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Montréal, Québec, Canada

February 2011

c© Ruiru Chen, 2011



CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Ruiru Chen

Entitled: Dynamical Congestion Control Strategies for a Network

of Multi-Agent Systems Subject to Differentiated Services

Traffic

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. T. Fevens Chair

Dr. S. M. Djouadi External Examiner

Dr. W. F. Xie External to Program

Dr. S. Hashtrudi Zad Examiner

Dr. M. K. Mehmet Ali Examiner

Dr. L. Rodrigues Examiner

Dr. K. Khorasani Thesis Supervisor

Approved by

Dr. M. Kahrizi

Chair of Department or Graduate Program Director

Dr. R. Drew

Dean of Faculty



ABSTRACT

Dynamical Congestion Control Strategies for a Network of Multi-Agent Systems

Subject to Differentiated Services Traffic

Ruiru Chen, Ph. D.

Concordia Unviersity, 2011

This research focuses on the congestion control problem for a network of multi-agent

systems (NMAS) having differentiated services (Diff-Serv) traffic. Our goal is to present

a formal framework for design of a control theoretic and rigorous solution to this problem

by taking advantage of recent advances in multi-agent systems. The congestion control

problem is defined as the one dealing with fair, effective and dynamic regulation of the

network resources for avoiding the loss of Quality of Service (QoS) requirement. The

dynamic approaches presented in this work utilize concepts and scheme from nonlinear

control theory, robust adaptive estimation techniques, switching control techniques, and

quadratic regulation methodologies. The traffic transmission, propagation, processing,

and queuing latencies of the network are incorporated and manifested as unknown and

time-varying delay variables in the dynamic models of the NMAS. The limitations on

the physical resources of the communication network such as the buffer size, bandwidth,

and link capacity are all taken into account and incorporated as constraints on inputs and

network states. Consequently, the congestion control problem of each traffic type (namely,

the Premium services and the Ordinary services) in the Diff-Serv NMAS is casted as the

control of a nonlinear constrained system with multiple and unknown time-varying delays.

Two different strategies, namely the switching congestion control (SCC) approach and

the guaranteed cost congestion control (GCC) approach are proposed, developed, and

compared in this thesis.

In the switching congestion control (SCC) approach, the physical constraints of the

network are considered before the controller design. A set of fixed structured controllers
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are designed that are switched according to the overall system operating conditions. The

closed-loop system is shown to experience multiple modes. The stability and performance

requirements of the closed-loop switched system are then guaranteed by satisfying a cor-

responding set of Linear Matrix Inequality (LMI) conditions. On the other hand, in the

guaranteed cost congestion control (GCC) approach, the physical constraints are consid-

ered after the controller design, as a group of complementary stability and stabilization

conditions. A quadratic cost function containing measures of both the queuing errors and

the control effort is introduced for each traffic class (namely, the Premium traffic and the

Ordinary traffic). Lyapunov theory is used to ensure that an upper bound of the corre-

sponding cost function is obtained. This will guarantee that a specified QoS is achieved

with a bounded cost. The resulting congestion control synthesis method is known as the

guaranteed cost control. Corresponding to the SCC and GCC approaches, three different

control schemes namely, (a) centralized, (b) decentralized, and (c) distributed control are

developed, respectively. The overall organization of the thesis is as follows.

First, centralized and decentralized switching congestion control (SCC) strategies

are proposed for a Diff-Serv network subject to resource constraints and unknown multiple

and time-varying delays having a fixed network topology. The proposed congestion control

strategies are then generalized to the mobile network application. The changes of the

network topology are modeled stochastically by a Markovian jump process. Subsequently,

a mode-dependent congestion control strategy is proposed and developed for each traffic

class.

Second, centralized and decentralized guaranteed cost congestion control (GCC)

schemes are developed for a Diff-Serv network subject to resource constraints that can

ensure a robust performance in presence of unknown multiple and time-varying delays for

fixed network as well as mobile network topologies.

Third, by incorporating the scenario where the controllers are communicating among

them, a distributed congestion control scheme is proposed and developed for mobile net-

works with Diff-Serv traffic. The proposed distributed congestion controller is shown to

be equivalent to a local state-feedback law that is augmented with a nearest neighboring
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controller having a proportional adjustable gains. The proposed distributed congestion

control strategy is then evaluated and compared with the centralized and decentralized

control approaches as far as the QoS performance and control efforts metrics are concerned.

Finally, the robustness of the proposed SCC and GCC strategies for both fixed and

mobile networks are evaluated with respect to uncertainties in the system parameters and

unmodeled dynamics in the queuing models. The robustness performance properties of

the centralized, the decentralized, and the distributed schemes for both the fixed and the

mobile networks, as well as for the premium and the ordinary traffics are investigated and

evaluated extensively through simulation studies.
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Chapter 1

Introduction

Efficient and reliable information communication has become an important consideration

in both military and commercial applications, as more and more coordinations and ex-

changes are required to realize and accomplish tasks over a large area with a number of

geometrically distributed devices. The technological advances in embedded systems and

communication networks have given birth to devices with sensing, processing, actuating,

and communicating capabilities. These kind of devices are usually refereed to as ”intelli-

gent agents”. An intelligent agent is defined as an autonomous entity which observes and

acts upon an environment and directs its activity towards achieving goals. The important

characteristics of an intelligent agent are [4], [5], [6]:

1. Intelligence. Intelligent agents have a certain degree of specific domain knowledge

with which they are capable of reasoning and learning. This capability requires

the agent to have access to a knowledge base, as well as an inference engine for

reasoning. The capability of learning determines the adaptive behavior of an agent

in the sense that it can effectively handle new situations or contexts.

2. Autonomy. Intelligent agent act autonomously without the involvement of human.

Autonomous behavior means that agents are not only passively driven by external

events from the environment, but also be able to perform a serials of actions that is

in line with the objectives it is supposed to pursue.
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3. Mobility. Since the agents are not restricted and have to move to the destination

place where they are supposed to carry out tasks, the intelligent agents may have

a certain degree of mobility. In the context of distributed processing and load

balancing, mobility is an attractive capability. Another advantage of mobility is that

the possibility of having agents keeping functional after the location it originated

from has gone off-line.

4. Communicative or social behavior. Intelligent agents are able to interact with other

agents. Social ability connotes more than the simple passing of data between differ-

ent software and hardware entities. It connotes the ability to negotiate and interact

in a cooperative manner. The communications among intelligent agents is normally

created by an agent communication language (ACL) [7], which allows agents to

converse rather than simply pass data.

When the intelligent agents exist in a distributed fashion and communicate over

networks, they can be used to monitor and control a remote physical environment with-

out an extensive involvement of humans. This kind of system is referred to by the term

Network of Multi-Agent Systems (NMAS). Over the past few years, NMAS has

become a crucial technology for effectively exploiting the increasing availability of diverse,

heterogeneous and distributed information sources. The main challenge in NMAS is that

the agents in the network must be able to perceiving, reasoning, learning, evolving, inter-

acting and cooperating with their environment and with other nodes in order to achieve

system wide goals. These challenges have been in the heart of NMAS research from its

inception.

The NMAS are able to solve the problems which are difficult or impossible for in-

dividual agent to solve. During the past few years, considerable efforts and investments

have been made to provide suitable and satisfactory solutions to the technological prob-

lems associated with the networks of multi-agent systems in fields of industrial automa-

tion, process control and networked unmanned vehicles. To study communication over

NMAS, each agent is regarded as a single node. Each node which may consist of several
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Figure 1.1: A network of unmanned vehicles [1]

sensors, actuators and decision makers, should communicate and exchange information,

process the received information and make a decision autonomously while collaborating

with other nodes to accomplish a mission. In this sense, the NMAS can be reviewed as

a sensor/decision maker/actuator network, where sensors collect data from environment

and actuators process the data and perform actions. Usually the sensors and actuators

are highly mobile and have powerful energy resources, processor and memory to perform

both decision making and actuation.

1.1 Motivation and Applications

Among the large number of applications for NMAS, networked unmanned vehicles, such

as unmanned aerial vehicles (UAV), unmanned ground vehicles (UGV), and unmanned

underwater vehicles (UUV), is one of the most complicated domains and of significant

interest by governmental agencies and military services in the world. Figures 1.1 and 1.2

show a simulated framework for a NMAS that is composed of UAVs, UUVs and UGVs,

where the autonomous systems from space, air, ocean and land cooperate with one other.

In this system, the unmanned vehicles expand tactical missions such as search and res-

cue, surveillance, localization and tracking. The group of UAVs can carry payloads to
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Figure 1.2: A network of unmanned vehicles [2]

areas where it might be dangerous for a human to go, and they can transit between op-

erating stations at high speeds, allowing for quick response to changing situations. The

space-to-ground collaborations among the vehicles create a robotic mission system to per-

form complex tasks over large unknown areas. In such an arrangement, effectiveness is

increased by utilizing the benefits of UAVs and UGVs or UUVs. Therefore, major chal-

lenges are present for communication and control among multiple networks with different

network sizes and transmission speeds. As the number of vehicles increase in the system to

cover a larger interested area and to accomplish more sophisticated tasks, the information

exchanges among vehicles become more complicated and challenging. Actually, each un-

manned vehicle is responsible for multiple operations of sensing, processing and actuating.

Therefore, how to guarantee the efficient and reliable communication among the vehicles

is a necessary and a critical objective for the NMAS to guarantee flexible operations and

successful mission accomplishments.

1.2 Research Challenges

The applications of NMAS have raised serval research problems in various domains.

Among them are the following main challenges:
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1. Platforms. NMAS consists of intelligent agents which may include groups of sen-

sors, decision makers and actuators. The necessity to develop these devices that can

interact with each other is fundamental to the development of flexible, extensible

and open architectures. For this reason, platform choice is extremely important for

NMAS. Many research groups in both academia and industry have devoted to the

development of such platform. Such as the TinyOS for sensor networks which is

developed by the Berkeley motes [8]; the NesC [9] which is a C language extension

of TinyOS; and the Java Agent Development Framework (JADE) developed by the

authors in [10], [11] .

2. Localization. When data is obtained from a certain node in the NMAS, its physical

position is associated with where the data is obtained. Therefore, the position

of the node is essential for analyzing and controlling of the system. The location

information is essential in various problems of NMAS such as location based routing

[12], vision-based formation control [13] and pursuit-evasion games (PEG) [14].

3. Security. Due to the peer-to-peer communication among agents, security is an-

other important aspect of design for the NMAS, since it may operate in a hostile

environment. There must be measures to determine the level of trust among agents

and the security of messaging [15]. Communication between two agents is open

to attacks such as sender spoofing (the message claims to be from a more trusted

agent) and message modification (a message is changed while traveling between

agents, particularly in negotiation situations).

4. Power consumption. Power consumption is a central design consideration for

autonomous systems whether they are powered using batteries or energy harvesters,

since the power consumption strategy affects the overall system life-cycle, mission

management, design, dimensioning and requirement tradeoff. Additionally, the

power capacity of each node influences the communication capability of the net-

work, and consequently the network performance. Though technologies in micro

electronics enable the design of cheap, small, highly reconfigurable devices which
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consume less energy. However, communications among nodes strongly dominate

the power consumption besides the other node functionalities such as sensing and

processing. Specially, when a transmitted packet is corrupted it has to be dis-

carded, and the follow-on retransmissions increase the possibility of congestion and

consequently energy consumption. Therefore, developing new concepts for reducing

power requirements, regulating energy consumption in NMAS is needed.

5. Communication. Guaranteeing reliable communication is one of the most impor-

tant and key problems of communication networks. This is due to the fact that

efficient and safe information exchange are essential not only for the task accom-

plishment but also for the network lifetime and security. Each node in a NMAS has

to share its information and cooperate with others to achieve the mission objectives

while maintaining the minimum resources consumption. Since the NMAS is usually

applied to highly comprehensive tasks through cooperation of numerous agents in

a large scala area, the communication is much more complicated and challenging

due to the large amount of complex data information and the continuous changes in

the network topology. As the number of nodes and complexity of the traffic in the

network increase, more reliable and efficient communication solutions is required.

The main issues in the communication problems in NMAS can be listed as follows:

(a) Traffic Compression. NMAS applications require sending of large amounts

of relevant data from one point of the network to another. This necessitates

a fast and robust traffic processing protocol which performs data compression

without substantial loss in accuracy, addresses considerations of storage and

facilitates quick retrieval of attributes. An excessive number of agent nodes can

easily congest the network, flooding it with information. The prevailing solu-

tion to this problem is to process the traffic flow and then transmit compressed

data to the next node. Different traffic compression approaches influence when

and how much of the data in the network should be compressed.

(b) Routing. Routing problem can be defined as that of determining a route for
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packets from a given source to a destination through other nodes. During the

past decades, large amount of routing protocols have been proposed [16], [17],

[18], [19], where the network topology changes frequently because of the node

failures and communication conditions. The authors in [17] propose an archi-

tecture that is geared towards one shot frequent queries in sensor networks.

Their approach aims at reducing the total energy cost of query resolution as

opposed to searching for high quality routes. In [19], the authors classify a se-

lection of algorithms proposed for ad hoc networks according to their relevance

and efficiency. A spatial position node from GPS or other coordination mecha-

nisms can be used for geographic routing and there have been many proposals

using this methodology, such as those in [20], [21], [22]. Survey papers [19], [6]

contain useful details on routing protocols in wireless sensor networks (WSNs).

(c) Congestion Control. Congestion control concerns controlling of traffic entry

into a network (such as telecommunications network, urban and air traffic net-

work [5], and all networks that consist of links and switches, and the controls

that govern their operation and that allow for data transfer among links). Due

to the limited communication resources, such as buffer size and link capacity,

the QoS of network will degrade when the saturation of resources occurs. To

avoid congestive problems, the network needs to take a set of actions to min-

imize the intensity, spread and duration of data collisions. In this case, the

routing paths are fixed and predefined, and congestion is avoided by allocating

the network resources and adjusting the traffic flow. In the following subsec-

tion, several issues concerning the congestion control of NMAS are introduced

in more detail.

1.2.1 Congestion Control Problem in Multi-Agent Systems

Congestion control is designed to support Quality of Service (QoS) in a network [3], [23],

[24]. For the traditional TCP/IP network, a large number of congestion control schemes

have been designed [25], [26], [27] which have shown excellent performance and have been
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demonstrated to be robust in a variety of scenarios. However, when they are applied to

wireless environment and mobile ad hoc networks, it has been shown that by simply relying

on the TCP congestion control algorithms and scaling up with ad hoc techniques, the QoS

requirements that are expected by the NMAS cannot be fully realized [27]. This problem

is more challenging in the networks consisting of nodes with stringent constraints such as

sensors, decision makers, and actuators. The major features of NMAS that challenge the

QoS provisions are listed as follows.

1. Resource Constraints. [28] As in a network of multi-agent systems, each agent

may consists of sensors, decision makers and actuators. The physical resources

such as buffer size and link capacity of each node are limited. Specially, the sensor

nodes are usually low-cost, low-power, small devices that are equipped with only

limited data processing capability, transmission rate, battery energy, and memory.

For example, the MICAz mote from Crossbow based on a 8-bit micro controller

can provide only up to 8MHz clock frequency, 128kb flash program memory and

4kb EPROM, and the transmit data rate is limited to 250kbps [14]. Moreover,

due to the limitation on the transmission power, the available bandwidth and the

radio range of the wireless channel are often limited. Although the actuator nodes

may have stronger computation and communication capabilities and more energy

budget relative to the sensors, however the actuators are usually responsible for

task execution and need to move longer distances than the sensor nodes. Therefore,

resource constraints apply to both sensors and actuators. In the presence of resource

constraints, the network QoS may suffer from the unavailability of computing and/or

communication resources. For instance, a number of nodes that want to transmit

messages over the same network have to compete for the limited bandwidth that the

network is able to provide. As a consequence, some data transmissions will possibly

experience large delays, resulting in low level of QoS. Due to the limited memory

size, data packets may be dropped before the nodes successfully send them to the

destination. Therefore, it is of critical importance to use the available resources in

the network in a very efficient way.
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2. Platform Heterogeneity. As mentioned above, sensors and actuators do not

share the same level of resource constraints. Possibly designed using different tech-

nologies and with different goals, they are different from each other in many aspects

such as computing and communication capabilities, functionality, and number. In

a large-scale NMAS, the hardware and networking technologies used in the network

may differ from one subsystem to another. This is true because of the lack of rele-

vant standards dedicated to the wireless sensor networks, and hence commercially

available products often have disparate features. This platform heterogeneity makes

it very difficult to make full use of the resources available in the integrated system.

Consequently, resource efficiency cannot be maximized in many situations. In addi-

tion, the platform heterogeneity also makes it challenging to achieve real-time and

reliable communication among different nodes.

3. Dynamic Network Topology. The nodes in a NMAS is usually mobile, therefore

the node’s neighboring sets are time-varying. In fact, node mobility is an intrinsic

nature in many applications of NMAS such as, autonomous unmanned vehicles

and networked robot systems. During runtime, new sensors or actuators may be

added; the state of a node is possibly changed to or from sleeping mode by the

employed power management mechanism; some nodes may even die due to exhausted

battery energy. All of these factors may potentially cause the network topologies

of NMAS change dynamically. Dealing with the inherent dynamics of NMAS, the

network control mechanism (such as routing and congestion control) needs to work

in dynamic and even unpredictable environments. In this context, QoS adaptation

becomes necessary, that is, the congestion control scheme of NMAS must be adaptive

and flexible at runtime with respect to changes in network topology and available

resources.

4. Mixed Traffic. NMAS may need to deal with diverse applications, inducing both

periodic and aperiodic data. This feature will become increasingly evident as the

scale of network grows. Some sensors may be used to create the measurements
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of certain physical variables in a periodic manner for the purpose of monitoring

and/or control. Meanwhile, some others may be deployed to detect critical events.

For instance, in a smart home, some sensors are used to sense the temperature and

lighting, while some others are responsible for reporting events like the entering or

leaving of a person. Furthermore, different kinds of traffic have different level of

requirements in QoS. For example, a security surveillance signal (such as a video

camera) has more stringent requirements in delay and packet lost rate than the daily

recording data (such as temperature). Along with the development of more intel-

ligent agents and more applications of NMAS in various domains, the complexity

of mixed traffic will increase. Hence, a congestion control algorithm for the NMAS

needs to support the characteristics of data traffic.

5. Data Processing. Information processing is another essential and critical aspect

that is related to the network congestion. The nodes in a NMAS collaborate with

each other to collect and process data for generating useful information. The de-

gree of information sharing between nodes and how nodes fuse the information from

other nodes will affect the bandwidth required for transmission. Processing data

from more sensors generally result in better performance but require more com-

munication resources and energy. Therefore, one needs to consider the tradeoffs

between performance and robustness. Simple fusion rules are robust but subopti-

mal while more sophisticated and higher performance fusion rules may be sensitive

to the underlying models.

1.3 Literature Review

In a network with shared resources, where multiple senders compete for link bandwidth,

it is necessary to adjust the capacity allocated to and the data rate used by each sender

in order not to overload the network. If no appropriate control is activated and performed

this can lead to a congestion collapse of the network, where almost no data is successfully

delivered. In this section, an overview of the congestion control problem and approaches
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in the literature for the traditional TCP/IP network and the sensor/actuator network are

given. The main contributions and proposed approaches from the control prospective and

control community for the congestion control problem are also presented.

1.3.1 Congestion Control of TCP/IP Networks

Congestion control problem was first introduced for the TCP/IP network in 1980’s [29].

Packets that arrive at a router and cannot be forwarded are dropped, consequently an ex-

cessive amount of packets arriving at a network bottleneck leads to many packet drop outs.

These dropped packets might already have traveled a long distance in the network and

thus consumed significant resources. Additionally, the lost packets often trigger retrans-

missions, which implies that even more packets are sent into the network. Thus network

congestion can severely deteriorate the network throughput. Such situations have occurred

in the early Internet, leading to the development of the TCP congestion control mecha-

nism [30], [31], [32]. During the 1980’s TCP/IP links on the Internet became increasingly

congested and a new concept of ”conservation of packets” was presented in [33], where

when ”conservation of packets” is observed then TCP flows are generally stable. This

”conservation of packets” was implemented by a congestion window where further packets

would not be sent once the congestion window was full until another packet was removed.

This congestion window could be dynamically realized as the connection was established

and as conditions change. These changes are widely credited with preventing ongoing

TCP collapse. Over the past few years, large amount of research have been conducted

for developing a combination of end-to-end rate (window) adaptation and network-layer

dropping or signaling techniques for the TCP/IP and ATM networks to ensure that the

network can operate without collapsing due to congestion. However, it has become clear

that existing TCP congestion avoidance mechanisms, while necessary and powerful, are

not sufficient to provide good service in all circumstances. Most of the current congestion

control methods are based on intuition and ad hoc control techniques together with exten-

sive simulations to demonstrate their performance. The problem with these approaches is

that very little is known about why these methods work and very little explanation can
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be given about when they fail due to the ad hoc nature of many of these schemes.

In the existing TCP/IP networks, the most studied and used mechanisms to address

the congestion problem are the Active Queue Management (AQM) algorithms. These tech-

niques attempt to prevent congestion and regulate the queue length by sending congestion

signals (i.e., dropping packets) in a proactive manner. The AQM algorithms are based

on a first in first out (FIFO) queue system, and the basic idea is to calculate and update

the packet drop probability. Therefore, the incoming packets to a queue can be dropped

before the buffer overflows. The work in [34] present an AQM algorithm for routers and

an explicit congestion notification (ECN) control for the IP. The authors in [35] takes it

a step further for the internet and propose backward ECN (BECN) and multi-level ECN

(MECN), in which feedback signals can include information on severity of the conges-

tion. The similarity in concept with explicit rate (ER) based schemes advocated by the

ATM forum traffic management specification for managing available bit rate (ABR) traffic

should be noted. ATM switches can calculate the maximum ER that they can accept over

the next control interval, so that the ABR traffic into the network can be regulated, for

effective use of the available resources.

Among the numerous proposals on AQM the random early detection (RED) algo-

rithm is probably the most widely studied and applied one [25]. The basic idea of RED is

to use the average queue length to calculate the packet drop probability and to regulate

the queue length accordingly. An exponentially weighted average of the queue length is

used to calculate the dropping probability. Specifically, when the average queue length

is less than a minimum threshold value no packets are dropped and when this average

exceeds a maximum threshold value all incoming packets are dropped. When the average

queue length is between these thresholds, packets are then dropped with a probability

that is a function of the average queue length.

Despite the simplicity of RED, the optimal configuration for the weighting parameter

remains a daunting task. Hence, a large number of work has been published during the past

decades to enhance its performance. The self configuring RED (SRED) [36] and adaptive

RED (ARED) [37] have been introduced to adaptively configure the parameters. The
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BLUE [38], calculates the packet drop probability based on only two events, namely, buffer

overflow and buffer emptiness, and whereas adaptive settings in such a complex system

are still difficult. Recently, a loss ratio-based RED (LRED) algorithm was presented

in [39], which employs the packet loss ratio as a complement to the queue length for

the AQM. The use of packet loss ratio enables LRED to cope with network dynamics in

time, thus achieving fast control response and better performance in terms of good-put,

average queue length, and packet loss ratio. Another approach, namely adaptive virtual

queue (AVQ) algorithm, presented in [30], uses the input traffic rate to control packet

drop and to achieve an expected link utility. Through maintaining a virtual queue, AVQ

deterministically drops packets upon each new packet arrival, realizing the same effect of

probabilistic packet drop. AVQ achieves lower average queue length and higher link utility

than the RED and its variants.

During the past few years, other advanced algorithms have been studied by using

the queue length and input rate jointly to achieve better performance. One example is the

proportional-integral (PI) controller [31], which regulates the queue length to an expected

reference value according to the queue mismatch and its integral. The latter is closely

related to the input rate mismatch. If the network states are known a priori, optimal

parameters of the PI can be determined through a control theoretic model. However,

in dynamic networks, PI controllers may have to use a conservative setting to ensure

stability, yielding large response times. Another derivation of the AQM algorithm is the

REM [32], which uses a linear combination of the queue mismatch and input rate mismatch

to calculate the drop probability, and the input rate mismatch is equivalently simplified

to the queue variance between two adjacent queue length samples.

1.3.2 Congestion Control of Sensor-Actuator Networks

During the past few years, sensor networks have received extensive attention in research

and applications due to their capability of self organization and distributed computing.

However, sensors are passive devices that can only collect data from the environment

without interaction. Therefore, actuators are introduced to make decisions and perform
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appropriate actions according to the sensor measurements, which leads to the notion of

sensor-actuator networks (SAN). The actuators are usually highly mobile and need to

carry out execution activities. Hence, it is required that the actuators have powerful bat-

tery, processor and memory to perform both decision making and actuation. As mentioned

earlier, a network of multi-agent systems (NMAS) is composed of a number of distributed

intelligent agents. Each agent may consist of a group of sensors, decision makers and

actuators. The exchange of information and process of decision making are made au-

tonomously. In this sense, the NMAS can be viewed as a wireless sensor-actuator network

(SAN)

Among the many research issues in sensor-actuator networks, congestion control is

one of the most predicament problems that needs to be solved. Although, the existing

TCP/IP congestion control algorithms perform quite well on the Internet, the unique

properties of the sensor-actuator networks requires the design of appropriate protocols

and protocol stacks in general, and of a congestion control mechanism in particular. The

congestion control algorithms for SAN need to be highly energy-efficient, to prolong system

lifetime, improve fairness, and improve QoS in terms of throughput (or link utilization)

and packet loss ratio along with the packet delay. A SAN consists of one or more sinks and

perhaps tens or thousands of sensor nodes scattered in a large area of interest. Congestion

restraint generally follows two steps: congestion detection and congestion control.

1. Congestion Detection. Accurate and efficient congestion detection plays a vital

role in congestion control in sensor networks. There are various detection techniques

that have low cost in terms of energy and computation complexity. An energy ef-

ficient congestion detection method known as CODA discussed in [40] deals with

various degrees of congestion depending on the sensing application. In a hop-by-hop

back-pressure congestion detection [41], if the sink is congested, back-pressure spa-

tially spreads the congestion and helps alleviate congestion quickly. In addition, hop-

by- bop control supports in-network data processing. Once congestion is detected,

the receiver will broadcast a suppression message to its neighbors. The hop-by-hop

back-pressure can immediately response to the congestion at the intermediate node
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without incurring the round trip delay that reduces feedback effectiveness.

Queue occupancy [42] is another simple way to detect congestion that relies on

monitoring a node’s buffer queue length. In the implementations of [42], if the

fraction of space available in the output queue falls below a threshold (20-25% of

the output queue size), the congestion bit of routed packets is set until the available

queue size goes up. In this thesis, the threshold is selected as 10% of the output

queue size based on the experimental simulation results that reported subsequently.

In the event to sink reliable transport [43], a sensor sets a congestion notification

bit in the packet header if its buffer is full. The sink periodically computes a new

reporting rate based on the reliability measurement, that is the received congestion

notification bits and the previous reporting rate. An intelligent congestion detection

method proposed in [44] measures the local congestion level at each intermediate

node, the packet inter-arrival time and the packet service time at the MAC layer.

2. Congestion Control. Once the congestion at a node is detected, the node informs

its source nodes of the congestion and a series of actions are performed at the node

side or at the sink side to remedy the congestions. A proportional access method

presented in [45] gives more access to a node carrying a higher amount of traffic.

Therefore, downstream nodes obtain higher access to the medium than the upstream

nodes. In this method one avoids the packet drop due to congestion by not allowing

upstream nodes to transmit, if there is no available buffer. In [46], a priority based

rate adjustment (PRA) technique is presented. A node priority index is introduced

to reflect the importance of each node. The authors in [42] present two congestion

control approaches. The first one is a short term control method in which when node

experiences congestion, its immediate downstream node split the real-time traffic on

to its alternate upstream node in proportion to their weight factor. This approach

will eventually carry the newly created real-time data flows at a slower rate along

the primary route, allowing the congested node to be relieved and thus alleviate the

congestion. The second method in [42] is the so-called long-term congestion control
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in that the source node will dynamically adjust to the changing conditions and select

the best upstream node as its primary route to send further packets. Consequently,

both the real-time and non-real-time data flows will follow the changed or updated

primary route. The pump slowly fetch quickly (PSFQ) method is another method

worth mentioning that is developed for the sensor networks [47]. It requires the

source node to pace data at a relatively slow speed (”pump slowly”), but allows

nodes that experience data losses to fetch (i.e., recover) any missing segments from

immediate neighbors very aggressively (local recovery, ”fetch quickly”). In [48],

the authors proposed a light weight buffer management mechanism which is an

effective approach that prevents data packets from overflowing the buffer space of the

intermediate sensors. This approach automatically adapts the sensors’ forwarding

rates to nearly optimal values without causing congestion.

1.3.3 Congestion Control Schemes in the Control Commu-

nity

The control systems community has shown a growing interest in and has made important

contributions by addressing the challenges in the congestion control area. Since the early

congestion control concept was introduced in [33], several attempts at control theoretic-

based schemes have been made in the literature by using approaches such as optimal

control [49]; linear control [50]; fuzzy and neural control [51], [52]; predictive adaptive

control [53]; and nonlinear control techniques [54], [55].

Several new congestion control schemes for Diff-Serv networks [56] (briefly intro-

duced in the next Chapter) whose performance can be analytically established have been

presented in the literature by using sliding mode control [57], [58] and robust adaptive

control [3] techniques. The results developed in these works are interesting. However, the

above solutions have serious drawbacks. First, the nature of discontinuities of the sliding

mode controller may result and introduce unavoidable and undesirable oscillations in the

closed-loop system [59], and therefore reduce the effectiveness of the developed congestion
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control solution. On the other hand, the adaptive congestion control scheme in [3] is de-

signed for a cascade network of switches and considered the bottleneck switch as a single

node. Consequently, the presence of unknown and time-varying delays and latencies are

not considered in the design of the congestion controller. The lack of explicit consideration

of the delays will yield a critical challenge and even an instability when the approach is

applied to a large scale network consisting of many nodes [60] structured in arbitrary con-

figurations. In [3], [61], [62], a Integrated Dynamic Congestion Control (IDCC) strategy

was proposed by utilizing the nonlinear control theory and the robust adaptive control

techniques. The IDCC approach is developed based on analytical network models and

has been shown great performance when applied to ATM networks. In this thesis, the

IDCC approach is used as a benchmark strategy for comparative studies. The details of

the IDCC approach can be found in Appendix A.

Extensive studies on congestion control have been conducted and a large body of

results are available in the literature [37], [38], [3], [44], [45], [39], [56], [58] . To model and

analyze the performance of a network, such as throughput, queuing delay, and packet loss

rate in a formal, quantitative, and analytical manner are not easy tasks, since their effects

on the congestion are significantly nonlinear. The congestion control problem may become

unmanageable unless analytical, effective and robust methods are developed. Moreover,

when the number of nodes in the NMAS increases and the nodes become mobile, and

in addition the differentiated services traffic and unknown time-varying delays are con-

sidered, the complexity of the congestion control problem become even more challenging.

Therefore, systematical modeling, synthesis, and analysis considerations are mandatary

for the design of congestion control strategies for the NMAS. The development of such

effective congestion control protocols will require integration of advanced networking and

control techniques.
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1.4 Proposed Research

This thesis aims to develop a dynamic congestion control strategy for a network of multi-

agent systems (NMAS) by taking advantages of control theory machinery. The proposed

framework is based on an analytical queuing model of the traffic network which is derived

based on the fluid flow theory. The traffic flow in the network is classified into different

classes according to the differentiated services architecture [56], namely the premium ser-

vice, the ordinary service, and the best-effort service. The control objectives of each traffic

class is defined based on their corresponding quality of service (QoS) specifications. The

propagating, transmitting and processing delays are considered as inherent characteristics

in the queuing models. Therefore, from a control aspect, the congestion control problem is

defined as designing a stabilizing controller for a dynamical system with unknown multiple

and time-varying delays.

It has been widely known that time-delays in a system is one of the leading sources

of instability. Complications arise in practical cases where there is limited a priori knowl-

edge about transmitting, propagating, and processing delays and the fact that they vary

according to the traffic flow and other disturbances in the network. Random changes in

the network topology makes the system dynamics time-varying and more challenging to

describe. In addition to the uncertain delays, the physical constraints of the communica-

tion network such as limited link capacity and limited buffer size makes the congestion

control problem of NMAS more complicated to investigate.

The proposed research in this thesis considers the congestion control problem of the

NMAS corresponding to two methodologies and approaches, namely:

• Switching congestion control (SCC) approach, and

• Guaranteed cost congestion control (GCC) approach.

In the switching congestion control (SCC) approach, the physical constraints of the

network are transformed into the constraints of the inputs and states of the queuing mod-

els. A group of fixed structured controllers are then defined according to the maximum

and the minimum bounds of the input signals. In our proposed switching congestion
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control approach, we name the maximum and the minimum values of the inputs as the

edge controllers and the medium values of the input within the safe operation range as

the normal controller. For each traffic class, a supervisor mechanism is applied to gener-

ate switching signals based on the system state. The closed-loop system will experience

multiple modes with respect to the different choices of the control input. The strategy

under the edge modes is to regulate the system parameters so to force the system states

to change, towards the safe operation mode. Once the system enters the safe operation

mode the normal controller will be selected, where the stability of the closed-loop system

will be guaranteed by satisfying a set of linear matrix inequality (LMI) conditions.

On the other hand, in the guaranteed cost congestion control (GCC) approach, the

controller is first designed without the consideration of the physical constraints. A linear

quadratic cost function is proposed with the measures of the queuing error and input.

Our proposed guaranteed cost congestion controller will then guarantee the stability of

the system and an upper bound on the cost in the presence of unknown multiple and time-

varying delays is obtained. Indeed, the LMI specification which can deal with convex and

quasi-convex optimization problems with a variety of design specifications and constraints

has been the main motivation for developing this method in solving the congestion control

problem. The physical constraints of the network are considered as the complementary

stability conditions which are then represented by a group of additional LMIs. By applying

the guaranteed cost congestion control approach, the QoS specifications, such as the packet

loss rate, and the efficiency and the cost of control effort are guaranteed simultaneously.

Towards this end, this research has been conducted in four parts. In Part I, a dy-

namic switching congestion control (SCC) strategy is proposed for multi-agent network

systems with differentiated services traffic. A centralized control scheme is proposed for

networks with fixed topology in the presence of multiple unknown, time-varying delays

and network physical constraints. Our proposed centralized control scheme is then modi-

fied to a decentralized strategy. Unlike most of the existing work in the literature, delay

functions are considered to be unknown a priori. Therefore, our proposed decentralized

congestion control strategy not only guarantees the congestion avoidance for a single node
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in the presence of the unknown time-varying delays, but also is scalable to potentially

large scale networks. In both the above two approaches, the congestion control problem

of the differentiated services are formulated as a multi-level switching control problem of

time-delay systems. A state feedback controller with proportional plus integral action em-

bedded with an adaptation law is then presented for the premium and the ordinary traffic,

respectively. We next consider the mobile networks and the proposed switching conges-

tion controllers (SCC) are extended such that they can also incorporate the changes in the

network topology. To deal with changing network topology, we model the changes of the

topology as a memoryless stochastic process, which can be described by a Markov chain.

Consequently, the congestion control problem of a mobile network can be formulated as a

hybrid switching control of a Markovian jump system with time-delays.

In Part II, the dynamic queuing models of the fixed and mobile networks are con-

sidered again. A guaranteed cost congestion control (GCC) strategy is proposed for both

centralized and decentralized frameworks. By utilizing a quadratic cost function, the con-

gestion control problem of the NMAS is recast as a robust control of a nonlinear system

with uncertain time-delays. By solving the corresponding LMI conditions, the stability

of the system is ensured and the upper bound of the cost function is guaranteed with all

admissible time-delays.

In Part III, a different control scheme, namely a distributed control scheme, is consid-

ered for the congestion control problem. Since the nodes in a NMAS are usually distributed

geographically, the congestion control efficiency of each node is affected by the queuing

state and the traffic rate of its neighboring nodes. Actually, due to the inter cluster traffic,

the queuing model of a single node in NMAS is highly coupled in the presence of unknown

time-varying delays. Therefore, a purely decentralized congestion control algorithm is dif-

ficult to cope with the unknown states of its neighboring nodes with delays. To tackle this

problem, by incorporating the possibility of the communication among the controllers a

distributed congestion control scheme is proposed for the fixed as well as the mobile net-

work problems. The proposed congestion control strategy is shown to be in fact equivalent

to a local state feedback control plus a nearest neighboring controller that are adjusted
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with proportional gains. The resulting optimal congestion control problem is then cast

as a quadratic regulation problem of a time-delay system with free parameters (gains)

that need to be selected. Both centralized and decentralized weight selection approaches

are considered such that certain cost function is minimized. By including the nearest

neighboring controllers’ adjustment mechanism, the distributed control approach yields

an algorithm that significantly enhances the scalability of the centralized algorithm and

improves the performance of the decentralized approach to a large scale traffic network.

By proper selection of the distributed gains, other external effects from the nearest neigh-

boring nodes, such as the queuing lengths and external traffic flows, can be considered

and managed separately. In the distributed control framework, the cooperation among

the nodes (agents) can be considered in the sense of ”cooperation for resolution” and can

also permit the agents to mutually increase their knowledge by exchanging information

periodically about their states. Moreover, the nodes can take local decisions immediately

when they have no access to other nodes. When the network is not heavily loaded, it is

possible to exchange information on the life of the network to update and improve the

node’s performance. This implies that the nodes are able to cooperate and make better

decisions as compared to the decentralized control approach.

Finally in Part IV, the robustness of all the proposed methods are investigated and

evaluated through a comprehensive set of simulations. The performance of the switching

congestion control (SCC) and the guaranteed cost congestion control (GCC) are compared

for both fixed and mobile networks.

Investigation and derivations of the work in each of the above parts are given in the

subsequent chapters of this thesis.

1.4.1 Performance Metrics

The congestion control problem is usually considered as an optimal problem in utilizing

the network resources while maintaining reasonable fairness among network users with

acceptable QoS. Serval control objectives have been identified in the congestion control

problems. Typical performance metrics include the throughput, delay, response time,
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fairness etc. It is worth noting that the congestion control problem is indeed defined as

finding a trade-off among the various competing goals. All the existing algorithms that

reviewed earlier support at least one of the following goals in evaluating the congestion

control protocols.

1. Queuing Delay. Whenever the networks are free of congestion, the transmission

capability of the network is greater than the amount of the traffic flow in the channel.

In such cases, the queuing delay is very low. Once congestion starts to build up in

the channel, the packets are forced to wait and queues are created waiting to be

serviced. In these cases, queuing delay can be very high and pose a major problem to

the dynamics of the channel. Since the network operation is fast, queuing delays are

usually measured in milliseconds (ms). Congested channels have numerous packets

waiting to be transmitted and this in turn reduces the transmission capacity of the

channel which leads to higher queuing delay and even worse situation of congestions.

2. Packet Loss Rate. Losses occur when there is congestion in the transmission chan-

nel and these channels are forced to drop the packets since it is almost impossible to

transfer them forward to their destination nodes. Packet loss rates can be measured

as network-based or as flow-based metric. When evaluating the effects of the packet

losses on the performance of a congestion control mechanism for an individual flow

researchers often use both the packet loss/mark rate for that connection and the

congestion event rate (also called the loss event rate), where a congestion event or

loss event consists of one or more lost or marked packets in one round-trip time [63].

Other users may be concerned with the packet loss rate only in so far as it affects

per-connection transfer times, while other users may be concerned with the packet

loss rates directly. In some cases, it is useful to distinguish between packets dropped

at nodes due to buffer overflow and packets lost in the network due to traffic flow

regulation. One network-related reason for avoiding high steady-state packet loss

rates is to avoid congestion collapse in environments containing paths with multiple
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congested links. In such environments, high packet loss rates could result in con-

gested links wasting scarce bandwidth by carrying packets that will only be dropped

downstream before being delivered to the receiver [64].

3. Energy. [28] Energy is an issue in every engineering design. In congestion control

problem, limited energy supply is an important factor. This is especially crucial

for wireless sensor networks where the battery life in each node is very limited. An

efficient congestion control algorithm should consume minimum energy and keep the

nodes alive as long as possible. Indeed, most of the energy consumption of a node is

due to communication which is the total energy consumed for sensing, transmitting

and receiving. The total energy should not exceed the available energy for each

sensor node [65], [66].

1.5 Thesis Contributions

The research conducted in this thesis attempts to investigate the following issues. The

main contributions of the thesis are also stated below.

• Communication Models of NMAS Subject to Diff-Serv Traffic

To successfully realize missions and tasks, the communication among the network of

multi-agent systems need to be conducted efficiently. The specific characteristics and

the unique research challenges in the network of multi-agent systems may render the

communication problems more complex. Furthermore, dealing with differentiated

services traffic flow in the network is expected to be very complex and nonstationary

in nature. Therefore, an analytical and quantitative model with a more detailed and

accurate description of the NMAS characteristics are needed for the development of

congestion control strategies. In contrast with the dynamic models that are used in

conventional congestion control approaches, the main contributions of the presented

dynamic model are stated as follows:

1. We extended the model of a single node system to a model of large scale
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networks where the inter-node traffic is considered explicitly with unknown

and time-varying delays.

2. The dynamic models are developed in two different frameworks, namely the

centralized and decentralized formulations. In the centralized model, the entire

network is considered as one for each traffic class. The unknown and time-

varying delays are considered as inherent characteristics in the model. In the

decentralized model, the dynamics of each node is modeled as a coupled system

with unknown an time-varying delays in the coupling states and inputs from

the neighboring nodes.

3. Unlike other work in the literature, we allow and consider traffic data com-

pressions during the design of the congestion control system. The compression

gains are incorporated at the output port of each node as a free parameter

that needs to be selected through analysis and stability considerations.

4. The centralized and decentralized models are extended to a mobile network

environment by modeling the changes of network topologies stochastically.

• Congestion Control of Large Scale Diff-Serv Networks with Multiple

Time-Varying Delays

Our research work have led to several congestion control frameworks and strate-

gies. In these strategies, the queue length is used as a feedback information to

control the network performance for congestion avoidance. The control objective

for each traffic class is presented based on the QoS specifications and represented

as quadratic cost functions. The transmission, propagation, processing, and queu-

ing delays are considered in the dynamic queuing models as unknown multiple and

time-varying parameters. The physical constraints of the communication network,

such as the buffer size and the link capacity are considered as the constraints of

inputs and states. The congestion control problem of Diff-Serv networks with mul-

tiple time-varying delays and physical constraints is considered and the following

two congestion control approaches are proposed in this thesis, namely:
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1. Switching Congestion Control (SCC) of Diff-Serv Networks

The first congestion control approach proposed in this thesis is the switch-

ing congestion control (SCC) strategy. The physical constraints of the inputs

are considered for the controller design. The congestion control problem of

each traffic class is then recast as a switching controller based on the system

operation condition. For the switching congestion control strategy, multiple

controllers are designed in advance, and are then switched by a supervisor ac-

cording to the system state so that the closed-loop system experiences multiple

modes. The stability of the system is guaranteed by satisfying a group of Lin-

ear Matrix Inequality (LMI) conditions. For each traffic class, centralized and

decentralized switching congestion control strategies are developed. Further-

more, the proposed SCC approach is extended to mobile Diff-Serv networks.

The changes of the network topology due to nodes mobility, addition of new

nodes, or deletion of nodes due to their low energy or faults/failures is mod-

eled stochastically by a Markovian jump process. A Markovian jump switching

congestion controller (MJ-SCC) is then proposed for each traffic class based

on the switching control strategies for the first time in the literature.

2. Guaranteed Cost Congestion Control (GCC) of Diff-Serv Traffic

The second congestion control approach proposed in this thesis is the guaran-

teed cost congestion control (GCC) strategy. The congestion control problem

is recast as a guaranteed cost control problem of a nonlinear system with un-

known time-varying delays, subject to constrained inputs and states. By apply-

ing the GCC approach, the congestion controller can first be developed without

considering the physical constraints. The robust stability of the closed-loop

system is guaranteed by satisfying an associated set of linear matrix inequality

(LMI) conditions. The physical constraints of the system are then considered

by including a set of complementary LMIs. The proposed guaranteed cost

congestion controller is also extended to the mobile networks. The resulting

guaranteed cost control problem for each traffic class is considered as a jump

25



linear quadratic regulation (JLQR) problem and a Markovian jump guaran-

teed cost congestion control (MJ-GCC) strategy is proposed for the fist time

in the literature.

• Combined Bandwidth Allocation and Flow Rate Regulation for Fully

Connected Networks with Diff-Serv Traffic

In this thesis, three different congestion control architectures are presented, namely

decentralized, centralized, and distributed. Each of the proposed congestion con-

trollers maintain the average queuing length of a buffer in the network by dynam-

ically allocating the bandwidth and regulating the flow rate. In additions to the

contributions on the centralized and distributed congestion controllers, the decen-

tralized switching congestion control strategy (SCC) developed in this work is an

improved version of the strategy that is proposed in [3], having the following main

features and novelties:

1. The approach in [3] is designed for a cascade network of switches and con-

sider the bottleneck switch as a single node. Consequently, the presence of

unknown and time-varying delays are not considered in the design of the con-

gestion controller. The lack of explicit consideration of the delays yields a

critical challenge and even an instability when the approach is applied to a

large scale network, such as the NMAS. To the contrary, our proposed de-

centralized congestion controller is developed for either a fully or nearly-fully

connected network topology. The coupling effects from the neighboring nodes

are included in the dynamic model of each node with explicit consideration

of the delays. Hence, the resulting congestion controller shows a significant

improvement in robustness to the unknown and time-varying delays.

2. The approach in [3] only controls the flow rate of the ordinary traffic (the

second class of the traffic that is defined in this thesis and will be described in

Chapter 2), by allocating the full leftover server capacity from the premium

traffic (the first traffic class). Unlike the approach in [3], we have applied a
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combined bandwidth allocation and flow rate regulation to the ordinary traffic

in our proposed congestion control strategy. Consequently, the performance of

the ordinary traffic congestion control is shown to be significantly improved.

• Distributed Guaranteed Cost Congestion Control (DGCC) of Large Scale

Mobile Diff-Serv Networks

The proposed centralized and decentralized approaches are evaluated and compared

on a given performance index in terms of both the QoS and the control criteria, for

the fixed and the mobile networks. The distinct advantages of each approach have

revealed that an alternative mixed control scheme can benefit from these control

approaches. Consequently, a distributed congestion control strategy is developed,

by incorporating the possibility of communication among only the controllers. The

distributed congestion control strategy is in fact equivalent to a local state feedback

control plus a nearest neighboring controller that are adjusted with proportional

gains. The resulting congestion control problem is then cast as a quadratic reg-

ulation problem of a Markovian jump time-delay system subject to constrained

inputs and states. By considering the nearest neighboring controllers’ adjustment

mechanism, the distributed control approach yields an algorithm that significantly

enhances the scalability of the centralized algorithm and improves the performance

of the decentralized approach to a large scale traffic network. The proposed novel

distributed guaranteed cost congestion control (DGCC) approach is then evaluated

and compared with the centralized and decentralized congestion control approaches

in terms of the QoS performance of and control criteria.

1.6 Thesis Organization

The remainder of this thesis is organized as follows: In Chapter 2, the basic definitions

and concepts on the switching control and guaranteed cost control as well as the LMI

techniques are briefly reviewed. A description of the differentiated services architecture is

also presented. The centralized and decentralized dynamic models for the differentiated

27



services traffic are derived for both the fixed and mobile network of multi-agent systems

(NMAS). The rest of this thesis is divided into four parts.

Part I, consisting of Chapter 3 and Chapter 4, deals with the switching conges-

tion control approach. Chapter 3 provides centralized as well as decentralized switching

congestion control strategies for the NMAS with fixed network topology. The simulation

results obtained for our introduced congestion control algorithm for fixed NMAS is then

compared with the benchmark congestion control algorithm in the literature known as

the integrated dynamic congestion controller (IDCC) [3]. In Chapter 4, the dynamics of

mobile NMAS are modeled by a Markovian jump switching system. The decentralized

and centralized switching congestion control strategies in Chapter 3 are then extended to

the mobile NMAS for each traffic class. Extensive comparisons of the centralized and the

decentralized approaches are conducted in both Chapters 3 and 4, for the fixed and mobile

networks, respectively.

Part II, consisting of Chapter 5 and Chapter 6, treats the guaranteed cost congestion

control approach of the NMAS with fixed network topology. In Chapter 5, centralized and

decentralized guaranteed cost congestion control strategies are proposed. In Chapter 6,

the mobile NMAS is considered, and the GCC strategies in Chapter 5 are generalized to

these networks.

Part III, consisting of Chapter 7, handles the distributed congestion control scheme

for the mobile NMAS subject to differentiated services traffic, by applying the guaranteed

cost control approach. The performance of the proposed distributed guaranteed cost

congestion controller (DGCC) is evaluated and compared with the decentralized and the

centralized congestion control schemes, which are presented in the previous chapters.

Part IV, consisting of Chapter 8 and Chapter 9, deals with the robustness evalua-

tions of all the previously proposed congestion control strategies and proposes some future

direction of research, respectively. In Chapter 8, the robustness of our proposed conges-

tion control algorithms with respect to a) uncertainties in the network traffic model, and

b) unmodeled dynamics in the queuing models, are studied through extensive simulation
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scenarios. The robustness performance of the centralized, the decentralized, and the dis-

tributed approaches for both fixed and mobile networks, as well as for the premium and

the ordinary traffics are investigated and evaluated. Finally, in Chapter 9, conclusions

and future direction of research are presented.
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Chapter 2

Problem Formulation

In this chapter, the analytical representation of the network of multi-agent systems (NMAS)

is expressed according to a fluid flow model for both the fixed and mobile networks. These

dynamics are formulated into a nonlinear state space representation with time-varying

delays. For the purpose of differentiated services (Diff-Serv) traffic control, the dynamical

model for each traffic class is obtained separately.

This chapter is organized as follows. In Section 2.1, a brief introduction to the Diff-

Serv traffic, queuing theory, data aggregation, stability of time-delay systems, feedback

linearization technique, guaranteed cost control theory, and the linear matrix inequality

(LMI) are provided. The dynamical models of the NMAS are given subsequently in Section

2.2.

2.1 Basic Definitions and Concepts

2.1.1 Differentiated Services (Diff-Serv) Traffic

With the increasing demand of multimedia applications, differentiated services have been

considered in many applications of communication networks. Internet Engineering Task

Force (IETF) proposed the differentiated services (Diff-Serv) architecture [56] to deliver

aggregated quality of service (QoS) in IP networks. The main idea is to assign different
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priorities to different kinds of services (video/audio, control command etc.). The traffic is

forwarded by using one of the three IETF defined per-hop behavior (PHB) mechanisms.

This approach allows traffic with similar service characteristics to be passed with similar

traffic guarantees across multiple networks, even if multiple networks do not provide the

same service in the same way. This is an important feature because the Internet is really

a network of multiple service providers.

According to the definitions by IETF, Diff-Serv is a protocol for specifying and

controlling network traffic by class so that certain types of traffic can get precedence, for

example the voice traffic which requires a relatively uninterrupted flow of data over other

kinds of traffic.

Prior to the use of Diff-Serv, Tail-Drop [67] was the standard behavior of router

queues on the Internet. Tail-drop works by queuing up packets to a limit, then drop-

ping all the traffic that exceeds that limit. This is not a good practice as it leads to

retransmit synchronization. When retransmit synchronization occurs, the sudden burst

of drops from a router that has reached its maximum limit will cause a delayed burst of

retransmits, which will over fill the congested router again. In order to adjust with the

transient congestion on links, backbone routers will often use large queues. Unfortunately,

while these queues are good for throughput, they can substantially increase latency and

cause TCP connections to behave very ”burstily” during congestion. On the other hand,

traditional IP networks offer users best-effort service. In this kind of service, all packets

compete equally for network resources. However, this best-effort service cannot provide

any predictability and reliability in packet delivery, making it unsuitable for real-time

applications.

The Diff-Serv architecture has become the preferred method to address QoS issues

in IP networks. This packet-marking based approach to IP QoS is attractive due to its

simplicity and ability to scale [68], [69]. An end-to-end differentiated service is obtained

by concatenation of per-domain services and Service Level Agreements (SLAs) between

adjoining domains along the path that the traffic crosses in passing from the source to the

destination [55], [70]. Per domain services are realized by traffic conditioning at the edge
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and simple differentiated forwarding mechanisms at the core of the network.

Two broad aggregate behavior groups of forwarding mechanisms are adopted by the

IETF, these are the Expedited Forwarding (EF) [71] and the Assured Forwarding (AF) Per

Hop Behaviors (PHB) [72]. Traffic conditioning includes classification, metering, policing

and shaping. The EF-PHB can be used to build a low loss, low latency, low jitter, and

assured bandwidth service, hence it can indirectly guarantee the QoS. On the other hand,

the AF-PHB is appealing, as it proposes simple mark and drop mechanisms to realize IP

QoS. The AF approach provides better QoS than the best-effort service by controlling the

drop preference of packets at the time of congestion. The AF-PHB draft proposes four

classes and three drop preferences per class, hence each class can provide different levels

of bandwidth and buffer guarantees.

In this thesis, we follow the same spirit of Diff-Serv and divide the traffic into three

groups, namely the premium service, the ordinary service and the best effort service [3].

The premium traffic belongs to the first class of EF-PHB, whereas the ordinary traffic

belongs to the first class of the AF-PHB, and the best-effort traffic belongs to the last

class of EF-PHB. The QoS of these three traffics are listed below.

• Premium Service. The premium service is chosen for applications with stringent

delay and loss requirements that can specify upper bounds on their traffic needs

and required quality of service. It is envisaged that the user may contract with

the network. The only commitment required by the user is to not exceed the peak

rate. The network contract then guarantees that the contracted bandwidth will

be available when the traffic is sent. Typical applications of the premium traffic

services include control command, audio and video conferencing, etc.

• Ordinary Service. The ordinary service is intended for applications that have relaxed

delay requirements and allow their rate into the network to be controlled. This kind

of traffic use any left over capacity from the premium traffic. It should be noted that

to ensure there is bandwidth leftover from the premium traffic service, a minimum

bandwidth might be assigned for the ordinary traffic, e.g., by using bandwidth
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allocation between services or connection admission. Typical applications of this

kind of service include image retrieval, event based applications, etc.

• Best effort service. Finally, the best effort traffic has no delay or loss expectations.

It opportunistically uses any instantaneous leftover capacity from both premium

and ordinary traffic services.

2.1.2 Queuing Theory

We have seen that as a network gets congested, the queuing delay in the system increases.

A good understanding of the relationship between congestion and delay is essential for

designing effective congestion control algorithms. Queuing theory provides all the tools

that are needed for this analysis. According to the Little’s theorem [73], the average

number of customers N can be determined by N = λ ∗ T , where λ is the average arrival

rate and T is the average service time for a packet. With Little’s theorem, the basic

understanding of a queuing system can be illustrated by three essential characteristics

of a queue, namely the arrival process, the service process, and the number of servers.

The arrival process defines the probability density distribution that the packets arrive to

the node, and the service process indicates the probability density function of the service

time in the node. Finally the number of servers indicates how many available servers are

connected to the output port of a node. Therefore, a queuing system can be represented

by the following convention: A/S/n, where A denotes the arrival process, S denotes

the service process and n denotes the number of servers. A and S can be any of the

following [74]

• M (Markov): exponential probability density;

• D (Deterministic): all customers have the same value;

• G (General): any arbitrary probability distribution.

A typical example of queuing system is the M/M/1 queue, where the arrival and service

times are negative exponentially distributed (Poisson process). The system consists of

only one server. This queuing system can be applied to a wide variety of problems as
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any system with a very large number of independent customers can be approximated by a

Poisson process. The distribution of the Poisson process can be described by the following

distribution function:

f(x|λ) =
λxe−λ

x!
(2.1)

where λ is the expected number of ”events” or ”arrivals” that occur per unit time and x

is the number of occurrences of an event. In this thesis, we also assume that the packets

arrive to the network according to a Poisson process, and consequently an M/M/1 queue

is considered for the following research.

2.1.3 Traffic Flow Compression and Processing

Each agent in a network of multi-agent systems may consist of several sensors, actuators

and decision makers. These devices are resource constrained in terms of power supply, com-

munication bandwidth, processing speed, and memory. One possible approach to achieve

the maximum utilization of these resources is to apply traffic compression on data. Usu-

ally, processing data consumes much less power than transmitting data in communication

medium [75], so it is effective to apply compression before transmitting data for reducing

the total power consumption. By doing so, the life time of the network is extended [76].

By reducing the data size less bandwidth will be required for sending and receiving data,

and hence the risk of congestion is decreased. Traffic compression and processing have

shown significant improvements for network performance in the literature, especially for

the traffic containing video and graphics [77]. However, applying data compression will

require more processing power. Determination of an optimal or minimum feasible traffic

compression rates is critical for the purpose of overall network control.

In this thesis, we assign a traffic flow compression mechanism at the output port

of each node, represented by a time-varying design parameter to be selected. Each node

can process and compress the traffic before sending it to the next node. This parameter

indicates the level of the data compression rate and can vary from 0 to 1. By incorporat-

ing our proposed traffic flow compression one can simultaneously ensure (a) reduction of

the queued and transmitted traffic, and (b) avoidance of the overall network congestion.
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Introducing the traffic compression mechanism represents an important novel aspect of

our proposed congestion control design.

2.1.4 Feedback Linearization Technique

The mathematical modeling of most physical systems yields a nonlinear system repre-

sentation. The synthesis and control of nonlinear systems are important research topics

in both academic and industrial domains. Among all the critical problems of nonlinear

control systems, the stabilization problem is among the most important ones. In the sta-

bilization problem, a controller is to be designed so that the closed-loop system achieves

certain specified objectives. Various formal tools have been developed for nonlinear system

stabilization in the literature, which can be broadly divided into two categories, namely

a) linear and b) nonlinear feedback control. The former one is based on an approximate

linearized model of a nonlinear system about an operating on equilibrium point, while the

later one is based on the actual nonlinear system directly. Among the various types of

direct nonlinear control techniques, feedback linearization [78] is an approach which has

attracted a great deal of research interest. The central idea of the approach is to trans-

form the nonlinear system dynamics into (fully or partly) linear one, so that linear control

techniques can then be applied [78]. This approach differs from conventional Taylor’s se-

ries linearization in that feedback linearization is achieved by exact state space coordinate

transformation and feedback, hence the transformed exact linear system is equivalent to

the original nonlinear system.

Input-State Linearization

Consider the problem of designing the control input u for the nonlinear system of the

form:
ẋ(t) = f(x, u, t) (2.2)

The input-state linearzation technique solves the problem in two steps. First, one need

to find a state space coordinate transformation and a diffeomorphism z(t) = φ(x, t) and
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an input transformation u = ψ(x, ū, t) such that the nonlinear system dynamics is trans-

formed into a equivalent linear system, in the standard form of ż = Az + Bū. Second,

conventional linear control techniques can then be applied to design the new controller ū.

2.1.5 Stability of Time-delay Systems

The growing interest in improving performances and quality of service of communication

networks is at the origin of the development of various control algorithms that use deter-

ministic or stochastic, continuous or discrete-time model representations of the network.

Independent of the representation, these models should take into consideration a num-

ber of resources of delays, including the propagation, the transmission, and the processing

delays. These network induced delays can be a cause of instability and performance degra-

dation. Among the research topics of time-delay systems, stabilization is one of the most

crucial problems. During the few decades, a number of publications have appeared in the

literature, among which two main approaches are considered. The first is the frequency

domain approach [79], [80] and the second is the time domain approach [81], [82]. The

frequency analysis method utilizes analytical tools to find roots of the characteristic equa-

tion for the system where stability of the system can be analyzed according to standard

control theories. In addition, standard graphical methods such as root locus, Bode plot,

and Nyquist diagram can also be modified and applied to analyze delayed polynomials and

transform functions. However, in contrast to conventional control systems, delays in the

characteristic equation of time-delay systems appear as exponential functions. Therefore,

Taylor and Pade approximations have to be used in developing analytical techniques to

obtain solutions. These approximations may yield conservative results and sometimes lead

to difficulties in ensuring acceptable stability conditions.

On the other hand, time domain approaches have advantages in dealing with nonlin-

earity and time-varying uncertainties. Depending on how one considers delay as a param-

eter, stability criteria may be divided into two types, namely delay-independent [83], [84]

and delay-dependent [81], [85] stability conditions. In the delay-independent approach, no
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a priori knowledge about the delay is required but the results tend to generally be conser-

vative. In the delay-dependent approach, the stability conditions guarantee stability for

all delays satisfying 0 < τ < h, where h is an upper bound on the delay. Hence, to design

a delay-dependent controller, the upper bound of the delay should be known. The basic

idea behind delay-dependent stability criteria is to transform the original system with dis-

crete delays into a system with distributed delays where a Lyapunov-Krasovskii functional

can be applied to derive the stability conditions. In most practical cases, the delays are

not only unknown, but also time-varying. Treating time-varying delays requires a more

involved and deeper analysis since their presence may induce further complex behaviors.

Linear Matrix Inequality

The LMI methodology for solving convex and quasi-convex optimization problems in the

presence of design constraints has attracted a great deal of interest in the past decade. LMI

techniques have emerged as powerful design tools in control engineering. The applications

range from control engineering such as multi-model/multi objective state feedback design,

robust pole placement, control of stochastic systems, multi-criterion LQG/LQR, optimal

control, system identification and structural design [86]. The main factors that make LMI

techniques appealing can be stated as follows [87]:

• A variety of design specifications and constraints can be expressed in terms of LMI

feasibility conditions which make it suitable for multi-objective optimization prob-

lems.

• LMI algorithms formulate the problem in terms of a convex optimization problem.

Hence, usually exact solutions can be found [87].

• While most of the problems with multiple constraints or objectives lack analyti-

cal solutions in terms of matrix equations, they often remain tractable in the LMI

framework. This makes LMI-based design a valuable alternative to classical analyt-

ical methods.
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2.1.6 Centralized, Decentralized and Distributed Control

Schemes

Different definitions are available given for centralized and decentralized controllers in the

literature [88], [89], [90]. To avoid ambiguity, the following definitions are adopted for

these concepts in this thesis.

Definition 2.1. A controller is classified as centralized if a central (global) controller is

responsible for making decisions for the entire system. The controller needs to have access

to the information on the entire system.

Definition 2.2. A controller is classified as decentralized if the controller for each sub-

system (through the partitioning of the overall system into reduced order subsystems) is

capable of making decisions using only local information.

Definition 2.3. A controller is classified as distributed if the controller for each subsystem

is capable of communicating with the controllers of the other subsystems and the decisions

of each controller can use both the local information (as in the decentralized controller)

and its nearest neighboring controllers.

2.2 Dynamic Communication Network Model

The ”fluid flow” conservation principle [74], [91], [92] states that the rate of change of

information queued in the buffer is equal to the difference between the arriving input and

the outgoing output information rates. This is the basis of a static model of the traffic

network that is used for developing some early congestion control algorithms. However, in

communication networks, the customer arrival process is non-stationary with the arrival

process parameters depending on the time [93]. Communication networks in particular

are subject to a variety of phenomena that give rise to transient/non-stationary conditions

such as load sharing, changes in the routing and flow control parameters, failure of links,

nodes or other network resources and most commonly, non-stationary input loads. There

is an empirical evidence that the user demand for communication is non-stationary in
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many networks, varying with time [94]. Furthermore, as communication networks evolve

to encompass differentiated services (Diff-Serv) which are utilized to transport complex

traffic types with various quality of service (QoS) requirements, the traffic in the network

is expected to be very bursty and non-stationary in nature. Therefore, using a dynamical

model can provide a more precise description of the network operations and gives us an

opportunity to develop control techniques whose properties can be studied analytically.

As discussed in Chapter 1, the main QoS specifications and performance metrics of

a congestion control mechanism include both the node throughput as well as the delay

and packet loss rates [95], [96]. Due to the trade-offs among these performance metrics it

is important to consider them all together. Since the trade-offs are most clearly expressed

and represented in terms of the queue management mechanism [95], an analytical and a

quantitative model which has the queuing length as a state and network resources, such

as the bandwidth, as control inputs would be the most appropriate model for our desired

congestion control design.

In [97], the authors have proposed an approximation model of non-stationary queues

based on the conservation laws of traffic flow and developed a fluid flow model to describe

the dynamical queuing behaviors. In [62], the concept of guaranteed traffic and available

bit rate (ABR) traffic are introduced to describe the external and internal traffic flows in

a network, and based on the fluid flow model developed in [62], the authors developed an

integrated connection admission control (CAC), flow rate, and bandwidth control for the

ATM network. In [3], a Diff-Serv network is considered and a decentralized congestion

controller is proposed to guarantee the queuing length and delays for an ATM network.

In [98], a stochastic version of the fluid flow model presented in [62] is developed as

the network model and a Lyapunov control theory was employed to solve the dynamic

”cell” level bandwidth allocation problem. In [57], [58], a sliding mode-based congestion

controller is developed by using the fluid flow model of a single node. In [99], a fluid flow

control scheme for a large scale network is proposed based on the model presented in [62]

where it is assumed that all the delays satisfy a saturation based Lipschitz-like condition.

However, none of the transmission, propagation, processing, and queuing delays were
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considered in the above approaches and the congestion control schemes proposed therein

are for fixed networks. Since the sending rate and scheduling is determined online, the

network delay is not negligible and which will deteriorate the performance of the system in

practice, and may even lead to instability. Moreover, the mobility of the network nodes can

result in a time-varying topology, which requires new comprehensive models for effective

congestion control design.

In this thesis, motivated from the existing works we extend the dynamical model

that is presented in [62] to the NMAS. In the model considered here the delays are unknown

and time-varying which makes it more realistic for real-world traffic network applications.

The network induced delays could vary significantly due to unpredictable circumstances

such as unpredicted traffic flows and congestion. In this thesis, the following types of

delays are considered in the dynamic model of the networks:

• Transmitting delay: The time between starting and ending the transmission of a

message. It depends on the length of the message.

• Propagating delay: The time for propagating a message on each link.

• Processing delay: The time that each message from upstream nodes or outside of

the network should spend at each node to be received, identified by its destina-

tion, inserted to the appropriate queue, and performed the routing calculations (in

dynamic routing).

The remainder of this section is focused on the selection and development of the dynamic

models of NMAS with Diff-Serv traffic. We first give the fluid flow model of a single

node, then describe the dynamical model for centralized, decentralized and mobile traffic

networks that are considered in this thesis.

2.2.1 Fluid Flow Model

Consider a single node queue with non-stationary arrival process. Let us define x(t) as

the queuing state representing the ensemble average number in the node at time t. From
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the fluid flow conservation principle, the rate of change of the queuing length is given as

follows: ẋ(t) = −fout(t) + fin(t) (2.3)

The above type of equation can be used to model a wide range of queuing and contention

systems [74], [91] and is often called a fluid flow model.

Assuming that the queue storage capacity is unlimited and the traffic arrives at the

queue with the rate of λ(t), then fin(t) is simply the offered load rate λ(t). The flow

out of the node, fout(t), can be related to the ensemble average utilization of the link by

fout(t) = C(t)ρ(t), where C(t) is the link capacity. Note that ρ(t) is the probability that

the number of packets in the queue is not zero (i.e. ρ(t) = P (N(t)) > 0, where N(t) is

the number of packets in the queue). Therefore, equation (2.3) becomes:

ẋ(t) = −C(t)ρ(t) + λ(t) (2.4)

In general, determining an exact expression for ρ(t) is quite difficult even for the

simplest queues [100]. Hence, an approximate method is generally applied. We assume

that ρ(t) can be approximated by a function of the state G(x(t)). Thus, the dynamics of

the queue can be represented by the following nonlinear differential equation

ẋ(t) = −C(t)G(x(t)) + λ(t) (2.5)

with the initial condition x(0) = x0. The expression for G(x(t)) which will accurately

model the system is dependent on the type of the queue that one chooses for study.

Different approaches can be used for determining G(x(t)). If experimental data from

an existing system can be obtained, then G(x(t)) can be determined based on the data

statistics. However, such data are normally unavailable and one must determine G(x(t))

through other means, such as an approximation procedure. The simplest and the most

commonly used approach for determining G(x(t)) is to match the steady-state equilibrium

point of (2.5) with that of an equivalent queuing theory model, where the meaning of the

term ”equivalent” depends on the queuing discipline assumed.

This method has been validated through simulations for a number of network sys-

tems and for different queuing models in [74], [101]. In addition, the explicit relationship
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between the queuing state x(t) and the network resource (i.e., the link capacity C(t) and

the flow rate λ(t)) in (2.5) makes it to be the most appropriate model for our control

design and analysis. Therefore, in this thesis, we adopt the fluid flow model as the basis

for development of our congestion control design.

As stated earlier, the characteristics of G(x(t) is dependent on the queuing system

that is under study. Serval different analytical queuing models have been derived according

to the approximation method that is described above and can be found in the literature

[100], such as M/M/1, M/D/1, and D/M/1 queues. Each of these dynamical queuing

models is developed based on the particular assumptions of the queuing discipline. It

is worth noting that although the G/G/n queue is the most general queuing system,

where the arrival and service time processes are both arbitrary, there is no known explicit

analytical solution for this queuing system in the literature.

In this thesis, we represent the dynamics of a queue as an M/M/1 since the resulting

queuing system can be applied to describe a wide variety of queuing models as found in

systems with a very large number of independent customers/nodes that can be approx-

imated as a Poisson process. In the following sections, the studied congestion control

strategies will be based on the M/M/1 model. For an M/M/1 queue by matching the

steady state of the queuing length x(t) = λ/(µC − λ) to the steady state of the fluid flow

model (2.5), the dynamics of a single node can consequently be expressed as

ẋ(t) = −µ
x(t)

1 + x(t)
C(t) + λ(t) (2.6)

where x(t) is the queuing length; C(t) is the output link capacity; λ(t) is the average rate

of incoming traffic; and µ is the average queue service rate. Based on the above fluid flow

conservation principle and the M/M/1 queuing systems, a decentralized dynamic model

for the Diff-Serv network is first developed and then extended to a centralized model in

the following section.
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Figure 2.1: A DiffServ node with the premium, the ordinary, and the best-effort traffic.

2.2.2 Decentralized Model of Diff-Serv Network

In this section, the dynamic model of differentiated services (Diff-Serv) network is derived

and the congestion control problem is formulated in a decentralized control framework.

Generally speaking, the congestion control problem is in fact concerned with allocating the

output bandwidth and regulating the flow rate of each queue. However, for the differenti-

ated services (Diff-Serv) network, as presented in Section 2.1, the premium traffic requires

no loss, no latency, no jitter, assured bandwidth service for all the incoming packets. That

is, the incoming flow rate of the premium traffic is unnegotiable in the congestion control

level. On the other hand, the ordinary traffic has relaxed delay requirements and allow

their rate into the network to be regulated, which implies that the bandwidth and the

incoming traffic rate of the ordinary traffic flow are both accessible for control. Finally, in

the best-effort traffic there is no control activities but one opportunistically uses any in-

stantaneous leftover resources. Therefore, the state space representations of the Diff-Serv

traffic must be formulated in different ways according to the different control frameworks

for the congestion control problem. The decentralized model of the premium and the

ordinary traffic are now presented as follows.

Consider a Diff-Serv network consisting of n nodes. Each node has three separate

buffers associated with the premium, the ordinary, and the best-effort traffic classes as

shown in Fig. 2.1. Each node receives messages from both the neighboring nodes within the
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network and from outside the network. It is assumed that the network is fully connected,

that is each node of the network has a direct link with other nodes. Based on the flow

conservation principle (2.3), the queuing state of each node can be expressed as follows

ẋi(t) = −fout
i (t) + f in

i (t) i = 1, ..., n (2.7)

where xi is the queuing length, f in
i (t) and fout

i are the incoming and the outgoing traffic

of node i, respectively. Unlike the single node, the incoming traffic f in
i (t) of the node

in a networked system includes two parts, namely the traffic flow from i) external to the

network, and ii) the neighboring nodes to node i within the network, that is

f in
i (t) = fexternal

i (t) + f internal
i (t) (2.8)

fexternal
i (t) = λi(t)

f internal
i (t) =

n∑

j=1
j 6=i

fout
j (t− τji(t))gji(t)

where

λi(t): external traffic rate entering node i,

τji(t): total unknown time-varying and bounded delay in transmitting, propagating, and

processing of messages from node j to node i,

gji(t): time varying gains indicating the data compression rate between the nodes j and

i, and

n: number of the nodes in the network.

According to the dynamics of M/M/1 queue (2.6), we have that

fout
i (t) = µ

xi(t)
1 + xi(t)

Ci(t) (2.9)

fout
j (t− τji(t)) = µ

xj(t− τji(t))
1 + xj(t− τji(t))

Cj(t− τji(t)) (2.10)

where Ci(t) is the link capacity of node i. Therefore, the dynamic fluid flow model corre-

sponding to each node in the network is governed by

ẋi(t) = −µ
xi(t)

1 + xi(t)
Ci(t) + λi(t) +

n∑

j=1
j 6=i

µ
xj(t− τji(t))

1 + xj(t− τji(t))
Cj(t− τji(t))gji(t) (2.11)
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It is worth noting that the model (2.11) is an extension of the M/M/1 queuing model (2.6)

with explicit expression of the internal traffic flow f internal
i (t). The above model (2.11)

can be used to represent all possible internal traffic paths for any origin destination pair.

It has been shown to be reasonably accurate in comparison to discrete event simulations

with a variety of scenarios [97], [62], [100], [61], [102].

Assumptions on The Delay

The delay τji(t) in equation (2.11) is modeled as a time-varying and unknown signal which

satisfies the following assumptions:

• Heterogeneous. The delays are heterogeneous where the delays between any node i

and node j can have different values,

• Bounded. The delays are assumed to be lower and upper bounded with heteroge-

neous bounds as follows:

τmin
ij ≤ τij(t) ≤ τmax

ij i, j = 1, ..., n (2.12)

and the minimum lower bound and the maximum upper bound in the overall network

are given by the following constant values:

0 = min{τmin
ij }

h = max{τmax
ij } i, j = 1, ..., n (2.13)

where 0 is the minimum value of the lower bound of the delay and h is a known

constant indicating the maximum value of the upper bound of the delays, and

• Equivalent. Without loss of generality and for simplicity the bidirectional delays

between any two pair of nodes are assumed to be equal, that is

τij(t) = τji(t) i, j = 1, ..., n (2.14)

Physical Constraints

Certain physical constraints such as buffer size, link capacity and maximum supported

transmission rate have to be considered. A NMAS may consist of a number of sensors,
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decision makers, and actuators. Usually, sensors have the least communication recourses

such as bandwidth capacity and buffer size. This is due to the fact that sensors are

usually small devices with limited power supply and physical components which are not

replaceable. Compared with sensors, decision makers are more powerful and need larger

buffer and capacity to deal with comprehensive analysis and decision making. Finally,

actuators are the nodes with execution functionalities and equipments. They are highly

mobile and need to keep communication with both sensors and decision makers at most of

the times. Therefore, each node in the NMAS may have very different levels of resources

and, consequently have different values of physical constraints.

Let us define Cserver,i as the link capacity and xbuffer,i as the buffer size of each

node. The following constraints are therefore required to be satisfied:

• Bandwidth constraints: The bandwidth that is utilized in the output link of each

node cannot exceed the capacity of that link capacity, that is

0 ≤ Ci(t) ≤ Cserver,i i = 1, ..., n (2.15)

• Buffer size constraints: To avoid packet loss, the queuing length at any time

must not exceed the maximum buffer size specified for the node, that is

0 ≤ xi(t) ≤ xbuffer,i i = 1, ..., n (2.16)

• Transmitter constraints: Each node has a transmitter which can support a max-

imum transmission rate of λmax
i . Therefore, the instantaneous traffic transmission

rate at each node should satisfy

λi(t) ≤ λmax
i ≤ Cserver,i i = 1, ..., n (2.17)

Each node in the NMAS has three separate buffers for the premium, the ordinary,

and the best-effort traffic class, respectively. Hence, the decentralized queuing model (2.11)

is applicable for each of these three traffic classes. However, as stated in Section 2.1.1,

each traffic class in the Diff-Serv network has different levels of QoS specifications, and

consequently has different control variables. Specifically, the premium service is designed
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for applications with the highest QoS requirements among the three classes. The incom-

ing traffic rate of the premium traffic is unknown and not negotiable, the only network

contract for the premium traffic is that the bandwidth will be available when the traffic

is sent. Therefore, form the queuing model (2.11), the only available control variable for

the premium traffic is the bandwidth capacity Ci(t). On the other hand, the ordinary

service is designed for applications with relaxed delay requirements that allow their traffic

rate to be regulated. That is, both the bandwidth capacity Ci(t) and the incoming traffic

rate λi(t) with respect to the ordinary traffic are available for control. Finally, since there

is no specific QoS for the best-effort traffic, there is no control issue for this class. It

opportunistically uses any leftover capacities from the premium and the ordinary traffic

classes.

To design a congestion control strategy for the Diff-Serv traffic, one needs to consider

the dynamic model of each traffic class and clarify the control objectives separately. In

the rest of this section, we reformulate the decentralized queuing model (2.11) for the

premium and the ordinary traffic classes, with their corresponding physical constraints,

respectively.

1. Premium Traffic Model

The decentralized queuing model (2.11) with respect to the premium traffic is rewritten

here again

ẋpi(t) = −µ
xpi(t)

1 + xpi(t)
Cpi(t) + λpi(t) +

n∑

j=1
j 6=i

µ
xpj(t− τji(t))

1 + xpj(t− τji(t))
Cpj(t− τji(t))g

p
ji(t) (2.18)

where ”p” denotes the premium traffic. The congestion control problem of the premium

traffic is actually concerned with allocating the bandwidth Cpi(t), according to the network

information, such that certain QoS objectives are satisfied.

Let us define

f(xpi(t)) = µ
xpi(t)

1 + xpi(t)
(2.19)

upi(t) = Cpi(t), i = 1, ...n (2.20)
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In view of the above notations, equation (2.18) can be rewritten in the following

state space representation

ẋpi(t) = −f(xpi(t))upi(t) +
n∑

j=1
j 6=i

f(xpj(t− τji(t)))upj(t− τji)gji
p (t) + λpi(t) (2.21)

The above dynamic model is a nonlinear system with unknown external signal and

time-varying delays in the coupled states. Based on this model, the decentralized control

objective for the premium traffic is now to select the controller upi(t) so that the system

(2.21) is ultimately bounded and the closed-loop performance cost is guaranteed subject to

all the admissible delays. Details of the congestion control development will be presented

in Chapter 3.

• Physical constraints of The Premium Traffic

The constraints (2.15)-(2.17) are now reformulated for the premium traffic model

(2.21) as follows:

0 ≤ xpi(t) ≤ xbuffer
pi (2.22)

0 ≤ upi(t) ≤ Cserver,i, i = 1, ...n (2.23)

where xbuffer
pi is the premium buffer size of node i.

2. Ordinary Traffic Model

The decentralized queuing model (2.11) with respect to the ordinary traffic is rewrit-

ten as follows

ẋri(t) = −µ
xri(t)

1 + xri(t)
Cri(t) + λri(t) +

n∑

j=1
j 6=i

µ
xrj(t− τji(t))

1 + xrj(t− τji(t))
Crj(t− τji(t))gr

ji(t) (2.24)

where ”r” represents the ordinary traffic. Since the ordinary traffic allows their incoming

traffic rate to be regulated, hence the control strategies for this class are to regulate the

incoming traffic λri(t) and the link capacity Cri(t) so that the queuing length xri(t) behaves

as desired. Therefore, for the ordinary queue of each node, there are two available control

inputs. Similar to the premium traffic, let us we define
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f(xri(t)) = µ
xri(t)

1 + xri(t)

u1
ri(t) = Cri(t) (2.25)

u2
ri(t) = λri(t) (2.26)

Therefore, the queuing model (2.24) for the ordinary traffic can be reformulated as

follows

ẋri(t) = −f(xri(t))u1
ri(t) + u2

ri(t) +
n∑

j=1
j 6=i

f(xrj(t− τji(t)))u1
rj(t− τji)gji

r (t) (2.27)

Equation (2.27) indicates that the dynamic model of the ordinary traffic is a non-

linear system with multiple inputs and time-varying delays with the coupled states. The

congestion control problem for the ordinary traffic is now to select the controllers u1
ri(t)

and u2
ri(t) so that the system (2.27) is asymptotically stable and the closed-loop system

performance is guaranteed subject to any admissible delays.

• Physical Constraints of The Ordinary Traffic

The ordinary traffic can only utilize the leftover capacity from the premium traffic.

That is, the maximum allowable bandwidth for the ordinary traffic is a time-varying

variable depending on the value of Cserver,i − upi(t). Therefore, the physical con-

straints (2.15)-(2.17) for the ordinary traffic of each node can be described accord-

ingly

0 ≤ xri(t) ≤ xbuffer
ri (2.28)

0 ≤ uri(t) ≤ cri(t) i = 1, ..., n (2.29)

where xbuffer
ri is the buffer size for the ordinary traffic at node i, and cri(t) =

Cserver,i − upi(t) is the instantaneous leftover capacity of node i from the premium

traffic.

2.2.3 Centralized Model of Diff-Serv Network

According to the definitions given in Section 2.1.7, the centralized controller needs to know

the information of the entire system. For the congestion control problem, the information
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of the system are the queuing lengthes of each node. In this section, we consider all the

nodes of the network together, so that the queuing dynamics of the entire network is

formulated and the control objectives of each traffic class are described in a centralized

framework.

Consider a Diff-Serv network with n nodes which is fully connected. Based on the

decentralized queuing model of each node (2.11), let us define

x(t) = vec{xi(t)} (2.30)

C(t) = vec{Ci(t)} (2.31)

λ(t) = vec{λi(t)} (2.32)

f(xi(t)) = µ
xi(t)

1 + xi(t)
(2.33)

F (x(t)) =




f(x1(t)) 0 0

0
. . . 0

0 0 f(xn(t))




i = 1, ..., n (2.34)

where the operation vec stands for a vector. Consequently, the fluid flow model of the

entire network can be give as follows

ẋ(t) = −F (x(t))C(t) + λ(t) +
m∑

l=1

GlF (x(t− τl(t)))C(t− τl) (2.35)

where m denotes the number of possible delays in the network, and Gl ∈ Rn×n is the

matrix indicating data compression gains among the nodes in the network. In fact

m∑

l=1

Gl =




0 g21 · · · gn1

g12 0 · · · gn2

...
...

. . .
...

g1n · · · · · · 0




(2.36)

The following example is provided to clarify the definitions of m and Gl.

Example 2.1. Consider the network given in Fig. 2.2. The network has 3 nodes and is

fully connected. According to the equivalent assumption of delays (2.14), the time-varying

delays in the network has 3 different values, that is m = 3. Let us define
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Figure 2.2: A network with three nodes.

τ1(t) = τ12(t) = τ21(t)

τ2(t) = τ23(t) = τ32(t)

τ3(t) = τ13(t) = τ31(t)

Corresponding to the above definition, Gl, l = 1, .., 3 are given by

G1 =




0 g21 0

g12 0 0

0 0 0




, G2 =




0 0 g31

0 0 0

g13 0 0




, G3 =




0 0 0

0 0 g32

0 g23 0




¥

Based on the centralized model (2.35) and the QoS specifications of each traffic class,

the centralized queuing model for the premium and the ordinary traffic are described in

the remainder of this section. The physical constraints are reformulated for each traffic

class in a centralized framework also.

1. Premium Traffic Model

In the centralized model (2.35), define up(t) = Cp(t). Then the centralized model of

the premium traffic can be written as

ẋp(t) = −F (xp(t))up(t) + λp(t) +
m∑

l=1

GlF (xp(t− τl(t)))up(t− τl) (2.37)

where p stands for the premium. The control objective of the premium traffic is to design

the centralized controller up(t) so that the system (2.37) is ultimately bounded and certain

adequate performance level is guaranteed with respect to all the admissible delays.
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• Physical Constraints of The Premium Traffic

In a centralized control, all the nodes in the network need to satisfy the physical

constraints (2.15)-(2.17), simultaneously. Hence, the following definition of a vector

inequality is needed.

Definition 2.4. [103] Consider two vectors a = (a1, ..., an) and b = (b1, ..., bn),

where ai and bi are real numbers for i = 1, ..., n. Then,

a < b ⇐⇒ ai < bi, i = 1, ..., n (2.38)

By using the above definition, the constraints (2.15)-(2.17) for the centralized model

of the premium traffic can be expressed as:

0 ≤ xp(t) ≤ xbuffer
p (2.39)

0 ≤ up(t) ≤ Cserver (2.40)

where xbuffer
p = vec{xbuffer

pi } and Cserver = vec{Cserver,i}.

2. Ordinary Traffic Model

In the centralized model (2.35), let us define

ur1(t) = Cr(t) (2.41)

ur2(t) = λr(t) (2.42)

Cr(t) = vec{Cri(t)} (2.43)

λr(t) = vec{λri(t)} (2.44)

where r refers to the ordinary traffic. Consequently, the centralized model of the ordinary

traffic with inputs can be written as follows

ẋr(t) = −F (xr(t))ur1(t) + ur2(t) +
m∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl) (2.45)

For the above nonlinear system, the control objective is now to select the centralized

controller ur(t) = vec{uri(t) ur2(t)} so that the system (2.45) is asymptotically stable

and certain adequate performance level of corresponding closed-loop system is guaranteed

subject to all the admissible delays.
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• Physical Constraints of The Ordinary Traffic

The physical constraints (2.15)-(2.17) for the ordinary traffic of the entire network

can be described accordingly

0 ≤ xr(t) ≤ xmax
r (2.46)

0 ≤ ur(t) ≤ cr(t) (2.47)

where xmax
r = vec{xbuffer

ri } denotes the buffer size constraints of the network, and

cr(t) is the vector of instantaneous leftover capacities of all the nodes from the

premium traffic. In fact, cr(t) equals to Cserver−up(t) and is a time-varying bound.

It worth noting that the constraints of the centralized model, for the premium traffic

(2.37) and the ordinary traffic (2.45), respectively, are more conservative then those in the

decentralized models (2.21) and (2.27). The reason for this is that in a centralized control,

the dynamics of all the nodes in the network are considered simultaneously. Since the

centralized controller needs all the system information. Violating the physical constraints

of a single node may substantially lead to instability of the entire network. Therefore, the

physical constraints of all the nodes have to be guaranteed at all the times.

2.2.4 Dynamical Model of Mobile Diff-Serv Network

Recently, wireless communication technologies have stimulated a large body of research

activity on self-organizing networks such as mobile ad-hoc networks. In mobile ad hoc

network, there is no stationary infrastructure for the network. The nodes in a mobile

network can move arbitrarily, thus the topology of the network is expected to change

often and unpredictably. In addition to mobility, loss of node power, or addition of new

nodes will also lead to changing network topology. Consequently, the neighboring sets

of each node is also changing. To achieve an efficient congestion control strategy certain

physical parameters such as the distance between the nodes or maximizing the nodes life-

time, and fading nodes should be considered in defining the neighborhood sets. In [100],

the impact of mobility and the resulting link failures and additions are represented by an

adjacency variable, which is set to be either 1 or 0, depending on the distance between
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every two nodes. If the distance is less than or equal to their radio range, R, then the

nodes are connected and the adjacency variable is set to 1. Otherwise, the adjacency

variable is set to 0. In [104], the definition of the adjacency variable in [100] is extended

by defining a threshold on the distance between two nodes, which is a function of the

maximum output power of the transmitter antenna.

In view of the above, the congestion control problem is more challenging for mobile

ad hoc networks that are subject to fast and unpredictable network topology changes.

Therefore, highly adaptive congestion control algorithms are required. In this thesis, the

congestion control problem for mobile Diff-Serv networks is considered according to two

approaches based on the available network information and the communication capabil-

ity of the controllers. These are (a) the centralized and the decentralized, and (b) the

distributed control strategies. Towards this end, the dynamic model of the mobile ad

hoc network is formulated in 1) decentralized, and 2) centralized for the premium and

the ordinary traffic, in the following two sections, respectively. These models are subse-

quently used to design the corresponding centralized, decentralized and distributed control

strategies in the following chapters.

Decentralized Model of The Mobile Network

Consider a mobile Diff-Serv network with n nodes. Due to the mobility, the dynamics

of the queuing system (2.11) is now modified to the following representation for mobile

networks

ẋi(t) = −µ
xi(t)

1 + xi(t)
Ci(t) + λi(t) +

∑

j∈℘i(α(t))

µ
xj(t− τji(t))

1 + xj(t− τji(t))
Cj(t− τji(t))gji(t) (2.48)

where ℘i denotes the neighboring set of node i and α(t) denotes a function representing

the rule for changing the neighboring sets.

The time-varying function α(t) is also referred to as a mode of the network with the

corresponding topology at instant t. It is known that the link connectivity between two

nodes at time t + ∆t is only dependent on the nodes’ position, velocity and the direction

of movement at time t. Therefore, the future connection of two nodes is independent of
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its history, but dependent only on the current state of the connectivity. Therefore, the

changes of the network topology is a memoryless stochastic process which can be described

by a stochastic process, namely the Markov chain. In this thesis, the rule for changing

network topology α(t) (sometimes denoted as αt) is defined according to the Markov chain

as below.

Given a complete probability space {Ω,F , P}, where Ω is the sample space, F is

the σ-algebra of subsets of the sample space, and P is the probability measure on F , the

stochastic process α(t) can be defined as a continuous-time Markov process. The variable

α(t) takes values in a finite set S = {1, ..., M} with the transition probability matrix

Π = {πkl} given as follows:

P [αt+∆ = k | αt = l] =





πkl∆ + o(∆), k 6= l;

1 + πkk∆ + o(∆), k = l.
(2.49)

where πkl ≥ 0 is the transition rate from mode k to mode l, πkk = −
M∑

l=1,l 6=k

πkl, and o(∆)

is a function satisfying lim
∆→0

o(∆)
∆ = 0.

In the stochastic system (2.48), the same assumptions regarding the multiple and

time-varying delays (2.12)-(2.14) and the physical constraints as defined in equations

(2.15)-(2.17) are applicable to mobile networks also. The decentralized model for the

premium and the ordinary traffic in the mobile networks are described as follows.

• Premium Traffic Model

Following the same definition of input upi(t) = Cpi(t), let us define f(xpi(t)) =

µ
xpi(t)

1+xpi(t)
as in the fixed network. Therefore, the decentralized queuing dynamics

of the mobile network (2.48) with respect to the premium traffic can be written as

follows

ẋpi(t) = −f(xpi(t))upi(t) +
∑

j∈℘i(α(t))

f(xpj(t− τji(t)))upj(t− τji)gji
p (t) + λpi(t)(2.50)

where

p: denotes the premium traffic,

xpi(t): is the queuing length of node i,
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upi(t): is the bandwidth allocated to the premium traffic in node i,

λpi(t): is the traffic flow external to the network, and

gji
p (t): is the data compression rate of the premium traffic between nodes j and i.

The control objective now is to design the mode dependent controller upi(α(t))

associate with each mode α(t) so that the stochastic system (2.50) is ultimately

bounded and the closed-loop system performance is guaranteed with respect to any

admissible delays.

– Physical Constraints of The Premium Traffic

In a mobile network, the link capacity of each node is changing due to the

nodes mobility. Therefore, the capacity constraint of each node is dependent

on the mode α(t) of mobile networks, and the premium traffic model (2.50)

needs to satisfy the following physical constraints

0 ≤ xpi(t) ≤ xbuffer
pi (2.51)

0 ≤ upi(t) ≤ Cserver,i(α(t)), i = 1, ...n (2.52)

where Cserver,i(α(t)) denotes the time-varying link capacity that is dependent

on the network topology and the instantaneous neighboring set.

• Ordinary Traffic Model

Let us define u1
ri = Cri(t), u2

ri(t) = λri(t) and f(xri(t)) = µ xri(t)
1+xri(t)

, so that the

decentralized queuing model (2.48) for the ordinary traffic is modified as follows

ẋri(t) = −f(xri(t))u1
ri(t) + u2

ri(t) +
∑

j∈℘i(α(t))

f(xrj(t− τji(t)))u1
rj(t− τji)gji

r (t)(2.53)

where r represents the ordinary traffic, xri(t) is the ordinary queuing length, u1
ri(t)

denotes the allocated bandwidth and u2
ri(t) is the regulated traffic rate of the or-

dinary traffic into node i. The above model represents a nonlinear system with

time-varying delays, where the control objective is to select a controller uri(t) =

vec{u1
ri u2

ri} associated with each different mode α(t) so that the closed-loop system
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of (2.53) is asymptotically stable with a guaranteed performance cost corresponding

to all admissible delays.

– Physical Constraints of The Ordinary Traffic

The bandwidth constraint and the buffer size constraint of the ordinary traffic

are now modified as follows

0 ≤ xri(t) ≤ xbuffer
ri (2.54)

0 ≤ uri(t) ≤ cri(α(t)), i = 1, ...n (2.55)

where cri(α(t)) denotes the instantaneous leftover capacity of the node i from

the premium traffic which is actually equals to Cserver,i(α(t))− upi(α(t)).

Centralized Model of The Mobile Network

Consider the queuing dynamics (2.48) of all the nodes in the same neighboring set simul-

taneously. Based on the definition of the neighboring set ℘i and the changing rule α(t) of

the network topology, the centralized model for both the premium traffic and the ordinary

traffic are now modified for the mobile networks as follows:

• Premium Traffic Model

The queuing dynamics of the premium traffic for a mobile ad hoc network can be

written as follows

ẋp(t) = −F (xp(t))up(t) + λp(t) +
m(α(t))∑

l=1

GlF (xp(t− τl(t)))up(t− τl) (2.56)

where xp(t) is the premium queuing length of the nodes in the network, up(t) is the

input vector of the allocated bandwidth of all the nodes in the network, m(α(t)) is

the number of possible delays in the network, depending on the network topology

at time t, and which in turn is a function of the changing rule α(t). The following

example is presented to illustrate the definition of m(α(t)).

Example 2.2. Consider the same network as in Example 2.1, except that all the

nodes are mobile now. As shown in Figure 2.3, the three nodes are expected to
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Figure 2.3: The schematic of the network configuration for three ”typical” modes of a three node
network.

explore a rectangular area of interest by moving from position A to position B. Node

1 moves towards north first and then towards east; node 2 moves towards northeast

directly; and node 3 moves towards east and then towards north. Figure 2.3 depicts

the configuration of the network at three distinct modes during the exploration.

Therefore, in mode 1, the time-varying delays in the network have 3 different values,

that is m = 3, where we may define

τ1(t) = τ12(t) = τ21(t)

τ2(t) = τ23(t) = τ32(t)

τ3(t) = τ13(t) = τ31(t)

However, in mode 2, node 3 is outside of the neighboring set of nodes 1 and 2, and

hence is not communicating with any of these two nodes. There is only one type of

delay in the network here, that is m = 1, where we can define

τ1(t) = τ12(t) = τ21(t)

Finally in mode 3, the neighboring set is reformulated between nodes 2 and 3 and

node 1 is now isolated. Therefore, m = 1 and the delay in the network can be defined

58



as

τ1(t) = τ23(t) = τ32(t)

• Ordinary Traffic Model

The dynamics of the ordinary traffic in a mobile ad hoc network can be given as

follows

ẋr(t) = −F (xr(t))ur1(t) + ur2(t) +
m(α(t))∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl) (2.57)

where ur1(t) is the vector of bandwidth allocated to the ordinary traffic in the

network, and ur2(t) is the vector of the regulated ordinary traffic flow rate for the

nodes.

It should be noted that the change of the neighboring set will not only change

the number of delays in the network, but also change the number of connections of each

node. Consequently, the internal traffic flow in the same neighboring set will become

time-varying and mode-dependent. The queuing models of the mobile networks do now

represent as switching systems due to the changes in the mode function α(t). Therefore,

to cope with the changing network topologies, the associated congestion control strategies

must be made and designed to be mode-dependent also.

2.3 Main Methodologies

As presented earlier, the dynamical models of the NMAS are highly nonlinear systems

having unknown multiple and time-varying delays, and are subject to a group of input

and state constraints. During the past decades, the control of constrained systems have

received great attention and a large number of work has been published in the literature.

In this thesis, we mainly consider the following two methodologies:

• Switching control approach. In this method, the system constraints are adjoined

to the controller design process. The control strategy is derived incorporating the

conditions of constrained inputs or states. The control input switches among a set
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of controllers that are designed according to the system constraints. The stability

of closed-loop system with respect to each controller is then analyzed and derived.

• Guaranteed cost control approach. In this method, the controller is first synthesis

without consideration of the system constraints. The control input is designed

according to the guaranteed cost control technique. The stability of closed-loop

system is derived as a LMI conditions. The physical constraints of the network are

then expressed as a set of complementary LMIs also.

Details of these two methodologies are presented as follows.

2.3.1 Switching Control Approach

As presented earlier, the dynamical model of each traffic class in a Diff-Serv network is

described by a nonlinear time-varying delay system that is subject to a group of physical

constraints. These physical constraints are manifested in the system model as inputs and

states constraints that may lead to performance deterioration and even instability. It is

well-known that violations of such constraints drastically degrade the system performances

and even lead to instability if not properly accounted for in the design procedure [105].

During the past decade, switching control related approaches for constrained systems have

been developed [106], [107], [108], [109], [110], [111]. Specially, control laws that utilize

switching of fixed-structure controllers, although are relatively simple, can actually achieve

significant performance enhancements [105], [108], [112], [113], [114].

In [111], a switching control law for constrained systems is proposed where a su-

pervisor selects the highest performance controller that is ”safe” for the current state of

the plant. However, the supervisory logic in [111] is conservative from the safety point of

view. The switching controllers conservativeness is reduced by employing the strategy that

is based on the maximal constrained positively invariant (CPI) set property as proposed

in [108], and which is utilized in the analysis of constrained systems [106], [107], [109].

It has been shown that by employing the switching control approach the constraints of

the system can be properly accounted for in the design procedure, and hence the risk of
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Figure 2.4: Schematic of the switching control scheme of a constrained system.

instability due to the control boundary can be avoided. The switching control law of a

constrained system can be described as follows [115].

Consider a system having the control signal u(t) that is lower and upper bounded

by physical constraints to ulow and uhigh, respectively. The switching control law can then

be defined as:

u(t) =





ulow, if uin(t) < ulow;

uin(t), if ulow ≤ uin(t) ≤ uhigh;

uhigh, if uin(t) > uhigh.

(2.58)

The above switching law indicates that when the value of the input signal uin(t) exceeds

the physical constraints, the controller switches to the boundary value which are usually

constant. On the other hand, when the input signal satisfies the constraints, it remains

the same as the designed control input. For a constrained system, the safe operating range

is when the input signal satisfies ulow < u(t) < uhigh. In synthesizing a switching control

strategy, it is important to ensure that the system remains in the safe operating mode for

the given set of constraints.

Fig. 2.4 shows a block diagram of a switching control scheme for a constrained

system. By utilizing this switching scheme the closed-loop system will experience multiple

modes with respect to the controller and the stability under each mode must then be

guaranteed so that the entire system is ensured to be stable. In this thesis, the first and

the last modes in equation (2.58) are designated as edge modes and the second mode in
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equation (2.58) is designated as normal control mode. The control input switches among

the three controllers which are selected automatically by the rule based module. We expect

that the system remains in the normal control mode (safe operation) as long as possible so

that the desired control input u(t) can take on its most effect. As shown in Fig. 2.4, when

the control input reaches its boundaries an additional regulator is employed to adjust the

system parameters. Hence, the system state is forced to change towards the direction

of safe operating range. Therefore, after a finite time the desired controller u(t) will be

selected.

On the other hand, the control objective of the normal control mode is to select

the control input u(t), based on the nonlinear dynamical queuing models presented in

Section 2.2, so that the closed-loop system is stable. The details of the proposed switching

congestion control (SCC) strategies are presented in Chapter 3.

2.3.2 Guaranteed Cost Control Approach

The problem of designing a robust controller for a system with uncertainties has drawn

considerable attention in the control systems literature. Much effort has been directed

towards finding a controller that guarantees robust stability. However, when controlling a

real plant it is also desirable to design a system that is not only stable but also guarantees

an adequate level of performance. One approach to this problem is the guaranteed cost

control (GCC) which was first introduced in [116]. The GCC approach is proposed as

an extension to the classical LQR regulation problem for linear systems with parametric

uncertainties, subject to the following quadratic cost function

J =
∫ ∞

0
(xT (t)Qx(t) + uT (t)Ru(t))dt (2.59)

where x is the state of the system, u is the control input, and Q and R are given positive

definite matrices. The conceptual objective of the GCC is to design a feedback controller

such that for all admissible uncertainties the closed-loop system is asymptotically stable

and an upper bound on the quadratic cost function (2.59) is guaranteed [117], [118], [119].
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Based on this idea, a number of significant results have been proposed in the lit-

erature. In particular, the authors in [117] have presented a Riccati equation approach

for designing a quadratic guaranteed cost controller. In [120], a linear matrix inequality

(LMI) approach for the design of guaranteed cost controller is presented. The main idea

is to obtain a controller through the solution of an LMI optimization problem [119], [121].

This allows a computationally efficient and practical solution to the GCC problems.

The GCC approach has recently been extended to time-delay systems. In [122], [120],

delay-independent design methods are applied to derive the guaranteed costs, and in [123],

[124], delay-dependent design methods for guaranteed cost control via state feedback are

presented for uncertain continuous-time systems. According to the above references, the

definition of a guaranteed cost control of a time-delay system can be described as follows.

Consider the following linear time-delay system:

ẋ(t) = A0x(t) + A1x(t− τ(t)) + Bu(t) (2.60)

where x is the state vector, u is the control input vector, τ(t) is the unknown time-varying

delay, and A0, A1 and B0 are the system matrices. Associated with the cost function

(2.59), the following definition is now given.

Definition 2.5. [125] For the system (2.60) and the performance cost function (2.59),

if there exist a control law u∗(t) and a positive scalar J∗ such that the closed-loop system

is asymptotically stable and the closed-loop performance cost J satisfies

J ≤ J∗ (2.61)

then J∗ is the guaranteed cost and u∗(t) is the guaranteed cost control law for the system

(2.60).

In this thesis, the transmission, the processing, and the propagation delays in the

NMAS are considered as unknown and time-varying delays in the dynamical system model.

The guaranteed cost control approach is then applied for the synthesis and development of

the congestion control strategies. The details of the proposed guaranteed cost congestion

control (GCC) strategies are provided in Chapter 5 and 6. Moreover, in this thesis the
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guaranteed cost controller is obtained to guarantee asymptomatic stability or ultimate

boundedness of the closed-loop system. The notation of an ultimate boundedness is defined

as follows:

Ultimate Boundedness

Consider the following system

ẋ(t) = f(x, t) (2.62)

where f : [0,∞) × D → Rn is piecewise continuous in t and locally Lipschitz in x on

[0,∞)×D and D ⊂ Rn is a domain that contains the origin.

Definition 2.6. [78] The solutions of (2.62) are said to be uniformly ultimately bounded

with an ultimate bound b if there exist positive constants b and c, independent of t0 ≥ 0,

and for every a ∈ (0, c), there is T = T (a, b) ≥ 0, independent of t0, such that

‖x(t0)‖ ≤ a ⇒ ‖x(t)‖ ≤ b, ∀t ≥ t0 + T (2.63)

2.4 Conclusions

In this chapter, after revisiting some basic definitions and concepts, the dynamic model

of the Diff-Serv traffic is presented based on the fluid flow model for both the fixed and

mobile network of multi-agent systems and according to both decentralized and centralized

frameworks. The network traffic dynamics are presented as a standard nonlinear state

space representations where the transiting, the propagating and the processing delays are

considered as unknown time varyings delays present in the system.

Based on the dynamical models, two main approaches are introduced in this thesis

for the congestion control problem of NMAS. The first approach utilizes switching of fixed-

structure controllers that are derived by satisfying the system physical constraints. The

congestion control problem of each traffic class is then recast as a switching control problem

of a constrained system. In the second approach, a guaranteed cost control technique is

applied to deal with the uncertainties in network delays. By considering a quadratic cost
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function having the measures of state and input, the congestion control problem is to

select a state feedback controller such that the closed-loop system is stable and a certain

performance level is guaranteed subject to all the admissible time delays .
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Part I

Switching Congestion Control

Approach
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Chapter 3

Switching Congestion Control of

DiffServ Networks with Fixed

Topology

The aim of this chapter is to develop a congestion control strategy for a network of multi-

agent systems (NMAS) with a fixed topology, by utilizing the switching control approach.

In the Diff-Serv architecture the traffic is aggregated into different classes of flows and the

congestion control strategies are to be applied to the traffic classes according to their QoS

requirements and specifications. As presented in Chapter 2, the queuing dynamics of each

traffic class is modeled as a nonlinear dynamical system subject to physical constraints

and unknown time-varying delays. It is well-known that the constrained systems are

difficult to stabilize by smooth (continuous) feedback control since the control laws have

to switch between boundary points of the admissible control set [126]. Any violation

of the constraints may degrade the system performance and in the worst case scenario,

the system could become unstable. Furthermore, maintaining stability of time-delayed

feedback systems in general is not a trivial problem owing to the infinite dimensional

nature of time-delay systems. On the other hand, the nonlinearities of the system make

the synthesis and design more difficult. To tackle this problem, one of the promising
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approaches would be to switch the controller based on the system operating range [115].

In this switching control system, multiple controllers are designed in advance, the control

input switches among these fixed structured controllers according to the state of the system

in order to not violate the constraints.

As presented in Section 2.3, the switching control scheme for constrained systems

can be expressed by equation (2.58). The control input switches among three controllers,

namely, 1) the maximum boundary uhigh; 2) the minimum boundary ulow, (uhigh and ulow

are usually constant values determined by the physical constraints), and 3) the normal

control input u(t), that is designed based on the system state. The schematic of the

switching control scheme is shown in Fig. 2.4, the control input switches among three

controllers according to the system constraints. The congestion control problem for each

traffic class can then be recast as a switching control problem of a nonlinear system with

multiple and time-varying delays. The controller switches among the above three choices

based on the physical constraints of the system. However, we expect that the normal

controller u(t) to take effect for as long time as possible. The reason is that by staying too

long in the edge situations (uhigh and ulow) may result in low efficiency and utilization of

the control authority.

Therefore, in this thesis we add an extra regulation mechanism to adjust the system

under the edge situations. Fig. 2.4 shows the idea of this regulation. When the controller

switches to its boundaries (ulow or uhigh), it enters the corresponding designated edge

modes. In this case, the regulation mechanism adjusts the system parameters so that

its state trajectory is forced to move towards the safe operating range. When the state

enters the safe operating range, the normal controller u(t) will then be selected and the

system enters the so-called normal control mode. Therefore, the control objective under

the edge modes is to design the regulation strategies. Specifically, in our congestion control

problem, the traffic compression gains among the nodes are the system parameter that

can be regulated under the edge modes. A nonlinear feedback controller based on the

feedback linearization technique and robust adaptive control theory is designated for the

normal controller under the normal control mode, for both the premium and the ordinary
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traffic.

The remainder of this chapter is structured as follows. In Section 3.1, a centralized

switching congestion control (SCC) strategy is presented for each traffic class based on the

dynamical queuing models that are given in Chapter 2. The proposed congestion control

algorithms guarantee the stability of the closed-loop system and maintain the safe opera-

tion of the system subject to the given physical constraints. In Section 3.2, the centralized

SCC approach is extended to the decentralized switching congestion control strategy in

order to enhance the scalability of our proposed solutions. Simulation results and per-

formance comparisons are given in Section 3.3. Finally, the conclusions are provided in

Section 3.3.

3.1 Centralized Congestion Control Scheme

A centralized control strategy is attractive due to its high accuracy and reliability, eco-

nomic installation features and overall better performance. Fig. 3.1 shows a centralized

control framework of a networked multi-agent system (NMAS) with three nodes. In the

centralized control scheme, there is only one commander and control center. The control

command is localized in one place and the action of each node depends on the information

that is provided to the central command and control to all other nodes in the team. Since

the centralized control requires exchange of large amount of information over communica-

tion channels particularly when the number of nodes in the network is large, it is often used

in small-scale system. A distinguished benefit of the centralized control in a small-scale

network is that it can effectively employ the entire network information. In this section,

we first consider the congestion control problem of a small-scale Diff-Serv network in a

centralized control framework. The centralized queuing models given in Chapter 2 are

considered and a centralized switching control strategy based on the physical constraints

of the system is developed for the premium and the ordinary traffic.

Recall the centralized dynamical model of the traffic network that is presented in

Chapter 2. By considering the fluid flow conservation law, the network traffic dynamics
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Figure 3.1: The centralized control framework for a NMAS with three nodes.

is expressed in the following standard state space representation for the premium traffic

(2.37) and the ordinary traffic (2.45):

ẋp(t) = −F (xp(t))up(t) + λp(t) +
m∑

l=1

GlF (xp(t− τl(t)))up(t− τl) (3.1)

ẋr(t) = −F (xr(t))ur1(t) + ur2(t) +
m∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl) (3.2)

where ”p” stands for the premium traffic and ”r” represents the ordinary traffic, xp and

xr are the queuing length of the premium and the ordinary traffic in the nodes, up(t) and

ur(t) are the input signals, λp(t) is the unknown but bounded external incoming premium

traffic, τl(t) is the unknown time-varying delays, for l = 1, ..., m, m is the number of

delays in the network, and F (xp(t)), F (xr(t)) and Gl are the system matrices as defined

in equations (2.30) and (2.36).

It should be noted that the centralized congestion control algorithm is practically

applicable only to small-scale networks. Also, it is assumed that the multiple delays in

the network satisfy the bounded and the heterogeneous assumptions that are given by

equations (2.12)-(2.14) in Chapter 2 and are reproduced in detail as follows.

Assumption 3.1. The unknown multiple and time-varying delays τl(t) are upper bounded

where the maximum upper bound h is known. Namely, h is the maximum allowable delay

in the network, that is

0 ≤ τl(t) ≤ hl (3.3)

h = max{hl} l = 1, ...,m
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3.1.1 Premium Traffic Control Strategy

The physical constraints for the premium traffic class are listed below:

0 ≤ xp(t) ≤ xbuffer
p (3.4)

0 ≤ up(t) ≤ Cserver (3.5)

0 ≤ λp(t) ≤ λmax
p (3.6)

where xbuffer
p is the buffer size, Cserver is the link capacity, and λmax

p is the maximum

allowable traffic rate induced by the transmitter constraint (3.6).

Considering the premium traffic model (3.1), the switching control problem for the

premium traffic becomes a nonlinear feedback controller that stabilizes the system (3.1)

and will not exceed the above physical constraints. Towards this end, the switching

congestion control strategy for the premium traffic is selected as follows:

up(t) =





0, if ūp(t) < 0;

ūp(t), if 0 ≤ ūp(t) ≤ Cserver;

Cserver, if ūp(t) > Cserver.

(3.7)

where the first and the third cases in the above switching controller are refereed to as the

edge modes and the second case with the to be designed controller ūp(t) is designated as

normal control mode.

Since the queuing dynamics of the premium traffic model (3.1) is nonlinear with

respect to the queuing state, the following nonlinear feedback controller based on the

input-state linearization technique is considered:

ūp(t) = F−1(xp, t)Kpx̄p(t) (3.8)

where x̄p(t) = xp(t)− xref
p , xref

p is the reference queuing length of the premium traffic in

the nodes selected by the network operator, and Kp is the state feedback control gain.

However, due to the unknown nature of the external incoming traffic λp(t), a pure

state feedback controller may require a high gain controller which is clearly undesirable

in the presence of high-frequency unmodeled dynamics and noise [127]. In principle, the

system may become unstable for any finite control gain in presence of nonzero external
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signals. In this case, an adaptive estimator λ̂p(t) is applied to estimate the unknown

external incoming traffic λp(t) and compensate its effect via feedback. Thus, the nonlinear

feedback controller (3.8) for the premium traffic is modified to the following

ūp(t) = F−1(xp, t)[Kpx̄p(t) + λ̂p(t)] (3.9)

where λ̂p(t) is a online estimate of the external incoming traffic λp(t). Motivated from the

robust adaptive control theory [128], the updating rule of λ̂p(t) is selected as follows:

˙̂
λp(t) =





∆px̄p(t)−Πpλ̂p(t), if 0 ≤ λ̂p(t) ≤ λmax
p or

λ̂p(t) = 0, x̄p(t) ≥ 0 or

λ̂p(t) = λmax
p , x̄p(t) ≤ 0

−Πpλ̂p(t), otherwise

(3.10)

where ∆p and Πp are the adaptive control gains that are positive definite matrices.

It should be noted that the centralized switching congestion control strategy (3.7)-

(3.10) has two levels of switchings.The first switching is induced by the physical constraint

of the input in (3.7). The control input up(t) switches among three values, namely ulow = 0,

uhigh = Cserver, and uin(t) = ūp(t). According to the switching control scheme shown in

Fig. 2.4, when the edge controllers ulow or uhigh is selected, the regulation mechanism will

adjust the system parameters to force the system state trajectory to move towards the

safe operating range, and after some finite time the system state changes and the normal

controller uin(t) is selected. Next, the system switches to the second level which is induced

by the updating laws of the adaptive estimator (3.10).

Therefore, after applying the switching congestion controller (3.7), the dynamics of

the premium traffic (3.1) will experience multiple modes depending on the different choices

of the controllers in (3.7). Specifically, we have that

1. When xp(t) is sufficiently large, then ūp(t) ≥ Cserver, which leads to up(t) = Cserver,

2. When xp(t) is sufficiently small, then ūp(t) ≤ 0, which leads to up(t) = 0, or

3. When 0 < ūp(t) < Cserver, then we have up(t) = ūp(t).
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Cases (1) and (2) are referred to as the edge modes and case (3) is denoted as the normal

control mode. Therefore, we now need to select the regulation rule under the edge modes

so that the system will move towards the normal control mode. The detailed analysis of

the multiple modes is presented below.

• Edge Mode (i): If up(t) = 0 at some time t = t1, it follows that the queuing length

of the nodes are sufficiently small at this time. In this case, the closed-loop system

of (3.1) is governed by

ẋp(t) = λp(t) +
m∑

l=1

GlF (xp(t− τl(t)))up(t− τl) (3.11)

According to the buffer constraint of the queue (3.4) and given that the delayed

input up(t − τl(t)) also satisfies the switching law (3.7), one can conclude that the

derivative of the queue ẋp(t) in the above equation is positive. That is, the queuing

state xp(t) will increase with time. Until some time t2 > t1 when the queuing length

is sufficiently large and the normal control input satisfies ūp(t) > 0, the controller

ūp(t) that is defined in (3.9) will then take effect.

• Edge Mode (ii): If the controller up(t) = Cserver at some time t = t3, then

according to equation (3.9) it implies that the queuing length xp(t) of all the nodes

in the network are sufficiently large. It follows that:

ẋp(t) = −F (xp(t))Cserver + λp(t) +
m∑

l=1

GlF (xp(t− τl(t)))up(t− τl)

≈ −Cserver + λp(t) +
m∑

l=1

GlF (xp(t− τl(t)))up(t− τl) (3.12)

Note that F (xp(t−τl(t)))up(t−τl) is nothing but the incoming traffic from the neigh-

boring nodes with time delay. Therefore, according to the transmitter constraint of

the premium traffic (3.6), we have that

˙̄xp(t) ≤ −Cserver + λmax
p +

m∑

l=1

Glλ
max
p

Therefore, the regulation strategy in this mode is to regulate the system parame-

ter, that is the traffic compression gain Gl, so that the derivative of the queuing
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state xp(t) is negative. Therefore, the regulation strategy for the premium traffic

compression gain is selected as follows:

0 ≤
m∑

l=1

Gl < (Cserver − λmax
p )(λmax

p )+ (3.13)

where + denotes the Moor-Penrose inverse [103] of a non-square matrix. Con-

sequently, the queuing length xp(t) will decrease with time and after some time

t4 > t3 the normal controller ūp(t) will then take effect.

• Normal Control Mode (iii): If the normal controller up(t) = ūp(t) takes effect

at some time t = t5, the closed-loop system of (3.1) will become

ẋp(t) = −Kpx̄p(t)− λ̂p(t) + λp(t) +
m∑

l=1

GlF (xp(t− τl(t)))up(t− τl(t)) (3.14)

Now we need to analyze the incoming traffic up(t−τl(t)) from the neighboring nodes

with delay, which is also governed by the switching control law (3.7) depending on

the value of the delayed queuing state xp(t− τl(t)). Therefore, the equation (3.14)

can be written as

ẋp(t) = −Kpx̄p(t)− λ̂p(t) + λp(t) +
m1∑

l=1

GlCserver

+
m2∑

l=1

Gl[Kpx̄p(t− τl(t)) + λ̂p(t− τl(t))] (3.15)

where m1 is the number of neighbor nodes which take the maximum value of the

controller Cserver, m2 is the number of neighbor nodes which take the value of the

normal controller ūp(t − τl(t)), and the other neighbors which take the minimum

values of the controller 0 are included in equation (3.15). Therefore, the above

system can be written by the following state space representation:

ẋp(t) = −Kpx̄p(t)− λ̂p(t) + λp(t) +
m∑

l=1

GlBcCserver (3.16)

+
m∑

l=1

GlBl[Kpx̄p(t− τl(t)) + λ̂p(t− τl(t))]

74



where the system matrices Bc and Bl are defined as follows:

Bc =





I, if up(t− τl(t)) = Cserver

0, otherwise

Bl =





I, if up(t− τl(t)) = ūp(t− τl(t))

0, otherwise

Therefore, by applying the switching controller (3.8) and the selection strategy of the

traffic compression gains (3.13), the dynamic queuing system of the premium traffic (3.1)

will enter the normal control mode and can be expressed by the linear time-delay system

given in (3.16). The system (3.16) with the adaptive estimator λ̂p(t) as given in (3.11) is

a linear switching time-delay system with arbitrary switchings. The stability analysis of

the above closed-loop system is presented in the next section.

3.1.2 Stability Analysis of the Premium Traffic

For the purpose of stability analysis, let us review the adaptive estimator (3.10) as a new

state and introduce the following coordinate system, namely

λ̄p(t) = λ̂p(t)− λp(t)

zp(t) =
[

x̄T
p (t) λ̄T

p (t)

]T

Consequently, the resulting closed-loop system of (3.1) can be written as

żp(t) = Dkzp(t) +
m∑

l=1

Flzp(t− τl(t)) +
m∑

l=1

Hlvl(t) (3.17)

zp(t) = ϕ(t), t ∈ [−h, 0]

k ∈ ℘, ℘ = 1, 2

where ϕ(t) is the initial condition of the delay system, k ∈ ℘, ℘ = 1, 2 is the switching

signal defined in the set ℘ with two values, vl(t) is the external signal, and Dk, Fl, Hl are
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the system matrices that are defined as follows:

D1 =



−Kp −I

∆p −Πp


 D2 =



−Kp −I

0 −Πp


 Fl =




GlBlKp GlBl

0 0




Hl =




0 0 GlBl GlBc

−Πp −I 0 0


 vT

l (t) =
[

λp(t) λ̇p(t) λp(t− τl(t)) Cserver

]

The above system is a linear switched system with multiple and time-varying delays.

The switchings in the system is arbitrary. The feedback control gain Kp and the adaptive

control gains ∆p and Πp are present in the system matrices Dk and Fl. Therefore, the

objective of the congestion control problem for the premium traffic is to find the control

gains that will guarantee the stability of the closed-loop system (3.17). First, the following

lemma is presented to derive the stability conditions of the closed-loop system (3.17).

Lemma 3.1. The switched time-delay system (3.17) is uniformly ultimately bounded if

there exist symmetric positive definite matrices P , Sl, Q, R, and positive definite matrices

M and N of appropriate dimensions, for l = 1, ..., m, such that the following matrix

inequality conditions are satisfied:

Wk =




2QT (Dk + Fl) + M P −QT + (Dk + Fl)T R −hQT Fl

∗ −R−RT + Sl + N −hRT Fl

∗ ∗ −Sl


 < 0 (3.18)

Under these conditions, in steady state the ultimate bound of the system states has a radius

of r = max(r1, r2) with rk = λmax(Φl)
λmin(−Wk)‖vl(t)‖2, k = 1, 2, where λmax(.) and λmin(.) are

the maximum and the minimum eigenvalue of the corresponding matrix, respectively and
Φl = HT

l (QM−1Q + RN−1RT )Hl (3.19)

Proof : The switched time-delay system (3.17) can be expressed in an equivalent

descriptor form [85] as follows

żp(t) = y(t)

y(t) = (Dk +
m∑

l=1

Fl)zp(t)−
m∑

l=1

Fl

∫ t

t−τl(t)
y(s)ds +

m∑

l=1

Hlvl(t) (3.20)

Consider the following Lyapunov function candidate with symmetric positive definite ma-

trices P and Sl,
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V (zt) = zT
p (t)Pzp(t) +

m∑

l=1

1
h

∫ 0

−h

∫ t

t+θ
yT (s)Sly(s)dsdθ (3.21)

Noting that 0 ≤ τl(t) ≤ h, the time derivative of V along the trajectories of (3.17) is given

by

V̇ = 2zT
p (t)Py(t) +

m∑

l=1

yT (t)Sly(t)− 1
h

m∑

l=1

∫ t

t−h
yT (s)Sly(s)ds

= 2[zT
p (t) yT (t)]




P QT

0 RT







y(t)

żp(t)− y(t)


 +

m∑

l=1

yT (t)Sly(t)

−1
h

m∑

l=1

∫ t

t−h
yT (s)Sly(s)ds

= 2zT
p (t)Py(t) + (2zT

p (t)QT + 2yT (t)RT )(żp(t)− y(t)) +
m∑

l=1

yT (t)Sly(t)

−1
h

m∑

l=1

∫ t

t−h
yT (s)Sly(s)ds (3.22)

where Q and R are symmetric positive definite matrices. By introducing the positive

matrices Q and R, there is no cross product of the Lyapunov matrix P and the system

matrices Dk and Fl, hence it will be adapted for the controller design.

By submitting equation (3.20) into (3.22), we will have that

V̇ ≤ 2zT
p (t)Py(t) + 2zT

p (t)QT (Dk +
m∑

l=1

Fl)zp(t)

−2zT
p (t)QT

m∑

l=1

Fl

∫ t

t−τl(t)
y(s)ds + 2zT

p (t)QT
m∑

l=1

Hlvl(t)

+2yT (t)RT (Dk +
m∑

l=1

Fl)zp(t)− 2yT (t)RT
m∑

l=1

Fl

∫ t

t−τl(t)
y(s)ds

+2yT (t)RT
m∑

l=1

Hlvl(t)

−2zT
p (t)QT y(t)− 2yT (t)RT y(t)

+
m∑

l=1

yT (t)Sly(t)− 1
h

m∑

l=1

∫ t

t−τl(t)
yT (s)Sly(s)ds
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=




zp(t)

y(t)




T



2QT (Dk +
m∑

l=1

Fl) P −QT + (Dk +
m∑

l=1

Fl)T R

∗ −R−RT +
m∑

l=1

Sl







zp(t)

y(t)




+
1
h

m∑

l=1

∫ t

t−τl(t)




zp(t)

y(t)

y(s)




T 


0 0 −hQT Fl

∗ 0 −hRT Fl

∗ ∗ −Sl







zp(t)

y(t)

y(s)




ds

+2zT
p (t)QT

m∑

l=1

Hlvl(t) + 2yT (t)RT
m∑

l=1

Hlvl(t)

≤
m∑

l=1

1
τl(t)

∫ t

t−τl(t)




zp(t)

y(t)




T 


2QT (Dk + Fl) P −QT + (Dk + Fl)T R

∗ −R−RT + Sl







zp(t)

y(t)


 ds

+
m∑

l=1

1
τl(t)

∫ t

t−τl(t)




zp(t)

y(t)

y(s)




T 


0 0 −hQT Fl

∗ 0 −hRT Fl

∗ ∗ −Sl







zp(t)

y(t)

y(s)




ds

+2zT
p (t)QT

m∑

l=1

Hlvl(t) + 2yT (t)RT
m∑

l=1

Hlvl(t) (3.23)

For the last two terms in equation (3.23), the following inequality known as the Park’s

inequality is used for bounding the last two cross terms, namely given a, b ∈ Rn and a

positive definite matrix R we can always write

2aT b ≤ aT Ra + bT R−1b R > 0 (3.24)

The above inequality was presented and shown in [129].

Therefore, by applying the Park’s inequality (3.24) to the last two terms in V̇ , one

can obtain:

2zT
p (t)QT

m∑

l=1

Hlvl(t) ≤ zT
p (t)Mzp(t) +

m∑

l=1

vT
l (t)HT

l QM−1QT Hlvl(t)

2yT (t)RT
m∑

l=1

Hlvl(t) ≤ yT (t)Ny(t) +
m∑

l=1

vT
l (t)HT

l RN−1RT Hlvl(t)

where M and N are positive definite matrices. Therefore,

V̇ ≤
m∑

l=1

1
τl(t)

∫ t

t−τl(t)
[ξT (t, s)Wkξ(t, s) + vT

l (t)Φlvl(t)]ds (3.25)
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where

Wk =




2QT (Dk + Fl) + M P −QT + (Dk + Fl)T R −hQT Fl

∗ −R−RT + Sl + N −hRT Fl

∗ ∗ −Sl




ξT (t, s) = [zT
p (t) yT (t) yT (s)]

Φl = HT
l (QM−1QT + RN−1RT )Hl l = 1, ..., m

Consequently, if Wk < 0 and for any ξT (t, s) that satisfies:

−ξT (t, s)Wkξ(t, s) ≥ vT
l (t)Φlvl(t) (3.26)

one will have

V̇ ≤ 0 (3.27)

Therefore, the system (3.17) is ultimately bounded when Wk < 0, and the radius of the

ultimately bounded region is given by:

λmax(Φl)
λmin(−Wk)

‖vl(t)‖2 (3.28)

where λmax and λmin denote the maximum and the minimum eigenvalue of the corre-

sponding matrices, respectively. This completes the proof of the lemma. ¥

Lemma 3.1 shows that the nonlinear feedback controller ūp(t) is a stabilization

control law of the system (3.1) under the normal control mode and provides the stability

conditions for the closed-loop system (3.17). However, the matrix Wk in equation (3.26)

is not linear with respect to the system matrices. To tackle this problem, we need to

transform the matrix inequality Wk into an equivalent linear matrix inequality (LMI).

The following lemma is now presented to in order to derive the control gains through the

expressions of the system matrices by solving the transformed LMI conditions.

Lemma 3.2. Consider the system (3.17), if there exist symmetric positive definite matri-

ces Y1, Y2, Y3, R̄, S̄, positive definite matrices M̄ , N̄ , and matrices Uk, Ūk, Tl, T̄l, Q̄l of

appropriate dimensions, k = 1, 2 and l = 1, ..., n, such that the following LMI conditions

are satisfied:

79



Ωk =




2(Uk + Tl) + M̄ Y T
1 − Y2 + Ūk −hT̄l

∗ −R̄− R̄T + S̄ + N̄ −hQ̄l

∗ ∗ −Y3l




< 0 (3.29)

then the matrix inequality condition (3.18) in lemma 3.1 holds and the system (3.17) is

ultimately bounded. The system matrices are then given by Dk = UkY
−1
1 and Fl = TlY

−1
1 .

Proof: As far as the matrix inequality condition Wk < 0 that is given in lemma 3.1

is concerned, let us define

Y −1
1 = Q

Y −1
2 = P

Y −1
3l = Sl

ΛT = diag{Y T
1 Y T

2 Y T
3l }

Then, by multiplying Wk with ΛT and Λ from the left and the right, respectively, we will

have

Ωk = ΛT WkΛ

=




2(Uk + Tl) + M̄ Y T
1 − Y2 + Ūk −hT̄l

∗ −R̄− R̄T + S̄ + N̄ −hQ̄l

∗ ∗ −Y3l




(3.30)

where

Dk = UkY
−1
1 Fl = TlY

−1
1

M̄ = Y T
1 MY1 N̄ = Y T

2 NY2

R̄ = Y T
2 RY2 S̄l = Y T

2 SlY2

T̄l = TlY
−1
1 Y3l Q̄l = Y T

2 RT T̄l

Ūk = (Uk + Tl)T RY2

Therefore, if Ωk < 0 then one will also have Wk < 0. Consequently, by using the LMI

conditions (3.29) one can guarantee the ultimate boundedness of the switched time-delay

system (3.17). This completes the proof of the lemma. ¥
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Lemma 3.2 gives the expressions of the control gains that are incorporated in the

system matrices Dk and Fl. It should be noted that Lemma 3.1 only gives the stability

condition of the system (3.1) under the normal control mode. The stability of the system

under the edge modes is guaranteed by the regulation strategy of the traffic compression

gains (3.13). The following remarks are presented to clarify our proposed congestion

control strategies.

Remark 3.1. The values of the traffic compression gains are initially assigned by the

network operator, however during the network operation it may be regulated to avoid con-

gestion. Specifically when the entire link capacity Cserver is allocated to the premium

traffic, as shown in the edge mode (ii), this implies a high likelihood of congestion so that

the network is required to lower its traffic load by resetting the traffic compression gains

according to the regulation rule (3.13). In this case, more packets are forced to be dropped

out and the throughput of the entire network will decrease.

Remark 3.2. As per Lemma 3.1, the ultimate boundary region of the premium traffic is

a time-varying function:

‖ξ(t, s)‖2 = max{r1, r2}

rk =
λmax(Φl)

λmin(−Wk)
‖vl(t)‖2 (3.31)

From the above equation one can note that if the external signal vl(t) decreases, the ultimate

boundary of the premium traffic will also decrease. However, the external signal vl(t) is

given by

vT
l (t) =

[
λp(t) λ̇p(t) λp(t− τl(t)) Cserver

]
(3.32)

therefore, the minimum boundary of the premium traffic can be expressed as

‖ξ(t, s)‖2
min =

λmax(Φl)
λmin(−Wk)

‖Cserver‖2 (3.33)

where ‖Cserver‖2 is the l2 norm of the server capacity which includes the output capacities

of all the nodes in the network.

Therefore, the results above with the LMI conditions in Lemma 3.2 can be summa-

rized by the following theorem.
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Theorem 3.1. The dynamic queuing model of the premium traffic (3.1) is ultimately

bounded with the application of the switching congestion controller (3.8) and the regulation

strategy of the traffic compression gain (3.13), if the LMI conditions in Lemma 3.2 are

satisfied. Furthermore, the physical constraints of the premium traffic (3.4) is ensured by

the switching congestion control strategy.

Proof: The proof follows from the constructive analysis that is given in this section.

¥

3.1.3 Ordinary Traffic Control Strategy

The physical constraints (2.15)-(2.17) for the ordinary traffic of the entire network is

written here again:
0 ≤ xr(t) ≤ xmax

r (3.34)

0 ≤ ur1(t) ≤ cr(t) (3.35)

0 ≤ ur2(t) ≤ λmax
r < cr(t) (3.36)

where xmax
r = vec{xbuffer

ri } denotes the buffer size constraints of the network, λmax
r is

the maximum allowable traffic rate of the ordinary traffic induced by the transmitter

constraint, and cr(t) is the instantaneous leftover capacity from the premium traffic which

equals to Cserver − up(t) and is a time-varying bound.

Recall that the dynamic queuing model of the ordinary traffic (3.2). Since the in-

coming traffic of the ordinary traffic is available for control, the congestion control problem

for the ordinary traffic is to regulate the traffic rate ur2(t) and to allocate the bandwidth

capacity ur1(t) of the ordinary traffic so that the system (3.2) is stable and the physical

constraints (3.34)-(3.36) are guaranteed. Therefore, according to the switching control

approach, the congestion control strategy of the ordinary traffic is selected as follows:

ur1(t) =





0, if ūr1(t) < 0;

ūr1(t), if 0 ≤ ūr1(t) ≤ cr(t);

cr(t), if ūr1(t) > cr(t).

(3.37)
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ur2(t) =





λmax
r , if λr(t) ≥ λmax

r ;

λr(t), if λr(t) < λmax
r .

(3.38)

where cr(t) = Cserver − up(t) is the leftover capacity from the premium traffic.

As shown in the above switching control strategy, the regulation rule of the input

ur2(t) is to guarantee that the incoming traffic rate of the ordinary traffic λr(t) will not

exceed the maximum allowable rate which is bounded by the leftover capacity from the

premium traffic, that is the time-varying bound cr(t). When the incoming traffic λr(t) is

within the threshold, the control strategy is to allocate the bandwidth capacity ur1(t) of

the ordinary traffic without adjusting the incoming traffic rate λr(t) anymore. By doing so,

the ordinary traffic will receive as large as possible traffic rate and left as much as possible

bandwidth for the best-effort traffic class. In the meantime, the physical constraint of the

bandwidth ur1(t) is also guaranteed by the switching controller (3.37).

Given the nonlinearity of the dynamic queuing model of the ordinary traffic (3.2),

the nonlinear feedback controller ūr1(t) is selected according to the following feedback

linearization rule:

ūr1(t) = F−1(xr(t))[Krx̄r(t) + λ̂r(t)] (3.39)

where Kr is the state feedback control gain, and λ̂r(t) is a time-varying signal to compen-

sate for the external signal λr(t). The time-varying signal λ̂r(t) is selected according to

the modified parameter projection method as follows:

˙̂
λr(t) =





∆rx̄r(t)−Πrλ̂r(t), if 0 ≤ λ̂r(t) ≤ λmax
r or

λ̂r(t) = 0, x̄r(t) ≥ 0 or

λ̂r(t) = λmax
r , x̄r(t) ≤ 0

−Πrλ̂r(t), otherwise

(3.40)

where ∆r and Πr are the adaptive control gains for the ordinary traffic class.

The congestion control scheme of the ordinary traffic has three levels of switchings.

The first switching level is caused by the regulation strategy of the incoming traffic (3.38).

Provided that the incoming traffic rate satisfies it upper bound λmax
r the bandwidth con-

troller (3.37) is applied which induces the second switching level. The bandwidth controller
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ur1(t) switches among three values, namely ulow
r1 = 0, uhigh

r1 = cr(t), and uin
r1(t) = ūr1(t).

According to the switching scheme shown in Fig. 2.4, whenever the bandwidth controller

ur1(t) switches to the boundary values, 0 or cr(t), an extra regulator is applied to adjust

the system parameters so to ensure that after some finite time the normal controller ūr1(t)

will take effect. Subsequently, the system will operate on the third switching level that is

introduced by the adaptive estimator given in (3.38).

Therefore, after applying the switching congestion control strategies (3.37)-(3.38),

the closed-loop system for the ordinary traffic will experience multiple modes. However,

since the constraint of the ordinary traffic cr(t) is time-varying, we first need to analyze

the following two cases depending on the different values of the time-varying bound cr(t),

namely

• Case (i): If cr(t) = 0 at some time t = t1, that is Cserver−up(t) = 0, implying that

there is no leftover capacity from the premium traffic class, from equation (3.37) it

then follows that ur1(t) = 0 and ur2(t) = 0.

Therefore, the dynamical system for the ordinary traffic becomes

ẋr(t) =
m∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t)) (3.41)

Since there is no leftover capacity available for the ordinary traffic at this time, no

incoming ordinary traffic is allowed and the ordinary queuing state xr(t) must remain

unchanged until there is any capacity available. Therefore, the traffic compression

gains Gl is set to Gl = 0. This implies that any incoming traffic from the neighboring

nodes are forced to be dropped out until there is an available capacity.

• Case (ii): If cr(t) > 0 at some time t = t2, by applying the flow rate regulator

(3.38), the ordinary incoming traffic λr(t) = ur2(t) is guaranteed to be bounded.

That is, 0 ≤ λr(t) ≤ λmax
r . Consequently, the following three submodes depending

on different choices of the bandwidth controller ur1(t) are need to be considered:

– (a) Edge Mode: Let ur1(t) = 0 at some time t = t2, then it follows that

the queuing length of the ordinary traffic in each node is sufficiently small so
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that one have ūr1(t) < 0. Therefore, the closed-loop of dynamical model (3.2)

becomes:

ẋr(t) = λr(t) +
m∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t)) > 0 (3.42)

It now follows that the ordinary queuing state xr(t) will increase. After some

finite time t3 > t2, one will have ur1(t) > 0 and ur1(t−τl(t)) > 0, and therefore

the controller ūr1(t) will take effect.

– (b) Edge Mode: If ur1(t) = cr(t) at some time t = t4, then it implies that the

queuing length xr(t) is sufficiently large. The closed-loop system corresponding

to (3.2) is now governed by

ẋr(t) = −F (xr(t))cr(t) + ur2(t) +
m∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t))

≤ −F (xr(t))cr(t) + λmax
r +

m∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t))

Recall that F (xr(t − τl(t)))ur1(t − τl(t)) represents the internal incoming or-

dinary traffic among the nodes with time delays τl(t). Therefore, according to

the transmitter constraint, we will have

ẋr(t) ≤ −F (xr(t))cr(t) + λmax
r +

m∑

l=1

Glλ
max
r (3.43)

The objective under this case is to regulate the system design variable, that is

the traffic compression gain Gl, so that the derivative of the queuing state ẋr(t)

is negative, and hence the queuing length xr(t) will decrease with the time.

Therefore, the following conditions for the traffic compression gain matrix Gl

can be obtained:

0 ≤
m∑

l=1

Gl ≤ (F (xr(t))cr(t)− λmax
r )(λmax

r )+ (3.44)

so that the right hand side of equation (3.43) is negative indicating that ẋr(t) <

0. Consequently, the ordinary queuing length xr(t) will decrease until ur1(t)

becomes < cr(t), at some time t5 > t4, and the controller ūr1(t) will take effect.
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– (c) Normal Control Mode: If ur1(t) = ūr1(t) at some time t = t6, then the

closed-loop of the ordinary traffic (3.2) can be written as

˙̄xr(t) = −Krx̄r(t)− λ̂r(t) + λr(t) +
m∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t))(3.45)

We now need to check the value of the delayed incoming traffic ur1(t − τl(t).

Similar to the analysis in the normal control mode of the premium traffic,

multiple submodes of the system (3.44) with respect to different choices of

the delayed inputs ur1(t− τl(t) need to be considered. However, the multiple

submodes can be written together in one state space representation as follows:

˙̄xr(t) = −Krx̄r(t)− λ̂r(t) + λr(t) +
m∑

l=1

Gr
l B

r
c cr(t) (3.46)

+
m∑

l=1

Gr
l B

r
l [Krx̄r(t− τl(t)) + λ̂r(t− τl(t))]

if we define the system matrices Br
c and Br

l as shown below

Br
c =





I if ur(t− τl(t)) = cr(t)

0 otherwise
(3.47)

Br
l =





I if ur(t− τl(t)) = ūr(t− τl(t))

0 otherwise
(3.48)

Therefore, after applying the switching congestion controller (3.37)-(3.38) and the

regulation strategy of the traffic compression gains (3.44), the dynamic queuing of the

ordinary traffic (3.2) will eventually reduce to the normal control mode. The closed-

loop ordinary traffic system (3.46) with the adaptive estimator (3.40) is a linear arbitrary

switched system with multiple and time-varying delays. The stability analysis of this

system is given in the next section.

3.1.4 Stability Analysis of the Ordinary Traffic

For the stability analysis of the ordinary traffic, we consider the adaptive estimator λ̂r(t)

as a new state and define the following revised state space representation:
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λ̄r(t) = λ̂r(t)− λr(t)

z̄r(t) = vec{x̄r(t), λ̄r(t)}

The closed-loop ordinary traffic system can be expressed by the following standard

linear time-delay switching system:

żr(t) = Dr
kzr(t) +

m∑

l=1

F r
l zr(t− τ) +

m∑

l=1

Hr
l vl(t) (3.49)

zr(t) = φ(t), φ(t) = [−h, 0]

k ∈ ℘, ℘ = 1, 2

where the system matrices Dr
k, F r

l , Hr
l are defined as follows:

Dr
1 =



−Kr −I

∆r −Πr


 Dr

2 =



−Kr −I

0 −Πr


 F r

l =




Gr
l B

r
l Kr Gr

l B
r
l

0 0




Hr
l =




0 0 Gr
l B

r
l Gr

l B
r
c

−Πr −I 0 0


 vr

l (t) =
[

λr(t) λ̇r(t) λr(t− τl(t)) cr(t)

]T

The control objective of the ordinary traffic is then to derive the feedback control gain Kr

and the adaptive control gains ∆r and Πr, as incorporated in the system matrices Dr
k and

F r
l , so that closed-loop system (3.49) is stable.

When the above system is compared with the closed-loop system of the premium

traffic (3.17), one can conclude that the closed-loop of the ordinary traffic system (3.49) has

a similar structure to that of the premium traffic class. Therefore, similar to the Lemma

3.1, the stability conditions of the closed-loop system (3.49) are given by the following

lemma.

Lemma 3.3. The switched time-delay system (3.49) is uniformly ultimately bounded if

there exist symmetric positive definite matrices P , Sl, Q, R, and positive definite matri-

ces M and N of appropriate dimensions for l = 1, ...,m, such that the following matrix

inequality conditions are satisfied:

W r
k =




2QT (Dr
k + F r

l ) + M P −QT + (Dr
k + F r

l )T R −hQT F r
l

∗ −R−RT + Sl + N −hRT F r
l

∗ ∗ −Sl


 < 0 (3.50)
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and the radius of the ultimately bounded region is given by:

r = max(r1, r2)

rk =
λmax(Φr

l )
λmin(−W r

k )
‖vr

l (t)‖2

Φr
l = (Hr

l )T (QM−1Q + RN−1RT )Hr
l

where λmax(.) and λmin(.) are the maximum and the minimum eigenvalue of the corre-

sponding matrix, respectively.

Proof: The proof follows along the same lines as in the proof of Lemma 3.1 by

considering the system matrices of the ordinary traffic. ¥

Lemma 3.3 shows that the closed-loop system (3.49) is ultimately bounded under

the normal control mode. However, the matrix inequality condition (3.50) is not linear

with respect to the system matrices, so that the gains of the congestion controller can not

be derived directly. Therefore, the following lemma is presented to derive the expressions

of the control gains through solving an equivalent LMI condition of the matrix inequality

in Lemma 3.3.

Lemma 3.4. Consider the matrix inequality condition (3.50). If there exists symmetric

positive definite matrices Y1, Y2, Y3, R̄, S̄, positive definite matrices M̄ , N̄ , and matrices

U r
k , Ū r

k , T r
l , T̄ r

l , Q̄r
l of appropriate dimensions, k = 1, 2 and l = 1, ..., n, such that the

following LMI conditions are satisfied:

Ωr
k =




2(U r
k + T r

l ) + M̄ Y T
1 − Y2 + Ū r

k −hT̄ r
l

∗ −R̄− R̄T + S̄ + N̄ −hQ̄r
l

∗ ∗ −Y3l




< 0 (3.51)

then the matrix inequality condition (3.50) is valid and the system (3.49) is ultimately

bounded. The system matrices of the ordinary traffic are then given by Dr
k = U r

kY −1
1 and

F r
l = T r

l Y −1
1 .

Proof: The proof follows along the same lines as that in the proof of Lemma 3.2

by considering the system matrices of the ordinary traffic. ¥

Lemma 3.4 shows that the nonlinear feedback ūr1(t) of the ordinary traffic is a

stabilizing control law for the system (3.2) under the normal control mode. The stability
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of the dynamic queuing system (3.2) under the edge modes are guaranteed by regulating

the traffic compression gains according to (3.40). Similar to the analysis in the premium

traffic, the following remarks are noted for the switching congestion control strategy of

the ordinary traffic.

Remark 3.3. The traffic compression gains are initially assigned by the network operator

and will be set to 0 when there is no leftover capacity from the premium traffic (that is the

case (i)). For the ordinary traffic, when there is no leftover capacity from the premium

traffic, as described in case (i), the network is required to block all the links in the network

and wait until there is an available capacity. In this case, the centralized control algorithm

will be conservative since all the packets in the network are forced to be dropped out.

As seen in the next section, this conservatism will be relaxed in the decentralized control

algorithm.

Remark 3.4. When the entire leftover capacity cr(t) = Cserver−up(t) is utilized, a poten-

tial congestion will occur if the queuing length keeps increasing. The proposed regulation

strategy for the traffic compression gains (3.44) can guarantee that traffic load in the net-

work is decreased so that the queuing length of the ordinary traffic will decrease. In this

case, more packets are dropped out and the throughput of the entire network will also

decrease.

Remark 3.5. As mentioned in Lemma 3.3, the radius of the ultimately bounded region

for the ordinary traffic is given by a time-varying function, namely

r = max{r1, r2}

rk =
λmax(Φr

l )
λmin(−W r

k )
‖vr

l (t)‖2 (3.52)

As the external signal vr(t) decreases, the ultimate boundary of the system will also de-

crease. Specifically, when vr = 0 we will have

rmin = 0 (3.53)

and the queuing error of the ordinary traffic will convergence to 0 as t →∞. That is, the

system is asymptotically stable.
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Figure 3.2: The flow chart of the centralized switching congestion control (SCC) for Diff-Serv
network with a fixed topology.

The following theorem is now presented to summarize the above results as well as

the stability conditions that are given in Lemma 3.4.

Theorem 3.2. The dynamic queuing model of the ordinary traffic (3.2) is ultimately

bounded when the switching congestion controller (3.37) and the regulation strategy of the

traffic compression gain (3.44) are applied, and if the LMI conditions in Lemma 3.4 are

satisfied. Furthermore, all the physical constraints of the ordinary traffic (3.34)-(3.36) are

ensured by the switching congestion control strategy.

Proof: The proof follows from the constructive analysis and results that are given

in this subsection. ¥

The centralized switching congestion control algorithms for the premium and the

ordinary traffic classes presented in this section are summarized by the flow chart that is

given in Fig. 3.2.

As shown in Fig. 3.2, given a fixed topology Diff-Serv network with n nodes, the
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premium traffic controller first selects the traffic compression gain matrix Gp of the pre-

mium traffic based on the physical constraints of the network according to (3.13), where

Gp is defined as follows

Gp =
m∑

l=1

Gl =




0 g21 · · · gn1

g12 0 · · · gn2

...
...

. . .
...

g1n · · · · · · 0




(3.54)

Then, the premium traffic controller solves the LMI conditions Ωk so that the state feed-

back control gain Kp and the adaptive control gains ∆p and Πp are obtained. Therefore,

the adaptive estimator λ̂p(t) can be updated based on the instant queuing state and the

switching conditions in (3.10). The value of the allocated bandwidth for the premium traf-

fic Cp(t) can be calculated according to Cp(t) = up(t). Finally, the centralized controller

sends the value of the allocated bandwidth for the premium traffic flow Cpi(t) to each

node as well as the traffic compression gains gp
ji. Each node in the network will adjust its

allocated bandwidth and the data compression rates in the next communication cycle.

On the other hand, provided that the premium traffic bandwidth Cp(t) is given,

the ordinary traffic controller first calculates the leftover capacity in the network from

cr(t) = Cserver − Cp(t) and then the traffic compression gain matrix Gr for the ordinary

traffic is selected according to the regulation strategy (3.44). By solving the LMI conditions

Ωr
k in Lemma 3.4, the control gains Kr, ∆r and Πr are now obtained. The allocated

bandwidth Cr(t) and the regulated flow rate λr(t) for the ordinary can also be obtained.

3.2 Decentralized Congestion Control Scheme

As mentioned earlier, the centralized control approach requires exchange of large amount

of information over the communication channels which may not be always feasible and

reliable, and it does impose and extensive computational burden particularly when the

number of nodes in the network is large. Therefore, although the centralized control solu-

tion may be economic and may achieve high performance, it is very difficult to implement

it in large-scale networks. In these cases, decentralized control approach is more suitable
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Figure 3.3: The decentralized control framework for a NMAS with three nodes.

and can reduce the complexity of the controller design. From the communication point of

view, the decentralized control approach can greatly reduce the communication burden,

and from the implementation point of view, decentralized controllers are easy to deploy.

As shown in Fig. 3.3, in the decentralized control a local controller is attached to each

node and the control action is only based on the local information.

In this section, we consider the congestion control problem of a large-scale Diff-Serv

network. The centralized switching congestion control strategies that are proposed in the

previous section are extended to the decentralized framework based on the decentralized

dynamic queuing models that are presented in Chapter 2. The control objective for the

premium traffic is to allocate the output capacity of each node Cpi(t) by considering its

physical constraints. The control objective pursued for the ordinary traffic is to simulta-

neously regulate the incoming flow rate of each node λri(t) and allocate its capacity Cri(t)

under the constraints of the ordinary traffic. In the next two subsections, decentralized

switching congestion control strategies will be developed for the premium and the ordinary

traffic, respectively.
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3.2.1 Premium Traffic Control Strategy

Consider a large-scale network with n nodes. Let us re-write the decentralized model of

the premium traffic (2.37) for convenience as shown below

ẋpi(t) = −f(xpi(t))upi(t) +
n∑

j=1
j 6=i

f(xpj(t− τji(t)))upj(t− τji)gji
p (t) + λpi(t) (3.55)

where xpi(t) is the queuing state of node i, upi(t) is the control input, gp
ji(t) is the traffic

compression gains of the premium traffic between node j and i, and τji(t) is the time-

varying delay from node j to node i which satisfy the assumption (2.12)-(2.14).

The physical constraints of the premium traffic are also given below:

0 ≤ xpi(t) ≤ xbuffer
pi

0 ≤ upi(t) ≤ Cserver,i,

0 ≤ λpi(t) < λmax
pi ≤ Cserver,i i = 1, ...n

where xbuffer
pi is the premium buffer size of node i, Cserver,i is the total link capacity of

node i, and λmax
pi is the maximum allowable external incoming traffic which is introduced

by the transmitter constraint of node i.

The decentralized congestion control problem for the premium traffic is to design

the control input upi(t) so that system (3.55) is stable and the physical constraints (3.56)

are satisfied. According to the switching control approach of the constrained system, the

decentralized controller for the premium traffic is select as follows:

upi(t) =





0 if ūpi(t) < 0

ūpi(t) if 0 ≤ ūpi(t) ≤ Cserver,i

Cserver,i if ūpi(t) > Cserver,i

(3.56)

Furthermore, since system (3.55) is nonlinear with respect to the queuing state

xpi(t), and the incoming traffic λpi(t) is unknown. The nonlinear feedback controller

ūpi(t) is selected according to the feedback linearization technique and robust adaptive

control theory [128], namely

ūpi(t) = f−1(xpi, t)[kpix̄pi(t) + λ̂pi(t)] (3.57)
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where kpi is the state feedback control gain that affects the convergence rate of the con-

troller, and λ̂pi(t) is the adaptive estimator that is used to estimate the incoming traffic

λpi(t) and is designed according to the modified parameter projection method as shown

below:

˙̂
λpi(t) =





δpix̄pi(t)− βpiλ̂pi(t) if 0 ≤ λ̂pi(t) ≤ λmax
pi or

λ̂pi(t) = 0, x̄pi(t) ≥ 0 or

λ̂pi(t) = λmax
pi , x̄pi(t) ≤ 0

−βpiλ̂pi(t) otherwise

(3.58)

where δpi and βpi are design parameters. Compared with the centralized estimator λ̂p(t)

in the centralized control framework of the premium traffic, the switching laws of the

decentralized congestion controller (3.56) and the update rule of the adaptive estimator

(3.58) are only dependent on the local information of each node. Unlike in the centralized

control approach, the performance of the decentralized congestion control is evaluated at

each local node. Therefore, although each node in the network will eventually become

stable, but that may be achieved at different transient time rates.

It should be noted that the decentralized congestion control strategies (3.56)-(3.58)

have two levels of switchings. Similar to the centralized control, the first level of switching

is introduced by the physical constraints of the system. The control input switches among

three values, namely ulow
pi = 0, uhigh

pi = Cserver,i, and uin
pi (t) = ūpi(t). If the controller

switches to its boundary values, a regulator is applied to adjust the system parameters so

that the system will move towards the safe operation mode. After the normal controller

ūpi(t) is selected, the second level of switching is activated by the adaptive estimator as

defined in (3.58) and the system will operate at this level.

Therefore, according to the switching control law (3.56), the decentralized controller

upi(t) of each node has three different choices over time, that is 0, ūpi(t), and Cserver,i

depending on the changes in xpi(t). The analysis corresponding to these three operational

modes are described in detail below.

• Edge State (i): Suppose that upi(t) = 0 at some time t = t1 which implies that

x̄pi < 0, and which indicates that xpi(t1) is sufficiently small. The dynamic queuing
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system (3.55) can then be written as follows:

ẋpi(t) =
n∑

j=1
j 6=i

f(xpj(t− τji(t)))upj(t− τji)gji
p (t) + λpi(t) > 0 (3.59)

The state xpi(t) will increase until some finite time t2 > t1, when ūpi(t2) > 0, and

the controller upi(t) = ūpi(t) will then take effect afterwards.

• Edge State (ii): If upi(t) = Cserver,i at some time t = t3, this indicates that

xpi(t1) is sufficiently large. Therefore, f(xpi(t))Cserver,i ≈ Cserver,i, and the premium

queuing state is now governed by

ẋpi(t) ≈ −Cserver,i + λpi(t) +
n∑

j=1
j 6=i

λpj(t− τji(t))gji(t)

≤ −Cserver,i +
n∑

j=1
j 6=i

λmax
pj gji(t) + λmax

pi (3.60)

The regulation strategy in this case is to reset the traffic compression gains gp
ji(t)

so that the derivative of the local queuing state xpi(t) will be negative. Hence, the

queuing length will decrease with the time and after some finite time t4 > t3, the

normal controller ūpi(t) will take effect. Therefore, according to the state equation

(3.60), the regulation strategy for the traffic compression gains are selected as

0 ≤ gp
ji(t) <

Cserver,i − λmax
pi∑

j∈℘i

λmax
pj

(3.61)

• Normal Control State (iii): At some time t = t5, the premium controller ūpi(t)

as defined in (3.80) will take effect. The governing premium queuing equation (3.55)

is now given by

ẋpi(t) = −kpix̄pi(t)− λ̂pi(t) + λpi(t) +
n∑

j=1
j 6=i

f(xpj(t− τji(t)))upj(t− τji(t))gji(t)

One now needs to check the incoming traffic from each neighboring node j. Certain

node controllers may be given by upj(t − τji(t)) = Cserver,j for j = 1, ..., n1, and

others may be given by upk(t − τki(t)) = ūpk(t − τki(t)) for k = 1, ..., n2, and yet
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others may be given by upl(t− τli(t)) = 0 for l = 1, ..., n3, where n = n1 + n2 + n3.

Therefore, the state equation (3.55) may be approximated as follows:

ẋpi(t) = −[kpix̄pi(t) + λ̂pi(t)] + λpi(t) +
n2∑

j=1

Cserver,jg
p
ji(t)

+
n1∑

j=1

[kpj x̄pj(t− τji(t)) + λ̂pj(t− τji(t))]g
p
ji(t) (3.62)

In contrast to the closed-loop system in the centralized control, the above system is a

linear switching system with multiple time-varying delays with coupled states from the

neighboring nodes. The decentralized control objective of the premium traffic can be

recast as that of selecting the state feedback control gains kpi and the adaptive control

gain δpi and βpi such that the above system is stable. The stability conditions of such a

system is presented in the next subsection.

3.2.2 Stability Analysis of the Premium Traffic

To derive the stability conditions of the system (3.62) and select the control gains of the

premium traffic, let us re-write the adaptive estimator as a new state and define the new

state space as follows:

λ̄pi(t) = λ̂pi(t)− λpi(t)

zpi(t) =
[

x̄pi(t) λ̄pi(t)

]T

(3.63)

The closed-loop system of each node can be re-written in the following standard

linear switching form with time-varying delays, namely

żpi(t) = Dk
i zpi(t) +

n∑

j=1
j 6=i

Fjzpj(t− τji(t)) + Hivpi(t) i = 1, ..., n (3.64)

zpi(t) = ϕi(t) ϕi(t) ∈ [−h, 0]

k ∈ ℘, ℘ = 1, 2

where ϕi(t) defines the initial condition of the system, ℘ is the switching signal that is

introduced by the adaptive estimator, vpi(t) is the external signal to the system, and Dk
i ,
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Fj , Hi, for i, j = 1, ..., n, are the system matrices that are defined as follows:

D1
i =



−kpi −1

δpi −βpi


 D2

i =



−kpi −1

0 −βpi




Fj =




kpjg
p
ji gp

ji

0 0


 Hi =




0 0 Gji

−βpi −1 0




vpi(t) =
[

λpi(t) λ̇pi(t) Λpj(t− τji(t))

]T

Λpj(t− τji(t)) = [vec{λpj(t− τji(t)}, vec{Cserver,j}]

Gji = vec{gp
ji(t)}

The system (3.64) is a switching system with coupled states and time-varying delays. The

control objective is to determine the control gains kpi, βpi, and δpi as presented in the

system matrix Dk
i , in order to guarantee the stability of the closed-loop system (3.64).

The following lemma is now presented to derive the stability conditions of the closed-loop

system (3.64).

Lemma 3.5. The system (3.64) is ultimately bounded if there exist symmetric positive

definite matrices Pi, Si, i = 1, ..., n, and positive definite matrices Mi, Ni, Qi, Ri, such

that the following matrix inequality condition is satisfied:

Wik =




2MT
i Dk

i + Qi Pi −MT
i + (Dk

i )T NT
i −MT

i Fji 0

∗ −NT
i −Ni + Ri + Si −NT

i Fji 0

∗ ∗ 0 0

∗ ∗ ∗ −Si




< 0 (3.65)

where Fji = vec{Fj}, and the radius of the ultimately bounded region is given by:

r = max{r1, r2}

rk =
λmax(Φi)

λmin(−Wik)
‖vpi(t)‖2 (3.66)

where Φi = HT
i (MiQ

−1
i M−1

i + NiR
−1
i N−1

i )Hi, and λmin and λmax denotes the maximum

and minimum eigenvalue of the corresponding matrix.

Proof: The switching system (3.64) can be re-written into the following descriptor

system [81]:
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żpi(t) = yi(t)

yi(t) = Dk
i zpi(t) +

n∑

j=1
j 6=i

Fjzpj(t)−
n∑

j=1
j 6=i

Fj

∫ t

t−τji(t)
yj(s)ds + Hivpi(t)

The following Lyapunov-Krasovskii functional candidate is now considered:

Vi = Vi1 + Vi2

Vi1 = zT
pi(t)Pizpi(t) (3.67)

Vi2 =
1
h

∫ 0

−h

∫ t

t+θ
yT

i (s)Siyi(s)dsdθ (3.68)

where Pi and Si are sympatric positive definite matrices. Therefore, the time derivative

of Vi along the trajectories of the system (3.64) can be obtained as:

V̇i1 = 2zT
pi(t)Piyi(t)

= 2[zT
pi(t) yT

i (t)]




Pi MT
i

0 NT
i







yi(t)

żpi(t)− yi(t)




= 2zT
pi(t)(Pi −MT

i )yi(t)− 2yT
i NT

i yi(t)

+2zT
piM

T
i Dk

i zpi + 2zT
piM

T
i

n∑

j=1
j 6=i

Fjzpj(t− τji(t)) + 2zT
piM

T
i Hivpi(t)

+2yT
i NT

i Dk
i zpi + 2yT

i NT
i

n∑

j=1
j 6=i

Fjzj(t− τji(t)) + 2yT
i NT

i Hivpi(t)

=




zT
pi(t)

yT
i (t)

ZT
j (t− τji(t))




T 


2MT
i Dk

i Pi −MT
i + (Dk

i )T NT
i MT

i Fji

∗ −2NT
i NT

i Fji

∗ ∗ 0







zpi(t)

yi(t)

Zj(t− τji(t))




+2zT
pi(t)M

T
i Hivpi(t) + 2yT

i NT
i Hivpi(t)

V̇i2 = yT
i (t)Siyi(t)− 1

h

∫ t

t−h
yT

i (s)Siyi(s)ds

where Mi and Ni are symmetric positive definite matrices, and Zj(t− τji(t)) and Fji are

defined as follows:

Zj(t− τji(t)) = vec{zj(t− τji(t))} (3.69)

Fji = vec{Fj} (3.70)

Now, by applying the Park’s inequality (3.24) [129] to the last two terms of V̇i1, the
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following inequalities hold for any positive definite matrices Ri and Qi:

2zT
pi(t)M

T
i Hjivpi(t) ≤ zT

pi(t)Qizpi(t) + vT
piH

T
i MiQ

−1
i MT

i Hivpi

2yT
i (t)NT

i Hjivpi(t) ≤ yT
i (t)Riyi(t) + vT

piH
T
i NiR

−1
i NT

i Hivpi

Therefore, the time derivative of Vi1 becomes

V̇i1 ≤




zT
pi(t)

yT
i (t)

ZT
j (t− τji(t))




T 


2MT
i Dk

i + Qi Pi −MT
i + (Dk

i )T NT
i MT

i Fji

∗ −2NT
i + Ri NT

i Fji

∗ ∗ 0







zpi(t)

yi(t)

Zj(t− τji(t))




+vT
piH

T
i (MiQ

−1
i MT

i + NiR
−1
i NT

i )Hivpi

and V̇i can be written as

V̇i ≤ 1
h

∫ t

t−h
(ξT

i (t, s)Wikξi(t, s) + vT
piΦivpi)ds (3.71)

where ξT
i (t, s) = [zT

pi(t) yT
i (t) ZT

j (t− τji(t)) yT
i (s)]T , Φi = HT

i (Q−1
i + R−1

i )Hi, and

Wik =




2MT
i Dk

i + Qi Pi −MT
i + (Dk

i )T NT
i −MT

i Fji 0

∗ −2NT
i + Ri + Si −NT

i Fji 0

∗ ∗ 0 0

∗ ∗ ∗ −Si




(3.72)

Therefore, according to the definition of the ultimate boundedness stability, the system

(3.64) is ultimately bounded if Wik < 0 and the radius of the ultimately bounded region

is given by:

r = max{r1, r2}

rk =
λmax(Φi)

λmin(−Wik)
‖vpi(t)‖2 (3.73)

where λmin and λmax indicate the maximum and minimum eigenvalue of the corresponding

matrix, respectively. This completes the proof of Lemma. ¥

Lemma 3.5 gives the stability conditions of the system (3.64). However, the matrix

inequality condition in Lemma 3.5 is not linear with respect to the system matrix, and

hence can not yield the control gains directly. Similar as before, we need to transform

the matrix inequality condition Wik < 0 into an equivalent linear matrix inequality (LMI)
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condition through fundamental matrix operations. The following lemma is now presented

to solve this problem and provide the expression of the system matrix Dk
i which contains

the control gains kpi, δpi, and βpi.

Lemma 3.6. Consider the matrix inequality condition (3.65) in Lemma 3.5. If there

exists symmetric positive definite matrices Y1i, Y2i, Y3i, Q̄i, N̄i, R̄i, S̄i, and matrices Uik,

Lik, Vi, Ti of appropriate dimensions, for k = 1, 2 and i = 1, ..., n, such that the following

LMI conditions are satisfied:

Ωik =




2Uik + Q̄i Y1i − Y2i + Lik −Vi 0

∗ −2N̄i + R̄i + S̄i −Ti 0

∗ ∗ 0 0

∗ ∗ ∗ −Y3i




< 0 (3.74)

then the matrix inequality condition (3.65) holds and the system (3.64) is ultimately

bounded. The system matrix of the premium traffic is now given by Dk
i = UikY

−1
1i .

Proof: Consider the matrix Wik in Lemma 3.5, and let us define

Y1i = M−1
i Y2i = P−1

i

Y3i = Y4i = S−1
i Λi = diag{Y1i Y2i I Y3i}

By pre and post multiplying the matrix Wik with ΛT
i and Λi, respectively, we obtain

Ωik = ΛT
i WikΛi

=




2Uik + Q̄i Y1i − Y2i + Lik −Vi 0

∗ −2N̄i + R̄i + S̄i −Ti 0

∗ ∗ 0 0

∗ ∗ ∗ −Y3i




where:

Q̄i = Y T
1i QiY1i N̄i = Y T

2i NiY2i

R̄i = Y T
2i RiY2i S̄i = Y T

2i SiY2i

Vi = Fji Ti = Y T
2i N

T
i Fji

Uik = Dk
i Y1i Lik = UT

ikN
T
i Y2i
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Therefore, if Ωik < 0 we will obtain Wik < 0 and the system (3.64) is ultimately bounded.

This completes the proof of Lemma. ¥

3.2.3 Ordinary Traffic Control Strategy

Recall that the decentralized dynamic queuing model of the ordinary traffic (2.27) is given

by:

ẋri(t) = −f(xri(t))u1
ri(t) + u2

ri(t) +
n∑

j=1
j 6=i

f(xrj(t− τji(t)))u1
rj(t− τji)gji

r (t) (3.75)

Since the ordinary traffic has a less restrictive QoS requirements and lower priority than

the premium traffic, the control specifications and objectives of the ordinary traffic are

different from those of the premium traffic and are now defined in terms of regulating the

incoming traffic rate while monitoring the link capacity that is leftover after its utilization

by the premium traffic.

A typical set of the physical constraints of the ordinary traffic are listed as follows:

0 ≤ xri(t) ≤ xbuffer
ri (3.76)

0 ≤ u1
ri(t) ≤ cri(t) (3.77)

0 ≤ u2
ri ≤ λmax

ri < cri(t) (3.78)

where cri(t) denotes the instantaneous leftover capacity of node i from the premium traffic

which is actually equal to Cserver,i − upi(t).

The congestion control procedure for the ordinary traffic is divided into two steps,

namely 1) flow rate regulation, and 2) bandwidth allocation. In the next two subsections,

we will address the flow rate control and the bandwidth allocation control problems for the

ordinary traffic as governed by the dynamic queuing model (3.75) subject to the constraints

(3.76)-(3.78).

1. Flow Rate Regulation: At the start of each measurement cycle, we calculate the

maximum allowable capacity cri(t) from equation (3.76) and compare it with the

ordinary incoming traffic λri(t). If the incoming traffic λri(t) is greater than the
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available capacity, that is λri(t) > cri(t), then the traffic needs to be regulated first

and the flow rate control is adopted as follows

u2
ri(t) =





λmax
ri if u2

ri(t) ≥ λmax
ri

λri(t) if u2
ri(t) < λmax

ri

(3.79)

Once the above regulator is invoked, the ordinary incoming traffic λri(t) is guaran-

teed to be bounded by 0 ≤ λri(t) ≤ cri(t).

2. Bandwidth Allocation : Provided that 0 ≤ λri(t) ≤ cri(t), the ordinary traffic ca-

pacity controller u1
ri(t) is selected as

u1
ri(t) =





0 if ū1
ri(t) < 0

ū1
ri(t) if 0 ≤ ū1

ri(t) ≤ cri(t)

cri(t) if ū1
ri(t) > cri(t)

(3.80)

ū1
ri(t) = f−1(xri, t)[krix̄ri(t) + λ̂ri(t)]

where x̄ri(t) = xri(t) − xref
ri , xref

ri denotes the desired reference ordinary queuing

length that is specified by the network manager, kri is the state feedback control

gain, λ̂ri(t) is a time-varying signal used to estimate the incoming traffic λri(t) to

compensate for its effects via feedback. The time-varying signal λ̂ri(t) is selected

according to the robust adaptive control theory [128] as follows:

˙̂
λri(t) =





δrix̄ri(t)− βriλ̂ri(t), if 0 ≤ λ̂ri(t) ≤ λmax
ri or

λ̂ri(t) = 0, x̄ri(t) ≥ 0 or

λ̂ri(t) = λmax
ri , x̄ri(t) ≤ 0

−βriλ̂ri(t), otherwise

(3.81)

where δri and βri are the adaptive control gains.

It should be noted that the switching congestion controller for the ordinary traffic has

three levels of switchings. The first level of switching is incurred by the flow rate controller

(3.79) and the second level of switching is induced by the bandwidth controller (3.80). The

bandwidth controller switches among three values, namely u1,low
ri = 0, u1,high

ri = cri(t), and

u1,in
ri (t) = ū1

ri(t). When the controller switches to its boundary values, that is 0 and
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cri(t), an extra regulator is applied to adjust the system parameters so that the system

trajectory will move towards the safe operating mode so that the normal controller ū1
ri(t)

will take effect. According to the switching control strategies above, the system (3.75) will

experience the following possible operational modes as described next.

• Case (i): If cri(t) = 0 at some time t = t1, implying that there is no leftover

capacity for the ordinary traffic, then from equation (3.80) it follows that u1
ri(t) = 0

and u2
ri(t) = 0. The closed-loop system dynamics (3.75) reduces to

ẋri(t) =
n∑

j=1
j 6=i

f(xrj(t− τji(t)))u1
rj(t− τji(t))gji

r (t) (3.82)

since there is no incoming traffic allowed, the ordinary queuing state xri(t) should

remain constant until there is an available capacity. Therefore, the regulation strat-

egy for the transmission gains gr
ji(t) in this case is selected as gr

ji = 0. This implies

that the neighboring nodes are forced to drop all their outgoing traffic packets. At

a subsequent time t2 > t1, when cri(t) > 0 the following cases should be considered.

• Case (ii): If 0 < cri(t) ≤ Cserver,i at some time t = t3, then the switching controller

u1
ri(t) will be able to take effect. Provided that λri(t) < cri(t), the closed-loop system

of the ordinary traffic will experience the following multiple modes:

– Edge Mode (i): If u1
ri(t) = 0 at some time t = t3, this implies that the

instantaneous queuing length xri(t) is sufficiently small so that ū1
ri(t) < 0.

The dynamical system (3.75) then becomes

ẋri(t) = λri(t) +
n∑

j=1
j 6=i

f(xrj(t− τji(t)))u1
rj(t− τji(t))gji

r (t) > 0 (3.83)

Therefore, the ordinary queuing length xri(t) will increase with the time, and

after some finite time t4 > t3 one will get ū1
ri(t) > 0 and the controller ū1

ri(t)

will then take effect.

– Edge Mode (ii): If u1
ri(t) = cri(t) at some time t = t5, this implies that

the normal controller ū1
ri(t) > cri(t). The closed-loop system of (3.75) can be
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expressed as follows:

ẋri(t) = −f(xri(t))cri(t) + λri(t) +
n∑

j=1
j 6=i

f(xrj(t− τji(t)))u1
rj(t− τji(t))gji

r (t)

= −f(xri(t))cri(t) + λri(t) +
n∑

j=1
j 6=i

λrj(t− τji(t))gji
r (t)

≤ −f(xri(t))cri(t) + λmax
ri (t) +

n∑

j=1
j 6=i

λmax
rj gr

ji(t) (3.84)

The regulation strategy in this case is to select the traffic compression gains

gr
ji(t) so that the queuing length xri(t) will decrease, and hence after some

finite time one will get ū1
ri(t) < cri(t). Therefore, the traffic compression gains

are selected as follows:

0 ≤ gr
ji(t) <

f(xri(t))cri(t)− λmax
ri∑

j∈℘i

λmax
j

(3.85)

Consequently, the derivative of the queuing state xri(t) in (3.84) will be nega-

tive, and the queuing length xri(t) will decrease. After some finite time t6 > t5

the normal controller ū1
ri(t) will then take effect.

– Normal Control Mode (iii): If u1
ri(t) = ū1

ri(t) at some time t = t7, then

the dynamical system (3.49) becomes

ẋri(t) = −krix̄ri(t)− λ̂ri(t) + λri(t)

+
n∑

j=1
j 6=i

f(xrj(t− τji(t)))u1
rj(t− τji(t))gji

r (t) (3.86)

Now we need to analyze the value of the neighboring controllers ū1
pj(t−τji(t)).

Similar to the analysis in mode (iii) of the premium traffic control, after ap-

plying the switching congestion controller (3.80) to the neighboring controllers

and selecting the traffic compression gains according to (3.85), the normal con-

trollers of the neighboring nodes ū1
pj(t− τji(t)) will take effect after some finite

time t8 > t7. As a sequence, the closed-loop system (3.75) can be written as

ẋri(t) = −krix̄ri(t)− λ̂ri(t) + λri(t)

+
n∑

j=1
j 6=i

(kj x̄rj(t− τji(t)) + λ̂rj(t− τji(t)))gji
r (t) (3.87)
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The above system is a linear switching system with coupled states and time-

varying delays. The control objective of the ordinary traffic is then to select

the state feedback control gain kri and the adaptive control gains δri and βri

so that the system (3.87) is stable.

In the following subsection, the stability conditions of the system (3.87) as well as

the expressions of the control gains are presented .

3.2.4 Stability Analysis of the Ordinary Traffic

For the purpose of stability analysis, the closed-loop system (3.87) and the adaptive esti-

mator (3.81) are considered together and the following new state space is defined:

λ̄ri(t) = λ̂ri(t)− λri(t)

zri(t) =
[

x̄ri(t) λ̄ri(t)

]T

Therefore, the closed-loop system of the ordinary traffic (3.87) with the adaptive estimator

(3.81) can be re-written as follows:

żri(t) = Dk
irzri(t) +

n∑

j=1
j 6=i

F r
j zrj(t− τji(t)) + Hr

i vri(t) i = 1, ..., n (3.88)

zri(t) = φi(t) φi(t) ∈ [−h, 0]

k ∈ ℘, ℘ = 1, 2

where vri(t) is the external signal to the system, and Dk
ri, F r

j , Hr
i are the system matrices

that are defined as follows:

D1
ri =



−kri −1

δri −βri


 D2

ri =



−kri −1

0 −βri




F r
j =




krjg
r
ji gr

ji

0 0


 Hr

i =




0 0 Gji

−βri −1 0




vri(t) =
[

λri(t) λ̇ri(t) Λrj(t− τji(t))

]T

Λrj(t− τji(t)) = vec{λrj(t− τji(t))}

Gji = vec{gr
ji(t)}
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The state feedback control gain kri and the adaptive control gains δri and βri are incor-

porated in the system matrix Dk
ir. The control objective is now to select the matrix Dk

ri

for each node so that system (3.88) is stable. If we compare the system (3.88) with the

closed-loop system of the premium traffic (3.64), one can see that the structure of the

two systems are the same, expect for the different values of the control gains. Therefore,

Lemmas 3.5 and 3.6 for the premium traffic can be modified for the ordinary traffic as

shown next.

Lemma 3.7. The system (3.88) is ultimately bounded if there exist symmetric positive

definite matrices Pi, Si, i = 1, ..., n, and positive definite matrices Mi, Ni, Qi, Ri, such

that the following matrix inequality condition is satisfied:

W r
ik =




2MT
i Dk

ri + Qi Pi −MT
i + (Dk

ri)
T NT

i −MT
i F r

ji 0

∗ −NT
i −Ni + Ri + Si −NT

i F r
ji 0

∗ ∗ 0 0

∗ ∗ ∗ −Si




< 0 (3.89)

where F r
ji = vec{F r

j }, and the radius of the ultimately bounded region is given by:

rr = max{rr1, rr2}

rrk =
λmax(Φr

i )
λmin(−W r

ik)
‖vri(t)‖2 (3.90)

where Φr
i = (Hr

i )T (Q−1
i +R−1

i )Hr
i , and λmin and λmax denote the maximum and minimum

eigenvalue of the corresponding matrix.

Proof: The proof follows along the same lines as that in the proof of Lemma 3.5

by substituting the system matrices of the ordinary traffic. ¥

Lemma 3.7 shows that the normal controller ū1
ri(t) as defined in (3.80) is a stabilizing

control law for the system (3.75). The following lemma is presented to transform the

matrix inequality in Lemma 3.7 into an equivalent LMI condition and gives the expressions

for the control gains of the ordinary traffic.

Lemma 3.8. Consider the matrix inequality condition (3.89) in Lemma 3.7. If there

exists symmetric positive definite matrices Y1i, Y2i, Y3i, Q̄i, N̄i, R̄i, S̄i; and matrices U r
ik,
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Figure 3.4: The flow chart of the decentralized switching congestion controller (SCC) for the
Diff-Serv network with a fixed topology.

Lr
ik, V r

i , T r
i of appropriate dimensions, for k = 1, 2 and i = 1, ..., n, such that the following

LMI conditions are satisfied:

Ωr
ik =




2Uik + Q̄i Y1i − Y2i + Lik −Vi 0

∗ −2N̄i + R̄i + S̄i −Ti 0

∗ ∗ 0 0

∗ ∗ ∗ −Y3i




< 0 (3.91)

then the matrix inequality condition (3.65) holds and the system (3.64) is ultimately

bounded. The system matrix of the premium traffic is given by Dk
ri = U r

ikY
−1
1i .

Proof: The proof follows closely along the lines that are presented in the proof of

Lemma 3.6 by substituting the system matrices of the ordinary traffic. ¥

The decentralized switching congestion control (SCC) strategy for the premium and

the ordinary traffic derived in this section can be illustrated with the flow chart of Fig.

3.4.
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As shown in Fig. 3.4, the premium traffic controller of each node selects the traffic

compression gains for its neighboring nodes gp
ji according to the physical constraints and

solves the LMI conditions Ωik for the local control gains kpi, δpi and βpi. The adaptive es-

timator λ̂pi(t) is then updated according to equation (3.58). Consequently, the bandwidth

allocated for the premium traffic at each node Cpi(t) can be obtained. On the other hand,

given the premium traffic bandwidth Cpi(t), the ordinary traffic controller of each node

calculates the leftover capacity cri(t) = Cserver,i−Cpi(t) and selects the traffic compression

gains for the ordinary traffic gr
ji according to the regulation strategy (3.85). By solving

the LMI conditions Ωr
ik for each node, the ordinary traffic control gains kri, δri and βri

can then be obtained. Finally, the bandwidth controller Cri(t) and the flow rate controller

λri(t) are calculated at each node i.

3.3 Simulation Results and Comparisons

In this section, the results obtained by applying our proposed centralized switching con-

gestion control strategy is compared with those of the decentralized schemes as well as

another state-of-the-art model based congestion control scheme in the control commu-

nity, known as the Integrated Dynamic Congestion Control (IDCC) method. The IDCC

approach is derived based on the dynamic fluid flow model and was developed in a decen-

tralized framework. The IDCC approach has shown good performance when applied to

single node or cascade networks [61], [62], [53], [3]. Therefore, it is selected as a benchmark

congestion control algorithm in this thesis for comparison and evaluation purposes. The

detailed description of the IDCC algorithm can be found in Appendix A. The following

section introduces the performance metrics that are utilized in this thesis.

3.3.1 Performance Metrics

According to the specifications of the congestion control algorithms presented in Chapter

1, the following two metrics are presented to evaluate and measure the performance of

the proposed congestion control strategies, namely, the packet loss rate (PLR) and the
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average queuing delay. These are defined formally next.

• Packet Loss Rate (PLR):

In this thesis one assume that in a fixed network no packet will be lost during the

transmission process. The packet loss occurs for the premium traffic only due to the

node’s buffer overflow. For the ordinary traffic, packet loss is caused by both the

buffer overflow and an inadequate flow rate regulation. Therefore, the packet loss

rate (PLR) for the premium traffic in this thesis is defined as

PLRpi(t) =

max{0, λpi(t) +
∑

j∈℘i

λji(t)gji(t)− (xbuffer,i − xpi(t))}

λpi(t) +
∑

j∈℘i

λji(t)gji(t)
(3.92)

and the PLR for the ordinary traffic is defined according to

PLRri(t) =
Pb(t) + Pf (t)

λri(t) +
∑

j∈℘i

λr
ji(t)g

r
ji(t)

(3.93)

with Pb(t) = max{0, λri(t) +
∑

j∈℘i

λr
ji(t)g

r
ji(t)− (xbuffer,i − xri(t))}, Pf (t) = λa

ri(t)−
λri(t), and where Pb is the packet loss due to the buffer overflow, Pf is the packet

loss due to the inadequate flow rate regulation, λa
ri is the actual incoming traffic of

node i before regulation, and λri is the desired regulated flow rate of the incoming

traffic that can be obtained from equation (3.75).

• Average Queuing Delay:

The queuing delay is the time a packet waits in a queue until it can be executed.

During network congestion the queuing delay is considered infinite. In this section,

the objective of our proposed congestion control is to regulate the node’s buffer size

as close as possible to a reference set point value so that a bound on the queuing

delay in the network can be ensured indirectly. Therefore, the average queuing delay,

as denoted by Tq, is considered as our second metric for performance evaluation

purposes.

According to the Little’s theorem [73], the average number of customers (N) in a

queue can be determined from the following equation

E{T} =
E{N}

λ
(3.94)
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In the above expression, λ is the average customer arrival rate and E{T} is the

average time spent by a customer in a queuing system (waiting and being served).

By applying the Little’s formula (3.94) to our system, the average queuing delay Tq

can be formally defined as follows

E{T i
q} =

E{xi(t)}
E{λi(t)}+

∑
j∈℘i

E{λji(t)gji(t)} (3.95)

where E{T i
q} is the average queuing delay and xi(t) is the present queuing state for

node i.

Based on the above performance metrics definitions, we formally present the simu-

lation results and comparisons of our proposed switching congestion control strategies and

the IDCC approach in the following three subsections.

3.3.2 Decentralized SCC vs the Decentralized IDCC

Consider the network shown in Fig. 3.5. There are three clusters and each cluster has five

nodes. In each cluster, one of the five nodes act as the decision maker and the other four

nodes act as sensors. Only the decision makers can communicate with each other to share

the information among the three clusters. This network configuration is quite general and

can be found in many applications such as sensor/actuator networks, cooperative team of

unmanned vehicles [60], [130], [131], [132], and high speed Ethernet networks. The link

capacities of the three decision makers are set to Cserver,1 = 20 Mb, Cserver,2 = 10 Mb, and

Cserver,3 = 5 Mb, while the capacities of the other sensor nodes are set to Cserver = 100

Mb. Using the above specifications, we assume that each node has three separate logical

buffers that are collecting the premium, ordinary and the best-effort traffic. The buffer

size for each traffic is set to 5 Mb.

For our simulation studies we implement the network behavior by an event-based

simulator tool known as QualNet [133] software environment. In this event-based frame-

work the system entity is the node-queue, the system events are packets-arrival and

packets-departure, and the system state which is changed according to and by these events

is the number-of-packets-in-the-queue. This is represented as a discrete-event system with
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Figure 3.5: The schematic of a traffic network consisting of three clusters and 15 nodes that is
used in simulation studies.

continuous-time state space representation. The random variables that need to be speci-

fied to model this system stochastically are packet-size and packet-inter-arrival-time, which

are the characteristics of the incoming traffic. Since we do not consider the node mobility

and the MAC control issues in this chapter, the only entities that will change the events

(packets-arrival and packets-departure) are the traffic generator that are invoked in the ap-

plication layer of the QualNet software. Once the variables are set, such as the packet-size

and average-inter-arrival-time, the packets characteristics are subsequently determined.

In other words, the chronological sequence of events are determined.

Therefore, our approach to this problem is to first construct a simulation scenario

and generate the traffic by using the QualNet software environment, and then convert the

packet characteristics, as determined by the entities set in the QualNet, into data flows

with the form that is required by the fluid flow model. The fluid flow analytical model will

make use of these data flows and other parameters to obtain network statistics by solving

the corresponding differential equations. In particular, the queue lengths of the nodes are

obtained. The fluid flow model is the part that is implemented in Matlab. Therefore, we

can state that the discrete behavior of the packets as generated by the QualNet software

environment is integrated with the fluid flow model that is implemented by the Matlab
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Figure 3.6: Premium queuing lengths (bits) by
utilizing the decentralized IDCC method [3] cor-
responding to Case 1. The solid lines denote the
set point references and the dashed lines denote
the actual queuing lengths.
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Figure 3.7: Ordinary queuing lengths (bits) by
utilizing the decentralized IDCC method [3] cor-
responding to Case 1. The solid lines denote the
set point references and the dashed lines denote
the actual queuing lengths.

software environment.

As shown in Fig. 3.5, the premium and the ordinary traffic in each cluster are

generated by the source nodes dynamically. In the simulation results presented below all

the source traffic are simulated by the applications that are defined in QualNet. In each

cluster, there are two premium traffic source nodes that simultaneously generate a variable

bit rate traffic (VBR) and a constant bit rate traffic (CBR) (i.e. VBR+CBR). As defined

according to the IETF Diff-Serv architecture [56], the premium traffic is used mainly for

voice, video and other real-time constrained services that need to be strictly controlled.

For example, in cluster 1, nodes 4 and 5 are the premium traffic sources, where both nodes

generate VBR and CBR traffic to node 1. Typical networks will limit the premium traffic

to no more than 30% of the total link capacity, and often indeed to much lower levels.

Therefore, the VBR source is simulated by generating packets with an average size of 512

bytes and pace the packets into the network every 4 ms. The average rate of the VBR

traffic is 1 Mbps. The CBR source generates 0.5 Mbps and paces the packets into the
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Figure 3.8: Premium queuing lengths (bits) by
utilizing the proposed decentralized SCC corre-
sponding to Case 1. The solid lines denote the
set point references and the dashed lines denote
the actual queuing lengths.
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Figure 3.9: Ordinary queuing lengths (bits) by
utilizing the proposed decentralized SCC corre-
sponding to Case 1. The solid lines denote the
set point references and the dashed lines denote
the actual queuing lengths.

network constantly.

In each cluster, there is also one ordinary traffic source. For example, in cluster 3

node 13 is the ordinary traffic source. The ordinary traffic source is implemented by an on-

off traffic. The on-off traffic is typically represented in networks for periodic surveillance

or monitoring messages over an area of interest or in networks with measurement messages

from a sensor. In our simulations, the on-off traffic is implemented by invoking the Supper

application module in the QualNet software [133]. During the off-time period no packets

are generated. The off-time period is generated from an exponential distribution with a

mean period of 2 ms. During the on-time period each ordinary source generates a series

of packets with the size of 512 bytes. The number of packets generated in each on-time

period is determined by an exponential distribution with the mean value of 20 packets.

Finally there is also one best-effort traffic source in each cluster, for example, in

cluster 1 node 7 is the best-effort traffic source node. The best-effort source generates a

random traffic that is implemented by invoking the Traffic-Gen application module in the
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Figure 3.10: Premium queuing lengths (bits) by
utilizing the decentralized IDCC method [3] cor-
responding to Case 2. The solid lines denote the
set point references and the dashed lines denote
the actual queuing lengths.
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Figure 3.11: Ordinary queuing lengths (bits) by
utilizing the decentralized IDCC method [3] cor-
responding to Case 2. The solid lines denote the
set point references and the dashed lines denote
the actual queuing lengths.

QualNet software. Each best-effort source generates packets whose length is exponentially

distributed with an average of 512 bytes, and the inter-arrival time is also exponentially

distributed with an average period of 4 ms.

The heterogeneous delays corresponding to any link connecting a node i to node

j are considered as randomly generated signals (using a Gaussian distribution) that are

lower and upper bounded by 0 s and 40 ms corresponding to all the traffic. The expression

of this random signal is given as below

h ∼ N(µ, σ2) (3.96)

τ = min{0,max{hmax, h}} (3.97)

where µ = 20 ms is the mean value of delay, σ2 = 10 ms is the standard deviation, and

hmax = 40 ms is the maximum value of delay.

The average value of the traffic compression gains during the network operation are
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given as follows:

Ḡp =




0 ḡp
21 ḡp

31

ḡp
12 0 ḡp

32

ḡp
13 ḡp

23 0




=




0 0.48 0.50

0.70 0 0.50

0 0.50 0




Ḡr =




0 ḡr
21 ḡr

31

ḡr
12 0 ḡr

32

ḡr
13 ḡr

23 0




=




0 0.50 0.50

0.50 0 0.50

0 0.30 0




Control Parameters

According to the specifications of the network model given above, the maximum upper

bounds for the adaptive controllers of the three bottleneck nodes 1, 2, 3 are set to λmax
1 =

15 Mb, λmax
2 = 8 Mb, and λmax

3 = 4 Mb, for the premium and the ordinary traffic classes.

The state feedback control gains and the adaptive control gains that are derived according

to Theorem 3.1 and Theorem 3.2 are given as follows:

kp1 = 5276 kp2 = 7100 kp3 = 2.63 ∗ 104

δp1 = 1.43 δp2 = 0.834 δp3 = 1.2 ∗ 10−4

βp1 = 0.505 βp2 = 0.643 βp3 = 1.532

kr1 = 2054 kr2 = 5165 kr3 = 6732

δr1 = 1.43 δr2 = 1.50 δr3 = 1.12

βr1 = 1.506 βr2 = 0.437 βr3 = 1.320

Based on the network model and the congestion control parameters obtained above,

we first implement the integrated dynamic congestion controller (IDCC) scheme [3] and use

the results obtained as a benchmark for comparative analysis with our proposed control

strategies. For the sake of making an unbiased and fair evaluation and comparison, we

actually do apply the same setting for the parameters as well as the same maximum delays

in the IDCC algorithm as those that are selected for our proposed scheme as presented in

the subsection of Control Parameters. In order to evaluate the performance of our proposed

controllers under both stationary and dynamic conditions, we compare the performance

115



0 1 2 3 4 5
0

1

2

3

4

5

6

7
x 10

4 Premium queue

N
o

d
e

  1

0 1 2 3 4 5
0

1

2

3

4

5

6
x 10

4

N
o

d
e

  
2

0 1 2 3 4 5
0

1

2

3
x 10

4

N
o

d
e

  
3

Time [scond]

Figure 3.12: Premium queuing lengths (bits) by
utilizing the proposed decentralized SCC corre-
sponding to Case 2. The solid lines denote the
set point references and the dashed lines denote
the actual queuing lengths.
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Figure 3.13: Ordinary queuing lengths (bits) by
utilizing the proposed decentralized SCC corre-
sponding to Case 2. The solid lines denote the
set point references and the dashed lines denote
the actual queuing lengths.

of the three bottleneck links and nodes under the following two cases:

• Case 1: Fixed reference set point . The reference set points for the queuing lengths

are considered to be constant during the simulation period, that is

xref
p,1 = 60 Kbits, xref

p,2 = 50 Kbits, xref
p,3 = 25 Kbits

xref
r,1 = 600 Kbits, xref

r,2 = 500 Kbits, xref
r,3 = 250 Kbits

• Case 2: Variable reference set point . The reference set points for the queuing length

are considered to be time-varying. During the time interval 0 ≤ t < 0.5s, the

reference set points are assigned to

xref
p,1 = 60 Kbits, xref

p,2 = 50 Kbits, xref
p,3 = 25 Kbits

xref
r,1 = 600 Kbits, xref

r,2 = 500 Kbits, xref
r,3 = 250 Kbits

and during the time interval 0.5s ≤ t < 0.8s, the reference set points are assigned

to
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Table 3.1: Packet loss rate by utilizing the de-
centralized IDCC and the SCC approaches with
hmax = 40 ms.

Premium IDCC [3] SCC
Node 1 92.96% 0
Node 2 93.86% 0
Node 3 93.27% 0

Ordinary IDCC [3] SCC
Node1 87.93% 5.66%
Node 2 96.08% 4.65%
Node 3 96.13% 2.34%

Table 3.2: Average queuing delay by utilizing
the decentralized IDCC and the SCC approaches
with hmax = 40 ms.

Premium IDCC [3] SCC
Node 1 ∞ 48.8 ms
Node 2 ∞ 44.9 ms
Node 3 ∞ 22.5 ms

Ordinary IDCC [3] SCC
Node 1 ∞ 67.8 ms
Node 2 ∞ 138.1 ms
Node 3 ∞ 178.5 ms

xref
p,1 = 50 Kbits, xref

p,2 = 40 Kbits, xref
p,3 = 20 Kbits

xref
r,1 = 500 Kbits, xref

r,2 = 400 Kbits, xref
r,3 = 200 Kbits

and finally during the time interval 0.8s ≤ t < 1s, the reference set points are

assigned to

xref
p,1 = 40 Kbits, xref

p,2 = 50 Kbits, xref
p,3 = 25 Kbits

xref
r,1 = 600 Kbits, xref

r,2 = 500 Kbits, xref
r,3 = 250 Kbits

The simulations are conducted and validated for the duration of 5 seconds by repeat-

ing the above reference set points during the time intervals [0s, 1s], [1s, 2s], and [2s, 5s],

respectively. Figures 3.6 and 3.7 illustrate the resulting queuing lengths (bits) by utilizing

the IDCC method [3] corresponding to Case 1. As can be seen from these figures, the

queuing states of all the nodes are unstable, that is the buffers for both the premium and

the ordinary traffics do not converge to their desired set point values but instead have

overflown and reached their upper bound buffer sizes. One explanation for this undesired

behavior is due to the presence of the time-varying heterogeneous delays that are not

explicitly taken into account by the IDCC controller. On the other hand, as shown in

Figures 3.8 and 3.9, by applying our proposed congestion controllers with the parameters

that are derived from the LMI conditions discussed earlier and quantified in the Control

Parameters subsection above, the queuing lengths do indeed converge to their desired set

points and the overall performance of the network is greatly improved as compared to that

of the IDCC method.
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Figure 3.14: Premium queuing lengths (bits) by
utilizing the centralized IDCC. The solid lines de-
note the set point references and the dashed lines
denote the actual queuing lengths.
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Figure 3.15: Ordinary queuing lengths (bits) by
utilizing the centralized IDCC. The solid lines de-
note the set point references and the dashed lines
denote the actual queuing lengths.

Figures 3.10-3.11 depict the simulation results by applying the IDCC approach to

the network corresponding to the Case 2. As one can see from the queuing behavior of the

three edges nodes, the performance of the IDCC method is similar to those in the Case 1.

The buffers for both the premium and the ordinary traffics are again overflown and the

queuing lengths become unstable. On the contrary, by utilizing our proposed method, as

shown in Figures 3.12 and 3.13, the overall performance of the network is greatly improved

and the queuing lengths converge to their desirable variable set points.

A quantitative comparison related to the packet loss rate (PLR) metric for the Case

2 is now provided and summarized in Table 3.1. As can be seen from Table 3.1, by utilizing

the IDCC method a large number of the premium and the ordinary packets to the three

nodes are lost. This is due to the fact that the buffer size of the nodes are overflown and all

the incoming packets have to be discarded. However, by utilizing our proposed congestion

control approach the performance of the average packet loss rate is significantly improved

when compared to that of the IDCC approach. By utilizing our proposed method the
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Figure 3.16: Premium queuing lengths (bits) by
utilizing the proposed centralized SCC. The solid
lines denote the set point references and the
dashed lines denote the actual queuing lengths.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10
x 10

5 Ordinary queue

N
o
d
e
 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10
x 10

5

N
o
d
e
 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5
x 10

5

N
o
d
e
 3

Time [scond]

Figure 3.17: Ordinary queuing lengths (bits) by
utilizing the proposed centralized SCC. The solid
lines denote the set point references and the
dashed lines denote the actual queuing lengths.

premium traffic has no packet losses and the ordinary traffic’s loss rate is less than 6%.

Table 3.2 provides the comparative results corresponding to the average queuing delays.

As can be seen from Table 3.2 by utilizing the IDCC method the queuing delays are

infinite due to the buffer overflow and packet losses. However, by utilizing our proposed

congestion control method the performance of the network is significantly improved. The

queuing delays remain bounded to less than 50 ms for the premium and 200 ms for the

ordinary traffic.

3.3.3 Centralized SCC vs the Centralized IDCC Approaches

In order to evaluate the performance more fairly, in this section we generalized the IDCC

algorithm to a centralized framework, with exactly the same control strategies as pre-

sented in [61]. The detailed derivation of the centralized IDCC algorithm can be found in

Appendix B. We compare now the performance of our proposed SCC algorithm with the

centralized IDCC as follows.
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Table 3.3: Packet loss rate by utilizing the cen-
tralized IDCC and the SCC approaches with
hmax = 40 ms.

Premium IDCC [3] SCC
Node 1 84.63% 0
Node 2 83.23% 0
Node 3 88.70% 0

Ordinary IDCC [3] SCC
Node 1 38.34% 1.61%
Node 2 62.95% 0.94%
Node 3 73.68% 1.43%

Table 3.4: Average queuing delay by utilizing the
centralized IDCC and the SCC approaches with
hmax = 40 ms.

Premium IDCC [3] SCC
Node 1 ∞ 45.3 ms
Node 2 ∞ 43.7 ms
Node 3 ∞ 21.4 ms

Ordinary IDCC [3] SCC
Node 1 ∞ 57.1 ms
Node 2 ∞ 116.6 ms
Node 3 ∞ 132.8 ms

Consider the same network model that is shown in the Fig. 3.5 and the same config-

uration of the incoming traffic and delays as defined in Section 3.3.2. The state feedback

control gains that are and the adaptive control gains derived from Theorem 3.2 are given

as Kp = diag{3680 4210 1780}, Kr = diag{574 3211 1994}, ∆p = diag{5.2 × 10−3 3.2 ×
10−3 1.6×10−3}, ∆r = diag{1.7×10−3 1.2×10−3 1.3×10−3}, Πp = diag{0.87 1.24 3.59},
and Πr = diag{0.5 0.2 0.9}. The average traffic compression gain matrices G during the

network operation are given as

Ḡp =




0 0.23 0.31

0.42 0 0.21

0 0.30 0




Ḡr =




0 0.41 0.25

0.52 0 0.12

0 0.28 0




The performance of our proposed centralized SCC and the centralized IDCC ap-

proaches are shown in Figures 3.14-3.17. As we can see from Fig. 3.14 and Fig. 3.15,

the premium and the ordinary queuing lengthes are unstable by utilizing the centralized

IDCC approach. On the contrary, by utilizing our proposed centralized SCC algorithm,

both the premium and the ordinary queues in each node do converge to their reference

values. The numerical comparisons of the packet loss rate and the average queuing delays

over the simulation time of 30 seconds are given in Tables 3.3 and 3.4.

According to the simulation results and the comparisons presented in Sections 3.3.1

and 3.3.2, one can see that by utilizing our proposed switching congestion control strate-

gies the performance of the congestion control problem of the differentiated services are

greatly improved when compared with the IDCC approach, in both the decentralized and
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centralized frameworks. Therefore, we can conclude that for a Diff-Serv network with fixed

topology, subject to multiple time-varying delays and physical constraints, the switching

congestion control strategy yields a more desirable solution than the IDCC approah.

3.3.4 Centralized SCC vs the Decentralized SCC Approaches

As presented above for the congestion control problem of Diff-Serv networks with multiple

time-varying delays and constraints, the performance of our proposed switching congestion

control (SCC) approach has obvious strengthes, advantages, and better performance than

the IDCC approach. In this section, we will evaluate and compare the performance of the

centralized SCC and the decentralized SCC according to the performance metrics of PLR

and the queuing delay.

Consider the network configuration that is shown in Fig. 3.18, where the communi-

cation channels among the nodes can be classified into two groups based on their different

functionalities, namely:

• Forward channel. This is the channel from the sensor to the actuator which is

responsible for sending the collected data and execution commands.

• Feedback channel. This is the channel from the actuator to the sensor which is

responsible for sending feedback regulation and adjustments.

Therefore, the simulations are conducted in two cases, namely 1) the forward channel

dominate and 2) the feedback channel dominate. In the first case, the traffic compression

gains in the forward channel are set to be higher than that in the feedback channels;

while in the second case it is vise versa. We consider the network model as shown in Fig.

3.18. There are three nodes in the network, each node has three different kinds of sources,

namely the premium traffic, the ordinary traffic, and the best effort traffic. Each node has

three buffers for the three kinds of traffic, respectively, and buffer size is set to be 10 Mb.

The link capacity of each node is set to Cserver,i = 20 Mbps and the transmitter constraint

of each node is selected as λmax
i = 15 Mbps.
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Figure 3.18: The simulation framework

The time evolutions of the three incoming traffic are shown in Fig. 3.19. The

premium traffic is modeled as a sum of one variable bit rate traffic (VBR) and one constant

bit rate traffic (CBR). As defined by the IETF Diff-Serv architecture [56], the premium

traffic is used for voice, video and other real time services, which need to be strictly

controlled. Typical networks will limit premium traffic to no more than 30%, and often

much less, of the capacity of a link. Therefore, we select the premium traffic with an

average bit rate of 1 Mbps and peak bit rate of 1.5 Mpbs. The ordinary traffic, which is

modeled as an on-off source, is a typical kind of traffic in the network of multi-agent systems

(NMAS) such as periodic surveillance over an area and measurement of a sensor node. The

bit rate of the ordinary traffic is measurable and can be regulated by the controller. In

our case the peak bit rate of the ordinary traffic is selected to be 10 Mbps. Finally, the

best effort traffic does not have any QoS guarantee. It utilizes any instantaneous left over

capacity from the premium and the ordinary traffic for transmission. Any traffic that

does not meet the requirements of other possible defined classes of traffic is placed in this

group. In our case, the bit rate of the best effort traffic is varying from 0.5 Mbps to 2

Mbps.

Since the premium traffic has stringent maximum delay bound and loss requirements,
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Figure 3.19: The three classes of incoming traffic.

the reference point of the queue length is set to be less than 10% of its buffer size (10

Mbits). For the ordinary traffic, since it can accept larger delays than the premium traffic,

we set the reference value of the queue length as 10 times of the premium traffic, and within

60% of the buffer size (10 Mbits). Therefore, the reference values of these two kinds of

traffic for each node are given as follows:

During the interval 0 ≤ t < 0.5s, we set the reference points as follows

xref
p,1 = 60 Kbits, xref

p,2 = 50 Kbits, xref
p,3 = 25 Kbits

xref
r,1 = 600 Kbits, xref

r,2 = 500 Kbits, xref
r,3 = 250 Kbits

After t = 0.5s, the reference set points are set as

xref
p,1 = 50 Kbits, xref

p,2 = 40 Kbits, xref
p,3 = 20 Kbits

xref
r,1 = 500 Kbits, xref

r,2 = 400 Kbits, xref
r,3 = 200 Kbits
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Figure 3.20: Case 1: Premium queuing length by
utilizing the centralized SCC.
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Figure 3.21: Case 1: Premium queuing error by
utilizing the centralized SCC.

Finally, after t = 0.8s, the reference set points are assigned to be

xref
p,1 = 60 Kbits, xref

p,2 = 50 Kbits, xref
p,3 = 25 Kbits

xref
r,1 = 600 Kbits, xref

r,2 = 500 Kbits, xref
r,3 = 250 Kbits

Based on the definitions of the feedback channel and the feed forward channel, the

following two scenarios are selected for simulations, namely the forward channel dominate

scenario and the feedback channel dominate scenario. In the forward channel dominate

scenario, we assume that the information in the forward channel is more important than

that in the feedback channels. Hence, the traffic compression gains in the forward channel

are selected to be relatively large. On the other hand, this is vice versa in the feedback

channel dominate scenario.

• Case 1: Forward Channel Dominate. In this case, the traffic compression gains are

initially set to be gij = 0.9 in the forward channel, and gij = 0.2 in the feedback

channel. The majority of the incoming traffic to each node is assumed to contain

valuable information such as images, videos, and etc. So that the traffic compression
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Figure 3.22: Case 1: Ordinary queuing length by
utilizing the centralized SCC.
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Figure 3.23: Case 1: Ordinary queuing error by
utilizing the centralized SCC.

gains in the forward channel are selected to be relatively larger then that in the

feedback channel. For each input flow, the delay is taken as a random signal with

a normal distribution function of τ = min{0,max{hmax, h}}, where hmax = 20 ms

is the maximum value of delay, h ∼ N(µ, σ2) is a normal distributed random signal

with the mean value of µ = 10 ms and the standard derivation of σ2 = 5 ms.

The queuing length and the queuing errors of the premium and the ordinary traffic in

the nodes are shown in the Fig. 3.20 to Fig. 3.27, by utilizing the centralized and the

decentralized switching congestion controller (SCC) algorithms, respectively. From

the performances that are illustrated in the figures, one can see that the premium

and the ordinary queuing length of all the nodes do converge to their corresponding

reference values. One compare the settling time and the mean percentage error

of the two algorithms as given in Table. 3.5. The settling time of each node by

using the centralized control approach is larger than that by using the decentralized

algorithm, especially for the ordinary traffic. The main reason of this behavior may

due to the coupling effects of the centralized controller where the command to each
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Figure 3.24: Case 1: Premium queuing length by
utilizing the decentralized SCC.
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Figure 3.25: Case 1: Premium queuing error by
utilizing the decentralized SCC.

node is affected by states of the other nodes in the network, and hence the queue

response is slower than the decentralized one.

Note that one can observe that after the convergence, the average percentage error of

the queuing length at each node by utilizing the centralized SCC algorithm is much

smaller than the queuing errors by utilizing the decentralized SCC. This result is

reasonable because in the decentralized control algorithm, each controller only has

access to the local information. Moreover, the queuing state of each node is highly

coupled with the states of its neighboring nodes. On the contrary, in the centralized

SCC algorithm, the controller is based on the queuing state of all the nodes in the

network. Therefore, it can achieve more accurate control than the decentralized

SCC algorithm after the convergence.

• Case 2: Feedback Channel Dominate. In this case, we assume that the incoming

traffic to the sensor contains more noise as the sensor is operating in a noisy envi-

ronment, and hence it needs to filter and compress the raw data before sending the
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Figure 3.26: Case 1: Ordinary queuing length by
utilizing the decentralized SCC.
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Figure 3.27: Case 1: Ordinary queuing length by
utilizing the decentralized SCC.

valuable information to the decision maker and actuator. Therefore, the traffic com-

pression gains are initially set to be gij = 0.2 in the forward channel and gij = 0.9

in the feedback channel, respectively. The time delay among the nodes is taken as

the normal distributed function τ = min{0,max{hmax, h}} and h ∼ N(5ms, 1ms),

where hmax = 10 ms is the maximum bound of the delays in the network. The per-

formance of the queuing length in all the nodes by utilizing the proposed switching

congestion control strategies are illustrated in Fig. 3.28-Fig. 3.31 and Fig. 3.32-Fig.

3.35, for the centralized and the decentralized SCC algorithms, respectively.

As can be seen from these figures the queuing length of the premium and the or-

dinary traffic do convergence to their reference values under both approaches. The

average percentage error and the settling time of each node, with respect to the pre-

mium and ordinary traffic are summarized in the Table. 3.6. As can be seen from the

comparative results in Table. 3.6 the centralized SCC algorithm can achieve higher

accuracy in the steady state with respect to the decentralized SCC approach. How-

ever, the queuing state of each node by utilizing the decentralized SCC algorithm
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Table 3.5: The comparisons between the centralized and the decentralized SCC approaches corre-
sponding to Case 1.

hmax = 20 ms Centralized SCC Decentralized SCC
Mean Error Settling Time Mean Error Settling Time
P O P O P O P O

Node 1 1.83% 0.94% 0.06s 0.28s 2.50% 1.54% 0.02s 0.03s

Node 2 2.31% 2.99% 0.08s 0.31s 7.09% 5.04% 0.05s 0.15s

Node 3 2.45% 2.20% 0.09s 0.35s 9.57% 6.86% 0.04s 0.12s

Table 3.6: The comparison between the centralized and the decentralized SCC approaches corre-
sponding to Case 2.

hmax = 10ms Centralized SCC Decentralized SCC
Mean Error Settling Time Mean Error Settling Time
P O P O P O P O

Node 1 1.76% 0.93% 0.07s 0.30s 8.58% 1.69% 0.02s 0.02s

Node 2 2.30% 3.04% 0.06s 0.32s 7.34% 8.27% 0.02s 0.25s

Node 3 2.45% 2.18% 0.08s 0.35s 5.36% 6.25% 0.03s 0.18s

have relatively faster convergence speed.

From the simulation results and the comparisons of the performance of the proposed

centralized and the decentralized SCC algorithms, it follows that both of two approaches

are effective congestion control algorithms for the Diff-Serv networks with fixed topology.

Each congestion control approach has distinct advantages and disadvantages. When the

scale of the network is small, such as a small team of UAVs, the centralized SCC algo-

rithm is more suitable due to the resulting high accuracy performance. However, if the

number of nodes in the network is large, such as sensor-actuator networks, a centralized

controller may not be feasibly implementable and the decentralized SCC algorithm should

be selected.
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Figure 3.28: Case 2: Premium queuing length by
utilizing the centralized SCC.
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Figure 3.29: Case 2: Premium queuing error by
utilizing the centralized SCC.
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Figure 3.30: Case 2: Ordinary queuing length by
utilizing the centralized SCC.
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Figure 3.31: Case 2: Ordinary queuing length by
utilizing the centralized SCC.
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3.4 Conclusions

In this chapter a new methodology for analytical solutions to centralized and decentral-

ized congestion control problems of Diff-Serv networks with fixed topology was proposed.

The method incorporates queuing dynamics and physical constraints that exist in the

traffic network. The transmitting, propagating, and processing delays considered in the

dynamics of the network are assumed to be unknown and time-varying. By employing

switching control strategy, the proposed congestion control schemes resolve the conflict

in the design of congestion controllers, that is by meeting performance requirements such

as fast response and satisfactory disturbance rejection while simultaneously avoiding vi-

olations of the specified constraints. The switching congestion control (SCC) problem is

formulated as a multi-mode regulation framework corresponding to the edge modes and

the normal control mode. By regulating the system parameters, the edge mode states are

forced to behave similar to the normal control mode state where the system states are

forced to change toward the safe operating range (normal control mode). It is shown that

the system experiences multiple modes and the stability conditions of the closed-loop sys-

tem are formulated in the LMI framework. Simulation results presented do indeed confirm

and demonstrate the effectiveness of the proposed switching congestion control strategies.

Numerical results demonstrate that the network packet loss rates and its corresponding

stability conditions are significantly improved by utilizing our proposed control strategies

when compared to the other available method (that is the IDCC) in the literature.

130



0 0.2 0.4 0.6 0.8 1
0

5

10
x 10

4 Premimum Queue Length

N
od

e 
1

0 0.2 0.4 0.6 0.8 1
0

5

10
x 10

4

N
od

e 
2

0 0.2 0.4 0.6 0.8 1
0

5
x 10

4

N
od

e 
3

Time [second]

Figure 3.32: Case 2: Premium queuing length by
utilizing the decentralized SCC.
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Figure 3.33: Case 2: Premium queuing error by
utilizing the decentralized SCC.
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Figure 3.34: Case 2: Ordinary queuing length by
utilizing the decentralized SCC.
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Figure 3.35: Case 2: Ordinary queuing length by
utilizing the decentralized SCC.
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Chapter 4

Switching Congestion Control of

Mobile DiffServ Networks

In Chapter 3, the switching congestion control strategies for the Diff-Serv networks with

fixed topology are developed. However, in most applications of the network of multi-agent

systems (NMAS), such as space missions, pursuit and rescue missions, and networked

robots, the nodes in the network are usually highly mobile and the network topology will

in turn become time-varying. The movement of nodes will produce random sequence of

on-off link changes, and the associated network topology will change unpredictably. Thus,

there is no stationary infrastructure in the mobile ad hoc networks. It should be pointed

out that in addition to the mobility, loss of node power, deleting or addition of new nodes

will also lead to changes in the network topology.

Unlike the cellular networks, both ends (transmitter and receiver) in a mobile ad

hoc network are free to move. The connectivity between two nodes is determined by the

radio range of both ends which is a function of the antenna pattern, the power level, and

the geographic terrain of each node. Therefore, in mobile networks, each node can only

effectively communicate with certain nearest nodes, typically those that lie in its vicinity

or in its so-called neighboring set. The changing of the network topology will result in the

changing of the neighboring set of each node. Therefore, the queuing dynamics of each
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node in the mobile network will also be affected by the changing neighboring set.

Furthermore, due to the restrictive physical constraints of the communication net-

work, such as the link capacity and the buffer size constraints, performing congestion

control in mobile ad hoc networks is not a trivial problem. Moreover, the changing of

the neighboring set will change the number of links at the output of each node, hence

the link capacity of the node becomes time-varying. Therefore, the physical constraints

of the mobile network is also time-varying and the congestion control problem is more

challenging now.

The objective of this chapter is to develop efficient congestion control algorithms for

mobile Diff-Serv networks, subject to the multiple time-varying delays and time-varying

physical constraints. To achieve this goal, the changing of the neighborhood sets must be

defined. As mentioned in Chapter 2, the connection between the nodes is dependent on

certain physical parameters such as the distance between the nodes and the maximum of

the nodes life-time. Since the link connectivity between two nodes at time t + ∆t is only

dependent on the nodes’ position, velocity and the direction of movement at time t, hence

the future connection of two nodes is independent of its history, but dependent only on

the current state of the connectivity. Therefore, the changes of the network topology is a

memoryless stochastic process which can be described by a Markov chain.

During the past two decades, the Markov chains have been considered in modeling

the abrupt variations of systems and have been widely applied in many applications [134],

[135], [136], [137], [138]. In this chapter, we adopt the concept of the Markov chain and

model the changes of the neighboring set stochastically as a Markovian process. The

switching congestion control algorithms proposed in Chapter 3 are now generalized for

the congestion control problem of mobile Diff-Serv networks. Both a centralized and a

decentralized control scheme are considered for the premium and the ordinary traffic,

respectively.

The remainder of this chapter is organized as follows. In Section 4.1, a brief intro-

duction of the Markovian jump linear system (MJLS) with time-delay is presented. The

definitions of stochastic stability and the stochastic stabilization are given. In Section
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4.2, the switching control approach for MJLS with constraints is described. In Section

4.3, a novel centralized Markovian Jump Switching Congestion Controller (MJ-SCC) for

the premium and the ordinary traffic flows are proposed. In Section 4.4, the centralized

MJ-SCC algorithm is then extended to a decentralized framework. In Section 4.5, the

performance of the proposed MJ-SCC is evaluated through comprehensive simulations.

Finally, conclusions are stated in Section 4.6.

4.1 Markovian Jump Linear Systems with Time-

Delay

Markovian jump linear systems (MJLSs) are a special class of hybrid systems with two

components in their vector states, namely x(t) and αt. The first is referred to as the

state and the second is refereed to as the mode. The MJLS jumps abruptly from on

mode to another in a random manner that makes it a stochastic system. The switchings

between the modes is governed by a continuous/discrete Markov time process with definite

state space. On the other hand, the state in each mode is represented by a system of

differential/difference equations. Therefore, when the system mode is fixed, the system

evolves like a deterministic linear system.

The MJLS has the advantage more accurately representing physical systems with

abrupt variations, such as manufacturing systems, power systems, communication net-

works, economic systems, etc. During the past two decades, the MJLS has attracted large

attention with an increasing interest in both theoretical and application domains [134],

[137], [135], [138], [136]. In [139], [140], [141], [142], [143], [57], [144], [145], the authors

extensively investigated problems such as stability, stabilizability, H∞ control, and their

robustness. In [146], the authors presented a state estimation algorithm for the Markovian

jump singular systems. In [147], a decentralized stabilization approach for an uncertain

Markovian large scale system was developed. More recently, the MJLS with time-delays

has attracted attention in control community. Researchers in [148], [149], [150] have made

contributions on the control problem of MJLS with time-delays. The methods used were
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mostly based on Lyapunov-Krasovskii functions, which are quite general and lead to a

linear matrix inequality (LMI) conditions.

In this chapter, a novel congestion control strategy based on the switching control

approach is developed for the Markovian jump systems. By solving certain linear matrix

inequalities (LMIs), sufficient conditions for stochastic stabilization are derived for the

resulting closed-loop systems with Markovian jumping parameters. Below we fist give the

definitions of the stochastic stability.

A mathematical representation of a MJLS with multiple and time-varying delays

can be given by the following dynamics:

ẋ(t) = A(αt)x(t) +
n∑

j=1

Ad(αt)x(t− τj(t))

+B(αt)u(t) +
n∑

j=1

Bd(αt)u(t− τj(t)) + Bw(αt)w(t) (4.1)

x(t) = φ(t), t ∈ [−h, 0]

where x(t) and u(t) are the state and the control input of the system, respectively; A(αt),

Ad(αt), B(αt), Bd(αt) and Bw(αt) are the system matrices with appropriate dimensions

which are dependent on the Markov process αt, and φ(t) is a continuously differentiable

function that represents the initial condition of the time-delay system. The multiple and

time-varying delay τj(t) satisfy the following assumption:

0 ≤ τj(t) ≤ hj (4.2)

h = max{hj} j = 1, ..., n (4.3)

where h is the maximum bound of the delays in the network, and n is the number of

delays in the network. Therefore, given a complete probability space {Ω,F , P}, where

Ω is the sample space, F is the σ-algebra of subsets of the sample space, and P is the

probability measure on F , the stochastic process αt can be defined as a continuous-time

Markov process. The variable αt takes values in a finite set S = {1, ..., M} with the

transition probability matrix Π = {πkl} given as follows:

P [αt+δ = k | αt = l] =





πkl∆ + o(∆), k 6= l;

1 + πkk∆ + o(∆), k = l.
(4.4)
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where πkl ≥ 0 is the transition rate from mode k to mode l, πkk = −
M∑

l=1,l 6=k

πkl, and o(∆)

is a function satisfying lim
∆→0

o(∆)
∆ = 0. The following definitions of stochastic stability,

stochastic stabilizability can now be stated for the MJLS (4.1) [135].

Definition 4.1. [135]: System (4.1) with u(t) ≡ 0 and w(t) ≡ 0 is said to be stochastically

stable (SS) if there exists a constant T (φ(.), r0) such that the following holds for any initial

condition (φ(.), r0):

E[
∫ ∞

0
‖x(t)‖2dt | φ(.), r0] ≤ T (φ(.), r0) (4.5)

where φ is the initial condition function.

Definition 4.2. [135]: System (4.1) is said to be stochastically stabilizable if there exist a

state feedback controller u(t) = K(αt)x(t) such that the closed-loop system is stochastically

stable (SS), where K(αt) is constant gain matrix for any given αt ∈ S.

The following lemma will be applied in the subsequent stability analysis of the

congestion control algorithms and is presented next. The proof of the lemma can be found

in [151].

Lemma 4.1. [151]: For any symmetric positive definite matrix W > 0, scalar a > 0 and

vector function: x : [0; a] → Rn such that the integrations concerned are well-defined, the

following inequality holds:

(
∫ a

0
x(s)ds)T W (

∫ a

0
x(s)ds) ≤ a

∫ a

0
xT (s)Wx(s)ds (4.6)

4.2 Switching Control of MJLS with Constraints

As presented above, the Markovian jump linear system (MJSL) (4.1) has a group of

modes αt ∈ S, and jumps among the modes that take place stochastically according to

the switching rule (4.4). At each instant time, only one mode is operated. In this section,

we consider the switching control problem of MJLS (4.1) with constraints. That is, for

each mode αt, the MJLS has the following physical constraint:
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Figure 4.1: The framework of the switching control of MJLS with constrained input.

ulow ≤ u(t) ≤ uhigh (4.7)

where ulow and uhigh are the minimum and maximum bound of the input signal. According

to the switching control, as presented in Chapter 2, the switching controller for the MJLS

system (4.1) with the constraint (4.7) is selected as

u(t) =





ulow if uin(t) < ulow;

uin(t) if ulow ≤ uin(t) ≤ uhigh;

uhigh if uin(t) > uhigh.

(4.8)

Therefore, the control input of the system (4.1) will switch among three different

values. The closed-loop of the MJLS (4.1) will then have two levels of switchings, one

stochastic switching as defined in (4.4) and one deterministic switching as defined in (4.8).

The switching control framework of the MJLS is shown in the Fig. 4.1. As shown in

Fig. 4.1, the first level of switching is caused by the Markovian chain αt ∈ S. The

probability of switching among the different modes αt is determined by the probability

distribution function (4.4). Each mode αt is corresponded to a specific topology of the

mobile network. Therefore, the total number of possible network topologies is M . The

second level of switching is induced by the switching controller u(t). That is, for each

network topology αt ∈ S = {1, ..., M} the control input u(t) switches among the three

values, namely ulow, uhigh, and uin(t).
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We define the closed-loop system with the control signal ulow or uhigh as the edge

modes and the closed-loop system with the input u(t) as the normal control mode. Obvi-

ously, for each subsystem αt ∈ S, one expects that the system will remain in the normal

control mode as long as possible. Therefore, similar as before, an extra regulator is added

to adjust the system parameters to force it to move towards the safe operating range. The

regulation strategy is also dependent on the Markovian chain αt.

In the remaining of this chapter, the above switching control approach is applied

to the congestion control problem of mobile Diff-Serv networks with physical constraints.

For each traffic class, the switching congestion controller (SCC) is developed based on its

corresponding physical constraints. The multiple modes of the closed-loop system need to

be then analyzed for deriving the regulation strategies of the traffic compression gains. The

detailed synthesis and analysis of the centralized and the decentralized SCC are presented

in the following two sections.

4.3 Centralized Markovian Jump Switching Con-

gestion Control (MJ-SCC) Scheme

The centralized dynamic model of the mobile ad hoc networks as given in Chapter 2 are

re-written here again:

ẋp(t) = −F (xp(t))up(t) + λp(t) +
m(αt)∑

l=1

GlF (xp(t− τl(t)))up(t− τl(t)) (4.9)

ẋr(t) = −F (xr(t))ur1(t) + ur2(t) +
m(αt)∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t)) (4.10)

where m(αt) is the number of possible delays in the network, depending on the network

topology at time t, xp(t) and xr(t) denote the queuing states of the premium and the

ordinary traffic, respectively, up(t) and ur(t) denotes the input signals for the premium

and the ordinary traffic, respectively, λp(t) is the unknown but bounded external incoming

premium traffic, and τl(t) are the unknown multiple and time-varying delays.

The physical constraints of the premium and the ordinary traffic in the mobile
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network are listed as

0 ≤ xp(t) ≤ xmax
p (4.11)

0 ≤ up(t) ≤ Cserver(αt) (4.12)

0 ≤ λp(t) ≤ λmax
p < Cserver(αt) (4.13)

0 ≤ xr(t) ≤ xmax
r (4.14)

0 ≤ ur1(t) ≤ cr(αt) (4.15)

0 ≤ ur2(t) ≤ λmax
r < cr(αt) (4.16)

cr(αt) = Cserver(αt)− up(t) (4.17)

where xmax
p and xmax

r denote the buffer size of the premium and the ordinary traffic,

respectively, Cserver(αt) is the mode-dependent link capacity, λmax
p and λmax

r denote the

maximum allowable traffic rate of the premium and the ordinary traffic, respectively, and

cr(αt) is the leftover capacity from the premium traffic which is also dependent on the

mode αt.

The congestion control problem of mobile Diff-Serv networks is then to select the

controllers up(t) and ur(t), which have considered the physical constraints (4.11), so that

the queuing length of the premium and the ordinary traffic will convergence to their

corresponding reference values. It should be noted that since the physical constraints of

the mobile network Cserver(αt) and cr(αt) are mode-dependent, the switching congestion

controller and the regulation strategy of the system under the edge modes are indeed mode-

dependent which is clearly more complicated than the control of fixed Diff-Serv networks.

In the following subsections, the centralized switching congestion control strategy for the

premium and the ordinary traffic will be presented based on the dynamic queuing models

of mobile networks.
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4.3.1 Centralized MJ-SCC of Premium Traffic in Mobile

Networks

According to the switching control approach, the congestion control strategy for the pre-

mium traffic is selected as

up(t) =





0 if ūp(t) < 0

ūp(t) if 0 ≤ ūp(t) ≤ Cserver(αt)

Cserver(αt) if ūp(t) > Cserver(αt)

(4.18)

where the first and the third controllers are refereed to as the edge modes, and the second

controller is refereed to as the normal control mode. Due to the nonlinearity of the system

and the unknown input traffic λp(t), the normal controller ūp(t) is designed according to

the feedback linearization technique [78] and the robust adaptive control theory [128] and

is selected as

ūp(t) = F−1(xp, t)[Kp(αt)x̄p(t) + λ̂p(t)] (4.19)

where x̄p(t) = xp(t)−xref
p , xref

p is the reference queuing lengthes of the premium traffic in

the nodes selected by the network operator, Kp(αt) is the mode dependent control gain,

and λ̂p(t) is the adaptive estimator used to estimate the unknown external incoming traffic

λp(t) to compensate for its effect via feedback. The updating rule of λ̂p(t) is defined as

follows:

˙̂
λp(t) =





∆p(αt)x̄p(t)−Πp(αt)λ̂p(t) if 0 ≤ λ̂p(t) ≤ λmax
p or

λ̂p(t) = 0, x̄p(t) ≥ 0 or

λ̂p(t) = λmax
p , x̄p(t) ≤ 0

−Πp(αt)λ̂p(t) otherwise

(4.20)

where ∆p(αt) and Πp(αt) are the mode dependent adaptive control gains which need to

be selected.

It should be noted that the dynamic queuing system (4.9) and the physical con-

straints (4.11) of the mobile network are mode dependent. The above congestion con-

troller (4.18) and the adaptive estimator (4.20) need to be updated at each time when the
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network topology is changed. That is, the control gains Kp(αt), ∆p(rr), and Πp(αt) are

also dependent on the Markovian chain αt.

Moreover, after applying the switching congestion control strategy (4.18), the dy-

namics of the mobile network (4.9) will experience multiple modes depending on the

different choices of the controller in (4.18). The detailed analysis of each mode is given

below.

• Edge Mode (i): If up(t) = 0 at some time t = t1 for the mode αt = k, k ∈ S,

this implies that the queuing state xp(t) of the mode k is sufficiently small. The

closed-loop system of the premium traffic (4.9) will become

ẋp(t) = λp(t) +
m(k)∑

l=1

GlF (xp(t− τl(t)))up(t− τl) > 0 (4.21)

Since ẋp(t) > 0, the queuing length will increase with the time. Therefore, after

some finite time t2 > t1, one will have ūp(t) > 0 and the normal controller ūp(t) will

be chosen and take effect. The traffic compression gains Gl need not be regulated

under this mode. The above analysis holds for any mode αt ∈ S.

• Edge Mode (ii): If up(t) = Cserver(αt) for the mode αt = k, k ∈ S, at some time

t = t3, this implies that the queuing state xp(t) of the mode k is sufficiently large.

The closed-loop system of (4.9) will now be governed by:

ẋp(t) = −F (xp(t))Cserver(k) + λp(t) +
m(k)∑

l=1

GlF (xp(t− τl(t)))up(t− τl)

≈ −Cserver(k) + λp(t) +
m(k)∑

l=1

GlF (xp(t− τl(t)))up(t− τl)

≤ −Cserver(k) + λmax
p +

m(k)∑

l=1

Glλ
max
p (4.22)

where λmax
p is the maximum allowable traffic rate induced by the transmitter con-

straint (2.17) of the nodes.

The control strategy in this mode is to regulate the traffic compression gains Gl,

so that the queuing state xp(t) will decrease. According to the dynamic equation
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(4.22), the traffic compression gains for the mode αt are selected as

0 ≤
m(k)∑

l=1

Gl < (Cserver(k)− λmax
p )(λmax

p )+ (4.23)

where + denotes the Moor-Penrose inverse [103] of the vector λmax
p . The queuing

length xp(t) of the mode αt will decrease, and after some time t4 > t3 the normal

controller ūp(t) will take effect.

It should be noted that the regulation strategy (4.23) is derived based on the mode

k. Suppose that the network has switched from mode k to another mode αt = j,

j ∈ S, at some time t = t5, before the normal controller ūp(t) takes effect. Then it

implies that:
ūp(t5) > Cserver(k) (4.24)

Since the network topology has changed, the switching controller (4.18) will be recal-

culated with respect to the mode j and the following two cases may be considered:

– If Cserver(j) < Cserver(k), this implies that certain nodes move away from the

network and the number of links in the network decreases. We will now have

ūp(t5) > Cserver(j) (4.25)

According to (4.23), the traffic compression gains will be recalculated as

0 ≤
m(j)∑

l=1

Gl < (Cserver(j)− λmax
p )(λmax

p )+ (4.26)

It turns out in this case since the link capacity of the nodes decreases, the

traffic compression gains are required to decrease too. Hence, the traffic load

in the network will reduce and the threat of congestion will be alleviated.

– If Cserver(j) > Cserver(k), this implies that extra nodes move into the network

and the link capacity of the nodes increases. Therefore, we will have

up(t) =





ūp(t) if ūp(t) < Cserver(j)

Cserver(j) otherwise
(4.27)

Therefore, the normal controller ūp(t) will take effect in case there is enough

capacity. On the other hand, if there is still not enough capacity, the regulation

strategy (4.26) will than be applied.
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Therefore, after some finite time, the normal controller ūp(t) will take effect for the

modes αt ∈ S.

• Normal Control Mode (iii): If up(t) = ūp(t) at some time t = t5 for the mode

αt = k, k ∈ S, the closed-loop system of (4.9) will become

ẋp(t) = −Kp(k)x̄p(t)− λ̂p(t) + λp(t) +
m(k)∑

l=1

GlF (xp(t− τl(t)))up(t− τl(t)) (4.28)

Now we need to analyze the incoming traffic from the neighboring nodes. The

equation (4.24) can be written as

ẋp(t) = −Kp(k)x̄p(t)− λ̂p(t) + λp(t) (4.29)

+
m1(k)∑

l=1

GlCserver +
m2(k)∑

l=1

Gl[Kp(k)x̄p(t− τl(t)) + λ̂p(t− τl(t))]

where m1(k) is the number of neighbor nodes which take the maximum value of the

controller Cserver(k), m2(k) is the number of neighbor nodes which take the value of

the normal controller ūp(t−τl(t)), and the other neighbors which take the minimum

value of the controller 0 are included in the equation (4.25). The above system can

be written in the following state space representation

ẋp(t) = −Kp(k)x̄p(t)− λ̂p(t) + λp(t) (4.30)

+
m(k)∑

l=1

GlBcCserver +
m(k)∑

l=1

GlBl[Kp(k)x̄p(t− τl(t)) + λ̂p(t− τl(t))]

where the system matrices Bc and Bl are defined as

Bc =





I if up(t− τl(t)) = Cserver(k)

0 otherwise

Bl =





I if up(t− τl(t)) = ūp(t− τl(t))

0 otherwise

Now all the operational modes of the system (4.9) is completed after applying the switch-

ing controller (4.18). By selecting the traffic compression gains according to (4.23), the

dynamic model of the premium traffic for the mobile network (4.9) will operate under

the normal control mode and can be expressed as the Markovian jump linear system with

multiple and time-varying delays (4.30).
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Let us compare the above regulation strategies of the traffic compression gains with

that of the fixed network, as presented in the Section 3.1.1. One can note that for the fixed

network we only need to calculate the traffic compression gain matrix Gl once, according to

(3.13). On the contrary, for the mobile network, since the network topology is dependent

on the Markov chain αt, one needs to check the link capacity whenever the network

topology is changed. The traffic compression gains Gl have to be then re-calculated again

so to guarantee that the system (4.9) with respect to each mode αt will operate in the safe

range (normal control mode).

The centralized switching congestion control strategy for the premium traffic in

mobile networks has two levels of switchings. As shown in Fig. 4.1, the first level switching

induced by the change of network topology is represented by the Markov chain αt ∈ S,

S = {1, ...,M}. The switchings among different modes αt are governed by the probability

function (4.4). For each mode αt, the control input switches among three values according

to the network constraints. When the control input switches to the edge mode, 0 or

Cserver(αt), the regulation mechanism will adjust the traffic compression gains within the

network to force the queuing states change toward the normal control mode. After some

finite time, the normal controller ūp(αt) will then be selected.

Now, let us we define the estimation error of the unknown external incoming traf-

fic λ̄p(t) = λ̂p(t) − λp(t) as a new state and define the a new state space as zp(t) =[
x̄T

p (t) λ̄T
p (t)

]T

. The closed-loop system (4.30) together with the adaptive estimator

(4.20) can be expressed as

żp(t) = Dk(αt)zp(t) +
m(αt)∑

l=1

Fl(αt)zp(t− τl(t)) +
m(αt)∑

l=1

Hl(αt)vl(αt) (4.31)

zp(t) = ϕ(t), t ∈ [−h, 0]

k ∈ ℘, ℘ = 1, 2

αt ∈ S,S = 1, ...., M

where ϕ(t) is a continuous function representing the initial condition of the delay system,

k ∈ ℘, ℘ = 1, 2 is the deterministic switching introduced from the adaptive estimator

λ̂p(t), and is defined in the set ℘ with two values, αt is the stochastic switching that is
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induced by the changes of the neighboring set, vl(t) is the external signal, and Dk(αt),

Fl(αt), Hl(αt) are the system matrices that are defined as follows:

D1(αt) =



−Kp(αt) −I

∆p(αt) −Πp(αt)


 D2(αt) =



−Kp(αt) −I

0 −Πp(αt)




Fl =




GlBlKp(αt) GlBl

0 0


 Hl(αt) =




0 0 GlBl GlBc

−Πp(αt) −I 0 0




vT
l (αt) =

[
λp(t) λ̇p(t) λp(t− τl(t)) Cserver(αt)

]

The above system is a hybrid system with multiple and time-varying delays. There

are two levels of switchings in the system (4.31). The first switching level is represented

by the Markov chain αt, and the second switching level is given by the arbitrary switching

parameter k. Therefore, the congestion control problem for the premium traffic of mobile

networks is to select the control gains Kp(αt), ∆p(αt), and Πp(αt) so that the closed-loop

system (4.31) is stable.

The control objective for the premium traffic is now to select the mode-dependent

control gain Kp(αt) and the adaptive control gains ∆p(αt) and Πp(αt), as presented in the

system matrices Dk(αt) and Fl(αt), so that the closed-loop system (4.31) is stable. The

following lemma provides the stability conditions of the system (4.31).

Lemma 4.2. Consider the system (4.31). If there exist symmetric positive definite ma-

trices P (αt), Q(αt), R, and positive definite matrices M(αt) and N(αt) such that the

following matrix inequality condition is satisfied for all the modes αt ∈ S, S = {1, ..., M}:

Wk(αt) =




wk1(αt) wk2(αt) R

∗ w3(αt) 0

∗ ∗ −R− (1− h)Qαt




< 0 k = 1, 2 (4.32)

where

wk1(αt) = (2P (αt) + h2DT
k (αt)R)Dk(αt) +

M∑

l=1

παtlP (l) + (1 + h)Q(αt)−R + M(αt)

wk2(αt) = (h2DT
k (αt)R + P (αt))F (αt)

w3(αt) = h2F T (αt)(R + N(αt))F (αt)
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then the system (4.31) is stochastically ultimately bounded. The radius of the stochastic

bounded region is max{ρk(αt)}|k = λmin(Ψ(αt))
λmax(−Wk(αt))

‖v(αt)‖2, k = 1, 2, where λmax and

λmin indicate the maximum and the minimum eigenvalues of the corresponding matrices,

respectively.

Proof: Consider the following stochastic Lyapunov-Krasovskii functional:

V (zp(t), αt) = V1 + V2 + V3 + V4 (4.33)

V1 = zp(t)T P (αt)zp(t) (4.34)

V2 =
∫ t

t−h
zT
p (s)Q(αt)zp(s)ds (4.35)

V3 = h

∫ 0

−h

∫ t

t+θ
żT
p (s)Rżp(s)dsdθ (4.36)

V4 =
∫ 0

−h

∫ t

t+θ
zT
p (s)Q(αt)zp(s)dsdθ (4.37)

where P (αt), Q(αt), R are positive definite matrices with appropriate dimensions. Let L
denote the infinitesimal generator of zt, αt, t ≥ 0. Then, for each αt = k ∈ S we have

LV1 = lim
∆→0+

1
∆
{E[V1(zp(t + ∆), αt+δ, t + ∆)|zp(t), αt = k]− V1(zp(t), k, t)}

= lim
∆→0+

1
∆
{
∑

l 6=k

(πlk∆ + o(∆)zT
p (t + ∆)P (αt+δ)zp(t + ∆)

+(1 + πkk∆ + o(∆))zT
p (t + ∆)P (αt+δ)zp(t + ∆))− zT

p (t)P (αt)zp(t)}

= 2zT
p (t)P (αt)żp(t) +

M∑

k=1

παtkz
T
p (t)P (k)zp(t)

= 2zT
p (t)P (αt)[Dk(αt)zp(t) +

m(αt)∑

l=1

Fl(αt)zp(t− τl(t))]

+zT
p (t)

M∑

k=1

παtkP (k)zp(t) + 2zT
p (t)P (αt)

m(αt)∑

l=1

H(αt)vl(αt)

LV2 =
∫ t

t−h
2zT

p (s)Q(αt)żp(s)ds +
∫ t

t−h
zT
p (s)

M∑

k=1

παtkQ(k)zp(s)ds

= zT
p (t)Q(αt)zp(t)− (1− h)zT

p (t− h)Q(αt)zp(t− h)

+
∫ t

t−h
zT
p (s)

M∑

k=1

παtkQ(k)zp(s)ds
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LV3 = h2żT
p (t)Rżp(t)− h

∫ t

t−h
żT
p (s)Rżp(s)ds

= h2[Dk(αt)zp(t) +
m(αt)∑

l=1

Fl(αt)zp(t− τl(t)) +
m(αt)∑

l=1

Hl(αt)vl(αt)]T R

[Dk(αt)zp(t) +
m(αt)∑

l=1

Fl(αt)zp(t− τl(t)) +
m(αt)∑

l=1

Hl(αt)vl(αt)]

−h

∫ t

t−h
żT
p (s)Rżp(t)ds

LV4 = hzT
p (t)Q(αt)zp(t)−

∫ t

t−h
zT
p (s)

M∑

k=1

παtkQ(k)zp(s)ds

Now, by applying Lemma 4.1 to LV3 one obtains

h

∫ t

t−h
żT
p (s)Rżp(s)s ≥ (zp(t)− zp(t− h))T R(zp(t)− zp(t− h)) (4.38)

Combining the above, we get

LV ≤ zT
p (t)(2P (αt)Dk(αt) +

M∑

k=1

παtkP (k) + (1 + h)Q(αt))zp(t)

+h2zT
p (t)(DT

k (αt)RDk(αt)−R)zp(t)

+2zT
p (t)(h2DT

k (αt)R + P (αt))
m(αt)∑

l=1

Fl(αt)zp(t− τl(t))

+h2(
m(αt)∑

l=1

Fl(αt)zp(t− τl(t)))T R(
m(αt∑

l=1

Fl(αt)zp(t− τl(t)))

+2zT
p (t)Rzp(t− h)− zT

p (t− h)(R + (1− h)Q(αt))zp(t− h)

+h2(
m(αt)∑

l=1

Hl(αt)vl(αt))T R(
m(αt)∑

l=1

Hl(αt)vl(αt))

+2zT
p (t)(h2Dk(αt)R + P (αt))

m(αt)∑

l=1

Hl(αt)vl(αt)

+2h2(
m(αt)∑

l=1

Fl(αt)zp(t− τl(t)))T (
m(αt)∑

l=1

Hl(αt)vl(αt))

By using the fact that

m(αt)∑

l=1

Fl(αt)zp(t− τl(t)) = F (αt)zp(t− τ) and
m(αt)∑

l=1

Hl(αt)vl(αt) = H(αt)v(αt) (4.39)

where
F (αt) = vec{Fl(αt)} vt(αt) = vec{vT

l (αt)}

H(αt) = vec{H1(αt)} zp(t− τ) = vec{zT
p (t− τl(t))} l = 1, ..., m(αt)
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and defining Y (αt) = h2Dk(αt)R + P (αt), and applying the Park’s inequality (3.24) [129]

to the last two terms in LV , one can obtain

2zT
p (t)Y (αt)H(αt)v(αt) ≤ zT

p (t)M(αt)zp(t) + (H(αt)v(αt))T Y T (αt)M−1(αt)Y (αt)H(αt)v(αt)

2(F (αt)zp(t− τ))T H(αt)v(αt) ≤ (F (αt)zp(t− τ))T N(αt)F (αt)zp(t− τ)

+(H(αt)v(αt))T N−1(αt)H(αt)v(αt)

where Mrt and N(αt) are arbitrary positive definite matrices. Therefore, the infinitesimal

generator of the Lyapunov function V (zp(t), αt) will become

LV ≤ zT
p (t)(2P (αt)Dk(αt) +

M∑

k=1

παtlP (k) + (1 + h)Q(αt))zp(t)

+h2zT
p (t)(DT

k (αt)RDk(αt)−R + M(αt))zp(t)

+2zT
p (t)(h2DT

k (αt)R + P (αt))F (αt)zp(t− τ)

+h2(F (αt)zp(t− τ))T (R + N(αt))(F (αt)zp(t− τ))

+2zT
p (t)Rzp(t− h)− zT

t−h(R + (1− h)Qrt)zp(t− h)

+h2(H(αt)v(αt))T RH(αt)v(αt) + (H(αt)v(αt))T Y T (αt)M−1(αt)Y (αt)H(αt)v(αt)

+h2(H(αt)v(αt))T N−1(αt)H(αt)v(αt)

= zT
p (t)(2P (αt)Dk(αt) +

M∑

k=1

παtlP (k) + (1 + h)Q(αt))zp(t)

+h2zT
p (t)(DT

k (αt)RDk(αt)−R + M(αt))zp(t)

+2zT
p (t)(h2DT

k (αt)R + P (αt))F (αt)zp(t− τ)

+h2zT
t−τF

T (αt)(R + N(αt))F (αt)zp(t− τ)

+2zT
p (t)Rzp(t− h)− zT

t−h(R + (1− h)Q(αt))zp(t− h)

+vT (αt)HT (αt)(h2R + Y T (αt)M−1(αt)Y (αt) + h2N−1(αt))H(αt)v(αt)

= ηT (t, τ, h)Wk(αt)η(t, τ, h) + vT (αt)Ψ(αt)v(αt) (4.40)

where

Wk(αt) =




wk1(αt) wk2(αt) R

∗ w3(αt) 0

∗ ∗ −R− (1− h)Q(αt)
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wk1(αt) = (2P (αt) + h2DT
k (αt)R)Dk(αt) +

M∑

l=1

παtlP (l) + (1 + h)Q(αt)−R + M(αt)

wk2(αt) = (h2DT
k (αt)R + P (αt))F (αt)

w3(αt) = h2F T (αt)(R + N(αt))F (αt)

Ψ(αt) = HT (αt)(h2R + Y T (αt)M−1(αt)Y (αt) + h2N−1(αt))H(αt)

η(t, τ, h) =
[

zT
p (t) zT (t− τ) zT (t− h)

]T

Since Wk(αt) < 0, for any η(t, τ, h) that satisfies:

−ηT (t, τ, h)Wk(αt)η(t, τ, h) ≥ vT (αt)Ψ(αt)v(αt) (4.41)

we will have

LV ≤ 0 (4.42)

Therefore, according to the Definition.4.1, the system (4.9) is stochastically ultimately

bounded. The radius of the ultimately bounded region is given by:

ρk(αt) =
λmax(Ψ(αt))

λmin(−Wk(αt))
‖v(αt)‖2 (4.43)

and this completes the proof of Lemma. ¥

Lemma 4.2 shows that the switching controller (4.18)-(4.20) together with the reg-

ulation strategy (4.23) is a stabilizing control strategy for the Markovian jump system

(4.9). But the stability condition (4.32) is not linear with respect to the system matrices,

which contains the control gains Kp(αt), ∆p(αt), and Πp(αt). Hence, it can not be solved

directly. To tackle this problem, the following lemma is presented to transform the non-

linear matrix inequality Wk(αt) into a standard linear matrix inequality (LMI) condition

which therefore gives the expression of the controllers.

Lemma 4.3. Consider the system (4.31). If there exist symmetric positive definite ma-

trices X(αt), N(αt), Q̄(αt), R, Z, and matrices Uk(αt), V̄k(αt), R̄k(αt), for k = 1, 2,
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αt ∈ S = {1, . . . ,M} such that the following LMI conditions are satisfied:

Ωk(αt) =




θk1(αt) θk2(αt) XT (αt)

∗ θ3(αt) 0

∗ ∗ −Z − (1− h)Q̄αt




< 0 (4.44)

θk1(αt) = Uk(αt) + UT
k (αt) + h2R̄k(αt) + (1 + h +

M∑

l=1

παtl)X
T (αt)

θk2(αt) = V̄k(αt) + I

θ3(αt) = h2(R + N(αt))

then the matrix inequality condition in Lemma 4.2 holds and the system (4.31) is ultimately

bounded.

Proof: Consider the nonlinear matrix Wk(αt), and let us define the following ma-

trices:
X(αt) = P−1(αt)

Y (αt) = F−1(αt)

Z = R−1

Λ(αt) = diag{X(αt), Y (αt), Z}

Then, by pre and post multiplying (4.32) with Λ(αt) and ΛT (αt), respectively, the matrix

Wk(αt) becomes
Ωk(αt) = ΛT (αt)Wk(αt)Λ(αt)

=




θk1(αt) θk2(αt) XT (αt)

∗ θ3(αt) 0

∗ ∗ −Z − (1− h)Q̄αt




(4.45)

where
θk1(αt) = Uk(αt) + UT

k (αt) + h2R̄k(αt) + (1 + h +
M∑

l=1

παtl)X
T (αt)

θk2(αt) = V̄k(αt) + I

θ3(αt) = h2(R + N(αt))

Dk(αt) = Uk(αt)X−1(αt) ; R̄k(αt) = Uk(αt)T RUk(αt)

M(αt) = R ; Q(αt) = P (αt)

V̄k(αt) = Uk(αt)T R ; Q̄(αt) = ZT Q(αt)Z
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Therefore, if Ωk(αt) < 0 one will have Wk(αt) < 0, and hence the system (4.31) is

ultimately bounded, and the system matrix Dk(αt) is given by Dk(αt) = Uk(αt)X−1(αt).

This completes the proof of Lemma 4.3. ¥

Remark 4.1. According to Lemma 4.2 and Lemma 4.3, the stability condition (4.32)

and (4.44) of the closed-loop system (4.31) is dependent on the Markov chain αt ∈ S,

for S = {1, ..., M}. That is, at each time when the network topology is changed, one

needs to re-calculate the state feedback control gain Kp(αt), as well as the mode-dependent

adaptive control gains ∆p(αt) and Πp(αt). The congestion controller up(t) and the adaptive

estimator λ̂p(t) are then updated with the new parameters.

Furthermore, as pointed out earlier, when the network topology is changed, one needs

to also check the new link capacities of all the nodes in the network Cserver(αt), and re-

select the switching congestion controller up(t) according to the conditions of new physical

constraints.

Remark 4.2. According to equation (4.40), the ultimately bounded region of the premium

traffic in a mobile network is given by:
ρ(αt) = max[ρk(αt)], k = 1, 2

ρk(αt) =
λmax(Ψ(αt))

λmin(−Wk(αt))
‖v(αt)‖2 (4.46)

where λmin and λmax denote the minimum and maximum eigenvalue of a matrix, respec-

tively. As one can see from (4.46), the system (4.31) with respect to each mode αt may

have different radius of the ultimately bounded region.

4.3.2 Centralized MJ-SCC of Ordinary Traffic in Mobile

Networks

The dynamic model of the ordinary traffic in a mobile network is given by

ẋr(t) = −F (xr(t))ur1(t) + ur2(t) +
m(αt)∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl) (4.47)

where ur1(t) is the bandwidth controller and ur2(t) is the flow rate controller of the ordi-

nary traffic.
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The control objective for the ordinary traffic is to select the controllers ur1(t) and

ur2(t) so that the queuing length of the ordinary traffic xr(t) in the mobile network envi-

ronment will be as close as possible to its reference value xref
r . According to the physical

constraints of the ordinary traffic class, as given in (4.11), the control strategy for the flow

rate controller ur2(t) is to ensure that the ordinary incoming traffic rate λr(t) = ur2(t)

will not exceed the maximum allowable rate cr(αt), and hence is selected as follows

ur2(t) =





λmax
r if λr(t) ≥ λmax

r ;

λr(t) if λr(t) < λmax
r .

(4.48)

When the incoming traffic rate λr(t) is guaranteed to be within the bound, the

control strategy for the bandwidth controller ur1(t) is designed as follows:

ur1(t) =





0 if ūr1(t) < 0

ūr1(t) if 0 ≤ ūr1(t) ≤ cr(αt)

cr(αt) if ūr1(t) > cr(αt)

(4.49)

ūr1(t) = F−1(xr, t)[Kr(αt)x̄r(t) + λ̂r(t)] (4.50)

where Kr(αt) is the mode-dependent feedback control gain, λ̂r(t) is a time-varying signal

used to compensate for the effects of the external signal λr(t) via feedback, and is selected

according to the robust adaptive control theory [128] as follows:

˙̂
λr(t) =





∆r(αt)x̄r(t)−Πr(αt)λ̂r(t) if 0 ≤ λ̂r(t) ≤ λmax
r or

λ̂r(t) = 0, x̄r(t) ≥ 0 or

λ̂r(t) = λmax
r , x̄r(t) ≤ 0

−Πr(αt)λ̂r(t) otherwise

(4.51)

where ∆r(αt) and Πr(αt) are the mode-dependent adaptive control gains which need to

be designed. After applying the switching congestion controller (4.48), the closed-loop

Markovian jump system (4.47) will experience multiple modes depending on the different

choices of the switching controller in (4.48). Similar to the analysis in the premium traffic,

the following operational modes for the ordinary traffic are considered.

• Case (i): If cr(αt) = 0 at some time t = t1, for the mode αt = k, k ∈ S, this implies

that:
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Cserver(k)− up(t) = 0 (4.52)

so that there is no leftover capacity in the network. According to the switching

controller (4.48), we will have

ur1(t) = 0, ur2(t) = 0

Therefore, the dynamic system of the ordinary traffic (4.47) becomes:

ẋr(t) =
m(k)∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t)) > 0 (4.53)

The queuing length of the ordinary traffic will increase with the time. However,

since there is no leftover capacity in the network, increasing queuing length will

result in a buffer overflow and in turn cause congestion in a short time. Therefore,

the only way to avoid congestion, in this case, is to reset the traffic compression

gains to Gl = 0. Any incoming traffic from neighboring nodes are forced to be

dropped out until there is an available capacity for the ordinary traffic.

• Case (ii): If cr(αt) > 0, at some time t = t2, for the mode αt = k, k ∈ S, then

the following three operational modes of the system (4.30) depend on the different

choices of the bandwidth controller ur1(t) that are considered next.

– Edge Mode (i): Suppose that ur1(t) = 0 at some time t = t2, for the mode

αt = k, k ∈ S. This implies that the ordinary queuing length of the mode k is

sufficiently small and the closed-loop system of (4.30) is governed by:

ẋr(t) = λr(t) +
m(k)∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t)) > 0 (4.54)

Hence, the ordinary queuing length xr(t) will increase and after some finite

time t3 > t2 the normal controller ūr1(t) will take effect for the mode k.

– Edge Mode (ii): If ur1(t) = cr(αt) at some time t = t4, for the mode αt = k,

k ∈ S, then it follows that the ordinary queuing length xr(t) is sufficiently

large and ūr1(t) > cr(αt). The dynamical queuing model of the ordinary
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traffic (4.30) then becomes:

ẋr(t) = −F (xr(t))cr(k) + λr(t) +
m(k)∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t))

≤ −F (xr(t))cr(k) + λmax
r +

m(k)∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t))

≤ −F (xr(t))cr(k) + λmax
r +

m(k)∑

l=1

Glλ
max
r (4.55)

Therefore, the regulation strategy in this case is to regulate the traffic com-

pression gain Gl so that the queuing length xr(t) of the mode k will decrease,

and after some finite time the normal controller ūr1(t) will take effect. Hence,

the following regulation rule for Gl is considered:

0 ≤
m(k)∑

l=1

Gl ≤ (F (xr(t))cr(k)− λmax
r )(λmax

r )+ (4.56)

Similar to the analysis in the premium traffic control, although the regulation

rule (4.56) is derived based on the mode k, it is valid for all the modes αt ∈ S.

If the network has switched from mode k to another mode αt = j, j ∈ S
before the normal controller ūr1 takes effect, the switching controller ur1(t)

will be re-compared with the link capacity cr(j) with respect to the mode j.

The regulation strategy (4.56) will then be applied if there is still not enough

capacity, but with respect to the variables m(j) and cr(j). Consequently, after

some finite time, the normal controller ūr1(t) will take effect for all the modes

αt ∈ S.

– Normal Control Mode: If ur1(t) = ūr1(t) at some time t = t6, for the mode

αt = k, k ∈ S, the dynamic system (4.30) becomes

˙̄xr(t) = −Kr(k)x̄r(t)− λ̂r(t) + λr(t) +
m(k)∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl(t))

We now need to check the neighboring controllers ur1(t− τl(t). Similar to the

analysis in the premium traffic, certain nodes in the neighboring set may take

the maximum value of the control cr(k), while others may take the minimum
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value of the control 0, and yet the others may take the value of the normal

control ūr1(t). However, the dynamic queuing system of the ordinary traffic

for the entire network can be expressed in one state space representation as

follows:

˙̄xr(t) = −Kr(k)x̄r(t)− λ̂r(t) + λr(t) (4.57)

+
m(k)∑

l=1

Gr
l B

r
c cr(k) +

m(k)∑

l=1

Gr
l B

r
l [Kr(k)x̄r(t− τl(t)) + λ̂r(t− τl(t))]

if we define the system matrices Br
c and Br

l as

Br
c =





I if ur(t− τl(t)) = cr(t)

0 otherwise

Br
l =





I if ur(t− τl(t)) = ūr(t− τl(t))

0 otherwise
(4.58)

Therefore, after applying the switching congestion controller (4.48)-(4.49), and selecting

the traffic compression gains according to (4.56), the normal controller of the ordinary

traffic ūr1(t) will eventually take effect for all the modes αt ∈ S and the Markovian jump

system (4.30) will become the Markovian jump linear system (MJLS) with multiple and

time-varying delays (4.57). The control objective for the ordinary traffic in the mobile

network is to select the control gains Kr(αt), ∆r(αt), and Πr(αt) for each mode αt ∈ S,

so that the closed-loop system (4.57) is stable. Therefore, the following section will be

focused on the stability analysis of the closed-loop system (4.57).

For the stability analysis of the Markovian jump linear system (4.57), let us define

the new state space z̄r(t) = vec{x̄r(t), λ̄r(t)}, where λ̄r(t) = λ̂r(t)−λr(t). The closed-loop

system of the ordinary traffic (4.57) and the adaptive estimator (4.51) can then be written

in the following form

żr(t) = Dr(αt)(αt)zr(t) +
m(αt)∑

l=1

F r
l (αt)zr(t− τl(t)) +

m(αt)∑

l=1

Hr
l (αt)vl(αt) (4.59)

zr(t) = φ(t), φ(t) = [−h, 0]

k ∈ ℘, ℘ = 1, 2

αt ∈ S,S = 1, ....M
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where φ(t) is the initial condition of the time-delay system, k is the deterministic switching

parameter of the system induced by the adaptive estimator (4.51), αt is the Markov chain

indicating the changes of the neighboring set, and Dr(αt)(αt), F r
l (αt), Hr

l (αt) are the

mode-dependent system matrices that are defined as follows:

Dr
1(αt) =



−Kr(αt) −I

∆r(αt) −Πr(αt)


 Dr

2(αt) =



−Kr(αt) −I

0 −Πr(αt)




F r
l (αt) =




Gr
l B

r
l Kr(αt) Gr

l B
r
l

0 0


 Hr

l (αt) =




0 0 Gr
l B

r
l Gr

l B
r
c

−Πr(αt) −I 0 0




vr
l (t) =

[
λr(t) λ̇r(t) λr(t− τl(t)) cr(αt)

]T

The control objective of the ordinary traffic is then to select the mode-dependent control

gains Kr(αt), ∆r(αt), Πr(αt), as presented in the system matrices Dr(αt)(αt) and F r
l (αt),

so that closed-loop system (4.59) is stable.

Comparing the closed-loop system of the ordinary traffic (4.59) with the closed-

loop system of the premium traffic (4.31), one can conclude that the structure of the two

dynamics are similar. Therefore, the same technique and theory which were applied in

the stability analysis of the premium traffic class can be utilized for the ordinary traffic

also. Therefore, the following two lemmas can be obtained.

Lemma 4.4. Consider the closed-loop system of the ordinary traffic (4.59). If there exist

symmetric positive definite matrices P (αt), Q(αt), R, and positive definite matrices M(αt)

and N(αt) such that the following matrix inequality condition is satisfied for all the modes

αt ∈ S, S = {1, ..., M}:

W r
k (αt) =




wr
k1(αt) wr

k2(αt) R

∗ wr
3(αt) 0

∗ ∗ −R− (1− h)Qαt




< 0 k = 1, 2 (4.60)

where

wr
k1(αt) = (2P (αt) + h2(Dr

k(αt)T )R)Dr
k(αt) +

M∑

l=1

παtlP (l) + (1 + h)Q(αt)−R + M(αt)

wr
k2(αt) = (h2(Dr

k(αt))T R + P (αt))F r(αt)

wr
3(αt) = h2(F r(αt))T (R + N(αt))F r(αt)
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then the system (4.59) is ultimately bounded, and the radius of the ultimately bounded

region is given by:

ρr(αt) = max[ρr
k(αt)], k = 1, 2

ρr
k(αt) =

λmax(Ψr(αt))
λmin(−W r

k (αt))
‖vr(αt)‖2 (4.61)

where

Ψr(αt) = HT
r (αt)(h2R + Y T

r (αt)M−1(αt)Yr(αt) + h2N−1(αt))Hr(αt)

Proof: The proof follows along the same lines as in the proof of Lemma 4.2 by

substituting the appropriate system matrices of the ordinary traffic. ¥

Lemma 4.5. Consider the system (4.59). If there exist symmetric positive definite ma-

trices X(αt), N(αt), Q̄(αt), R, Z, and matrices U r
k (αt), V̄ r

k (αt), R̄r
k(αt), for k = 1, 2,

αt ∈ S = {1, . . . ,M} such that the following LMI conditions are satisfied:

Ωr
k(αt) =




θr
k1(αt) θr

k2(αt) XT (αt)

∗ θr
3(αt) 0

∗ ∗ −Z − (1− h)Q̄αt




< 0 (4.62)

θr
k1(αt) = U r

k (αt) + (U r
k (αt))T + h2R̄r

k(αt) + (1 + h +
M∑

l=1

παtl)X
T (αt)

θr
k2(αt) = V̄ r

k (αt) + I

θr
3(αt) = h2(R + N(αt))

then the matrix inequality condition in Lemma 4.4 holds and the system (4.59) is ultimately

bounded.

Proof: The proof follows along the same lines as in the proof of Lemma 4.3 by

substituting the appropriate system matrices of the ordinary traffic. ¥

The centralized switching congestion control (SCC) strategies for the mobile Diff-

Serv network that are proposed in this section can be summarized in the flow chart shown

in Fig. 4.2.

As shown in the Fig. 4.2, given a mobile Diff-Serv network with the changing

network topology represented by the Markov chain αt = S = {1, ..., M}, the premium

157



traffic controller first needs to determine the traffic compression gains among the nodes in

the entire network, based on the network constraints under the current mode αt. Given the

traffic compression gain matrix Gp(αt), the premium traffic controller will then solve the

LMI conditions so that the mode-dependent control gain Kp(αt) and the adaptive control

gain ∆p(αt) and Πp(αt) can be obtained. Adaptive estimator λ̂p(t) is then updated based

on the value of the queuing state and the switching conditions as given in (4.20). After

updating the adaptive estimator, the bandwidth controller Cp(αt) can be obtained as

Cp(αt) = max{Cserver(αt),min{F−1[Kp(αt)(xp(t)− xref
p ) + λ̂p(t)], 0}} (4.63)

where xp(t) is the premium queuing length, xref
p is the reference of queuing length selected

by the network operator, F (xp(t)) = diag{f(xpi(t))} and f(xpi(t)) = µ
xpi(t)

1+xpi(t)
can also

be calculated with the queuing state. The bandwidth of the premium traffic are then

allocated to all the nodes in the network. At the same time, the centralized controller

sends the traffic compression gains gp
ji(t) to each corresponding node in the network, and

each node will adjust its traffic compression rate in the next communication cycle.

On the other hand, given the premium traffic controller Cp(t), the centralized ordi-

nary traffic controller first calculates the traffic compression gains for the ordinary traffic

based on the leftover capacity cr(αt) = Cserver(αt) − Cp(αt) under the current network

mode αt. Then, by solving the centralized LMI conditions, the centralized control gain

Kr(αt) and the adaptive control gain ∆r(αt) and the Πr(αt) will be obtained, so that the

adaptive estimator can be updated. The bandwidth controller and the flow rate regulator

for the ordinary traffic are then calculated as follows:

λr(t) = max{cr(αt), λr(t)} (4.64)

Cr(αt) = max{cr(αt),min{F−1[Kr(αt)(xr(t)− xref
r ) + λ̂r(t)], 0}} (4.65)

It should be noted that different from the centralized switching congestion control

algorithm of the fixed network, as shown in Fig. 3.2, the Markovian jump switching conges-

tion control (MJ-SCC) algorithm need to recalculate all the mode-dependent parameters,

such as the traffic compression gains, the state feedback control gains Kp(αt) and Kr(αt),
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Figure 4.2: The flow chart of the centralized Markovian jump switching congestion controller
(MJ-SCC) for the mobile Diff-Serv network.

at each time when the network topology is changed. The congestion controllers will then

be updated based on the new control gains.

4.4 Decentralized Markovian Jump Switching Con-

gestion Control (MJ-SCC) Scheme

When the number of nodes in the network is large, a centralized control scheme may

become impractical. Especially, in mobile ad hoc networks, the connections between

the centralized controller and the nodes may get disconnected during the changes of the

network topology. Hence, the centralized control decision will be incorrect and this can

even result in instability. Therefore, in this section we consider the decentralized control

scheme for the congestion control problem in mobile Diff-Serv networks.

Recall the dynamical models of the premium and the ordinary traffic in mobile
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networks as given by (2.57)-(2.57), that is

ẋpi(t) = −f(xpi(t))upi(t) +
∑

j∈℘i(αt)

f(xpj(t− τji(t)))upj(t− τji(t))gji
p + λpi(t) (4.66)

ẋri(t) = −f(xri(t))u1
ri(t) + u2

ri(t) +
∑

j∈℘i(αt)

f(xrj(t− τji(t)))u1
rj(t− τji(t))gji

r (4.67)

where ℘i(αt) is the neighboring set of the node i that depends on the mode αt, αt is a

Markov chain that represents the rule for changing the neighboring sets with the distri-

bution function defined by (4.4), xpi(t) and xri(t) denote the premium and the ordinary

queuing state of node i, respectively, τji(t) is the unknown but bounded time-varying de-

lays from node j to node i, and gji(t) is the traffic compression gain between the nodes i

and j.

Therefore, the decentralized congestion control problem of mobile Diff-Serv networks

is to select the switching congestion controllers upi(t) and uri(t) for the node i so that the

queuing length of the premium and the ordinary traffic at the node i, respectively, will be

as close as possible to their reference values. The physical constraints of each node, such as

the link capacity and the buffer size need to also be considered in the controller design and

have to be satisfied for each node. The detailed development of the decentralized switching

congestion control strategy for the premium and the ordinary traffic are presented in the

following subsections.

4.4.1 Decentralized MJ-SCC of the Premium Traffic in Mo-

bile Networks

The typical set of physical constraints for the premium traffic in mobile networks can be

given as follows:

0 ≤ xpi(t) ≤ xbuffer
pi (4.68)

0 ≤ upi(t) ≤ Cserver,i(αt), i = 1, ...n (4.69)

where Cserver,i(αt) denotes the time-varying link capacity that is dependent on the network

topology and the instantaneous neighboring set. It should be noted that in a mobile
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network, the link capacity of each node is changing due to the nodes mobility. Therefore,

the capacity constraint of each node is also mode dependent.

Therefore, the control objective is to select the controller upi(t) subject to each

mode αt, by considering the physical constraints (4.4). The switching congestion control

strategy is now selected as follows:

upi(αt) =





0 if ūpi(αt) < 0

ūpi(αt) if 0 ≤ ūpi(αt) ≤ Cserver,i(αt)

Cserver,i(αt) if ūpi(αt) > Cserver,i(αt)

(4.70)

ūpi(αt) = f−1(xpi, t)[kpi(αt)x̄pi(t) + λ̂pi(t)] (4.71)

where x̄pi(t) = xpi(t) − xref
pi (t) is the queuing error, xref

pi (t) denotes the desired queuing

length specified by the network manager, kpi(αt) is the state feedback control gain, and

λ̂pi(t) is a time-varying signal that is used to estimate the incoming traffic λpi(t). Motivated

from the robust adaptive control techniques in [128], the time-varying sginal λ̂pi(t) is

designed according to the modified parameter projection method and is applied to system

(4.66) to estimate the unknown but bounded incoming traffic λpi(t) as follows:

˙̂
λpi(t) =





δpi(αt)x̄pi − β(αt)piλ̂pi(t) if 0 ≤ λ̂pi(t) ≤ λmax
pi or

λ̂pi(t) = 0, x̄pi ≥ 0 or

λ̂pi(t) = λmax
pi , x̄pi ≤ 0

−βpi(αt)λ̂pi(t) otherwise

(4.72)

where δpi(αt) and βpi(αt) are constant design parameters.

According to the switching laws in (4.5), the premium traffic controller upi(αt) has

the following three possible values over time under each mode αt, namely

upi(αt) = 0, or upi(αt) = Cserver,i, or upi(αt) = ūpi(αt) (4.73)

Therefore, the closed-loop system will experience multiple modes after applying the switch-

ing controller (4.5). Detailed analysis of each mode is given below.

• Edge Mode i: If upi(αt) = 0 at some time t = t1, for αt = k, k ∈ S, it then follows

that the queuing length xpi(t3) is sufficiently small. The closed-loop system (4.66)
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can now be written as

ẋpi(t) = λpi(t) +
∑

j∈℘i(k)

f(xpj(t− τji(t)))upj(t− τji(t))gji
p (t) > 0 (4.74)

Therefore, the queuing length xpi(t) will increase with the time. After some finite

time t2 > t1, the normal controller ūpi(αt) will take effect.

• Edge Mode (ii): If upi(αt) = Cserver,i(αt) at some time t = t3, for αt = k,

k ∈ S, this indicates that xpi(t1) is sufficiently large so that the third condition

ūpi(αt) > Cserver,i(k) in (4.5) is satisfied. Consequently, the dynamical model (4.66)

becomes

ẋpi(t) ≈ −Cserver,i(k) + λpi(t) +
∑

j∈℘i(k)

f(xpj(t− τji(t)))upj(t− τji(t))gji
p (t)

≤ −Cserver,i(k) + λmax
pi +

∑

j∈℘i(k)

λmax
pj gji

p (t) (4.75)

The regulation strategy under this case is to reset the traffic compression gains gji
p (t)

so that ẋpi(t) < 0, and hence the queuing length xpi(t) decreases. Therefore, the

traffic compression gains are selected as

0 ≤ gji
p (t) <

Cserver,i(αt)− λmax
pi∑

j∈℘i(αt)

λmax
pj

, αt = k (4.76)

Consequently, after some finite time t4 > t3 the controller upi(αt) will take the value

of ūpi(αt).

Although the regulation strategy (4.76) is derived based on the mode k, it is valid

for all the other modes αt ∈ S. The following analysis will clarify this claim.

Note that only one mode will operate at each time instant. If the network has

switched from topology k to topology j before the normal controller ūpi(t) takes

effect at node i, then the link capacity of node i will be re-calculated with respect

to αt = j, and the normal controller ūpi(t) will be re-compared with Cservre,i(j).

Therefore, if ūpi(t) ≥ Cservre,i(j), which implies that there is still not enough ca-

pacity for node i in the new network topology, the traffic compression gains have to
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be regulated again according to the strategy (4.76), but re-calculated based on the

new network topology αt = j.

On the other hand, if ūpi(t) < Cservre,i(j), then the normal controller ūpi(t) will

take effect immediately. Therefore, for either case, the normal controller ūpi(t) will

eventually take effect after applying the regulation strategy (4.76).

• Normal Control Mode (iii): When the premium controller upi(αt) = ūpi(αt)

takes effect, at some t = t5, for αt = k, k ∈ S, the queuing state equation (4.66)

will become

ẋpi = −[kpi(k)x̄pi + λ̂pi(t)] + λpi(t) +
∑

j∈℘i(k)

f(xpj(t− τji(t)))upj(t− τji)gji
p (t)

Now, we need to check the delayed incoming traffic from the nodes in the neighboring

set ℘i(k). The delayed input ūpj(t− τji(t) is governed by the switching control laws

in (4.70). Similar to the analysis for the fixed network, let us define the neighboring

sets as

℘i(k) = ℘i1(k) ∪ ℘i2(k) ∪ ℘i3(k)

where

℘i1(k) denotes the subset of the neighboring set in which the delayed controllers of

the mode k is equal to Cserver,j(k).

℘i2(k) denotes the subset of the neighboring set in which the controllers are equal

to ūpj(k).

℘i3(k) denotes the subset of the neighboring set in which the controllers are equal

to 0.

The dynamic queuing model (4.66) can then be re-written as follows:

ẋpi = −kpi(k)x̄pi − λ̂pi + λpi +
∑

j∈℘2(k)

Cserver,j(k)gp
ji(t)

+
∑

j∈℘1(k)

[kpj(k)x̄pj(t− τji(t)) + λ̂pj(t− τji(t)]g
p
ji(t) (4.77)
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Therefore, after applying the switching congestion controller (4.70) and the regulation

strategy of the traffic compression gains (4.76), the dynamic queuing model of the premium

traffic for the mobile network (4.66) will enter the normal control mode and can be written

as a Markovian jump linear system with multiple time-varying delays and coupled states,

as given by (4.77).

It should be noted that at each instant when the network topology is changed, one

needs to recheck the link capacity of each node i and the traffic compression gains from

its neighboring nodes need to be re-calculated according to the new network topology. In

the mean time, the control gains of the switching controller kpi(αt), δpi(αt), and βpi(αt)

need to also be updated with respect to the new network topology.

It has been shown that the physical constraints of the premium traffic is guaranteed

by the switching control strategy (4.70). However, the stability of the closed-loop system

(4.77) is still dependent on the selections of the control gains kpi(αt), δpi(αt), and βpi(αt).

Therefore, the control objective of the premium traffic is now to select the control gains

for each node i, so that the closed-loop system (4.77) is stable. The detailed analysis is

presented below.

For the purpose of stability analysis of the closed-loop system (4.77), we define

λ̄pi(t) = λ̂pi(t)− λpi(t) and the new state space zpi(t) =
[

x̄pi(t) λ̄pi(t)

]T

. The queuing

dynamics of the premium traffic at each node (4.77) and the adaptive estimator (4.72) can

be re-written together by the following standard Markovian jump linear system (MJLS):

żpi(t) = Dk
i (αt)zpi(t) +

∑

j∈℘1(αt)

Fj(αt)zpj(t− τji(t)) + Hi(αt)vpi(αt) (4.78)

zpi(t) = ϕi(t) ϕi(t) ∈ [−h, 0]

k ∈ ℘, ℘ = 1, 2 i, j = 1, ..., n

where ϕi(t) is the initial condition function of the system, vpi(t) is the external signal to

the system, and Dk
i (αt), Fj(αt), Hi(αt), for i, j = 1, ..., n, are the system matrices that
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are defined as follows:

D1
i (αt) =



−kpi(αt) −1

δpi(αt) −βpi(αt)


 D2

i (αt) =



−kpi(αt) −1

0 −βpi(αt)




Fj(αt) =




kpj(αt)g
p
ji(αt) gp

ji(αt)

0 0


 Hi(αt) =




0 0 Gji(αt)

−βpi(αt) −1 0




vpi(αt) =
[

λpi(t) λ̇pi(t) Γpj(t− τji(t))

]T

Γpj(t− τji(t)) = [vec{λpj(t− τji(t)}, vec{Cserver,j(αt)}]

Gji(αt) = vec{gp
ji(αt)}

The system (4.78) above is a hybrid system with the deterministic switching that is

given by the signal k and the stochastic switching that is governed by the Markov chain

αt. Furthermore, the system is subject to coupled states with multiple and time-varying

delays. The congestion control problem of the ordinary traffic in the mobile network can

then be recast as finding the state feedback control gain kpi(αt), the adaptive control gains

βpi(αt) and δpi(αt) for each node i with respect to each mode αt so that the system (4.78)

is stable.

As far as the above coupled hybrid system with time-delay is concerned the following

lemma is now provided for its stability conditions.

Lemma 4.6. Consider the system (4.78). If there exist symmetric positive definite ma-

trices Pi(αt), Qi(αt), Ri, and positive definite matrices Mi(αt) and Ni(αt) such that the

following condition is satisfied for all the modes αt ∈ S, S = {1, ..., M}:

Wik(αt) =




w1
ik(αt) w2

ik(αt) Ri

∗ w3
i (αt) 0

∗ ∗ −Ri − (1− h)Qi(αt)




< 0 (4.79)

where

w1
ik(αt) = (2Pi(αt) + h2(Dk

i )T (αt)Ri)Dk
i (αt) +

M∑

l=1

παtlPi(l) + (1 + h)Qi(αt)−Ri + Mi(αt)

w2
ik(αt) = (h2(Dk

i )T (αt)Ri + Pi(αt))F (αt)

w3
i (αt) = h2F T (αt)(Ri + Ni(αt))F (αt)
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then the system (4.78) is ultimately bounded. The radius of the ultimately bounded region

is given by max{ρik(αt)}|k = λmax{Ψi(αt)}
λmin(−Wik(αt))

, k = 1, 2, where λmin and λmax represent the

maximum and the minimum eigenvalues of the corresponding matrices.

Proof: Consider the following stochastic Lyapunov-Krasovskii functional candidate:

Vi(zpi(t), αt) = Vi1 + Vi2 + Vi3 + Vi4

where

Vi1 = zpi(t)T Pi(αt)zpi(t) (4.80)

Vi2 =
∫ t

t−h
zT
pi(s)Qi(αt)zpi(s)ds (4.81)

Vi3 = h

∫ 0

−h

∫ t

t+θ
żT
p (s)Riżp(s)dsdθ (4.82)

Vi4 =
∫ 0

−h

∫ t

t+θ
zT
pi(s)Qi(αt)zpi(s)dsdθ (4.83)

and where Pi(αt), Qi(αt), Ri are positive definite matrices with appropriate dimensions.

Let L denote the infinitesimal generator of {zpi(t), αt}, t ≥ 0. Then, for each αt = k ∈ S
we have

LVi1 = lim
∆→0+

1
∆
{E[Vi1(zpi(t + ∆), αt+δ, t + ∆)|zpi(t), αt = k]− Vi1(zpi(t), k, t)}

= 2zT
pi(t)Pi(αt)żpi(t) +

M∑

k=1

παtkz
T
pi(t)Pi(k)zpi(t)

= 2zT
pi(t)Pi(αt)[Dk

i (αt)zpi(t) +
∑

j∈℘1(αt)

Fj(αt)zpj(t− τji(t))]

+zT
pi(t)

M∑

k=1

παtkPi(k)zpi(t) + 2zT
pi(t)Pi(αt)Hi(αt)vpi(αt)

LVi2 =
∫ t

t−h
2zT

pi(s)Qi(αt)żpi(s)ds +
∫ t

t−h
zT
pi(s)

M∑

k=1

παtkQi(k)zpi(s)ds

= zT
pi(t)Qi(αt)zpi(t)− (1− h)zT

pi(t− h)Qi(αt)zpi(t− h)

+
∫ t

t−h
zT
pi(s)

M∑

k=1

παtkQi(k)zpi(s)ds
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LVi3 = h2żT
pi(t)Riżpi(t)− h

∫ t

t−h
żT
pi(s)Riżpi(s)ds

= h2[Dk
i (αt)zpi(t) +

∑

j∈℘1(αt)

Fj(αt)zpj(t− τji(t)) + Hi(αt)vpi(αt)]T Ri

[Dk
i (αt)zpi(t) +

∑

j∈℘1(αt)

Fj(αt)zpj(t− τji(t)) + Hi(αt)vpi(αt)]

−h

∫ t

t−h
żT
pi(s)Riżpi(t)ds

LVi4 = hzT
pi(t)Qi(αt)zpi(t)−

∫ t

t−h
zT
pi(s)

M∑

k=1

παtkQi(k)zpi(s)ds

Adding up the above equations, we will have

LVi ≤ zT
pi(t)(2Pi(αt)Dk

i (αt) +
M∑

k=1

παtkPi(k) + (1 + h)Qi(αt))zpi(t)

+h2zT
pi(t)((D

k
i )T (αt)RiD

k
i (αt)−Ri)zpi(t)

+2zT
pi(t)(h

2(Dk
i (αt))T Ri + Pi(αt))

∑

j∈℘1(αt)

Fj(αt)zpj(t− τji(t))

+h2(
∑

j∈℘1(αt)

Fj(αt)zpj(t− τji(t)))T Ri(
∑

j∈℘i(αt)

Fj(αt)zpj(t− τji(t)))

+2zT
pi(t)Rizpi(t− h)− zT

pi(t− h)(Ri + (1− h)Qi(αt))zpi(t− h)

+h2(Hi(αt)vpi(αt))T Ri(Hi(αt)vpi(αt))

+2zT
pi(t)(h

2Dk
i (αt)Ri + Pi(αt))Hi(αt)vpi(αt)

+2h2(
∑

j∈℘1(αt)

Fj(αt)zpi(t− τji(t)))T (Hi(αt)vpi(αt))

Let us define

F (αt) = vec{Fj(αt)}

H(αt) = vec{Hi(αt)}

v(αt) = vec{vT
pi(αt)}

zpi(t− τ) = vec{zT
pi(t− τji(t))} i, j = 1, ..., n

Then, the following two equations will hold

F (αt)zpj(t− τ) =
∑

j∈℘1(αt)

Fj(αt)zpj(t− τji(t))

H(αt)v(αt) = Hi(αt)vpi(αt)
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By substituting F (αt)zpj(t− τ) and H(αt)v(αt) into LVi, we will have

LVi ≤ zT
pi(t)(2Pi(αt)Dk

i (αt) +
M∑

k=1

παtlPi(k) + (1 + h)Qi(αt))zpi(t)

+h2zT
pi(t)((D

k
i )T (αt)RiD

k
i (αt)−Ri + Mi(αt))zpi(t)

+2zT
pi(t)(h

2(Dk
i )T (αt)Ri + Pi(αt))F (αt)zpj(t− τ)

+h2(F (αt)zpj(t− τ))T (Ri + Ni(αt))(F (αt)zpj(t− τ))

+2zT
pi(t)Rizpi(t− h)− zT

pi(t− h)(Ri + (1− h)Qi(rt))zpi(t− h)

+h2(H(αt)v(αt))T RiH(αt)v(αt) + (H(αt)v(αt))T Y T
i (αt)M−1

i (αt)Yi(αt)H(αt)v(αt)

+h2(H(αt)v(αt))T N−1
i (αt)H(αt)v(αt)

= zT
pi(t)(2Pi(αt)Dk

i (αt) +
M∑

k=1

παtlPi(k) + (1 + h)Qi(αt))zpi(t)

+h2zT
pi(t)((D

k
i )T (αt)RiD

k
i (αt)−Ri + Mi(αt))zpi(t)

+2zT
pi(t)(h

2(Dk
i )T (αt)Ri + Pi(αt))F (αt)zpj(t− τ)

+h2zT
t−τF

T (αt)(Ri + Ni(αt))F (αt)zpj(t− τ)

+2zT
pi(t)Rizpi(t− h)− zT

t−h(Ri + (1− h)Qi(αt))zpi(t− h)

+vT (αt)HT (αt)(h2Ri + Y T
i (αt)M−1

i (αt)Yi(αt) + h2N−1
i (αt))H(αt)v(αt)

= ηT
i (t, τ, h)Wik(αt)ηi(t, τ, h) + vT (αt)Ψi(αt)v(αt) (4.84)

where Mi(αt) and Ni(αt) are positive definite matrices, Yi(αt) = h2Dk
i (αt)Ri + Pi(αt),

and the matrix Wik and Ψi are defined as

Wik(αt) =




w1
ik(αt) w2

ik(αt) Ri

∗ w3
i (αt) 0

∗ ∗ −Ri − (1− h)Qi(αt)




w1
ik(αt) = (2Pi(αt) + h2(Dk

i )T (αt)Ri)Dk
i (αt) +

M∑

l=1

παtlPi(l) + (1 + h)Qi(αt)−Ri + Mi(αt)

w2
ik(αt) = (h2(Dk

i )T (αt)Ri + Pi(αt))F (αt)

w3
i (αt) = h2F T (αt)(Ri + Ni(αt))F (αt)

Ψi(αt) = HT (αt)(h2Ri + Y T
i (αt)M−1

i (αt)Yi(αt) + h2N−1
i (αt))H(αt)

ηi(t, τ, h) =
[

zT
pi(t) zT

pj(t− τ) zT
pi(t− h)

]T
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Therefore, according to (4.79), we will have

LVi ≤ 0 (4.85)

for any ηi(t, τ, h) that satisfies:

−ηT
i (t, τ, h)Wik(αt)ηi(t, τ, h) ≥ vT

i (αt)Ψi(αt)vi(αt) (4.86)

Therefore, according to the Definition 4.1, the system (4.78) is stochastically ulti-

mately bounded and the radius of the bounded region is given by:

ρik(αt) =
λmax{Ψi(αt)}

λmin(−Wik(αt))
(4.87)

This completes the proof of Lemma 4.6. ¥

The following lemma is can then be obtained for the derivation of the control gains.

Lemma 4.7. The matrix inequality condition in Lemma 4.6 hold if there exist symmetric

positive definite matrices Xi(αt), Ni(αt), Q̄i(αt), Ri, Zi, and matrices Uik(αt), V̄ik(αt),

R̄ik(αt), for k = 1, 2, αt ∈ S = {1, . . . , M} such that the following LMI conditions are

satisfied:

Ωik(αt) =




θ1
ik(αt) θ2

ik(αt) XT
i (αt)

∗ θ3
i (αt) 0

∗ ∗ −Zi − (1− h)Q̄i(αt)




< 0 (4.88)

where

θ1
ik(αt) = Uik(αt) + UT

ik(αt) + h2R̄ik(αt) + (1 + h +
M∑

l=1

παtl)X
T
i (αt)

θ2
ik(αt) = V̄ik(αt) + I

θ3
i (αt) = h2(Ri + Ni(αt))

Proof: The following matrices are defined in order to transform the nonlinear

matrix Wik(αt) into an equivalent linear matrix:

Xi(αt) = P−1
i (αt)

Yi(αt) = F−1(αt)

Zi = R−1
i

Λi(αt) = diag{Xi(αt), Yi(αt), Zi}
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By pre and post multiplying Wik(αt) with the above matrices Λi(αt) and ΛT
i (αt), respec-

tively, we will have

Ωik(αt) = ΛT
i (αt)Wik(αt)Λi(αt)

=




θ1
ik(αt) θ2

ik(αt) XT
i (αt)

∗ θ3
i (αt) 0

∗ ∗ −Zi − (1− h)Q̄i(αt)




(4.89)

where

θ1
ik(αt) = Uik(αt) + UT

ik(αt) + h2R̄ik(αt) + (1 + h +
M∑

l=1

παtl)X
T
i (αt)

θ2
ik(αt) = V̄ik(αt) + I

θ3
i (αt) = h2(Ri + Ni(αt))

Dk
i (αt) = Uik(αt)X−1

i (αt) ; R̄ik(αt) = Uik(αt)T RiUik(αt)

Qi(αt) = Pi(αt) ; V̄ik(αt) = Uik(αt)T Ri

Mi(αt) = Ri ; Q̄i(αt) = ZT
i Qi(αt)Zi

Therefore, the following two inequality conditions are equivalent:

Ωik(αt) < 0 ⇐⇒ Wik(αt) < 0 αt ∈ S,S = {1, ..., M} (4.90)

Hence, the system (4.78) is ultimately bounded. This completes the proof of Lemma 4.7.

¥

4.4.2 Decentralized MJ-SCC of the Ordinary Traffic in Mo-

bile Networks

The dynamic queuing model of the ordinary traffic in mobile networks is re-written here

again for convenience:

ẋri(t) = −f(xri(t))u1
ri(t) + u2

ri(t) +
∑

j∈℘i(αt)

f(xrj(t− τji(t)))u1
rj(t− τji)gji

r (4.91)

where u1
ri(t) is the bandwidth controller of node i, u2

ri(t) is the flow rate controller of the

node i, ℘i(αt) is the neighboring set of the node i with respect to the mode αt ∈ S, S =

1, ..., M , and αt is the Markov chain representing the changes in the neighboring set with
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the probability distribution function governed by (4.4). Recall the physical constraints of

the ordinary traffic in the mobile network (2.57):

0 ≤ xri(t) ≤ xbuffer
ri (4.92)

0 ≤ uri(t) ≤ cri(αt), i = 1, ...n (4.93)

where cri(αt) denotes the instantaneous leftover capacity of node i from the premium

traffic which is actually equal to Cserver,i(αt)− upi(αt). In contrast to the fixed networks,

the input constraint of the ordinary traffic in mobile networks is now mode-dependent.

Therefore, the Markovian jump switching congestion control strategy for the ordinary

traffic is designed as follows:

1. Flow Rate Regulation: At the start of each measurement cycle, we first calculate

the maximum allowable capacity for the ordinary traffic as follows:

cri(αt) = max[0, Cserver,i − upi(αt)] (4.94)

where the flow rate controller u2
ri(t) is selected according to

u2
ri(t) =





cri(αt) if u2
ri(t) ≥ cri(αt) under mode αt

u2
ri(t) otherwise

(4.95)

Once the above regulation is invoked, the ordinary incoming traffic λri(t) = u2
ri is

guaranteed to be bounded by 0 ≤ λri(t) ≤ cri(αt).

2. Bandwidth Allocation : Provided that 0 ≤ λri(t) ≤ cri(αt), the ordinary traffic

capacity controller u1
ri(αt) is selected according to the following switching law:

u1
ri(αt) =





0 if ū1
ri(αt) < 0

ū1
ri(αt) if 0 ≤ ū1

ri(αt) ≤ cri(αt)

cri(αt) if cri(αt) > cri(αt)

(4.96)

ū1
ri(αt) = f−1(xri, t)[kri(αt)x̄ri(t) + λ̂ri(t)] (4.97)

where x̄ri(t) = xri(t)−xref
ri is the queuing error, kri(αt) is the state feedback control

gain, and λ̂ri(t) denotes the adaptive estimator of the ordinary traffic which is
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updated as follows:

˙̂
λri =





δri(αt)x̄ri − βri(αt)λ̂ri if 0 ≤ λ̂ri(t) ≤ λmax
ri or

λ̂ri = 0, x̄ri ≥ 0 or

λ̂ri = λmax
ri , x̄ri ≤ 0

−βri(αt)λ̂ri otherwise

(4.98)

where δri(αt) and βri(αt) are the design parameters.

Similar to the analysis of the premium traffic, the closed-loop system of the ordinary

traffic will experience the following multiple modes depending on the different choices of

the controller u1
ri(t) as defined in (4.84):

• Case (i): If cri(αt) = 0 at some time t = t1, for the mode αt = k, k ∈ S, this

implies that there is no leftover capacity for the ordinary traffic. According to

(4.84), it follows that u1
ri(αt) = 0 and u2

ri(t) = 0. Hence the closed-loop system of

the ordinary traffic model (4.80) is reduced to:

ẋri =
∑

j∈℘i(k)

λrj(t− τji)gr
ji(t) (4.99)

Since no incoming traffic is allowed to the buffer, the traffic compression gains gji
r (t)

are set to gr
ji = 0. The incoming traffic from the neighboring nodes are forced to be

dropped out. At a subsequent time t2 > t1, when cri(αt) > 0, the following case is

then considered.

• Case (ii): If cri(αt) > 0 at some time t = t2, for the mode αt = k, k ∈ S, then

there will be leftover capacity from the premium traffic, and the strong regulation

conditions of the traffic compression gains gr
ji(t) in case (i) can be released. The

bandwidth controller for the ordinary traffic u1
ri(αt) is considered next. According to

the switching laws in (4.26), the following multiple submodes need to be considered.

– Edge Mode (i): If u1
ri(αt) = 0 at some time t3, for the mode αt = k, k ∈ S,

it follows that xri(t) is sufficiently small so that ū1
ri(k) ≤ 0. The dynamic

queuing system (4.80) will then become
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ẋri = λri(t) +
∑

j∈℘i(k)

λrj(t− τji)gr
ji(t) > 0 (4.100)

and the queuing length of the ordinary traffic xri(t) will increase with time so

that after some finite time t4 > t3, one will have ū1
ri(k) > 0 and the normal

controller ū1
ri(αt) will take effect.

– Edge Mode (ii): If u1
ri(αt) = cri(αt) at some t = t5, for the mode αt = k,

k ∈ S, it follows that ū1
ri(k) > cri(k). In this case, the dynamic system (4.80)

can be written as follows:

ẋri = −f(xri(t))cri(k) + λri(t) +
∑

j∈℘i(k)

λrj(t− τji)gr
ji(t)

≤ −f(xri(t))cri(k) + λmax
ri +

∑

j∈℘i(k)

λmax
rj gr

ji(t) (4.101)

Since the queuing length of node i is relatively large, the regulation strategy

for the system (4.86) is to reset the traffic compression gains gr
ji(t) so that the

queuing state xri(t) will decrease with time. Therefore, the following regulation

rule for the traffic compression gains gr
ji(t) can be obtained:

0 ≤ gr
ji(t) <

f(xri(t))cri(αt)(t)− λmax
pi∑

j∈℘i(αt)

λmax
pj

, αt = k (4.102)

The derivative of the queuing state ẋri(t) in (4.86) is negative and the queuing

length xri(t) will then decrease. After some finite time t6 > t5, the normal

controller ū1
ri(αt) will take effect for the mode k.

If the network topology has switched from mode k to mode j before the normal

controller takes effect, then the leftover capacity of node i will be re-calculated.

The bandwidth controller ū1
ri(t) will be re-compared with the new boundary

cri(j). If ū1
ri(t) > cri(j), this implies that there is still not enough capacity

for the ordinary traffic in node i, hence the traffic compression gains has to be

re-regulated according to (4.87) with respect to αt = j.

On the contrary, if ū1
ri(t) < cri(j), then the normal controller ū1

ri(t) will be

applied. Therefore, one can conclude that by regulating the traffic compression

gains as in (4.87), the normal controller of node i will eventually take effect.
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– Normal Control Mode (iii): If the controller u1
ri(αt) = ū1

ri(αt) at some

time t = t7, for the mode αt = k, k ∈ S, then the closed-loop system of the

ordinary traffic (4.80) will be governed by:

ẋri = −kri(k)x̄ri − λ̂ri(t) + λri(t) +
∑

j∈℘i(k)

λrj(t− τji)gr
ji(t) (4.103)

We now need to check the incoming traffic from the neighboring nodes. Similar

to the analysis of the premium traffic, different neighboring nodes may take

different values of the switching controller based on the queuing state of node

j at the time t− τji(t). Therefore, the dynamic queuing system of the node i

can be written as

ẋri = −kri(k)x̄ri − λ̂ri + λri +
∑

j∈℘2(k)

crj(k)gr
ji(t)

+
∑

j∈℘1(k)

[krj(k)x̄rj(t− τji(t)) + λ̂rj(t− τji(t))]gr
ji(t) (4.104)

where ℘2(k) is the subset of the neighboring set in which the delayed con-

trollers of the ordinary traffic are equal to crj(k), and ℘1(k) is the subset of

the neighboring set in which the delayed controllers of the ordinary traffic are

equal to ū1
ri(t− τji(t)).

Similar as before, we define the adaptive estimation error λ̂ri(t)−λri(t) as a new state and

define the new state space as zri(t) =
[

x̄ri(t) λ̄ri(t)

]T

. Consequently, the closed-loop

system of the ordinary traffic in mobile networks can be written as

żri(t) = Dr
ik(αt)zri(t) +

∑

j∈℘1(αt)

F r
j (αt)zrj(t− τji(t)) + Hr

i (αt)vri(αt) (4.105)

zri(t) = ϕi(t) ϕi(t) ∈ [−h, 0]

k ∈ ℘, ℘ = 1, 2 i, j = 1, ..., n

where the system matrices Dr
ik(αt), F r

j (αt), Hr
i (αt), for i, j = 1, ..., n, are defined as

Dr
i1(αt) =



−kri(αt) −1

δri(αt) −βri(αt)


 Dr

i2(αt) =



−kri(αt) −1

0 −βri(αt)
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F r
j (αt) =




krj(αt)gr
ji(αt) gr

ji(αt)

0 0


 Hr

i (αt) =




0 0 Gr
ji(αt)

−βri(αt) −1 0




vri(αt) =
[

λri(t) λ̇ri(t) Γrj(t− τji(t))

]T

Γrj(t− τji(t)) = [vec{λrj(t− τji(t)}, vec{cr(αt)}]

Gr
ji(αt) = vec{gr

ji(αt)}

Therefore, the control objective of the ordinary traffic in mobile networks is to select

the mode-dependent control gains of each node i so that the closed-loop system (4.105) is

stable for all modes αt ∈ S. Comparing the dynamics of the closed-loop system (4.105)

with the closed-loop system of the premium traffic (4.78), one can observe that the two

systems have the same structure. Therefore, the Lemmas 4.6 and 4.7 can be applied for

deriving the stability conditions and the control gains of the ordinary traffic, by replacing

the corresponding system matrices in Lemmas 4.6 and 4.7 with that of the system (4.105).

The decentralized switching congestion control (SCC) strategies proposed in this

section can be summarized in Fig. 4.3. As shown in Fig. 4.3, the decentralized premium

traffic controller of each node first determines the traffic compression gains gp
ji for its

neighboring node based on the current network topology αt ∈ S = {1, ..., M}. By solving

the local LMI conditions of each node, the decentralized control gain kpi(αt) as well as the

adaptive control gains δpi(αt) and βpi(αt) are then obtained. The bandwidth allocated for

the premium traffic of each node is updated according to the following rule:

Cpi(t) = max{Cserver,i(αt),min{f−1(xpi, t)[kpi(αt)(xpi(t)− xref
pi ) + λ̂pi(t)], 0}} (4.106)

Given the premium traffic controller Cpi(αt), the ordinary traffic first calculates the

leftover capacity cri(αt) = Cserver,i(αt) − Cpi(αt) and determines the traffic compression

gains of the neighboring nodes. By solving the corresponding LMI conditions, the de-

centralized control gains and the adaptive control gains of the ordinary traffic are then

obtained so that the adaptive estimator can be updated. The bandwidth controller and

the flow rate controller of each node are calculated as follows:

λri(t) = max{cri(αt), λri(t)} (4.107)

Cri(t) = max{cri(αt),min{f−1(xri, t)[kri(αt)(xri(t)− xref
ri ) + λ̂ri(t)], 0}}(4.108)
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Figure 4.3: The flow chart of the decentralized Markovian jump switching congestion controller
(MJ-SCC) for the mobile Diff-Serv network.

In contrast to the decentralized switching congestion control algorithm of the fixed

network, as shown in Fig. 3.4, the decentralized Markovian jump switching congestion

controller needs to re-calculate the mode-dependent parameters such as the traffic com-

pression gains gji(αt), the control gains kpi(αt) and kri(αt), and the adaptive control gains

δi(αt) and βi(αt), at each instant when the network topology is changed.

4.5 Simulation Results

In this section, simulation results are provided to evaluate the performance of our proposed

Markovian jump switching congestion control (MJ-SCC) strategy in mobile NMAS. The

results obtained by utilizing the decentralized MJ-SCC strategy are compared with those

of the centralized MJ-SCC algorithm as well as the IDCC [3] approaches. In the mobile

NMAS, nodes usually move in groups and exchange information among one another. Fur-

thermore, specific nodes in one group can also communicate with the specific nodes from
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the other groups when they move into the radio range of each other. The change of the

network topology due to the nodes mobility is represented by a stochastic process which

takes values from a finite set S = {1, ..., M}. The probability of transition πji among

different modes αt ∈ S satisfies the equation (4.4) and is assumed to be known.

4.5.1 Performance Metrics

To evaluate the performance of the Markovian jump switching congestion control (MJ-

SCC) strategies proposed in this section, we adopt the same performance metrics as before,

namely the packet loss rate (PLR) and the queuing delay. Besides the buffer overflow and

the traffic regulation, packet loss occurs in a mobile network when the link between two

nodes is disconnected. That is, the outgoing packets from node i to node k will be drop

out when these two nodes are disconnected due to network topology changes.

In the simulations of this chapter, one denotes the link between nodes by a connec-

tivity parameter aij(αt) which is defined as

aij(αt) =





1, if node i and node j are connected in mode αt

0, otherwise
(4.109)

where αt represents the changes of network topology with the transition probabilities as

defined in equation (4.4).

Therefore, the packet loss rate (PLR) for the premium traffic in the mobile network

is defined as

PLRpi(t) =
Pbi + Pci

λpi(t) +
∑

j∈℘i

λji(t)gji(t)aji(αt)
(4.110)

Pbi(t) = max{0, λpi(t) +
∑

j∈℘i

λji(t)gji(t)aji(αt)− (xbuffer,i − xpi(t))} (4.111)

Pci(t) =
∑

k∈℘i

λik(t)gik(t)(1− aik(αt)) (4.112)

where Pbi is the packet loss induced by the buffer overflow and Pci is the packet loss due

to the network topology changes. The PLR for the ordinary traffic in the mobile network

is then defined according to
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Figure 4.4: The schematic of the network configuration for three ”typical” modes of a mobile
network.

PLRri(t) =
P r

bi(t) + P r
fi(t) + P r

ci(t)
λri(t) +

∑
j∈℘i

λr
ji(t)g

r
ji(t)aji(αt)

(4.113)

P r
bi(t) = max{0, λri(t) +

∑

j∈℘i

λr
ji(t)g

r
ji(t)aji(αt)− (xbuffer,i − xri(t))} (4.114)

P r
fi(t) = λa

ri(t)− λri(t) (4.115)

P r
ci(t) =

∑

k∈℘i

λr
ik(t)g

r
ik(t)(1− aik(αt)) (4.116)

where P r
bi is the packet loss due to the buffer overflow, P r

fi is the packet loss due to the

inadequate flow rate regulation, and P r
ci(t) is the packet loss due to disconnection.

On the other hand, the average queuing delay of the fixed network as defined in

equation (3.95) can be extended to the mobile network as

E{T i
q} =

E{xi(t)}
E{λi(t)}+

∑
j∈℘i

E{λji(t)gji(t)aji(αt)} (4.117)

where E{T i
q} is the average queuing delay and xi(t) is the present queuing state.

4.5.2 Decentralized MJ-SCC vs the Decentralized IDCC

Consider a network with three nodes as shown in Fig. 4.4. These three nodes are supposed

to explore a rectangular area by moving from position A to position B. Node 1 moves

towards north first and then towards east, node 2 moves towards northeast directly, and
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node 3 moves towards east and then towards north. Fig. 4.4 depicts the configuration of

the network at three distinct modes during the exploration. As one can see during the

movement the neighboring set of each node changes depending on the distance between

the nodes.

We assume that each node has three separate logical buffers that are collecting the

premium, the ordinary and the best-effort traffics. The buffer size for each traffic is set

to 5 Mb, the link capacity of each node is set to Cserver = 20 Mb and the maximum

allowable traffic rate are λmax = 15 Mb. The heterogeneous time delays among the nodes

are selected as a random signal with Gaussian distribution that is bounded by 0 and 20

ms. That is, τ = min{0,max{hmax, h}}, where hmax = 20 ms is the maximum bound of

delays, h ∼ N(µ, σ2) is a Gaussian distribution with the mean value of µ = 10 ms and the

standard derivation of σ2 = 5 ms.

Based on the movement of nodes, a total of 5 switchings modes are defined based

on the neighboring set as below

M1 = {1, 2, 3}

M2 = {1, 2}, {3}

M3 = {1}, {2, 3}

M4 = {1, 3}, {2}

M5 = {1}, {2}, {3}

Fig. 4.4 only illustrates three typical modes during the movement of the network. The

transition probability πkl among different modes are random and is governed by the fol-

lowing rule
P [αt+δ = k | αt = l] =





πkl∆ + o(∆), k 6= l;

1 + πll∆ + o(∆), k = l.
(4.118)

where πkl ≥ 0 is the transition rate from mode k to mode l, πll = −∑M
k=1,k 6=l πkl, and

o(∆) is a function satisfying lim∆→0
o(∆)
∆ = 0.
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In this simulation, the transition probabilities are assumed to be

Π =




π11 · · · π15

...
. . .

...

π51 · · · π55




=




0.5 0.1 0.05 0.15 0.2

0.1 0.6 0.1 0.1 0.1

0.02 0.15 0.6 0.08 0.15

0.02 0.08 0.06 0.8 0.04

0.2 0.1 0.3 0.2 0.2




(4.119)

Remark 4.3. The possible switching modes of a mobile network is dependent on the num-

ber of nodes in the network. The more nodes in the network, the more possible neighboring

set, and hence the more possible network topologies. In the above simulation, the maximum

number of possible changes of neighboring set is 5.

Remark 4.4. The transition probability πkl indicates the probability of switching from

mode l to mode k. The value of πkl depends on the velocity, the communication range

of nodes and the distance among them. In the above simulation, we assume different

transition probabilities among the different network modes and use a Monte carlo method

[152] to generate a Markov chain based on the transition matrix (4.119).

The following two cases are considered for evaluating the performance of our pro-

posed MJ-SCC algorithms. Using the specifications above, the traffic compression gains

that are calculated from the LMI conditions have the corresponding mean values over the

simulation time as given below

Ḡp =




0 0.31 0.23

0.50 0 0.23

0 0.40 0




Ḡr =




0 0.23 0.23

0.50 0 0.23

0 0.30 0




A quantitative comparison between the decentralized MJ-SCC scheme and the de-

centralized IDCC method [3] are performed next. The performance of the premium and

the ordinary queues are shown in Fig. 4.5 to Fig. 4.8. As can be seen from Fig. 4.5,

the queuing states of all the nodes by utilizing the MJ-SCC strategy do converge to their

desired set points with acceptable error bounds. On the contrary, the performance of the

queuing length by utilizing the decentralized IDCC approach are shown in Fig. 4.9 to
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Figure 4.5: Premium queuing lengths by utilizing
the proposed decentralized MJ-SCC approach.
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Figure 4.6: Premium queuing error by utilizing
the proposed decentralized MJ-SCC approach.
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Figure 4.7: Ordinary queuing lengths by utilizing
the proposed decentralized MJ-SCC approach.
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Figure 4.8: Ordinary queuing error by utilizing
the proposed decentralized MJ-SCC approach.

181



0 0.2 0.4 0.6 0.8 1
0

5
x 10

6 Premimum Queue Length
N

o
d

e
 1

0 0.2 0.4 0.6 0.8 1
0

1

2
x 10

6

N
o

d
e

 2

0 0.2 0.4 0.6 0.8 1
0

5

10
x 10

4

N
o

d
e

 3

Time [second]

Figure 4.9: Premium queuing lengths by utilizing
the decentralized IDCC [3] approach.
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Figure 4.10: Premium queuing error by utilizing
the decentralized IDCC [3] approach.

0 0.2 0.4 0.6 0.8 1
0

2

4
x 10

6 Ordinary Queue Length

N
o

d
e

 1

0 0.2 0.4 0.6 0.8 1
0

1

2
x 10

6

N
o

d
e

 2

0 0.2 0.4 0.6 0.8 1
0

2

4
x 10

5

N
o

d
e

 3

Time [second]

Figure 4.11: Ordinary queuing lengths (bits) by
utilizing the decentralized IDCC [3] approach.
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Figure 4.12: Ordinary queuing error by utilizing
the decentralized IDCC [3] approach.
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Table 4.1: Packet loss rate by utilizing the de-
centralized IDCC method [3] and the MJ-SCC
approaches with hmax = 20 ms.

Premium IDCC [3] MJ-SCC
Node 1 99.33% 0.029%
Node 2 96.15% 0.034%
Node 3 93.59% 0.017%

Ordinary IDCC [3] MJ-SCC
Node1 89.51% 9.62%
Node 2 96.50% 9.80%
Node 3 98.85% 9.94%

Table 4.2: Average queuing delay by utilizing the
decentralized IDCC method [3] and the MJ-SCC
approaches with hmax = 20 ms.

Premium IDCC [3] MJ-SCC
Node 1 ∞ 52.7 ms
Node 2 ∞ 47.2 ms
Node 3 ∞ 25.6 ms

Ordinary IDCC [3] MJ-SCC
Node 1 ∞ 570.1 ms
Node 2 ∞ 406.3 ms
Node 3 ∞ 205.3 ms

Fig. 4.12. As can be seen, both the queuing sizes of the premium and the ordinary traffic

become unstable and the buffer sizes are overflown.

The numerical results of the packet loss rate (PLR) and the average queuing delays

are summarized in Table 4.1 and Table 4.2. As can be seen from Table 4.1, by utilizing

the IDCC method a large portion of the premium and the ordinary packets to the three

nodes are lost. This is due to the fact that the buffer size of the nodes are overflown

and all the incoming packets have to be discarded. However, by utilizing our proposed

MJ-SCC scheme the performance of the average packet loss rate is significantly improved.

By utilizing the MJ-SCC scheme the packet loss of premium traffic is less than 0.05%

and the ordinary traffic’s loss rate is less than 10%. Table 4.2 provides the comparative

results corresponding to the average queuing delays. As can be seen from Table 4.2 by

utilizing the IDCC method the queuing delays are infinite due to the buffer overflow and

packet losses. However, by utilizing our MJ-SCC scheme the performance of the network

is significantly improved. The queuing delays remain bounded to less than 60 ms for the

premium and 600 ms for the ordinary traffic.

4.5.3 Centralized MJ-SCC vs the Centralized IDCC

In this section, the performance of our proposed centralized MJ-SCC is compared with the

centralized IDCC approach. Consider the same network model as in Section 4.5.1, where

the changes of the network topology αt and the transition probabilities are set to be the
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Table 4.3: Packet loss rate by utilizing the cen-
tralized IDCC and the MJ-SCC approaches with
hmax = 20 ms.

Premium IDCC [3] MJ-SCC
Node 1 91.24% 0.001%
Node 2 94.41% 0.002%
Node 3 92.13% 0.002%

Ordinary IDCC [3] MJ-SCC
Node1 75.25% 6.27%
Node 2 88.56% 6.40%
Node 3 89.08% 5.11%

Table 4.4: Average queuing delay by utilizing the
centralized IDCC and the MJ-SCC approaches
with hmax = 20 ms.

Premium IDCC [3] MJ-SCC
Node 1 ∞ 51.4 ms
Node 2 ∞ 44.8 ms
Node 3 ∞ 21.5 ms

Ordinary IDCC [3] MJ-SCC
Node 1 ∞ 240.4 ms
Node 2 ∞ 174.2 ms
Node 3 ∞ 133.4 ms

same as in equation (4.119). The time delays among nodes are generated by a random

signal (using Gaussian distribution) bounded by 0 ms and 20 ms.

The simulation results corresponding to the buffer queue responses for all the nodes

by utilizing the centralized IDCC are shown in Fig. 4.13 to Fig. 4.16, for the queuing

length and the queuing error of the premium and the ordinary traffic services, respectively.

As inspected from the results presented in these figures, one may conclude that for both

services the centralized IDCC approach cannot stabilize the queues. The buffers are

overflown and large amount of packets are lost.

On the other hand, the buffer queue responses of the premium and the ordinary

traffic of nodes 1-3 by utilizing our proposed centralized MJ-SCC algorithm are illustrated

in Fig. 4.17 to Fig. 4.20. As revealed from the simulation results, one may argue that

for both services our proposed MJ-SCC strategy stabilizes the network in the presence of

maximum time-delay of 40 ms and a non-stationary network topology. It can be seen that

not only all the buffer queue lengths converge to their respective references, but also the

transient responses are faster for the premium service than that with the IDCC approach.

Furthermore, the numerical comparisons of the packet loss rate and the average

queuing delays for both traffic classes in all the nodes are given in Table 4.3 and Table 4.4,

for the centralized IDCC and the centralized MJ-SCC approaches, respectively. As indi-

cated by the comparative results, one may conclude that for both services the performance

of our proposed centralized MJ-SCC strategy is better than the IDCC approach.
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Figure 4.13: Premium queuing lengths by utiliz-
ing the centralized IDCC [3].
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Figure 4.14: Premium queuing error by utilizing
the centralized IDCC [3].
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Figure 4.15: Ordinary queuing lengths by utiliz-
ing the centralized IDCC [3].
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Figure 4.16: Ordinary queuing error by utilizing
the centralized IDCC [3].
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Figure 4.17: Premium queuing lengths by utiliz-
ing the proposed centralized MJ-SCC approach.
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Figure 4.18: Premium queuing error by utilizing
the proposed centralized MJ-SCC approach.
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Figure 4.19: Ordinary queuing lengths by utiliz-
ing the proposed centralized MJ-SCC approach.

0 0.2 0.4 0.6 0.8 1
0

10

20
Ordinary Queue Error

N
o

d
e

 1

0 0.2 0.4 0.6 0.8 1
0

50

N
o

d
e

 2

0 0.2 0.4 0.6 0.8 1
0

50

100

N
o

d
e

 3

Time [second]

Figure 4.20: Ordinary queuing error by utilizing
the proposed centralized MJ-SCC approach.
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4.5.4 Centralized MJ-SCC vs the Decentralized MJ-SCC

In this section, the simulation results of the proposed centralized MJ-SCC and the de-

centralized MJ-SCC that are obtained in the previous two subsections are compared and

analyzed. Let us compare the numerical results of the centralized MJ-SCC strategy, as

given in Tables 4.3 and 4.4 with that of the decentralized approach, as given in Tables

4.1 and 4.2. One can see that the packet loss rate of the ordinary traffic and the queuing

delays of both traffic classes by utilizing the centralized MJ-SCC are smaller. The rea-

son is that in the centralized MJ-SCC approach the controls and regulations are derived

based on the entire information of the network and hence is more accurate than that of

the decentralized approach. However, as shown in Fig. 4.17 and Fig. 4.20, since the

switching conditions of the updates and re-calculations are also based on the situations of

all the nodes, the response of the centralized MJ-SCC approach is slower than that of the

decentralized one.

Furthermore, in order to evaluate the performance of our proposed congestion con-

trol strategies with different level of delays. The time-varying delays are set as below

τ = min{0,max{hmax, h}} (4.120)

h ∼ N(µ, σ2) (4.121)

where hmax is the maximum bound of delay in the network that takes values of [20 40 80]

ms and h is a random signal with Gaussian distribution of mean value µ = 20 ms and

standard derivation σ2 = 10 ms.

The average percentage queuing error and the settling time for both traffic classes

in node 1 corresponding to different amount of maximum delay hmax are given in Table

4.5 and Table 4.6. The settling time is determined as the time when the queuing error has

decreased to less than 1% and remain bounded by 2% during the remaining simulation

time. As can be seen from the comparison results in Table 4.5 and Table 4.6, it can be

concluded that the decentralized MJ-SCC strategy could fairly compete with the perfor-

mance of the centralized MJ-SCC algorithm. However, as the number of nodes increases,

the dimension of the LMI conditions associated with the centralized control strategy will
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Table 4.5: The comparisons between the centralized the decentralized MJ-SCC approaches with
respect to the queuing error of node 1 subject to different delay levels.

Centralized MJ-SCC Decentralized MJ-SCC
hmax P O P O
20 ms 1.19% 1.04% 1.86% 1.51%
40 ms 1.25% 1.15% 1.96% 1.54%
80 ms 1.48% 1.28% 1.98% 1.74%

Table 4.6: The comparisons between the centralized the decentralized MJ-SCC approaches with
respect to the settling time of node 1 subject to different delay levels.

Centralized MJ-SCC Decentralized MJ-SCC
hmax P O P O
20 ms 0.05 s 0.04 s 0.03 s 0.04 s
40 ms 0.06 s 0.07 s 0.06 s 0.05 s
80 ms 0.10 s 0.10 s 0.09 s 0.09 s

increase dramatically and one may not be able to easily obtain the feasible solution due

to numerical ill-conditioning and/or reductions in the size of the feasibility regions. On

the other hand, the decentralized strategy is scalable and would provide an acceptable

performance even in networks with large amounts of delay.

4.6 Conclusions

In this chapter, a novel Markovian jump switching congestion control (MJ-SCC) algo-

rithm for mobile Diff-Serv networks was proposed for both centralized and decentralized

frameworks. The queuing dynamics of the network are modeled as a nonlinear time-delay

system with Markovian jump parameters. The time-delays considered in the network in-

clude transmitting, propagating, and processing delays and are assumed to be unknown

and time-varying. The changes of the network topology is viewed as a stochastic process

and is modeled by a Markov chain. By taking advantage of the Markovian jump in the

network dynamics, changing neighboring sets due to node mobility and changes of the
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network topology can be handled.

Furthermore, by employing a switching control strategy, the mode-dependent phys-

ical constraints of the network are guaranteed to be satisfied during the congestion control

process. The closed-loop system after applying the MJ-SCC algorithms becomes a hybrid

system with both stochastic and deterministic switchings. A group of mode-dependent

LMI conditions are developed for determining the stability conditions. The congestion

control problem of mobile Diff-Serv networks is solved by guaranteeing that the LMI con-

ditions corresponding to each mode is satisfied. The simulation results presented demon-

strate that the resulting steady-state and the transient behavior of our proposed congestion

control strategies are satisfactory. Numerical comparisons show that the performance of

the queuing behavior by utilizing our proposed MJ-SCC algorithms are greatly improved

when compared to another model-based method that is available in the literature.
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Part II

Guaranteed Cost Congestion

Control Approach
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Chapter 5

Guaranteed Cost Congestion

Control of DiffServ Networks with

Fixed Topology

In this chapter, we consider the congestion control problem of the NMAS subject to the

differentiated services by using another approach, namely the guaranteed cost control ap-

proach. The main disadvantage of the switching congestion control approach is that one

needs to regulate the traffic compression gains when the network reaches its physical con-

straints. However, in some cases this regulation may lead to conservative results and low

quality of communication. In this chapter, we first consider the dynamic queuing models

of the Diff-Serv networks without considering the physical constraints and a guaranteed

cost controller is proposed based on a quadratic cost function. The physical constraints

of the system will then be taken into account as extra conditions to the stability of the

closed-loop system. In this chapter, the traffic compression gains among the nodes are

assumed to be given and as selected by the network operator. Therefore, one does not

need to regulate it anymore for stability purposes. As given in Chapter 2, the dynamic

queuing models of the Diff-Serv networks are nonlinear systems with multiple and time-

varying delays. It is well-known that the feedback linearization technique is a common and
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widely applied methodology for nonlinear system control that can transform the original

nonlinear system into an equivalent linear one. By employing the feedback linearization

technique, the queuing models presented in Chapter 2 are firstly transformed into equiv-

alent linear systems. Then, the guaranteed cost control (GCC) approach is applied to

design state feedback controllers for each traffic class. The GCC scheme has been shown

to be an efficient tool for dealing with system uncertainties and disturbances. Therefore,

for the transformed linear queuing models, the congestion control problem of each traffic

class is formulated as a guaranteed cost control problem of a time-delay system subject to

its corresponding physical constraints.

This chapter is organized in two parts. In the first part, considering the dynamical

model of the traffic network that is presented in Chapter 2, a quadratic cost function

is defined for the premium and the ordinary traffic and a new centralized congestion

control strategy is introduced based on the feedback linearized equivalent linear system

model. The proposed congestion control algorithm guarantees the stability of the closed-

loop system and can maintain a robust performance of the queuing error in presence

of multiple and unknown time-varying delays. The centralized control strategy is then

modified to a decentralized congestion control strategy in the second part of this chapter.

Therefore, it can be implemented at the output port of each node and hence is scalable

to potentially large scale traffic networks.

The remainder of this chapter is structured as follows. In Section 5.1, the traffic

model introduced in Chapter 2 is briefly re-called where the input-state feedback lineariza-

tion technique is applied. The centralized congestion control strategy is developed for both

the premium and the ordinary traffic. The physical constraints are then formulated as LMI

feasibility conditions. In Section 5.2, the decentralized queuing model is considered and

the above results are subsequently extended to a decentralized congestion control strategy.

By invoking the stability results derived LMI conditions are proposed that guarantee the

stability as well as an optimal guaranteed cost of the traffic network. Performance evalua-

tion and comparisons are illustrated at the end of these two sections. Finally, conclusions

are presented in Section 5.3.
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5.1 Centralized Guaranteed Cost Congestion Con-

trol (GCC) Scheme

In this section, we consider the congestion control problem of the entire network in a

centralized control framework. A centralized cost function is considered and a guaranteed

cost congestion control strategy is proposed for both the premium and the ordinary traffic.

The centralized dynamic models, as presented in Chapter 2, for the premium traffic

(2.37) and the ordinary traffic (2.46) are re-written here for convenience:

ẋp(t) = −F (xp(t))up(t) + λp(t) +
m∑

l=1

GlF (xp(t− τl(t)))up(t− τl) (5.1)

ẋr(t) = −F (xr(t))ur1(t) + ur2(t) +
m∑

l=1

GlF (xr(t− τl(t)))ur1(t− τl) (5.2)

where ”p” denotes the premium traffic and ”r” denotes the ordinary traffic, xp and xr are

the queuing lengths of the premium and ordinary traffic in the nodes, up(t) and ur(t) are

the input vectors, λp(t) is the unknown but bounded external incoming premium traffic,

τl(t) is an unknown but bounded time-varying total delay, m is the number of delays in

the network, and F (xp(t)), F (xr(t)) and
m∑

l=1

Gl are the system matrices as defined in (2.30)

and (2.36).

The multiple and time-varying delays τl(t) in the queuing dynamics of the premium

and the ordinary traffic models (5.1)-(5.2) take into account the propagation, transmission,

and processing delays in the network and are unknown. The multiple delays are assumed

to be upper bounded by various upper bounds hl where the maximum upper bound h is

assumed to be known. In this chapter, the same assumptions on the time-varying delays

as stated in Assumption. 3.1, are adopted in the following synthesis and analysis of the

guaranteed cost congestion control algorithms.

Note that, the queuing dynamics of the premium and the ordinary traffic models

(5.1)-(5.2) are nonlinear with respect to the queuing states. We observe that the nonlinear

terms F (x(t)) is only related to the states so that the models can be transformed into

equivalent linear systems through an input-state feedback linearization technique by using

state and input coordinate transformations.
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Feedback Linearization

According to the input-state feedback linearization procedure, the nonlinear system

models (5.1)-(5.2) can be transformed into an equivalent linear system by defining the new

states and inputs as follows:
zp(t) = xp(t)− xref

p (5.3)

zr(t) = xr(t)− xref
r (5.4)

up(t) = F−1(xp(t))ūp(t) (5.5)

ur(t) = G−1(xr, t)ūr(t) (5.6)

ur(t) = vec{ur1(t), ur2(t)} (5.7)

ūr(t) = vec{ūr1(t), ūr2(t)} (5.8)

G(xr, t) =




F (xr(t)) 0

0 I


 (5.9)

where xref
p and xref

r are the reference queuing length reference ”trajectories” that are

selected by the network operator, ur and ūr are vectors that consist of two inputs of

the ordinary traffic, and G(xr, t) is the matrix that consists of the nonlinear term of the

ordinary traffic F (xr(t)). By using the above transformations and definitions, the new

state space representation for the premium and the ordinary traffic queuing models (5.1)-

(5.2) can be re-written as follows

żp(t) = −ūp(t) + λp(t) +
m∑

l=1

Glūp(t− τl(t)) (5.10)

żr(t) = B0ūr(t) +
m∑

l=1

Blūr(t− τl(t)) (5.11)

where B0 ∈ Rn×2n and Bl ∈ Rn×2n are the new system matrices defined as, B0 =vec{−I, I}
and Bl = vec{Gl, 0}. The following example is presented to clarify the definitions of the

matrices B0 and Bl.
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Example 5.1. Consider the network that is given in Example 2.1. There are three nodes

in the network. Let us define

ur1(t) =




C1(t)

C2(t)

C3(t)




, ur1(t− τl) =




C1(t− τl)

C2(t− τl)

C3(t− τl)




ur2(t) =




λ1(t)

λ2(t)

λ3(t)




, ur2(t− τl) =




λ1(t− τl)

λ2(t− τl)

λ3(t− τl)




where the time-varying delays τl(t), l = 1, 2, 3 are defined as in Example 2.1. Correspond-

ingly, the matrices B0 and Bl are given by

B0 =
[
−I3×3 I3×3

]
and

m∑

l=1

Bl =
[

m∑
l=1

Gl 0
]

Physical Constraints

By using the state and input transformation (5.3)-(5.9), the physical constraints for

the new state dynamic models (5.10)-(5.11) are now expressed as follows:

• Constraints for the states: Each node has three separate buffers for the premium,

the ordinary and the best-effort traffic class. The buffer size for each class is limited.

Hence the queuing error has upper and lower bounds with respect to each traffic

class as follows:

−xref
p ≤ zp(t) ≤ xbuffer

p − xref
p (5.12)

−xref
r ≤ zr(t) ≤ xbuffer

r − xref
r (5.13)

where xref
p and xref

r are the reference set points of the queuing length for the pre-

mium and the ordinary traffic, respectively, and xbuffer
p and xbuffer

r are the size of

the premium and ordinary buffers.

• Constraints for the inputs:The input signal of the premium traffic is the band-

width capacity that is allocated to it. Since the output capacity of each node is
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bounded, the input of the premium traffic can not exceed the maximum link capac-

ity,that is

0 ≤ ūp(t) ≤ Cserver (5.14)

On the other hand, the ordinary traffic model has two input signals, namely the

bandwidth controller ū1
r(t) and the flow rate controller ū2

r(t). The maximum band-

width that can be allocated to the ordinary traffic cannot exceed the maximum

leftover capacity from the premium traffic class. That is, the constraint of ū1
r(t) is

time-varying depending on the premium traffic controller ūp(t). Furthermore, the

flow rate controller u2
r(t) has to satisfy the transmission constraint (2.17). Therefore,

the constraints for the input signals of the ordinary traffic can be written together

as follows:

0 ≤ ū1
r(t) ≤ cr(t)

0 ≤ ū2
r(t) ≤ λmax

r < cr(t)

0 ≤ ūr(t) < cr(t) (5.15)

where cr(t) denotes the instantaneous left-over capacity from the premium traffic,

which in fact is equal to cr(t) = Cserver − ūp(t).

• Constraints for the external signal: All the external incoming traffic has to

satisfy the transmission constraint (2.17) due to the limitation of the nodes’ com-

munication capability, that is:

0 ≤ λ(t) ≤ λmax (5.16)

Based on the above new system models for the premium and the ordinary traffic

(5.10)-(5.11), the congestion control problem is now to select the controller ūp and ūr so

that the closed-loop systems are stable. Due to the presence of unknown multiple and

time-varying delays, the performance of the closed-loop system has to be robust with

respect to the uncertainties in delay, subject to the Assumption. 3.1. The guaranteed cost

control approach is viable strategy and has been shown to be a powerful solution for the

control design of such time-delay systems. The guaranteed cost controller can maintain
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the stability and robustness of the closed-loop system by ensuring an upper bound of a

given cost function so that the system performance degradations incurred by the delays

is guaranteed to be less than this upper bound. According to the guaranteed cost control

theory, as presented in Chapter 2, the performance cost function for our congestion control

problem is selected as follows.

Performance Cost Function

According to the guaranteed cost control definition (2.59), our proposed congestion

control scheme is now to design the controllers ūp(t) and ūr(t) that simultaneously stabilize

the network and maintain a robust performance of the closed-loop system in presence of

multiple and time-varying delays. As introduced in Chapter 2, the performance cost

function for the premium and the ordinary traffic is selected as follows

J =
∫ ∞

0
(zT (t)Qz(t) + ūT (t)Rū(t))dt (5.17)

where z(t) is the state of the new space representation after applying feedback linearzation

as defined in equations (5.10) and (5.11), ū(t) is the input of the new space representation,

and Q and R are given positive definite matrixes.

The above quadratic cost function is a real-valued, non-negative function of time

histories of the states, reference trajectories and control inputs. For our congestion con-

trol problem, the time histories of the states represent the queuing errors. By properly

selecting the control input ū, this cost function will be shown to be bounded, that is the

performance degradations incurred by the unknown and time-varying delays are guaran-

teed to be less than this bound. Consequently, a given set of QoS performance, such as

the per flow throughput, the queuing delay and the packet loss rate can be indirectly

guaranteed for each traffic class. Our objective in this section is to design a centralized

congestion controller for the network model (5.10)-(5.11) subject to the constraints (5.12)-

(5.16), under the Assumption. 3.1, so that the closed-loop system of (5.10)-(5.11) is stable

and the performance cost (5.17) is upper bounded for any admissible delay.

The control objective for the premium and the ordinary traffic is to regulate the
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queuing lengths as close as possible to their reference set points such that the QoS perfor-

mance, such as the packet loss rate, throughput, and the queuing delays can be guaranteed

indirectly. However, the premium and the ordinary traffic have different levels of QoS re-

quirements. Moreover, as shown in the system model (5.10), the premium traffic model

is a linear time-delay system with unknown but bounded external signals λp(t). This is

due to the incoming traffic of the premium traffic that is not negotiable and thus is not

trivial to regulate. The bandwidth is supposed to be allocated to the prmeium class first

whenever needed, within the system physical constraints. On the other hand, the ordinary

traffic model (5.11) is a linear time-delay system that takes the traffic flow rate as a control

input. Therefore, different congestion control strategies have to be selected for these two

traffic classes.

In order to guarantee an upper bound on the cost function (5.17), in this chapter

we impose a new constraint on the external incoming traffic as given below:

Assumption 5.1. The external incoming traffic is L2 norm bounded, that is

∫ ∞

0
‖λ(t)‖2dt ≤ γ, γ > 0 (5.18)

Remark 5.1. It should be noted that Assumption 5.1 implies that the improper integral of

‖λ(t)‖2 is convergent. Since 0 ≤ λ(t) ≤ λmax and t ∈ [0,∞), the above condition implies

that the external incoming traffic λ(t) is asymptotically vanishing, that is

lim
t→∞λ(t) → 0 (5.19)

In the remainder of this section, we develop congestion control strategies for both

the premium and the ordinary traffic.

5.1.1 Premium Traffic Control Strategy

In view of the premium traffic model (5.12), the guaranteed cost control problem for this

traffic is selected as a state feedback controller of the form ūp(t) = Kzp(t) that should

stabilize the system (5.12) and guarantees the upper bound of the cost function (5.17).

However, due to the unknown external incoming traffic λp(t), an adaptive estimator λ̂p(t)
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is applied to estimate the unknown external incoming traffic λp(t) to compensate for its

effect via feedback. Thus, according to the robust adaptive control theory [128], the

centralized controller ūp(t) for the premium traffic is modified as follows:

ūp(t) = K1zp(t) + K2λ̂p(t) (5.20)

where λ̂p(t) is an online estimates of the unknown but bounded external traffic flow λp(t).

Motivated from the robust adaptive control technique [128], the time-varying signal λ̂p(t)

is now designed according to the modified parameter projection method which is given by

˙̂
λp(t) =





∆zp(t)−Πλ̂p(t) if 0 < λ̂p(t) < λmax
p or

λ̂p(t) = 0, zp(t) ≥ 0 or

λ̂p(t) = λmax
p , zp(t) ≤ 0

−Πλ̂p(t) otherwise

(5.21)

where ∆ and Π are the adaptive control gains that are positive definite matrices which

need to be selected. The updating rule of the adaptive estimator λ̂p(t) is based on a group

of switching conditions. The switching laws are arbitrary and depend on the queuing

states and the instantenous value of the estimates. In other words, the switching time

is uncontrollable. Moreover, the switching conditions in (5.21) is centralized. Based on

the definition of the inequality (2.39), the estimator will update only when all the nodes

simultaneously satisfy the switching conditions.

Let us view the adaptive estimator λ̂p(t) as an extra state so that the premium

traffic model (5.10) can be modified to the following standard state space representation

˙̄zp(t) = Ak
0 z̄p(t) + B0ūp(t) +

m∑

l=1

Blūp(t− τl(t)) + Bλλp(t) (5.22)

z̄p(t) = ϕ(t), t ∈ [−h, 0]

k ∈ ℵ,ℵ = 1, 2

where z̄p(t) =
[

zp(t) λ̂p(t)

]T

is the new state, ϕ(t), t ∈ [−h, 0] specifies the initial

condition of the system, k denotes the switchings of the system which belongs to the set
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ℵ, and Ak
0, B0, Bl and Bλ are the system matrices that are defined as

A1
0 =




0 0

∆ −Π


 , A2

0 =




0 0

0 −Π




B0 =



−I

0


 ,

m∑

l=1

Bl =




m∑
l=1

Gl

0


 , Bλ =




I

0


 (5.23)

The premium traffic model (5.30) is a linear switching time-delay system with arbi-

trary switchings and unknown external signals λp(t). The congestion control problem for

the premium traffic can be recast as a state feedback control ūp = Kz̄p where K = [K1 K2]

so that the system (5.23) is stable and the following performance cost function is guaran-

teed to remain bounded

Jp =
∫ ∞

0
(z̄T

p (t)Qz̄p(t) + ūT
p (t)Rūp)dt (5.24)

The following lemma shows that indeed the state feedback controller ūp = Kz̄p is a

guaranteed cost controller for the system (5.23).

Lemma 5.1. Given the system (5.23) and the cost function (5.22) and under Assumption

5.1, if there exists a matrix K, symmetric positive definite matrices P , Sl, l = 1, ..., m,

and positive definite matrices M , N , M̄ , N̄ , such that for all the admissible time-varying

delays, under the conditions of Assumption 3.1, the following matrix inequality holds:

W̄k =




Yk P −MT + (Ak
c + Bl

cK)T N −hMT Bl
cK

∗ −N −NT + Sl + N̄ −hNT Bl
cK

∗ ∗ −Sl




< 0 (5.25)

where Ak
c = Ak

0 + B0K and Bl
c = Bl are the closed-loop system matrices, and Yk =

2MT (Ak
c + Bl

cK) + M̄ + Q + KT RK, then the system (5.23) is ultimately bounded with

the control law ūp(t) = Kz̄p(t), and the corresponding closed-loop cost function satisfies:

Jp < ϕT (0)Pϕ(0) +
m∑

l=1

1
h

∫ 0

−h

∫ 0

θ
ϕ̇T (s)Slϕ̇(s)dsdθ + γλmax(Φ) = J∗p (5.26)

where λmax(Φ) is the maximum eigenvalue of the matrix Φ and Φ = BT
λ (M̄−1 + N̄−1)Bλ.

That is, up(t) is the guaranteed cost controller for the system (5.23).
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Proof: Since the switchings in the system (5.23) is arbitrary, the following common

Lyapunov-Krasovskii functional is selected for stability analysis:

V = V1 + V2

V1 = z̄T
p (t)P z̄p(t) (5.27)

V2 =
m∑

l=1

1
h

∫ 0

−h

∫ t

t+θ
yT (s)Sly(s)dsdθ (5.28)

and where P and Sl are symmetric positive definite matrices, y(s) is the descriptor form

of the closed-loop system which is defined by the following descriptor transformation [81]

˙̄zp(t) = y(t)

y(t) = (Ak
c +

m∑

l=1

Bl
cK)zp(t)−

m∑

l=1

Bl
cK

∫ t

t−τl(t)
y(s)ds + Bλλp(t) (5.29)

Therefore, by considering Assumption 3.1, the time derivative of V along the tra-

jectories of system (5.23) is given by

V̇ = V̇1 + V̇2

V̇1 = 2z̄T
p (t)Py(t)

≤ 2[z̄T
p (t) yT (t)]




P MT

0 NT







y(t)

˙̄zp(t)− y(t)




V̇2 =
m∑

l=1

yT (t)Sly(t)− 1
h

m∑

l=1

∫ t

t−h
yT (s)Sly(s)ds

where M and N are positive definite matrices.

If compare the system (5.22) with the system (3.17), since the structures of the two

systems are similar one can follow the similar lines as presented in Lemma 3.1. Conse-

quently, the time derivative of the Lyapunov function becomes:

V̇ ≤




z̄p(t)

y(t)




T



2MT (Ak
c +

m∑
l=1

Bl
cK) P −MT + (Ak

c +
m∑

l=1

Bl
cK)T N

∗ −N −NT
k +

m∑
l=1

Sl







z̄p(t)

y(t)




+
m∑

l=1

1
τl(t)

∫ t

t−τl(t)




z̄p(t)

y(t)

y(s)




T 


0 0 −hMT Bl
cK

∗ 0 −hNT Bl
cK

∗ ∗ −Sl







z̄p(t)

y(t)

y(s)




ds

+2z̄T
p (t)MT Bλλp(t) + 2yT (t)NT Bλλp(t)
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For the last two terms in V̇ , the following Park’s inequality (3.24) [129] is applied:

2z̄T
p (t)MT Bλλp(t) ≤ z̄T

p (t)M̄ z̄p(t) + λT
p BT

λ MM̄−1MT Bλλp(t) (5.30)

2yT (t)NT Bλλp(t) ≤ yT (t)N̄y(t) + λT
p (t)BT

λ NN̄−1NT Bλλp(t) (5.31)

where M̄ and N̄ are positive definite matrices. Substituting (5.30) and (5.31) into V̇ , we

obtain

V̇ ≤
m∑

l=1

1
τl(t)

∫ t

t−τl(t)
[ξT (t, s)Wkξ(t, s) + λT

p (t)Φλp(t)]ds (5.32)

where ξT (t, s) = [z̄T
p (t) yT (t) yT (s)]T , Φ = BT

λ (M̂−1 + N̂−1)Bλ (M̂−1 = MM̄−1MT and

N̂−1 = NN̄−1NT ), and

Wk =




2MT (Ak
c + Bl

cK) + M̄ P −MT + (Ak
c + Bl

cK)T N −hMT Bl
cK

∗ −N −NT + Sl + N̄ −hNT Bl
cK

∗ ∗ −Sl




Comparing the matrix Wk with W̄k in (5.25), one can see that

Wk = W̄k − Λ (5.33)

Λ =




Q + KT RK 0 0

0 0 0

0 0 0




Hence, the following inequality of V̇ holds

V̇ ≤
m∑

l=1

1
τl(t)

∫ t

t−τl(t)
[ξT (t, s)[W̄k − Λ]ξ(t, s) + λT

p (t)Φλp(t)]ds (5.34)

Since W̄k < 0, then for all the admissible delays satisfying the Assumption 3.1, we have

V̇ <
m∑

l=1

− 1
τl(t)

∫ t

t−τl(t)
[ξT (t, s)Λξ(t, s)− λT

p (t)Φλp(t)]ds

= −
m∑

l=1

1
τl(t)

∫ t

t−τl(t)
[z̄T

p (t)(Q + KT RK)z̄p(t)− λT
p (t)Φλp(t)]ds

= −z̄T
p (t)(Q + KT RK)z̄p(t) + λT

p (t)Φλp(t)

≤ −λmin(Q + KT RK)‖z̄p(t)‖2 + λmax(Φ)‖λp(t)‖2 (5.35)

where λmax and λmin denote the maximum and the minimum eigenvalue of the corre-

sponding matrices, respectively. Therefore, for any z̄p(t) that satisfies

‖z̄p(t)‖2 ≥ λmax(Φ)
λmin(Q + KT RK)

‖λp(t)‖2 (5.36)
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one will have V̇ ≤ 0. Therefore, the system (5.36) is ultimately bounded. The ultimate

boundary in (5.36) is time-varying and depend on the instantenous value of the external

incoming premium traffic λp(t). However, the external incoming traffic has to satisfy the

transmission constraint (5.16) which is bounded. Consequently, the maximum value of

the ultimate boundary can be written as

λmax(Φ)
λmin(Q + KT RK)

‖λmax
p ‖2 (5.37)

Therefore, according to the ultimate boundedness Definition (2.6), the system (5.23) is

ultimately bounded. Furthermore, from the inequality (5.35), we have

V̇ < −z̄T
p (t)(Q + KT RK)z̄p(t) + λT

p (t)Φkλp(t) (5.38)

Integrating (5.38) on both sides from 0 to ∞, one will obtain

Jp < −
∫ ∞

0
V̇ (t)dt +

∫ ∞

0
λT

p (t)Φλp(t)dt (5.39)

= V (0)− V (∞) +
∫ ∞

0
λT

p (t)Φλp(t)dt

< V (0)− V (∞) +
∫ ∞

0
λmax(Φ)‖λp(t)‖2dt

≤ V (0)− V (∞) + γλmax(Φ)

= ϕT (0)Pϕ(0) +
m∑

l=1

1
h

∫ 0

−h

∫ 0

θ
ϕ̇T (s)Slϕ̇(s)dsdθ − z̄T

p (∞)P z̄p(∞) + γλmax(Φ)

< ϕT (0)Pϕ(0) +
m∑

l=1

1
h

∫ 0

−h

∫ 0

θ
ϕ̇T (s)Slϕ̇(s)dsdθ − λmin(P )‖z̄p(∞)‖2 + γλmax(Φ)

Since the system is ultimately bounded, from the ultimate bound (5.36) one can conclude

that:

‖zp(∞)‖2 =
λmax(Φ)

λmin(Q + KT RK)
‖λp(∞)‖2 = 0 (5.40)

Substituting (5.40) into Jp, the upper bound of the performance cost function can be

written as follows

Jp < ϕT (0)Pϕ(0) +
m∑

l=1

1
h

∫ 0

−h

∫ 0

θ
ϕ̇T (s)Slϕ̇(s)dsdθ + γλmax(Φ) = J∗p (5.41)

Therefore, the system is robust with respect to any admissible time-varying delay under

the Assumption 3.1. The degradation of the closed-loop performance incurred by delay is
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guaranteed to be less than the upper bound J∗p . Consequently, the state feedback controller

ūp = Kz̄p is the guaranteed cost controller of the system (5.23). This completes the proof

of Lemma 5.1. ¥

Lemma 5.1 shows that a memoryless state feedback control law ūp = Kz̄p is a guar-

anteed cost controller for the system (5.23). Detailed analysis of the stability conditions

and the time-varying ultimate bound will be presented in the next subsection. Here, we

first derive the memoryless state feedback control gain K. The following lemma presents

a procedure to select K by solving a set of corresponding LMI conditions.

Lemma 5.2. Consider the system (5.23), Assumption 3.1, and the cost function (5.22),

then the state feedback control law ūp = Kz̄p is the guaranteed cost controller if there exist

symmetric positive definite matrices P̃ , S̃l, positive definite matrices Q̃, R̃, M̃ , Ñ , ¯̄M ,

¯̄N , ¯̄Sl, l = 1, ..., m, and matrices X1k, X2k, Yi, i = 1, ..., 6, such that the following LMI

conditions are satisfied:

Ωk =




2(X1k + Y1 + Y2) + ¯̄M + Q̃ + R̃ M̃T − P̃ + X2k + Y3 + Y4 −hY5

∗ −Ñ − ÑT + S̃l + ¯̄N −hY6

∗ ∗ − ¯̄Sl


 < 0 (5.42)

Furthermore, the state feedback control gain is given by K = Y −1
5 Y2M̃

−1.

Proof: According to Lemma 5.1, the state feedback controller ūp(t) = Kz̄p(t) is

a guaranteed cost controller of system (5.23) if the matrix inequality (5.25) is satisfied.

However, the matrix W̄k in (5.25) is not linear with respect to the control gain K. To

tackle this problem, we need to transform the bilinear matrix inequality (5.25) into a

standard LMI condition through equivalent matrix operations. For this purpose, the

following matrices are defined:

M̃ = M−1 P̃ = P−1

K̃ = K+ ΛT = diag{M̃ P̃ K̃} (5.43)

where the operator ”+” denotes the Moore-Pentose generalized inverse [103] of the matrix

K. In view of the above definitions, we pre and post multiply the matrix W̄k with ΛT and
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Λ, respectively. Then, the following matrix is obtained

Ωk =




M̃T YkM̃ M̃T − P̃ + M̃T (Ak
c + Bl

cK)T NP̃ −hBl
c

∗ −P̃T (N + NT )P̃ + P̃T SlP̃ + P̃T N̄P̃ −hP̃T NT Bl
c

∗ ∗ −K̃T SlK̃


 (5.44)

Recall that Ak
c = Ak

0 + B0K and Bl
c = Bl, so that the first element in the first column of

Ωk can be written as follows

M̃T YkM̃ = 2(Ak
c +

m∑

l=1

Bl
cK)M̃ + M̃T M̄M̃ + M̃T QM̃ + M̃T KT RKM̃

= 2(Ak
0 + B0K +

m∑

l=1

BlK)M̃ + M̃T M̄M̃ + M̃T QM̃ + M̃T KT RKM̃

Let us define

X1k = Ak
0M̃ Q̃ = M̃T QM̃

X2k = XT
1kNP̃ R̃ = M̃T KT RKM̃

Y1 = B0KM̃ Ñ = P̃ T NP̃

Y2l = BlKM̃ S̃l = P̃ T SlP̃

Y3 = Y T
1 NP̃ ¯̄M = M̃T M̄M̃

Y4 = Y T
2 NP̃ ¯̄Nk = P̃ T N̄ P̃

Y5l = Bl
¯̄Sl = K̃T SlK̃

Y6 = P̃ T NT Y5

Then the matrix (5.44) becomes

Ωk =




2(X1k + Y1 + Y2) + ¯̄M + Q̃ + R̃ M̃T − P̃ + X2k + Y3 + Y4 −hY5

∗ −Ñ − ÑT + S̃l + ¯̄N −hY6

∗ ∗ − ¯̄Sl


 (5.45)

By solving the LMI conditions Ωk < 0, one can obtain

P = P̃−1 (5.46)

Sl = P T S̄lP (5.47)

Ak
0 = X1kM̃

−1 (5.48)

Bl = Y5l (5.49)

K = Y −1
5 Y2M̃

−1 (5.50)
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which completes the proof of Lemma 5.2. ¥

Stability Analysis of the Premium Traffic

Lemma 5.1 shows that the closed-loop system of the premium traffic model (5.23) with

the state feedback controller ūp = Kz̄p is ultimately bounded. The ultimate bound (5.37)

defines a hyper surface in the state space z̄p(t). When the state z̄p(t) remains within

the surface, we have V̇ > 0, so that the Lypapunov-Krasovskii function will increase

and the system is unstable. However, whenever the state z̄p(t) reaches or is beyond the

hyper surface, we will have V̇ ≤ 0 which implies that the states z̄p(t) will converge to the

boundary of this surface and will remain there.

As mentioned in the last subsection, the ultimate bound of the premium traffic is

time-varying and is rewritten as follows:

‖z̄p(t)‖2 ≥ λmax(Φ)
λmin(Q + KT RK)

‖λp(t)‖2 (5.51)

From the above equation, one can see that as the external premium traffic λp(t) decreases,

the ultimate bound of the system will also decrease. Specially, when λp(t) → 0, the

ultimate bound becomes:

‖z̄p(t)‖2 → 0 (5.52)

which implies that:

lim
t→∞ z̄p(t) = 0 (5.53)

That is, the queuing errors lim
t→∞ z̄p(t) = 0 and the estimates lim

t→∞ λ̂p(t) = 0. Hence, the

system is asymptotically stable. Furthermore, the closed-loop cost Jp in (5.39) can actually

achieve better performance when λp(t) = 0, that is

Jp|λp(t)=0 < ϕT (0)Pϕ(0) +
m∑

l=1

1
h

∫ 0

−h

∫ 0

θ
ϕ̇T (s)Slϕ̇(s)dsdθ

Therefore, a more accurate description of the closed-loop performance cost can be stated

as follows:
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Jp < J∗p (5.54)

J∗p,min ≤ J∗p ≤ J∗p,max

J∗p,min = ϕT (0)Pϕ(0) +
m∑

l=1

1
h

∫ 0

−h

∫ 0

θ
ϕ̇T (s)Slϕ̇(s)dsdθ

J∗p,max = J∗p,min + γλmax(Φ)

In fact, for our congestion control problem, as λp(t) decreases, the external incoming

premium traffic decreases, which implies the network load is decreasing. Hence, a better

congestion control result (queuing errors reduce) can be obtained. When λp(t) = 0, there

is no external traffic from outside the network, so that the best congestion control result

can be achieved (queuing errors = 0).

Furthermore, since the dynamic system model of the premium traffic is a switching

system, the stability conditions in (5.25) contain two LMIs with respect to the two sub-

systems. To ensure the stability of the entire system one needs to check the feasibility of

the two LMIs at each time. However, these LMIs will only impact the control parameter

embedded in matrix Ak
0. The memoryless state feedback control gain K will be the same

for both LMIs.

Stability Conditions Incorporating the Physical Constraints

When looking for a feasible solution to the delay-dependent stability conditions given

by the main LMI condition (5.45), the physical constraints of the system have to be

considered. In this section, the physical constraints (5.12)-(5.16) are transformed into

LMI conditions. These complementary LMIs, together with the stability condition (5.45)

will be taken into account for determining a complete solution to the congestion control

problem.

Constraints of the State

As mentioned in (5.12), the state constraints can be expressed in the terms of the

transformed new state z̄p(t) as follows

z̄min
p ≤ z̄p(t) ≤ z̄max

p (5.55)
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where z̄min
p = vec{−xref

p 0} is the lower bound of the state, z̄max
p is the upper bound

of the state which is in fact a vector of the maximum queuing error xbuffer
p − xref

p and

the maximum allowable incoming traffic λmax
p induced by the transmission constraint. By

squaring (5.55) we get:

z̄T
p (t)z̄p(t) ≤ ‖z̄max

p ‖2 (5.56)

Let us define the following ellipsoid for a selected ε1 > 0

F = {z̄p(t)|z̄T
p P̃−1z̄p ≤ ε1} (5.57)

If the stability condition (5.42) is satisfied, then it follows from the definition of V

in (5.27) that,

z̄T
p P̃−1z̄p ≤ V (t) (5.58)

since P̃−1 = P and P = P T > 0.

On the other hand, by integrating V̇ given in (5.38), from 0 to t and considering

V (0) = 0, one gets

V (t) < −
∫ t

0
z̄T
p (t)(Q + KT RK)z̄p(t)dt +

∫ t

0
λT

p (t)Φλp(t)dt

<

∫ t

0
λT

p (t)Φλp(t)dt

<

∫ ∞

0
λT

p (t)Φλp(t)dt

< γλmax(Φ) (5.59)

where λmax denotes the maximum eigenvalue of the matrix Φ. Therefore, z̄p(t) belongs to

the invariant set F for all t > 0 if:

γλmax(Φ) ≤ ε1 (5.60)

Therefore, the right hand side of the constraint (5.55) will be satisfied if

ε1/‖z̄max
p ‖2 ≤ P̃−1 (5.61)

Applying Schur complement to (5.61), the right hand side of the state constraint (5.55)

can be expressed according to the following LMI conditions

Ωc1 , γλmax(Φ) ≤ ε1 (5.62)

Ωc2 ,




P̃ P̃ T

P̃ ‖z̄max
p ‖2/ε1


 ≥ 0 (5.63)
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On the other hand, the left hand side of the state constraint (5.55) is equal to:

z̄p(t)− z̄min
p ≥ 0 (5.64)

In order to solve the above non-negative constraint, the following definition of the non-

negative system is needed:

Definition 5.1. [153] The liner time-delay system ẋ = A0x(t)+A1x(t−τ(t)) is said to be

non-negative if and only if A0 is essentially non-negative and A1 is non-negative, that is,

the off-diagonal entries of A0 are non-negative and all the entries of A1 are non-negative.

By substituting the state feedback controller ūp = Kz̄p into the premium traffic

model (5.22), and noting that ˙̄zp(t) − ˙̄zmin
p = ˙̄zp(t), the closed-loop dynamics can be

expressed as

˙̄zp(t)− ˙̄zmin
p = (Ak

0 + B0K)z̄p(t) +
m∑

l=1

BlKz̄p(t− τl(t)) + Bλλp(t) (5.65)

Therefore, if the above system is non-negative, then the left hand side of the state

constraint (5.55) is ensured. According to the Definition 5.1, we need to choose Ak
0 +B0K

to be essentially non-negative and
m∑

l=1

BlK to be non-negative. By selecting the positive

definite matrix M̃ to be a diagonal matrix and noting that K = Y −1
5 Y2M̃

−1, Ak
0 = X1k,

and
m∑

l=1

Bl = Y5, the non-negative conditions of the closed-loop system matrices can be

expressed as follows:

Ωc3 , (X1k + B0Y
−1
5 Y2)ij ≥ 0, i 6= j (5.66)

Ωc4 , (Y2)ij ≥ 0 i, j = 1, ...2n (5.67)

Constraints of the input

The constraint of the premium traffic input due to the capacity limitation is rewrit-

ten here again:

0 ≤ ūp(t) ≤ Cserver (5.68)

Using (5.53), the feedback controller ūp can be defined as follows:

ūp = Y −1
5 Y2M̃

−1z̄p
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Therefore, (5.68) can be written as below:

0 ≤ Y −1
5 Y2M̃

−1z̄p ≤ Cserver (5.69)

Adopting the similar lines that are used for the state constraint and considering the

ellipsoid (5.57), the right hand side of the input constraint is satisfied if:

(Y −1
5 Y2M̃

−1)T (ε1/‖Cserver‖2)Y −1
5 Y2M̃

−1 ≤ P̃−1 (5.70)

which can be transformed into the following LMI condition

Ωc5 ,




I (Y −1
5 Y2M̃

−1)T

Y −1
5 Y2M̃

−1 (‖Cserver‖2/ε1)P̃


 ≥ 0

⇔




I KT

K (‖Cserver‖2/ε1)P̃


 ≥ 0 (5.71)

The non-negative constraint of the input ūp(t) ≥ 0 can be satisfied if we specify

Kij > 0. Hence, by using K = Y −1
5 Y2M̃

−1 and noting that M̃ is set to be diagonal positive

definite, the non-negative side of the input constraint (5.68) can now be expressed by the

following LMI conditions

(Y −1
5 Y2)ij ≥ 0, i, j = 1, ..., 2n (5.72)

Noting the conditions Ωc4 for the non-negative constraint of the state, the above condition

is equivalent to the following condition:

Ωc6 , (Y −1
5 )ij ≥ 0 (5.73)

Remark 5.2. The LMI condition Ωk as given in Lemma 5.2, together with the above

constraint conditions Ωc1 to Ωc6, have the following three properties

1. They guarantee the ultimate boundedness of the premium traffic dynamic system

(5.23).

2. They provide a guaranteed cost controller for the premium traffic class, that is ūp =

Kz̄p with the control gain K = Y −1
5 Y2M̃

−1, where the matrices Y5, Y2 and M̃ are

derived based on the above conditions.

210



3. They produce the update control gains ∆p and Πp, as shown in the system matrix

Ak
0, which is given by (5.46).

Remark 5.3. The condition Ωc3 is not linear with respect to the matrices therein, hence

is difficult to be satisfied directly. In addition, noting that by satisfying Ωc4 and Ωc6 one

obtains the matrices Y5 and Y2 with positive elements. On the other hand, since the matrix

B0 =
[
−I 0

]T

, then by multiplying B0Y
−1
5 Y2 to (5.66) lead to a square matrix with

the upper half block of −Y −1
5 Y2 and the bottom half block with zeros.

Now, Let us first define the matrices X1k and M̃ as the following block matrices

X1k =




X1
1k X2

1k

X3
1k X4

1k


 M̃ =




M̃1 0

0 M̃2


 (5.74)

Hence, by setting the blocks M̃1 and M̃2 to be diagonal positive definite, M̃ will be diagonal

definite positive too.

Therefore, recall that the control gain K is a rectangular matrix of to-be-designed

parameters with the form K =
[

K1 K2

]
. Since, the matrix Y5 and Y2 are required to

be equal to:

Y5 =
m∑

l=1

Bl Y2 =
m∑

l=1

BlKM̃

then, B0Y
−1
5 Y2 is required to be equal to:

B0Y
−1
5 Y2 =



−K1M̃1 −K2M̃2

0 0


 (5.75)

Hence, Xik + B0Y
−1
5 Y2 results in a square matrix which is required to be equal to

Xik + B0Y
−1
5 Y2 =




X1
1k −K1M̃1 X2

1k −K2M̃2

X3
1k X4

1k


 (5.76)

Therefore, by selecting the positive definite matrices M̃1 and M̃2 to be diagonal matrices,

setting X1
1k −K1 and X4

1k to be essentially non-negative, and setting X2
1k −K2 and X3

1k

to be non-negative, the condition Ωc3 will be ensured indirectly.

Remark 5.4. As stated in Remark 5.2, the LMI conditions are required to produce

the update estimation gains ∆p and Πp through deriving the system matrices Ak
0 and
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m∑
l=1

Bl.Specifically, the matrix Ak
0 in the premium dynamic system (5.23) is defined as

follows

A1
0 =




0 0

−∆ −Π


 A2

0 =




0 0

0 −Π


 k = 1, 2

On the other hand, from the LMI condition in Lemma 5.2, Ak
0 is required to be equal to:

Ak
0 = X1kM̃

−1 =




X1
1kM̃

−1
1 X2

1kM̃
−1
2

X3
1kM̃

−1
1 X4

1kM̃
−1
2




Noting that the matrix M̃−1 is diagonal and positive definite, the adaptive gains ∆ and Π

need to be positive definite, and the (essential) non-negative conditions given at the end of

Remark 5.3,then it follows that the condition Ωc3 can be finally transformed into

X1
11 = X1

12 = 0

X2
11 = X2

12 = 0

X3
11 > 0 and is diagonal

X3
12 = 0

X4
11 = X4

12 < 0 and is diagonal

The results above together with the LMI condition Ωk in Lemma 5.1 can be summarized

by the following theorem.

Theorem 5.1. A guaranteed cost controller K for the premium traffic class with dynamical

queuing model (5.22) is obtained by solving the LMI condition Ωk in Lemma 5.2 and the

LMI conditions Ωc1, Ωc2, Ωc4, Ωc5, Ωc6, subject to the following block matrices:

X1k =




0 0

X3
1k X4

1k


 M̃ =




M̃1 0

0 M̃2


 (5.77)

with diagonal positive definite matrices M̃1, M̃2, diagonal negative definite matrices X4
1k,

for k = 1, 2, diagonal positive definite matrix X3
1k when k = 1, and zero matrix X3

1k when

k = 2.

Proof: The proof follows from the constructive derivations that are given above in

this section. ¥
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5.1.2 Ordinary Traffic Control Strategy

Let us recalle the dynamic model of the ordinary traffic for convenience again

żr(t) = B0ūr(t) +
m∑

l=1

Blūr(t− τl(t)) (5.78)

zr(t) = φ(t), t ∈ [−h, 0]

where ur(t) = [u1
r(t) u2

r(t)] is the input signal, and zr(t) = φ(t), t ∈ [−h, 0] is the initial

condition of the system. Since the external incoming ordinary traffic flow λr(t) represents

controllable, the congestion control problem for the ordinary traffic is actually to design

a state feedback controller ūr(t) = Kzr(t) so that the closed-loop system of (5.55) is

asymptotically stable and the following corresponding quadratic cost function is bounded

Jr =
∫ ∞

0
(zT

r (t)Qzr(t) + ūT
r (t)Rūr(t))dt (5.79)

First we present a sufficient condition for the existence of a memoryless state feed-

back guaranteed-cost control law for the ordinary traffic model (5.55).

Lemma 5.3. Consider the system (5.78) and the cost function (5.79) and under As-

sumption 5.1, the control law ur(t) = Kzr(t) is a guaranteed cost controller if there exist

symmetric positive definite matrices P , Sl, l = 1, ..., m, and positive definite matrices M

and N such that for all the admissible time-varying delays satisfying Assumption 3.1, the

following matrix inequality condition holds

W̄ =




X P −MT + KT (B0 + Bl)T N −hMT BlK

∗ −N −NT + Sl −hNT BlK

∗ ∗ −Sl


 < 0 (5.80)

where X = 2MT (B0 + Bl)K + Q + KT RK.

Proof: Let ur(t) = Kzr(t) be applied to (5.78), so that the resulting closed-loop

system becomes

żr(t) = B0Kzr(t) +
m∑

l=1

BlKzr(t− τl(t)) (5.81)

Choose a Lyapunov-Krasovskii functional candidate for the system (5.78) as

V = z̄T
r (t)P z̄r(t) +

m∑

l=1

1
h

∫ 0

−h

∫ t

t+θ
yT (s)Sly(s)dsdθ
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where P and Sl are symmetric positive definite matrices.

The above close-loop system model can be written as

żr(t) = y(t)

y(t) = (B0K +
m∑

l=1

BlK)zr(t)−
m∑

l=1

∫ t

t−τl(t)
BlKy(s)ds (5.82)

so that the time derivative of V (t) along the trajectories of (5.78) becomes:

V̇ = 2zT
r (t)Py(t) +

m∑

l=1

yT (t)Sly(t)− 1
h

m∑

l=1

∫ t

t−h
yT (s)Sly(s)ds

= 2[zT
r (t) yT (t)]




P MT

0 NT







y(t)

żr(t)− y(t)




+
m∑

l=1

yT (t)Sly(t)− 1
h

m∑

l=1

∫ t

t−h
yT (s)Sly(s)ds

≤




zr(t)

y(t)




T



2MT (B0 +
m∑

l=1

Bl)K P −MT + KT (B0 +
m∑

l=1

Bl)TN

∗ −Nk −NT +
m∑

l=1

Sl







zr(t)

y(t)




+
m∑

l=1

1
τl(t)

∫ t

t−τl(t)




zr(t)

y(t)

y(s)




T 


0 0 −hMT BlK

∗ 0 −hNT BlK

∗ ∗ −Sl







zr(t)

y(t)

y(s)




ds

≤
m∑

l=1

1
τl(t)

∫ t

t−τl(t)
ξT
r (t, s)Wξr(t, s)ds (5.83)

where ξr(t, s) =
[

zT
r (t) yT (t) yT (s)

]T

, M and N are positive definite matrices, and

the matrix W is given by

W =




2MT (B0 + Bl)K P −MT + KT (B0 + Bl)T N −hMT BlK

∗ −N −NT + Sl −hNT BlK

∗ ∗ −Sl


 (5.84)

Since W = W̄ −Q−KT RK, the derivative of V can be re-written as follows

V̇ <
m∑

l=1

1
τl(t)

∫ t

t−τl(t)
ξT
r (t, s)(W̄ −Q−KT RK)ξr(t, s)ds

<
m∑

l=1

1
τl(t)

∫ t

t−τl(t)
−zT

r (t)(Q + KT RK)zr(t)ds

= −zT
r (t)(Q + KT RK)zr(t) < 0 (5.85)
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Therefore, it follows that the closed-loop system (5.81) is asymptotically stable. Further-

more, by integrating both sides of the above inequality from 0 to ∞ and using the initial

condition, we will have

Jr <

∫ ∞

0
−V̇ dt

= V (0)− V (∞)

= V (0)

= φT (0)Pφ(0) +
m∑

l=1

1
h

∫ 0

−h

∫ 0

θ
φ̇T (s)Slφ̇(s)dsdθ = J∗r (5.86)

Therefore, the quadratic cost function for the ordinary traffic class (5.79) is upper bounded.

The closed-loop system performance is guaranteed for any admissible unknown and time-

varying delays. According to the definition of guaranteed cost control (GCC), the state

feedback control law ūr = Kzr is the GCC controller of the system (5.78). This completes

the proof of Lemma 5.3. ¥

In the following lemma, we show that the sufficient condition for the existence of

guaranteed cost controller K is equivalent to the solvability of a system of LMIs.

Lemma 5.4. For the system (5.78), if there exist symmetric positive definite matrices

Λ2, S̃l, positive definite matrices Λ1, Q̃, R̃, Ñ , ¯̄Sl, for l = 1, ...,m, and matrices θi, for

i = 1, ....6, such that the following LMI condition is satisfied:

Ω =




2(θ1 + θ2) + Q̃ + R̃ ΛT
1 − Λ2 + θ3 + θ4 −hθ5

∗ −Ñ − ÑT + S̃l −hθ6

∗ ∗ − ¯̄Sl




< 0 (5.87)

then the state feedback controller ūr = Kzr with the control gain K = θ−1
5 θ2Λ−1

1 is the

guaranteed cost control law of the system (5.78).

Proof: The following matrices are defined to transform the bilinear matrix W̄ into

an equivalent linear matrix Ω, namely

Λ1 = M−1 Λ2 = P−1

Λ3 = K+ Λ = diag{Λ1 Λ2 Λ3}

By pre and post multiplying the matrix W̄ with ΛT and Λ, respectively, one obtains
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Ω =




2(θ1 + θ2) + Q̃ + R̃ ΛT
1 − Λ2 + θ3 + θ4 −hθ5

∗ −Ñ − ÑT + S̃l −hθ6

∗ ∗ − ¯̄Sl




(5.88)

where

θ1 = B0KΛ1 Q̃ = ΛT
1 QΛ1

θ2l = BlKΛ1 R̃ = ΛT
1 KT RKΛ1

θ3 = θT
1 NΛ2 Ñ = ΛT

2 NΛ2

θ4 = θT
2 NΛ2 S̃l = ΛT

2 SlΛ2

θ5l = Bl
¯̄S = ΛT

3 SlΛ3

θ6 = ΛT
2 NT θ5

Then, by solving the LMI condition Ω < 0, the state feedback control gain is obtained as

K = θ−1
5 θ2Λ−1

1

Bl = θ5l

This completes the proof of Lemma 5.4. ¥

Stability Analysis of the Ordinary Traffic

Let us compare the stability conditions of the ordinary traffic and the premium traffic

classes, as governed by the LMIs in (5.87) and (5.42),respectively. We observe that for

the ordinary traffic control, one only needs to check the feasibility of one matrix at each

time. The reason is that the external incoming traffic of the ordinary traffic is known

and controllable, and no estimation is need in the congestion control problem of the

ordinary traffic class. Consequently, the closed-loop dynamic system does not contain any

switchings. Therefore, the computational cost of the congestion controller for the ordinary

traffic is lower than the premium one.

Moreover, the ordinary dynamic system can achieve asymptotic stability by using

the memoryless state feedback control. However, for the premium traffic system one can

only achieve this goal when there is no external incoming premium traffic flow. The
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ordinary queuing error zr(t) = xr(t) − xref
r will always converge to 0 as t → ∞. The

reason is that more information is available for the congestion control of ordinary traffic,

so that a better stability result can be achieved.

Consequently, the upper bound of the closed-loop performance cost, as given below,

is always constant which is only dependent on the system initial conditions

J∗r = φT (0)Pφ(0) +
m∑

l=1

1
h

∫ 0

−h

∫ 0

θ
φ̇T (s)Slφ̇(s)dsdθ (5.89)

Therefore, for any unknown and time-varying delays, under Assumption 3.1, the closed-

loop system is always asymptotically stable and the performance cost is guaranteed to be

less than J∗r .

Stability Conditions Incorporating the Physical Constraints

The closed-loop system of the ordinary dynamic system after applying the controller

ūr(t) = Kzr(t) can be expressed as follows

żr(t) = B0Kzr(t) +
m∑

l=1

BlKzr(t− τl(t)) (5.90)

The physical constraints (5.12)-(5.16) for the dynamical queuing model of the ordinary

traffic class is written as

−xref
r ≤ zr(t) ≤ xbuffer

r − xref
r (5.91)

0 ≤ ūr(t) ≤ cr(t) (5.92)

where xref
r is a constant set-point indicating the reference value of the ordinary queuing

length, cr(t) is the maximum allowable bandwidth for the ordinary traffic, which equals

to the instantaneous leftover capacity from the premium traffic and in fact is given by

cr(T ) = Cserver − ūp(t).

Constraints of the states

For the constraints of the states (5.91), consider the following ellipsoid for a selected

positive number ε2

S = {zr(t)|zT
r (t)Λ−1

2 zr(t) ≤ ε2, ΛT
2 = Λ2 > 0}
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From the Lyapunov-Krosovskii functional V as defined in (5.82), if the stability condition

(5.87) is satisfied, then we have

z̄T
r (t)Λ−1

2 zr(t) ≤ V (t)

Noting that in (5.85), by integrating both sides of the inequality from 0 to ∞ and consid-

ering V (0) = 0, one can get

V (t) = −
∫ t

0
zT
r (t)(Q + KT RK)zr(t)dt < 0 (5.93)

Therefore, zr(t) belongs to the set S for all t > 0. By squaring the state constraint

(5.90), we get

zT
r zr ≤ ‖zmax

r ‖2 (5.94)

where zmax
r = xbuffer

r − xref
r . Therefore, the right hand side of the state constraint (5.90)

will be satisfied if
ε2

‖zmax
r ‖2

≤ Λ−1
2 (5.95)

which can be expressed according to the following LMI condition

Ωc1 ,




Λ1 ΛT
1

Λ1 ‖zmax
r ‖2/ε2


 ≥ 0 (5.96)

On the other hand, the negative side of the state constraint (5.91) can be rewritten

as follows:

zr(t)− zref
r ≤ 0 (5.97)

Noting that żr− żref
r = żr, the non-negative condition (5.97) will be satisfied if the closed-

loop system (5.90) is a non-negative system. According to the definition of non-negative

system in Definition5.1, by setting K = θ−1
5 θ2Λ−1

1 and
m∑

l=1

Bl = θ5, with a diagonal positive

definite matrix Λ−1
1 , the non-negative condition (5.45) will be satisfied if the following

conditions hold

Ωc2 , (B0θ
−1
5 θ2)ij ≥ 0, i 6= j (5.98)

Ωc3 , (θ2)ij ≥ 0, i, j = 1, ...2n (5.99)

218



Constraints of the input

For the constraints of the input, by using ūr = Kzr, it can be expressed as

0 ≤ Kzr(t) ≤ cr(t) (5.100)

Note that:
cr(t) = Cserver − ūp(t)

= Cserver −Kpz̄p(t) (5.101)

where Kp is the control gain of the premium traffic controller as derived in the last sec-

tion. To avoid confusion, we denote Kr as the control gain for the ordinary traffic in the

remainder of this section. Therefore, the input constraint (5.100) can be re-written as

0 ≤ Krzr(t) ≤ Cserver −Kpz̄p(t) (5.102)

From the right hand side of the above condition, we have

Krzr(t) + Kpz̄p(t) ≤ Cserver (5.103)

By squaring (5.103), we get



zT
r

z̄T
p




T 


KT
r

KT
p




[
Kr Kp

]



zr

z̄p


 ≤ ‖Cserver‖2 (5.104)

Now, consider the ellipsoids of the premium traffic state F as defined in (5.57), and of the

ordinary traffic state S as given in (5.93). Hence, the following union of the two ellipsoids

can be defined

Σ = F+ S = {(zr(t), z̄p(t))|




zT
r

z̄T
p




T 


Λ−1
2 0

0 P̃−1







zr

z̄p


 ≤ ε1 + ε2} (5.105)

As indicated by (5.93), zr ∈ S for all t > 0. Therefore, (zr(t), z̄p(t)) belongs to the invariant

set Σ for all t > 0, if the condition (5.60) is satisfied

γλmax(Φ) ≤ ε1

Therefore, (5.104) will be satisfied if



KT
r

KT
p


 ε1 + ε2
‖Cserver‖2

[
Kr Kp

]
≤




Λ−1
2 0

0 P̃−1


 (5.106)
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By applying the Schur complement, the upper constraint of the input due to the capacity

limitation can be expressed according to the following LMI conditions

Ωc4 , γλmax(Φ) ≤ ε1 (5.107)

Ωc5 ,




I Kr Kp

KT
r

‖Cserver‖2
ε1+ε2

Λ2 0

KT
p 0 ‖Cserver‖2

ε1+ε2
P̃



≥ 0 (5.108)

On the other hand, once the non-negative conditions Ωc2 and Ωc3 are satisfied,

the system (5.90) is a non-negative system, so that zr(t) > 0. Hence, the non-negative

constraint of the input ūr(t) ≥ 0 can be satisfied if we set (Kr)ij > 0. By setting the

positive definite matrix Λ1 to be a diagonal matrix and noting that (θ2)ij > 0, as given

by (5.98), the non-negative constraint of the input is satisfied if

Ωc6 , (θ−1
5 )ij > 0, i, j = 1, ..., 2n (5.109)

Remark 5.5. It should be noted that in order to satisfying the condition Ωc5, as given in

(5.107), the control gain of the premium traffic controller Kp is a known matrix by deriving

the premium traffic controller first. This is also justified by the fact that the premium traffic

has the highest priority and the bandwidth is allocated to it first. Moreover, the control of

the premium traffic will affect the feasibility of Ωc5. This is also validated by the fact that

the capacity constraint of the ordinary traffic is dependent on the leftover bandwidth from

the premium one. When there is no leftover capacity, we will have ūr(t) = 0 which implies

that no capacity is available and no incoming traffic is allowed.

Remark 5.6. Notice by satisfying the LMI conditions Ωc3 and Ωc6 as governed by (5.98)

and (5.109), respectively, θ−1
5 θ2 becomes a rectangular matrix with positive elements. On

the other hand, since the elements in B0 are −1 or 0, the condition Ωc2 is naturally

satisfied.

The above conditions for the centralized congestion controller of the ordinary traffic

can be written in the following theorem.
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Figure 5.1: The flow chart of the centralized guaranteed cost congestion controller (GCC) for the
Diff-Serv network with fixed topology.

Theorem 5.2. A guaranteed cost congestion controller for the ordinary traffic class, as

described by the dynamical queuing model (5.78), of the structure

ūr(t) = Krzr(t) (5.110)

is obtained by solving the LMI condition Ω in Lemma 5.4 and the LMI conditions Ωc1, Ωc3,

Ωc4, Ωc5, Ωc6, as governed by equations (5.96), (5.98), (5.107), and (5.109), respectively,

subject to a diagonal positive definite matrix Λ1.

Proof: The proof follows along the same lines as those given in the above deriva-

tions. ¥

The centralized congestion control strategies of the premium and the ordinary traffic

classes derived in this section are summarized in the flow chart shown in Figure 5.1. As

stated in Figure 5.1, given a network of multi-agent systems (NMAS) with n nodes and

a fixed network topology, the premium traffic congestion controller first solves the LMI

conditions Ωk and Ωc1 to Ωc6, so that the memoryless state feedback control gain K,
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and the adaptive estimation gains ∆ and Π are obtained. The adaptive estimator λ̂p(t)

is updated according to the value of the queuing state and the switching conditions as

given in (5.21). After obtaining the estimate of the external incoming premium traffic,

the bandwidth controller Cp(t) is calculated according to the following rule:
Cp(t) = up(t) = F−1(xp, t)ūp(t)

= F−1(xp, t)Kz̄p(t)

= F−1(xp, t)K




xp(t)− xref
p

λ̂p(t)


 (5.111)

where xp(t) denotes the queuing length, xref
p denotes the reference set point of the queuing

length that is selected by the network operator. Note that F (xp(t)) = diag{f(xpi(t))} and

f(xpi(t)) = µ
xpi

1+xpi
are calculated with the given queuing states.

The bandwidth for the premium traffic flow at each node is allocated based on the

values that are given by the centralized controller (5.111). On the other hand, given the

premium traffic control gain Kp, the ordinary traffic congestion controller can solve the

corresponding LMI conditions that are given in Lemma 5.4 and The physical constraints

conditions, so that the bandwidth controller Cr(t) and the flow rate regulator λr(t) are

calculated as follows 


Cr(t)

λr(t)


 = F−1(xr, t)K(xr(t)− xref

r ) (5.112)

where F (xr(t)) = diag{f(xri(t))} and F (xr(t)) = µ xri
1+xri

.

The bandwidth for the ordinary traffic is allocated at each node. The allowable

incoming flow rates are sent to each node in the network so that the corresponding ad-

justments can be conducted during the next communication cycle.

5.2 Decentralized Guaranteed Cost Congestion Con-

trol (GCC) Scheme

The network of multi-agent systems is composed of a large number of interconnected nodes.

Transmitting information among the network nodes may cause delays which adversely
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affect stability and deteriorate performance of the system. Control of such large scale

systems can become quite complicated owing to the high dimensionality of the system

dynamics, uncertainties and time-delays. Decentralized control strategies are among the

best choices for controlling such systems. In other words, each node is required to control

its behavior by using its local and limited information that it receives from other nodes in

the network to accomplish a global objective.

In this section, a decentralized congestion control approach is developed based on

the model that is presented in Chapter 2. A guaranteed cost control method is applied to

derive the congestion control strategies of each traffic class with a set of LMI constraints.

Consider a NMAS with n nodes. Suppose each node has three queues corresponding

to the premium, the ordinary and the best-effort traffic. The congestion controller is

implemented at the output port of each node. The control objective pursued for the

premium traffic is to allocate the output capacity that is denoted by Cpi(t) by incorporating

an adaptive estimator to compensate for the incoming traffic uncertainties. The ordinary

traffic controller needs to simultaneously regulate the incoming flow rate that is denoted

by λri(t) and allocate its capacity Cri(t). Finally, for the best-effort traffic, no explicit

active control is designed since this traffic does not have any QoS requirements.

5.2.1 Premium Traffic Control Strategy

Let us recall the decentralized dynamic model of the traffic flow at each node that is given

by (2.21)for covenience

ẋpi(t) = −f(xpi(t))upi(t) +
n∑

j=1
j 6=i

f(xpj(t− τji(t)))upj(t− τji)gji
p (t) + λpi(t) (5.113)

where xpi, i = 1, ..., n denotes the premium queuing length in node i, upi = Cpi denotes

the bandwidth capacity allocated to the premium traffic in node i, upj(t) denotes the

bandwidth controller of the neighboring node j, τji(t) denotes the unknown but bounded

time-varying delays in transmission, propagation, and processing, λpi(t) denotes the ex-

ternal input flow for node i, and gji
p (t) denotes the traffic compression gain between nodes

j and i.
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The set of constraints are also given by

0 ≤ xpi(t) ≤ xbuffer
pi

0 ≤ upi(t) ≤ Cserver,i, i = 1, ...n

0 ≤ λpi(t) < λmax
pi ≤ Cserver,i (5.114)

where xbuffer
pi is the premium buffer size of node i, Cserver,i is the total link capacity of

node i, λmax
pi is the maximum allowable external incoming traffic, which is introduced by

the transmission constraint of node i.

Our objective is to find a stabilizing controller, upi, for each node such that the

system (5.113) is stable and the closed-loop system is robust to any admissible time-varying

delays satisfying assumption 3.1. Since the corresponding dynamic model is nonlinear, we

first apply the feedback linearization technique to transform the original nonlinear system

into an equivalent linear system and then a guaranteed cost control approach is employed

to derive the state feedback control law based on the new state space representation.

Feedback linearization scheme

For the nonlinear system (5.113), the following feedback linearization scheme is proposed

zpi(t) = xpi(t)− xref
pi (5.115)

upi = f−1(xpi, t)ūpi (5.116)

where xref
pi is the reference queuing length of node i. The new state equation can be

described as follows

żpi(t) = −ūpi(t) + λpi(t) +
n∑

j=1
j 6=i

ūpj(t− τji(t))gji
p (t) (5.117)

Due to the unknown external incoming traffic λpi(t), an additional state λ̂pi(t) is

introduced to estimate λpi(t) and to compensate for its effect through feedback. The online
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updating rule of the estimation is selected based on the parameter projection method [128]

˙̂
λpi(t) =





δix̄pi(t)− βiλ̂pi(t), if 0 ≤ λ̂pi(t) ≤ λmax
pi or

λ̂pi(t) = 0, x̄pi(t) ≥ 0 or

λ̂pi(t) = λmax
pi , x̄pi(t) ≤ 0

−βiλ̂pi(t), otherwise

(5.118)

where δi > 0 and βi > 0 are constant design parameters. The open-loop system dynamics

(5.109) and (5.111) can be then written as a switching system with the following two

subsystems

˙̄zpi(t) = Ak
i0z̄pi(t) + Bi0ūpi(t) +

n∑

j=1
j 6=i

Bj ūj(t− τji(t)) + Bλi
λi(t) (5.119)

z̄pi(t) = ϕi(t) ϕi(t) ∈ [−h, 0]

k ∈ ℵ,ℵ = 1, 2

where z̄pi(t) = [zpi(t) λ̂pi(t)]T is the new state vector, and mi is the number of delays

in the neighboring set of node i. The new dynamic system (5.113) is a linear time-delay

system with arbitrary switchings between the two subsystems that is represented by k,

Ak
i0, Bi0, Bj , and Bλi , for i, j = 1, ..., n are the system matrices

A1
i0 =




0 0

δi −βi


 A2

i0 =




0 0

0 −βi




Bi0 =



−1

0


 Bj =




gji

0


 Bλi =




1

0




It is worth noting that the update rule of the decentralized estimator (5.118) depends

only on the local information of each node. Hence, the estimate of the external incoming

traffic with respect to a single node is more efficient than that in the centralized control,

since in this case one does not need to wait for the neighbors to simultaneously perform

an update. This is due to the fact that in the decentralized congestion control each node

is only concerned about the congestion status of itself. The congestion control decisions

are made locally and the performance is also only evaluated at local nodes. Therefore,
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although all the nodes in the network will become stable eventually, but this may take

longer time than the centralized control. In this section, the control objective for the

premium traffic is defined as that of determining a state feedback controller ūpi(t) =

Kiz̄pi(t) for each node such that the system (5.113) is ultimately bounded and the following

performance cost function is upper bound:

Jpi =
∫ ∞

0
(z̄T

pi(t)Qiz̄pi(t) + ūT
pi(t)Riūpi)dt (5.120)

where Qi and Ri are given positive definite matrices. In order to guarantee an upper

bound of the cost function, the following assumption of the external incoming traffic to

each node is imposed in this section as presented below

Assumption 5.2. The external incoming traffic to each node is L2 norm bounded, that

is ∫ ∞

0
‖λi(t)‖2dt ≤ γi, γi > 0 (5.121)

Then, the following theorem is proposed to show that the memoryless state feedback

control law is a guaranteed cost controller for system (5.113).

Lemma 5.5. Given the cost function (5.120) and under the Assumption 5.2, the controller

ūpi(t) = Kiz̄pi(t) is a guaranteed cost control law of system (5.113), if there exist symmetric

positive definite matrices Pi, Si, i = 1, ..., n, and positive definite matrices Mi, Ni, M̄i,

N̄i, such that the following matrix inequality condition is satisfied

W̄ik =




Yik Pi −MT
i + (Ak

ic)
T NT

i −MT
i BjiKji 0

∗ −2NT
i + N̄i + Si −NT

i BjiKji 0

∗ ∗ 0 0

∗ ∗ ∗ −Si




< 0 (5.122)

where Ak
ic = Ak

i0 + Bi0Ki, Yik = 2MT
i Ak

ic + M̄i + Qi + KT
i RiKi, Bji = vec{Bj}, and

Kji = diag{Kj}.

Proof: For the switching system (5.113), the following common Lyapunov-Krasovskii

functional is selected for the stability analysis
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Vi = Vi1 + Vi2 (5.123)

Vi1 = z̄T
pi(t)Piz̄pi(t)

Vi2 =
1
h

∫ 0

−h

∫ t

t+θ
yT

i (s)Siyi(s)dsdθ

where Pi and Sli are sympatric positive definite matrices, and

˙̄zpi(t) = yi(t) (5.124)

yi(t) = Ak
icz̄pi(t) +

n∑

j=1
j 6=i

BjKj z̄pj(t)−
n∑

j=1
j 6=i

BjKj

∫ t

t−τji(t)
yj(s)ds + Bλiλpi(t)

Therefore, the time derivative of V along the trajectories of system (5.113) is given by

V̇i = V̇i1 + V̇i2

V̇i1 = 2z̄T
pi(t)Piyi(t)

= 2[z̄T
pi(t) yT

i (t)]




Pi MT
i

0 NT
i







yi(t)

˙̄zpi(t)− yi(t)




=
[

2z̄T
pi(t)Pi 2z̄T

pi(t)M
T
i + 2yT

i NT
i

]



yi(t)

− ˙̄zpi(t) + yi(t)




= [2z̄T
pi(t)Piyi(t)− (2z̄T

pi(t)M
T
i żi(t) + 2yT

i NT
i żi(t)− 2z̄T

pi(t)M
T
i yi(t)− 2yT

i NT
i yi(t)]

= [2z̄T
pi(t)Piyi(t)− 2z̄T

pi(t)M
T
i yi(t)− 2yT

i NT
i yi(t) + 2z̄T

pi(t)M
T
i (Ak

icz̄pi(t) +
n∑

j=1
j 6=i

BjKjzj(t)

−
n∑

j=1
j 6=i

BjKj

∫ t

t−τji(t)
yj(s)ds + Bλiλpi(t))

+2yT
i NT

i (Ak
icz̄pi(t) +

n∑

j=1
j 6=i

BlKjzj(t)−
n∑

j=1
j 6=i

BjKj

∫ t

t−τji(t)
yj(s)ds + Bλiλpi(t))]

= [2z̄T
pi(t)(Pi −MT

i )yi(t)− 2yT
i NT

i yi(t)

+2z̄T
piM

T
i Ak

icz̄pi + 2z̄T
piM

T
i

n∑

j=1
j 6=i

BjKj z̄j(t− τji(t)) + 2z̄T
piM

T
i Bλiλpi(t)

+2yT
i NT

i Ak
icz̄pi + 2yT

i NT
i

n∑

j=1
j 6=i

BjKj z̄j(t− τji(t)) + 2yT
i NT

i Bλiλpi(t)]
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=




z̄T
pi(t)

yT
i (t)

Z̄T
j (t− τji(t))




T 


2MT
i Ak

ic Pi −MT
i + (Ak

ic)
T NT

i MT
i BjiKji

∗ −2NT
i NT

i BjiKji

∗ ∗ 0







z̄pi(t)

yi(t)

Z̄j(t− τji(t))




+(2z̄T
pi(t)M

T
i Bλiλpi(t) + 2yT

i NT
i Bλiλpi(t))

where Mi and Ni are symmetric positive definite matrices, Z̄j(t − τji(t)) is a vector con-

taining all the neighboring nodes’ states with the corresponding time-varying delays, for

j = 1, ..., n, and Bji and Kji are the matrices corresponding to the vector Z̄j(t− τl(t)). In

fact these three matrices are defined as follows:

Bji = vec{Bj}

Kji = diag{Kj}

Z̄j(t− τji(t)) = vec{z̄j(t− τji(t))}

The following example should clarify the definitions of these three matrices.

Example 5.2. Suppose there are three nodes in a given network. Then for the dynamical

queuing model of node 1, the neighboring nodes’ states are specified as follows

Z̄j(t− τji(t)) = [z̄2(t− τ21(t)) z̄3(t− τ31(t))]T j = 2, 3

The matrices Bji and Kji can be expressed as

Bji = [B2 B3] =




gp
21 gp

31

0 0


 Kji =




K2 0

0 K3




By applying the Park’s inequality (3.24) [129] to the last two terms in the equation

(5.125), one can obtain

2z̄T
pi(t)M

T
i Bλi

λpi(t) ≤ z̄T
pi(t)M̄iz̄pi(t) + λT

piB
T
λi

M̄−1
i Bλi

λpi

2yT
i (t)NT

i Bλiλpi(t) ≤ yT
i (t)N̄iyi(t) + λT

piB
T
λi

N̄−1
i Bλiλpi

where M̄i and N̄i are positive definite matrices. Therefore, the derivative of the Lyapunov
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function Vi1 becomes

V̇i1 ≤




z̄T
pi(t)

yT
i (t)

Z̄T
j (t− τji(t))




T 


2MT
i Ak

ic + M̄i Pi −MT
i + (Ak

ic)
T NT

i

∗ −2NT
i + N̄i

∗ ∗

MT
i BjiKji

NT
i BjiKji

0







z̄pi(t)

yi(t)

Z̄j(t− τji(t))




+ λT
piB

T
λi

(M̄i + N̄i)−1Bλiλpi

On the other hand, the time derivative of Vi2 is equal to

V̇i2 = (yT
i (t)Siyi(t)− 1

h

∫ t

t−h
yT

i (s)Siyi(s)ds)

Therefore, V̇ can be written as

V̇i ≤ 1
h

∫ t

t−h
(ξT

i (t, s)Wikξi(t, s) + λT
piΦikλpi)ds (5.125)

where ξi(t, s) = [z̄T
pi(t) yT

i (t) ZT
j (t− τji(t)) yT

i (s)]T , Φi = BT
λi

(M̄−1
i + N̄−1

i )Bλi , and

Wik =




2MT
i Ak

ic + M̄i Pi −MT
i + (Ak

ic)
T NT

i −MT
i BjiKji 0

∗ −2NT
ik + N̄ik + Si −NT

i BjiKji 0

∗ ∗ 0 0

∗ ∗ ∗ −Si




(5.126)

Since Wik = W̄ik −Qi −KT
i RiKi, the following inequality holds for V̇i, namely

V̇i ≤ 1
h

∫ t

t−h
(ξT

i (t, s)(W̄ik −Qi −KT
i RiKi)ξi(t, s) + λT

piΦiλpi)ds

= −1
h

∫ t

t−h
[z̄T

pi(t)(Qi + KT
i RiKi)z̄pi(t) + λT

piΦiλpi]ds

= −z̄T
pi(t)(Qi + KT

i RiKi)z̄pi(t) + λT
piΦiλpi (5.127)

Therefore, for any z̄pi(t) that satisfies z̄T
pi(t)(Qi + KT

i RiKi)z̄pi(t) ≥ Φiλ
2
pi(t), we have

V̇i < 0. Therefore, according to the definition of the ultimate boundedness stability, the

system (5.113) is ultimately bounded and the ultimate bound is given by

‖z̄pi(t)‖2 ≥ Φi

λmin(Qi + KT
i RiKi)

λ2
pi(t) (5.128)
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Integrating both sides of (5.125) from 0 to ∞, one obtains the upper bound of the perfor-

mance cost function J as follows

Jpi < Vi(0)− Vi(∞) +
∫ ∞

0
λT

pi(t)Φiλpi(t)dt

< Vi(0)− Vi(∞) + Φi

∫ ∞

0
‖λpi(t)‖2dt

< Vi(0)− Vi(∞) + γiΦi

= ϕT
i (0)Piϕi(0) +

1
h

∫ 0

−h

∫ 0

θ
ϕ̇T

i (s)Siϕ̇i(s)dsdθ (5.129)

−z̄T
pi(∞)Piz̄pi(∞) + γiΦi

Therefore, the upper bound of the cost function Jpi is given by (since zpi(∞) ≥ 0)

Jpi < ϕT
i (0)Piϕi(0) +

1
h

∫ 0

−h

∫ 0

θ
ϕ̇T

i (s)Siϕ̇i(s)dsdθ + γiΦi = J∗pi (5.130)

Therefore, the closed-loop system performance is guaranteed to be less than the upper

bound, and the controller ūpi(t) = Kiz̄pi(t) is the guaranteed cost controller of the system

(5.113). This completes the proof of Lemma 5.5. ¥

Lemma 5.5 shows that the decentralized memoryless state feedback control law

ūpi = Kiz̄pi is a guaranteed cost controller for the switching time-delay system (5.113).

However, the matrix inequality (5.117) is not linear with respect to either the system

matrices Ak
i0 and Bi0, or the control gain Ki. Moreover, the inequality (5.117) contains

the control gains of the neighboring nodes Kj which are not available to the node i in

the decentralized control approach. Therefore, one needs to find a way to eliminate the

neighboring nodes’ parameters Kj and transform the bilinear matrix inequality into a

standard LMI condition so that the control parameters and the control gains can be

calculated and obtained easily.

Lemma 5.6. Given the cost function (5.115), if there exist symmetric positive definite

matrices P̃i, S̃i, positive matrices M̃i, Ñi, Q̃i, R̃i, ¯̄Mi
¯̄Ni, and matrices Xik, Yik, Ui, Ti,

Vi, for i = 1, ..., n, k = 1, 2, such that the following LMI condition is satisfied

Ω̄ik =




2(Xik + Ui) + ¯̄Mi + Q̃i + R̃i M̃i − P̃i + Yik −Vi

∗ −2Ñi + ¯̄Ni + S̄i −Ti

∗ ∗ 0




< 0
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then ūpi = Kiz̄pi is the guaranteed cost controller for the system (5.113) and the decen-

tralized gain is given by Ki = B+
i0UiM̃

−1
i .

Proof: Based on the matrix inequality W̄ik < 0 that is given in (5.117), one needs

to derive the state feedback control gain Ki, and the control parameters δi, βi, and gp
ji.

Note that the parameters δi, βi and gp
ji are included in the closed-loop system matrix Ak

i0

and Bji. Therefore, the objective is to solve the matrix inequality (5.117) so that one

obtains these system matrices as well as the Lyapunov function matrices Pi and Sli.

However, in order to solve W̄ik < 0, one needs to know the neighboring nodes’

control gains Kj , which is not available in the decentralized control approach. Therefore,

in addition to transforming the bilinear matrix inequality W̄ik < 0 into a standard LMI

through equivalent matrix operations, one also needs to find a way to eliminate the need

for the matrices Kj . To tackle this problem, we define the following matrices

M̃i = M−1
i P̃i = P−1

i

K̃ji = K+
ji Λi = diag{M̃i P̃i K̃ji 0}

where K+
ji is the Moore-Penrose generalized inverse [103] of the matrix Kji. By pre and

post multiplying the matrix W̄ik with ΛT
i and Λi, respectively, the following matrix Ωik is

then obtained

Ωik = ΛT
i W̄ikΛi =




Ω̄ik 0

0 0




where:

Ω̄ik =




M̃T
i YikM̃i M̃T

i − P̃i + M̃T
i (Ak

ic)
T NT

i P̃i −Bji

∗ −P̃ T
i (2NT

i + N̄T
i )P̃i + P̃ T

i S̄iP̃i −P̃ T
i NT

i Bji

∗ ∗ 0




Let us define
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Xik = Ak
i0M̃i Q̃i = M̃T

i QiM̃i

Yik = XT
ikN

T
i P̃i R̃i = M̃T

i KT
i RiKiM̃i

Ui = Bi0KiM̃i S̃i = P̃ T
i SiP̃i

Vi = Bji Ñi = P̃ T
i NT

i P̃i

Ti = P̃ T
i NT

i Bji
¯̄Mi = M̃T

i M̄iM̃i

¯̄Ni = P̃ T
I N̄iP̃i

Then the matrix Ω̄ik becomes

Ω̄ik =




2(Xik + Ui) + ¯̄Mi + Q̃i + R̃i M̃T
i − P̃i + Yik −Vi

∗ −2Ñi + ¯̄Ni + S̃i −Ti

∗ ∗ 0




Since Ωik < 0 ⇔ Ω̄ik < 0, then by solving the LMI condition Ω̄ik < 0, one can now

obtain the control gain Ki (without requiring Kj) as well as the system matrices and the

Lyapunov matrices as given below

Ki = B+
i0UiM̃

−1
i (5.131)

Pi = P̃−1 (5.132)

Si = P T
i S̄iPi (5.133)

Ak
i0 = XikM̃

−1 (5.134)

Bji = Vi (5.135)

This completes the proof of Lemma 5.6. ¥

Stability Analysis of the Premium Traffic

The stability conditions of the premium traffic flow as given in Lemma 5.6 under the decen-

tralized controller guarantee the ultimate boundedness of each node and the robustness

of the closed-loop performance with respect to the unknown multiple and time-varying

delays from its neighboring nodes.
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Stability Conditions Incorporating the Physical Constraints

The associated LMI conditions of the centralized congestion controller for the physical

constraints, as given in Section 5.1.2, are now extended to the decentralized control case.

The physical constraints of each node in the network and the corresponding LMI conditions

are listed below.

• Constraints of the states

The constraints of the states for node i incurred by the buffer size limitation are

given as

z̄min
pi ≤ z̄pi(t) ≤ z̄max

pi (5.136)

where z̄min
pi = −xref

pi and z̄max
pi = xbuffer

pi − xref
pi

Consider the following ellipsoid for a selected number εi > 0

Fi = {z̄pi(t)|z̄T
piP̃

−1
i z̄pi ≤ εi} (5.137)

By following the similar lines as those given previously in Section 4.1.2, and the

definition of non-negative system as given in Definition 5.1, the state constraints

for the node i will be satisfied if the matrix Xik in (5.131) satisfies the following

conditions:

Xik =




X1
ik X2

ik

X3
ik X4

ik




X1
i1 = X1

i2 = 0

X2
i1 = X2

i2 = 0

X3
i2 = 0

X3
i1 > 0 and is diagonal

X4
i1 = X4

i2 < 0 and is diagonal
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and the following LMI conditions hold

Ωc1i , γiΦi ≤ εi (5.138)

Ωc2i ,




P̃i P̃ T
i

P̃i ‖z̄max
pi ‖2/εi


 ≥ 0 (5.139)

Ωc3i , (Ui)ij ≥ 0 i, j = 1, ...2n (5.140)

where λpi is adopted from the transmission constraint of node i, which indicates the

maximum allowable external incoming traffic of the premium class.

• Constraints of the input

The input constraints of each node i can be defined as follows

0 ≤ ūpi(t) ≤ Cserver,i (5.141)

Following the similar lines as those given in Section 5.1.2 and considering the same

ellipsoid as defined in (5.137), the input constraint for node i can be modified to the

following LMI conditions

Ωc4i ,




I KT
i

Ki (C2
server,i/εi)P̃i


 ≥ 0

Ωc5i , (V −1
i )ij ≥ 0 (5.142)

Therefore, the above results, as well as the LMI conditions that are given in Lemma 5.6

can be summarized in the following theorem.

Theorem 5.3. A decentralized guaranteed cost congestion controller ūpi = Kiz̄pi for the

premium traffic dynamical queuing model (5.120) is obtained by satisfying the LMI condi-

tion given in Lemma 5.5 subject to the positive definite diagonal matrix M̃i, block matrix

Xik as defined in (5.138), and the LMI conditions Ωc1i, Ωc2i, Ωc3i, Ωc4i, and Ωc5i, for

i = 1, ...n and k = 1, 2, as given in (5.138) to (5.141), respectively.

Proof: Follows along the same line as those derivations in Lemma 5.5, Lemma 5.6,

and the LMI conditions for the physical constraints. ¥
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5.2.2 Ordinary Traffic Control Strategy

The decentralized ordinary traffic model (2.27) is rewritten here again

ẋri(t) = −f(xri(t))u1
ri(t) + u2

ri(t) +
n∑

j=1
j 6=i

f(xrj(t− τji(t)))u1
rj(t− τji)gji

r (t) (5.143)

Since the ordinary traffic has a less restrictive QoS requirements and lower priority than

the premium traffic, the control specifications and objectives for the ordinary traffic is

defined in terms of regulating the incoming traffic rate while monitoring the link capacity

that is leftover after its utilization by the premium traffic. In the next two subsections, we

will address the congestion control problems of the ordinary traffic through the dynamic

flow rate control and the bandwidth allocation control. The nonlinear system model is first

transformed into an equivalent system model through input-state feedback linearization

technique. A state feedback control law is then derived to obtain the transformed system

and guarantees the consequent closed-loop system’s performance cost with respect to the

unknown and time-varying delays. The stability conditions and the physical constraints

of the ordinary traffic are presented as a group of LMIs conditions.

For the above nonlinear system, we apply the feedback linearization technique by

introducing a new input signal and a state variable as follows:

zri(t) = xri(t)− xref
ri

uri(t) = F−1(xri, t)ūi(t)

F (xri(t)) =




f(xri(t)) 0

0 1




where uri(t) = vec{u1
ri(t), u

2
ri(t)} and ūri(t) = vec{ū1

ri(t), ū
2
ri(t)}. The above feedback

linearization controller implies that u1
ri = f−1(xri, t)ū1

ri and u2
ri = ū2

ri. Therefore, the

transformed linear system of (5.142) can be written as

żri(t) = Bi0ūri(t) +
n∑

j=1
j 6=i

Bj ūrj(t− τji(t)), i, j = 1, ..., n (5.144)

where Bi0 ∈ R1×2 and Bj ∈ R1×2 are the system matrices defined for node i. In fact,

Bi0 is equal to
[
−1 1

]
, and Bj denotes the compression rates between node i and its
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neighboring nodes and is actually equal to
[

gji
r 0

]
.

The proposed congestion control algorithm for the ordinary traffic is then recast as

that of designing the controller ūri(t) = Kizri(t) so that the following objective function

is upper bounded

Jri =
∫ ∞

0
(zT

ri(t)Qizri(t) + ūT
ri(t)Riūri(t))dt (5.145)

where Qi and Ri are given positive definite matrices.

By applying the state feedback controller ūri(t) = Kizri(t) to the ordinary traffic

dynamical queuing model (5.144), the corresponding closed-loop system is obtained as

żri(t) = Bi0Kizri(t) +
n∑

j=1
j 6=i

BjKjzrj(t− τji(t)), i, j = 1, ..., n (5.146)

Following along the similar lines as in the synthesis of the centralized congestion controller,

and as described in Section 5.2.3, the following lemma can be stated to show that the

decentralized controller ūri(t) = Kizri(t), with a selected control gain Ki, is the guaranteed

cost congestion controller for node i and the queuing errors of the premium traffic at each

node is guaranteed to be bounded.

Lemma 5.7. Given the cost function (5.144) and under Assumption 5.2, the state feedback

control law ūri(t) = Kizri(t) is the guaranteed cost controller for the system (5.144), with

the control gain Ki = B+
i0θi1M̃

−1
i , if there exist symmetric positive definite matrices P̃i, S̃i,

positive definite matrices M̃i, Ñi, S̃i, Q̃i, R̃i, and matrices θi1, θi2, θi3, θi4, for i = 1, ..., n,

such that the following LMI condition holds

Ω̄i =




2θi1 + Q̃i + R̃i M̃T
i − P̃i + θi2 −θi3

∗ −2Ñi + S̃i −θi4

∗ ∗ 0




< 0

Proof: The same Lyapunov-Krasovskii functional that is selected as before for the

stability analysis of the ordinary traffic dynamics is considered below

Vi = Vi1 + Vi2 (5.147)

Vi1 = zT
ri(t)Pizri(t)

Vi2 =
1
h

∫ 0

−h

∫ t

t+θ
yT

i (s)Siyi(s)dsdθ
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where Pi and Si are sympatric positive definite matrices, and

˙̄zri(t) = yi(t) (5.148)

yi(t) = Bi0zri(t) +
n∑

j=1
j 6=i

BjKjzrj(t)−
n∑

j=1
j 6=i

BjKj

∫ t

t−τji(t)
yj(s)ds

Therefore, the time derivative of V along with the trajectories of the system (5.144) is

given by

V̇i = V̇i1 + V̇i2

= 2zT
ri(t)Piyi(t) + yT

i (t)Siyi(t)− 1
h

∫ t

t−h
yT

i (s)Siyi(s)ds

= 2[zT
ri(t) yT

i (t)]




Pi MT
i

0 NT
i







yi(t)

żri(t)− yi(t)




+yT
i (t)Siyi(t)− 1

h

∫ t

t−h
yT

i (s)Siyi(s)ds

V̇i =




zT
ri(t)

yT
i (t)

ZT
rj(t− τji(t))




T 


2MT
i Bi0Ki Pi −MT

i + KT
i BT

i0N
T
i MT

i BjiKji

∗ −2NT
i NT

i BjiKji

∗ ∗ 0







zri(t)

yi(t)

Zrj(t− τji(t))




+yT
i (t)Siyi(t)− 1

h

∫ t

t−h
yT

i (s)Siyi(s)ds

where Mi and Ni are symmetric positive definite matrices, and Zrj(t− τji(t)) is a vector

that consists of the states of the nodes in the neighboring set of node i, with corresponding

time-varying delays. The matrices Bji and Kji as well as the vector Zrj(t − τji(t)) are

defined as follows:

Bji = vec{Bj}

Kji = diag{Kj}

Zrj(t− τji(t)) = vec{zj(t− τji(t))}

In view of the above definitions, the derivative of the Lyapunov function Vi can be ex-

pressed according to

V̇i ≤ 1
h

∫ t

t−h
(ξT

ri(t, s)Wiξri(t, s)ds (5.149)
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where ξri(t, s) = [zT
ri(t) yT

i (t) ZT
rj(t− τji(t)) yT

i (s)]T and the matrix Wi is given as

Wi =




2MT
i Bi0Ki Pi −MT

i + KT
i BT

i0N
T
i −MT

i BjiKji 0

∗ −2NT
i + Si −NT

i BjiKji 0

∗ ∗ 0 0

∗ ∗ ∗ −Si




(5.150)

Let us define the following matrices

M̃i = M−1
i P̃i = P−1

i

K̃ji = K+
ji Λi = diag{M̃T

i P̃ T
i K̃ji 0}

By pre and post multiplying the matrix Wi with ΛT and Λ, we have

Ωi = ΛT WiΛ =




Ψi 0

0 0




Ψi =




2Bi0M̃i M̃T
i − P̃i + M̃T

i KT
i BT

i0N
T
i P̃i −Bji

∗ −2P̃ T
i NT

i P̃i + P̃iSiP̃i −P̃ T
i NT

i Bji

∗ ∗ 0




Comparing the matrices Ψi and Ω̄i, one can note that Ψi = Ω̄i − (Qi + KT
i RiKi) if the

following matrices are defined

θi1 = 2Bi0KiM̃i Ñi = P̃ T
i NT

i P̃i

θi2 = M̃T
i KT

i BT
i0N

T
i P̃i S̃i = P̃iSiP̃i

θi3 = Bji

θi4 = P̃ T
i NT

i θi3

Since Qi and Ri are positive definite matrices, hence if the LMI condition Ωi < 0 as given

in (5.146) is satisfied, we will have

Ψi < 0

⇒ Ωi < 0

⇒ Wi < 0

⇒ V̇i < 0
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That is, the dynamical system (5.144) is asymptotically stable. Now, notice that Wi <

Wi + (Qi + KT
i RiKi), from the equation (5.149) one can obtain

V̇ <
1
h

∫ t

t−h
(ξT

ri(t, s)(W̄i −Qi −KT
i RiKi)ξri(t, s)ds (5.151)

where the matrix W̄i is defined as W̄i = Wi + (Qi + KT
i RiKi). Consequently, we have:

V̇ < −zTri(t)(Qi + KT
i RiKi)zri(t) (5.152)

Integrating both sides of (5.152) from 0 to ∞, one obtains

Jri < Vi(0)− Vi(∞) = Vi(0)

= ϕT
ri(0)Piϕri(0) +

1
h

∫ 0

−h

∫ 0

θ
ϕ̇T

i (s)Siϕ̇i(s)dsdθ = J∗ri

Therefore, the closed-loop system performance is guaranteed to be less than the upper

bound, and the controller ūri(t) = Kizri(t) is the guaranteed cost controller of the system

(5.144). This completes the proof of Lemma 5.7. ¥

Stability Analysis of the Ordinary Traffic

The physical constraints of the ordinary traffic dynamics are listed below

zmin
ri ≤ zr(t) ≤ zmax

ri (5.153)

0 ≤ ūri(t) ≤ cri(t) (5.154)

where zmaz
ri = xbuffer

ri − xref
ri , zmin

ri = −xref
ri , xref

ri is the reference set point of the queuing

length, cri(t) is the maximum allowable bandwidth that can be allocated to the premium

traffic at node i, which in fact is equal to the instantaneous leftover capacity from the

premium traffic, that is cri(t) = Cserver,i − ūpi(t).

To avoid any confusion, in the remainder of this section we utilize the notations of

P̃ p
i and P̃ r

i to denote the matrix P̃ that is used in Lemma 5.6 for the premium traffic,

and the other matrix P̃ that is used in Lemma 5.7 for the ordinary traffic, respectively.

Also, we denote Kr
i and Kp

i for the control gains of the premium and the ordinary traffic,

respectively.

Consider the following ellipsoid

239



Si = {zT
ri(P̃

r
i )−1zri < ρi} (5.155)

where Yi = P̃i and ρi > 0 is selected as a constant.

It follows that similar lines as in deriving the LMI conditions for the physical con-

straints in the centralized control approach, and as given previously in Section 5.1.2, the

physical constraints in (5.153) will be satisfied if the following LMI conditions are satisfied:

Ωc1i ,




M̃i M̃T
i

M̃i (zmax
ri )2/ρi


 ≥ 0 (5.156)

Ωc2i , (θi1)ij ≥ 0, i, j = 1, ...2n (5.157)

Ωc3i , γiΦi ≤ εi (5.158)

Ωc4i ,




I Kr
i Kp

i

(Kr
i )T C2

server,i

εi+ρi
P̃ r

i 0

(Kp
i )T 0

C2
server,i

εi+ρi
P̃ p

i



≥ 0 (5.159)

Ωc5i , (θ−1
i3 )ij > 0, i, j = 1, ..., 2n (5.160)

The following theorem can now be obtained

Theorem 5.4. A decentralized guaranteed cost congestion controller for the dynamical

queuing system of the ordinary traffic in each node i is obtained, if the conditions given in

Lemma (5.7) are satisfied, subject to the LMIs of Ωc1i to Ωc5i as governed by (5.156) to

(5.160), respectively.

Proof: The proof follows along the same lines as those given in Lemma 5.7 and the

derivations for the physical constraints as given in this section ¥

The decentralized congestion control strategies of the premium and the ordinary

traffic classes derived in this section are summarized by the flow chart that is shown in Fig.

5.1. As shown in Fig. 5.1, the decentralized premium traffic controller first solves the local

LMI conditions Ωik and Ωc1i to Ωci6 of each node to derive the decentralized control gains

Kpi, and the decentralized adaptive control gains δpi and βpi. The adaptive estimator λ̂pi(t)
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Figure 5.2: The flow chart of the decentralized guaranteed cost congestion controller (GCC) for
the Diff-Serv network with fixed topology

is then updated based on the queuing state of each node, and the bandwidth controller

Cpi(t) is calculated according to the following

Cpi(t) = f−1(xpi, t)ū|pi(t)

= f−1(xpi, t)Kpi(t)z̄pi(t)

= f−1(xpi, t)Kpi(t)




xpi(t)− xref
pi

λ̂pi(t)


 (5.161)

where f(xpi(t)) = µ
xpi(t)

1+xpi(t)
, and xpi(t) is the queuing length of node i.

The bandwidth of the premium traffic is allocated at each node. Given the premium

traffic control gain Kpi and the leftover capacity Cserver,i − Cpi(t), the decentralized con-

troller of the ordinary traffic at each node first solves the corresponding LMI conditions as

given by the Lemma 5.7 and the LMI conditions for the physical constraints. Therefore,

the decentralized control gain Kri for the ordinary traffic can be obtained. The bandwidth
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Figure 5.3: The Diff-Serv network consisting of three clusters and 15 nodes.

controller Cri(t) and the flow rate controller λri(t) can then be calculated as shown below



Cri(t)

λri(t)


 = F−1(xri, t)ūri(t)

=




f−1(xri, t) 0

0 1


Krizri(t)

=




f−1(xri, t) 0

0 1


Kri(xri(t)− xref

ri ) (5.162)

where xri(t) is the queuing length of the ordinary traffic at node i.

5.3 Simulation Results

In this section, we conduct a detailed simulation-based study to evaluate the performance

of our proposed guaranteed cost congestion control strategy (GCC). In order to compare

our proposed GCC algorithms with a state-of-the-art congestion control scheme in the

control community, namely the IDCC approach [3], whose performance has been presented

in Chapter 3, we adopt the same network model and the traffic configuration as applied

in Section 3.3.2. The simulation network is shown in Fig. 5.3.
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In the simulation results presented below, the physical constraints of the network are

set to xbuffer,i = 5 Mbits, Cserver,i = 10 Mbits, for i = 1, ..., 15. For the simulation studies

we generate the Differentiated Services (Diff-Serv) traffic by the event-based simulator tool

QualNet [133] and apply it then to the above network. The premium and the ordinary

traffic are generated by the sources nodes that are dynamic. Each source node generates

a premium random traffic with a mean packet size of 512 bytes and pace the packets

into the network every 10 ms. The premium traffic is assumed to be bounded such that

λmax
pi = 0.8 Mbps. The source nodes also generate an ordinary traffic by pacing packets

into the network according to a on-off mechanism. During the off-time period, no packets

are generated. The length of the off-time is determined by an exponential distribution

with a mean period of 5 ms. During the on-time, the source nodes generate packets with

a constant rate of 100 packets/s with a mean packet size of 512 bytes.

In the remainder of this section we first present the queuing performance of the

bottle neck nodes by utilizing our proposed centralized and decentralized GCC strategies.

The simulation results are then compared with the corresponding IDCC approach, which

was also derived based on the fluid flow model. Moreover, the stability of the network and

the tracking errors of the premium and the ordinary traffic under different delay bounds

are investigated. Finally, a comparative analysis of the centralized and the decentralized

GCC approaches are presented. A numerical comparison on the packet loss rate, the

average queuing delay, and the amount of the guaranteed cost J∗ are also summarized.

As stated earlier, by utilizing the guaranteed cost congestion strategy, one need not

to regulate the traffic compression rates for the stability purpose. Therefore, a higher

traffic compression gains (less packet drop out) can be achieved when compared with

the switching congestion control strategy (presented in Chapter 3). In this section, the

performance of GCC strategy with high traffic compression gains are first illustrated. The

comparative studies of GCC and SCC strategies with a lower traffic compression gains (as

the average compression gains obtained in Chapter 3) are then presented and analyzed.
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5.3.1 Simulation Results Using the Proposed Centralized

GCC Strategy

Based on the above simulation model and the traffic configuration, we first present the

simulation results by utilizing the centralized GCC strategy. The traffic compression

gains among the nodes are set to gji = 0.9, for i, j = 1, ..., 15. The time delays among

the nodes are taken as a random signal varying from 0 ms to 20 ms. That is τ =

min{0,max{hmax, h}}, where hmax = 20 ms is the maximum bound of delay in the

network, h ∼ N(15ms, 10ms) is a normal distributed function with the mean value of 15

ms and the standard derivation of 10 ms. The control parameters of the three bottle neck

nodes derived from Theorem 5.1 and Theorem 5.2 are given as follows

Kp =




4680 0.53 0 0 0 0

0 0 3610 0.10 0 0

0 0 0 0 2780 0.43




(5.163)

Kr =




4730 3.1× 103 0 0 0 0

0 0 6150 1.5× 103 0 0

0 0 0 0 2200 0.7× 103




T

(5.164)

Remark 5.7. Although by utilizing the GCC strategy there is no limitation for the traf-

fic compression gains gji. However, during the tasks of a NMAS traffic compression is

essential for the network operations. Usually, processing data consumes much less power

than transmitting data in communication medium, so it is effective to apply compression

before transmitting data for reducing the total power consumption and extend the life time

of the network. Therefore, the traffic compression gains are still applied to each node in

this chapter. The traffic compression gains are assigned by network operator according to

the other network requirements such as data processing and power consumption.

Remark 5.8. Different settings of gji yield different LMIs in Lemma 5.1 - Lemma 5.4

and hence result in different control gains Kp and Kr. On the other hand, the traffic

compression gains among different nodes need not to be equal. In this section, the traffic
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Figure 5.4: Premium queuing lengths (bits) by
utilizing the centralized GCC approach. The
solid lines denote the set point references and the
dashed lines denote the actual queuing lengths.
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Figure 5.5: Ordinary queuing lengths (bits) by
utilizing the centralized GCC approach. The
solid lines denote the set point references and the
dashed lines denote the actual queuing lengths.

compression gains are set to be the same and equal to 0.9, while in the next section different

values of gji are considered and the performance of our proposed GCC strategy is then

evaluated.

The queuing performance of the three bottle neck nodes are now shown in Fig. 5.4

to Fig. 5.5, for the premium and the ordinary traffic, respectively. By inspecting the plots

presented in these figures, one may conclude that for both traffic classes our proposed

centralized guaranteed cost congestion control strategy can stabilize the buffer queues.

Furthermore, as presented in Theorem 5.1, the GCC control strategy can only guar-

antee the ultimate boundedness of the premium traffic due to the unknown nature of the

external incoming traffic λp(t). On the contrary, for the ordinary traffic class, since both

the bandwidth and the incoming traffic are available for control, the GCC control strategy

can guarantee the asymptotically stability of the ordinary traffic by satisfying the LMI con-

ditions in Theorem 5.2. As one can observe from the queuing performance of the premium

and the ordinary traffic shown in Fig. 5.4 and Fig. 5.5, respectively, the above theoretical

results are also validated by the simulations. Moreover, the mean percentage errors of the

three bottle neck nodes under different values of maximum delays hmax = [20 40 80] ms

245



Table 5.1: The queuing errors for both the traffic classes by utilizing the centralized GCC strategy
with different delay levels.

hmax 20 ms 40 ms 80 ms
Centralized GCC P O P O P O

Node 1 1.97% 0.07% 2.08% 0.08% 3.01% 0.10%
Node 2 4.47% 0.16% 5.30% 0.16% 5.30% 0.21%
Node 3 3.25% 0.41% 3.45% 0.42% 3.84% 0.43%

are summarized in the Table 5.1. As seen from the results in Table 5.1, our proposed GCC

strategy stabilize both the traffic classes and the buffer queue performance remain robust

to the multiple and time-varying delays up to 80 ms amplitude.

5.3.2 Simulation Results Using the Proposed Decentralized

GCC Strategy

In order to evaluate in simulation our proposed guaranteed cost congestion control (GCC)

strategy and compare its performance with respect to the IDCC [3] approach, we adopt

the same network configuration as the one that was used in Chapter 3 and given in Fig.

5.3.

Our proposed decentralized GCC strategy is now evaluated in presence of multiple

time-varying delays selected randomly with a maximum upper bound of h = 20 ms. In

simulations presented below, the sampling time is set to Ts = 1 ms and the control

parameters that are generated from the LMI conditions in Theorem 5.3 and Theorem 5.4

are Kp1 = [1730 1.35], Kp2 = [7300 3.74], Kp3 = [2630 2.65], Kr1 = [1.41 × 104 1.53 ×
103]T , Kr2 = [3.22× 104 2.31× 103]T ,Kr3 = [7.14× 104 5.32× 103]T .

The physical constraints of the network are selected as follows. The server capacity

of each node is Cserver,i = 10 Mbps and the buffer size for each traffic class at each node

is set to xbuffer,i = 5 Mbits. The traffic compression gains among each node are set to

gij = 0.9 for i = 1, 2, 3 and gij = 0.7 for i = 4, ..., 15. The simulation results are presented

in Fig. 5.6 to Fig. 5.7.
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Figure 5.6: Premium queuing lengths (bits) by
utilizing our proposed decentralized GCC ap-
proach. The solid lines denote the set point ref-
erences and the dashed lines denote the actual
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Figure 5.7: Ordinary queuing lengths (bits) by
utilizing our proposed decentralized GCC ap-
proach. The solid lines denote the set point ref-
erences and the dashed lines denote the actual
queuing lengths.

Table 5.2: The queuing errors for both the traffic classes by utilizing the decentralized GCC
strategy with different delay levels.

hmax 20 ms 40 ms 80 ms
Decentralized GCC P O P O P O

Node 1 3.52% 0.84% 3.91% 1.11% 4.13% 1.62%
Node 2 3.56% 0.83% 3.74% 0.93% 3.98% 1.85%
Node 3 2.77% 0.58% 2.90% 0.62% 3.87% 1.14%

Fig. 5.6 and Fig. 5.7 show the buffer queue responses of both traffic classes at each

sink node by using our proposed decentralized guaranteed cost congestion controller. By

inspecting these results one can conclude that for both services our proposed decentralized

GCC strategy stabilizes the network despite the presence of multiple and time-varying

delays and a dynamic incoming traffic. When one compares the above results to that of the

decentralized IDCC approach, as presented in Section 3.3.2, it follows that the performance

of the network is significantly improved by utilizing our proposed GCC approach.

Table 5.2 summarizes the mean percentage errors of the three bottle neck nodes

under different values of the maximum delay in the network. By inspecting these numerical
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results, one can conclude that our proposed decentralized GCC strategy can stabilize the

buffer queues despite the presence of multiple and time-varying delays even for values of

delay up to 80 ms. Furthermore, if one compares the results in Table 5.2 with that under

the centralized GCC strategy (Table 5.1), one can also conclude that the centralized GCC

algorithm can obtain a better control performance in terms of the queuing errors.

5.3.3 Comparisons of the GCC and the SCC Strategies

It is worth noting that in the GCC approach, one does not require to regulate the traffic

compression gains to ensure stability. Therefore, a higher traffic compression gains can

be obtained. This is due to the fact that in the SCC approach one needs to regulate

the traffic compression gains gji when the control input reaches its physical bounds to

guarantee that the system remains stable. As presented in Sections 5.3.1 and 5.3.2, the

traffic compression gains in the GCC strategy can be set up to as high as 0.9. On the

other hand, the average traffic compression gains in the decentralized SCC approach, as

obtained in Section 3.3.2, are as follows

Ḡp =




0 ḡp
21 ḡp

31

ḡp
12 0 ḡp

32

ḡp
13 ḡp

23 0




=




0 0.48 0.50

0.70 0 0.50

0 0.50 0




(5.165)

Ḡr =




0 ḡr
21 ḡr

31

ḡr
12 0 ḡr

32

ḡr
13 ḡr

23 0




=




0 0.50 0.50

0.50 0 0.50

0 0.30 0




(5.166)

It follows from equations (5.165) and (5.166) that the traffic compression gain that can

be achieved in the decentralized SCC approach is about 0.5. In order to evaluate our

proposed GCC and SCC approaches fairly, the following two cases are presented for the

comparative studies.

Case 1: Decentralized GCC vs Decentralized SCC
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Table 5.3: Packet loss rate by utilizing the decen-
tralized IDCC, SCC, and GCC approaches with
hmax = 40 ms.

Premium IDCC [3] SCC GCC
Node 1 92.96% 0 0
Node 2 93.86% 0 0
Node 3 93.27% 0 0

Ordinary IDCC [3] SCC GCC
Node1 87.93% 5.66% 0.52%
Node 2 96.08% 4.65% 0.99%
Node 3 96.13% 2.34% 0.91%

Table 5.4: Average queuing delay by utilizing the
decentralized IDCC, SCC, and GCC approaches
with hmax = 40 ms.

Premium IDCC [3] SCC GCC
Node 1 ∞ 48.8 ms 41.5 ms
Node 2 ∞ 44.9 ms 37.4 ms
Node 3 ∞ 22.5 ms 20.9 ms

Ordinary IDCC [3] SCC GCC
Node 1 ∞ 67.8 ms 57.28 ms
Node 2 ∞ 138.1 ms 46.28 ms
Node 3 ∞ 178.5 ms 23.36 ms

In this section, the performance of our proposed decentralized GCC strategy is

compared with the decentralized SCC (as presented in Chapter 3) by using the same com-

pression gains that are given in equations (5.165) and (5.166). The network configurations

are the same as shown in Fig. 5.3. The time-delay among the nodes is generated as a

random signal using a Gaussian distribution with mean value of 20 ms and the maximum

bound of hmax = 40 ms. The physical constraints of the network are selected as follows.

The server capacity of the nodes are set to Cserver,1 = 20 Mbps, Cserver,2 = 10 Mbps,

Cserver,3 = 5 Mbps, and Cserver,i = 100 Mbps for i = 4, ..., 15. The buffer size for each

traffic class at each node is set to xbuffer,i = 5 Mbits.

Based on the above configurations, the comparative results obtained in Table 3.1

and Table 3.2 of Chapter 3 can now be extended to Table 5.3 and Table 5.4. It follows from

the comparative results that the buffer queue performance by utilizing either the proposed

SCC or the GCC strategies are greatly improved when compared with the IDCC [3].

Moreover, as shown in Table 5.3, the packet loss rate (PLR) of the ordinary traffic

has been greatly improved by using our proposed GCC strategy. One possible reason is

that in the GCC approach, by taking the incoming traffic λri(t) as an additional control

input, the regulation is accomplished more readily with this extra degree of freedom and

higher level of ordinary traffic flow is allowed into the network. Hence, less packets are

dropped out during the flow rate regulation. On the other hand, as shown in Table 5.4,

the average queuing delay of both traffic class by using the SCC and GCC approaches are
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Table 5.5: Packet loss rate by utilizing the cen-
tralized IDCC, SCC, and GCC approaches with
hmax = 40 ms.

Premium IDCC [3] SCC GCC
Node 1 84.63% 0 0
Node 2 83.23% 0 0
Node 3 88.70% 0 0

Ordinary IDCC [3] SCC GCC
Node 1 38.34% 1.61% 0.23%
Node 2 62.95% 0.94% 0.19%
Node 3 73.68% 1.43% 0.78%

Table 5.6: Average queuing delay by utilizing
the centralized IDCC, SCC, and GCC approaches
with hmax = 40 ms.

Premium IDCC [3] SCC GCC
Node 1 ∞ 45.3 ms 34.5 ms
Node 2 ∞ 43.7 ms 27.4 ms
Node 3 ∞ 21.4 ms 20.6 ms

Ordinary IDCC [3] SCC GCC
Node 1 ∞ 57.1 ms 53.6 ms
Node 2 ∞ 116.6 ms 44.5 ms
Node 3 ∞ 132.8 ms 22.7 ms

similar.

Case 2: Centralized GCC vs Centralized SCC

In this section, the performance of our proposed centralized GCC strategy is com-

pared with the centralized SCC (as presented in Chapter 3) by using the same compression

gains as follows

Ḡp =




0 0.23 0.31

0.42 0 0.21

0 0.30 0




Ḡr =




0 0.41 0.25

0.52 0 0.12

0 0.28 0




The network configurations are the same as shown in Fig. 5.3. The time-delay among

the nodes are set to be the same as in Case 1. Based on the above configurations, the

comparative results in the buffer queues are now summarized in Table 5.5 and Table 5.6.

By inspecting the numerical results in Table 5.5 and Table 5.6, one can conclude that

the performance of the network has been greatly improved by utilizing our proposed SCC

and GCC strategies when compared to the IDCC. On the other hand, by considering the

traffic rate as the control input the packet loss rate of the ordinary traffic has also been

improved in the centralized GCC.
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5.3.4 Comparisons of the Proposed Decentralized GCC and

the Centralized GCC Strategies

As mentioned earlier, the centralized and the decentralized control approaches both have

distinct advantages as well as drawbacks. A centralized congestion control does yield an

optimal and an accurate result since it makes use of the full information of the entire

network. However, as the number of nodes in a network increases, there would be a

significant increase of the traffic load onto the network. It would be very difficult to

implement a centralized congestion control algorithm for a large scale traffic network

which requires one to solve a set of LMIs with a significantly large dimensions.

In this section, comparative results and numerical analysis of our proposed decen-

tralized and centralized guaranteed cost congestion control (GCC) strategies are presented

based on the simulation results that are presented in the previous two subsections. The

performances of these two strategies are compared on two aspects:

• Quality of service (QoS): encompassing metrics such as packet loss rate and average

queuing delay, and

• Quality of control (QoC): encompassing metrics such as mean queuing error, settling

time, and the upper bound of cost.

The number of LMIs that need to be solved and the maximum dimension of the LMIs are

also considered as a measure of feasibility and scalability for these two congestion control

algorithms.

Based on the same network scenarios and simulation results as presented in the

previous two subsections, the performance of the buffer characteristics of node 3 for the

premium and the ordinary traffic services in presence of the time-delay of 80 ms upper

bound are summarized in Table 5.7 and Table 5.8, respectively. The definitions of the

packet loss rate (PLR) and the average queuing delay are given in Section 3.3.1. The

settling time is defined as the time t when the queuing error has decreased to less than

2% and has remained to less than 5% for the duration of the remaining simulation of its

steady state value.
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The last item in Table 5.7 and Table 5.8 are the upper bound of the cost. It should

be noted that in order to compare the cost of the decentralized and the centralized GCC

strategies fairly, one needs to apply the same cost function J . Recall the decentralized

and the centralized cost functions:

Jdecen
i =

∫ ∞

t=0
(zT

i (t)Rizi(t) + uT
i (t)Qiui(t))dt (5.167)

Jcen =
∫ ∞

t=0
(zT (t)Rz(t) + uT (t)Qu(t))dt (5.168)

Now, let us set the quadratic matrices R and Q in equation (5.167) to be diagonal positive

definite matrices, and set the decentralized quadratic matrices Ri and Qi equals to the

the corresponding diagonal elements in R and Q. The cost function for the entire network

in the decentralized GCC can then be written as follows:

Jdecen
total =

n∑

i=1

Jdecen
i

=
∫ ∞

t=0
(zT (t)Rz(t) + uT (t)Qu(t))dt = Jcen

Therefore, the total cost function for the entire network is the same and we can now

compare the value of the guaranteed cost fairly. According to (5.39), the upper bound of

the cost for the premium traffic by utilizing the centralized GCC approach is given by

J∗p = ϕT (0)Pϕ(0) +
m∑

l=1

1
h

∫ 0

−h

∫ 0

θ
ϕ̇T (s)Slϕ̇(s)dsdθ + γλmax(Φ)

where ϕ(t) is a continuous time function defined in [−h, 0] representing the initial value

of the time-delay system. We assume that ϕ̇(t) = 0 for t ∈ [−h, 0], so that J∗p becomes

J∗p = ϕT (0)Pϕ(0) + γλmax(Φ) (5.169)

where Φ = Bλ(M̄+N̄)−1Bλ, and the matrices P , M̄ , and N̄ are derived from Theorem 5.1.

Note that γ is the bound of the integral of incoming traffic that satisfy the Assumption

5.1, by setting γ = 2.0 × 1014 we can calculate the value of J∗p . Similar definitions and

assumptions are applied to the ordinary traffic. The upper bound of the guaranteed cost

J∗r by utilizing the centralized and the decentralized GCC approach are given in Table.

5.8.
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Table 5.7: The premium traffic performance of the node 3 with hmax = 80 ms, by utilizing the
decentralized GCC and the centralized GCC approaches.

hmax = 80 ms Decentralized GCC Centralized GCC

QoS
PLR 0 0
Queuing Delay 26.0 ms 24.5 ms

QoC
Mean Error 3.38% 2.87%
Settling Time 0.09s 0.11s
Max cost J∗p 5.05× 1020 2.94× 1020

Feasibility
Num of LMIs 21 8
Max dimension of LMIs 10× 10 18× 18

As can be inspected from the comparison results the centralized GCC approach can

achieve a better QoS performance than the decentralized GCC. For the QoC, the central-

ized GCC can achieve a more accurate tracking in the queuing error with a smaller cost

J∗ when compared to the decentralized strategy. On the contrary, since the decentral-

ized control approach only has access to the local state information, more control effort is

needed to stabilize the buffer queues.

However, in the centralized GCC strategy, one needs to solve LMIs with higher

dimensions. As the number of nodes increase in the network, it will become difficult

or computationally challenging to find a feasible solution to the high dimensional LMI

conditions. Actually, for a network with n node, the centralized GCC needs to deal with

one 6n× 6n, one 4n× 4n, four 3n× 3n, two 2n× 2n, two 2n× n, and one n× n matrices

obtained such that the LMI conditions in Theorem 5.1 and Theorem 5.2 are satisfied.

On the other hand, the decentralized controllers can be constructed locally at in-

dividual nodes and only need access to the local information. Therefore, a decentralized

control approach is more preferable for practical purposes and implementation. Further-

more, by utilizing our proposed decentralized congestion control strategies for each node,

there are two matrices with a dimension of 5 × (m + 3), n matrices with dimension of

(2m + 2) × (2m + 2), three matrices of 2 × 2 dimension, one matrix of 3 × 3 dimension,

and one matrix of 2×m dimension, where m is the number of neighboring nodes of node

i. If the network is fully connected, m = n − 1. Therefore, although the number of the
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Table 5.8: The ordinary traffic performance of the node 3 with hmax = 80 ms, by utilizing the
decentralized GCC and the centralized GCC approaches.

hmax = 80 ms Decentralized GCC Centralized GCC

QoS
PLR 0.98% 0.36%
Queuing Delay 23.55 ms 23.14 ms

QoC
Mean Error 0.68% 0.43%
Settling Time 0.09s 0.24s
Max cost J∗r 3.01× 1020 1.45× 1020

Feasibility
Num of LMIs 18 7
Max dimension of LMIs 7× 7 18× 18

required matrices in the decentralized control scheme is higher than the centralized con-

troller method, given that the dimensions of the corresponding matrices are lower than the

centralized case, a solution to the decentralized scheme can be obtained by LMI technique

much faster and more efficiently.

Based on the above observations, one can draw a conclusion that for a small scale

network the complexity of the LMI conditions for the centralized GCC approach is close

to the decentralized one, hence a centralized congestion controller is desired due to its

higher accuracy. However, for large scale networks the decentralized congestion controller

is preferred due to its preferred feasibility, practical and implementation considerations.

5.4 Conclusions

In this chapter, the Diff-Serv networks with fixed topology is considered. A novel guaran-

teed cost congestion control (GCC) strategy is developed for the premium and the ordinary

traffic, respectively. By employing the guaranteed cost control scheme, the dynamic queu-

ing systems of the network are stabilized and the robustness of the closed-loop systems

with respect to the multiple and time-varying delays are guaranteed. The physical con-

straints of the network are guaranteed by satisfying extra LMI conditions. Comparative

analysis shows that the GCC algorithm is less conservative than the SCC approach on

the aspect of packet loss rate. Simulation results and numerical comparisons do illustrate
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that the performances of the network has been greatly improved by applying our proposed

GCC algorithms when compared to the other available methods in the literature.

Furthermore, comparative analysis is performed between the centralized and the

decentralized congestion control strategies as developed in Chapters 3-5. One can con-

clude that each of these two schemes has their distinguished advantages and unavoidable

disadvantages. However, since the decentralized controller is implemented at each node,

therefore it is scalable to large scale networks and is more robust to the changes of the

network topology. Therefore, the decentralized control scheme is selected for the guaran-

teed cost congestion control problem of mobile Diff-Serv networks that is investigated in

the next chapter.
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Chapter 6

Guaranteed Cost Congestion

Control of Mobile Diff-Serv

Networks

The aim of this chapter is to extend the guaranteed cost congestion controller (GCC),

as discussed in Chapter 5, to the mobile Diff-Serv networks. As presented before, the

mobility of nodes will change the neighboring set of each node in the network, and thus

results in a changing network topology. The changes of the network topology can be

modeled by a Markov chain αt, and the queuing dynamics of the mobile network becomes

a nonlinear time-delay system with Markovian jump parameters. Based on the dynamic

queuing models of the mobile network that are given in Chapter 2, a jump quadratic

cost function is defined in this chapter and a Markovian jump guaranteed cost congestion

control (MJ-GCC) strategy is developed for the premium and the ordinary traffic of the

mobile networks. By solving the corresponding LMI conditions, the stability of the system

is guaranteed with a bounded performance cost. The physical constraints of the mobile

network are considered and transformed into a group of complementary LMI conditions.

The remainder of this chapter is organized as follows. In Section 6.1, a brief in-

troduction to guaranteed cost control of the Markovian jump linear systems (MJLS) is
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provided and the definitions for the stochastic guaranteed cost is given. In Section 6.2, a

decentralized guaranteed cost congestion controller is developed for the mobile Diff-Serv

network based on a jump quadratic cost function and the stochastic control theory. In

Section 6.3, simulation results are shown to evaluate our proposed MJ-GCC strategies.

The conclusions are given in Section 6.4.

6.1 Guaranteed Cost Control of Markovian Jump

Linear Systems with Time-Delay

In practice, a large number of dynamical systems have variable structures that are subject

to random abrupt changes. This may be due to random failures and repairs of the com-

ponents, changes in the interconnections of the subsystems, sudden environment changes,

modifications of the operating points of a linearized model of a nonlinear system, etc. The

hybrid systems, which involve both time-evolving and event-driven mechanisms may be

employed to model these systems. A Markovian Jump Liner system (MJLS) is a hybrid

system with multiple operating modes. Every mode corresponds to a deterministic dy-

namics. The switching system mode is governed by a Markov process. When the mode is

fixed, the system state evolves according to a corresponding deterministic dynamics.

Control of MJLS with time-delays has been a research subject that has attracted a

lot of interest during the past decade and has been extensively studied by many authors

[119], [154], [155]. The guaranteed cost control (GCC) of uncertain systems was first put

forward by the authors in [116] and has been studied by a number of researchers, which

is to design a controller that robustly stabilizes the uncertain system and guarantees that

the cost function has an upper bound. Recently the guaranteed cost control of Markovian

jump linear systems (MJLS) with time-delays has also attracted great interest as seen

from the works [156], [157], [158], [159], [139], [160].

Consider the following MJLS with time-delay:

ẋ(t) = A(αt)x(t) + Ad(αt)x(t− τ(t)) + B(αt)u(t) + Bw(αt)w(t) (6.1)

x(t) = φ(t), t ∈ [−h, 0]
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where x(t) is the system state, u(t) is the input signal, w(t) is the disturbance, τ(t) is the

unknown time-varying delay, h is the upper bound of the delay which is known, A(αt),

Ad(αt), B(αt) and Bw(αt) are the system matrices that depend on the mode αt, and αt is

the Markov chain that represents the changes of the system or in our application network

topology.

The transition probability between different modes αt is determined by the following

function:

P [αt+δ = k | αt = l] =





πkl∆ + o(∆), k 6= l;

1 + πkk∆ + o(∆), k = l.
(6.2)

where πkl ≥ 0 is the transition rate from mode k to mode l, πkk = −
M∑

l=1,l 6=k

πkl, and o(∆)

is a function satisfying lim
∆→0

o(∆)
∆ = 0.

The guaranteed cost control (GCC) of the Markovian jump linear system is an ex-

tension of the GCC problem of the deterministic system, with the following jump quadratic

cost function:

J = E{
∫ ∞

0
[xT (t)Q(αt)x(t) + uT (t)R(αt)u(t)]dt} (6.3)

where x(t) is the state of the system, u(t) is the acclimated input, Q(αt) and R(αt) are the

positive definite matrices, αt is a finite state Markovian process representing the system

mode, and αt takes discrete values in a given finite set S = {1, ..., M}.
Therefore, the guaranteed cost control problem of the MJLS (6.1) is to select the

state feedback controller u(t) = K(αt)x(t), for each mode, such that the Markovian jump

time-delay system (6.1) is stable and the jump quadratic cost function (6.3) is bounded

by a scalar J∗. The definitions corresponding to the stochastic stability are now presented

as follows:

Definition 6.1. [135]: The Markovian jump time-delay system (6.1) with u(t) ≡ 0 and

w(t) ≡ 0 is said to be stochastically stable if there exists a constant T (φ(.), r0) such that

the following holds for any initial condition (φ(.), r0):

E[
∫ ∞

0
‖x(t)‖2dt | φ(.), r0] ≤ T (φ(.), r0) (6.4)
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where φ is a function representing the initial condition.

Definition 6.2. [156] For the Markovian jump time-delay system (6.1) and the jump

quadratic cost function (6.3), if there exist a control law u∗(t) and a positive scalar J∗

such that the closed-loop system is stochastic stable and the cost function J satisfies:

J ≤ J∗

then J∗ is the stochastic guaranteed cost of the system (6.1) and u∗(t) is the guaranteed

cost controller of the system (6.1).

6.2 A Markovian Jump Guaranteed Cost Conges-

tion Control (MJ-GCC) Strategy for Mobile

Diff-Serv Networks

In this section, the decentralized guaranteed cost congestion control (GCC) strategy pre-

sented in Chapter 5 is extended to the mobile networks. Consider a mobile network with

n nodes where each node has three separate buffers for the premium, the ordinary, and the

best-effort traffic, respectively. The control objective for the premium traffic is to allocate

the output capacity Cpi(t) of each node so that the premium queuing length of each node

will be as close as possible to its reference set point value. On the other hand, the control

objective for the ordinary traffic is to simultaneously allocate the bandwidth Cri(t) and

regulate the incoming flow rate λri(t) of each node so that the ordinary queuing length is

as close as possible to its corresponding reference value. Furthermore, the physical con-

straints of the mobile network need to also be considered. In the following subsections,

Markovian jump guaranteed cost control strategies are presented for the premium and the

ordinary traffic in the mobile network.
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6.2.1 Premium Traffic Control

The decentralized dynamic model of the premium traffic flow in a mobile network is re-

written here again for convenience:

ẋpi(t) = −f(xpi(t))upi(t) +
∑

j∈℘i(αt)

f(xpj(t− τji(t)))upj(t− τji(t))gji
p (t) + λpi(t) (6.5)

where xpi denotes the premium queueing length, upi(t) = Cpi(t) is the bandwidth con-

troller of the premium traffic at node i, upj(t − τji(t)) is the bandwidth controller of the

neighboring node j with the unknown but bounded time-varying delay τji(t), λpi(t) is the

external traffic flow, gji
p (t) is the traffic compression gain between node j and i, ℘i is the

neighboring set of node i, and αt is the Markov process representing the changes of the

network topology. The transition probabilities among different modes αt are as defined in

(6.2).

The multiple and time-varying delays τji(t) in the queuing model of the premium

traffic in the mobile network (6.5) are assumed to be upper bounded by different values

hji and with the maximum upper bound h that is assumed to be known a priori. The

above assumptions are the extension of the general assumptions of delays that was given

in Chapter 2 and is presented below.

Assumption 6.1. The unknown multiple and time-varying delays τji(t) are upper bounded

and the maximum upper bound is a known constant, that is

0 ≤ τji(t) ≤ hji (6.6)

h = max{hji} (6.7)

Feedback linearization technique

Since the dynamic queuing model (6.5) is nonlinear, it can be transformed into an

equivalent linear system model through the following feedback linearization stradegy

zpi(t) = xpi(t)− xref
pi (6.8)

upi(t) = f−1(xpi, t)ūpi(t) (6.9)

where xref
pi is the reference queueing length at node i.
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By using the above definitions and transformations, the premium queuing model

(6.5) can be expressed as follows

żpi(t) = −ūpi(t) + λpi(t) +
∑

j∈℘i(αt)

ūpj(t− τji(t))gji
p (t) (6.10)

In review of the above linear system model, the congestion control problem of the premium

traffic can be viewed as that of selecting the decentralized state feedback controller ūpi(t) =

Kpi(αt)zpi(t), for each mode αt, such that the Markovian jump system (6.10) is stable.

However, due to the unknown external input signal λpi(t), the state feedback controller

is augmented by adding an adaptive estimator λ̂pi(t) to estimate the unknown incoming

traffic and compensate for its effect via feedback. Therefore, the state feedback controller

ūpi(t) is modified to the following
ūpi(t) = Kpi(αt)z̄pi(t) (6.11)

z̄pi(t) =
[

zpi(t) λ̂pi(t)

]T

(6.12)

where z̄pi(t) is a new state variable and λ̂pi(t) is the online estimation of the unknown

external signal λpi(t). The updating rule of the estimation process is selected based on

the parameter projection method [128], namely

˙̂
λpi(t) =





δpi(αt)zpi(t)− βpi(αt)λ̂pi(t), if 0 ≤ λ̂pi(t) ≤ λmax
pi or

λ̂pi(t) = 0, zpi(t) ≥ 0 or

λ̂pi(t) = λmax
pi , zpi(t) ≤ 0

−βpi(αt)λ̂pi(t), otherwise

(6.13)

where δpi(αt) > 0 and βpi(αt) > 0 are design parameters depending on the mode αt.

Based on the definition of the new state representation (6.11), the Markovian jump

linear system (6.10) can be re-written into the following hybrid switching system with

multiple and time-varying delays:

˙̄zpi(t) = Ak
i0(αt)z̄pi(t) + Bi0ūpi(t) +

∑

j∈℘i(αt)

Bj ūj(t− τji(t)) + Bλiλpi(t) (6.14)

z̄pi(t) = ϕi(t) ϕi(t) ∈ [−h, 0]

k ∈ ℵ,ℵ = 1, 2

αt ∈ S,S = {1, ..., M}
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where the system matrices Ak
i0(αt), Bi0, Bj , and Bλi

, for i, j = 1, ..., n are defined as

follows:

A1
i0(αt) =




0 0

δpi(αt) −βpi(αt)


 A2

i0(αt) =




0 0

0 −βpi(αt)




Bi0 =



−1

0


 Bj =




gp
ji

0


 Bλi =




1

0




The above dynamical system is a hybrid switching system with both deterministic and

stochastic switchings. The deterministic switching signal k is introduced by the adaptive

estimator λ̂pi(t) and has two values. The stochastic switching signal αt is induced by the

changes to the network topology in the mobile network, and takes value from the finite

set S.

Physical Constraints

The physical constraints of the new dynamical system (6.14) are listed as follows:

z̄min
pi ≤ z̄pi(t) ≤ z̄max

pi (6.15)

0 ≤ ūpi(t) ≤ Cserver,i(αt) (6.16)

where z̄min
pi = [−xref

pi 0]T is the minimum value of the new state, z̄max
pi = [xbuffer

pi −
xref

pi , λmax
pi ]T is the maximum bound of the new state, and Cserver,i(αt) is the mode-

dependent link capacity of node i.

Performance Cost Function

According to the definition of the guaranteed cost control for the MJLS, the per-

formance cost function for the hybrid switching system (6.14) is selected as the following

jump quadratic cost function:

Jpi = E{
∫ ∞

0
(z̄T

pi(t)Qi(αt)z̄pi(t) + ūT
pi(t)Ri(αt)ūpi)dt} (6.17)

where Qi(αt) and Ri(αt) are given positive definite matrices for each mode.

Therefore, the guaranteed cost congestion control problem of the premium traffic

is recast as that of selecting the state feedback controller ūpi(t) = Kpi(αt)z̄pi(t), for each
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mode with the understanding that a ”centralized” knowledge on the network topology

changes as represented by α(t) is available, such that the hybrid switching system (6.14)

is ultimately bounded and the jump quadratic cost function (6.17) is upper bounded.

Clearly, the ”centralized” knowledge on α(t) does not impose any restrictive condition

on the implementation of the decentralized controller ūpi(t) as the characteristics on the

network topology changes are assumed to be known a prior.

In order to guarantee an upper bound of the corresponding cost function, in this

chapter we adopt the same Assumption 5.2 as presented in Chapter 5. Then the following

lemmas are now presented to show that the memoryless state feedback control law with

the mode-dependent control gain Kpi(αt) is a guaranteed cost controller for the hybrid

switching system (6.14).

Lemma 6.1. Given the cost function (6.17) and under Assumption 5.2, the controller

ūpi(t) = Kpi(αt)z̄pi(t) is a guaranteed cost control law of system (6.14), if there exist sym-

metric positive definite matrices Pi(αt), Si(αt), Ui, and positive definite matrices Mi(αt)

and Ni(αt), i = 1, ..., n, such that the following matrix inequality condition is satisfied for

all the modes αt ∈ S, S = {1, ..., M}:

W̄ik(αt) =




Xik(αt) h2(Ak
ic)

T (αt)UiBjiKji(αt) + Pi(αt)BjiKji(αt) Ui

∗ h2BjiKji(αt)(Ui + Ni(αt))BjiKji(αt) 0

∗ ∗ −Ui − (1− h)Si(αt)




< 0

Ψi(αt) = Bλi(h
2Ui + M−1

i (αt)Yi(αt) + h2N−1
i (αt))Bλi < 0

where:
Ak

ic(αt) = Ak
i0(αt) + Bi0Kpi(αt)

Yi(αt) = h2Ak
ic(αt)Ui + Pi(αt)

Xik(αt) = (2Pi(αt) + h2(Ak
ic)

T (αt)Ui)Ak
ic(αt) +

M∑

l=1

παtlPi(l) + (1 + h)Si(αt)

−Ui + Mi(αt) + Qi(αt) + KT
pi(αt)Ri(αt)Kpi(αt)

Proof: Consider the following stochastic Lyapunov-Krasovskii functional candidate:

Vi(z̄pi(t), αt) = Vi1 + Vi2 + Vi3 + Vi4 (6.18)

Vi1 = z̄pi(t)T Pi(αt)z̄pi(t) (6.19)

Vi2 =
∫ t

t−h
z̄T
pi(s)Si(αt)z̄pi(s)ds (6.20)
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Vi3 = h

∫ 0

−h

∫ t

t+θ

˙̄zT
pi(s)Ui ˙̄zpi(s)dsdθ (6.21)

Vi4 =
∫ 0

−h

∫ t

t+θ
z̄T
pi(s)Si(αt)z̄pi(s)dsdθ (6.22)

with Pi(αt), Si(αt), Ui denoting positive definite matrices with appropriate dimensions.

Let L be the infinitesimal generator of {z̄pi(t), αt}, t ≥ 0. Then, for each αt = k ∈ S we

have:

LVi1 = lim
∆→0+

1
∆
{E[Vi1(z̄pi(t + ∆), αt+δ, t + ∆)|z̄pi(t), αt = k]− Vi1(z̄pi(t), k, t)}

= 2z̄T
pi(t)Pi(αt) ˙̄zpi(t) +

M∑

k=1

παtkz̄
T
pi(t)Pi(k)z̄pi(t)

= 2z̄T
pi(t)Pi(αt)[Ak

ic(αt)z̄pi(t) +
∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t))]

+z̄T
pi(t)

M∑

k=1

παtkPi(k)z̄pi(t) + 2z̄T
pi(t)Pi(αt)Bλiλpi(t)

LVi2 =
∫ t

t−h
2z̄T

pi(s)Si(αt) ˙̄zpi(s)ds +
∫ t

t−h
z̄T
pi(s)

M∑

k=1

παtkSi(k)z̄pi(s)ds

= z̄T
pi(t)Si(αt)z̄pi(t)− (1− h)z̄T

pi(t− h)Si(αt)z̄pi(t− h)

+
∫ t

t−h
z̄T
pi(s)

M∑

k=1

παtkSi(k)z̄pi(s)ds

LVi3 = h2 ˙̄zT
pi(t)Ui ˙̄zpi(t)− h

∫ t

t−h
żT
pi(s)Ui ˙̄zpi(s)ds

= h2[Ak
ic(αt)z̄pi(t) +

∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t)) + Bλiλpi(t)]T Ui

[Ak
ic(αt)z̄pi(t) +

∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t)) + Bλiλpi(t)]

−h

∫ t

t−h

˙̄zT
pi(s)Ui ˙̄zpi(t)ds

LVi4 = hz̄T
pi(t)Si(αt)z̄pi(t)−

∫ t

t−h
z̄T
pi(s)

M∑

k=1

παtkSi(k)z̄pi(s)ds

Adding up the above equations, one will have

LVi ≤ z̄T
pi(t)(2Pi(αt)Ak

ic(αt) +
M∑

k=1

παtkPi(k) + (1 + h)Si(αt))z̄pi(t)

+h2z̄T
pi(t)((A

k
ic)

T (αt)UiA
k
ic(αt)− Ui)z̄pi(t)

+2z̄T
pi(t)(h

2(Ak
ic(αt))T Ui + Pi(αt))

∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t))
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+h2(
∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t)))T Ui(
∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t)))

+2z̄T
pi(t)Uiz̄pi(t− h)− z̄T

pi(t− h)(Ui + (1− h)Si(αt))z̄pi(t− h)

+h2(Bλiλpi(t))T Ui(Bλiλpi(t)) + 2z̄T
pi(t)(h

2Ak
ic(αt)Ui + Pi(αt))Bλiλpi(t)

+2h2(
∑

j∈℘i(αt)

BjKpj(αt)z̄pi(t− τji(t)))T (Bλiλpi(t))

Let us define

Bji = vec{Bj} (6.23)

Kji(αt) = diag{Kpj(αt)} (6.24)

Z̄pj(t− τ) = vec{z̄T
pj(t− τji(t))} i = 1, ..., n j ∈ ℘i(αt) (6.25)

then the following equation holds:

BjiKji(αt)Z̄pj(t− τ) =
∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t)) (6.26)

By substituting BjiKji(αt)Z̄pj(t− τ) into LVi, one will get

LVi ≤ z̄T
pi(t)(2Pi(αt)Ak

ic(αt) +
M∑

k=1

παtlPi(k) + (1 + h)Si(αt))z̄pi(t)

+h2z̄T
pi(t)((A

k
ic)

T (αt)UiA
k
ic(αt)− Ui + Mi(αt))z̄pi(t)

+2z̄T
pi(t)(h

2(Ak
ic)

T (αt)Ui + Pi(αt))BjiKji(αt)Z̄pj(t− τ)

+h2(BjiKji(αt)Z̄pj(t− τ))T (Ui + Ni(αt))(BjiKji(αt)Z̄pj(t− τ))

+2z̄T
pi(t)Uiz̄pi(t− h)− z̄T

pi(t− h)(Ui + (1− h)Si(rt))z̄pi(t− h)

+h2(Bλiλpi(t))T UiBλiλpi(t) + (Bλiλpi(t))T Y T
i (αt)M−1

i (αt)Yi(αt)Bλiλpi(t)

+h2(Bλi
λpi(t))T N−1

i (αt)Bλi
λpi(t)

= z̄T
pi(t)(2Pi(αt)Ak

ic(αt) +
M∑

k=1

παtlPi(k) + (1 + h)Si(αt))z̄pi(t)

+h2z̄T
pi(t)((A

k
ic)

T (αt)UiA
k
ic(αt)− Ui + Mi(αt))z̄pi(t)

+2z̄T
pi(t)(h

2(Ak
ic)

T (αt)Ui + Pi(αt))BjiKji(αt)Z̄pj(t− τ)

+h2Z̄T
pj(t− τ)KT

ji(αt)BT
ji(Ui + Ni(αt))BjiKji(αt)Z̄pj(t− τ)

+2z̄T
pi(t)Uiz̄pi(t− h)− zT

t−h(Ui + (1− h)Si(αt))z̄pi(t− h)

+λT
pi(t)B

T
λi

(h2Ui + Y T
i (αt)M−1

i (αt)Yi(αt) + h2N−1
i (αt))Bλi

λpi(t)
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=




z̄T
pi(t)

Z̄T
pj(t− τ)

z̄T
pi(t− h)




T 


w1
ik(αt) w2

ik(αt) Ui

∗ w3
i (αt) 0

∗ ∗ −Ui − (1− h)Si(αt)







z̄pi(t)

Z̄pj(t− τ)

z̄pi(t− h)




+λT
pi(t)Ψi(αt)λpi(t)

= ηT
i (t, τ, h)Wik(αt)ηi(t, τ, h) + λT

pi(t)Ψi(αt)λpi(t) (6.27)

where ηi(t, τ, h) = [z̄T
pi(t) Z̄T

pj(t− τ) z̄T
pi(t− h)]T , Mi and Ni are positive definite matrices,

and Yi(αt) = h2Ak
ic(αt)Ui + Pi(αt)). The matrices Wik and Ψi are defined as

Wik(αt) =




w1
ik(αt) w2

ik(αt) Ui

∗ w3
i (αt) 0

∗ ∗ −Ui − (1− h)Si(αt)




(6.28)

Ψi(αt) = BT
λi

(h2Ui + Y T
i (αt)M−1

i (αt)Yi(αt) + h2N−1
i (αt))Bλi

w1
ik(αt) = (2Pi(αt) + h2(Ak

ic)
T (αt)Ui)Ak

ic(αt) +
M∑

l=1

παtlPi(l) + (1 + h)Si(αt)− Ui + Mi(αt)

w2
ik(αt) = (h2(Ak

ic)
T (αt)Ui + Pi(αt))BjiKji(αt)

w3
i (αt) = h2KT

ji(αt)BT
ji(Ui + Ni(αt))BjiKji(αt)

Comparing the matrices Wik(αt) and W̄ik(αt), one can see that:

Wik(αt) = W̄ik(αt)−Qi(αt)−KT
pi(αt)Ri(αt)Kpi(αt)

Since W̄ik(αt) < 0, one gets:

LVi ≤ ηT
i (t, τ, h)[W̄ik(αt)−Qi(αt)−KT

pi(αt)Ri(αt)Kpi(αt)]ηi(t, τ, h)

+λT
pi(t)Ψi(αt)λpi(t)

≤ −z̄T
pi(t)(Qi(αt) + KT

pi(αt)Ri(αt)Kpi(αt))z̄pi(t) + λT
pi(t)Ψi(αt)λpi(t) (6.29)

Therefore, for any z̄pi(t) that satisfies:

z̄T
pi(t)(Qi(αt) + KT

pi(αt)Ri(αt)Kpi(αt))z̄pi(t) ≥ λT
pi(t)Ψi(αt)λpi(t) (6.30)

we will have LVi < 0. Therefore, according to the Definition 6.1, the system (6.14) is

stochastically ultimately bounded and the radius of the ultimate bound region is given by:

max{Ψi(αt)}
λmin(Qi(αt) + KT

pi(αt)Ri(αt)Kpi(αt))
‖λmax

pi ‖2 (6.31)
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Furthermore, from (6.29) we have

Jpi = E{
∫ ∞

0
(z̄T

pi(t)Qi(αt)z̄pi(t) + ūT
pi(t)Ri(αt)ūpi)dt}

= E{
∫ ∞

0
(z̄T

pi(t)[Qi(αt) + KT
pi(αt)Ri(αt)Kpi(αt)]z̄pi(t)dt}

≤ E{
∫ ∞

0
(−LVi + λT

pi(t)Ψi(αt)λpi(t))dt}

= Vi(z̄pi(0), 0, r0)− lim
t→∞Vi(z̄pi(t), t, αt) + E{

∫ ∞

0
Ψi(αt)λ2

pi(t)dt}

≤ Vi(z̄pi(0), 0, r0)− z̄T
pi(∞)Pi(r∞)z̄pi(∞) + γimax(Ψi(αt)) (6.32)

According to the ultimate bounded region that is given by (6.31), we have

0 ≤ ‖z̄pi(∞)‖2 ≤ max{Ψi(αt)}
λmin(Qi(αt) + KT

i (αt)Ri(αt)Ki(αt))
(λmax

pi )2 (6.33)

so that the upper bound of the cost function Jpi is obtained as follows:

Jpi < Vi(z̄pi(0), 0, r0) + γimax(Ψi(αt)) = J∗pi (6.34)

Therefore, the system (6.14) is robust with respect to any admissible time-varying delays

that satisfy Assumption 6.1. The degradation of the closed-loop system performance in-

curred by delays is guaranteed to be less than the scalar J∗pi. According to the Definition

6.1, the stochastic state feedback controller ūpi(t) = Kpi(αt)z̄pi(t) is the stochastic guar-

anteed cost controller of the system (6.14) and the scalar J∗pi is the stochastic guaranteed

cost of the system (6.14). This completes the proof of Lemma 6.1. ¥

Lemma 6.1 shows that the decentralized controller ūpi(t) = Kpi(αt)z̄pi(t) is a stochas-

tic guaranteed cost controller for the hybrid time-delay system (6.14). The stability con-

ditions (6.18) are dependent on the Markov chain αt. That is, at each time when the

network topology is changed, one needs to check the corresponding matrix inequality con-

ditions again. However, the matrix inequality conditions in Lemma 6.1 is not linear with

respect to the control gains Kpi, δpi and βpi, hence can not be solved directly. Moreover,

in order to solve the conditions in Lemma 6.1, one needs to known the control gains of

neighboring nodes Kpj which are not available for the decentralized controller of node i.

The following lemma is presented to tackle this problem.
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Lemma 6.2. Given the cost function (6.17) and under Assumption 5.2, if there exist

symmetric positive definite matrices ΛT
i1(αt), X̄ik(αt), V̄ii(αt), T̄i(αt), and matrices Ui,

Ni(αt), ΛT
i3, and S̄i(αt) for k = 1, 2, i = 1, ....n, and αt ∈ S = {1, . . . , M} such that the

following LMI conditions are satisfied:

Ωik(αt) =




X̄ik(αt) h2(V̄ T
ik (αt) + T̄i(αt))Bji + Bji ΛT

i1(αt)

∗ h2BT
ji(Ui + Ni(αt))Bji 0

∗ ∗ −ΛT
i3 − (1− h)S̄i(αt)




< 0(6.35)

then the controller ūpi(t) = Kpi(αt)z̄pi(t) is the stochastic guaranteed cost controller of

system (6.14), and the decentralized control gain is given by Kpi(αt) = B+
i0Ti(αt)Λ−1

i1 (αt).

Proof: Based on the matrix inequality conditions in Lemma 6.1, the objective is

derive the control gains Kpi(αt), and the adaptive control parameters δpi(αt), and βpi(αt).

The adaptive control parameters are embedded in the closed-loop system matrices Ak
i0(αt).

To transform the nonlinear matrix inequality conditions into an equivalent linear one, the

following matrices are defined:

Λi1(αt) = P−1
i (αt) Λi2(αt) = K−1

ji (αt)

Λi3 = U−1
i Λi(αt) = diag{Λi1(αt), Λi2(αt), Λi3}

By pre and post multiplying the matrix W̄ik(αt) with ΛT
i and Λi, respectively, the following

matrix can be obtained:

Ωik(αt) = ΛT
i (αt)W̄ik(αt)Λi(αt)

=




ΛT
i1(αt)Xik(αt)Λi1(αt) h2ΛT

i1(αt)(Ak
ic)

T (αt)UiBji + Bji ΛT
i1(αt)

∗ h2BT
ji(Ui + Ni(αt))Bji 0

∗ ∗ −ΛT
i3 − (1− h)ΛT

i3Si(αt)Λi3




Let us define

Ak
i0(αt) = Vik(αt)Λ−1

i1 (αt) V̄ T
ik = V T

ik Ui

Bi0Kpi(αt) = TiΛ−1
i1 (αt) T̄i = T T

i Ui

Si(αt) = Pi(αt) Mi(αt) = Ui

Ūi(αt) = V T
ik (αt)UiVik(αt) S̄i(αt) = ΛT

i3SiΛT
i3

Q̄i(αt) = ΛT
i1(αt)Qi(αt)Λi1(αt) R̄i(αt) = ΛT

i1(αt)KT
pi(αt)Ri(αt)Kpi(αt)Λi1(αt)
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Then, the matrix Ωik(αt) will become

Ωik(αt) =




X̄ik(αt) h2(V̄ T
ik + T̄i)Bji + Bji ΛT

i1(αt)

∗ h2BT
ji(Ui + Ni(αt))Bji 0

∗ ∗ −ΛT
i3 − (1− h)S̄i(αt)




(6.36)

where X̄ik(αt) = Vik(αt) + V T
ik (αt) + Ti + T T

i + h2Ūi(αt) + (1 + h +
∑M

l=1 παtl)Λ
T
i1(αt) +

Q̄i(αt) + R̄i(αt). Therefore, if Ωik(αt) < 0, one will also have W̄ik < 0. Then, by solving

the LMI conditions Ωik(αt) < 0, one can obtain the control gain Kpi(αt) as well as the

system matrices as follows:

Kpi(αt) = B+
i0Ti(αt)Λ−1

i1 (αt) (6.37)

Ak
i0(αt) = Vik(αt)Λ−1

i1 (αt) (6.38)

This completes the proof of Lemma 6.2. ¥

6.2.2 Stability Conditions Incorporating the Physical Con-

straints

The LMI conditions associated with the physical constraints of the guaranteed cost con-

gestion controller (GCC) of fixed network, as given in Section 5.2.2, are now extended to

mobile networks.

Constraints of the state

As given in (6.15), the constraints of the states for the system (6.14) can be expressed

as follows:

z̄min
pi ≤ z̄pi(t) ≤ z̄max

pi (6.39)

where z̄min
pi = [−xref

pi 0]T denotes the minimum value of the new state, and z̄max
pi =

[xbuffer
pi − xref

pi , λmax
pi ]T denotes the maximum bound of the new state.

By squaring (6.39) one will have

z̄T
pi(t)z̄pi(t) ≤ ‖z̄max

pi ‖2 (6.40)
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Consider the following ellipsoid for a selected number ε1i > 0,

Fi(αt) = {z̄pi(t)|z̄T
piΛ

−1
i1 (αt)z̄pi ≤ ε1i} (6.41)

According to the definitions of the Lyapunov functional Vi in (6.18), since Λ−1
i1 (αt) =

Pi(αt), we have

z̄pi(t)|z̄T
piΛ

−1
i1 (αt)z̄pi ≤ Vi(z̄pi(t), αt) (6.42)

By integrating (6.29), from 0 to t and considering thatVi(z̄pi(0), r0) = 0, we have

Vi ≤ −
∫ t

0
z̄T
pi(t)(Qi(αt) + KT

pi(αt)Ri(αt)Kpi(αt))z̄pi(t)dt +
∫ t

0
λT

pi(t)Ψi(αt)λpi(t)dt

<

∫ t

0
λT

pi(t)Ψi(αt)λpi(t)dt

<

∫ ∞

0
λT

pi(t)Ψi(αt)λpi(t)dt

< γimax(Ψi(αt)) (6.43)

Therefore, the state z̄pi(t) will belong to the set Fi(αt) for all the modes αt if

γimax(Ψi(αt)) ≤ ε1i (6.44)

Consequently, the right hand side of the state constraint (6.39) is satisfied if

ε1i/(z̄max
pi )2 ≤ Λ−1

i1 (αt) (6.45)

By applying the Schur complement to (6.45), the right hand side of the state constraint

(6.39) will hold if the following LMI conditions are satisfied:

Ωp
c1i(αt) , γimax{Ψi(αt)} ≤ ε1i (6.46)

Ω6pc2i(αt) ,




Λi1(αt) ΛT
i1(αt)

Λi1(αt) ‖z̄max
pi ‖2/ε1i


 ≥ 0 (6.47)

On the other hand, the left hand side of the state constraint (6.39) can be rewritten as

z̄pi(t)− z̄min
pi ≥ 0 (6.48)

Therefore, according to the definition of non-negative system (5.1), by selecting the

matrix Λi1(αt) as a diagonal positive definite matrix and following along the similar lines
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as those given previously in Section 5.2.2, the left hand side of the state constraint can be

expressed as

Ωp
c3i(αt) , (Ti(αt))ij ≥ 0 (6.49)

Vik(αt) =




V 1
ik(αt) V 2

ik(αt)

V 3
ik(αt) V 4

ik(αt)




V 1
i1(αt) = V 1

i2(αt) = 0

V 2
i1(αt) = V 2

i2(αt) = 0

V 3
i2(αt) = 0

V 3
i1(αt) > 0 and is diagonal

V 4
i1(αt) = V 4

i2(αt) < 0 and is diagonal

Constraint of the input

The input constraint of the system (6.14) can be defined as follows:

0 ≤ ūpi(t) ≤ Cserver,i(αt) (6.50)

Using (6.37), the decentralized congestion controller ūpi(t) can be written as

ūpi(t) = B+
i0Ti(αt)Λ−1

i1 (αt)z̄pi(t) (6.51)

Therefore, the input constraint (6.50) becomes

0 ≤ B+
i0Ti(αt)Λ−1

i1 (αt)z̄pi(t) ≤ Cserver,i(αt) (6.52)

Consider the ellipsoid (6.41), so that the right hand side of the input constraint will be

satisfied if

(B+
i0Ti(αt)Λ−1

i1 (αt))T (εi1/C2
server,i(αt))B+

i0Ti(αt)Λ−1
i1 (αt) ≤ Λ−1

i1 (αt) (6.53)

The above condition can be transformed into the following LMI condition:

Ωp
c4i(αt) ,




I KT
i (αt)

Ki(αt) (C2
server,i(αt)/ε1i)Λi1(αt)


 ≥ 0 (6.54)
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The non-negative constraint of the input will be satisfied if the control gain (Kpi(αt))ij > 0.

Hence, by using Kpi(αt) = B+
i0Ti(αt)Λ−1

i1 (αt) and noting that Λ−1
i1 (αt) is set to be a

diagonal positive definite matrix, then Bi0 is negative definite. The left hand side of the

input constraint can be transformed into the following LMI condition:

Ωp
c5i(αt) , (Ti(αt))ij ≤ 0 (6.55)

Therefore, the above results, as well as the LMI conditions that are given in Lemma 6.2

can be summarized into the following theorem.

Theorem 6.1. The decentralized Markovian jump guaranteed cost congestion controller

(MJ-GCC) for the premium traffic in a mobile network is determined by ūpi = Kpi(αt)z̄pi,

if the mode-dependent LMI conditions given in Lemma 6.2 subject to the positive definite

diagonal matrix Λ−1
i1 (αt) and the mode-dependent LMI conditions of Ωp

c1i(αt), Ωp
c2i(αt),

Ωp
c3i(αt), Ωp

c4i(αt), and Ωp
c5i(αt) for i = 1, ...n, αt ∈ S = {1, ..., M}, as given in (6.46),

(6.48), (6.49), (6.54), and (6.55), respectively, are all satisfied.

Proof: Follows along the same line as the derivations in Lemma 6.1, Lemma 6.2,

and the above analysis for the physical constraints. ¥

6.2.3 Ordinary Traffic Control

The decentralized dynamic queuing model of the ordinary traffic in the mobile network is

re-written here again for convenience:

ẋri(t) = −f(xri(t))u1
ri(t) + u2

ri(t) +
∑

j∈℘i(αt)

f(xrj(t− τji(t)))u1
rj(t− τji)gji

r (t) (6.56)

where xri(t) is the ordinary queuing length of node i, u1
ri is the bandwidth controller,

u2
ri(t) is the flow rate controller, gr

ji is the traffic compression gains for the ordinary traffic,

and ℘ri(αt) is the neighboring set of node i subject to the mode αt.

Regarding the nonlinear dynamic system (6.56), we first apply the following feedback
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linearization scheme by proposing the new state and input signal:

zri(t) = xri(t)− xref
ri (6.57)

uri(t) = F−1(xri, t)ūri(t) (6.58)

F (xri(t)) =




f(xri(t)) 0

0 1


 (6.59)

where uri(t) = vec{u1
ri(t), u

2
ri(t)} and ūri(t) = vec{ū1

ri(t), ū
2
ri(t)}. Therefore, the dynamic

queuing system (6.56) can be re-written into the following Markovian jump linear system

with time-delay:

żri(t) = Bi0ūri(t) +
∑

j∈℘i(αt)

Bj ūrj(t− τji(t)) (6.60)

where Bi0 ∈ R1×2 and Bj ∈ R1×2 are the system matrices defined for node i. In fact,

Bi0 is equal to
[
−1 1

]
, and Bj denotes the compression rates between node i and its

neighboring nodes and is actually equal to
[

gji
r 0

]
.

Physical Constraints

The physical constraints of the transformed system (6.60) are listed below:

zmin
ri ≤ zri(t) ≤ zmax

ri (6.61)

0 ≤ ūri ≤ cri(αt) (6.62)

cri(αt) = Cserver,i(αt)− ūpi(αt) (6.63)

where zmin
ri = −xref

ri is the minimum bound of the state, zmax
ri = xbuffer

ri − xref
ri is the

maximum bound of the state, and cri(αt) is the maximum bound of input which is actually

the leftover capacity from the premium traffic and is dependent on the Markov chain αt.

Performance Cost Function

The performance cost function for the ordinary traffic in a mobile network is given

by the following jump quadratic cost function:

Jri = E{
∫ ∞

0
(zT

ri(t)Qi(αt)zri(t) + ūT
ri(t)Ri(αt)ūri(t))dt} (6.64)
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where Qi and Ri are given positive definite matrices.

The congestion control problem of the ordinary traffic is to select the stochastic state

feedback controller ūri(t) = Kri(αt)zri(t) so that the system (6.60) is stable and the upper

bound of the jump quadratic cost function (6.64) is guaranteed. The following lemma is

then stated to show that the decentralized controller ūri(t) = Kri(αt)zri(t) is a stochastic

guaranteed cost congestion controller for the system (6.60) and the queuing errors of the

premium traffic at each node is guaranteed to be bounded.

Lemma 6.3. Given the cost function (6.64) and under Assumption 5.2, the state feedback

control law ūri(t) = Kri(αt)zri(t) is the stochastic guaranteed cost controller for the sys-

tem (6.60), if there exist symmetric positive definite matrices Pi(αt), Si(αt), Ui, positive

definite matrices Qi(αt), and Ri(αt), for i = 1, ..., n, αt ∈ S = {1, ....M}, such that the

following LMI condition holds

W̄i(αt) =




w1
i (αt) w2

i (αt) Ui

∗ w3
i (αt) 0

∗ ∗ −Ui − (1− h)Si(αt)




where:

w1
i (αt) = (2Pi(αt) + h2(Bi0Kri)T (αt)Ui)Bi0Kri(αt) +

M∑

l=1

παtlPi(l) + (1 + h)Si(αt)

−Ui + Qi(αt) + KT
ri(αt)Ri(αt)Kri(αt)

w2
i (αt) = (h2(Bi0Kri)T (αt)Ui + Pi(αt))BjiKji(αt)

w3
i (αt) = h2KT

ji(αt)BT
jiUiBjiKji(αt)

Proof: Consider the following stochastic Lyapunov-Krasovskii functional candidate:

Vi(zri(t), αt) = Vi1 + Vi2 + Vi3 + Vi4

Vi1 = zri(t)T Pi(αt)zri(t)

Vi2 =
∫ t

t−h
zT
ri(s)Si(αt)zri(s)ds

Vi3 = h

∫ 0

−h

∫ t

t+θ
żT
ri(s)Uiżri(s)dsdθ

Vi4 =
∫ 0

−h

∫ t

t+θ
zT
ri(s)Si(αt)zri(s)dsdθ
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with Pi(αt), Si(αt), Ui are positive definite matrices with appropriate dimensions. Let L
be the infinitesimal generator of {zri(t), αt}, t ≥ 0. Then, for each αt = k ∈ S we have

LVi1 = lim
∆→0+

1
∆
{E[Vi1(zri(t + ∆), αt+δ, t + ∆)|zri(t), αt = k]− Vi1(zri(t), k, t)}

= 2zT
ri(t)Pi(αt)żri(t) +

M∑

k=1

παtkz
T
ri(t)Pi(k)zri(t)

= 2zT
ri(t)Pi(αt)[Bi0Kri(αt)zri(t) +

∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t))]

+zT
ri(t)

M∑

k=1

παtkPi(k)zri(t)

LVi2 =
∫ t

t−h
2zT

ri(s)Si(αt)żri(s)ds +
∫ t

t−h
zT
ri(s)

M∑

k=1

παtkSi(k)zri(s)ds

= zT
ri(t)Si(αt)zri(t)− (1− h)zT

ri(t− h)Si(αt)zri(t− h)

+
∫ t

t−h
zT
ri(s)

M∑

k=1

παtkSi(k)zri(s)ds

LVi3 = h2żT
ri(t)Uiżri(t)− h

∫ t

t−h
żT
ri(s)Uiżri(s)ds

= h2[Bi0Kri(αt)zri(t) +
∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t))]T Ui

[Bi0Kri(αt)zri(t) +
∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t))]

−h

∫ t

t−h
żT
ri(s)Uiżri(t)ds

LVi4 = hzT
ri(t)Si(αt)zri(t)−

∫ t

t−h
zT
ri(s)

M∑

k=1

παtkSi(k)zri(s)ds

By adding up the above equations, we will have

LVi ≤ zT
ri(t)(2Pi(αt)Bi0Kri(αt) +

M∑

k=1

παtkPi(k) + (1 + h)Si(αt))zri(t)

+h2zT
ri(t)((Bi0Kri)T (αt)UiBi0Kri(αt)− Ui)zri(t)

+2zT
ri(t)(h

2(Bi0Kri(αt))T Ui + Pi(αt))
∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t))

+h2(
∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t)))T Ui(
∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t)))

+2zT
ri(t)Uizri(t− h)− zT

ri(t− h)(Ui + (1− h)Si(αt))zri(t− h)

By defining that:
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Bji = vec{Bj}

Kji(αt) = diag{Krj(αt)}

Zrj(t− τ) = vec{zT
rj(t− τji(t))}

we will have

LVi ≤ zT
ri(t)(2Pi(αt)Bi0Kri(αt) +

M∑

k=1

παtlPi(k) + (1 + h)Si(αt))zri(t)

+h2zT
ri(t)((Bi0Kri)T (αt)UiBi0Kri(αt)− Ui)zri(t)

+2zT
ri(t)(h

2(Bi0Kri)T (αt)Ui + Pi(αt))BjiKji(αt)zrj(t− τ)

+h2(BjiKji(αt)zrj(t− τ))T Ui(BjiKji(αt)zrj(t− τ))

+2zT
ri(t)Uizri(t− h)− zT

ri(t− h)(Ui + (1− h)Si(rt))zri(t− h)

= zT
ri(t)(2Pi(αt)Bi0Kri(αt) +

M∑

k=1

παtlPi(k) + (1 + h)Si(αt))zri(t)

+h2zT
ri(t)((Bi0Kri)T (αt)UiBi0Kri(αt)− Ui)zri(t)

+2zT
ri(t)(h

2(Bi0Kri)T (αt)Ui + Pi(αt))BjiKji(αt)zrj(t− τ)

+h2Z̄T
pj(t− τ)KT

ji(αt)BT
jiUiBjiKji(αt)zrj(t− τ)

+2zT
ri(t)Uizri(t− h)− zT

t−h(Ui + (1− h)Si(αt))zri(t− h)

=




zT
ri(t)

Z̄T
rj(t− τ)

zT
ri(t− h)




T 


w1
i (αt) w2

i (αt) Ui

∗ w3
i (αt) 0

∗ ∗ −Ui − (1− h)Si(αt)







zri(t)

Zrj(t− τ)

zri(t− h)




= ηT
i (t, τ, h)Wi(αt)ηi(t, τ, h) (6.65)

where ηi(t, τ, h) = [zT
ri(t) Z̄T

rj(t− τ) zT
ri(t− h)]T . The matrices Wik and Ψi are defined as

Wi(αt) =




w1
i (αt) w2

i (αt) Ui

∗ w3
i (αt) 0

∗ ∗ −Ui − (1− h)Si(αt)




w1
i (αt) = (2Pi(αt) + h2(Bi0Kri)T (αt)Ui)Bi0Kri(αt) +

M∑

l=1

παtlPi(l) + (1 + h)Si(αt)− Ui

w2
i (αt) = (h2(Bi0Kri)T (αt)Ui + Pi(αt))BjiKji(αt)

w3
i (αt) = h2KT

ji(αt)BT
jiUiBjiKji(αt)
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Therefore, since W̄i(αt) < 0, we have Wi(αt) < 0 and LVi < 0. Hence, according to the

Definition 6.1, the system (6.60) is stochastically stable. Furthermore, according to (6.65),

the following inequality also holds for LVi, namely

LVi ≤ ηT
i (t, τ, h)[W̄ik(αt)−Qi(αt)−KT

pi(αt)Ri(αt)Kpi(αt)]ηi(t, τ, h)

≤ −zT
ri(t)(Qi(αt) + KT

pi(αt)Ri(αt)Kpi(αt))zri(t) (6.66)

Consequently, we can obtain

Jri = E{
∫ ∞

0
(zT

ri(t)Qi(αt)zri(t) + ūT
pi(t)Ri(αt)ūpi)dt}

= E{
∫ ∞

0
(zT

ri(t)[Qi(αt) + KT
pi(αt)Ri(αt)Kpi(αt)]zri(t)dt}

≤ −E{
∫ ∞

0
(LVi(zri(t), αt))dt}

= Vi(zri(0), 0, r0)− lim
t→∞Vi(zri(t), t, αt)

≤ Vi(zri(0), 0, r0) = J∗ri (6.67)

Therefore, the jump quadratic cost function (6.64) is upper bounded. The closed-loop

system (6.60) is stochastically stable. The performance of the closed-loop system is guar-

anteed for any admissible time-varying delays under Assumption 6.1. According to the

Definition 6.2, the state feedback controller ūri(t) is the stochastic guaranteed cost con-

troller of the system (6.60) and the scalar J∗ri is the stochastic guaranteed cost of the

system (6.60). This completes the proof of Lemma 6.3. ¥

The following lemma is now presented to derive the control gain Kri(αt).

Lemma 6.4. Given the cost function (6.64) and under Assumption 5.2, if there exist

symmetric positive definite matrices ΛT
i1(αt), X̄i(αt), V̄ii(αt), T̄i(αt), and matrices Ui,

Ni(αt), ΛT
i3, and S̄i(αt) for i = 1, ....n, and αt ∈ S = {1, . . . , M} such that the following

LMI conditions are satisfied:

Ωi(αt) =




X̄ik(αt) h2(V̄ T
ik (αt) + T̄i(αt))Bji + Bji ΛT

i1(αt)

∗ h2BT
jiUiBji 0

∗ ∗ −ΛT
i3 − (1− h)S̄i(αt)




< 0(6.68)

then the controller ūri(t) = Kri(αt)zri(t) is the stochastic guaranteed cost controller of the

system (6.60), and the decentralized control gain is given by Kri(αt) = B+
i0Ti(αt)Λ−1

i1 (αt).
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Proof: Based on the matrix inequality conditions in Lemma 6.1, the objective is

derive the control gains Kpi(αt), and the adaptive control parameters δpi(αt) and βpi(αt).

The adaptive control parameters are presented in the closed-loop system matrices Ak
i0(αt).

To transform the nonlinear matrix inequality conditions into an equivalent linear one, the

following matrices are defined:

Λi1(αt) = P−1
i (αt) Λi2(αt) = K−1

ji (αt)

Λi3 = U−1
i Λi(αt) = diag{Λi1(αt), Λi2(αt), Λi3}

By pre and post multiplying the matrix W̄ik(αt) with ΛT
i and Λi, respectively, the following

matrix can be obtained:

Ωi(αt) = ΛT
i (αt)W̄i(αt)Λi(αt)

=




ΛT
i1(αt)Xik(αt)Λi1(αt) h2ΛT

i1(αt)(Bi0Kri)T (αt)UiBji + Bji ΛT
i1(αt)

∗ h2BT
ji(Ui + Ni(αt))Bji 0

∗ ∗ −ΛT
i3 − (1− h)ΛT

i3Si(αt)Λi3




Let us define

Bi0Kri(αt) = TiΛ−1
i1 (αt) T̄i = T T

i Ui

Si(αt) = Pi(αt) Mi(αt) = Ui

Q̄i(αt) = ΛT
i1(αt)Qi(αt)Λi1(αt) S̄i(αt) = ΛT

i3SiΛT
i3

R̄i(αt) = ΛT
i1(αt)KT

ri(αt)Ri(αt)Kri(αt)Λi1(αt)

The matrix Ωik(αt) will then become

Ωi(αt) =




X̄i(αt) h2T̄iBji + Bji ΛT
i1(αt)

∗ h2BT
jiUiBji 0

∗ ∗ −ΛT
i3 − (1− h)S̄i(αt)




(6.69)

where X̄i(αt) = Ti + T T
i + (1 + h +

∑M
l=1 παtl)Λ

T
i1(αt) + Q̄i(αt) + R̄i(αt). Therefore, if

Ωi(αt) < 0, one will also have W̄i < 0. By solving the LMI conditions Ωi(αt) < 0, we can

then obtain the control gain Kri(αt) as Kri(αt) = B+
i0Ti(αt)Λ−1

i1 (αt). This completes the

proof of Lemma 6.4. ¥
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6.2.4 Stability Conditions Incorporating the Physical Con-

straints

The closed-loop system (6.60) after applying the stochastic state feedback controller ūri(t)

can be written as follows:

żri(t) = Bi0Kri(αt)zri(t) +
∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t)) (6.70)

The physical constraints for the ordinary traffic in a mobile network are listed as below:

zmin
ri ≤ zr(t) ≤ zmax

ri (6.71)

0 ≤ ūri(t) ≤ cri(αt) (6.72)

where zmaz
ri = xbuffer

ri − xref
ri and zmin

ri = −xref
ri .

To avoid confusion, in the remainder of this section we use the notations Λpi1 and

Λri1 to denote the Lyapunov matrix Λi1 used in Lemma 6.2 and Lemma 6.4, for the

premium and the ordinary traffic and the following analysis of the physical constraints

can be obtained.

Constraints of the State

For the state constraints (6.71), consider the following ellipsoid for a selected εi2 > 0:

Si = {zT
ri(P̃ri)−1(αt)zri < εi2} (6.73)

From the definition of the Lyapunov function given in (6.65), if the stability conditions

are satisfied, we will have

zT
r (t)Λ−1

ri1zr(t) ≤ Vi(zri(t), αt) (6.74)

Now, by integrating (6.66) on both sides from 0 to t and considering V (zri(0), r0) = 0, we

will have

Vi ≤ −
∫ t

0
zT
ri(t)(Qi(αt) + KT

pi(αt)Ri(αt)Kpi(αt))zri(t)dt < 0 (6.75)
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Therefore, zri(t) belongs to the set Si for all t > 0. Consequently, the right hand

side of the state constraint (6.71) can be expressed as the following LMI condition:

Ωr
c1i(αt) ,




Λri1(αt) ΛT
ri1(αt)

Λri1(αt) (zmax
ri )2/εi2


 ≥ 0 (6.76)

On the other hand, the left hand side of the state constraint can be considered by the

following nonnegative constraint:
zri(t)− zmin

ri ≥ 0 (6.77)

Following the similar lines as those in deriving the LMI conditions for the physical con-

straints of the premium traffic, and noting that the matrix Λri1 is set to be a diagonal

positive definite, and given that Bi0 < 0, the non-negative constraint of the state can be

expressed by the following LMI conditions:

Ωr
c2i(αt) , (Ti(αt))ij ≤ 0, i, j = 1, ...2n (6.78)

Constraints of the Input

For the constraints of the input, by using ūri(t) = Kri(αt)zri(t), it can be stated

that follows:

0 ≤ B+
i0Ti(αt)Λ−1

ri1(αt)zri(t) ≤ cri(αt) (6.79)

Note that:

cri(αt) = Cserver,i(αt)−Kpi(αt)z̄pi(t) (6.80)

where Kpi(αt) is the control gain of the premium traffic controller. Therefore, the input

constraint of the ordinary traffic (6.80) can be expressed as follows:

0 ≤ Kri(αt)zri(t) ≤ Cserver,i(αt)−Kpi(αt)z̄pi(t) (6.81)

From the right hand side of (6.81) one can have

Kri(αt)zri(t) + Kpi(αt)z̄pi(t) ≤ Cserver,i(αt) (6.82)

By squaring (6.82) we have



zT
ri(t)

zT
pi(t)







KT
ri

KT
pi




[
Kri Kpi

]



zri(t)

zpi(t)


 ≤ ‖Cserver,i(αt)‖2 (6.83)
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Therefore, by considering the ellipsoid Fi and the set Si, the right hand side of the input

constraint will be satisfied if the following LMI conditions hold

Ωr
c3i(αt) , γimax{Ψi(αt)} ≤ εi1 (6.84)

Ωr
c4i(αt) ,




I Kri(αt) Kpi(αt)

KT
ri(αt)

C2
server,i(αt)

εi1+εi2
Λri1(αt) 0

KT
pi(αt) 0

C2
server,i(αt)

εi1+εi2
Λpi1(αt)



≥ 0 (6.85)

The LMI conditions derived above together with the stability conditions in Lemma 6.4

can be summarized by the following theorem.

Theorem 6.2. A decentralized Markovian jump guaranteed cost congestion controller

(MJ-GCC) for the dynamical queuing system for the ordinary traffic in each node i is

obtained provided that the mode-dependent conditions that are given in Lemma 6.4 are

satisfied, subject to the mode-dependent LMIs Ωr
c1i(αt) to Ωr

c4i(αt) that are governed by

equations (6.76), (6.78), (6.84), and (6.85), respectively.

Proof: The proof follows along the same lines as those given in Lemma 6.3 and

Lemma 6.4, and the derivations for the physical constraints that are given in this section.

¥

The decentralized guaranteed cost congestion control strategy of the premium and

the ordinary traffic classes that are derived in this section are summarized by the flow

chart that is shown in Fig. 6.1.

As shown in the Fig. 6.1, given a mobile network with changing network topologies

αt ∈ S = {1, ...,M}, the decentralized premium traffic controller first solves the mode-

dependent LMI conditions Ωik(αt) and Ωc1i(αt) to Ωci6(αt) of each node, so that the

stochastic control gains Kpi(αt) and the adaptive control gains δpi(αt) and βpi(αt) can be

obtained. The adaptive estimator λ̂pi(t) is then updated based on the switching conditions

that are given by (6.13). The stochastic bandwidth controller Cpi(t) is calculated as follows:
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Figure 6.1: The flow chart of the decentralized guaranteed cost congestion controller (GCC) for
the Mobile Diff-Serv network.

Cpi(αt) = f−1(xpi, t)ū|pi(αt)

= f−1(xpi, t)Kpi(αt)z̄pi(t)

= f−1(xpi, t)Kpi(αt)




xpi(t)− xref
pi

λ̂pi(t)


 (6.86)

where xpi(t) is the queuing length of node i.

Given the premium traffic control gain Kpi(αt) and the leftover capacity Cserver,i(αt)−
Cpi(t), the decentralized controller of the ordinary traffic first solves the corresponding LMI

conditions to derive the mode-dependent control gain Kri(αt). The bandwidth controller

Cri(αt) and the flow rate controller λri(αt) are then calculated as follows



Cri(αt)

λri(αt)


 = F−1(xri, t)ūri(αt) =




f−1(xri, t) 0

0 1


Kri(αt)zri(t)

=




f−1(xri, t) 0

0 1


Kri(αt)(xri(t)− xref

ri ) (6.87)
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Figure 6.2: The schematic of the network configuration for three ”typical” modes of a mobile
network in Example 6.1.

where xri(t) is the queuing length of the ordinary traffic at node i.

It should be noted that, different from the guaranteed cost congestion control algo-

rithms of the fixed network, as shown in the Fig. 5.2, the Markovian jump guaranteed

cost congestion control (MJ-GCC) algorithm needs to re-calculate all the mode-dependent

parameters such as the state feedback control gain Kpi(αt) and Kri(αt) and the adaptive

control gains δpi(αt) and βpi(αt), at each time when the network topology is changed. The

congestion controller are then updated based on the new control parameters.

6.3 Simulations

The simulation results presented in this section are intended to demonstrate the effective-

ness and the capabilities of our proposed decentralized Markovian jump guaranteed cost

congestion (MJ-GCC) strategy to mobile Diff-Serv networks. We adopt the same perfor-

mance metrics, namely the packet loss rate and the average queuing delay with respect

to the mobile network, as defined in Section 4.3.1. The simulations are conducted by two

examples where our proposed decentralized MJ-GCC strategy is compared and evaluated

with another benchmark scheme as before, namely the IDCC [3] approach.
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Example 6.1. In this example, the network topology and the scenario considered in Sec-

tion 4.5.1 is repeated. The NMAS have 3 nodes that are supposed to explore a rectangular

area from point A to point B. As shown in Fig. 6.2. The first node moves towards north

first and then towards east, the second node moves towards northeast directly, and the

third node moves towards east and then towards north. It is assumed that the network is

fully connected at the start. The capacity of each link is 10 Mbps, and the maximum buffer

size is 5 Mbits. The simulation time duration is selected as 30s. A total of 5 switching

modes are defined based on the network topology. In other words we consider the following

network modes M1 = {1, 2, 3}, M2 = {1, 2}, {3}, M3 = {1}, {2, 3}, M4 = {1, 3}, {2}, and

M5 = {1}, {2}, {3}.

The transition probabilities πkl among different modes are random and following

transition probability matrix is considered for the Markovian jump model of the changes

in network topologies

Π =




π11 · · · π15

...
. . .

...

π51 · · · π55




=




0.2 0.1 0.3 0.3 0.1

0.1 0.4 0.2 0.15 0.15

0.15 0.15 0.6 0.05 0.05

0.2 0.6 0.05 0.1 0.05

0.2 0.2 0.2 0.2 0.2




(6.88)

Based on the above configurations, the following two cases are then considered for evalu-

ating the performance of our decentralized MJ-GCC strategy.

Remark 6.1. The Markovian jump model is simulated through a Monte carlo method

[152]. A Markov chain is generated by using the MatLab function randsrc based on the

transition matrix (6.88).

Case 1: Queuing Performances of Each Node

The input Diff-Serv traffic for each node is defined as follows. The premium traffic

is defined based on a Poisson distribution with the mean traffic rate of λpi(t) = 5 Mbits

per second. The ordinary traffic is defined as an on-off signal with the maximum traffic

rate of 10 Mbits per second. The average off-time of the ordinary traffic is defined based
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Figure 6.3: Premium queuing length (bits) by
utilizing our proposed decentralized MJ-GCC ap-
proach. The solid lines denote the set point ref-
erences and the dashed lines denote the actual
queuing lengths.
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Figure 6.4: Ordinary queuing length (bits) by
utilizing our proposed decentralized MJ-GCC ap-
proach. The solid lines denote the set point ref-
erences and the dashed lines denote the actual
queuing lengths.

on an exponential distribution with a mean period of 2 ms. The best-effort traffic load is

defined as a random signal varying from 0.5 Mbps to 2 Mbps. The delay among the nodes

is defined as a random signal as τ = min{0,max{hmax, h}} where hmax = 20 ms is the

maximum bound of delay, and h ∼ N(10ms, 5ms) is a Gaussian distributed function with

mean value of 10 ms and standard derivation of 5 ms.

Fig. 6.3 and Fig. 6.4 depict the queuing length of the three nodes by utilizing our

proposed MJ-GCC strategy. The left and the right column are devoted to the premium

and the ordinary traffic services, respectively. The results confirm that our proposed

MJ-GCC strategy is effective in stabilizing the buffer queues in the presence of changing

network topology and time-varying delays.

The numerical results of the packet loss rate and the average queuing delays of each

node are summarized in Table. 6.1. If one compares the results with that of the Markovian

jump switching congestion controller (MJ-SCC), given in Table. 4.1 and Table. 4.2, one

can see that the packet loss rate of the ordinary traffic by utilizing the MJ-GCC strategy is

greatly decreased. The reason is that in the switching congestion control (SCC) strategy,

one needs to regulate the traffic compression gains so to guarantee the network is working
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Table 6.1: The queuing performance by utilizing the proposed decentralized MJ-GCC approach
with hmax = 20 ms

Premium PLR Queuing Delay
Node 1 0.012% 42.70 ms
Node 2 0.032% 44.80 ms
Node 3 0.011% 23.70 ms

Ordinary PLR Queuing Delay
Node1 2.61% 65.41 ms
Node 2 1.32% 48.22 ms
Node 3 1.41% 26.10 ms

in the safe operating range (within the physical constraints). However in the guaranteed

cost congestion control (GCC) strategy, the physical constraints are expressed as a set of

complementary LMIs that affect the control parameters so that a higher traffic compression

gains, which in turn results in a lower packet loss rate, may be obtained.

Case 2: Performance Under Different Delay levels

The performance of our proposed congestion control algorithm is evaluated based

on different levels of the time-delays having maximum bounds of h = {20; 40; 80} ms.

Table 6.2 presents the buffer characteristics of each node for both the premium and the

ordinary traffic services.

By inspecting the above numerical results one can observe that as the level of the

delay increases our proposed decentralized MJ-GCC approach can still maintain a robust

performance on the packet loss rate and the average queuing delay, despite the changes

in dynamical network topologies. Indeed, the packet loss rate in the network remains less

than 0.1% for the premium traffic and less than 6% for the ordinary traffic. The average

queuing delay for the premium traffic remains less than 53 ms and for the ordinary traffic

remains less than 70 ms.
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Table 6.2: The queuing performance by utilizing the proposed decentralized MJ-GCC approach
with different delay levels.

PLR Node 1 Node 2 Node 3
h P O P O P O

20 ms 0.012% 2.61% 0.032% 1.32% 0.011% 1.41%
40 ms 0.012% 2.91% 0.034% 4.66% 0.013% 2.12%
80 ms 0.099% 3.42% 0.037% 5.95% 0.034% 5.57%

Delay Node 1 Node 2 Node 3
h P O P O P O

20 ms 42.70 ms 65.41 ms 44.80 ms 48.22 ms 23.70 ms 26.10 ms
40 ms 51.30 ms 66.56 ms 44.90 ms 49.64 ms 24.80 ms 27.87 ms
80 ms 52.60 ms 67.03 ms 47.70 ms 50.12 ms 25.80 ms 30.48 ms

6.4 Conclusions

In this chapter, the congestion control problem of mobile Diff-Serv networks is considered.

By utilizing the guaranteed cost control theory, a novel decentralized Markovian jump

guaranteed cost congestion control (MJ-GCC) algorithm is developed for the premium and

the ordinary traffic in the presence of changing network topology and time-varying delays.

By employing the Markovian process, the changes of the network topology are modeled

as a stochastic process. The dynamic queuing model of each traffic is then modeled as

a Markovian jump system. The proposed MJ-GCC strategy is shown to be capable of

stabilizing the buffer queues and maintaining the robustness of the system with respect

to the admissible time-varying delays. The stability conditions of the mobile network are

represented by a set of mode-dependent LMIs. Furthermore, the mode-dependent physical

constraints of the mobile network are guaranteed by satisfying a set of complementary

LMIs. Comparative analysis shows that the MJ-GCC algorithm is less conservative than

the MJ-SCC strategy in the sense of traffic compression gains. The simulation results and

numerical comparisons shows that the performance of our proposed MJ-GCC algorithms

has great superiority when compared to the conventional IDCC method (which in general

results in an unstable closed-loop system for the applications considered in this thesis).
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Part III

Distributed Congestion Control

Scheme
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Chapter 7

Distributed Congestion Control of

Mobile DiffServ Networks

As presented in the previous chapters, for both the switching congestion control (SCC)

approach (Chapters 3-4) and the guaranteed cost congestion control (GCC) approach

(Chapters 5-6), we have investigated and developed congestion control solutions for a

network of multi-agent systems (NMAS) with differentiated services (Diff-Serv) through

two control schemes, namely

• Centralized control scheme, and

• Decentralized control scheme

for both fixed Diff-Serv networks and mobile Diff-Serv networks.

However, since the network of multi-agent systems (NMAS) is a highly coupled

system, several limitations will quickly be encountered with practical deployments of both

centralized and decentralized control schemes as the dimension of the network increases.

In general, the following three main drawbacks of a centralized control scheme are the

main reasons of why one might want to avoid centralized controllers:

• Deployment Cost. Centralized controllers typically need all the state information

of the global system even for controller design, which requires modifying the under-

lying interconnections to implement such controllers. This may be undesirable for
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applications such as communication networks, when introducing new channels be-

tween subsystems can normally be less practical and more expensive than increasing

the transmission rates over the pre-existing ones.

• Communication Cost. By the same reason of the information-structure require-

ment of centralized controllers, a centralized controller needs all the sub-systems

to communicate their own state to one central station in order for the centralized

controller to generate appropriate control signal for each subsystem. Due to the

communication limitations, some stringent specification of the Quality of Service

(OS) are needed for the network. Practical networks used in networked control sys-

tems sometimes cannot provide this service; for example, in wireless sensor networks

it is impractical for controllers to subscribe such services because of the fading is-

sues. Besides, communication leads to longer delays, which is a situation that one

wants to avoid as a control engineer.

• Computational Cost. By their own nature, centralized controllers are bound to have

a large number of states, inputs and outputs, which is precisely the situation why

classical control design algorithms can not handle the problem effectively. Moreover

higher computational power is normally required to implement these design, not

to mention that convergence of the computation of larger dimension matrices with

large condition numbers is always a difficult numerical problem.

Because of all the above centralized control limitations for high dimensional dis-

tributed system, one option is to adopt a fully decentralized architecture where a local

controller is attached to each node and where the local control action is based on only

local measurements. From the communication point view, this approach greatly reduces

the communication burden, and from the implementation point of view, the decentralized

controllers are easy to deploy.

However, the performance of a decentralized controller is normally conservative due

to the fact that the decisions are only based on local information while the entire system

is generally highly coupled. To balance and have a trade-off between these two extreme
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Figure 7.1: The distributed control framework for a NMSA with three nodes.

control philosophies, it is natural to introduce an approach which respects the underlying

interconnection, adopts a distributed architecture and scales well to large scale systems.

We consider the congestion control problem of a NMAS through a distributed control

scheme, by incorporating the possibility of communications among the controllers.

The aim of this chapter is to develop a distributed congestion control strategies

for the mobile NMAS subject to Diff-Serv traffic based on the guaranteed cost control

approach. The changes of the network topology is defined by the Markov chain αt ∈ S,

S = {1, ...,M}, where M is the number of modes (different topologies) that the mobile

network may experience. It should be noted that the fixed network can be viewed as a

special case of mobile networks when M = 1. Therefore, we only consider the congestion

control problem of mobile Diff-Serv networks in this chapter.

The proposed distributed congestion controller is shown to be in fact equivalent to

a local state feedback control plus a nearest neighboring controllers’ adjustment with pro-

portional gains. The resulting guaranteed cost control problem is then cast as a quadratic

regulation problem of a time-delay system with free parameters (gains) that need to be

selected. With this methodology, the distributed control approach yields an algorithm

that significantly enhances the scalability of the centralized algorithm and improves the

performance of the decentralized approach to a large scale traffic network. The basic con-

cept of the distributed control scheme is shown in Fig. 7.1. As shown in Fig. 7.1, the

controller is implemented at each local node. The controllers can communication with
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each others. Therefore, the decisions of each controller is based on the local information

of each node and the adjusting information from the nearest neighboring controllers.

The remainder of this chapter is organized as follows. The congestion control strate-

gies for the premium and the ordinary traffic classes are presented in Section 7.1 and 7.2,

respectively, and both are developed based on the guaranteed cost control approach and the

dynamical models that are given in Chapter 2. The proposed distributed GCC strategies

are then evaluated and compared with the centralized and decentralized GCC approaches

on the performance of QoS and control through comprehensive simulations in Section 7.4.

Finally, conclusions are provided in Section 7.5.

7.1 Distributed Guaranteed Cost Congestion Con-

trol (DGCC) for the Premium Traffic Class

The congestion control objective of the premium traffic is to regulate the link capacity

Cpi(t) so that the premium queueing length xpi(t) is as close as possible to the reference set

point xref
pi . Recall that the decentralized dynamic queuing model of the premium traffic

in a mobile network is given by:

ẋpi(t) = −f(xpi(t))upi(t) + λpi(t) +
∑

j∈℘i(αt)

f(xpj(t− τji(t)))upj(t− τji(t))g
p
ji (7.1)

where λpi(t) is the external incoming premium traffic, gp
ji is the traffic compression gain

from node j to node i, ℘i(αt) is the neighboring set of node i which depends on the mode of

network topology αt, αt is a Markov process indicating the changes of the neighboring set of

node i which takes values from the finite set S = {1, ...,M} and the transition probability

between different modes in S is governed by the following distribution function:

P [αt+δ = k | αt = l] =





πkl∆ + o(∆), k 6= l;

1 + πkk∆ + o(∆), k = l.
(7.2)

where πkl ≥ 0 is the transition rate from mode k to mode l, πkk = −
M∑

l=1,l 6=k

πkl, and o(∆)

is a function satisfying lim
∆→0

o(∆)
∆ = 0. Furthermore, the unknown and time-varying delays

τji(t) between node j to node i satisfy the same assumptions as defined in (2.12)-(2.14).
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Feedback Linearization

The nonlinear system model (7.1) is first transformed into an equivalent linear sys-

tem by applying the following input to state feedback transformations:

zpi(t) = xpi(t)− xref
pi

upi(t) = f−1(xpi, t)ūpi(t)

where xref
pi is the reference set point of the queuing length for the premium traffic. Con-

sequently, the dynamic queuing model of the premium traffic (7.1) can be rewritten as

follows:

żpi(t) = −ūpi(t) + λpi(t) +
∑

j∈℘i(αt)

ūpj(t− τji(t))g
p
ji (7.3)

Based on the decentralized dynamic model (7.3), the distributed congestion controller of

the premium traffic is selected as:

ūpi(t) = ūde
pi (t) +

∑

j∈℘i(αt)

wp
ji(αt)ūde

pj(t) (7.4)

ūde
pi (t) = K1

pi(αt)zpi(t) + K2
pi(αt)λ̂pi(t) (7.5)

˙̂
λpi(t) =





δpi(αt)zpi(t)− βpi(αt)λ̂pi(t), if 0 ≤ λ̂pi(t) ≤ λmax
pi or

λ̂pi(t) = 0, zpi(t) ≥ 0 or

λ̂pi(t) = λmax
pi , zpi(t) ≤ 0

−βpi(αt)λ̂pi(t), otherwise

(7.6)

where the notation ūde
pi (t) indicates the decentralized controller, wp

ji(αt) is the distributed

control gains for the premium traffic between node j and i which is dependent on the mode

of network topology αt, λ̂pi(t) is an adaptive estimator used to estimate the unknown

external incoming premium traffic λpi(t) and compensates for its effect via feedback.

Therefore, if we view the estimator λ̂pi(t) as an extra state and define a new state

space as z̄pi(t) = [zpi(t) λ̂pi(t)]T , the dynamic queuing model of the premium traffic
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(7.3) can be expressed by the following hybrid system:

˙̄zpi(t) = Ak
i0(αt)z̄pi(t) + Bi0ūpi(t) +

∑

j∈℘i(αt)

Bj ūpj(t− τji(t)) + Bλi
λpi(t) (7.7)

z̄pi(t) = ϕi(t) ϕi(t) ∈ [−h, 0]

k ∈ ℵ,ℵ = 1, 2

αt ∈ S,S = {1, ..., M}

where Ak
i0(αt), Bi0, Bj , and Bλi , for i, j = 1, ..., n are the system matrices that are defined

as follows:

A1
i0(αt) =




0 0

δpi(αt) −βpi(αt)


 A2

i0(αt) =




0 0

0 −βpi(αt)




Bi0 =



−1

0


 Bj =




gp
ji

0


 Bλi =




1

0




The distributed controller (7.4) can then be expressed as:

ūpi(t) = ūde
pi (t) +

∑

j∈℘i(αt)

wp
ji(αt)ūde

pj(t) (7.8)

ūde
pi (t) = Kpi(αt)z̄pi(t) (7.9)

Therefore, the distributed controller is actually a local state feedback control Kpi(αt)z̄pi(t)

plus a nearest neighboring controllers’ adjustment ūde
pj(t) with proportional gains wp

ji or

a weighted combination of the local neighboring controllers. Hence, the decentralized

controller proposed in Chapter 6 is indeed a special case of the distributed controller (7.8)

when we set wp
ji = 0. Let us define:

Wji(αt) = vec{wp
ji(αt)}

Kji(αt) = diag{Kpj(αt)}

Z̄pj(t− τ) = vec{z̄T
pj(t− τji(t))}

then the distributed controller ūpi(t) in (7.8) can be re-written as:

ūpi(t) = Kpi(αt)z̄pi(t) + Wji(αt)Kji(αt)Z̄pj(t) i = 1, ..., n j ∈ ℘i(αt) (7.10)
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Consequently, the closed-loop system of the premium traffic (7.7) after applying the dis-

tributed controller (7.8) becomes:

˙̄zpi(t) = Ak
i0(αt)z̄pi(t) + Bλiλpi(t) + Bi0[Kpi(αt)z̄pi(t) +

∑

j∈℘i(αt)

wp
ji(αt)ūde

pj(t)]

+
∑

j∈℘i(αt)

Bj [Kpj(αt)z̄pj(t− τji(t)) +
∑

k∈℘j(αt)

wp
kj ū

de
pk(t− τji(t))]

= Ak
ic(αt)z̄pi(t) + Bλiλpi(t) +

∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t))

+
∑

j∈℘i(αt)

Bi0w
p
ji(αt)ūde

pj(t) +
∑

j∈℘i(αt)

∑

k∈℘j(αt)

Bjw
p
kj ū

de
pk(t− τji(t))

= Ak
ic(αt)z̄pi(t) +

∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t)) + Bλiλpi(t) (7.11)

+
∑

j∈℘i(αt)

Bi0w
p
ji(αt)Kpj(αt)z̄pj(t) +

∑

j∈℘i(αt)
k∈℘j(αt)

Bjw
p
kjKpk(αt)z̄pk(t− τji(t))

where Ak
ic(αt) = Ak

i0(αt) + Bi0Kpi(αt), ℘j(αt) is the neighboring set of node j, ūde
pk(t) is

the decentralized controller of node k which is the neighboring set ℘j(αt). As we can seen

from the dynamics of the premium traffic (7.11), the closed-loop dynamics of node i is

affected by its nearest neighbors j ∈ ℘i and the nearest neighbors of neighbors k ∈ ℘j .

Therefore, the effect of more neighboring nodes are indeed taken into account.

The control range of the centralized, the decentralized, and the distributed conges-

tion control algorithms can be illustrated by the example that is given in Fig. 7.2. As

shown in Fig. 7.2, there are a total of 11 nodes in the network which may be mobile.

Let us take the node 1 as an example. In order to obtain the control input for node 1, a

centralized control algorithm needs to consider all the nodes in the network simultaneously

and which is to be implemented as a central commander. Therefore, the control range of

the centralized controller is 11, as shown by the solid square in Fig. 7.2.

The decentralized controller of node 1 only needs to consider the local information

at node 1, and is implemented locally. As shown in the figure, the nearest neighboring

nodes of node 1 are the nodes 2 and 3, as shown by the small solid circle. Due to the

delayed inputs from nodes 2 and 3, the closed-loop dynamics of node 1 will have the

coupling states of nodes 2 and 3 with the corresponding delays z̄pj(t− τji(t)). Therefore,

the decentralized controller actually considers the dynamics of nodes 2 and 3 indirectly.
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Figure 7.2: The control range of the centralized, the decentralized, and the distributed congestion
control strategies.

The control range of the decentralized controller of node 1 equals to 3.

Finally, the distributed control algorithm is also implemented at each node. How-

ever, the distributed controller of node 1 incorporates the decentralized controllers of

nodes 2 and 3, with proper weights wji(αt). The decentralized controllers of nodes 2 and

3 will take into account the coupling effect of their nearest neighboring nodes, respectively.

Therefore, the distributed controller of node 1 actually considers the dynamics of nodes 2

and 3, and their neighboring nodes 4, 5, 6, and 7, indirectly. That is, the dynamics of the

neighbors of the neighboring nodes are indeed taken into account. Therefore, the control

range of the distributed controller of node 1 is equal to 7, as shown by the large dashed

circle in Fig. 7.2.

In reviewing the closed-loop system (7.11), the control objective of the distributed

guaranteed cost congestion control (DGCC) problem is actually to select the local state

feedback control gain Kpi(αt) and the adjusting weights of the neighboring controllers

Wji(αt), such that the system (7.11) is stable and the following jump quadratic cost
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function is bounded:

Jpi = E{
∫ ∞

0
(z̄T

pi(t)Qi(αt)z̄pi(t) + ūT
piRi(αt)ūpi(t))dt} (7.12)

where Qi(αt) and Ri(αt) are positive definite matrices with respect to each mode αt ∈
S = {1, ..., M}.

In order to guarantee an upper bound of the cost function, we adopt the same

Assumption 5.2 as presented in Chapter 5. Then, the following lemma is now presented

to show that the distributed controller ūpi(t) = Kpi(αt)z̄pi(t) + Wji(αt)Kji(αt)Z̄j(t), is a

stochastic guaranteed cost controller for the system (7.7).

Lemma 7.1. Given the cost function (7.12) and under Assumption 5.2, the distributed

controller ūpi(t) = Kpiz̄pi(t) + WjiKjiZ̄pj(t) is a stochastic guaranteed cost control law for

the system (7.7), if there exist symmetric positive definite matrices Pi(αt), Si(αt), Ui and

positive definite matrices Mik(αt), i = 1, ..., n, such that the following matrix inequality

conditions are satisfied for all the modes αt ∈ S, S = {1, ..., M}:

W̄ik =




σ1 + Qi + KT
piRiKpi σ2 [Pi + h2(Ak

ic)
T Ui]BjiKji

∗ σ4 + KT
jiW

T
jiRiWjiKji h2KT

jiW
T
jiB

T
i0UiBjiKji

∗ ∗ h2KT
jiB

T
jiUiBjiKji

∗ ∗ ∗
∗ ∗ ∗

σ3 Ui

σ5 0

σ6 0

σ7 0

∗ −Ui − (1− h)Si




(7.13)

where:

σ1 = 2Pi(αt)Ak
ic(αt) +

M∑

k=1

παtkPi(k) + h2(Ak
ic(αt))T UiA

k
ic(αt) + (1 + h)Si(αt)− Ui

σ2 = Pi(αt)Bi0Wji(αt)Kji(αt) + h2(Ak
ic(αt))T UiBi0Wji(αt)Kji(αt)

σ3 = [Pi(αt) + h2(Ak
ic(αt))T Ui]BkjWkj(αt)Kkj(αt)

σ4 = h2KT
ji(αt)W T

ji (αt)BT
i0UiBi0Wji(αt)Kji(αt)

σ5 = h2KT
ji(αt)W T

ji (αt)BT
i0UiBkjWkj(αt)Kkj(αt)
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σ6 = h2KT
ji(αt)BT

jiUiBkjWkj(αt)Kkj(αt)

σ7 = h2KT
kj(αt)W T

kj(αt)BT
kjUiBkjWkj(αt)Kkj(αt)

Bji = vec{Bj} Bkj = vec{[Bj Bj ]}

Wkj = diag{wp
kj} Kkj(αt) = diag{Kpk(αt)}

Proof: Consider the following stochastic Lyapunov-Krosovskii functional candidate:

Vi(z̄pi(t), αt) = Vi1 + Vi2 + Vi3 + Vi4

Vi1 = z̄pi(t)T Pi(αt)z̄pi(t)

Vi2 =
∫ t

t−h
z̄T
pi(s)Si(αt)z̄pi(s)ds

Vi3 = h

∫ 0

−h

∫ t

t+θ

˙̄zT
pi(s)Ui ˙̄zpi(s)dsdθ

Vi4 =
∫ 0

−h

∫ t

t+θ
z̄T
pi(s)Si(αt)z̄pi(s)dsdθ

and Pi(αt), Si(αt), Ui are positive definite matrices with appropriate dimensions. For each

mode αt = k ∈ S, the infinitesimal generator of the Lyapunov function can be derived as

follows:

LVi1 = lim
∆→0+

1
∆
{E[Vi1(z̄pi(t + ∆), αt+δ, t + ∆)|z̄pi(t), αt = k]− Vi1(z̄pi(t), k, t)}

= 2z̄T
pi(t)Pi(αt) ˙̄zpi(t) +

M∑

k=1

παtkz̄
T
pi(t)Pi(k)z̄pi(t)

= 2z̄T
pi(t)Pi(αt)[Ak

ic(αt)z̄pi(t) +
∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t))

+
∑

j∈℘i(αt)

Bi0w
p
ji(αt)Kpj(αt)z̄pj(t) +

∑

j∈℘i(αt)
k∈℘j(αt)

Bjw
p
kjKpk(αt)z̄pk(t− τji(t))]

+z̄T
pi(t)

M∑

k=1

παtkPi(k)z̄pi(t) + 2z̄T
pi(t)Pi(αt)Bλiλpi(t)

LVi2 =
∫ t

t−h
2z̄T

pi(s)Si(αt) ˙̄zpi(s)ds +
∫ t

t−h
z̄T
pi(s)

M∑

k=1

παtkSi(k)z̄pi(s)ds

= z̄T
pi(t)Si(αt)z̄pi(t)− (1− h)z̄T

pi(t− h)Si(αt)z̄pi(t− h)

+
∫ t

t−h
z̄T
pi(s)

M∑

k=1

παtkSi(k)z̄pi(s)ds
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LVi3 = h2żT
pi(t)Ui ˙̄zpi(t)− h

∫ t

t−h
żT
pi(s)Ui ˙̄zpi(s)ds

= h2[Ak
ic(αt)z̄pi(t) +

∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t)) + Bλi
λpi(t)

+
∑

j∈℘i(αt)

Bi0w
p
ji(αt)Kpj(αt)z̄pj(t) +

∑

j∈℘i(αt)
k∈℘j(αt)

Bjw
p
kjKpk(αt)z̄pk(t− τji(t))]T Ui

[Ak
ic(αt)z̄pi(t) +

∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t)) + Bλiλpi(t)

+
∑

j∈℘i(αt)

Bi0w
p
ji(αt)Kpj(αt)z̄pj(t) +

∑

j∈℘i(αt)
k∈℘j(αt)

Bjw
p
kjKpk(αt)z̄pk(t− τji(t))]

−h

∫ t

t−h
żT
pi(s)Ui ˙̄zpi(t)ds

LVi4 = hz̄T
pi(t)Si(αt)z̄pi(t)−

∫ t

t−h
z̄T
pi(s)

M∑

k=1

παtkSi(k)z̄pi(s)ds

Let us define:

Z̄pk(t− τ) = vec{z̄T
pk(t− τji(t))} k ∈ ℘j(αt)

Then the following equations will hold:

BjiKji(αt)Z̄pj(t− τ) =
∑

j∈℘i(αt)

BjKpj(αt)z̄pj(t− τji(t))

BkjWkj(αt)Kkj(αt)Z̄pk(t− τ) =
∑

j∈℘i(αt)
k∈℘j(αt)

Bjw
p
kj(αt)Kpk(αt)z̄pk(t− τji(t))

Therefore, by adding up LVi1 to LVi4 and considering the above definitions, one can

obtain :

LVi ≤




z̄T
pi(t)

Z̄T
pj(t)

Z̄T
pj(t− τ)

Z̄T
pk(t− τ)

z̄T
pi(t− h)




T

Σik(αt)




z̄pi(t)

Z̄pj(t)

Z̄pj(t− τ)

Z̄pk(t− τ)

z̄pi(t− h)




+




z̄T
pi(t)

Z̄T
pj(t)

Z̄T
pj(t− τ)

Z̄T
pk(t− τ)

z̄T
pi(t− h)




T

Θik(αt)Bλiλpi(t)

+h2λT
pi(t)B

T
λi

UiBλiλpi(t)

= ηT
i (t, τ, h)Σik(αt)ηi(t, τ, h) + ηT

i (t, τ, h)Θik(αt)Bλiλpi(t) + h2λT
pi(t)B

T
λi

UiBλiλpi(t)

≤ ηT
i (t, τ, h)[Σik(αt) + Mik(αt)]ηi(t, τ, h) + λT

pi(t)B
T
λi

[ΘT
ikM

−1
ik Θik(αt) + h2Ui]Bλiλpi(t)

= ηT
i (t, τ, h)Wik(αt)ηi(t, τ, h) + λT

pi(t)Ψikλpi(t) (7.14)
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where ηi(t, τ, h) = [z̄T
pi(t) Z̄T

pj(t) Z̄T
pj(t − τ) Z̄T

pk(t − τ) z̄T
pi(t − h)]T ; Mik(αt) is a positive

definite matrix, and the matrices Σik and Θik are defined as:

Σik(αt) =




σ1 σ2 [Pi(αt) + h2(Ak
ic(αt))T Ui]BjiKji(αt) σ3 Ui

∗ σ4 h2KT
ji(αt)W T

ji (αt)BT
i0UiBjiKji(αt) σ5 0

∗ ∗ h2KT
ji(αt)BT

jiUiBjiKji(αt) σ6 0

∗ ∗ ∗ σ7 0

∗ ∗ ∗ ∗ −Ui − (1− h)Si(αt)




Θik(αt) =
[

θ1 θ2 θ3 θ4 0

]T

Wik(αt) = Σik(αt) + Mik(αt)

Ψi(αt) = BT
λi

[ΘT
ikM

−1
ik Θik(αt) + h2Ui]Bλi

θ1 = 2Pi(αt) + 2h2(Ak
ic(αt))T Ui

θ2 = 2h2KT
ji(αt)W T

ji (αt)BT
i0Ui

θ3 = 2h2KT
ji(αt)BT

jiUi

θ4 = 2h2KT
kj(αt)W T

kj(αt)BT
kjUi

By comparing the matrices Wik(αt) and W̄ik(αt), one can see that:

Wik(αt) = W̄ik(αt)−




Qi(αt) + KT
pi(αt)Ri(αt)Kpi(αt) 0 0 0 0

∗ KT
jiW

T
jiRiWjiKji 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0




Since W̄ik(αt) < 0, one will have Wik(αt) < 0. From (7.14), it then yields that:

LVi ≤ −z̄T
pi(t)(Qi(αt) + KT

pi(αt)Ri(αt)Kpi(αt))z̄pi(t) (7.15)

−Z̄T
pjK

T
jiW

T
jiRiWjiKjiZ̄pj(t) + λT

pi(t)Ψi(αt)λpi(t)

Therefore, for any [z̄pi(t) Z̄pj(t)] that satisfies:



z̄T
pi(t)

Z̄T
pj(t)




T 


Qi(αt) + KT
pi(αt)Ri(αt)Kpi(αt) 0

0 KT
jiW

T
jiRiWjiKji




︸ ︷︷ ︸
Cik




z̄pi(t)

Z̄pj(t)


 ≥ Ψi(αt)λ2

pi(t)
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one will have LVi < 0. Therefore, according to the Definition 6.1, the system (7.4) is

stochastically ultimate bound and the ultimately bounded region is given by:

‖z̄pi(t)‖2 + ‖Z̄pj(t)‖2 ≥ max(Ψi(αt))
λmin(Cik)

λ2
pi(t) (7.16)

On the other hand, from (7.15), we have

Jpi = E{
∫ ∞

0
(z̄T

pi(t)Qi(αt)z̄pi(t) + ūT
pi(t)Ri(αt)ūpi)dt}

= E{
∫ ∞

0
(z̄T

pi(t)[Qi(αt) + KT
pi(αt)Ri(αt)Kpi(αt)]z̄pi(t) + Z̄T

pj(t)K
T
jiW

T
jiRiWjiKjiZ̄pj(t)dt}

≤ E{
∫ ∞

0
(−LVi + λT

pi(t)Ψi(αt)λpi(t))dt}

= Vi(z̄pi(0), 0, r0)− lim
t→∞Vi(z̄pi(t), t, αt) + E{

∫ ∞

0
Ψi(αt)λ2

pi(t)dt}

≤ Vi(z̄pi(0), 0, r0)− z̄T
pi(∞)Pi(r∞)z̄pi(∞) + γimax(Ψi(αt))

According to the ultimate bound region of the system (7.16), we have:

0 ≤ ‖z̄pi(∞)‖2 ≤ max(Ψi(αt))
λmin(Cik)

(λmax
pi )2 − ‖Z̄pj(∞)‖2 (7.17)

Therefore, the upper bound of the cost function Jpi is

Jpi < Vi(z̄pi(0), 0, r0) + γimax(Ψi(αt)) = J∗pi (7.18)

From the Definition 6.2, we known that J∗pi is the stochastic guaranteed cost of the system

(6.1). This completes the proof of Lemma 7.1. ¥

Lemma 7.1 shows that the distributed controller ūpi(t) = Kpi(rt)z̄pi(t)+Wji(αt)Kji(αt)Z̄pj(t)

is a stochastic guaranteed cost controller for the system (7.7). The following lemma gives

the expression of the control gain Kpi(αt) and the distributed weights Wji(αt) for all the

modes αt ∈ S.

Lemma 7.2. Given the cost function (7.13), if there exist symmetric positive definite

matrices ΛT
i1(αt), X̄ik(αt), V̄ii(αt), T̄i(αt), and matrices Ui, Ni(αt), ΛT

i3, and S̄i(αt) for

k = 1, 2, i = 1, ....n, and αt ∈ S = {1, . . . , M} such that the following LMI conditions are
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satisfied:

Ω̄ik =




Yik Bi0Wji + h2W̄ji I + h2(V̄ik + T̄i) I + h2(V̄ik + T̄i)

∗ h2W̃ji + R̃i h2Ŵji h2Ŵji

∗ ∗ h2Ui h2Ui

∗ ∗ ∗ h2Ui




< 0

Yik = 2(Vik + Ti) +
M∑

k=1

παtkΛi1 + h2Ṽik(αt) + (1 + h)S̄i − Ūi + Q̄i + R̄i

then the distributed controller (7.8) is a stochastic guaranteed cost controller of the system

(7.7), and the state feedback control gain is given by Kpi(αt) = B+
i0Ti(αt)Λ−1

i1 (αt).

Proof: Consider the following matrices:

Λi1(αt) = P−1
i (αt) Λi2(αt) = K+

ji(αt)

Λi3(αt) = [BjiKji(rt)]−1 Λi4(αt) = [BkjWkj(αt)Kji(αt)]−1

Λi5(αt) = 0 Λi(αt) = diag{Λij(αt)} j = 1, ....5

By pre and post multiplying the matrix W̄ik(αt) with ΛT
i and Λi, respectively, we will

obtain:

Ωik(αt) = ΛT
i (αt)W̄ik(αt)Λi(αt) =




Ω̄ik 0

0 0


 (7.19)

where:

Ω̄ik =




Xik Bi0Wji + h2Ak
icUiBi0Wji I + h2Ak

icUi I + h2Ak
icUi

∗ h2WT
jiB

T
i0UiBi0Wji + WT

jiRiWji h2WT
jiB

T
i0Ui h2WT

jiB
T
i0Ui

∗ ∗ h2Ui h2Ui

∗ ∗ ∗ h2Ui




Xik = 2Ak
icΛi1 +

M∑

k=1

παtkΛi1 + h2ΛT
i1(A

k
ic)

T UiA
k
icΛi1 + (1 + h)ΛT

i1SiΛi1

−ΛT
i1UiΛi1 + ΛT

i1(Qi + KT
piRiKpi)Λi1

Therefore, if we define:

Ak
i0(αt) = Vik(αt)Λ−1

i1 (αt) Bi0Kpi(αt) = Ti(αt)Λ−1
i1 (αt)

V̄ik(αt) = V T
ik (αt)Ui T̄ T

i (αt) = T T
i (αt)Ui

R̄i = ΛT
i1K

T
piRiKpiΛi1 R̃i = W T

jiRiWji
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W̄ji = Ak
icUiBi0Wji Ŵji = W T

jiB
T
i0Ui

W̃ji = ŴjiBi0Wji S̄i = ΛT
i1SiΛi1

Q̄i = ΛT
i1QiΛi1 Ūi = ΛT

i1UiΛi1

Ṽik(αt) = (V̄ik(αt) + T̄ T
i (αt))(Vik(αt) + Ti(αt))

then, the matrix Ω̄ik(αt) will becomes:

Ω̄ik =




Yik Bi0Wji + h2W̄ji I + h2(V̄ik + T̄i) I + h2(V̄ik + T̄i)

∗ h2W̃ji + R̃i h2Ŵji h2Ŵji

∗ ∗ h2Ui h2Ui

∗ ∗ ∗ h2Ui




Yik = 2(Vik + Ti) +
M∑

k=1

παtkΛi1 + h2Ṽik(αt) + (1 + h)S̄i − Ūi + Q̄i + R̄i

Therefore, if Ω̄ik(αt) < 0, one will have Ωik < 0, and hence W̄ik < 0. Furthermore,

by solving the LMI conditions Ω̄ik(αt) < 0, the weight matrix Wji(αt) can be obtained

directly. The state feedback control gain Kpi(αt) and the system matrix Ak
i0 can be

expressed as follows:

Kpi(αt) = B+
i0Ti(αt)Λ−1

i1 (αt)

Ak
i0(αt) = Vik(αt)Λ−1

i1 (αt)

This completes the proof of Lemma 7.2. ¥

7.1.1 Stability Analysis

Lemmas 7.1 and 7.2 show that the distributed congestion control law is a stochastic

guaranteed cost controller of the premium traffic in a mobile network. It should be noted

that the ultimate bound region (7.16) is a hyper surface defined by the state space of the

node z̄pi(t) and the state space of its nearest neighboring nodes Z̄pj(t) ∈ ℘i(αt). That is,

by applying the distributed congestion control strategy, the queuing errors of the nodes

that are in the same neighboring set are guaranteed to be uniformly ultimately bounded,

simultaneously.

Furthermore, the stability conditions in Lemmas 7.1 and 7.2 are dependent on the
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Markovian jump process αt. Therefore, at each time when the network topology changes,

one needs to recalculate the control gain Kpi(αt) and the weight matrix Wji(αt) again.

Stability Conditions Incorporating The Physical Constraints

The LMI conditions associated with the physical constraints for the guaranteed cost

congestion controller (GCC) of fixed network, as given in Section 5.2.2, are now extended

to the mobile networks.

• Constraints of the states

The constraints of the states for node i incurred by the buffer size limitation are

given as follows:

z̄min
pi ≤ z̄pi(t) ≤ z̄max

pi (7.20)

where z̄min
pi = −xref

pi and z̄max
pi = xbuffer

pi − xref
pi .

Consider the following ellipsoid for a selected number εi > 0

Fi = {z̄pi(t)|z̄T
piP̃

−1
ir z̄pi ≤ εi} (7.21)

By following along the similar lines as that given previously in Section 5.2.2, and

the definition of non-negative systems as given in Definition 5.1, the state constraint

(7.20) will be satisfied if the matrices Vik(αt) and Ti(αt) in (7.20) satisfy the following

conditions:

Vik(αt) =




V 1
ik(αt) V 2

ik(αt)

V 3
ik(αt) V 4

ik(αt)




V 1
i1(αt) = V 1

i2(αt) = 0

V 2
i1(αt) = V 2

i2(αt) = 0

V 3
i2(αt) = 0

V 3
i1(αt) > 0 and is diagonal

V 4
i1(αt) = V 4

i2(αt) < 0 and is diagonal
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and the following LMI conditions hold:

Ωc1i , γimax(Ψi(αt)) ≤ εi (7.22)

Ωc2i ,




P̃ir P̃ T
ir

P̃ir ‖z̄max
pi ‖2/εi


 ≥ 0 (7.23)

Ωc3i , (Ti(αt))ij ≥ 0 i, j = 1, ...2n (7.24)

where λpi is adopted from the transmission constraints of the node i, which indicates

the maximum allowable external incoming traffic of the premium class.

• Constraints of the input

The input constraint of each node i can be defined as follows

0 ≤ ūpi(t) ≤ Cserver,i(αt) (7.25)

By following along the similar lines as that given previously in Section 5.2.2, and

considering the same ellipsoid as defined in (7.21), the right hand side of the input

constraint (7.25) can be expressed by the following LMI conditions

Ωc4i ,




I KT
i

Ki (C2
server,i(αt)/εi)P̃ir


 ≥ 0

Ωc5i , (V −1
i )ij ≥ 0 (7.26)

The non-negative constraint of the input ūpi(t) can be ensured if the control gain

Kpi(αt) > 0. Noting that the control gain Kpi = B+
i0TiΛ−1

i1 , then by setting the

matrix Λ−1
i1 to be a diagonal positive definite, the non-negative side of the input

constraint (6.50) can now be expressed by the following LMI conditions:

Ωc6i = (B+
i0Ti)ij ≥ 0, i, j = 1, ..., n (7.27)

Therefore, the above results, as well as the LMI conditions that are given in Lemma 6.2

can be summarized by the following theorem.

Theorem 7.1. The distributed guaranteed cost congestion controller (DGCC) for the

premium traffic in a mobile network can be obtained according to
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ūpi = Kpi(αt)z̄pi + Wji(αt)Kji(αt)Z̄pj(t) (7.28)

if the LMI conditions that are given in Lemma 7.2 subject to the positive definite diagonal

matrix Λ−1
i1 (αt) and the LMI conditions Ωc1i, Ωc2i, Ωc3i, Ωc4i, Ωc5i and Ωc6i, for i = 1, ...n,

k = 1, 2, αt ∈ S = {1, ..., M}, as given in (7.22) to (7.27), respectively, are satisfied.

Proof: Follows along the same lines as that is the derivations in Lemma 7.1, Lemma

7.2, and the above analysis for the physical constraints. ¥

7.2 Distributed Guaranteed Cost Congestion Con-

trol (DGCC) for the Ordinary Traffic Class

The control objective for the ordinary traffic is to regulate the incoming traffic λri(t) and

the link capacity Cri(t) so that the queueing length xri(t) is as close as possible to the

reference set point xref
ri . Let us re-write the dynamic queuing model of the ordinary traffic

in a mobile network as follows:

ẋri(t) = −f(xri, r)u1
ri(t) + u2

ri(t) +
∑

j∈℘i(αt)

f(xrj(t− τji(t)))u1
rj(t− τji(t))gr

ji(t) (7.29)

Let us define the input vector of the ordinary traffic uri = [u1
ri, u

2
ri]

T , and the

nonlinear matrix F (xri(t)) = diag{f(xri(t)), 1}. The dynamical system (7.29) can be

transformed into an equivalent linear system through the application of the following

input-state feedback transformations:

zri(t) = xri(t)− xref
ri (7.30)

uri(t) = F−1(xri, t)ūri (7.31)

where xref
ri is the reference set point of the queuing length at node i. The above equations

imply that u1
ri = f−1(xri, t)ū1

ri and u2
ri = ū2

ri. Therefore, the nonlinear dynamics (7.29)

becomes

żri(t) = −ū1
ri(t) + ū2

ri(t) +
∑

j∈℘i(αt)

ū1
rj(t− τji(t))gr

ji(t)

= Bi0ūri(t) +
∑

j∈℘i(αt)

Bij ūrj(t− τji(t)) (7.32)
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where Bi0 =
[
−1 1

]T

, Bij =
[

gr
ji 0

]T

. Based on the decentralized model (7.32),

the distributed congestion controller for the ordinary traffic is selected as follows:

ūri(t) = ūde
ri (t) +

∑

j∈℘i(αt)

wr
jiū

de
rj (t) (7.33)

ūde
ri (t) = Krizri(t)

Therefore the distributed congestion controller of the ordinary traffic can be written as

ūri(t) = Kri(αt)zri(t) + Wji(αt)Kji(αt)Zrj(t) (7.34)

where Wji(αt) = vec{wr
ji(αt)} and Kji(αt) = diag{Kri(αt)}.

Therefore, the control objective for the ordinary traffic is to select the distributed

control gain Kri(αt) and the distributed weight matrix Wji such that the system (7.32) is

stochastically stable and the following cost function is upper bounded:

Jri = E{
∫ ∞

0
(zT

ri(t)Qi(αt)zri(t) + ūT
ri(t)Ri(αt)ūri(t))dt} (7.35)

where Qi(αt) and Ri(αt) are given positive definite matrices.

Lemma 7.3. Given the cost function (7.35) and under Assumption 5.2, the state feedback

control law (7.38) is the stochastic guaranteed cost controller for the system (7.32), if

there exist symmetric positive definite matrices Λi1(αt), S̄i(αt), Ui, Ūi, Q̄i(αt), R̄i(αt),

positive definite matrices Ti(αt), T̃i(αt), W̄ji(αt), Ŵji(αt), and W̃ji(αt), for i = 1, ..., n,

αt ∈ S = {1, ....M}, such that the following LMI conditions are satisfied:

Σi(αt) =




σ1 + Qi(αt) + KT
i (αt)Ri(αt)Ki(αt) σ2

∗ σ4 + +KT
ji(αt)W T

ji (αt)RiWji(αt)Kji(αt)

∗ ∗
∗ ∗
∗ ∗

[Pi(αt) + h2(Bi0Kri(αt))T Ui]BjiKji(αt) σ3 Ui

h2KT
ji(αt)W T

ji (αt)BT
i0UiBjiKji(αt) σ5 0

h2KT
ji(αt)BT

jiUiBjiKji(αt) σ6 0

∗ σ7 0

∗ ∗ −Ui − (1− h)Si(αt)




< 0 (7.36)
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where

σ1 = 2Pi(αt)Bi0Kri(αt) +
M∑

k=1

παtkPi(k) + h2KT
ri(αt)BT

i0UiBi0Kri(αt)

+(1 + h)Si(αt)− Ui

σ2 = Pi(αt)Bi0Wji(αt)Kji(αt) + h2KT
riB

T
i0UiBi0Wji(αt)Kji(αt)

σ3 = [Pi(αt) + h2KT
riB

T
i0Ui]BkjWkj(αt)Kkj(αt)

σ4 = h2KT
ji(αt)W T

ji (αt)BT
i0UiBi0Wji(αt)Kji(αt)

σ5 = h2KT
ji(αt)W T

ji (αt)BT
i0UiBkjWkj(αt)Kkj(αt)

σ6 = h2KT
ji(αt)BT

jiUiBkjWkj(αt)Kkj(αt)

σ7 = h2KT
kj(αt)W T

kj(αt)BT
kjUiBkjWkj(αt)Kkj(αt)

Proof: Consider the following stochastic Lyapunov-Krosovskii functional candidate:

Vi(z̄ri(t), αt) = Vi1 + Vi2 + Vi3 + Vi4

Vi1 = z̄ri(t)T Pi(αt)zri(t)

Vi2 =
∫ t

t−h
zT
ri(s)Si(αt)zri(s)ds

Vi3 = h

∫ 0

−h

∫ t

t+θ
żT
ri(s)Ui ˙̄zri(s)dsdθ

Vi4 =
∫ 0

−h

∫ t

t+θ
zT
ri(s)Si(αt)zri(s)dsdθ

and Pi(αt), Si(αt), Ui are positive definite matrices with appropriate dimensions. For

each mode αt = k ∈ S, the infinitesimal generator of the Lyapunov function can then be

derived as follows:

LVi1 = lim
∆→0+

1
∆
{E[Vi1(zri(t + ∆), αt+δ, t + ∆)|zri(t), αt = k]− Vi1(zri(t), k, t)}

= 2zT
ri(t)Pi(αt) ˙̄zri(t) +

M∑

k=1

παtkz
T
ri(t)Pi(k)zri(t)

= 2zT
ri(t)Pi(αt)[Bi0Kri(αt)zri(t) +

∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t))

+
∑

j∈℘i(αt)

Bi0w
p
ji(αt)Krj(αt)zrj(t) +

∑

j∈℘i(αt)
k∈℘j(αt)

Bjw
p
kjKrk(αt)zrk(t− τji(t))]

+zT
ri(t)

M∑

k=1

παtkPi(k)zri(t)
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LVi2 =
∫ t

t−h
2zT

ri(s)Si(αt) ˙̄zpi(s)ds +
∫ t

t−h
zT
ri(s)

M∑

k=1

παtkSi(k)zri(s)ds

= zT
ri(t)Si(αt)zri(t)− (1− h)zT

ri(t− h)Si(αt)zri(t− h)

+
∫ t

t−h
zT
ri(s)

M∑

k=1

παtkSi(k)zri(s)ds

LVi3 = h2żT
ri(t)Uiżri(t)− h

∫ t

t−h
żT
ri(s)Uiżri(s)ds

= h2[Bi0Kri(αt)zri(t) +
∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t))

+
∑

j∈℘i(αt)

Bi0w
p
ji(αt)Krj(αt)zrj(t) +

∑

j∈℘i(αt)
k∈℘j(αt)

Bjw
p
kjKrk(αt)zrk(t− τji(t))]T Ui

[Bi0Kri(αt)zri(t) +
∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t))

+
∑

j∈℘i(αt)

Bi0w
p
ji(αt)Krj(αt)zrj(t) +

∑

j∈℘i(αt)
k∈℘j(αt)

Bjw
p
kjKrk(αt)zrk(t− τji(t))]

−h

∫ t

t−h
żT
ri(s)Ui ˙̄zri(t)ds

LVi4 = hzT
ri(t)Si(αt)zri(t)−

∫ t

t−h
zT
ri(s)

M∑

k=1

παtkSi(k)zri(s)ds

Let us define that:

Zrk(t− τ) = vec{z̄T
rk(t− τji(t))} k ∈ ℘j(αt)

BjiKji(αt)zrj(t− τ) =
∑

j∈℘i(αt)

BjKrj(αt)zrj(t− τji(t))

BkjWkj(αt)Kkj(αt)zrk(t− τ) =
∑

j∈℘i(αt)
k∈℘j(αt)

Bjw
p
kj(αt)Krk(αt)zrk(t− τji(t))

Therefore, by adding up LVi1 to LVi4 and considering the above definitions, one can

obtain

LVi ≤ ηT
i (t, τ, h)Σi(αt)ηi(t, τ, h) (7.37)

where ηi(t, τ, h) = [zT
ri(t) Z̄T

rj(t) Z̄T
rj(t− τ) Z̄T

rk(t− τ) zT
ri(t− h)]T , and Σi is given by
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Σi(αt) =




σ1 σ2 [Pi(αt) + h2(Bi0Kri(αt))T Ui]BjiKji(αt) σ3 Ui

∗ σ4 h2KT
ji(αt)WT

ji(αt)BT
i0UiBjiKji(αt) σ5 0

∗ ∗ h2KT
ji(αt)BT

jiUiBjiKji(αt) σ6 0

∗ ∗ ∗ σ7 0

∗ ∗ ∗ ∗ −Ui − (1− h)Si(αt)




Since Σ̄ik(αt) < 0 one will have

Σi(αt) = Σ̄ik(αt)−




Qi + KT
i RiKi 0

0 KT
jiW

T
jiRiWjiKji


 < 0 (7.38)

hence LVi < 0. According to the Definition 6.1, the system (7.32) is stochastically stable.

Moreover, from (7.37) and (7.38) we also have

LVi ≤ −zT
ri[Qi + KT

riRiKri]zri − ZT
rj(t)K

T
jiW

T
jiRiWjiKjiZrj(t)) < 0 (7.39)

According the the cost function (7.35), one will obtain

Jri = E{
∫ ∞

0
(zT

riQizri + ūT
riRiūri)dt}

= E{
∫ ∞

0
(zT

ri[Qi + KT
riRiKri]zri + ZT

rj(t)K
T
jiW

T
jiRiWjiKjiZrj(t))dt}

≤ −E

∫ ∞

0
LVidt

= V (zri(0), 0, r0) = J∗ri (7.40)

Therefore, according to the Definition 6.2, the scaler J∗ri is the stochastic guaranteed cost

of the system (7.32). This completes the proof of Lemma 7.3. ¥

Lemma 7.4. Given the cost function (7.35), the distributed controller (7.33) is the stochas-

tic guaranteed cost controller for the system (7.32), if there exist symmetric positive definite

matrices Λi1(αt), S̄i(αt), Ui, Ūi, Q̄i(αt), R̄i(αt), positive definite matrices Ti(αt), T̃i(αt),

W̄ji(αt), Ŵji(αt), and W̃ji(αt), for i = 1, ..., n, αt ∈ S = {1, ....M}, such that the following

LMI conditions are satisfied:
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Σ̃ik(αt) =




Yik Bi0Wji + h2W̄ji I + h2T̄i I + h2T̄i

∗ h2W̃ji h2Ŵji h2Ŵji

∗ ∗ h2Ui h2Ui

∗ ∗ ∗ h2Ui




< 0

Yik = 2Ti(αt) +
M∑

k=1

παtkΛi1 + h2T̃i(αt) + (1 + h)S̄i − Ūi + Q̄i + R̄i

and the distributed control gain is given by Kri(αt) = B+
i0Ti(αt)Λ−1

i1 (αt).

Proof: Regarding the nonlinear matrix inequality condition (7.38), let us define

Λi1(αt) = P−1
i (αt) Λi2(αt) = K+

ji(αt)

Λi3(αt) = [BjiKji(rt)]−1 Λi4(αt) = [BkjWkj(αt)Kji(αt)]−1

Λi5(αt) = 0 Λi(αt) = diag{Λij(αt)} j = 1, ....5

By pre and post multiplying the matrix Σi(αt) with ΛT
i and Λi, respectively, one will

obtain

Σ̄ik(αt) = ΛT
i (αt)Σi(αt)Λi(αt) =




Σ̃ik 0

0 0


 (7.41)

where:

Σ̃ik =




Xik Bi0Wji + h2Bi0KriUiBi0Wji I + h2Bi0KriUi I + h2Bi0KriUi

∗ h2WT
jiB

T
i0UiBi0Wji + WT

jiRiWji h2WT
jiB

T
i0Ui h2WT

jiB
T
i0Ui

∗ ∗ h2Ui h2Ui

∗ ∗ ∗ h2Ui




Xik = 2Bi0KriΛi1 +
M∑

k=1

παtkΛi1 + h2ΛT
i1(Bi0Kri)T UiBi0KriΛi1 + (1 + h)ΛT

i1SiΛi1

−ΛT
i1UiΛi1 + ΛT

i1(Qi + KT
piRiKpi)Λi1

Therefore, if we define

Bi0Kri(αt) = Ti(αt)Λ−1
i1 (αt) T̄T

i (αt) = TT
i (αt)Ui

W̄ji = Bi0KriUiBi0Wji Ŵji = WT
jiB

T
i0Ui

W̃ji = ŴjiBi0Wji R̄i = ΛT
i1K

T
piRiKpiΛi1

S̄i = ΛT
i1SiΛi1 Ūi = ΛT

i1UiΛi1

Q̄i = ΛT
i1QiΛi1 T̃i(αt) = T̄T

i (αt)Ti(αt))
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then, the matrix Σ̃ik(αt) becomes

Σ̃i(αt) =




Yik Bi0Wji + h2W̄ji I + h2T̄i I + h2T̄i

∗ h2W̃ji h2Ŵji h2Ŵji

∗ ∗ h2Ui h2Ui

∗ ∗ ∗ h2Ui




Yik = 2Ti +
M∑

k=1

παtkΛi1 + h2T̃i(αt) + (1 + h)S̄i − Ūi + Q̄i + R̄i

Therefore, if Σ̃i(αt) < 0, one will have Σi(αt) < 0, and the system (7.32) is stochastically

stable. By solving the LMI conditions Ω̄ik(αt) < 0, the weight matrix Σ̃ik(αt) < 0, one

can obtain that:

Kri(αt) = B+
i0Ti(αt)Λ−1

i1 (αt)

This completes the proof of Lemma 7.4. ¥

7.2.1 Stability Analysis

Lemma 7.3 shows that the distributed congestion control law is a stochastic guaranteed

cost controller for the ordinary traffic in a mobile network. Due to the nodes mobility, the

network topology is time-varying in a mobile network, hence the stability conditions in

Lemma 7.3 and the distributed control gains are now mode-dependent. Therefore, similar

to the premium traffic controller, at each time when the network topology is changed

one needs to re-calculate the distributed control gain Kri(αt) and the distributed weights

wr
ji(αt), and the distributed controller ūri(t) needs to be updated for the new network

conditions.

Moreover, since the external incoming traffic of the ordinary traffic λri(t) is con-

sidered as an input in the guaranteed cost control approach, the distributed congestion

control strategy can guarantee the stability of the ordinary traffic of each node as well as

its nearest neighbors, simultaneously.

Stability Conditions Incorporating The Physical Constraints

The physical constraints of the ordinary traffic in a mobile network are listed as
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zmin
ri ≤ zr(t) ≤ zmax

ri (7.42)

0 ≤ ūri(t) ≤ cri(αt) (7.43)

where zmaz
ri = xbuffer

ri − xref
ri , zmin

ri = −xref
ri , xref

ri is the reference set point of the queuing

length, cri(αt) is the maximum allowable bandwidth that can be allocated to the ordinary

traffic at node i which in fact is equal to the instantaneous leftover capacity from the

premium traffic cri(t) = Cserver,i(αt)− ūpi(t).

To avoid any confusions, in the remainder of this section, we utilize the notations

of Ppi and Pri to denote the Lyapunov matrices Pi(αt) that are used in Lemma 6.1 for

the premium traffic, and the other matrices Pi(αt) that are used in Lemma 6.3 for the

ordinary traffic, respectively.

Consider the following ellipsoid

Si = {zT
ri(P̃ri)−1(αt)zri < ρi} (7.44)

where ρi > 0 is a selected constant.

Now, it follows along the lines similar to deriving the LMI conditions for the phys-

ical constraints in the decentralized congestion controller for the fixed network, as given

previously in Section 5.2.2, that physical constraints in (6.71) are satisfied if the following

LMI conditions are satisfied, namely

Ωc1i ,




M̃i M̃T
i

M̃i (zmax
ri )2/ρi


 ≥ 0 (7.45)

Ωc2i , (Ti(αt))ij ≥ 0, i, j = 1, ...2n (7.46)

Ωc3i , γimax(Ψi(αt)) ≤ εi (7.47)

Ωc4i ,




I Kri Kpi

(Kri)T C2
server,i(αt)

εi+ρi
P̃ri(αt) 0

(Kpi)T 0
C2

server,i(αt)

εi+ρi
P̃pi(αt)



≥ 0 (7.48)

The following theorem can now be obtained.

Theorem 7.2. A distributed guaranteed cost congestion controller (DGCC) for the ordi-

nary traffic in a mobile network can be determined if the conditions given in Lemma 7.3 is

satisfied subject to the LMIs Ωc1i to Ωc4i that are governed by (7.45) to (7.47), respectively.
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Figure 7.3: The flow chart of the distributed guaranteed cost congestion controller (DGCC) for a
Mobile Diff-Serv network.

Proof: The proof follows along the same lines as given in Lemma 7.3 and the

derivations for the physical constraints as given in this section. ¥

The distributed guaranteed cost congestion control strategies of a mobile Diff-Serv

network that are proposed in this chapter can be summarized by the flowchart shown

in Fig. 7.3. As shown in the distributed congestion control scheme the controller is

implemented at each node. The controllers of the nodes that are in the same neighboring

set are able to communicate with each other and share information. That is, the control

gain Kpi(αt), the state information z̄pi(t) and λ̂pi(t) are available to all the nodes in its

neighboring set.

Therefore, given a node i in a mobile Diff-Serv network, the premium traffic con-

troller first solves the corresponding LMI conditions to derive the distributed control gains

Kpi(αt), the distributed weights of the neighboring nodes wp
ji(αt), and the adaptive con-

trol gains δpi(αt) and βpi(αt) . The adaptive estimator of the premium traffic λ̂pi(t) can

then be updated. Given the local control parameters and the control gains of the nearest
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neighboring nodes Kpj(αt), for j ∈ ℘i(αt), the bandwidth allocated to the premium traffic

of node i is calculated as follows:

Cpi(t) = upi(t) = f−1(xpi, t)ūpi(t) (7.49)

= f−1(xpi, t)[Kpi(αt)z̄pi(t) + Wji(αt)Kji(αt)Z̄j(t)] i = 1, ..., n j ∈ ℘i(αt)

= f−1(xpi, t)[Kpi(αt)




xpi(t)− xref
pi

λ̂pi(t)


 + Wji(αt)Kji(αt)




Xpj(t)−Xref
pj

Λ̂pj(t)


]

where xpi(t) is the queuing length of node i, xref
pi is the reference point of the queuing

length of node i which is selected by the network operator, Xpj(t) = vec{xpj(t)} is the

queuing length of the nearest neighboring nodes in the set ℘i(αt), Xref
pj is the reference

queuing length of the neighboring nodes, λ̂pi(t) = vec{λ̂pi(t)} is the estimator of the

neighboring nodes, Kpi(αt) and Wji(αt) are the control gains that can be derived from the

LMI conditions of node i and Kpj(αt) is the control gain of the neighboring nodes which

are sent from the neighbors.

On the other hand, given the bandwidth controller Cpi(αt) of the premium traffic,

the ordinary traffic controller first solves the LMI conditions and derives the local control

gains Kri(αt) as well as the distributed wights wr
ji(αt). Given the information of the

neighboring nodes, the bandwidth controller and the flow rate controller for the ordinary

traffic of node i are then obtained as follows:


Cri(t)

λri(t)


 = F−1(xri, t)ūri(t) (7.50)

=




f−1(xri, t) 0

0 1


 [Kri(αt)(xri(t)− xref

ri ) + W r
ji(αt)Kr

ji(αt)(Zri(t)− Zref
ri )

where xri(t) is the ordinary queuing length of node i, xref
ri is the reference point of the

ordinary queuing length of node i, Xrj(t) = vec{xrj(t)} is the ordinary queuing length of

the neighboring nodes, Xref
rj is the reference ordinary queuing length of the neighboring

nodes, Kri(αt) and W r
ji(αt) are the control gains that can be derived from the LMI con-

ditions of node i, and Krj(αt) is the control gain of the neighboring nodes which are sent

from the neighbors.
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At each time when the network changs, the distributed congestion controllers of the

premium and the ordinary traffic need to re-calculate all their mode-dependent parameters,

and update the corresponding bandwidth controllers and flow rate controllers with the

new parameters, respectively. It is worth nothing that by setting M = 1 the distributed

guaranteed cost congestion control (DGCC) strategy proposed in this chapter becomes

applicable to the fixed Diff-Serv network trivially.

7.3 Simulation Results

In this section, simulation results are provided to evaluate the performance of our proposed

distributed guaranteed cost congestion control strategy (DGCC) in a NMAS with Diff-Serv

traffic. Although, the DGCC strategy was developed based on the decentralized queuing

model of the node in a mobile network, however, if we set the number of modes to M = 1,

then the DGCC approach proposed in this chapter can also be applied to the NMAS with

a fixed topology. Furthermore, if we set the distributed control gains to wji(αt) = 0, then

the DGCC approach will become identical to the decentralized GCC approach that are

presented in Chapter 6.

Therefore, the simulations that are conducted in this section are intended to demon-

strate the advantages and improvements of the congestion control by incorporating the

adjustments from the nearest neighboring nodes. The performance of our proposed DGCC

are evaluated through two examples and are compared with the centralized GCC and the

decentralized GCC approaches.

Example 7.1. Mobile Network. In this example, the network topology and the sce-

nario that are considered in Section 5.3 are repeated. However, the nodes in the network

are now mobile. The initial configuration of the network is shown in Fig. 3.5. The network

has 15 nodes and is divided into three clusters. These three clusters are supposed to search

a rectangular area from the point A to point B, as shown in Fig. 7.4. The first cluster C1

that includes the nodes 1− 5 moves towards north first and then towards east; the second

cluster C2 including the nodes 6− 10 moves towards north-east directly; the third cluster
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C3 with the nodes 11− 15 moves towards east first and then towards north. The nodes 1,

6, and 11 are the decision makers which can communicate with each other, if connected.

The other nodes in the network are sensors which are responsible for collecting data. It

is assumed that the nodes within the same group are always connected with the decision

maker and keep the same formation during the task. On the other hand, during the move-

ment, the connected nodes between different groups are changed depending on the relative

positions of the groups. For example, Fig. 7.4 illustrates three typical modes of the mobile

network during the mission. The capacity of each link is assumed to be 10 Mbps and the

buffer size for each traffic class in each node is set to 5 Mbits. A total of 12 switching

modes are defined based on the network topology. In other words, we consider the following

network modes M1 = {1, ..., 15}; M2 = {1, ..., 7}, {6, ..., 15}; M3 = {1, ..., 6}, {6, ..., 15};
M4 = {1, ..., 7}, {6, ..., 11}, {11, ..., 15}; M5 = {1, ..., 6}, {6, ..., 11}, {11, ..., 15}; M6 =

{1, ..., 5}, {6, ..., 11, 15}, {11, ..., 15}; M7 = {1, ..., 5}, {6, ..., 10}, {11, ..., 15}; M8 = {1, ..., 6},
{6, ..., 10}, {11, ..., 15}; M9 = {1, ..., 7}, {6, ..., 10}, {11, ..., 15}; M10 = {1, ..., 10}, {10, ..., 15};
M11 = {1, ..., 10}, {6, ..., 11} {10, ..., 15}; and M12 = {1, ..., 10} {6, ..., 15}. The transition

probabilities for the Markovian jump model of changes in the network topologies are as-

sumed to be πkl = 0.002 for l 6= k. The following two cases are considered for evaluating

the performance of our proposed decentralized MJ-GCC strategy.

Remark 7.1. As stated earlier, the transition probability πkl depends on the velocity, the

communication range of nodes and the distance among them. The transition probabilities

need not to be the same, and still the performances of our proposed congestion control

strategy remains similar with different settings of πkl. Therefore, without loss of generality,

we assume that the transition rates are πkl = 0.002, for k 6= l in this chapter. It should be

noted that different transition probabilities have been considered in the previous Chapters

4 and 6. Moreover, the Markovian jump model is simulated through a Monte carlo method

[152] by using the MatLab function randsrc based on the transition probabilities πkl.

Case 1: Queuing Lengths of the Bottle Neck Nodes

In the network model shown above, the premium traffic load is defined based on a
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Figure 7.4: The schematic of the network configuration for three ”typical” modes of the mobile
network in Example 7.1.

Poisson distribution with the rate of λpi(t) = 10 Mbps, the ordinary traffic is set according

to an on-off traffic with the maximum rate of 20 Mbps and the off-time is defined based

on the exponential distribution with a mean period of 5ms, the best-effort traffic is set

to a random signal varying from 0.5 Mbps to 2 Mbps. The delays among the nodes are

defined as a random signal as τ = min{0,max{hmax, h}}, where h ∼ N(20ms, 10ms) is a

normal distribution function and hmax = 40 ms is the maximum bound of the delay.

During the network operation, the sink nodes 1, 6, and 11 are the bottle neck nodes.

The queuing length of the bottle neck nodes are shown in Fig. 7.5 and Fig. 7.6, for the

premium and the ordinary traffic, respectively. The simulation results indeed confirm

that our proposed distributed GCC strategy can stabilize the buffer queues despite the

changing network topology and the time-varying delays.

Case 2: Performance Under Different Delays Levels

The performance of the bottle neck nodes are also evaluated based on different levels

of time delays with maximum bound of h = [20 40 80] ms. Table 7.1 presents the buffer

characteristics, namely the packet loss rate (PLR) and the average queuing delay, of the

bottle neck nodes by utilizing our proposed DGCC approach. It should be noted that these

two performance metrics are calculated according to the definitions given in Section 4.3.1.

318



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
x 10

4 Premium queue

N
od

e 
1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
x 10

4

N
od

e 
6

0 0.2 0.4 0.6 0.8 1
0

2

4

6

x 10
4

N
od

e 
11

Time [scond]

Figure 7.5: Premium queuing length (bits) by uti-
lizing our proposed DGCC approach in Example
7.1.
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Figure 7.6: Ordinary queuing length (bits) by uti-
lizing our proposed DGCC approach in Example
7.1.

By inspecting these results it follows that the packet loss rate of both traffic class remain

less than 0.05% for the premium traffic and less than 5% for the ordinary traffic in the

mobile network despite the increasing levels of delays in the network. The average queuing

delay in each node is also robust with respect to the different levels of the time-delays.

Example 7.2. Fixed Network. In this example, the performance of the DGCC is

compared with the decentralized and centralized GCC strategies that were proposed in

Chapter 5. By setting the number of modes to M = 1 in the DGCC algorithm, the

congestion control strategy proposed in this chapter can be applied to a fixed network

topology directly. The network topology and scenario presented in Section 5.3 is repeated.

The physical constraints of the network are set to xbuffer,i = 5 Mbits, Cserver,i = 10 Mbits,

for i = 1, ..., 15. Each source node generates a premium random traffic with a mean packet

size of 512 bytes and pace the packets into the network every 10ms. The premium traffic

is assumed to be bounded such that λmax
pi = 0.8 Mbps. The source nodes also generate

an ordinary traffic by pacing packets into the network according to an on-off mechanism.
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Table 7.1: The queuing performance of the bottle neck nodes in Ex. 7.1 by utilizing the proposed
DGCC approach with different delay levels.

PLR Node 1 Node 6 Node 11
hmax P O P O P O
20 ms 0.011% 2.05% 0.026% 1.01% 0.006% 1.33%
40 ms 0.012% 2.33% 0.028% 4.16% 0.007% 1.42%
80 ms 0.013% 2.48% 0.035% 4.57% 0.026% 3.70%

Queuing Delay Node 1 Node 2 Node 3
hmax P O P O P O
20 ms 33.0 ms 56.4 ms 42.5 ms 42.1 ms 20.3 ms 21.8 ms
40 ms 50.8 ms 56.6 ms 44.1 ms 42.5 ms 24.3 ms 22.6 ms
80 ms 52.4 ms 57.0 ms 45.9 ms 45.0 ms 25.2 ms 24.9 ms

During the off-time period there are no packets generated. The length of the off-time is

determined by an exponential distribution with a mean period of 5ms. During the on-time,

the source nodes generate packets with a constant rate of 100 packets/s with the mean

packet size of 512 bytes.

Fig. 7.7 shows the buffer responses of both traffic classes in node 1 by utilizing the

DGCC strategy. By inspecting these plots, one may readily conclude that for both traffic

classes our proposed distributed guaranteed cost congestion (DGCC) strategy stabilizes

the network despite the multiple time-varying delays. Moreover, it can be seen from

the simulation results that not only the buffer queues convergence to their references set

points, but also the transient responses are also fast.

Fig. 7.8 shows the comparison of the buffer responses in node 1 by utilizing the

DGCC, the centralized GCC, and the decentralized GCC strategies, for the premium and

the ordinary traffic, respectively. The plots are corresponding to the zoomed period of 0.1

seconds for the premium traffic and 0.05 seconds for the ordinary traffic corresponding to

the transients of Fig. 7.7. During this time period, the reference set point of the premium

traffic is 6 × 104 bits and the reference set point for the ordinary traffic is 6 × 105 bits.

In Fig. 7.8, the solid line indicates the buffer response by utilizing the centralized GCC

algorithm; the dashed line corresponds to the buffer response with the distributed GCC
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Figure 7.7: The buffer response of node 1 in Example 7.2 by utilizing the proposed DGCC approach.

algorithm; and the dotted line denotes the buffer response with the decentralized GCC

algorithm.

On the other hand, the performance of the buffer characteristics of node 11 for the

premium and the ordinary traffic services in presence of time-delay of 80ms is summarized

in Table 7.2 and Table 7.3.

As can be inspected from the plots in Fig. 7.8 and the numerical comparisons in

the tables, one can readily observe that:

• The buffer queues by utilizing all the three congestion control strategies do converge

to their reference set points. The QoS performance of the network by utilizing the

three GCC strategies are similar;

• The DGCC strategy can obtain a more accurate control result (mean error) than

the decentralized GCC algorithm, and respond faster (settling time) than the cen-

tralized GCC. The reason is that by incorporating the adjustments from the nearest

neighboring nodes, the coupling effects of the neighboring states are considered
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Figure 7.8: The comparison of the buffer response in node 1 by utilizing the decentralized GCC,
the centralized GCC, and the distributed GCC approaches.
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Table 7.2: The premium traffic performance of the node 11 in Example 7.2 with hmax = 80
ms, by utilizing the decentralized GCC, the centralized GCC, and the distributed GCC (DGCC)
approaches.

hmax = 80 ms Decentralized GCC Centralized GCC Distributed GCC (DGCC)

QoS
PLR 0 0 0
Queuing Delay 26.0 ms 24.5 ms 24.6 ms

QoC
Mean Error 3.83% 2.87% 2.93%
Settling Time 0.09s 0.11s 0.09s
Max cost J∗p 5.05× 1020 2.94× 1020 3.27× 1020

Feasibility
Num of LMIs 21 8 18
Max dimension of LMIs 10× 10 18× 18 10× 10

explicitly. Therefore, by properly selecting the distributed weights, the DGCC ap-

proach can obtain a more effective control than the decentralized one. On the other

hand, the DGCC controller is implemented at each node and updated only based

on the local information. Therefore, the buffer response of the DGCC is faster than

the centralized one, and

• The upper bound of the guaranteed cost by utilizing the DGCC approach is between

the decentralized and the centralized GCC approaches. However, the number of

LMIs and the maximum dimension of the LMIs by utilizing the DGCC approach

is similar to the decentralized one. These results confirm again that the DGCC

approach is also scalable to large scale networks.

7.4 Conclusions

In this chapter, the guaranteed cost congestion control strategy for a NMAS with Diff-

Serv traffic that are proposed in Chapter 5 and Chapter 6 are generalized. The extension

consists mainly of incorporating the communication capabilities of the local congestion

controllers and adding adjustment controls from the nearest neighboring nodes. By tak-

ing the advantages of the Markovian jump and the guaranteed cost control principles, the

proposed distributed guaranteed cost congestion controller (DGCC) is shown to be in fact
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Table 7.3: The ordinary traffic performance of the node 11 in Example 7.2 with hmax = 80
ms, by utilizing the decentralized GCC, the centralized GCC, and the distributed GCC (DGCC)
approaches.

hmax = 80 ms Decentralized GCC Centralized GCC Distributed GCC

QoS
PLR 0.98% 0.36% 0.78%
Queuing Delay 23.55ms 23.14ms 23.16ms

QoC
Mean Error 0.68% 0.43% 0.65%
Settling Time 0.09s 0.24s 0.11s
Max cost J∗r 3.01× 1020 1.45× 1020 2.04× 1020

Feasibility
Num of LMIs 18 7 15
Max dimension of LMIs 7× 7 18× 18 10× 10

equivalent to a local state feedback control plus a nearest neighboring controllers that are

adjusted with proportional gains. The resulting congestion control problem is then cast as

a quadratic regulation problem of a time-delay system with free parameters (gains) that

need to be selected. The analytical results are confirmed through a number of simulation

studies. The comparative results demonstrate that the DGCC strategy significantly en-

hances the scalability of the centralized algorithm and improves the performance of the

decentralized approach to large scale traffic networks.
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Part IV

Robustness Evaluations
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Chapter 8

Robustness Evaluations

The aim of this chapter is to evaluate the robustness of the congestion control strategies

that are proposed in this thesis through extensive simulations. The system uncertainty can

be represented in two distinctly different forms, namely the parametric uncertainty and the

unstructured uncertainty [161]. Therefore, in order to evaluate and compare the robustness

capabilities of all the proposed switching congestion control (SCC) strategies and the

guaranteed cost congestion control (GCC) strategies, the simulations in this chapter are

conducted under the following two aspects:

• The uncertainty in system parameters. The parametric uncertainty typically arises

from a physical model that has uncertain or changing parameters. In this thesis,

there is only one system parameter in the queuing model, namely the average queue

service rate µ. Therefore, in this section, the robustness to the average queue service

rate will be investigated with different levels of uncertainties in µ.

• The unstructured uncertainties. The unstructured uncertainty is typically used to

account for neglected or unmodelled dynamics, and both magnitude and phase are

are considered to be uncertain. In this thesis, the congestion control strategies are

developed based on the standard M/M/1 queue. Therefore, in order to check the

robustness to unstructured uncertainties, two other kinds of queuing models, namely

the M/D/1 and M/Ek/1 queuing models are utilized.
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Figure 8.1: The network with a fixed topology that is utilized for robustness evaluations.

On the other hand, the congestion control strategies proposed in this thesis are

developed for both fixed and mobile networks. Therefore, different network simulation

models and scenarios need to be defined for robustness evaluations.

A. Simulation Model for a Fixed Network

For the SCC, GCC, and the DGCC strategies for networks with fixed topology, the

network model and scenario shown in Fig. 8.1 are utilized. The network scenario is the

same as that defined in Example 7.2. The physical constraints of the network are set to

xbuffer,i = 5Mbitsand Cserver,i = 10Mbits, for i = 1, ..., 15. Each source node generates a

premium random traffic with a mean packet size of 512 bytes and pace the packets into the

network every 10ms. The premium traffic is assumed to be bounded such that λmax
pi = 0.8

Mbps. The source nodes also generate an ordinary traffic by pacing packets into the

network according to an on-off mechanism. During the off-time period, no packets are

generated. The length of the off-time is determined by an exponential distribution with

a mean period of 5ms. During the on-time, the source nodes generate packets with a

constant rate of 100 packets/s with the mean packet size of 512 bytes. The delays among

the nodes are defined as a random signal as τ = min{0,max{hmax, h}} with a maximum

bound of hmax = 20 ms, where h ∼ N(µ, σ2) is a normal distributed function with mean

value of µ = 15 ms and standard derivation of σ2 = 10 ms. The reference queuing length

for the premium and the ordinary traffic in the bottle neck nodes 1, 6, and 11 are selected

327



Figure 8.2: The schematic of the network configuration for three ”typical” modes of a mobile
network that is utilized for robustness evaluations.

to be a sinusoidal function of time,that is:

xref
p1 (t) = 30 + 30sin(5t)kbits, xref

r1 (t) = 3 + 3sin(5t)Mbits

xref
p2 (t) = 25 + 25sin(5t)kbits, xref

r2 (t) = 2.5 + 2.5sin(5t)Mbits

xref
p3 (t) = 12.5 + 12.5sin(5t)kbits, xref

r3 (t) = 1.25 + 1.25sin(5t)Mbits

B. Simulation Model for Mobile Networks

For the MJ-SCC, MJ-GCC, and the DGCC strategies for mobile networks, the

network model shown in Fig. 8.2 is utilized. The network scenario is the same as that

defined in Example 7.1. The 15 nodes that are divided into three clusters are supposed

to search a rectangular area from point A to point B. The first cluster C1 moves towards

north first and then towards east; the second cluster C2 moves towards north-east directly;

the third cluster C3 moves towards east first and then towards north. The nodes 1, 6,

and 11 are the decision makers which can communicate with each other, if connected. It

is assumed that the nodes within the same group always keep the same formation during

the mission. Fig. 8.2 only illustrates three ”typical” modes of the mobile network during

the movement. The capacity of each link is assumed to be 5 Mbps and the buffer size for
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each traffic class in each node is set to 5 Mbits. The incoming premium traffic is defined

based on a Poisson distribution with the rate of λpi(t) = 10 Mbps and the ordinary traffic

is set according to an on-off traffic with the maximum rate of 20 Mbps, the off-time is

defined based on the exponential distribution with a mean period of 5ms; the best-effort

traffic is set to a random signal varying from 0.5 Mbps to 2 Mbps. The delays among the

nodes are defined as the same as in the fixed network. The reference queuing length for

the premium and the ordinary traffic in the bottle neck nodes are set to be same as before.

The total simulation duration is selected as 30s and the switching modes are de-

fined the same as in Example 7.1. That is, the following neighboring sets of the network

during nodes mobility are considered: M1 = {1, ..., 15}; M2 = {1, ..., 7}, {6, ..., 15}; M3 =

{1, ..., 6}, {6, ..., 15} M4 = {1, ..., 7}, {6, ..., 11}, {11, ..., 15}; M5 = {1, ..., 6}, {6, ..., 11},
{11, ..., 15}; M6 = {1, ..., 5}, {6, ..., 11, 15}, {11, ..., 15}; M7 = {1, ..., 5}, {6, ..., 10}, {11, ..., 15};
M8 = {1, ..., 6}, {6, ..., 10}, {11, ..., 15}; M9 = {1, ..., 7}, {6, ..., 10}, {11, ..., 15}; M10 =

{1, ..., 10}, {10, ..., 15}; M11 = {1, ..., 10}, {6, ..., 11}, {10, ..., 15}; and M12 = {1, ..., 10},
{6, ..., 15}. The transition probabilities for the Markovian jump model of changes in the

network topologies are assumed to be πkl = 0.002 for l 6= k.

8.1 Robustness to Parametric Uncertainty

The dynamic queuing fluid flow model corresponding to the M/M/1 queue in the network

as presented in Chapter 2 is re-written here for convenience:

ẋi(t) = −µi
xi(t)

1 + xi(t)
Ci(t) + λi(t) +

n∑

j=1
j 6=i

µ
xj(t− τji(t))

1 + xj(t− τji(t))
Cj(t− τji(t))gji(t) (8.1)

where xi is the average queuing length of node i, Ci is the output capacity, λi is the

average incoming traffic rate, gji is the traffic compression gains from node j to node i, n

is the number of neighboring nodes of node i, τji is the unknown time-varying delay from

node j to node i, and µi is the average queue service rate at node i. In this thesis, we

assume that the nominal value of the average queue service rate for the M/M/1 queue is

µ = 1. In order to evaluate and compare the robustness capabilities of all our proposed

329



congestion control algorithms with respect to uncertainty in the queue service rate, we

define the uncertainties in µi through percentage errors of [−100%, 100%] with respect to

the nominal value. The corresponding simulation results are presented below.

A. Simulation Results for a Fixed Network

The simulation results of the decentralized SCC, the decentralized GCC, and the

distributed GCC for a fixed network shown in Fig. 8.1 with +20%, +80%, −50%, and

−80% uncertainties in the average queue service rate µ are depicted in Fig. 8.3 to Fig.

8.8, respectively.

B. Simulation Results for a Mobile Network

The simulation results of the decentralized MJ-SCC, the decentralized MJ-GCC,

and the distributed GCC for a mobile network shown in Fig. 8.2 with +20%, +80%,

−50%, and −80% uncertainties in the average queue service rate µ are depicted in Fig.

8.9 to Fig. 8.14, respectively.

By inspecting from the above simulation results, the following observations and

comparisons can be summarized:

• The proposed congestion control strategies perform well only subject to ”small”

parametric uncertainties that are less than 20%;

• Within the robust range, the proposed congestion control strategies perform well to

both positive uncertainties (+20%) and negative uncertainties (−20%);

• When the uncertainty level increases, the SCC and GCC algorithms perform better

than the MJ-SCC and MJ-GCC algorithms for both traffic classes;

• The proposed distributed guaranteed cost congestion control (DGCC) strategy per-

forms very well in both the fixed and mobile networks subject to ”small” parametric

uncertainties that are less than 20%;
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Figure 8.3: Premium queuing length (bits) under different levels of uncertainties in µ by utilizing
the decentralized SCC approach.
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Figure 8.4: Ordinary queuing length (bits) under different levels of uncertainties in µ by utilizing
the decentralized SCC approach.

332



0 0.05 0.1 0.15 0.2
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

4 Premium queue

N
od

e 
1

 

 

Referece queue length
+20%
+80%
−50%
−80%

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5
x 10

4

N
od

e 
6

 

 

Reference queue length
+20%
+80%
−50%
+80%

0 0.05 0.1 0.15 0.2
1

2

3

4

5

6
x 10

4

N
od

e 
11

Time [scond]

 

 

Reference queue length
+20%
+80%
−50%
data5

Figure 8.5: Premium queuing length (bits) under different levels of uncertainties in µ by utilizing
the decentralized GCC approach.
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Figure 8.6: Ordinary queuing length (bits) under different levels of uncertainties in µ by utilizing
the decentralized GCC approach.
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Figure 8.7: Premium queuing length (bits) under different levels of uncertainties in µ by utilizing
the distributed GCC approach.
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Figure 8.8: Ordinary queuing length (bits) under different levels of uncertainties in µ by utilizing
the distributed GCC approach.
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Figure 8.9: Premium queuing length (bits) under different levels of uncertainties in µ by utilizing
the decentralized MJ-SCC approach.
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Figure 8.10: Ordinary queuing length (bits) under different levels of uncertainties in µ by utilizing
the decentralized MJ-SCC approach.
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Figure 8.11: Premium queuing length (bits) under different levels of uncertainties in µ by utilizing
the decentralized MJ-GCC approach.
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Figure 8.12: Ordinary queuing length (bits) under different levels of uncertainties in µ by utilizing
the decentralized MJ-GCC approach.
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Figure 8.13: Premium queuing length (bits) under different levels of uncertainties in µ by utilizing
the distributed GCC approach.
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Figure 8.14: Ordinary queuing length (bits) under different levels of uncertainties in µ by utilizing
the distributed GCC approach.
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8.2 Robustness to Unstructured Uncertainty

In this section, unstructured uncertainties in the queuing model are considered for ro-

bustness evaluations. As discussed in Chapter 2, the dynamic fluid flow model (8.1) is

developed based on the conservation law:

ẋ(t) = −fout(t) + fin(t) (8.2)

The above conservation law is commonly refereed to as the fluid flow or dynamic flow

equation. The flow out of the system fout can be related to the ensemble average utilization

of the server ρ(t) by fout = µρ(t). If the buffer size of the system is assumed to be infinite,

then the flow into the system is just the arrival rate, that is fin(t) = λ(t) and the fluid

flow model (8.2) becomes:

ẋ(t) = −µρ(t) + λ(t) (8.3)

The expression of ρ(t) is dependent on the queuing system under study. However, deter-

mining an exact expression for ρ(t) is quite difficult even for the simplest queues. There-

fore, an approximation method based on the point wise approximation (PSA) method is

generally adopted. The general idea is to determine the values of ρ(t) at a particular time

by a point wise mapping from the current value of x(t) into ρ(t) by using the steady- state

queuing relationships. The value of ρ(t) is then used to numerically solve the equation

(8.3) over a small time interval. Thus a new x(t) is obtained and the procedure is repeated

for the next time step. The dynamic queuing model 8.1 that is used in this thesis is an

approximation of the M/M/1 queue by mapping the queuing state x(t) at steady state.

Therefore, in order to evaluate and compare the robustness capabilities of our pro-

posed congestion control strategies, we use other types of queuing models as the nominal

system model but still apply our proposed congestion control strategies to these ”unseen”

models. By applying the same mapping procedure and utilizing the pointwise station-

ary the fluid flow approximation (PSFFA) modeling technique [97], the following two

special cases of the M/G/1 queue for various common service time distributions can be

obtained [97]:
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Table 8.1: Average queuing error with different nominal queueing models in fixed network.

Decentralized SCC Decentralized GCC Distributed GCC
Nominal model Node Pre. Ord. Pre. Ord. Pre. Ord.

M/D/1
1 1.32% 1.44% 1.46% 0.85% 2.25% 1.05%
6 1.27% 2.21% 2.08% 1.70% 1.89% 2.89%
11 1.93% 1.65% 2.82% 0.82% 2.73% 1.48%

M/Ek/1
1 0.84% 0.14% 1.33% 1.21% 1.48% 2.67%
6 1.18% 2.13% 1.12% 1.73% 1.75% 2.74%
11 1.56% 2.87% 3.63% 2.97% 2.12% 1.29%

• M/D/1 queue, where D refers to deterministic service times:

ẋi(t) = −µi[xi(t) + 1−
√

x2
i + 1]Ci(t) + λi(t) (8.4)

• M/Ek/1 queue, where Ek refers to the Erlang-k distributed service times:

ẋi(t) = −µi[
k(xi(t) + 1)

k − 1
−

√
k2x2

i + 2kx + k2

k − 1
]Ci(t) + λi(t) (8.5)

where k ≥ 1 is a constant. In the following simulations k is set to k = 2.

A. Simulation Results for Fixed Network

The simulation results of the network model shown in Fig. 8.1 by utilizing our

proposed decentralized SCC, the decentralized GCC, and the distributed GCC strategies

are illustrated in Fig. 8.15 to Fig. 8.17, respectively. In Fig. 8.15 to Fig. 8.17, the solid

line represents the reference queuing length, the dashed line indicates the buffer response

with the nominal model of the M/D/1 queue, and the dotted line denotes the buffer

response with the nominal model of the M/Ek/1 queue.

In order to compare the overall performance of the three algorithms in a more

comprehensible manner, the numerical results are summarized in Table 8.1. This summary

of the results is made based on the mean percentage queuing errors corresponding to the

nominal models of the M/D/1 and the M/Ek/1 queuing systems.

B. Simulation Results for Mobile Network
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Figure 8.15: Buffer responses of node 6 subject to the decentralized SCC strategy that is designed
based on the M/M/1 model but applied to the M/D/1 and the M/Ek/1 models. The solid line is
the reference queuing length, the dashed line is the buffer response with the M/D/1 model, and
the dotted line is the buffer response with the M/Ek/1 model.
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Figure 8.16: Buffer responses of node 11 subject to the decentralized GCC strategy that is designed
based on the M/M/1 model but applied to the M/D/1 and the M/Ek/1 models. The solid line is
the reference queuing length, the dashed line is the buffer response with the M/D/1 model, and
the dotted line is the buffer response with the M/Ek/1 model.
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Figure 8.17: Buffer responses of node 6 subject to the DGCC strategy that is designed based on the
M/M/1 model but applied to the M/D/1 and the M/Ek/1 models. The solid line is the reference
queuing length, the dashed line is the buffer response with the M/D/1 model, and the dotted line
is the buffer response with the M/Ek/1 model.
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Table 8.2: Average queuing error with different nominal queueing models in mobile network.

Decentralized MJ-SCC Decentralized MJ-GCC Distributed GCC
Nominal model Node Pre. Ord. Pre. Ord. Pre. Ord.

M/D/1
1 1.64% 0.11% 1.97% 3.47% 1.76% 3.45%
6 1.61% 1.28% 1.64% 4.19% 1.71% 2.85%
11 3.04% 0.32% 4.19% 4.37% 1.93% 4.47%

M/Ek/1
1 1.72% 0.84% 2.12% 2.53% 1.41% 3.45%
6 1.45% 1.31% 1.58% 5.18% 1.67% 2.36%
11 3.93% 3.26% 3.77% 5.35% 1.77% 2.51%

The simulation results for the network model shown in Fig. 8.2 by utilizing our

proposed decentralized MJ-SCC, the decentralized MJ-GCC, and the distributed GCC

strategies for the mobile network are presented in Fig. 8.18 to Fig. 8.20. The solid line

represents the reference queuing length, the dashed line indicates the buffer response with

the nominal model of the M/D/1 queue, and the dotted line denotes the buffer response

with the nominal model of the M/Ek/1 queue.

For comparing the robustness capabilities of the three congestion control strategies

in mobile networks with respect to different nominal queuing models, the average queuing

errors of all the bottle neck nodes are summarized in Table 8.2.

C. Observations and Conclusions

From the simulation results shown in Fig. 8.15 to Fig. 8.20 and the numerical

comparisons in Tables 8.1 to 8.2, one can summarize the following conclusions for the

three congestion control strategies, namely the decentralized SCC, with respect to the

robustness to the model uncertainties

• As shown in Fig. 8.15 and Fig. 8.18, the SCC and the MJ-SCC algorithms converge

with both the M/D/1 and the M/Ek/1 queuing models, for the fixed and the mobile

networks environment, respectively.

• The SCC algorithm can achieve an overall queuing error of less than 3% and the

MJ-SCC algorithm can achieve an overall queuing error of less than 4%.
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Figure 8.18: Buffer responses of node 11 subject to the decentralized MJ-SCC strategy that is
designed based on the M//M/1 model but applied to the M/D/1 and the M/Ek/1 models. The
solid line is the reference queuing, the dashed line is the buffer response with the M/D/1 model,
and the dotted line is the buffer response with the M/Ek/1 model.
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Figure 8.19: Buffer responses of node 1 subject to the decentralized MJ-GCC strategy that is
designed based on the M//M/1 model but applied to the M/D/1 and the M/Ek/1 models. The
solid line is the reference point, the dashed line is the buffer response with the M/D/1 model, and
the dotted line is the buffer response with the M/Ek/1 model.
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Figure 8.20: Buffer responses of node 6 subject to the decentralized DGCC strategy that is designed
based on the M//M/1 model but applied to the M/D/1 and the M/Ek/1 models. The solid line is
the reference point, the dashed line is the buffer response with the M/D/1 model, and the dotted
line is the buffer response with the M/Ek/1 model.
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• As shown in Fig. 8.16, the GCC algorithm converges for both the premium and

the ordinary traffic classes with the two queuing models. However, the performance

of the ordinary traffic is more robust than the premium traffic class. The overall

queuing error of the GCC algorithm is less than 4%.

• As shown in Fig. 8.19, the MJ-GCC algorithm converges for both the traffic classes.

On the other hand, the buffer response of the ordinary traffic has large discrepancies

during when the queuing length increases. However, the overall queuing errors of

the ordinary traffic by utilizing the MJ-GCC algorithm remains less than 6%.

• As shown in Fig. 8.17, the DGCC algorithm converges in the fixed network with

both the M/D/1 and the M/Ek/1 queuing models. The average queuing errors by

utilizing the DGCC strategy is less than 3% for the fixed network.

• As shown in Fig. 8.20, the DGCC algorithm performs very well for the premium

traffic in a mobile network. However, the buffer response of the ordinary traffic

class has large discrepancies when the queuing length increases. The overall queuing

errors of the DGCC algorithm in mobile networks is less than 2% for the premium

traffic and less than 5% for the ordinary one.

8.3 Conclusions

In this chapter, the robustness capabilities of the decentralized SCC, the decentralized

GCC, and the distributed GCC strategies are evaluated and compared through a compre-

hensive simulations for the network with a fixed topology as well as for a mobile network.

The simulation results show that all the three congestion control strategies are robust when

the queue service rate µ has a relatively small uncertainty of less than 20%, for both the

traffic classes. However, when the parametric uncertainty increases, the performance of all

the congestion control strategies deteriorate and the controllers are still able to stabilize

the buffer queues.

On the other hand, the robustness evaluations for the unstructured uncertainties
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show that all the three congestion control strategies for the fixed network are highly

robust with the nominal system of M/D/1 and M/Ek/1 queueing models. For the mobile

network, the MJ-SCC strategy is robust for both the premium and the ordinary traffic

classes. But, the MJ-GCC and the DGCC strategies are only robust for the premium

traffic but have large discrepancies during the transient of buffer responses for the ordinary

traffic.
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Chapter 9

Conclusions and Future Work

This chapter discuss the conclusions of the thesis followed by some suggestions for future

research work.

9.1 Conclusions and Main Contributions

In this dissertation, we have been focused on the congestion control problem in a network of

multi-agent system(NAMS) subject to differentiated services (Diff-Serv)traffic. To achieve

this goal, the following are the main contributions of this thesis:

• The analytical and quantitative queuing models of the networks of multi-agent sys-

tems(NMAS) based on the conservation law for each traffic class, as defined in the

Diff-Serv architecture [56], are considered. The dynamic queuing model for a single

node system was generalized to a large scale network where the inter-node traffic is

considered explicitly with multiple and time-varying delays. For the congestion con-

trol design purposes, the models are developed in two different frameworks, namely

the centralized and the decentralized model for fixed network as well as for mobile

networks. In the centralized model, the entire network is considered as a whole for

each traffic class. The unknown and time-varying delays are considered as inherent

characteristics in the model. In the decentralized model, dynamics of each node is
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modeled as a coupling system with unknown and time-varying delays in the coupling

states and inputs from the neighboring nodes.

• In Chapter 3, a novel switching congestion control (SCC) strategy is proposed for

a fixed network. The physical constraints of the communication network are con-

sidered during the controller synthesis. Multiple controllers are designed based on

the system constraints, and the congestion control problem of each traffic class is

recast as a switching controller based on the characteristics of the system state.

The closed-loop system is shown to experience multiple modes and the stability

conditions under each mode are derived and expressed by a set of Linear Matrix In-

equalities (LMIs). For each traffic class, a centralized and a decentralized switching

congestion control strategy are developed.

In Chapter 4, a mobile NMAS is considered. To address the random node mobility,

and consequently the stochastic changes of the network topology, a Markovian jump

process was considered. A Markovian jump switching congestion controller (MJ-

SCC) is then developed to stochastically stabilize the Markovian jump systems with

time-varying delays. The closed-loop system is shown to be represented as a hybrid

switching system with both deterministic and stochastic switchings. A set of mode-

dependent LMIs are then provided to ensure the stability of the closed-loop system.

• Our second proposed congestion control approach is introduced in Chapters 5 and

6 that is known as the guaranteed cost congestion control (GCC) strategy. The

congestion controller is first developed without consideration of physical constraints.

A robust congestion control strategy is developed based on a quadratic cost function.

An upper bound on the cost is guaranteed by satisfying a corresponding set of linear

matrix inequality (LMI) conditions. The physical constraints of the system are then

considered and are expressed as a group of complementary LMIs. The proposed

guaranteed cost congestion controller is generalized to the mobile network. The

resulting guaranteed cost control problem for each traffic class is considered as a

jump linear quadratic regulation (JLQR) problem and a Markovian jump guaranteed
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cost congestion control (MJ-GCC) strategy is proposed.

• The proposed centralized and decentralized approaches are evaluated and compared

on a given performance index in terms of both the QoS and the control, such as

the packet loss rate, the queuing delay, the size of the LMIs, and the upper bound

of the cost. The distinct advantages of each approach have revealed through com-

parative evaluations to the idea of a mixed control scheme, namely the distributed

congestion control (DGCC) strategy. By incorporating the capability of the com-

munication among the controller, the DGCC strategy is in fact equivalent to a local

state feedback control plus a nearest neighboring controller’s that are adjusted with

proportional gains. The DGCC approach has shown to significantly enhance the

scalability of the centralized algorithm and improves the performance of the decen-

tralized approach to a large scale traffic network.

• Finally, in order to investigate the robustness of all the proposed congestion control

strategies in this thesis, comprehensive simulations are conducted to evaluate our

proposed SCC and GCC strategies for both the fixed and mobile NMAS with respect

to uncertainties of system parameters and uncertainties in the model dynamics. The

robustness performance characteristics of the centralized, the decentralized, and the

distributed schemes for the premium and the ordinary traffic are investigated and

evaluated extensively through numerical simulation studies. It is shown that our

proposed solution are strongly robust to unmodeled dynamics but to a lower degree

is robust to parametric uncertainties.

9.2 Future Work

The research presented in this thesis has provided several strategies for congestion control

problem of NMAS with Diff-Serv traffic. In order to extend the current work, some of the

open problems and prospective future researches are listed below:
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• Throughout the thesis, the performance of our proposed congestion control strate-

gies are only compared with a fluid flow model based congestion controller, namely

the integrated dynamic congestion controller (IDCC) [3]. Comparisons with other

common congestion control schemes in the literature will be interesting and essential

for the purpose of complete evaluation. Possible approaches for future comparative

studies include the sliding mode based congestion control [131], [162], the PID based

congestion control [163], [164], and the TCP window based congestion control strate-

gies [165], [166].

• The proposed congestion control schemes in this thesis are derived based on a fluid

flow model with an assumption of M/M/1 queue. Considering other kinds of queuing

systems, such as the M/Ek/1 and the G/M/1 and designing stabilizing correspond-

ing controllers can be an interesting extension of our proposed congestion control

schemes.

• To improve the robustness capabilities of our proposed congestion control strategies,

a formal synthesis and development by utilizing the robust control theory are needed

for the congestion control problem of Diff-Serv networks, especially with multiple

and time-varying delays. Recently, much attention has been shown to robust con-

gestion control problem and significant research has been presented in the literature.

In [167], a robust congestion control scheme is developed based on the analytical

fluid flow model for a packet switching network. In [168], the congestion control

problem of ATM networks is considered and a robust H∞ controller is developed.

On the other hand, the robust stability and control of time-delay systems has be-

come an attractive topic in the literature. In [169], [170], the authors presented some

similar and most often used delay-dependent methods, yet these methods are too

conservative in some cases, particularly when applied to a system which is stabiliz-

able independent of the size of the delay. Furthermore, they are often very complex

and can only deal with small delays. In [85], an improved method for the previous

results is proposed. Our next step will focus on extending the proposed congestion
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control strategies by utilizing a formal robust stabilization and control framework.

• The time-delays considered in this thesis are assumed to be unknown and time

varying for both fixed and mobile networks. However, in a mobile network, the

time-delays are often mode-dependent due to the changes of distance between two

nodes and the changes of the network topology. Although, the stabilization problem

of Markovian jump systems (MJS) with time-delays has been well investigated, there

has been very little literature on the mode-dependent time-delays. In some cases,

the time-delays may even be more complicated comprising of distributed ones, which

is referred to as mixed mode-dependent (MDD) time-delays [171]. Therefore, more

investigation will be necessary in the future on finding stabilizing controllers for a

Markovian jump system with mode-dependent delay.
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Appendix A

Integrated Dynamic Congestion

Controller (IDCC)

The integrated dynamic congestion controller (IDCC) was first presented by the researchers

in [3]. The basic idea is to control the traffic by using information on the status of each

queue in the network, based on a nonlinear model of the network that is generated by using

fluid flow considerations. The IDCC method is treated as the benchmark of model-based

analytical congestion control approach in the control community and has been shown great

performances in ATM based networks. In [3], the IDCC approach was presented in a de-

centralized framework. In this Appendix, we first review the decentralized IDCC approach

as presented in [3], and then extendeded it to a centralized formulation.

A.1 Decentralized IDCC

The dynamic queuing model of a single ATM switch with the assumption of an M/M/1

queue is given by

ẋi(t) = −µi
xi(t)

1 + xi(t)
Ci(t) + λi(t) (A.1)

x(0) = 0

where xi(t) is the queuing state, Ci(t) is defined as the capacity of queue server, λi(t) is

the incoming traffic rate, and µi is the average queue services rate which is assumed to
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be 1 in [3]. The model (A.1) is applicable to both the premium and the ordinary traffic

classes.

The integrated congestion control strategy for the premium and the ordinary traffic

is then given as follows:

Cpi(t) = max{0,min{Ci,server, ρ
1 + xpi(t)

xpi(t)
[αpi(x̄pi(t)) + kpi(t)]}} (A.2)

Cri = max{0, Ci,server − Cpi(t)} (A.3)

λri(t) = max{0,min{Cri(t), Cri(t)
xri(t)

1 + xri(t)
− αrix̄ri(t)}} (A.4)

where ”p” denotes the premium traffic, ”r” denotes the ordinary traffic, Cpi(t) is the

capacity allocated for the premium traffic, Cri(t) is the maximum allowable capacity for

the ordinary traffic, λri(t) is the regulated incoming traffic for the ordinary traffic, Ci,server

is the maximum possible service rate, x̄i(t) = xi(t) − xi,ref is the the queuing error, αi

is the control gain, and kpi(t) is the adaptive estimator for the premium traffic which is

updated according to

k̇pi(t) = Pr[δpix̄pi(t)] (A.5)

Pr[δpix̄pi(t)] =





δpix̄pi(t), if 0 ≤ kpi(t) ≤ k̂pi;

or kpi(t) = k̂pi, x̄pi ≤ 0

or kpi(t) = 0, x̄pi(t) ≥ 0

0, else.

(A.6)

where k̂pi is the maximum allowable traffic rate for the premium traffic.

Remark A.1. As indicated from (A.2), the IDCC controller does consider the physical

constraints of the network and has been shown to be stable for a single node model (A.1) [3].

Therefore, it is applicable to a cascade type of networks. However, when it is applied to

the fully connected networks, such as the NMAS, the nonlinear coupling states of the

neighboring nodes with multiple and time-varying delays are no longer negligible and can

lead to the main resource of instability. This has been shown by the simulations in our

thesis.
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A.2 Centralized IDCC

In order to compare the IDCC approach with our proposed centralized congestion con-

trollers (SCC, GCC, MJ-SCC, MJ-GCC) fairly, we extend the decentralized IDCC in [3]

to a centralized framework.

Based on the decentralized queuing model (A.1), the centralized queuing model of

a network with an M/M/1 queue can be written as

Ẋ(t) = −F (X, t)C(t) + λ(t) (A.7)

F (X, t) = diag{µi
xi(t)

1 + xi(t)
} (A.8)

X(0) = 0

where X(t) = vec[xi(t)] is the vector of queuing state, C(t) = vec[Ci(t)] is the vector of

the capacities of the queue server, and λ(t) = vec[λi(t)] is the vector of the incoming traffic

rate. The above (A.13)-(A.8) is applicable to both the premium and the ordinary traffic

classes of traffic.

The decentralized IDCC strategies (A.2) can then be extended to the following

centralized one:

Cp(t) = max{0,min{Cserver, F
−1(Xp, t)[Ap(X̄p(t)) + Kp(t)]}} (A.9)

Cr = max{0, Cserver − Cp(t)} (A.10)

λr(t) = max{0, min{Cr(t), F (Xr, t)Cr(t)−ArX̄r(t)}} (A.11)

where ”p” denotes the premium traffic, ”r” denotes the ordinary traffic, Cp(t) is the

centralized capacity controller for the premium traffic, Cr(t) is the maximum allowable

capacity for the ordinary traffic, λr(t) is the centralized flow rate controller for the ordinary

traffic, Cserver = vec[Ci,server] is the vector of maximum service rate, X̄(t) = vec{x̄i(t)}
is the vector of queuing errors, Ap and Ar are the centralized control gain matrices, and

Kp(t) is the centralized adaptive estimator for the premium traffic which is defined as

Kp(t) = vec{kpi(t)} and is updated according to

K̇p(t) = Pr[∆pX̄p(t)] (A.12)
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Pr[∆pX̄p(t)] =





∆pX̄p(t), if 0 ≤ Kp(t) ≤ K̂p;

or Kp(t) = K̂p, X̄p ≤ 0

or Kp(t) = 0, X̄p(t) ≥ 0

0, else.

(A.13)

where K̂p = vec{k̂pi} is the vector of maximum allowable traffic rate for the premium

traffic.

Remark A.2. The switching conditions in the above projection algorithm (A.13) are

based on the comparisons of vectors Kp(t) and K̂p, and also on the value of vector X̄p(t).

According to Definition 2.4, only when all the elements in the vector Kp(t) satisfy the

corresponding conditions will the estimator be updated. For example, the condition Kp(t) =

K̂p is valid only when kpi(t) = k̂pi for all i = 1, ..., n, and the condition X̄p ≤ 0 is valid

only when x̄pi(t) ≤ 0 for all i = 1, ..., n.

Remark A.3. In our proposed centralized SCC, centralized MJ-SCC, and centralized GCC

strategies, as presented in Chapters 3, 4, and 5, respectively, the switching conditions of

the estimators λ̂p(t) and λ̂r(t) are also based on the comparisons of vectors. It should be

noted that the vectors are also compared according to the Definition 2.4.
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Appendix B

QualNet Simulator

QualNet is the next generation of the scalable GloMoSim (Global Mobile Information

Systems Simulator) simulator. GloMoSim was designed to simulate large-scale wireless

networks with thousands of mobile nodes, each of which may have different communication

capabilities via multi-hop ground, aircraft and satellite media. QualNet has extended

GloMoSims capabilities to wired networks as well as mixed wired and wireless networks.

Like its predecessor, QualNet uses the parallel simulation kernel provided by the PARSEC

discrete-event simulation language. Consequently, QualNet is among the few simulators

for wireless and wired networks that have been implemented on sequential and parallel

architectures.

QualNet software includes detailed models of commonly used protocols at each of

the primary layers of OSI model. In each layer, the commonly used protocols in both

wired and wireless networks have been modeled [133]. The following QualNet features

provide a unique capability for accurate, efficient simulation of large-scale heterogeneous

networks [133]:

• Robust set of wired and wireless network protocol and device models, useful for

simulating diverse types of networks,

• Optimized for speed and scalability on one processor, QualNet executes equivalent

scenarios 5-10x times faster than commercial alternatives,
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• Designed from the ground-up as a parallel simulator, QualNet executes your simu-

lation multiples faster as you add processors.

• A robust graphical user interface covers all aspects of the simulation, from scenario

creation and topology setup, integration of custom protocols, through real-time

execution of network models from within the GUI, animation, to post-simulation

statistical analysis.

• QualNet has been used to simulate high-fidelity models of wireless networks with as

many as 50,000 mobile nodes.

B.1 Integration of QualNet Traffic in MatLab

In order to incorporate the QualNet traffic into MatLab, we need to implement the traffic

flow in MatLab according to the protocol models that are defined in QualNet. This mainly

involves the conversion of the features from QualNet to input needed for the fluid flow

model, which is the dynamic system model that is used in this thesis. Packets from data

sources need to be converted to flows entering the analytical model, and then used for

simulations of our proposed congestion control strategies in MatLab.

In the QualNet simulator, the system entity is the node-queue; the system events

are packets-arrival and packets-departure; and the system state which is changed accord-

ing to and by these events is the number-of-packets-in-the-queue. This is represented as a

discrete-event system with continuous-time state space representation. The random vari-

ables that need to be specified to model this system stochastically are packet-size and

packet-inter-arrival-time, which are the characteristics of the incoming traffic.

In the simulations of fixed network, the only entities that will change the events

(packets-arrival and packets-departure) are the traffic generator that are invoked in the ap-

plication layer of the QualNet software. Once the variables are set, such as the packet-size

and average-inter-arrival-time, the packets characteristics are subsequently determined.

In other words, the chronological sequence of events are determined. Therefore, our ap-

proach to this problem is to first construct a simulation scenario and generate the traffics
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by using the QualNet software environment, and then convert the packet characteristics,

as determined by the entities set in the QualNet, into data flows with the form that is

required by the fluid flow model. The fluid flow analytical model will make use of these

data flows and other parameters to obtain network statistics by solving the corresponding

differential equations. In particular, the queue lengths of the nodes are obtained. The

fluid flow model is the part that is implemented in MatLab. Therefore, we can state

that the discrete behavior of the packets as generated by the QualNet software environ-

ment is integrated with the fluid flow model that is implemented by the MatLab software

environment.

On the other hand, in a mobile network, besides the traffic generator, the other

important entity that will change the events (packets-arrival and packets-departure) is the

connectivity between two nodes which is based on the network topology. In this thesis,

the changes of the network topology is modeled as a stochastic process of Markov chain.

Different neighboring sets are represented as different network modes αt. The transition

probability from mode l to mode k is defined by the variable πkl. In this thesis, we assume

that the transition probabilities among different modes are given. The Markov chain is

then generated by using the MatLab function randsrc [152].

For example, a 5 mode mobile network is represented by an index vector [1, 2, 3, 4, 5].

Suppose the current mode is mode(k) = 2, and the transition probabilities from mode 2

to the other modes are πl2 = [0.1, 0.6, 0.1, 0.05, 0.15]. Then, the following command is

applied to predict the next mode mode(k + 1), that is

s = randsrc(1, N, [1, 2, 3, 4, 5; 0.1, 0.6, 0.1, 0.05, 0.15])

mode(k + 1) = s(k + 1)

where N is the simulation time. The above command will generate an 1×N vector s with

numbers 1 to 5. The sequence of the numbers are random but the occurrence probability

of each number is the same as given by πl2. Hence, in each round of simulation, the

sequence of switching modes can be obtained and the chronological sequence of events is

then determined.

Therefore, our approach is to run the simulations for multiple rounds (e.g. 10
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rounds). In each round, the data flows are converted from the QualNet traffics as in

the fixed network. The queuing length at each instant is then determined as the average

value over these 10 rounds. As a result, one can state that the discrete behavior of the

packets generator and the changes of the network topology are implemented in the MatLab

software environment.
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