III. Analyses 

 

Figure 3-1 Schematic diagram of the approaches followed throughout this study  
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 3.2. Experimental Work 

A series of experiments were grouped into three categories, those studying the impact of 

electrocoagulation process on electrodes and activated sludge, with and without the 

addition of calcium, and those studying the impact of divalent cations on activated sludge 

in the context of calcium bridging phenomena: 

• The impact of electrocoagulation was divided into two subcategories, which 

permitted to generated data on: 

i. The impact of electrical field exposure to activated sludge 

properties 

ii. The impact of calcium concentration on electrocoagulation 

processes and activated sludge properties 

• The impact of sludge composition on organics and inorganics depositions on 

electrode surface during the electrocoagulation process  

• Impact of divalent cations such as calcium on divalent cation bridging in activated 

sludge 

3.2.1. Experimental Reactors for Electrocoagulation Process 

In order to investigate the above aims, several experimental runs were performed. The 

design of electrodes and operation conditions used in this research were dictated by the 

patented design of Submerged Membrane Electro-bioreactor - SMEBR (Elektorowicz et 

al. 2009).  Bench scale electrocoagulation tests were performed in a series of 1.5 L 

containers, equipped at the bottom with three cubic aeration porous stones for keeping the 

DO level concentrations constant (6-8 mg/L) and mixing sludge purposes. All reactors 
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were monitored during the EC process to ensure the aerobic condition within the cells. 

The operation time was chosen to be 48 hours to ensure sufficient biological treatment 

and coagulation processes. Samples were taken from the reactors before the run, after 8 

hours, after 24 hours and after 48 hours of operation to control and monitor the variations 

within the system. The activated sludge (Section 3.4.1.) was not fed during the 

operations. 

Each bench bioreactor was employing a flat aluminum perforated (40% opening) as the 

anode and stainless steel mesh as the cathode. The stainless steel mesh was fixed with a 

stainless steel frame to minimize its movement during the experiment. Both electrodes 

were attached to a plexiglass frame in order to keep them in a vertical position at the 

constant distance of 5 cm. In addition, above this frame each electrode had a 1 cm 

extension providing a sufficient space for DC power connections (Figure 3-2).  
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Figure 3-2 Configuration of electrodes immersed in EC reactor 

 

DC power supply (TES 6230) and all electrodes were connected through a distribution 

panel. In case of having different operation times for electrocoagulation process, a 

switch-timer was connected to the circuit (between the distributor and the cathode) in 

order to control the sludge exposure time to DC. Based on previous research (Ibeid et al. 

2010), in all experiments the current density was kept constant to the value of 20-25 

A/m2. Current density was calculated as follow: 

Current density (A/m2) = Electrical current (A) / Effective surface area of electrode (m2) 

Table 3-1 is a summary of the characteristics of the electrocoagulation reactors with their 
dimensions. 
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Table 3-1 Characteristics of EC reactor 

Electrodes  Reactors  Power 
Supply  

Material (anode 
and cathode) 

Aluminum (Al) 
and Stainless 
Steel (SS) 

Material Plastic 
Current 
density 
(A/m2) 

20-25 

Shape 
 
Rectangular 
plate 

Reactor mode Batch mode Voltage (V) Variable 

Size (cm) 14×16.5 Dimension (cm) 
 17×18.5×8   

Number 2 Volume (L) 
 1.9   

Plate 
arrangement 
 

Parallel Used wastewater 
volume 1.5   

Effective 
electrode 
surface area 
(cm2) 

107 Electrode gap (cm) 5   

  
 
Stirring mechanism 
and aeration system 

Cubic air 
stones   

 

The air stones implemented to supply aerobic conditions were connected to an air valve, 

which supplied the air in the reactors.  

i. Impact of EC on Activated Sludge Properties 

The conditions applied to the experimental runs for investigating the variations in 

activated sludge properties, while being exposed to electrical field, are provided in Table 

3-2. In these experimental runs, four different electrical modes and two concentration 

ranges of MLSS were considered. A control reactor without electrical field 

(electrocoagulation) was run in parallel to other electro-bioreactors for comparison 

purposes.  
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Table 3-2 Electro-bioreactor operational conditions 

MLSS 
(mg/L) 

Electrical 
modes 

(minutes) 

Abbreviations 
used for 
electrical 

modes 
 

Abbreviations 
used for 

CONTROL 
reactors   
(No EC) 

Current 
density 
(A/m2) 

Total 
number of 

experiments 
Operation 

time 
(hour) 

 
 

5000-
7000 

 
 

C1 

10000-
12000 

 
Continuous On 

 
 

5 minutes On/ 
5 minutes Off 

 
 

5 minutes On/ 
10 minutes Off 

 
 

5 minutes On/ 
15 minutes Off 

 
Continuous a 

 
 

5 ON: 5 OFF b 

 
 
5 ON: 10 OFF 

 
 

5 ON: 15 OFF 

C2 

20-25 10 48 

 a Continuous application of DC without any interruption during the 48 hours 

b Intermittent application of DC for 5 minutes and disconnection for 5 minutes during the 48 hours of operation 

In each run, four reactors at different electrical modes and one control were operating 

simultaneously, therefore a total of 10 experiments were performed. Figure 3-3 depicts 

the sketch for the experimental set up applied to these experiments. The picture of the set 

up is presented in Appendix II. 
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Figure 3-3 Electrical connections applied to electro-bioreactors for investigating the impact of EC on AS 

properties 

Since the components of the electrical circuit were connected in parallel, the same 

voltage (V) was applied to each reactor. On the other hand, the current showing on the 

DC power supply was the sum of the currents of all the four reactors (considering one 

reactor did not have EC process). The corresponding current density (20-25 A/m2 or 2.5 

mA/cm2) for each reactor during the experiment was calculated as follow: 

I = A × 2.5× 4                                                                                                           (Eq. 12) 

Where, 
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I = Current showing on power supply, mA 

A = Effective electrode surface area (cm2) 

Since the effective electrode surface area was 106.29 cm2, the current applied to one 

reactor was 0.267 A and the current for four reactors was 1.07 A. In order to monitor the 

voltage and current during the EC process for each reactor, all connections except for one 

reactor were disconnected so that the current for that specific reactor could be read. In 

case of a drop in the current value, due to the increase in electrical resistance, the voltage 

was increased to obtain the same constant value for current density. 

ii. Impact of Calcium Addition on EC process 

As discussed in Section 2.1.4., since calcium is a divalent cation, it has the potential to 

bind with negatively charges particles (SMP), thus, enhance the bioflocculation 

phenomenon in the activated sludge. On the other hand, calcium salt increases the 

conductivity in EC process resulting in lower power consumption i.e. lower voltage is 

required to obtain the same current. Therefore, calcium chloride was chosen for this 

experiment to study the impact of calcium addition from two aspects simultaneously: 

bioflocculation and electrocoagulation. All runs were performed for two concentration 

ranges of MLSS to study the impact of MLSS as well. For this purpose, prior to the 

commencement of EC process different concentrations of CaCl2 salt were added directly 

to the reactors. Table 3-3 reveals the operational parameters used in this experiment. In 

each run, four reactors were running simultaneously with different electrical modes. Run 

C3-4 was used as the control for run A3 and A4 and run C5-6 was used as the control for 
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run A5 and A6 (no addition of calcium). Therefore, a total of 24 experiments were 

performed to investigate the impact of calcium addition on EC performance and activated 

sludge properties. The typical concentration of calcium in municipal wastewater is 

reported to be between 20 and 120 mg/L. 250 and 750 mg Ca2+/L was chosen for this 

experiment to better understand the role of calcium on both electrocoagulation and 

bioflocculation phenomena. 

Table 3-3 Operational parameters for studying the impact of conductivity on activated sludge 

Ca2+ 

(mg/L) 
MLSS 
(mg/L) 

Electrical 
modes 

(minutes) 

Abbreviations 
used for 
electrical 

modes 
 

Corresponding 
conductivity 

(µS/cm) 

Current 
density 
(A/m2) 

Total 
number of 

experiments 

Operation 
time 

(hour) 

0 1191 

250 2436 

750 

5000-
7000 

4010 

0 977 

250 2240 

750 

10000-
12000 

 
Continuous On 

 
 

5 minutes On/ 
5 minutes Off 

 
 

5 minutes On/  
10 minutes Off 

 
 

5 minutes On/  
15 minutes Off 

 
    Continuous 

 
 

5 ON: 5 OFF 
 
 
 

5 ON: 10 OFF 
 
 
 

5 ON: 15 OFF 

4870 

20-25      24 48 

a Control reactor (C3-4) for run A3 and A4 

b Control reactor (C5-6) for run A5 and A6 

The electrical set up used in this experiment was the same as the set up used for 

investigating the impact of EC on activated sludge properties except for the control 

reactor. In this experiment, at all times, the control reactor had electrocoagulation process 

but no calcium was added to the reactor. Removal of soluble microbial products (SMP) 
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and particle size were the chosen parameters to assess the bioflocculation and coagulation 

phenomena.  

3.2.2. Depositions on Electrodes’ Surface  

The depositions of organic and inorganic sludge components on the electrodes were 

investigated to assess their affinity to electrodes while being exposed to electrical field. 

Since organic matters mostly bear a negative charge, it was expected that their affinity 

was higher to the anode; however, cations (including calcium used in this experiment) 

having positive charges were expected to have higher affinity to the cathode. To 

investigate the fractioning of these substances on electrodes, at the termination of each 

experiment, organics and inorganics were desorbed from the electrode surface and 

analyzed.  

When the bench scale operations were terminated after 48 hours, at first, while the 

aeration was still blowing, samples were taken from the space between the electrodes for 

further analysis. After sampling, the electrodes were taken out from the reactors and 

disassembled from the supporting frame. Each electrode (anode and cathode) was 

vertically cut in half, assuming uniform distribution of sorbed substances throughout the 

electrode surface. One half of each electrode was used for organic material analysis and 

the other half was used for inorganic. In order to desorb organic material from the 

electrode surface, half of each electrode was soaked in 50 ml alkaline solution (solution 

pH was set to 11 by the addition of sodium hydroxide, NaOH) for five minutes. 

Meantime, the surface of the electrodes was also manually wiped to ensure that all sorbed 

substances are detached. After desorption, the solutions were filtered through 0.45 µm 
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filter paper to obtain the soluble organics and measurement of soluble COD were carried 

out as a representative of soluble microbial products (SMP) (Meng et al. 2006). 

Desorption of inorganic matters attached to the electrodes’ surface were performed by 

soaking the other half of each electrode in 50 ml 4% HNO3 for 5 minutes while all 

attached substances were also manually wiped from electrode surface. The solutions 

obtained were filtered through 0.45 µm filter paper and analyze for the calcium 

concentration. In order to consider the other half of the cut electrode, for both organic and 

inorganic materials, the concentration values obtained after analysis were multiplied by 

two.  

3.2.3. Impact of Divalent Cations on Activated Sludge Properties 

Divalent cations are widely known to improve the microbial flocculation by formation of 

bridges with extracellular polymeric substances. This flocculation promotes activated 

sludge settling characteristics and also helps the formation of biological flocs in the 

bioreactors (Song et al. 2008). Therefore, a series of experiments were performed to 

study the impact of calcium on the sludge characteristics in batch reactors. 

Since the typical calcium concentration in municipal wastewater is between 20-120 mg/L 

(Arabi and Nakhla 2008), two calcium concentrations were chosen (250 and 750 mg/L) 

to better understand the role of calcium on the characteristics of activated sludge at low 

and reach calcium wastewater. These concentrations were directly added to the activated 

sludge. As for the control reactor, one reactor was operated in parallel to other bioreactors 

without any addition of calcium.  This impact was studied for two MLSS concentration 

ranges (LR and HR MLSS). Bench scale 1.5-liter reactors, equipped with aeration 
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apparatus, were filled with activated sludge and the corresponding calcium concentration. 

These reactors were aerated for 48 hours to ensure sufficient time for biological reactions.  

After this operation time, samples were taken out from the zone between the electrodes 

and analyzed for soluble COD and calcium concentration. Soluble COD (sCOD) 

represents the soluble microbial products (SMP) in activated sludge therefore reduction 

in sCOD corresponds to a decrease in SMP, which could be as a result of calcium cations 

bridging with positively charges extracellular polymeric substances. A total of six 

experiments were performed: three experiments for LR MLSS and three experiments for 

HR MLSS. It is noteworthy to state that in this stage of research electrical field (DC) was 

not applied to the reactors; therefore, the interactions within activated sludge were only 

studied under aerobic conditions. The operational parameters in this stage are shown in 

Table 3-4 representing a total of six experiments from B1 to B6. 

Table 3-4 Operational parameters for studying the impact of calcium addition on activated sludge properties  

Ca2+ addition (mg/L) MLSS (mg/L) Total number 
of experiments 

Operation time 
(hour) 

0 

250 

750 

5000-7000 

0 

250 

750 

10000-12000 

6 48 
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3.3. Sampling and Sample Preservation 

3.3.1. Sampling in EC Reactors  

After 48 hours of operation, right after disconnecting the DC power supply and while the 

aeration was on and electrodes were in place, a required volume of activated sludge was 

sampled from the space between the electrodes by immersing a sampling vial in the 

activated sludge. To ensure that the obtained data from analysis are a representation of a 

completely mixed reactor, three sequential samples were taken from different depths of 

the reactor (top, middle and bottom). A total of five 50 mL samples were collected for 

analyses. One liter of the remaining activated sludge was withdrawn to a graduated 

cylinder for SVI analysis. Obtained samples were right away analyzed for TTF, particle 

size distribution, MLSS, MLVSS and total solids. In order to analyze the components of 

supernatant, samples were first centrifuged for 20 minutes at 4000 rpm and then filtered 

through Whatman No.40 filter papers. The filtered samples were preserved in 4 °C 

refrigerator until analyses were performed. 

3.3.2. Sample Preparation and Sampling for the Impact of Divalent Cation 

(Calcium) Bridging on Electrocoagulation Process   

For each experiment, 1.5-liter reactor was filled with activated sludge and prepared in 

order to achieve the final concentration of Ca2+ of approximately 0, 250 and 750 mg/L in 

addition to the calcium that was naturally present in the activated sludge. Calcium was 

added to the reactors by preparing a stock solution of CaCl2; for each sample, a certain 

volume of 50 mg CaCl2 was added to the activated sludge in order to achieve an 

approximate concentration of the desired Ca2+. After filling the reactors with the 
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activated sludge and connecting them to the aeration system, they were left for 48 hours. 

After this period, samples of activated sludge were taken from the bioreactors while 

being aerated continuously for mixing purposes. The samples were prepared as described 

in Section 3.3.1 and preserved in refrigerator for further analyses. One liter of the 

remaining activated sludge was used for SVI measurement. 

3.3.3. Preparation of MLSS for LR and HR Concentrations 

Mixed liquor suspended solids (MLSS) concentrations were prepared as follow: 

considering the fact that the MLSS concentration of activated sludge brought from the 

WWTP was between 5000 and 7000 mg/L; therefore, in experiments with low range (LR 

MLSS) concentrations, the AS samples were directly used. However, in experiments with 

high range (HR MLSS), decanted sludge was used in order to achieve the target MLSS 

concentration. 

3.4. Materials and Sample Analyses  

The analyses performed in this study were divided into three categories: i) parameters 

that were analyzed before and after the experiments, ii) parameters that were analyzed 

during the experiments, and iii) parameters analyzed for electrodes’ surface. 

Chemical and physical analyses performed before and after the experiments:  

• pH, conductivity, SOUR, temperature, current, voltage, PO4
3+, NH3-N, NO3

-, 

alkalinity, MLSS (TSS), MLVSS, TS, PSD, TTF, total metal concentrations (Ca, 

Mg, K, Al) and SMP as sCOD. 

Parameters analyzed during the experiments: 
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• Current, voltage, pH, conductivity, temperature and PSD 

Parameters analyzed for electrodes’ surface after the experiments:  

• Metal (Ca) and SMP (sCOD)  

Please refer to Glossary for the list of abbreviations used in the text. 

3.4.1. Activated Sludge 

The activated sludge (AS) used in this research was obtained from the St. Hyacinthe 

wastewater treatment plant, Quebec (Canada), which treats domestic wastewater by using 

activated sludge process. The activated sludge taken as grabbed samples from the return 

activated sludge line. This sludge was brought in 20 L plastic containers from the plant to 

the laboratory every three weeks and was stored in refrigerator at 4 °C until experiments 

were performed. The initial characteristics of this activated sludge are given in Table 3-5. 

3.4.2. Particle Size Distribution Analysis 

During the experiments (after 8, 24 and 48 hours) 5 ml-sample of AS was taken and 

analyzed for particle sizes in order to obtain the variation in floc sizes by time. The 

particle size distribution (PSD) analysis was performed with a small amount of well-

mixed activated sludge sample inserted into the Horiba, Partica LA-950 V2 Laser 

Scattering Particle Size Distribution Analyzer and obtaining the mean value for floc sizes 

using its software. 
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Table 3-5 Initial characteristics of activated sludge brought from St. Hyacinth WWTP 

Parameter Value a Standard Deviation 

pH 7.6 ±0.4 

Conductivity (µS/cm) 1043 ±226.3 

MLSS (mg/L) 5637 ±662.7 

MLVSS (mg/L) 5193  

Total Dissolved Solids (mg/L) 812  

VSS/TSS (%) 88  

Particle Size Distribution (µm) 55.6 ±11.1 

Time To Filter (Seconds) 48 ±15.5 

Sludge Volume Index (mL/gr) 126 ±29.9 

NH3-N (mg/L) 77.7 ±33.9 

PO4-P (mg/L) 44.4 ±23 

NO3
- (mg/L) 14.6 ±5.8 

sCOD (mg/L) 298 ±39.7 

Ca2+ (mg/L) 33.7 ±0.5 

Alkalinity (mg/L) 326 ±50.9 

K+ (mg/L) 87.8 ±6.3 

Mg2+ (mg/L) 14.8 ±5.2 

Temperature (°C) 19.0  

Dissolved Oxygen (mg/L) 7.6 ±1.2 

Cl- 36.7 ±8.1 

a Average of six measurements  

3.4.3. Analysis of Activated Sludge Characteristics 

The following parameters were measured based on Standard Methods (APHA 1998): 

MLSS (2540 D), MLVSS (2540 E) and TS (2540 B), SVI (2710 D), TTF (2710 H), 

alkalinity (2320 B) and specific oxygen uptake rate (2710 B). SVI was measured using 
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one liter graduated cylinder, where sludge was left behind to settle for 45 minutes. Time 

to filtration (TTF) was measured using 20 ml of AS sample, Whatman No. 40 filter paper 

and a stopwatch for counting the time required for filtration of 10 ml of the sample.   

3.4.4. Analysis of Liquid Phase (Supernatant) and Electrode Solutions 

The following components of supernatant were analyzed using HACH instrument (Hach-

DR 2800). The methods used are as follow: NH3-N: Method 10031, PO4-P: Method 

8178. 

Nitrate (NO3
-) was measured using the corresponding ion meter (probe) for nitrate 

measurements and Accumet Research AR 25 Dual Channel pH/Ion meter (Fisher 

Scientific). 

As stated by Meng et al. (2006), the soluble COD can be recognized as SMP (soluble 

microbial products). In order to analyze this parameter, samples were first filtered 

through 0.45 µm filter papers (PALL Life Science GN-6 0.45 µm, 47 mm) to separate all 

the colloidal particles from the soluble substances. Then, by using Hach HR COD TNT-

822 vials, soluble COD was measured. A similar procedure for organic fraction analysis 

was performed for the basic solution obtained from the electrode’s surface. Hach KTO 

HQ30d Portable Meter and the corresponding probes were used for measuring pH, 

conductivity, temperature and SOUR. In this regard, methods 8156, 8160 and 10360 were 

applied for pH, conductivity and SOUR measurements respectively. 
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3.4.5. Metal Analysis 

Analysis to determine the metal content in the activated sludge supernatant was 

performed according to the Standards Methods (3030 B) (APHA 1998) and the following 

procedure: 

All samples obtained from the bioreactors were first centrifuged at 4000 rpm for 20 

minutes and filtered through 0.45 µm membrane filter papers (PALL Life Science GN-6 

0.45 µm, 47 mm) to acquire dissolved metals and were then acidified using concentrated 

nitric acid (HNO3, analytical grade) to pH<2. The filtrate was then analyzed for the metal 

contents using an Atomic Absorption Spectrometer (Perkin Elmer, Analyst 100). The 

metals analyzed were Ca, Mg, K. Concentration of metals was then calculated as follows: 

Metal concentration (mg/L) = A×(B/C),                                                                  (Eq. 13) 

 where: 

A = Concentration of metal in filtrate solution (mg/L) 

B = Final volume of filtrate (mL) 

C = Sample size (mL) 

Solutions obtained from the electrode’s surface were analyzed in the same manner. Since 

the initial concentration of these solutions only represented half of each electrode, the 

values obtained as the metal concentration from electrode were multiplied by two. (refer 

to Apendix I) 
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3.4.6. Assessment of Aluminum Concentration 

The concentration of aluminum in the samples obtained from reactors was calculated 

based on the amount of aluminum ion released into the solution by electrolytic oxidation 

of the anode material. This amount was calculated using anode weight loss. After the 

electrodes were immersed in the acid and base solution for electrode’s surface analysis, 

they were subsequently washed with acid and water and completely dried. The following 

formula was used to calculate the concentration of aluminum in the bulk solution: 

Concentration of aluminum (mg/L) = (D – H) / L                                                    (Eq. 14)    

where,  

D = Initial weight of aluminum electrode (mg) 

H = Weight of aluminum electrode after the experiment (mg) 

L = Volume of activated sludge used (1.5 L) 
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Chapter 4        Results and Discussions 
 

4.1. Impact of Different Electrical Modes (EC) on Activated Sludge Properties 

The results of a series of experiments, described in Chapter 3, are presented here from 

various aspects. Direct application of different electrical modes to activated sludge and its 

impact on activated sludge properties were investigated.  

4.1.1. Impact on Sludge Volume Index (SVI) 

The SVI index has been used in order to assess the settling ability of the particles in 

activated sludge. Figure 4-1 demonstrates the changes of SVI through different electrical 

modes in EC process for two MLSS concentration ranges (LR: 5000-7000 and HR: 10 

000-12 000 mg/L).  

Comparison between the initial value of SVI with the rest of data in Figure 4-1a indicates 

that continuous electrical mode had the highest impact (58%) on SVI reduction The 

5ON:5OFF mode reached 45% reduction in SVI and there was no significant difference 

between 5ON:10OFF and 5ON:15OFF modes in SVI reduction (26% and 21% 

respectively). Since no significant change was observed for the control reactor (C1), it 

can be concluded that aeration itself does not have impact on SVI. It can be said that the 

SVI reduction is associated with both: the exposure time of the anode to dissolution and 

activated sludge to electrical field. Higher concentration of aluminum in the system has 

resulted in lower SVI value, and thus, better sludge conditioning. Since the initial SVI 

value was higher than 100 mL/g, it can be concluded that electrocoagulation has the 
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potential to decrease this value to less than 100 mL/g, which represents sludge with high 

settleability potential. 

 

 

Figure 4-1 SVI Variations at LR and HR MLSS for different electrical modes (mL/g) 
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Furthermore, the impact of different electrical modes was also studied on HR MLSS 

(10000-12 000 mg/L). Figure 4-1b indicates the changes in SVI through different 

electrical modes for high range of the MLSS concentrations. Similar to low range MLSS, 

the continuous electrocoagulation process had the highest impact on the reduction of SVI 

(37%). The control reactor (C2) had a negative impact which resulted in higher SVI 

value. On the other hand, 5ON:10OFF and 5ON:15OFF modes had no significant impact 

on SVI reduction (5% reduction) whereas 5ON:5OFF reached 25% reduction in SVI. 

It was concluded that continuous and 5ON:5OFF electrical modes have an apparent 

impact on SVI parameter for all ranges of MLSS concentrations. There was no significant 

difference between 5ON:10OFF and 5ON:15OFF modes especially at the HR MLSS 

concentrations. A longer exposure time to electrical field might result in denser flocs that 

could settle faster. In addition, the effect of EC was more considerable when applied to 

LR MLSS than to HR MLSS. This might be due to the ratio between the dissolved Al and 

the available surface of organic particles i.e. the amount of aluminum generated has not 

been enough to change the floc properties. The error percentage for this analysis was ± 

15%. 

4.1.2. Impact on Mixed Liquor Suspended Solids 

Due to the fact that electrocoagulation process generates aluminum ions, it is believed 

that these ions react with the OH- present in the bulk solution and form amorphous 

Al(OH)3(s), which eventually precipitates (Mouedhen et al. 2006). As a result, it is 

expected that MLSS concentration increases during EC process.  
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Figure 4-2 Variations of MLSS due to exposure of activated sludge to different electrical modes 

As presented in Figure 4-2, the highest MLSS concentration (111% more than the initial 

value), at LR MLSS condition, was seen where continuous electrical mode was applied 

leading to high amount of aluminum release and Al(OH)3(s)  formation. The increase in 

MLSS reduces as the exposure time to electricity decreases. As expected, no difference 

between the initial MLSS and the control cell C1 (see also Chapter 3, Section 3.1.1.) was 

found. The same trend was observed in HR MLSS conditions, where the continuous 

mode provoked an increase in MLSS concentration (57%). The percentage error in 

Figure 4-2 was ±15%. In this regard, Figure 4-3 shows the amount of aluminum released 

in the reactors after the operation time (refer to Section 3.3.6.).  
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Figure 4-3 Aluminum ion released due to different electrical modes  

Figure 4-3 shows similar production of aluminum ions for both ranges of MLSS 

concentration in all electrical modes. The only exception is the continuous electrical 

mode which generated 2950 and 3732 mg/L of Al in LR MLSS and HR MLSS, 

respectively. In other words 26% more aluminum was released to HR MLSS than to LR 

MLSS for continuous electrical mode.  

4.1.3. Impact on VSS/TSS Ratio  

In order to better understand the changes within the system, VSS/TSS ratio was used to 

analyze the formation of precipitates after coagulation process has taken place in the 

reactors. Figure 4-4 indicates the changes in this ratio initially and after 48 hours of 

operation for different electrical modes for both LR and HR MLSS. 
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Figure 4-4 Variation in VSS/TSS ratio at LR and HR MLSS and different electrical modes  

 Figure 4-4 shows that VSS/TSS ratio has dropped to 53% in comparison to the initial 

value (around 88%) for continuous electrical mode in all MLSS concentrations. This 

behavior might be as a result of the aluminum hydroxide precipitates’ formation within 

the bioreactor during coagulation process. As expected, there is an increasing trend in this 

ratio as activated sludge exposure time to electricity decreases since less coagulant is 

generated throughout the system, therefore, less solid particles are formed. There was no 

change between the initial values and the control cells (C1 and C2) since no coagulant 

was added. Consequently, Figure 4-4 clearly demonstrates the effect of 

electrocoagulation process on MLSS vs. different exposure modes of activated sludge to 

DC. 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Initial CONTROL Continuous 5ON:5OFF 5ON:10OFF 5ON:15OFF 

V
SS

/T
SS

 (%
) 

Electrical modes LR MLSS 

HR MLSS 



73 

 

                                                                                                                                          

4.1.4. Impact on Activated Sludge Particle Sizes  

In MBR, floc particle sizes are usually between 10 to 40 µm with the mean size value of 

25 µm (Bae and Tak 2005). Addition of coagulant in the form of Al3+ is expected to 

enhance the formation of the floc and floc sizes. Furthermore, application of electrical 

field is expected to affect the properties of flocs. Figure 4-5 depicts the reduction in floc 

sizes at LR MLSS and HR MLSS during the EC process for different electrical modes. In 

this figure, the negative values represents an increase in particle sizes. The error 

percentage of this analysis was ±10%.  

 

Figure 4-5 Trend in floc size variation for different electrical modes 
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As it can be seen from the figure, and after 48 hours of operation, that the particle size 

has become smaller in all electrical modes with the highest reduction in continuous 

electrical mode. In LR MLSS, there is trend between the time of exposure to electrical 

field and particle sizes. It can be observed that the longer exposure time of activated 

sludge to electrical field has yield smaller floc sizes. On the other hand, in case of HR 

MLSS, final particle sizes are larger than the initial value when 5ON:10OFF and 

5ON:15OFF modes are applied.  

Therefore, it can be concluded that in HR MLSS, longer operation time (more than 48 

hours) is required to obtain smaller particle size than the initial size. Furthermore, in LR 

MLSS flocs become smaller in comparison with HR MLSS. Smaller particle size might 

be attributed to the removal of bound water to the flocs due to electrokinetic phenomena 

such as electroosmosis. Electroosmosis in electrokinetic systems is defined as the 

removal of water from colloidal particles under applied electrical field  (Ibeid et al. 

2010). In order to better understand the above-mentioned behavior, time to filtration 

(TTF) of samples taken after the EC process was studied. Figure 4-6 and Figure 4-8 

indicates the changes in TTF for different electrical modes for LR and HR MLSS 

respectively. The percentage of error for this analysis was ± 5%. 
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Figure 4-6 Impact of electrical field on time to filtration (TTF) reduction (LR MLSS) 

This figure shows that the highest reduction in TTF was obtained in 5ON:15OFF,  

5ON:10OFF and 5ON:5OFF modes reaching values between 85% and 83%. The   

continuous mode had a slight lower reduction in TTF (78%). These results indicate that 

continuous exposure of activated sludge to electrical field has rather lower impact on 

TTF parameter than an intermittent exposure. Therefore, it can be concluded that 

5ON:5OFF mode has higher impact in terms of particle size, TTF and reduction in 

energy consumption since it not only reduces the time required for filtration but also 

forms flocs having higher density leading to better settleability of sludge. In this regard, 

the particle size variation was also studied during the period of 48-hour EC operation. 
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The results are provided in Figure 4-7 and Figure 4-9 for LR and HR MLSS respectively. 

The percentage of error for this analysis was ± 8%. 

 

Figure 4-7 Floc size variation in different electrical modes during 48 hours of operation (LR MLSS) 

This figure indicates that after 8 hours of operation, in continuous electrical mode, 

particle size has reached a maximum value and then has started to become smaller. The 

same trend was observed for other electrical modes with the difference in the time 

required to reach the maximum particle size. It can be said that as the exposure time 

period to electrical field decreases, more time is required to reach the maximum floc size. 
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enhances the electroosmosis phenomenon and more water is removed from colloidal 

particles (Ibeid et al. 2010). In addition, smaller particle size might be beneficial for 

membrane bioreactors, since it was found that the small sludge particles can provide a 

favorable environment for enhancement of mass transfer, thus enabling the system to 

show a higher organic removal rate and more adaptability to changes in the influent 

quality and quantity (Huang et al. 2001). 

 

Figure 4-8 Variation in TTF reduction with different electrical modes for HR MLSS  
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reached after 8 and 24 hours in the case of continuous and 5ON:5OFF modes 

respectively, whereas 5ON:10OFF and 5ON:15OFF modes reached a maximum value 

after 24 hours and then stabilized (i.e. did not become smaller). It can be concluded that 

in HR MLSS conditions, shorter exposure time to electrical field requires longer 

operation time to reach smaller particle sizes.  

 

Figure 4-9 Variation of floc size during 48 hours of operation in HR MLSS 
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electrical field or not and if electrocoagulation has any negative effect on their 

bioactivity. 

Figure 4-10 indicates that applied electricity had the same impact in all electrical modes 

except for 5ON:15OFF mode. As a result, SOUR dropped from 3.4 to 1.6 mg O2/g 

VSS/hour  and to 1.3 mg O2/g VSS/hour for continuous and 5ON:15OFF mode 

respectively.  

 

Figure 4-10 Specific oxygen uptake rate (SOUR) variation for LR and HR MLSS 
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electricity was applied, microorganism’s activity increased except in 5ON:15OFF mode 

where the SOUR dropped from 3.4 and 5.5 to 1.3 and 2.8 mg O2/g VSS/hour for LR and 

HR MLSS respectively. It can be concluded that the electrical mode 5ON:10OFF, has the 

lowest negative impact on microorganisms bioactivity. However, it can be speculated that 

the drop in dissolved oxygen concentration was not only related to microorganisms’ 

activity but also other processes could consume the present oxygen.   

4.1.6. Impact of Electrical Field on Supernatant Characteristics 

To observe the effect of electrical modes on biological treatment, parameters such as 

SMP (measured as sCOD), PO4
3-, NH3-N and NO3

- were measured. Figures 4-11 to 4-14 

indicate the changes in SMP, PO4
3-, NH4

+ and NO3
- for different electrical modes and for 

two ranges of MLSS respectively. In all figures the negative values represent the 

generation of the corresponding parameter.  
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Figure 4-11 Removal efficiency of soluble microbial products for LR and HR MLSS at different electrical modes 
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phosphate removal efficiency decreased insignificantly. Therefore, it is noteworthy to 

point that all electrical modes had similar impact on phosphate removal. On other hand, 

for HR MLSS, at 5ON:5OFF mode the removal of phosphorous reached the highest 

removal efficiency. However, for all electrical modes the observed trend was the same as 

in LR MLSS; i.e. as the exposure time to DC was decreased, less phosphate was 

removed. At HR MLSS, continuous mode had the same impact as LR MLSS. Therefore, 

continuous exposure and 5ON:5OFF were the best modes in the phosphate removal for 

LR and HR MLSS respectively among  other modes. The percentage of error for this 

analysis was ± 12%. 

 

Figure 4-12 Phosphate removal with respect to MLSS ranges and different electrical modes  

-20 

0 

20 

40 

60 

80 

CONTROL 
Continuous 

5 ON:5 OFF 
5 ON:10 OFF 

5 ON:15 OFF 

PO
4 3-

 r
em

ov
al

 (%
) 

Electrical mode 

LR MLSS 

HR MLSS 



83 

 

                                                                                                                                          

Figure 4-13 shows the efficiency removal of ammonia (as NH3-N in supernatant) in 

different conditions. The highest removal of ammonia for LR and HR MLSS ranging 

from 56% to 50% respectively was obtained for 5ON:15OFF mode. Since there was an 

aerobic condition in the reactor and no feeding was applied, the control reactors (C1 and 

C2) showed a slight increase in ammonia concentration. Applying DC field continuously 

resulted in extremely high ammonia production, which could be the result of 

microorganisms’ death and cell lysis. For both MLSS ranges, less exposure time to 

electrical field has resulted in better removal of ammonia. The percentage of error for this 

analysis was ± 14%. 

 

 

Figure 4-13 Removal of NH3-N at LR and HR MLSS at different electrical modes 
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As shown in Figure 4-14, the highest nitrate concentration in the supernatant occurred in 

the reactor (C1) whereas the highest reduction in nitrate took place in continuous 

electrical mode (21 and 46% for LR and HR MLSS respectively). The generation of 

nitrate in the control reactor at LR MLSS (C1) was two times less than HR MLSS (C2). 

The same figure indicates a trend for the behavior of nitrate throughout the reactors: as 

exposure time to DC decreases, more nitrates are generated. Variations in the 

concentration of nitrate are higher at HR MLSS than at LR MLSS e.g. at 5ON:5OFF 

electrical mode, HR MLSS yielded 34% removal in nitrate concentration whereas LR 

MLSS obtained 39% increase in nitrate concentration. Therefore, it can be concluded that 

electrocoagulation is capable in removing nitrate from activated sludge, however, a 

longer exposure time to DC is required to obtain better results. The percentage of error 

for this analysis was ± 11%. 

 

Figure 4-14 Nitrate removal in LR and HR MLSS at different electrical modes 
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On the other hand, DC might impede the function of nitrifying bacteria by decreasing 

nitrate generation as the exposure time to DC expands.  

4.1.7. Impact of Different Electrical Modes on Wastewater Conductivity  

Conductivity is one of the important parameters measured in electrocoagulation process. 

Conductivity affects the current efficiency, electrokinetic cell voltage (if a constant CD is 

applied) and consumption of electrical energy. Figure 4-15 illustrates the changes of 

conductivity in LR MLSS during 48 hours of operation time. During the first 8 hours, 

conductivity increased from the initial value, 1200 µS/cm to around 1300 µS/cm in all 

reactors. After 8 hours, conductivity in the control reactor (C1) continued to increase, 

however, this parameter started to decrease in the reactors with electrocoagulation 

process and reached a constant value with time. The final value of conductivity was 1644 

µS/cm in the control reactor (C1), while in continuous, 5 ON:5 OFF, 5 ON:10 OFF and 5 

ON:15 OFF modes it reached 1177, 1181, 1198 and 1182 µS/cm respectively.  
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Figure 4-15 Conductivity variation versus time at LR MLSS  
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Furthermore, the variations in conductivity with time were also studied at HR MLSS 

(Figure 4-16). The control reactor (C2) shows the same trend as in LR MLSS (initial 

value was 860-900 µS/cm and after 48 hours of operation it reached 1716 µS/cm), 

whereas the reactors with electrical field at HR MLSS do not show the same trend.  

 

Figure 4-16 Variation in Conductivity versus Time at HR MLSS 
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coagulation/precipitation processes. 5ON:10OFF and 5ON:15OFF mode reached 905 and 

1028 µS/cm after 48 hours of operation which might indicate that more ions were 

generated in comparison to 5ON:5OFF mode. 

4.1.8. Variation in Voltage Gradient in Different Electrical Modes 

In order to better understand the electrocoagulation process, electrolysis voltage was 

monitored throughout the experiments (Figure 4-17).  

 

Figure 4-17 Variation of electrolysis voltage with time 
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the relationship between conductivity and applied voltage.  Furthermore, comparison 

between the required applied potential (V) for LR and HR MLSS indicates that higher 

voltage is required for HR MLSS. 

4.1.9. Variations in pH for Different Electrical Modes During 48 Hours of Operation  

It has been established that pH has an important role in electrochemical process 

performance. Since the described system is a biological system, changes in pH not only 

affect the electrochemical processes but it can affect the microorganism’s functions. In 

order for microorganisms to be able to perform biological treatment, the pH should be 

maintained in the range of 6-9. For this purpose, pH was monitored during the 

electrocoagulation process for all electrical modes to ensure that biological degradation is 

not impeded by pH.  

As it was expected, in the reactors with electrical field in LR MLSS (Fig. 4-18), pH 

increased over time, which illustrates that cathodic activity is more dominant (Kurt et al. 

2006). With the initial value of pH being 8, comparison between different electrical 

modes indicates that continuous mode reached the highest final pH (pH= 8.52). 

Furthermore, fluctuations in pH value were less when intermittent DC was applied e.g. 

5ON:15OFF mode reached the same pH as the initial value. On the other hand, in the 

control reactor (C1), pH started to decrease with time until it reached pH= 6.63.  
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Figure 4-18 pH variation during the experiment at LR MLSS 
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Figure 4-19 pH variation during the experiment at HR MLSS 
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sludge when DC was applied. This study was also performed for two different sludge 

concentrations, LR and HR MLSS.  

4.2.1. Impact on Sludge Volume Index (SVI) 

Sludge Volume Index has been used to evaluate the impact of divalent cation addition on 

settling characteristics of activated sludge. Figure 4-20 depicts the variation in SVI for 

three different calcium concentrations and for two ranges of MLSS.  

 

Figure 4-20 Variation in reduction of SVI with different calcium concentrations for LR and HR MLSS 
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the SVI value and higher calcium concentration would yield better SVI. This 

contradiction might be due to the fact that their reactor was a continuous flow reactor. 

Sobeck and Higgins (2002) believed that short duration batch reactors would not be able 

to precisely represent the behavior of cations in activated sludge and sufficient time is 

required to allow the system to reach steady state condition. Moreover, at HR MLSS, the 

addition of 250 mg Ca2+/L did not have any impact on SVI in comparison to the reactor 

without the addition of any calcium (89 mL/g). Also, the addition of 750 mg Ca2+/L did 

not have a significant effect on SVI and it only decreased it by 2%. The percentage of 

error for this analysis was ± 15%. 

4.2.2. Impact on Time to Filtration (TTF) 

Time to filtration parameter can be used to assess the rate of water release from sludge. 

The impact of different calcium concentration on TTF value was investigated for two 

MLSS ranges. Figure 4-21 depicts the impact of calcium concentration on TTF reduction, 

with respect to its initial value, at different sludge concentrations. The percentage of error 

for this analysis was ± 5%. At LR MLSS, no addition of calcium yielded 28% reduction 

in TTF. However, when calcium concentration was increased to 250 mg/L and 750 mg/L, 

the reduction in TTF reached 65%. After 48 hours of operation, the reactor without 

addition of calcium had TTF of 42 seconds while addition of calcium yield TTF of 13 

seconds for 250 and 750 mg Ca2+/L. It can be concluded that addition of calcium can 

improve the ability of sludge to release water. In addition, increasing the calcium 

concentration above 250 mg/L does have any impact on improvement of TTF value. 
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Figure 4-21 Variation in TTF reduction for different calcium concentrations at LR and HR MLSS 
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hours of operation has been demonstrated in Figure 4-22 for three different calcium 

concentrations. The negative values represent the decrease in floc sizes. 

 

Figure 4-22 Increase in particle size with increase in calcium concentration for LR and HR MLSS 
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size for 750 mg Ca2+/L is smaller 250 mg/L addition of calcium (Arabi and Nakhla 

2008).  

At HR MLSS, the addition of 250 mg Ca2+/L did not have any impact on the floc sizes 

and the mean particle size remained at the level of 47.1 µm. On the other hand, increasing 

the calcium concentration to 750 mg/L resulted in 1% reduction in floc sizes. Smaller 

particle size in higher calcium concentration might be due to formation of inorganic 

precipitates. However, it can be assumed that addition of calcium to HR MLSS did not 

have any impact on activated sludge particle sizes. It can be concluded that the impact of 

calcium on sludge mean particle size at HR MLSS is much lower than its impact on LR 

MLSS. The percentage of error for this analysis was 8%. 

 4.2.4. Impact on SMP Removal  

Soluble EPS (SMP) were analyzed as soluble COD in the supernatant after 48 hours of 

EC operation for two different calcium concentrations and one control without the 

addition of any calcium. Figure 4-23 illustrates the variation of SMP removal for 

different calcium and sludge concentrations.  

At LR MLSS, the addition of 250 mg Ca2+/L into the bioreactor reduced the supernatant 

SMP concentration by 50%, whereas the SMP removal efficiency in the reactor without 

addition of calcium (control) was 17%. However, increasing the concentration of calcium 

to 750 mg/L resulted in 37% removal in SMP. In other words, 250 mg Ca2+/L and 750 

mg Ca2+/L resulted in SMP reduction by 33% and 20% respectively in comparison to the 

control reactor. Therefore, the calcium addition had a significant impact on removal of 

SMP due to the possible bridging of divalent cations with negatively charged soluble 
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EPS. It can be concluded that at LR MLSS, increasing the concentration of calcium ion 

up to 250 mg Ca2+/L is beneficial to SMP removal but higher calcium concentrations 

might lead to less SMP removal efficiency. 

 

Figure 4-23 Changes in removal of SMP for three calcium concentrations at LR and HR MLSS 

At HR MLSS, the calcium addition had a slight effect on SMP removal efficiency and at 

750 mg Ca2+/L only 5% removal was observed. In this experiment no significant impact 

was observed in removal of SMPs by increasing the calcium concentration in the 

reactors. The percentage of error for this analysis was ± 10%. 
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investigated for two different calcium concentrations and one control reactor (Figure 4-

24).  

 

Figure 4-24 Phosphate removal for different calcium concentrations at LR and HR MLSS 
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Therefore, no significant relationship was observed between MLSS and the impact of 

calcium addition on removal of phosphates. Furthermore, at LR MLSS same amount of 

calcium is able to remove more phosphate from wastewater in comparison to HR MLSS. 

The percentage of error for this analysis was ± 12%. 

4.2.6. Variation in Calcium Concentration 

Variation in the supernatant calcium concentration after the experiments has been shown 

in Figure 4-25 for different ranges of MLSS. At LR MLSS, addition of 250 mg Ca2+/L 

resulted in 51% higher removal of calcium from the supernatant. This behavior can be 

attributed to bridging of a fraction of calcium added to the wastewater with soluble 

microbial products through divalent cation bridging theory; addition of 250 mg Ca2+/L 

resulted in 33% higher SMP removal and 10% increase in particle size. It could be 

assumed that added calcium had the potential to enhance bioflocculation and therefore 

reduce the amount of SMP present in the wastewater. In the course of higher initial 

calcium concentration (750 mg/L), 29% reduction of Ca2+ concentration was achieved in 

comparison to reactors without addition of calcium. In the same conditions, calcium did 

not have any significant impact on SMP removal efficiency while particle size was 

decreased by 10%. This behavior might be as results of calcium precipitate formation 

(e.g. calcium carbonate or calcium phosphate) due to the high concentrations of calcium 

in the activated sludge, which has also resulted in smaller particles. Therefore, it can be 

concluded that at LR MLSS, addition of 250 mg Ca2+/L might enhance the 

bioflocculation and removal of SMP from wastewater.   
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Figure 4-25 Variation in calcium concentration after 48 hours 
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electrocoagulation process. The conductivity affects the voltage (applied potential) in the 

cell, current efficiency and electrical energy consumption. Higher ionic strength causes a 

reduction in the cell voltage, at the same current density, due to less ohmic losses. In 

other words, higher conductivities diminish the necessary voltage required to attain a 

certain current density; therefore, the consumed electrical energy would be reduced. In 

this research, the initial conductivity of samples obtained from wastewater treatment 

plant was between 900 and 1200 µS/cm. When 250 and 750 mg Ca2+/L were added, the 

sample conductivity increased from the approximate value of 900-1200 to 2250-2450 and 

4000-4900 µS/cm respectively. In this section the impact of calcium addition to EC 

process on different sludge parameters has been shown. 

4.3.1. Impact on Sludge Volume Index (SVI) 

Figure 4-26 shows the effect of calcium addition on SVI for LR MLSS and HR MLSS 

during EC process. At LR MLSS (Figure 4-26a), results indicated that higher electrolyte 

concentrations did not have a significant impact on SVI value regardless of the electrical 

mode applied. For instance, in continuous electrical mode the SVI improved by 4%, 

however, the addition of 750 mg Ca2+/L preserved the same value of SVI as no calcium 

was added. The percentage of error for this analysis was ± 15%. As Figure 4-26b 

indicates, addition of 250 mg Ca2+ /L did not affect the SVI considerably, whereas 

addition of 750 mg Ca2+/L had adverse impact on SVI. For instance, in 5ON:15OFF 

electrical mode SVI increased by 16% in comparison to the control cell where no calcium 

chloride was added. In overall, it can be concluded that higher calcium concentrations 

and conductivity are not expected to affect the SVI at either LR or HR MLSS and further 

research is required to investigate this behavior. 
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 Figure 4-26 Impact of calcium on SVI at different electrical modes for LR MLSS 
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4.3.2. Impact on Mixed Liquor Suspended Solids 

Mixed liquor suspended solids were studied to investigate the impact of calcium addition 

on mixed liquor suspended solids. Conductivity was increased by addition of calcium 

chloride that not only affects the generation of Al3+ at the anode, but also at high 

concentrations, it can increase the possibility of formation of calcium carbonates. Figures 

4-27a and b illustrate the variation in MLSS for both LR and HR MLSS. Both figures 

indicate that higher calcium concentrations lead to higher MLSS concentration. For 

instance, at LR MLSS, 46% and 82% increase in suspended solids were observed when 

conductivity was increased by addition of 250 and 750 mg Ca2+/L respectively in 

comparison to the control reactor where no calcium was added. The continuous mode had 

the highest generation of suspended solids in comparison to other electrical modes. The 

MLSS variation for concentrated sludge was much less in comparison to low sludge 

concentration. Furthermore, 5ON:10OFF and 5ON:15OFF electrical modes, at HR 

MLSS, did not get affected by higher calcium concentrations. Impact of calcium on 

MLSS can be attributed to the formation of aluminum hydroxide and carbonate calcium, 

which later can be removed by settling or filtration. The percentage of error for this 

analysis was ± 10%. 
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Figure 4-27 Variation in the MLSS concentration for different calcium concentrations and electrical exposure 

modes (LR and HR MLSS) 
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In order to better understand the impact of calcium addition on EC process, the amount of 

aluminum released to the systems were also analyzed (Chapter 2, Section 3.3.6.).  

 

 
Figure 4-28 Impact of calcium addition on the amount of aluminum released in different electrical mode a) LR 

MLSS b) HR MLSS 
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Figure 4-28 depicts the amount of aluminum released to the bulk solution by 

electrocoagulation process in different electrical modes. Higher calcium concentrations 

did not have a considerable impact on the electrolytic dissolution of the anode. For 

instance, at HR MLSS (Figure 4-28b) and 5ON:5OFF electrical mode, 250 mg Ca2+/L 

resulted in 6% higher aluminum production while 750 mg Ca2+/L achieved 19%. 

Increasing the calcium concentration, resulted in ±20% variation in aluminum 

production, which compared to the amount released to the reactors, in different electrical 

modes, can be neglected. Therefore, it can be concluded that electrochemical dissolution 

of anode is independent from the conductivity of the electrolyte when calcium is added 

and it might only be affected by current density. Since current density was kept constant 

in all the experiments, the amount of aluminum produced was almost the same at each 

electrical mode with different conductivity. 

4.3.3. Impact on Activated Sludge Particle Sizes 

Figure 4-29 shows the variations in mean activated sludge particle size vs. calcium 

concentration for different electrical modes. The negative values represent the increase in 

floc sizes. The highest mean particle size was obtained when 5ON:5OFF mode and 250 

mg Ca2+/L were applied. At LR MLSS, this mode and conductivity resulted in 34% larger 

floc size and at HR MLSS resulted in 26% larger floc size. Mean particle sizes for the 

higher conductivity (750 mg Ca2+/L) resulted in smaller particle size in comparison to 

lower conductivity (250 mg Ca2+/L). At 250 mg Ca2+/L comparison between different 

electrical modes indicated that 5ON:5OFF had the highest impact on floc size whereas 

5ON:15OFF mode had the least effect. When 750 mg Ca2+/L is added to the reactors, due 

to high calcium concentrations, generation of calcium carbonate precipitation is probable.  
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Figure 4-29 Impact of calcium addition on mean particle size at a) LR MLS b) HR MLSS 
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For this reason, the reduction in floc sizes when increasing the concentration of calcium 

might be due to inorganic precipitates such as calcareous flocs that are dense and their 

size is smaller than the microbial flocs. Among different electrical modes, 5ON:5OFF 

electrical mode obtained the larger floc size in comparison to the control value which 

might be as result of better coagulation/flocculation and bioflocculation process. 

Therefore, addition of 250 mg Ca2+/L obtained higher floc sizes, which represents the 

impact of calcium addition on EC process. The percentage of error for this analysis was ± 

8%. 

4.3.4. Impact of on Time to Filtration (TTF) 

Like SVI, time to filtration (TTF) has also been used as a filterability index to predict the 

dewaterability of sludge. Figure 4-30 shows the variation in TTF for different electrical 

modes as the calcium concentration increases. Figure 4-30a indicates that in continuous 

mode, addition of 750 mg Ca2+/L resulted in 42% reduction in TTF in comparison to the 

control whereas addition of 250 mg Ca2+/L resulted in 27% reduction. At 5ON:5OFF 

mode, addition of 250 mg Ca2+/L resulted in 42% reduction in TTF. As the exposure time 

to electrical field decreased, the difference between control and the reactors with higher 

conductivity decreased. As a result, at 5ON:15OFF mode, 250 and 750 mg Ca2+/L 

resulted in 8 and 21% reduction in TTF respectively. This results also indicated that 

where no calcium was added to the reactors, 5ON:15OFF mode had the highest impact 

on reducing the TTF. However, where conductivity increases, application of 250 mg 

Ca2+/L at 5ON:5OFF and 750 mg Ca2+/L at continuous mode, have the highest effect on 

reduction in TTF. The trend shows that the impact of conductivity was more obvious 

when more exposure time to electricity was applied.  
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Figure 4-30 Impact of calcium addition on activated sludge time to filtration (TTF) a) LR MLSS b) HR MLSS 
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addition of calcium concentration higher than 250 mg/L does not have a considerable 

impact on the reduction of TTF at LR MLSS. At HR MLSS (Figure 4-30b) and 

continuous mode 49% reduction in TTF was obtained for both 250 and 750 mg Ca2+/L - 

that was the highest impact of addition of calcium on TTF observed in this study. At 

5ON:5OFF mode, at the concentration of 250 mg Ca2+/L and 750 mg Ca2+/L resulted in 

36% and  26% reduction in TTF respectively. A general trend states that the addition of 

salt at the concentration higher than 250 mg/L does not have a significant impact on 

reduction in TTF. Moreover, effects of calcium addition on the variation of TTF are not 

significant when the exposure time to electricity is reduced. The percentage of error for 

this analysis was ± 5%. 

4.3.5. Impact on Supernatant Characteristics  

Soluble microbial product removal efficiency was studied under different electrical 

modes when different conductivity was applied to the reactors. Figure 4-31a illustrates 

that for continuous mode, when 250 mg Ca2+/L was added to the reactors, the SMP 

removal efficiency increased by 37% in comparison to the control reactor. However, 

addition of 750 mg Ca2+/L increased the removal efficiency by 5%. Furthermore at 250 

mg Ca2+/L, as the exposure time to electricity decreased, the SMP removal efficiency 

decreased until it reached 72%, which is still 21% higher than the control value. When 

750 mg Ca2+/L was added the SMP removal efficiencies achieved were lower than the 

control reactors where no calcium was added. Therefore, addition of 750 mg Ca2+/L had 

adverse effect on the removal efficiency of SMP whereas addition of 250 mg Ca2+/L had 

significant impact. Furthermore, for both calcium concentrations, continuous mode had 

the highest impact on the SMP removal.  
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Figure 4-31 Impact of calcium addition on SMP removal in different electrical modes a) LR MLSS b) HR MLSS 
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Figure 4-31b shows the variation in removal efficiency of SMP for HR MLSS. It can be 

seen that increasing the conductivity by addition of calcium did not have a significant 

impact on the improvement of SMP removal efficiency. Only at continuous mode, an 

increase in the conductivity resulted in 5% to 12% higher removal efficiency in 

comparison to the control. The percentage of error for this analysis was ± 10%. 

Figure 4-32 depicts the removal efficiency of phosphate in different electrical modes 

when conductivity was increasing. At LR MLSS, for continuous electrical mode, the 

addition of 250 and 750 mg Ca2+/L resulted in 5% and 11% higher phosphate removal 

respectively in comparison to the control reactor with no addition of calcium. Results 

obtained from increasing the conductivity by addition of 250 mg Ca2+/L, had 

insignificant impact on PO4
3- removal efficiency with the highest impact of 9% higher in 

comparison to the control reactor for 5ON:15OFF mode. Furthermore, the addition of 

750 mg Ca2+/L had a slightly higher impact on PO4
3- removal efficiency, which reached 

11 to 12% higher percentage in comparison to the control for the same electrical mode. 

No major difference was observed between different electrical modes as conductivity 

increased. Higher calcium concentration obtained a slightly higher phosphate removal. 

On the other hand, Figure 4-32b shows that at HR MLSS, an increase the conductivity 

results in improvement of PO4
3- removal. In continuous mode, the addition of 250 mg/L 

and 750 mg Ca2+/L resulted in 17 and 44% higher phosphate removal respectively. The 

addition of 250 mg Ca2+/L in 5ON:5OFF mode did not have any effect whereas the 

removal efficiency increased by 29% when the conductivity was increased by addition of 

750 mg Ca2+/L. It is observed that less exposure time to electricity has resulted in higher 

phosphate removal.  
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Figure 4-32 Impact of calcium addition on phosphate removal for different electrical modes a) LR MLSS b) HR 

MLSS 
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Furthermore, higher calcium concentration has resulted in much higher phosphate 

removal. This behavior might be as a result of calcium phosphate formation due to high 

concentration of calcium in the system. In general, in both MLSS ranges, higher 

conductivity had higher impact on phosphate removal especially at HR MLSS. The 

electrical mode of 5ON:15OFF reached the highest phosphate removal from the 

wastewater. When operating at HR MLSS, the increase in calcium concentration would 

result in more efficient phosphate removal. When no calcium is added, due to low 

conductivity of the electrolyte, coagulation process might be less efficient. However, 

when calcium is added to the reactors, not only the electrochemical processes is improved 

but also phosphate is removed by due to formation of calcium phosphates. The 

percentage of error for this analysis was ± 12%. 

4.3.6. Impact on Applied Potential (Voltage) 

Addition of salts to the electrolyte results in higher conductivity, therefore, it is expected 

that, at constant current density, voltage would be reduced as the conductivity increases. 

Figure 4-33 depicts the evolution of voltage in all reactors containing electrical field 

during 48 hours of operation for different conductivities. Results in Figure 3-33a shows 

that reactors with no addition of calcium experienced an increase in applied potential 

between 24 and 48 hours of operation whereas the applied potential in the reactors with 

addition of calcium did not change significantly during the 48 hours of operation. The 

increase in reactors without calcium addition might be as a result of coagulation process 

and removal of ions from the bulk solution where as in reactors with addition of calcium, 

due to high concentration of salt, conductivity did not change. Addition of 250 and 750 
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mg Ca2+/L decreased the applied potential from 1.47 to 1 V/cm and 0.7 V/cm 

respectively. 

 

 

Figure 4-33 Evolution of voltage in all reactors all electrical vs. time a) LR MLSS b) HR MLSS 
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At HR MLSS (Figure 4-33b), there was no considerable change in applied potential with 

time for all reactors containing electrical field. Addition of 250 and 750 mg Ca2+/L 

decreased the applied potential from 1.94 to 0.85 V/cm and 0.55 V/cm respectively.  

4.4. Analysis of Electrode’s Surface 

Analyses of the attached materials to the surface of the electrodes (anode and cathode) 

were performed by extracting the inorganic fraction, using HNO3, and organic fraction, 

using base solution (NaOH). All the figures in this section are on the basis of a unit 

electrode surface area.  

4.4.1. Inorganic Fraction  

Figure 4-34 is an indication of the amount of desorbed calcium concentration from anode 

surface for LR and HR MLSS. Figure 4-34a indicates the amount of calcium that is 

adsorbed to anode surface at LR MLSS. It can be observed that when calcium ion was 

not added to the reactors, the amount of calcium adsorbed to anode was almost the same 

for all electrical modes, which is an insignificant amount. Furthermore, when calcium 

concentration was increased to 250 mg/L, as the exposure time to electricity was 

decreased; more calcium was adsorbed to the anode surface. For instance, in continuous 

mode, after 48 hours of operation, 0.9 milligram calcium per each square meter of 

electrode surface (mg/m2) was adsorbed whereas in 5ON:15OFF electrical mode, 2.8 

mg/m2 calcium was attached to the anode surface.  Same behavior was observed when 

calcium concentration was increased to 750 mg/L. Comparison between 250 and 750 

mg/L addition of calcium for one electrical mode shows that higher amount of calcium 

was adsorbed to anode surface when calcium concentration was increased to 750 mg/L. 



117 

 

                                                                                                                                          

 

 

Figure 4-34 Amount of calcium desorbed from anode surface a) LR MSS b) HR MLSS 
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Figure 4-34b indicates the amount of calcium, which was adsorbed to anode surface 

when HR MLSS was applied; the same behavior of calcium ion was observed as LR 

MLSS.  

Figure 4-35 is an indication of the amount of desorbed calcium from cathode surface for 

LR and HR MLSS. Calcium in the form of cations is expected to be much more present 

on the surface of cathode since it has a negative charge than that of the anode surface. At 

LR MLSS (Figure 4-35a), the amount of calcium that was adsorbed to the cathode 

surface when calcium was not added was insignificant in comparison to higher 

concentrations of calcium. As it can be observed, in continuous mode, when 250 mg 

Ca2+/L was added to the reactors, 29467 mg Ca2+/m2 was adsorbed to cathode surface, 

whereas the addition of 750 mg Ca2+/L resulted in 33957 mg Ca2+/m2. In other words, 

increasing the calcium concentration up to three times only resulted in 13% more 

adsorption of calcium on the cathode surface. Moreover, when 5ON:5OFF electrical 

mode was applied, a sudden drop in the amount of calcium was observed for both 

calcium concentrations reaching 18616 and 24883 mg/m2 for 250 and 750 mg Ca2+/L 

respectively. Furthermore, as the exposure time to DC decreased the amount of calcium 

adsorbed to the cathode surface was almost the same for these electrical modes. The trend 

observed at HR MLSS (Figure 4-35b) was the same as LR MLSS. However at HR 

MLSS, the amount of calcium adsorbed to the surface of cathode was higher in 

comparison to LR MLSS. 
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Figure 4-35 Amount of calcium desorbed from cathode surface a) LR MSS b) HR MLSS 
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In order to be able to better understand the behavior of calcium in the rectors, a 

comparison was made between the amount of calcium that was desorbed from anode and 

cathode surface. Figure 4-36 depicts the amount of calcium obtained from electrodes 

surface for LR MLSS when 250 mg Ca2+/L was added.  

 

Figure 4-36 Amount of calcium desorbed from anode and cathode surface (LR MLSS, 250 mg Ca2+/L) 
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Figure 4-37 Variation in calcium removal after 48 hours 
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At LR MLSS (Figure 4-37a), at all electrical modes as the initial concentration of 

calcium increased, the amount of calcium removed from the activated sludge decreased. 

Among all electrical modes, continuous mode achieved the highest reduction in calcium 

concentration. Same trend was observed for HR MLSS (Figure 4-37b); however, when 

the initial calcium concentration was 750 mg/L, the amount of calcium removed from the 

activated sludge was the same among 5ON:5OFF, 5ON:10OFF and 5ON:15OFF 

electrical mode. These results are comparable to the results obtained from the impact of 

calcium on activated sludge properties. 

4.4.2. Organic Fraction  

The organic fraction of the attached materials on electrode surfaces was analyzed by 

measuring SMP as soluble COD from the solution obtained from immersion of electrodes 

(see Chapter 3, Section 3.4.4). Figure 4-38 and 4-39 indicate the amount of SMP 

extracted from the surface of the anode and cathode respectively. As indicated in Figure 

4-38a, at LR MLSS continuous electrical mode had the lowest SMP amount (2900 

mg/m2) in comparison to other electrical modes. The SMP amounts, desorbed from the 

anode, in other electrical modes were not significantly different. It could be concluded 

that addition of calcium did not have a significant impact on the adsorption of SMP to the 

anode. Figure 4-38b also shows the same trend for SMP amount desorbed from anode for 

HR MLSS. Therefore, in this experiment no considerable difference was found between 

different electrical fields, calcium addition and sludge concentration in adsorption of 

SMP to the anode surface. Since during all the experiments, current density was kept 

constant, this behavior of SMP might be in accordance to the constant current density 

(CD). 
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Figure 4-38 Amount of SMP on anode surface in mg/m2 a) LR MLSS b) HR MLSS 
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Figure 4-39 Amount of SMP desorbed from cathode surface (mg/m2) a) LR MLSS b) HR MLSS  
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Figure 4-39a shows the amount of SMP desorbed from the cathode surface for LR 

MLSS. The lowest amounts of SMP desorbed from the cathode surface were found in the 

reactors with no addition of calcium. No significant difference was observed between 250 

and 750 mg Ca2+/L runs. Variation in the SMP amount for HR MLSS is shown in Figure 

4-39b, which also had the same trend as LR MLSS. Overall, it can be assumed that 

adsorption of SMP to the cathode surface is related to the applied current density during 

the electrocoagulation process. 

Figure 4-40 illustrates the amount of SMP that was deposited on the anode and cathode 

where 250 mg Ca2+/L was added at low range sludge concentration.  

 

Figure 4-40 Amount of SMP deposited on the cathode and anode (LR MLSS, 250 mg Ca2+/L) 
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An average amount of SMP desorbed from the cathode surface, among all electrical 

modes, was 1866 mg/m2, whereas the concentration of SMP, found on the anode surface, 

in 5ON:10OFF and 5ON:15OFF modes were 3872 and 3891 mg/m2 respectively;  the 

continuous and 5ON:5OFF modes deposed the same amount (3199 mg/m2) of SMP. 

A comparison between the SMP values obtained for cathode and anode reveals that SMP 

have much higher affinity to the anode than to the cathode surface. This might be due to 

the effect of negatively charged functional groups within soluble EPS (SMP), which due 

to electrophoresis phenomenon migrate toward the oppositely charged electrode (anode). 
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Chapter 5        Conclusion  
 

5.1. Conclusions 

In this research the direct application of electrocoagulation process to activated sludge 

has been examined. EC has been applied to activated sludge in different electrical modes; 

continuous, 5ON:5OFF, 5ON:10OFF, and 5ON:15OFF at constant current density of 20-

25 A/m2. During each experiment, samples were taken from the bioreactors and were 

analyzed for their properties such as SVI, particle size, SMP and etc. Electrocoagulation 

experiments were carried out on both activated sludge alone and activated sludge mixed 

with different concentrations of calcium salt. The depositions of organics and inorganics 

on the electrodes were analyzed. Furthermore, the impact of different calcium 

concentrations (0, 250 and 750 mg Ca2+/L) on activated sludge properties, without the 

application of electrical field, was also investigated. All experiments were performed for 

low range and high range MLSS concentrations. The obtained results and analyses from 

the above experiments fulfill the objectives of this research in the content of the 

following achieved conclusions:  

Impact of electrocoagulation (EC) on activated sludge properties: 

• From the overall performance of EC in different conditions, it could be concluded 

that EC has a high potential in improving the activated sludge characteristics. 

• For all electrical modes, EC had higher impact on AS properties than reactors 

without EC. 
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• Continuous electrical mode had significant impact on the reduction of SVI: 58% 

and 37% at LR and HR MLSS respectively. For all electrical modes, EC had 

higher impact on LR MLSS than HR MLSS.  

• As the exposure time to DC was increased, for both concentration ranges of 

mixed liquor, higher MLSS concentrations were obtained and therefore the 

VSS/TSS ratio was highly reduced. 

• Aluminum dissolution from the anode to bulk solution was a function of the 

electrical mode. 

• The exposure time of DC to activated sludge had a direct impact on the 

morphology of sludge particles. Longer exposure time  to DC resulted in smaller 

particle size distribution. The continuous electrical mode achieved the highest 

reduction in particle size for both LR and HR MLSS (23 and 16% respectively); 

for HR MLSS and shorter DC exposure time, longer operation time is required to 

obtain smaller particles. 

• EC had a significant impact on the reduction of TTF. At LR MLSS, all electrical 

modes achieved an average of 83% reduction in TTF, whereas at HR MLSS, the 

highest reduction (73%) was achieved in both 5ON:10OFF and 5ON:15OFF 

electrical modes.  

• The highest SMP removal efficiency (53% and 78%) was achieved in 

5ON:10OFF mode at both MLSS ranges. Furthermore, in all electrical modes, the 

impact of EC on SMP removal efficiency was higher at HR MLSS compared to 

LR MLSS. 



129 

 

                                                                                                                                          

• In all electrical modes, over 75% reduction in phosphate was achieved. The 

impact of EC on phosphate removal efficiency at LR MLSS was higher than at 

HR MLSS. 

• EC had the potential to remove ammonia from activated sludge. As the exposure 

time to DC was decreased, more ammonia was removed. Application of 

5ON:15OFF electrical mode achieved 56% and 50% ammonia removal at LR and 

at HR MLSS respectively. 

• Longer exposure time to DC resulted in higher nitrate removal. Variation in 

nitrate removal was more considerable for HR MLSS. 

•  Bioactivity in activated sludge was affected by EC process. In this regard, 

5ON:10OFF electrical mode had the lowest impact on SOUR.  

• EC does not impede biological activity with respect to pH; during the experiments 

the pH values were situated between 6 and 9. 

• Generally, 5ON:10OFF electrical mode had the highest impact on AS properties 

in terms of soluble microbial products, nitrates, ammonia, and phosphate removal 

efficiency and microorganism bioactivity at both ranges of MLSS. 

From the this research, at LR MLSS, 5ON:10OFF electrical mode had the highest 

impact on activated sludge properties in terms of SMP removal and affecting the 

microbial bioactivity. Furthermore, it is expected that the application of EC into 

SMEBR system enhances its performance by reducing the membrane fouling. 

Impact of calcium addition on activated sludge characteristics:  

• Generally, the behaviour of calcium was different at LR and HR MLSS. 
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• At LR MLSS addition of 250 mg Ca2+/L improved TTF, SMP removal 

efficiency and increased particle sizes; whereas at HR MLSS, 750 was more 

effective in terms of TTF reduction and SMP removal efficiency.             

• At LR MLSS, the addition of 250 mg Ca2+/L resulted in 39% higher TTF 

reduction in comparison to the reactor without the addition of calcium. 

Calcium concentrations higher than 250 mg/L did not have any further impact 

on this parameter. At HR MLSS, 750 mg Ca2+/L was required to achieve 49% 

higher TTF reduction in comparison with reactor without addition of calcium. 

• At LR MLSS, the addition of 250 mg Ca2+/L resulted in 10% increase in 

particle size. This behaviour can be attributed to the bridging between calcium 

ions and negatively charged functional groups within EPS, and enhancement 

of bioflocculation. Calcium concentrations higher than 250 mg/L resulted in 

smaller particles. This might be due to the formation of calcareous flocs which 

have smaller sizes than microbial flocs. Calcium did not have any impact on 

particle sizes at HR MLSS. 

• The addition of 250 mg Ca2+/L, at LR MLSS, resulted in 33% higher SMP 

removal efficiency in comparison to the reactor without the addition of 

calcium. This behaviour might be the result of divalent cations bridging with 

negatively charged functional groups within EPS. At HR MLSS, higher 

calcium concentrations did not affect the SMP removal. 

• At both MLSS ranges, as the concentration of calcium was increased higher 

phosphate removal efficiency was achieved. 
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• At both ranges of MLSS, higher calcium concentrations did not improve SVI 

value. 

It is expected that addition of 250 mg Ca2+/L could improve the performance of SMBR 

and reduce the membrane fouling. 

 

Impact of calcium addition on EC process: 

• Addition of 250 mg Ca2+/L resulted in larger particles in comparison to the 

addition of 750 mg Ca2+/L. At LR MLSS and HR MLSS, 5ON:5OFF and 

5ON:10OFF electrical modes had the highest impact on the PSD increase. 

• Generally, for continuous electrical mode, the activated sludge properties behave 

differently in comparison to other electrical modes.  

• Comparison between different concentrations of calcium revealed that 250 mg 

Ca2+/L had higher impact on TTF. The highest reduction was achieved in 

5ON:5OFF electrical mode. As the exposure time to electricity decreased, the 

impact of calcium also decreased. 

• At LR MLSS and in all electrical modes, addition of 250 mg Ca2+/L resulted in 

higher SMP removal efficiency (over 72%) in comparison to 750 mg Ca2+/L. This 

behaviour can be attributed to the bioflocculation phenomenon. At HR MLSS, 

addition of calcium did not have any significant impact on the SMP removal. 

• At LR MLSS, the higher concentration of calcium did not have a considerable 

impact on the phosphate removal. However at HR MLSS, in all electrical modes 

higher calcium concentrations resulted in higher phosphate removal (over 87%). 
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•  For both MLSS ranges, higher calcium concentrations did not improve SVI. 

Among all electrical modes and for all concentrations of calcium, the continuous 

mode acheived the highest reduction in SVI. 

• Aluminum dissolution was independent from the calcium concentration in the 

activated sludge. It can be concluded that higher conductivities does not have any 

impact on amount of aluminum released to the reactor. Aluminum dissolution is a 

function of current density. 

Overall, it can be concluded that in SMEBR systems, addition of 250 mg Ca2+/L and 

application of 5ON:5OFF and 5ON:10OFF electrical mode might reduce the membrane 

fouling. 

Deposition of organics and inorganics on the electrodes: 

• The amount of calcium deposited on the anode was negligible in comparison to 

the amount of calcium adsorbed on the cathode. 

• At LR MLSS and continuous electrical mode, increasing the calcium 

concentration from 250 mg/L to 750 mg/L had only resulted in 13% higher 

amount of calcium deposition on the cathode surface. The 5ON:10OFF electrical 

mode also provoked  higher deposition of calcium on the cathode. 

• The difference between the results obtained from the deposition of calcium on the 

cathode was much more evident for HR MLSS than LR MLSS. 

•  Deposition of SMP on the anode surface was approximately two times higher 

than the amount of SMP, which was deposited to the cathode surface. 
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• At both MLSS ranges, higher calcium concentrations did not have any significant 

impact on the deposition of SMP on both the cathode and the anode. 

It is expected that at LR MLSS, the electrokinetically controlled conditions through 

electrocoagulation process (e.g. application of 250 mg Ca2+/L and 5ON:10OFF mode 

at CD of 20-25 A/m2) might have significant effects, in terms of SMP and inorganics 

reduction, and particle sizes, in reducing the membrane fouling. 

5.2. Recommendation for Future Works 

 

• Comparison between the changes in activated sludge properties generated in batch 

and continuous flow  

• Evaluating the tests in the presence of the membrane module 

• Studying the morphology of floc formation in different activated sludge 

conditions and under the application of DC field 

• Studying nitrogen cycle in various activated sludge conditions under the 

application of DC field 

• Studying the impact of different cations on the activated sludge properties 
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Calculation No.1: Removal Efficiency 

RE (%) = ((I-F)/I)×100  

where, 

I: Initial concentration 

F: Final concentration  

Calculation No. 2: Amount of organics and inorganics deposited on electrodes 

W(mg/m2) = (C × D.F. × 50ml × 2) / A  

where, 

W: Amount of organics and inorganics  

C: Concentration of calcium obtained from AA readings or 

concentration of sCOD obtained from Hach COD vials 

D.F.: Dilution factor 

A: Effective electrode’s surface area (0.0107 m2) 

Calculation No.3: Metal Analyses 

Metal concentration (mg/L) = A×(B/C),                                              

 where, 

A = Concentration of metal in filtrate solution (mg/L) 
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B = Final volume of filtrate (mL) 

C = Sample size (mL) 

Calculation No.4: Aluminum concentration in supernatant 

Concentration of aluminum (mg/L) = (D – H) / L    

where,  

D = Initial weight of aluminum electrode (mg) 

H = Weight of aluminum electrode after the experiment (mg) 

L = Volume of activated sludge used (1.5 L) 

Calculation No.5: Percentage Error 

Error (%) = ((Average value – Actual value) / Actual value) ×100 

The absolute value of error was taken as the percentage error 
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Figure A-1 Sample picture of variations in SVI after 48 hours of operation among different electrical modes
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Glossary 
 

Abbreviations and Symbols Terms 

5 ON: 10 OFF Bioreactor which is connected to a automatic timer 
with 5 minutes ON and 10 minutes OFF operation 
mode 

5 ON: 15 OFF Bioreactor which is connected to a automatic timer 
with 5 minutes ON and 15 minutes OFF operation 
mode 

5 ON: 5 OFF Bioreactor which is connected to an automatic 
timer with 5 minutes ON and 5 minutes OFF 
operation mode 

AS Activated sludge 

BOD Biological oxygen demand 

C1 Control reactor for Run 1 

(no electrocoagulation), LR MLSS 

C2 Control reactor for Run 2  

(no electrocoagulation), HR MLSS 

C3-4 Control reactor for Run 3 and 4  

(no addition of calcium), LR MLSS 

C5-6 Control reactor for Run 5 and 6  

(no addition of calcium), HR MLSS 

CAS Conventional activated sludge process 

CD Current density (A/m2) 
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COD Chemical oxygen demand 

Continuous Bioreactor which is continuously connected to 
direct current 

DC Direct Current 

DCB Divalent cation bridging 

DLVO Double layer theory 

DO Dissolved oxygen 

EC Electrocoagulation  

EDTA Ethylene diamine tetra acetic acid 

Electrocoagulation In-situ generation of coagulant by electrolytic 
oxidation of an appropriate anode material. 

Electromigration Transport of ions and polar molecules in the 
direction of the opposite electrode under electrical 
field 

Electroosmosis Movement of water under the influence of imposed 
electric gradient. Due to the presence of more 
cations than anions in the water, the flow of water 
is toward cathod. 

Electrophoresis Transport of charged particles and colloids under 
the influence of an applied direct current 

Elektrokinetic Phenomena Application of direct-current electric field to across 
a section of contaminated soil to remove 
contaminants, which consist of three principle 
mechanisms: Electromigration, Electroosmosis and 
Electrophoresis 
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EPS Exocelluar polymeric substances 

F/M Food to microorganisms ratio 

FTIR Fourier transform infrared spectroscopy 

HR MLSS High range mix liquor suspended solids  

(10000-12000 mg/L) 

HRT Hydraulic retention time 

I Current (A) 

LC  Low calcium concentration  

LR MLSS Low range mixed liquor suspended solids 

(5000-7000 mg/L) 

M/D Monovalent to divalent cations ratio 

MBR Membrane bioreactor 

MLSS Mixed liquor suspended solids (mg/L) 

MLVSS Mixed liquor volatile suspended solids (mg/L) 

OC High calcium concentration  

OUR Oxygen uptake rate ((mg/L)/min) 

PAC Powdered activated carbon 
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PSD Particle size distribution (µm) 

R(inorganic-f) Resistance caused by inorganic fouling 

R(organic-f) Resistance caused by organic fouling 

Rc Cake resistance 

Rf Membrane resistance 

Rm Membrane intrinsic resistance 

sCOD Soluble chemical oxygen demand 

SEM Scanning electron microscopy 

SEM-EDS Scanning electron microscopy with Xray 
microanalysis 

SMBER Submerged membrane electro-bioreactor 

SMBR Submerged membrane bioreactor 

SMP Soluble microbial products, Soluble EPS 

SOUR Specific oxygen uptake rate ((mg/g)/hr) 

SRT Sludge retention time 

SVI Sludge volume index 
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TDS Total dissolved solids 

TMP Trans-membrane pressure  

TS Total solids (mg/L) 

TSS Total suspended solids (mg/L) 

TTF Time to filtration (sec) 

V Voltage (V) 

VSS Volatile suspended solids (mg/L) 

XRD X-Ray diffraction  

WWTP Wastewater treatment plant 

 

 

 

 

 

 


