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Abstract

Experiments and Modeling of the Onset of Gas Entrainment into

Small Branches from a Co-Currently Flowing Stratified Gas-Liquid

Regime

Robert Constantinos Bowden, Ph.D.

Concordia University, 2011

The discharge of two-phase flow from a co-currently flowing gas-liquid region through

single or multiple branches is an important process in many industrial applications

including oil-gas production and nuclear power plants. Accurate physical descrip-

tions of the flow phenomena involved, along with the quality and mass flow rate of

the discharging streams, is necessary to adequately predict the different phenomena

associated with the process.

A test facility was developed, consisting of a horizontal pipe with an inlet diameter

of 50.8 mm and three 6.35 mm diameter branches located at a distance of 1.8 m from

the pipe inlet. The branches were machined perpendicularly into the test section wall,

and oriented at 0, 45, and 90 degrees down from horizontal. Air and water, operating

at 206 kPa, were used to provide a two-phase flow regime. Both fluids flowed co-

currently within the inlet, and mainly in the stratified regime, but transitions to

wavy and slug regimes were observed.
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Extensive experimental data are reported for the three branch orientations. The

relation between the air-water interface height, the inlet superficial gas and liquid

velocities, and the branch two-phase quality and mass flow rate are presented for

each branch orientation. The critical inlet conditions leading to beginning of two-

phase flow in the branch, the onsets of gas and liquid entrainment, respectively,

were reported in both single and dual branch cases. Effects of inlet measurement

location, the secondary branch Froude number, and branch fluid phase on the critical

conditions were investigated. A novel map relating the dual discharge branch Froude

numbers, the inlet superficial liquid velocity, and the related dual branch phenomena

was developed. The map presented the three observed modes of gas entrainment

during dual discharge.

A two-fluid separated theoretical model was developed in order to predict the

critical height at the onset of gas entrainment in a bottom branch. Potential flow

theory lead to the branch being simulated by a point-sink, while the flowing liquid

upstream of the branch was simulated by a uniform constant crossflow velocity. Two

analytical criteria were used to predict the dip position (height and offset distance)

relative to the branch. Inaccuracies with experiments lead to the inclusion of empirical

terms to satisfy the local crossflow velocities within the inlet. A digital imaging

technique was also developed in order to record local interface profiles at the onset

of gas entrainment, and was used to satisfy the relationship between the dip height

and offset distance. The semi-empirical approach provided a significant improvement

over the purely analytical model, and demonstrated that the critical height to be

predicted within a reasonable error.
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Chapter 1

Introduction

Two-phase flow in branching conduits is a widely studied topic with a variety of mo-

tivating applications which include oil-gas production and nuclear power generation.

During the refinement of petroleum products T-junctions have been used as fluid

separators in order to improve plant efficiency and performance (Azzopardi, 1999).

These simple compact devices can be incorporated within pipelines and offer low cost

alternatives to large reservoir type separators. In normally single phase systems how-

ever, such as the header-feeder coolant distribution system of a Canada Deuterium

and Uranium (CANDU) nuclear power plant, prior knowledge of two-phase operating

conditions are important in the prediction of postulated accident scenarios. A more

detailed description of the CANDU application is provided in the next section in or-

der to outline some of the motivations driving this study. It is emphasized however

that this study is not limited to CANDU type applications. It was designed to serve

a wider audience with interests in dividing gas-liquid flow in reduced T-junctions, or

two-phase flow in multi-branch type headers.

1



1.1 Motivation

The CANDU nuclear power plant uses natural uranium fuel coupled with deuterium,

also referred to as heavy water, to produce electrical power (Banerjee and Nieman,

1982). The heavy water transports thermal energy produced in the fuel channels to

a steam turbine generator. The coolant delivery system is arranged in a “figure-of-

eight”, with heavy water traveling to and from the fuel channels through a network of

pipes (feeders) connected to four large reservoirs (headers). The headers both supply

(inlet header) and receive (outlet header) coolant to and from the fuel channels,

respectively. A rupture in the network or a failure of a mechanical device, such as

a valve or pump, can cause a sudden reduction in the coolant inventory, which is

referred to as a loss-of-coolant accident (LOCA). Some of the most infamous and

well documented nuclear power plant disasters caused by the coolant distribution

system occurred at Three-Mile Island in 1979, and Chernobyl in 1986. The heath and

environmental risks associated with these accidents has spurned global initiatives by

governing agencies to improve the safety of nuclear power stations.

One of the by-products of these initiatives has been the development of sophisti-

cated commercial codes, for example the Canadian Algorithm for Thermal Hydraulic

Network Analysis (CATHENA) developed by the Atomic Energy of Canada Limited

(AECL) (Hanna, 1998) or the RELAP5-3D code developed at the Idaho National

Laboratory (INL) through sponsorship by the U.S. Department of Energy (DOE)

and Nuclear Regulatory Commission (NRC) (Riemke et al., 2006). These codes use

experimentally or analytically derived thermalhydraulic models in their simulations.

2



For example, the stratification/entrainment model incorporated in the RELAP5-3D

code is used to predict the two-phase phenomena in a stratified gas-liquid pipe at a

side or bottom oriented discharging branch (Ardron and Bryce, 1990) and is based on

experimental correlations developed by Smoglie and Reimann (1986). These types of

empirical models can result in incorrect simulations, as Riemke et al. (2006) recently

pointed out in their study of a small break LOCA, and are limited in applicability.

Going forward, as part of the long term strategy established by participating

countries at the Generation IV International Forum (GIF) on nuclear energy, the

Super Critical Water Reactor (SCWR) has the potential to achieve higher thermal

efficiencies than its predecessors. The CANDU-SCWR is projected to achieve up to

48-50% efficiency based on preliminary design constraints (Torgerson et al., 2006),

but this will come at the cost of higher thermodynamic operating conditions. The

potential consequences of a postulated LOCA are cause enough for thermalhydraulics

and safety to be at the forefront of research and development. As CANDU-SCWR

is expected to employ a header/feeder arrangement in it’s heat transport system

(Torgerson et al., 2006), it is important to further explore the effects of postulated

LOCAs, particularly where the stratification/entrainment problem is concerned. A

break on the side of the inlet header, a break upstream of the turrets, or a pump

failure, are only a few scenarios that may cause the nominally single phase liquid

inventory within the inlet header to become two-phase (gas-liquid). In effect, there are

underlying areas that can be explored in the stratification/entrainment problem, and

not only where the nuclear industry is concerned but from a fundamental perspective,

in order to expand the knowledge base of this intriguing engineering problem.
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1.2 Organization

This document is organized into eight chapters. In Chapter 2, a comprehensive

literature review is provided. The chapter provides details regarding the state-of-

the art of the stratification/entrainment problem and concludes with a summary

of the main areas requiring further investigation. The experimental investigation

is described in Chapter 3, and provides details regarding the problem description,

dimensional analysis and similitude, facility design, instrumentation, procedures and

analysis. The experimental results are divided into two chapters. In Chapter 4, the

two-phase results obtained from single branch experiments are provided. These results

detail the related phenomena, as well as the two-phase mass flow rate and quality in a

small diameter branch at three distinct orientations. The second set of experimental

results are provided in Chapter 5, and details the effect of two discharging branches

on the related phenomena. The knowledge obtained from experiments provides the

basis to the theoretical modeling presented in Chapter 6. This chapter investigates

the onset of gas entrainment in single and dual discharging branches, and evaluates

the performance of selected boundary conditions. Through use of digital imaging,

the interfacial liquid gradient and gas-core profile are recorded under limited flow

conditions. The data is used in Chapter 7 to further improve the theoretical model

through the application of empirical boundary conditions. The outcomes from the

study are summarized in Chapter 8, highlighting the conclusions and future directions.
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Chapter 2

Literature Review

2.1 Stratified Two-phase Flow in Horizontal Pipes

and Channels

Two-phase flow is a generic term that encompasses a broad spectrum of fluidic appli-

cations with phase being analogous to the thermodynamic state, i.e. a gas/liquid/solid.

The two phases could be of the same species, for example water and saturated steam

(water’s vapour phase), or two different species, for example air and water. Gas-

liquid fluidic systems are found in both the natural sciences (e.g. oceanography) and

engineering applications (e.g. industrial petrochemical processing plants). The two

fluids can flow separately, sharing a common interface, or as a mixture - the flow

regime distinguishes the physical characteristics of the two-fluid system. For exam-

ple, an ocean and surrounding atmosphere form two fluid layers, or strata - this is
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commonly referred to as the stratified flow regime. The physical nature of the two-

fluid interface further defines the stratified regime into sub-categories, these being the

smooth- or wavy- stratified regimes. For example, a flat horizontal interface is likely

defined as smooth-stratified, while an undulating interface may be characterized as

wavy-stratified. Two-phase flow regimes have been investigated by Baker (1954) and

Sakaguchi et al. (1979). These authors developed flow pattern maps that describe

the transition of two-phase flow regimes from smooth-stratified to wavy-stratified,

intermittent, annular, and dispersed-bubble for flow within a circular pipe.

Mandhane et al. (1974) presented a review of the flow regimes in gas-liquid flow

within a horizontal channel. A comprehensive flow map was developed, which in-

cluded over 14,000 experimental data points from a variety of published sources.

They pointed out that flow regime identification was subjective, based solely on the

experimenter’s visual observations, which resulted in a variety of flow descriptions;

they classified these into six widely accepted regimes. These were characterized as

the stratified, wavy, bubble, elongated bubble, slug, and annular regimes. The simple

two-dimensional map represented the flow regime transitions which were presented

as functions of the gas and liquid phase superficial velocities. They found that their

map outperformed previously presented flow regime maps and recently Ghiaasiaan

(2008) pointed out it is still a widely used reference by engineers in the field, and

particularly in oil-gas production.

Taitel and Dukler (1976) provided an analytical model to predict the equilibrium

liquid level for given two-phase conditions in a horizontal or inclined pipe with co-

currently flowing stratified layers of gas and liquid phases. They applied a momentum
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balance on the liquid and gas side which yielded an equation in the form,

τWG
SG

AG

− τWL
SL

AL

+ τiSi

(

1

AL

+
1

AG

)

+ (ρL − ρG)gsinα = 0. (2.1)

The wall shear stresses produced in the gas and liquid phases were defined as τWG

and τWL, respectively, while interfacial shear was defined by τi. The geometrical

terms in Eq. (2.1) included the fluid flow cross-sectional areas of the gas, AG, and

liquid, AL, phases. The wetted perimeter of the gas phase was defined by SG, and

that of the liquid phase as SL, with Si defining the chord length of the gas-liquid

interface. The authors found a dimensionless form of Eq. (2.1) that incorporated the

Lockhart-Martinelli parameter, X̃2, as,

X̃2 =
|(dP/dx)SL|
|(dP/dx)SG|

=

4CL

D

(

VSLD
νL

)−n1
ρLV 2

SL

2

4CG

D

(

VSGD
νG

)−n2
ρGV 2

SG

2

. (2.2)

The superficial pressure gradient of the gas and liquid phases, (dP/dx)SG and (dP/dx)SL,

respectively, was defined as the pressure gradient the fluid would experience if it flowed

alone in the pipe. The superficial velocities of the gas and liquid phases were defined

according to VSG and VSL, and the kinematic viscosity of the gas and liquid fluid

phases are defined as νG and νL, respectively. The authors investigated turbulent-gas

and turbulent-liquid regimes and cited friction coefficients for the gas and liquid phase

as, CG = CL = 0.046 with exponents n1 = n2 = 0.2. The liquid height could be found

by defining the superficial liquid velocities of each fluid phase however, the authors

pointed out that two-phase regime transitions are dependent on these velocities and
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provided analytical criteria to define these transitions.

Wallis (1980) reviewed the models for the prediction of critical two-phase flow.

These models are classified as the homogeneous equilibrium model (HEM), and non-

equilibrium models. The HEM model treats the two fluid phases as a single pseudo-

fluid, where the two phases are everywhere in equilibrium with equal velocities and

temperatures. Of the non-equilibrium models, the two-fluid separated flow approach

applies the conservation equations to each of the two fluid phases. Additional terms

are incorporated to describe the inter-phase heat, mass, and momentum transfer.

Wallis (1980) argued that this approach to modeling two-phase critical flow is highly

complex, particularly when describing the interactions between phases.

Persen (1984) theoretically investigated gas-liquid flow in a horizontal pipe using

a two-fluid separated flow approach. A one-dimensional (1-D) model was developed

by applying the energy equation to both fluid phases and the head loss terms incor-

porated frictional terms associated with the wall and gas-liquid interface. The author

identified three key physical scenarios. The first and most simple was uniform flow in

both fluid phases, indicating a steady level at any position along the pipe. The second

was steady but accelerated flow, where the flow at any cross-section is independent of

time but not of the axial position along the pipe (i.e. interfacial liquid level gradients

form along the length of the pipe), and the third was wholly unsteady flow in the

pipe. Through dimensional analysis the author was able to establish a refined general

energy equation that could be evaluated based on physical principles. The condition

for uniform flow was recognized in the general equation, and the author was able

to parametrically evaluate the equation to determine the conditions for uniform flow

8



depth and pressure gradient. The study did not consider the evolution of certain

terms, for example determining the friction factor from physical principles, but did

provide insight into the challenges associated with modeling.

Taitel and Dukler (1987) investigated co-current gas-liquid flow in horizontal pipes

and explored the effects of pipe length on the flow regime boundaries both experimen-

tally and theoretically. The authors noted that the flow conditions near and at the

pipe’s exit were vital in the development of their theoretical model. In their study,

the pipe exit was a free discharge, with the liquid phase emptying into a containment

reservoir. Three key liquid level regions were identified along the pipe length, the

equilibrium, stability, and critical levels. The critical level was said to exist at the

pipe exit, with the equilibrium level located far upstream. The stability level was lo-

cated in between the critical and equilibrium locations. The authors developed a 1-D

theoretical model by applying the steady-state momentum equation on either fluid

phase. Depending on the relative level of each of the three positions the flow regime

can be stratified and independent of pipe length, stratified but unstable at the exit,

in which case a transition regime will occur, and also independent of pipe length, or

transitioning into intermittent or annular flow but dependent on the pipe length. The

authors also point out that for low-viscosity fluids, such as water, the flow pattern

transition will be independent of pipe length in the stratified regime. Their model

predicted the flow regime transitions of their own experiments reasonably well, and

showed some agreement with selected data in open literature.

Gardner (1988) investigated the flow of two fluids from a stagnant reservoir into a

short horizontal pipe and dealt with the effects of the pipe entrance geometry on the
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inlet height (liquid height in the stagnant reservoir). The two fluids were water and

air operating at atmospheric pressure. The horizontal pipe was 84 mm in diameter

and 590 mm long and discharged as a free stream at its exit. The inlet geometries

tested included square-cut, bell-mouth, and PWR entry - named because it modeled

a typical entry from the upper plenum of a pressurized water reactor (PWR). Two

locations along the pipe length were selected to measure the liquid height and static

pressure using differential and static pressure transducers, and were located at 140

mm and 420 mm from the inlet, respectively. The liquid height in the reservoir

was recorded using a liquid filled manometer. The experimental results included a

visual identification of flow regime boundaries, which were cited as: small occasional

waves, large waves, and droplets in air phase. For all intents and purposes the author’s

description of the small occasional wave regime could be interpreted as nearly smooth

stratified. The authors also developed a theoretical model to predict the liquid height

within the reservoir, assuming that the flow becomes critical at some location along

the length of the pipe, and before the exit. They applied Bernoulli’s equation on either

side of the gas liquid interface and assumed uniform flow in each fluid phase. Their

model predicted their experiments reasonably well, and they also compared it with

experiments conducted by Smoglie and Reimann (1986). There was a stark contrast

with the theoretical prediction and the latter’s experimental data. The effect of orifice

diameter, (6 mm and 20mm) was evident, although it lead the authors to speculate on

its significance without any clear conclusion. The experimental data for the smaller

diameter orifices were not well predicted; in fact all data were over-predicted, and the

author’s speculated that there was some phenomenological occurrence in one of the
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fluid phases that caused this difference.

Sadatomi et al. (1993) conducted smooth-stratified two-phase experiments in a

horizontal channel using air and kerosene at room temperature and atmospheric pres-

sure. Their test section consisted of a 7.2 meter long rectangular duct (50.8 mm high

by 101.6 mm wide) connected between two reservoirs. The gas and liquid phases

flowed co-currently within the duct from the first reservoir and into the second reser-

voir. The objective of their experiments was to determine the void fraction, which is

the ratio of the gas phase flow area to the total flow area, at two selected locations

along the channel. Distances of 1.3 and 3.3 m from the test section exit were used to

record the liquid height. Their results demonstrated that a strong interfacial liquid

gradient (ILG), defined as a change in liquid height with change in distance along the

channel, was present. The authors then developed a theoretical model to account for

the effects of the ILG. They considered co-current two-phase flow in a horizontal pipe

with a circular cross-section. The main difference between their work and that of

Taitel and Dukler (1976) was the inclusion of the ILG term. They argued that Taitel

and Dukler (1976)’s model was representative of well-developed stratified two-phase

flows, which result in a negligible ILG. They further found that the solution depended

on the boundary condition at the exit reservoir and defined the concept of critical exit

heights. They found that a set of imposed flow and geometrical conditions produced

a set of critical heights - two critical and one normal. The normal height denotes a

well-developed stratified flow, while the two critical heights are dependent on the exit

boundary conditions.
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Lorencez Gonzalez (1994) experimentally investigated gas-liquid flow in a hori-

zontal rectangular channel and reported velocity and turbulence fields in each fluid

phase as well as at their interface. They studied three configurations: open chan-

nel (un-sheared interface), co-current, and counter-current flows. The author used

photochromic dye activation, a non-invasive flow visualization technique, to record

the flow structure local to the gas-liquid interface and hot-film anemometry in the

bulk fluid. The test facility consisted of a 7.2 m long rectangular channel (50 mm

high by 100 mm wide). The two fluids used were liquid kerosene and air at atmo-

spheric pressure. The liquid height was recorded at 2.5, 3.5, and 4.5 m from the inlet

while the velocity field was recorded in the vicinity of 4.4 m from the inlet, which

the author considered to be in the fully developed region. The author performed

a series of experiments, including turbulent-gas laminar-liquid cases, and turbulent-

gas turbulent-liquid cases. As the gas phase Reynolds number increased the author

observed a transformation in the interface geometry from smooth-stratified to wavy-

stratified. They considered that a hydraulically smooth regime coincided to a wave

height less than 0.5 mm and observed that the liquid gradient decreased with in-

creasing gas flow rate. They presented velocity and turbulence fields in both the

gas and liquid fluid phases. The author compared the turbulent velocity profile with

the universal profile (Nikuradse, 1932) and found that they closely followed the Law

of the Wall in the buffer region and turbulent core until the neighborhood of the

maximum velocity was reached. To characterize the gas streamwise velocity near the

interface using interfacial parameters, the author found it necessary to estimate the

interfacial shear stress. The interfacial shear stress and interfacial friction velocity
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were determined following a method outlined by Sadatomi et al. (1993). In all cases,

the author observed that the vertical velocity was dampened at the upper wall and

did not vanish near the interface. The shear imposed by the gas flow on the interface

transformed gradually the nearly laminar liquid velocity profile into a turbulent one.

In the smooth-stratified data the authors observed that the velocity near the interface

adopted a Couette-type flow, since the top layers of liquid were undergoing an intense

shear. They observed that vertical motion was dampened by either the lower wall or

the liquid interface.

Rodriguez and Oliemans (2006) experimentally investigated liquid-liquid flow in

an inclined pipe over a wide range of flow regimes, including separated and dispersed

flow patterns. The main application of their research was in oil/gas production.

The two fluids used were oil and water, and the test section was a 15 m long, 76.2

mm diameter pipe which incorporated a 1.5 m clear viewing section. The measure-

ments were conducted with the test section oriented horizontally, and angled up to 5

degrees from the horizontal. Data was reported for two-phase pressure gradient, volu-

metric fraction of liquid phase (referred to as holdup), and flow patterns using digital

imaging. The authors used a two-fluid model for stratified flow and a homogeneous

model for dispersed flow. They observed that as a result of the pipe inclination the

smooth-stratified flow pattern was visibly absent, and was replaced by a stratified-

wavy pattern. The authors found that the two-fluid separated flow model was able to

predict the holdup of the stratified flow patterns within 15% and pressure gradients

to within 35%.
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Ullmann and Brauner (2006) theoretically modeled stratified gas-liquid flow in

an inclined pipe using the two-fluid approach. The model applied the momentum

equation on each fluid phase in order to predict the in-situ liquid holdup and pressure

gradient. One of the main criteria of this approach was to consider the gas-liquid in-

terface as flat along the pipe length, which implied a fully developed profile. Several

closure relationships, which included empirical correlations, were used to determine

the wall and interfacial shear stress terms of the momentum equations. The pressure

gradient term was considered to include the hydrostatic and frictional terms. The au-

thors tested the model on experimental data and obtained reasonably good agreement

which was within 20% of the liquid holdup and pressure gradient measurements.

Summary

A selection of studies dealing with two-phase flow in horizontal or near horizontal

pipes/channels that focused on the stratified flow regime were surveyed. The studies

provided a basis for two-phase flow regime identification (Mandhane et al., 1974),

showed the influence of design parameters including entrance and exit effects (Taitel

and Dukler, 1987; Gardner, 1988; Sadatomi et al., 1993; Lorencez Gonzalez, 1994;

Rodriguez and Oliemans, 2006), and demonstrated important parameters and ana-

lytical approaches for modeling stratified two-phase flow (Taitel and Dukler, 1976;

Wallis, 1980; Persen, 1984; Taitel and Dukler, 1987; Sadatomi et al., 1993; Ullmann

and Brauner, 2006). The two-phase flow regime is routinely cited as an important

factor in the distribution of fluid phases in T-junctions, as will be presented in the

next section.
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2.2 Two-phase Gas-Liquid Flow in Equal Sided and

Reduced T-Junctions

Efficient two-phase flow separation is one of the areas that can lead to improved per-

formance of oil-gas production plants Azzopardi (1999). The use of a T-junction as

a phase separator has been extensively investigated under a variety of conditions for

this purpose. The topic of phase distribution in T-Junctions includes experimental

studies in impacting junctions (El-Shaboury et al., 2007), small diameter junctions

(Das et al., 2005), and analytical modeling (Margaris, 2007). One of the main geo-

metric identities found in the T-junction studies is that the ratio of the branch (d)

to inlet diameter (D), d/D, typically varies between around 0.5 and 1. An exten-

sive review by Azzopardi (1999), including horizontal stratified and annular flow in

T-Junctions, pointed out that the majority of these studies were in this classification.

A few used a ratio lower than 0.5 with the smallest being d/D = 0.084. Azzopardi

(1999) pointed out that these smaller branch studies were typically motivated by the

nuclear industry and related to the small-break LOCA.

Generally speaking these studies adopted a particular nomenclature when describ-

ing the T-junction problem. Two-phase flow enters a horizontal T-junction through

the inlet and splits either into the branch, oriented perpendicular to the inlet, or flows

past the branch into the run. The inlet and run are typically the same size and shape

with the branch having an equal or reduced size. With a horizontally oriented inlet

the branch may direct the separated flow anywhere from vertically down to vertically

up. The operating conditions upstream of the branch, particularly the flow regime,
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have been shown to be highly influential on the phase separation characteristics. A

brief historical look at some of the work done in this area follows.

Oranje (1973) first observed that particular stations in a natural gas transmission

network contained varying levels of condensate. Upon further experimental investi-

gation using a T-junction the author found that several factors influenced how the

inlet flow was distributed between the branch and run. These included the T-junction

geometry, flow regime, liquid inertia, and branch pressure. A wide variety of studies

were later conducted in order to understand the behavior of two-phase flow within

T-junctions, and there have been notable developments in the state-of-the art since

this seminal work.

Henry (1981) conducted experiments in a horizontal T-junction with a side ori-

ented branch. The test section consisted of 100 mm diameter (D) horizontal pipe with

a 20 mm branch diameter (d). The inlet pipe length between the two-phase mixer

and the branch inlet was 30 pipe diameters (3 m). Water and air operating at near

ambient conditions were used. The authors described the dependency of the branch

two-phase mass flow rate on the upstream conditions, and more specifically, the mass

flow rate of each constituent phase. Their investigation was conducted with annular

flow in the inlet but also provided some measurements in the stratified regime. The

authors correlated the annular regime results using the inlet two-phase flow quality,

X1, and found that it did not predict the stratified regime data well. They argued

that that the branch liquid mass flow rate prior to gas entrainment, ṁi, is likely de-

pendent on the liquid depth in the pipe. They suggested that ṁi is better predicted
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as a function of the Lockhart-Martinelli parameter, X̃ as,

ṁi = 544 − 491X̃. (2.3)

Honan and Lahey Jr. (1981) performed two-phase experiments in vertically ori-

ented Y and T-junctions using air and water. The T-junction was equal sided with

an inlet diameter of 38.1 mm and was operated at a pressure of 0.7 MPa with a max-

imum air flow rate of 0.47 m3/s and water mass flow rate of 4.43 kg/s. The authors

recorded the inlet and branch flow rates of each fluid phase and then presented the

phase distribution in terms of the phase separation ratio (X3/X1), inlet quality X1,

and the ratio between the run and inlet mass flow rates, ṁTP2/ṁTP1. They found

that the fluid phases did not separate equally between the run and branch, but rather,

a higher portion of gas flowed through the branch. This was particularly true with

higher inlet qualities, which approached the complete phase separation line that the

authors defined as,

X3

X1

=
1

1 − ṁTP2

ṁTP1

. (2.4)

Azzopardi and Whaley (1982) Performed experiments in vertical and horizontal

T-junctions and investigated the effects of the flow pattern on the two-phase charac-

teristics. The annular regime was tested in both horizontal and vertical cases, while

the churn and bubbly regimes were only tested in the vertical arrangement. The
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horizontal tests were conducted with an inlet diameter of 32 mm, a branch diameter

of 12.7 mm, and an inlet length of 3.6 m. Water and air operating at 250 kPa in the

T-junction were used. The gas and liquid inlet mass flow rates were 0.064 kg/s and

0.051 kg/s, respectively. They tested branch orientations ranging between 0 to 180

degrees from the vertical. Results demonstrated that the liquid flow in the branch in-

creased dramatically with the branch angle. Following this Azzopardi (1984) focused

on the effect of geometry, specifically the ratio between the branch and run diameters

of the T-junction. They experimented with d/D equal to 0.8 and 1. The study fo-

cused only on the vertical pipe arrangement in the annular flow regime. They found

that the larger the diameter ratio, the higher the amount of each phase extracted

through the branch.

Saba and Lahey Jr. (1984) studied two-phase separation in a horizontal equal sided

T-junction. Experiments were conducted across a variety of flow regimes, including

stratified, wavy-stratified and slug. The inlet diameter was 38.1 mm, and experiments

were conducted using air up to a volume flow rate of 0.47 m3/s and water up to a

mass flow rate of 4.42 kg/s. The pressure drop in each of the three legs of the

T-Junction were recorded using pressure transducers and the authors were able to

quantify the pressure drop due to the T-junction. They developed a phase separation

model, which included mixture and vapor phase continuity equations, mixture linear

momentum equations for the branch and run flows, as well as the vapor phase linear

momentum equation. Empirical relations were required to close the system, but the

authors found the model provided reasonably good predictability of the inlet and

branch qualities. The authors do point out that for separated flow their model could
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not accurately predict phase separation.

Marti and Shoham (1997) experimentally and analytically investigated the fluid

phase distribution in a reduced T-junction. The test section had a 50.8 mm inlet

and a 25.4 mm diameter branch. Experiments were carried out using water and air

operating at 194 kPa within the stratified-wavy regime. An inlet superficial gas ve-

locity of 6.1 m/s was used while the inlet superficial liquid velocity ranged between

0.059, 0.03, 0.015, and 0.0051 m/s. The branch orientation was varied between 20

degrees upwards to 60 degrees downward from the horizontal. They presented the

phase distribution in terms of the liquid and gas fractions between branch and run.

The authors described that when the interface was below the branch inlet the liquid

phase must “climb up” into the branch. They also indicated that the axial momentum

of the liquid phase caused it to bypass the branch and used this observation in the

development of their model. Their approach was a two-fluid model that considered

two streamlines, one for each fluid phase, and applied a one-dimensional momentum

equation between two convenient points. The momentum equation considered a di-

rection parallel to the branch (perpendicular to the inlet), which was convenient since

far upstream the flow was considered to flow parallel to the inlet. This assumption re-

sulted in the inlet velocity term to decay to zero. The resulting equation required that

a second location be defined; the authors used points at the branch center and the

downstream branch edge. In the solution the authors used experimentally recorded

values of the liquid holdup to determine the in-situ velocities of each fluid phase. In

some cases good agreement was found between the experimental and analytical phase

distribution, however in other cases differences of up to 200% were evident but the
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reasons for these discrepancies were not discussed.

Rea and Azzopardi (2001) experimentally investigated the phase split of gas and

liquid phases in a large diameter T-junction. An equal sided T-junction test sec-

tion, with a 127 mm diameter circular cross-section, was machined into a block of

clear acrylic resin. The sides of the test section were machined flat, with overall

outside dimensions of 200 by 200 mm, in order to reduce optical distortions due to

refraction. The test section was located 3.5 m downstream of a two-phase mixing

unit which translated into an entrance length of approximately 27.5D. The authors

used a capacitive two-wire technique to record the lateral liquid height distribution

across the pipe cross-section. Experiments were conducted primarily in the stratified

regime using air and water operating at near atmospheric conditions. They reported

the effects of the inlet superficial velocities of the two fluids on the fractions of each

fluid entrained into the branch. They compared the phase splitting with selected

models, one in particular by Shoham et al. (1987), and found poor agreement with

their experimental results. They modified the model by including several empirical

functions based on their experimental data, and showed an improvement in the model

prediction.
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2.3 Small Branches Exposed to a Stratified Gas-

Liquid Region

A large number of studies have been conducted on the topic of two-phase flow in

small diameter branches. These investigations are typically either phenomenological

in nature, as in the study of incipience of two-phase entrainment, or on the topic of

two-phase flow characteristics. A brief historical review of these studies is presented

here.

2.3.1 Experiments and Modeling in Stratified Two-Phase Reser-

voirs

Zuber (1980) reviewed the two-phase phenomena at a small branch on the side of a

large reservoir containing stratified layers of gas and liquid fluid phases. The location

of the gas-liquid interface relative to the branch was a key factor in determining the

phenomena. With single phase gas flowing initially into the branch a critical distance

between the gas-liquid interface and branch exists where the branch flow will become

two-phase - called the onset of liquid entrainment (OLE). On the other hand, with

single phase liquid flow in the branch the critical distance to cause two-phase flow is

called the onset of gas entrainment (OGE). The OGE was described by mechanisms

that included either vortex induced or vortex-free gas entrainment, with the latter

dramatically affecting the branch two-phase mass flow rate and quality. The critical

liquid height, HOGE at which vortex-free OGE occurred was found to be related to
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the branch flow Froude number, Frd as,

HOGE

d
= C1FrC2

d (2.5)

where,

Frd =
4ṁL3

π
√

gd5ρL(ρL − ρG)
(2.6)

The branch diameter is defined as d, the single phase liquid mass flow rate in the

branch as ṁL3, the liquid and gas densities as ρL and ρG, respectively, and the

acceleration due to gravity as g. The coefficients C1 and C2 were found to be correlated

with C1 = 0.574 and C2 = 0.667 for HOGE/d < 1 and C1 = 0.624 and C2 = 0.4 for

HOGE/d > 1 from transient experiments (Lubin and Hurwitz, 1966). Similar transient

experiments were also performed using a range of reservoir and branch sizes with

two stratified fluids of varying densities, viscosities, and surface tension coefficients.

The fluid combinations included air-water, kerosene-water, corn oil-water, turpentine-

water, and silicone oil-water (Lubin and Springer, 1967) as well as air and liquid

ethanol (Abdalla and Berenyi, 1969). Both studies described the flow field as being

vortex-free at the onset of gas entrainment in the branch. This is in contrast to the

vortex induced air entrainment phenomenon which is traditionally associated with

this type of “draining” flow (Baum and Cook, 1975; Takahashi et al., 1988; Andersen

et al., 2003).
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CANDU Type Header-Feeder under Postulated LOCA Conditions

Kowalski and Krishnan (1987) performed full scale experiments in a test facility that

is typical of a CANDU primary cooling loop. Two horizontal headers were connected

to each other by 30 feeder branches. The experiments consisted of single and two

turret injection tests with two-phase mass flow rates ranging between 30 to 60 kg/s of

water, and 0.05 to 2.4 kg/s of steam. The authors observed that even a small amount

of injected steam caused flow stratification within the header. Under these conditions

the injected two-phase flow impinged on the steam-water interface causing an axial

velocity (crossflow) within the header. Correlations for the critical height in a single

branch were presented as a function of the branch location. Later, Teclemariam et al.

(2003) performed experiments in a scaled down test section typical of a CANDU-

type header. These authors presented the two-phase flow distribution in the header

under single and dual injection tests through the turrets. Like Kowalski and Krishnan

(1987), these authors showed that two branches on opposing sides of the header had

similar two-phase flow characteristics. These authors presented qualitative sketches

of their observations showing the complex nature of the two-phase flow distribution

during injection tests. Their observations depict an axial flow within the header with

a varying liquid level between feeder banks.

In order to isolate the particular effects of geometry and flow conditions in com-

plex multi-branch header-feeder systems a variety of quasi-steady experiments were

conducted with one or two branches on a flat vertical wall (Parrott et al., 1991; Has-

san et al., 1996a,b, 1998; Maier et al., 2001b; Bartley et al., 2008, 2010) or with up
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to three branches on a curved surface (Hassan et al., 1997; Ahmad and Hassan, 2006;

Bowden and Hassan, 2007, 2008) exposed to large stagnant stratified gas-liquid reser-

voir. These studies reported the critical height at the onset of liquid entrainment and

vortex-free gas entrainment for a variety of geometries and flow configurations (single

or multiple branches), and corroborated the relationship between the critical height

and the branch Froude number. With interface heights below the OGE or above the

OLE, the flow into the small branch becomes a two-phase gas-liquid mixture. The

relationship between the interface height and the two-phase branch characteristics,

e.g. the two-phase mass flow rate and quality, have also been investigated in a few of

these studies (Hassan et al., 1997; Bartley et al., 2010).

Modeling the Onset of Liquid Entrainment (OLE)

Since 1990 several studies have been conducted to model the critical height at the

onsets of gas and liquid entrainment in either single or multiple branches. These

studies consider branches exposed to a large stratified gas-liquid region. An analytical

model for the onset of liquid entrainment in a side oriented branch was first derived

by Craya (1949), and verified experimentally by Gariel (1949). The model considered

two immiscible fluids, a gas and a liquid phase, with Bernoulli’s equation applied along

the gas-liquid interface between two convenient points. The first point was assumed

to be sufficiently far from the branch where the fluid velocity was considered negligible

(stagnant). The vertical distance between this stagnant point and the branch center

is defined as the critical height. The author considered the tip of a liquid spout that

formed in the interface just below the branch as the second point. Potential theory
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was used to describe the motion of the lighter fluid entering the branch, with the

branch’s velocity field approximated by a point-sink. The kinetic energy at the spout

tip could be defined through the point-sink equation as well as Bernoulli’s equation.

The spout height was found as a single solution where these two equations were equal

and tangent to each other. The simplified model demonstrated reasonable accuracy

with Gariel (1949)’s experimental results.

Following from Craya (1949)’s theory the onset of liquid entrainment was inves-

tigated for a side slot of finite width (Soliman and Sims, 1991) and a branch with a

finite diameter (Soliman and Sims, 1992). Their analysis provided an improvement

in the prediction in the critical height, particularly at low branch Froude numbers.

Armstrong et al. (1992) provided an analytical model for the onset of liquid entrain-

ment for two branches on the side of a flat vertical wall. They found that the flow

in the branches could be simulated as point-sinks, which resulted in relatively good

agreement with their experimental data. Hassan et al. (1999), and later Maier et al.

(2001a), improved the dual branch models for a variety of branch configurations by

considering each branch to have a finite diameter. Better agreement was found at low

branch Froude numbers, and these models were shown to more appropriately predict

the physical limits of the branch edges.

Modeling the Onset of Gas Entrainment (OGE)

Ahmed et al. (2003) modeled the onset of gas entrainment in a single discharging

side branch installed on a flat vertical wall exposed to a smooth-stratified gas-liquid

environment. Two models were proposed by the authors, first a simplified model that
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treated the branch as a three-dimensional point sink, and a second more complex

model that assumed the branch to have a finite diameter. They treated each fluid

phase independently and assumed incompressible, inviscid, irrotational, and quasi-

steady flow conditions with negligible surface tension. These assumptions directed

the authors to a potential flow problem, and considered the gas-liquid interface to be

the link between both fluid phases. To that end they applied Bernoulli’s equation

along the interface between two convenient points. The first point was selected far

from the branch where the liquid kinetic energy was negligible. The vertical distance

between this point and the branch was considered to be the critical height. The

second point was established by considering that a steady dip forms in the gas-liquid

interface just prior to the OGE. The tip of this steady dip was considered to be

the second point. The authors considered that at the OGE the dip would become

unstable and used a criterion based on the work of Taylor (1950) who investigated the

instability of inviscid liquid surfaces when accelerated vertically. It was stated that a

liquid surface would become unstable if accelerated vertically at a rate greater than

or equal to gravity. A simplification of the point-sink approach reduced their model

to the form found in Eq. (2.5) with C1 = 0.625 and C2 = 0.4, which is consistent

with Lubin and Hurwitz (1966). For the second finite branch model the authors

accounted for the branch diameter by solving Laplace’s three-dimensional equation.

This was a result of applying a potential function to the continuity equation with the

appropriate boundary conditions. A solution was found by a Fourier integral method

using appropriate sine and cosine transformations. This second model was found to

be more representative of the physical limits with a branch Froude number of less
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than 10. At this point, the difference between both the point-sink and finite-branch

models was approximately 5%. With the Froude number decreased to approximately

one the difference between the point-sink and finite-branch predictions increased to

nearly 20%. The authors followed this by modeling the onset of gas entrainment in

two branches on a flat wall in the same vertical plane (Ahmed et al., 2004) and the

same inclined plane (Ahmed, 2006).

Andaleeb et al. (2006) used a similar point-sink approach to model the onset of

gas entrainment in single branch on a curved surface exposed to a large stratified

gas-liquid environment. Saleh (2008) modeled the onset of gas entrainment in single,

dual, and triple discharging branches on the side or bottom of a semi-cylindrical wall.

These models showed reasonably good agreement with experimental data provided

by Ahmad and Hassan (2006) at moderate and high branch Froude numbers. In

dual branch configurations Saleh (2008) identified that the OGE could occur in each

branch separately or both branches simultaneously. These modes of entrainment had

been earlier classified experimentally by Parrott et al. (1991). At low branch Froude

numbers the point-sink models showed poor agreement with experimental values;

Saleh et al. (2009) proposed that this was due to the effect of surface tension. To

address this point, the authors incorporated a term in their point-sink model that

compensated for surface tension effects using the dip radius of curvature. They argued

that an analytical expression for the dip radius of curvature could not be established,

and opted instead for an empirical approach. The authors used a digital imaging

technique to record the OGE dip radius of curvature and produced a semi-empirical

model for the critical height. The results showed an improvement at low branch
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Froude numbers in comparison to experimental data by Ahmad and Hassan (2006)

over existing point-sink models.

Particle Image Velocimetry and Semi-Empirical Modeling of the OGE

One of the underlying challenges in modeling either the onset of liquid or gas entrain-

ment is in determining a suitable potential function to describe the flow field local

to the branch. The finite branch approach is known to be particularly complex to

solve, with limited solutions being attained to date. An alternative to an analytical

expression of the potential function is to obtain localized whole field measurements

of the fluid velocity through experimental investigation. The technique referred to as

particle image velocimetry (PIV) has been thoroughly discussed (Willert and Gharib,

1991; Raffel et al., 1998; Adrian, 2005). It is a non-intrusive velocity field mapping

technique that uses particles immersed in the fluid to enable flow tracking and de-

termination of the local fluid velocity. The basic components are a digital camera

to capture the particle displacement and a light source to illuminate the particles

at two instants in time. Image analysis of two sequential images of the particles,

taken within a known time interval, can be correlated to produce velocity vectors.

Earlier PIV systems were developed to provide two-component fluid velocity measure-

ments (2d-PIV), but more recent advances using two-camera systems have produced

three-component velocity fields (Prasad, 2000). This three-component technique is

commonly referred to as stereoscopic PIV (3d-PIV) and it has been used successfully

to record velocity fields in single liquid phase systems (Zhang and Hugo, 2006) or

even two-phase systems (Hassan et al., 2001).
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Bowden and Hassan (2007) used 2d-PIV to study the OGE phenomena in a single

downward branch by recording the liquid phase velocity field local to the branch in

a large air-water reservoir. They divided the three-dimensional flow field into three

horizontal and a single vertical image plane. The authors developed a control volume

conservation of mass validation technique to determine the relative error of the PIV

measurements. Their analysis demonstrated that the PIV measurements resulted

in high error near the branch. They speculated that this was due, in part, to the

two-phase air-water dip distorting the images in this region. Saleh et al. (2010a)

thoroughly evaluated the use of 3d-PIV for measurement of the liquid side velocity

field at the OGE in a side oriented branch. They improved the control volume ap-

proach to estimate the measurement error, and concluded that the high error near

the branch was due mainly to out-of-plane motion which resulted in a loss of velocity

vectors. Spacial and temporal factors were also found to affect the measurement error.

These included the control volume discretization technique and imaging frequency.

The authors compared experimental velocity measurements with the analytical pre-

diction obtained from their previous point-sink analysis (Saleh, 2008) and showed

good agreement at a distance of 15 mm from the branch. Saleh et al. (2010b) fol-

lowed this with a parametric investigation of the liquid side velocity field using 3d-PIV

at the OGE during dual discharge.
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2.3.2 Experiments in Stratified Horizontal Channels

The relationship between the critical height and branch Froude number in studies

involving horizontal pipes with a co-currently flowing stratified gas-liquid regime was

found to be significantly different from that obtained in large stratified gas-liquid

reservoirs. A few studies have been done that investigate the related two-phase phe-

nomena in a small branch on the side or bottom of horizontal pipe with a co-currently

flowing stratified gas-liquid regime.

Reimann and Khan (1984) investigated the critical height at the onset of vortex-

free gas entrainment and correlated their results in the form of Eq. (2.5) yielding

C1 = 0.9625 and C2 = 0.4. Their air-water experiments were conducted at pressures

up to 0.5 MPa in a 206 mm internal diameter horizontal pipe with a single downward

or side oriented branch having a diameter of 6, 12, or 20 mm. The inlet water

mass flow rate ranged between 0.2 kg/s and 11 kg/s with heights varying between

14.01 mm and 94.76 mm. The liquid height measurements were conducted at a

location approximately 0.5 m upstream of the branch entrance within the inlet. They

discussed that water’s velocity in the pipe (0.2 to 0.8 m/s) had negligible influence

on the critical height since the liquid velocity entering the branch was significantly

larger - up to 60 m/s. Smoglie and Reimann (1986) later demonstrated that their

fitting coefficients, C1 and C2 of 1.06 and 0.4, respectively, were independent of the

ratio between run, ρLV 2
SL2, and branch, ρLV 2

SL3 superficial momentum fluxes in the

range of 0.1 × 10−4 ≤ ρLV 2
SL2/ρLV 2

SL3 ≤ 40 × 10 − 4. Smoglie and Reimann (1986)

also investigated the branch two-phase mass flow rate and quality, and derived an
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empirical expression for the branch quality as a function of the interface height, the

critical height at the onset of gas entrainment, and the densities of the gas and liquid

phases.

Schrock et al. (1986) experimented with water and steam, as well as water and air

at up to 1.07 MPa, flowing co-currently in a 102 mm diameter horizontal pipe with a

4, 6, or 10 mm diameter branch at the side or bottom of the pipe. They found that

the critical height at onset of gas entrainment was best fit when the effects of viscosity

and surface tension were accounted for. Their OLE experiments did however correlate

well with Eq. (2.5) with coefficients of C1 = 0.624 and C2 = 0.4. The authors did not

discuss any possible effects of the inlet crossflow velocity on the critical height. They

also investigated conditions leading to two-phase flow in the branch, and provided

correlations for the branch two-phase quality in relation to the interface height.

Maciaszek and Micaelli (1990) experimented with gas entrainment in a downward

branch using inlet diameters of 80 and 135 mm and branch diameters of 12 and 20

mm. Their tests were conducted at operating pressures between 2 and 7 MPa. The

authors found that their data was correlated by C1 = 0.335 and C2 = 0.4 and observed

that the transverse liquid velocity in the pipe, up to 3 m/s, drastically influenced C1.

Yonomoto and Tasaka (1991) reported the critical height at the onset of vortex-

free gas entrainment using air and water. Their test facility consisted of a 190 mm

square horizontal duct with a single downward branch whose diameter varied between

10, 15, and 20 mm at an operating pressure of between 0.4 and 0.7 MPa. The authors

provided a simplified theoretical model in the same form as Eq. (2.5) with C1 = 0.555

and C2 = 0.4. The simplified model considered the discharge to be a point-sink, and
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neglected the effects of viscosity, compressibility, and phase change. By comparing

their analytical and experimental results the authors were able to provide a correction

factor to compensate for the effects of the transverse liquid flow in the pipe as a

function of the inlet, ṁL1 and run ṁL2, liquid mass flow rates.

2.4 Summary

The literature review was organized into three main topics relating to two-phase flow

in straight channels, T-junctions, and small branches. The underlying theme in each

topic was the two-phase flow regime; emphasis was placed on separated flows and

in particular smooth and wavy-stratified regimes. The discussion was focused to

describe pertinent experimental details and provide summaries of relevant analytical,

empirical, and semi-empirical models available.

It was found that there are a limited number of studies that describe two-phase

flow and related phenomena in small branches exposed to co-currently flowing strat-

ified gas-liquid regimes. These studies showed dramatically different predictions of

the critical height at the onset of gas entrainment in comparison to each other, and in

comparison to studies dealing with large stratified gas-liquid reservoirs. These differ-

ences may be the result of the fluid velocity in the channel, the different test section

scales, the measurement location, or methodologies employed. There are also little

or no studies dealing with multiple branches exposed to flowing stratified gas-liquid

regimes, however two-phase reservoir based studies have demonstrated that a second
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or third branch can considerably affect the two-phase mass flow rate and related phe-

nomena. Therefore several questions persist, and the specific objectives of this work

are:

• Design and build an experimental facility in order to investigate the stratifica-

tion/entrainment problem in single and dual branch configurations.

• Investigate two-phase flow (mass flow rate and quality) and phenomena (onset

of gas and liquid entrainment, two-phase regime transitions) in a single branch

with a stratified co-current gas-liquid flow regime.

• Experiment and report on the onset of gas entrainment phenomenon in dual

discharging branches with co-current stratified gas-liquid flow conditions.

• Formulate a theoretical model to predict the critical height at the onset of gas

entrainment in a single discharging branch from a stratified gas-liquid region

with liquid crossflow.

• Develop appropriate empirical and semi-empirical correlations for use in the

prediction of the stratification/entrainment problem.
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Chapter 3

Experimental Investigations

3.1 Problem Description

A typical CANDU header can be described as a horizontally oriented pipe with a

length-to-diameter ratio of approximately 14 to 17. The header diameter (D) typi-

cally ranges between 0.356 and 0.406 m with an overall length of approximately 6 m

(Kowalski and Krishnan, 1987). There are multiple inlet (turrets) and exit orifices

(feeders) along the header which are used to distribute coolant within the system.

Coolant is supplied to the header through the two turrets located at the top of the

header; these are referred to here as T1 and T2 in Fig. 3.1. The coolant flows from

the header through the feeders and towards the fuel channels; these are referred to

here as FB-2, FB-1, FB0, FB+1, FB+2, and FB+3 in the figure. The feeders are

arranged in a specific configuration called a feeder bank. A single typical feeder bank

has five feeder orifices located around the circumference of the header, two horizontal

(β = 0◦, 180◦), two inclined at 45◦ and 135◦, and a single downward branch(β = 90◦).
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The diameter (d) of each feeder is typically 50.8 mm. The horizontal separating

distance between feeder banks is denoted by LFB, and between the feeder bank and

turrets as LT .

Under postulated loss-of-coolant accident conditions the normally liquid phase

coolant entering the header through the turrets can become a two-phase gas-liquid

mixture. Even a small amount of injected steam has been shown to cause flow stratifi-

cation within the header (Kowalski and Krishnan, 1987). The liquid level distribution

along the header is non-uniform and is influenced by the two-phase mass flow rate

of the coolant entering the header through the turrets (Teclemariam et al., 2003).

The turret injection flow may impinge on the gas-liquid interface which may also

attribute to the non-uniform liquid level. The complex flow structure will ultimately

vary along the header’s length. Isolating a single feeder bank denoted by the shaded

control volume in Fig. 3.1, at FB-0, the fluid phase mass flow rates at the boundary

control surfaces may be defined. The left control surface is denoted as the inlet with

subscript 1, the gas and liquid mass flow rates are defined as ṁG1 and ṁL1, respec-

tively. Subscripts L and G are used to denote the gas and liquid phases, respectively.

The right side control surface is referred to as the run using subscript 2, the gas and

liquid mass flow rates through this surface are defined as ṁG2 and ṁL2, respectively.

The third control surface is referred to as the branch using subscript 3. In Fig. 3.1

the side oriented branches are simply referred to as branch A, the inclined branches

as branch B, and the bottom oriented branch as C. The fluid mass flow rates through

these branches are defined as ṁA, ṁB, and ṁC .

The consequence of flow stratification within the header is that the conditions
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Figure 3.1: Problem description
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are favorable for the gas phase to entrain into the normally liquid feeder flow. As a

result the various branch mass flow rates, ṁA, ṁB and ṁC , could either be a single

phase liquid, a two-phase mixture, or a single phase gas. The location of the interface

relative to the branch is an important consideration to determine if the branch mass

flow is single phase or two-phase. If the interface is well above the branch the flow is

likely to be a single phase liquid. If the interface is well below the branch the flow is

likely to be single phase gas. As the interface approaches the branch however, a two-

phase gas-liquid mixture is likely flowing in the branch. As a result there are critical

interfacial locations where the branch flow transitions between single phase and two-

phase. These critical conditions are defined as the onset of gas and liquid entrainment,

OGE and OLE, respectively. To formally evaluate the conditions resulting in OGE,

OLE, and two-phase flow, a reduction of terms is required to simplify the problem to

one that is more manageable.

3.2 Reduction of Variables: Dimensional Analysis

3.2.1 Scaling a Single Simulated Feeder Bank

The problem conditions considered for a single feeder bank, the shaded region at FB0

in Fig.3.1, are presented in Fig.3.2. The relevant geometric and dynamic parameters

are presented in the figure in addition to the fluid density (ρ), dynamic viscosity

(µ), and interfacial surface tension (σ). The branch orientations considered in this

analysis are located at the side (β = 0◦), inclined (β = 45◦), and bottom (β = 90◦).
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The branches located at β = 135◦ and 180◦ will not be considered in this study in

order to reduce the number of independent variables.

A geometric scaling factor of 1:8 was selected for the cross-sectional dimensions

resulting in a simulated header diameter, D, of 50.8 mm and a branch diameter,

d, of 6.35 mm. A suitable inlet length scale was determined by examining earlier

experimental studies dealing with stratified flow in reduced T-junctions. It was found

that these investigations typically used a longer inlet than run length. A typical

inlet length was found to be on the order of 22D (Smoglie and Reimann, 1986) and

29D (Yonomoto and Tasaka, 1991). Using these studies as guides, the inlet and run

lengths (L) were selected as 36D.

3.2.2 Beginning of Two-phase Flow in a Single Branch

The onset of gas entrainment is characterized when a steady stream of gas begins

to flow into the normally liquid branch flow. The onset of liquid entrainment is

characterized when the liquid phase ceases to flow into the branch, and the branch

mass flow rate is a single phase gas. The critical liquid height at the OGE (HOGE)

and the OLE (HOLE) are expected to be functions of several independent parameters

which include geometric variables (D, d, L, λ), dynamic variables (g, ṁL3, ṁG3, ṁG2,

ṁL2), as well as fluid properties (ρ, µ, σ). The term λ is the position within the

inlet where the critical interface height is measured. This is an important parameter

since the scaled inlet length is relatively short and an interfacial liquid gradient is

expected, as previously discussed by Sadatomi et al. (1993). A reduction of terms
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Figure 3.2: Single feeder bank problem description.
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therefore provides the following functional relationship,

HOGE

d
= f

(

β,
d

D
,
L

D
,

λ

D
, Frd, Red, Wed,

ρLVL2

ρLVL3

)

(3.1)

where,

Frd =
4ṁL3

√

gd5ρL (ρL − ρG)
, (3.2)

Red =
4ṁL3

µLπd
, (3.3)

and

Wed =
16ṁ2

L3

σρLπ2d3
. (3.4)

The branch Froude number, Frd, is a ratio of inertial and gravitational forces, the

branch Reynolds number, Red, is a ratio of inertial and viscous forces, and the branch

Weber number, Wed, is a ratio of inertial and surface tension forces. The last term on

the right hand side represents the ratio of mass fluxes between the run and branch.

Table 3.1: Saturation properties of D2O at 300◦ and 10 MPa

Saturated Liquid Saturated Vapor
Density (kg/m3) 784.87 52.64
Viscosity (N · s/m2) 9.36E-05 1.97E-05
Surface Tension (N/m) 1.39E-02

Dynamic Similarity

A typical CANDU header nominally operates with heavy-water (D2O) at tempera-

tures and pressures in the range of 300◦C and 10 MPa (Banerjee and Nieman, 1982).
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At 300◦C the saturation pressure is approximately 8.6 MPa; the saturated liquid and

vapor properties are listed in Table 3.1. Dynamic similarity is satisfied by,

(Frd)mod = (Frd)prot , (3.5)

(Red)mod = (Red)prot , (3.6)

(Wed)mod = (Wed)prot , (3.7)

(

ρLVL2

ρLVL3

)

mod

=

(

ρLVL2

ρLVL3

)

prot

(3.8)

The variation of the idealized liquid branch Froude, Reynolds and Weber numbers

were evaluated using d = 50.8mm; the results of are presented in Fig. 3.3. The figure

presents the magnitude of each dimensionless group as a function of the inertia term,

which is represented in the figure by the average liquid velocity in the branch, VL3.

For a circular branch this velocity is defined as,

VL3 =
4ṁL3

ρLπd2
. (3.9)

The force of gravity in the branch Froude number is dominant over viscous (Red) and

surface tension (Wed) forces. The Weber number demonstrates that surface tension

effects could be relevant at low values of VL3.

Based on this analysis it is reasonable to assume that the physics of the problem

would be governed by the branch Froude number. This also helps to further reduce
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the number of dimensionless groups that need to be considered in the problem, and

the relationship in Eq. (3.1) can now be rewritten as,

HOGE

d
= f

(

β,
d

D
,
L

D
,

λ

D
, Frd,

ρLVL2

ρLVL3

)

(3.10)

A similar equation may be developed for the onset of liquid entrainment, with the

branch flowing gas rather than liquid, and the branch Froude number becomes,

Frd =
4ṁG3

π
√

gd5ρG(ρL − ρG)
. (3.11)
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Figure 3.3: Estimated dimensionless numbers of liquid flow in a feeder branch.
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3.2.3 Two-phase Flow in a Single Branch

Between the limits defined by HOGE and HOLE the flow in the branch is a two-phase

mixture, as illustrated in Fig. 3.4. At HOGE the single phase liquid mass flow rate

is defined as ṁL3,OGE while at HOLE the single phase gas mass flow rate is ṁG3,OLE.

The two-phase branch mass flow rate, ṁTP3, is defined as the sum of gas, ṁG3, and

H (m)

m
T

P
3
(k

g/
s)

X
3

0

1

mTP3

X3mL3,OGE

HOGEHOLE

.

.

.

.
mG3,OLE

Figure 3.4: Qualitative description of two-phase flow in a single discharging branch.

liquid, ṁL3, mass flow rates as,

ṁTP3 = ṁL3 + ṁG3, (3.12)
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and the branch flow quality (X3) represents the ratio of the gas phase in the two-phase

mixture as,

X3 =
ṁG3

ṁTP3
. (3.13)

The two-phase branch mass flow rate is expected to be influenced by the pressure

difference across the branch, ∆P , assuming that the flow is not choked, as,

∆P = P1 − P3, (3.14)

where the inlet gas pressure is defined as P1 and pressure at the branch outlet is

P3. Single phase fluid flow through the branch, between boundary pressures P1 and

P3, is expected to incur losses attributed to friction, entrance effects, and mechanical

fittings (Munson et al., 2002). Hassan et al. (1997) used hydraulic resistance, R, to

quantify these losses as a control parameter defined as,

R =

√
∆P

ṁL3,OGE

, (3.15)

which is a ratio of the imposed boundary pressures, P1 and P3, and the branch’s

single phase liquid mass flow rate at the OGE (ṁL3,OGE). The hydraulic resistance

is passively controlled through selection of the connecting pipe length, diameter, and

material.

The two-phase flow regime within a horizontal channel can be classified using the

superficial velocities of each fluid phase. Under co-current flow conditions the inlet

44



liquid superficial velocity, VSL1, becomes,

VSL1 =
4(ṁL2 + ṁL3)

ρLπD2
, (3.16)

where the inlet liquid mass flow rate in the numerator is defined through conserva-

tion of mass as a sum of the run and branch liquid mass flow rates, ṁL2 and ṁL3,

respectively. Similarly, the inlet gas superficial velocity, VSG1, is defined using the run

and branch mass gas mass flow rates as,

VSG1 =
4ṁG2 + ṁG3

ρG1πD2
. (3.17)

The inlet gas density is defined as ρG1, the run gas mass flow rate as ṁG2, and the

branch gas mass flow rate as ṁG3.

The six mass flow rates shown in Fig. 3.1, ṁL1, ṁG1, ṁL2, ṁG2, ṁL3, and ṁG3,

are therefore reduced to the four parameters, ṁTP3, X3, VSL1, and VSG1. Maintaining

R, P1 and P3 constant, the liquid height, H , can be varied and the corresponding

branch and run mass flow rates recorded at each steady value of H .

3.3 Test Section

Dimensional analysis provided a reasonable guide to establishing the important pa-

rameters and geometric relations with respect to the CANDU header prototype. Some

additional aspects need to be considered in the test section design, the constraints

include:
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• Geometric and dynamic similarity to the prototype

• Flow visualization

• Pressurized system

• Control over mass flow rates in branch and inlet

• Flexibility of design and components

To achieve the desired branch Froude numbers the operating pressure needs to be

high enough to overcome the pressure drop from the pipes, fittings, and accessories.

According to the American Society of Mechanical Engineers (ASME) Pressure Vessel

Code, strict design requirements and regulations are in place to assure safe operation

of a pressurized device containing an expandable fluid. Section VIII - Division 1 of

the ASME code outlines the rules for construction of a pressure vessel and outlines

the material thickness requirements based on the operating pressure and geometry.

Pressurized air is supplied from Concordia at up to 670 kPa. Increasing the design

pressure to improve operational safety can lead to an increase in wall thickness, and

consequently the trade off is a reduction in optical clarity. Digital imaging technolo-

gies, such as particle image velocimetry, rely on recording high resolution images of

reflected light off of particles immersed within the fluid. Curved surfaces and fluid

interfaces produce local light refractions and reflections, which can result in a loss of

image quality. Refractive index matching can be used to reduce the effects of curved

surfaces with the imaging path.
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3.3.1 Design

The main technical constraints imposed on the test section design were dimensional

similarity to the CANDU header-feeder bank problem under smooth-stratified con-

ditions, operate with internal pressure, permit flow visualization, and be modular

in construction. The pertinent design features of the test section are presented in

Fig. 3.5. The design consists of two elements, the cast acrylic flow visualization test

section, and commercially available standardized stainless-steel pipes connecting the

acrylic section to the test facility flow loop. The connecting pipes were sized (D, L)

based on geometric scaling. A cast acrylic rod (152.4 mm in diameter and 304.8 mm

long) was used to produce the test section, as shown in Fig. 3.6. A 50.8 mm diameter

hole (D) was machined through the length of the rod. Three 6.35 mm diameter holes

were machined perpendicularly to the rod’s longitudinal direction, at the mid-span,

and penetrating into the larger diameter hole, as shown in Section A-A of Fig. 3.5.

These three holes correspond to the three branch orientations shown in Fig. 3.1.

The sides of the rod were then machined flat to reduce optical distortions that were

expected as a result of the inner wall’s relatively small radius of curvature. The cast

acrylic material was chosen because its refractive index (1.48 to 1.5) was close to that

of water (1.33). The material’s mechanical properties were sufficient for handling the

design stresses without losing the optical benefit to wall thickness requirements.

The minimum material thickness was estimated from the ASME Pressure Ves-

sel Code using a design pressure rating of 1.05 MPa. Two commercially available

stainless-steel flanges were then machined and installed at either end of the acrylic
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Figure 3.5: Test section.
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part using five, 6.35 mm diameter, stainless-steel rods (not shown) connecting them

together. Two face seals (O-rings) were installed between the flange and acrylic sur-

face. The part was then thoroughly pressure tested under liquid-filled, and then

gas-filled conditions up to 350 kPa (roughly 1/3 of the design limit). The maximum

operating pressure was then set at 250 kPa to ensure safe operation, and a pres-

sure relief valve was installed in the test facility to prevent pressurizing beyond this

operating limit.

3.4 Test Facility and Flow Loop

A simplified schematic of the test facility is presented in Fig. 3.7 and a image of the

facility is presented in Fig. 3.8. The test section was installed horizontally in the

facility between two large stainless-steel TEE-shaped reservoirs. Water was stored

in an open reservoir and delivered via a pump to the inlet-TEE. Pressurized air

flowed through a pressure regulator into the inlet-TEE. A pneumatic feedback to the

regulator provided continuous monitoring and control of the set point pressure, P1.

The water flow rate was regulated using a combination of needle valve and globe valve

installed in parallel at the pump outlet. The two fluids flowed co-currently through

the test section and connecting pipes, each 1.8 m long, and into the outlet-TEE which

acted as a gravity separator. The branch outlet was connected to a second gravity

based two-phase flow separator, as shown in Fig. 3.9, that was maintained at pressure,

P3. Measurements of the liquid height and static pressure were performed using

differential pressure and static pressure transducers. The liquid height and pressure
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Figure 3.6: Manufactured test section.
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measurements could be interchanged between a total of six different locations, λ,

along the inlet and run. These distances are λ = ± 254 mm, ± 889 mm, and ± 1800

mm. In Fig. 3.7 a single measurement point of H and P1 is shown at λ = −254 mm

for simplicity.

The branch separator shown in Fig. 3.9 was designed to divide a two-phase air-

water mixture of mass flow rate ṁTP3 into its constituent components. This was

needed in order to measure the branch air and water mass flow rates, ṁL3 and ṁG3,

respectively. The air-water mixture entered through a hole machined in the top acrylic

plate. The separated water stream flowed out through a hole in the bottom acrylic

plate and the air stream flowed through a separate hole on the top acrylic plate. The

air-water mixture impacted on the diffuser and baffle plates before impinging on the

air-water interface. This was necessary in order to achieve a steady air-water interface.

The inner, middle, and outer cylinder provided different levels of sensitivity on the

liquid mass flow rate measurement. The outlet-TEE separator was a 100 mm diameter

1.5 m long vertical pipe made from stainless steel. A 100 mm to 50.8 mm reducing

TEE was welded at its midspan to accommodate connection to the run pipe. Air

flowed out through the top flange while water flowed out through the bottom flange.

The liquid heights in the outlet-TEE and separator were monitored using sight levels,

while the air and water flow rates were recorded using rotameters. A static pressure

transducer was installed on the top acrylic plate of the branch separator to record P3.
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3.5 Methodologies

Descriptions of the procedures, test cases and estimates of uncertainty are provided in

detail in each experimental chapter. For example, Chapter 4 discusses two-phase flow

in a single branch, Chapter 5 presents experiments conducted with two discharging

branches, and Chapter 7 presents the development of a digital imaging technique for

semi-empirical analysis.
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Figure 3.7: Schematic of the experimental facility.
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Figure 3.9: Schematic of the two-phase flow separator.
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Chapter 4

Experiments with Co-current

Stratified Gas-Liquid Flow in a

Single Reduced T-Junction

4.1 Chapter Overview

In this chapter an experimental investigation of the two-phase distribution in side

(0 degrees), inclined (45 degrees) and bottom (90 degrees) oriented branches under

co-current two-phase stratified conditions are presented. The two-phase distribution,

defined as the division of the gas and liquid streams between the inlet, branch and run,

are reported as a function of the gas-liquid interface height at a well defined location

upstream of the branch. The critical height at the onset of two-phase flow (OGE,

OLE) is also reported under co-current stratified conditions. The results include

descriptions of the branch two-phase mass flow rate and quality, inlet superficial
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velocities of the gas and liquid phases, and description of encountered flow regimes

as a function of the gas-liquid interface height.

4.2 Experimental Methodology

Air and water flowed co-currently from the inlet-TEE through the test section and

connecting pipes, each 1.8 m long, and into the outlet-TEE, which acted as a fluid

phase separator. Measurements of the liquid height, H , were performed using a

digital differential pressure transducer at a distance of λ/D = −5, upstream of the

branch. Digital pressure transducers were installed at P1 and P3 to measure the

static pressure in the inlet and branch outlet, the latter of which emptied into an

air-water separator. The water level in the outlet-TEE, and branch two-phase phase

separator, were monitored using a sight level. The air and water volume flow rates

were measured using rotameters.

Calibration of the hydraulic lines between the branch inlet and air-water separator

was done to ensure that the hydraulic resistance for each branch (side/inclined/bottom)

was the same. The hydraulic resistance of each branch was tested individually, with

liquid only flowing in the branch. The relationship between the applied boundary

pressures, ∆P = P1 − P3, and branch liquid mass flow rate, ṁL3, shown in Fig.4.1

was best fit by,

ṁL3 = 0.028(∆P )0.52 . . . (kg/s),

6.2 ≤ ∆P ≤ 91.2 . . . (kPa).

(4.1)

57



From this calibration, the average hydraulic resistance, following Eq. (3.15), was

calculated as R = 1032 (kg − m)−1/2 with a spread of 50 (kg − m)−1/2.

Flow visualization was enhanced by digital imaging, and a 3-CCD (charge coupled

device) Sony progressive scan digital camera, with 640×3480 pixel resolution, coupled

with an objective lens was used. The camera output was connected to a National

Instruments image acquisition module and an in house LabVIEW code was used to

control the acquisition and storing of the images. The camera was arranged such that

the CCD plane was parallel to the flat vertical side of the test section, and a small

quantity of blue tracer dye was added to the water to enhance visualization.
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Figure 4.1: Calibration of branch hydraulic lines.
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4.2.1 Procedures

Stratified Co-current Air-water Flow

Water was first added to the inlet-TEE until the outlet-TEE was filled to the same

level. This starting water level resulted in the horizontal pipe being half-full, with

approximately H/D = 0.5, and a flat horizontal air-water interface between the inlet-

TEE and outlet-TEE. With all rotameter valves closed, air was added to the system

through the inlet-TEE to a static set-point pressure of P1. Air and water were then

permitted to flow out through the outlet-TEE by opening the rotameter valves at ṁL2

and ṁG2. This caused the water level in the outlet-TEE to decrease below the initial

level, and consequently water began to flow from the inlet-TEE towards the outlet-

TEE, within the horizontal pipe. The water level in the outlet-TEE was permitted to

drop well below the horizontal pipe level so that its air-water interface was separated

from the stream of water being supplied by the run. Water was then supplied to the

system, through adjustment of the needle valve connected between the pump and the

inlet-TEE, in order to compensate for the outflow of water through the outlet-TEE.

Steady-state was achieved when the water level in the outlet-TEE, the liquid height,

H , and pressure P1 were observed to be constant. The value of H could be controlled

by adjusting the amount of water supplied to the inlet-TEE.

Two cases were tested in Table 4.1 in order to demonstrate the effect of the gas

phase on the liquid phase in cases without branch flow. This was done in order to

establish a benchmark to which the active branch experiments could be compared

to. These cases are designated as SS-1 and SS-2. In the first case the gas phase is in
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the laminar regime and in the second case it is turbulent following the methodology

outlined by Taitel and Dukler (1976) which uses the local phase averaged velocities

and hydraulic diameters to determine the local gas and liquid Reynolds numbers. In

all cases the local liquid Reynolds numbers were found to be in the turbulent regime.

Two-phase Branch Flow

With stratified co-current air water flow established, and H steady at a desired ini-

tial value, the separator was pressurized so that P3 was the same as P1. The ball

valve between the separator and branch inlet was then opened, and P3 was slowly

decreased by allowing air to flow through the gas rotameter (ṁG3). This decrease in

the separator pressure subsequently caused flow, typically a two-phase mixture, to

enter into the branch. To maintain the liquid level within the separator water was

permitted to flow out through the liquid rotameter (ṁL3), while at the same time

the liquid level in the outlet-TEE was maintained by adjusting ṁL2. The separator

pressure was slowly decreased, and all subsequent flow rates adjusted continuously,

until the desired pressure difference, ∆P , was reached. The liquid levels in the outlet-

TEE and separator were maintained by adjusting the various flow rates (branch and

run) until steady-state was achieved. The branch air-water separator was considered

steady when P3 and its water level observed through the sight level were constant.

The mass flow rates of all streams, pressure drop, and inlet height were then recorded

(ṁG3, ṁL3, H , P1, P3, ṁL2, ṁG2). Once the desired value of ∆P was achieved, H

could be varied by changing the quantity of water supplied to the system through

adjustment of the needle valve between the pump and inlet-TEE. The change in H
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was typically around 0.5 to 1 mm, and then all steady-state quantities were recorded.

A total of seven cases were tested with two-phase branch flow, as shown in Table 4.2,

one with the side branch (SB-1), three with the inclined branch (IB-1, IB-2, IB-3),

and three with the bottom branch (BB-1, BB-2, BB-3).

Onsets of Gas and Liquid Entrainment

The procedure to record the critical heights at the onset of gas entrainment is similar

to the one described above for two phase branch flow, however, the branch is connected

directly to a rotameter rather than through the separator, which enables much simpler

control of the facility. This was done because at the critical conditions (OGE, OLE)

the branch flow can be considered single phase. The branch liquid flow rate (ṁL3)

was then slowly increased to the desired test value. The interface height was then

slowly decreased, by reducing ṁL1, until a small steady stream of air could be seen

to entrain into the branch at the OGE. The mass flow rates of all streams, and the

water height were then recorded (ṁL3, H , P1, ṁL2, ṁG2).

4.2.2 Test Matrix

Experiments without any branch flow are summarized in Table 4.1 and for active

branch experiments in Table 4.2. The experiments were performed at room temper-

ature, at approximately 20 to 23 degrees Celsius, using air and water as the two fluid

phases. The experiments scanned the maximum and minimum allowable values of H

in order to maintain a smooth-stratified flow regime in the inlet. As will be seen, the

upper limit of H is defined by either the onset of gas entrainment or a flow regime
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Table 4.1: Test matrix for experiments without an active branch.

P1 VSG1

Case Description (kPa) λ/D (m/s)
SS-1 Laminar Gas - Turbulent Liquid 206 -5, -36 0.3
SS-2 Turbulent Gas - Turbulent Liquid 206 -5, -36 1

transition. The lower limit is defined by dry-out, or the onset of liquid entrainment.

The term ‘dry-out’ refers to a reduction in the run water mass flow rate to the point

that it could not be measured accurately. For the co-current two-phase experiments

listed in Table 4.1 the run gas flow rate was maintained constant so that VSG1 = 0.3

m/s in case SS-1, and VSG1 = 1 m/s in case SS-2. The air density was determined by

treating it as an ideal gas operating at P1 = 206 kPa. For the three branch orienta-

tions (side, inclined, bottom) in Table 4.2, three values of ∆P were tested, these are

34.47 kPa, 51.71 kPa and 68.94 kPa, respectively. The run gas mass flow rate, ṁG2,

was maintained constant at 0.0022 kg/s in all cases so that at the OGE, VSG1 = 0.3

m/s.

Table 4.2: Test matrix for experiments with an active branch.

P1 ∆P R ṁG2

Case Description (kPa) (kPa) (kg − m)−1/2 λ/D (kg/s)
SB-1 Side 34.47 1052
IB-1 Inclined 34.47 1052
IB-2 Inclined 51.71 1044
IB-3 Inclined 206 68.94 1038 -5 0.0022
BB-1 Bottom 34.47 1052
BB-2 Bottom 51.71 1044
BB-3 Bottom 68.94 1038
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4.2.3 Estimates of Uncertainty

Experimental uncertainties were evaluated following the methodology outlined by

Kline and McClintock (1953) at odds of 20:1 and include both precision and bias

estimates. The allowable operating pressure deviation for P1 was 6.8 kPa and for

∆P was approximately 0.4 kPa, with an instrument uncertainty of 0.83 kPa. The

inlet gas density, ρG1, is calculated to be 3.66 kg/m3 with an estimated uncertainty

of 3.8%. The instrument uncertainty in measuring the liquid height was 0.165 mm,

while the uncertainty in the critical heights was estimated as 1 mm. The uncertainty

of the air and water flow rates in the branch and run were found to be dominated

by level fluctuations in the separator and outlet-TEE combined with the rotameter

uncertainty used in the measurement. A bank of rotameters was used in order to

have the ability to scan a variety of flow rate ranges. In total, four liquid and four gas

rotameters were employed to measure the run flow rates, and five liquid and five gas

rotameters were used to measure the branch flow rates. The rotameter instrument

errors ranged between 2% and 10% of the full scale value. The uncertainty in the inlet

superficial liquid velocity was estimated as 14%, while that of the inlet gas velocity

was estimated as 29%. The uncertainty of the branch two-phase mass flow rate was

estimated as 22%, and the two-phase branch quality as 38%. The uncertainty in the

Froude number with air as the working fluid was estimated to be 11%, while with

water as a working fluid the uncertainty was estimated as 5%.
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4.3 Results and Discussion

Measurements of the two-phase quantities in the three branch orientations (side,

inclined, bottom) were conducted. The results are presented in order to demonstrate

the relationship between the two-phase mass distribution (VSL1, VSG1, ṁTP3, X3)

and the interface height, H . It is generally expected that ṁTP3 will decrease with

decreasing H , between HOGE and HOLE, while accompanied by an increase in the

branch quality X3. In effect the portion of gas in the total two-phase mass flow rate,

ṁG3, increases with decreasing H . One of the consequences of this increase in ṁG3,

however, is that the inlet gas superficial velocity increases, since ṁG2 is constant,

which lead to transition from the smooth-stratified regime to wavy or slug regimes in

some instances.

4.3.1 Co-current Air-water Flow without an Active Branch

The results obtained from cases SS-1 and SS-2 are presented in Fig. 4.2 in order to

demonstrate the effect of the superficial gas velocity, VSG1, on the superficial liquid

velocity, VSL1, and two-phase regime transitions. The liquid level was presented

at two distinct locations, λ/D = -5 and -36, in order to demonstrate the effect of

interfacial gradients within the inlet on H . In both cases as H increases VSL1 is

shown to increase. In addition, each case shows that H decreases along the length of

the inlet. This can be seen by comparing H at the measurement point furthest from

the branch (λ/D = −36) with that closest to the branch (λ/D = −5). Comparing

case SS-1 and SS-2, it is shown that increasing VSG1 from 0.3 to 0.1 m/s did not
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lead to a substantial increase in VSL1, a difference of less than 6%. This indicates

that interfacial shear induced by the gas phase did not dramatically impact the liquid

flow rate. In fact in separate tests decreasing VSG1 well below 0.3 m/s showed no

substantial effect on VSL1. The inlet air-water interface was visibly smooth over the

recorded range of H , between the lower limit (dry-out) and the upper limit (two-phase

regime transition). In the case of SS-1 the interface remained relatively smooth until

around H/D = 0.57 (λ/D = −5), at which point a fast moving slug was observed

to propagate from the inlet-TEE towards the outlet-TEE. On the other hand in case

SS-2 the air-water interface was observed to become wavy at the upper limit, at

H/D = 0.46 (λ/D = −5).

In general, VSG1 could be increased at any H to achieve a flow regime transition

from smooth to wavy or slug regimes. Figure 4.3 shows the temporal development of

waves, flowing from the inlet to the run. The size and frequency of these waves was

observed to vary according to H and VSG1. It was observed that small amplitude,

higher frequency, waves typically occurred at lower values of H , with relatively high

values of VSG1. On the other hand, larger amplitude, shorter frequency, waves were

observed at higher values of H , and lower values of VSG1. In some instances the wave

amplitude grew sufficiently as to touch the top of the pipe which immediately caused

a slug to propagate through the system, as shown in Fig. 4.4. These transient flow

regimes caused uncontrollably high fluctuations of the liquid level in the outlet-TEE,

and consequently, it was not possible to accurately measure the gas and liquid flow

rates within the run. The inlet transition regime was therefore estimated based on the

superficial gas and liquid velocities just prior to wave formation, and are presented in
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Fig. 4.5 as a dashed line on the two-phase flow regime map developed by Mandhane

et al. (1974). The observed smooth-stratified regime is well represented by the regime

boundaries described in Mandhane et al. (1974)’s two-phase regime map. Case SS-1

demonstrated that the smooth-stratified regime could be maintained over a larger

range of H than case SS-2. Decreasing VSG1 below 0.3 m/s (ṁG2 = 0.0022 kg/s) did

not dramatically affect the maximum upper limit of H since slug flow was encountered

without noticeable wave formation. As a result, ṁG2 = 0.0022 kg/s was chosen as a

condition for all the active branch experiments listed in Table 4.2.
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Figure 4.2: Inlet conditions during co-current air-water flow in the horizontal pipe.
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Figure 4.3: Wave propagation during gas entrainment in the bottom branch.
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Figure 4.4: Slug development during gas entrainment in the bottom branch.
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4.3.2 Bottom Branch

The images presented in Fig. 4.6 show the typical development of the gas entrainment

flow structure in the bottom branch. In Fig. 4.6(a) the image depicts the formation

of a steady dip in the air-water interface to the right of the branch. The dip is forced

downstream (to the right in the image) by the momentum of the inlet liquid flow.

By contrast, images of the same phenomenon in a stagnant reservoir demonstrated

that the steady dip was almost directly above the branch (Saleh et al., 2009). Slowly

increasing the branch mass flow rate caused the air to entrain into the branch, as

shown in Fig. 4.6(b). Initially the air entrainment was observed to be transient as

the dip experienced a sudden collapse into the branch, and then quickly reformed,

but eventually began to steadily entrain. The steady entrainment of air in Fig. 4.6b

is characterized as the onset of gas entrainment.

Critical Height

The critical height at the OGE in the bottom branch is presented in Fig. 4.7 as a

function of the branch single phase liquid Froude number, Frd. In Fig. 4.7(a), the

interface was smooth-stratified between the lower dry-out limit, around H/D = 0.16,

and the upper limit, around H/D = 0.6, where slug flow was observed. The inlet

conditions are presented in Fig. 4.7(b), with VSG1 constant at 0.3 m/s, along with data

from case SS-1. The slug regime is encountered at approximately the same interface

height, however at a higher value of VSL1. The increase in VSL1 is particularly evident

where H/D > 0.4 and is shown to be up to 20% higher than that of SS-1. Since
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Figure 4.6: Flow visualization of the onset of gas entrainment in the bottom branch.
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VSG1 is expected to have negligible influence on VSL1, according to Fig. 4.2, the

increase in the inlet liquid superficial velocity is attributed primarily to the branch

flow. The ratio between the run and branch liquid mass fluxes, ρLVSL2/ρLVL3, is

presented in Fig. 4.8. The branch mass flux at the OGE is approximately two orders

of magnitude larger than that of the run, and is consistent with Smoglie and Reimann

(1986)’s findings. A correlation was developed for the critical height, HOGE, based

on Frd, as,

HOGE

D
= 0.134Fr0.45

d ,

λ/D = −5.

(4.2)

The critical height is compared in Fig. 4.9 with a variety of studies conducted us-

ing bottom oriented branches. In this figure the critical height is non-dimensionalized

using the branch diameter, d, rather than the pipe diameter, D. These include data

obtained in stagnant two-phase reservoirs with test sections in geometrical similarity

to the present study (Ahmad and Hassan, 2006; Hassan et al., 1997), correlations de-

veloped from liquid-liquid experiments in a quasi-steady draining experiment (Lubin

and Springer, 1967), and correlations in horizontal channels (Kowalski and Krish-

nan, 1987; Smoglie and Reimann, 1986; Schrock et al., 1986; Yonomoto and Tasaka,

1991; Maciaszek and Micaelli, 1990). The best agreement is found with Smoglie and

Reimann (1986) and Schrock et al. (1986)’s correlations. The stagnant reservoir stud-

ies demonstrate that for the same value of HOGE a substantially higher value of Frd is

needed to achieve the OGE. In theoretical studies, the criterion for the OGE has been

characterized using the total kinetic energy at the lowest point of the dip (Ahmed
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Figure 4.7: Critical conditions at the onset of gas entrainment in the bottom branch
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73



Frd

V
S

L2
/

V
L3

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

VSL2/ VL3 = 0.02Frd
-0.16

Dry-out
Slug

ρ
L

ρ L
ρ L

ρ
L
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et al., 2003; Andaleeb et al., 2006). With co-currently flowing phases of gas and liq-

uid, the total kinetic energy at the dip is found as summation of contributions from

the branch and run (Bowden and Hassan, 2009). Therefore, the branch’s contribution

to the total kinetic energy at the dip can be lower than the stagnant reservoir case

at the OGE. The remaining correlations show very poor agreement with the present

data which may be due to the measurement location, λ/D of HOGE. As seen in Fig.

4.6, measurement of the interface height near the branch can be greatly affected by

the OGE flow structure, as the dip interface height can be dramatically lower than

the inlet height.

Multiplying ρLVSL2/ρLVL3 by the geometric ratio D2/d2, the ratio of mass flow

rates between the run and branch, ṁL2/ṁL3, is obtained. This ratio shows that
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the branch accounts for between 50 to 60% of the total inlet liquid flow rate. The

relatively high portion of the liquid flow diverted into the branch, and the branch

flow’s high velocity compared to the run flow, helps to explain the observed increase

in VSL1 over case SS-1 data in Fig. 4.7(b). A correlation was provided that can be

used to determine the liquid flow distribution between the branch and run as,

ρLVSL2

ρLVL3

= 0.02Fr−0.16
d

2 ≤ Frd ≤ 30

λ
D

= −5.

(4.3)
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Figure 4.9: Critical conditions at the onset of gas entrainment in the bottom branch.
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Similar to case SS-1 and SS-2 if VSG1 is increased sufficiently the smooth-stratified

regime can become wavy, or slugging can occur. Interestingly, with each passing wave

or slug the gas entrainment flow structure shown in Fig. 4.6 would dissipate and then

reform. The images of the wavy and slug regimes in Fig. 4.3 and 4.4, respectively,

were taken with the OGE in the bottom branch to demonstrate this point. The OGE

flow structure described in Fig. 4.6(a) is found in the first image of Fig. 4.3 and 4.4,

at t = 0.0 s. In Fig. 4.3 as a wave approaches the branch (t =0.1 and 0.2 s) the OGE

dip slowly begins to recede upwards until the wave is close to the branch (t = 0.3

s) subsequently the dip and wave interact and dissipate, as shown at t = 0.4 s. At

t = 0.5 s a new wave begins to form at the left of the image, while the OGE dip also

begins to reform in the air-water interface. In Fig. 4.3 the air-water interface within

the inlet, to the left of the steady OGE dip at t = 0.0 s, is shown to be smooth. A

sudden slug forms within the inlet and quickly propagates towards the OGE dip (t =

0.1 s). The OGE dip is immediately dissipated as it is impacted by the fast moving

slug (t = 0.2s), and then the pipe becomes full behind the slug face (t = 0.3s to 0.5s).

Once the slug completely passes the branch the OGE flow structure observed at t =

0.0 s gradually reforms as steady conditions are re-established.

Two-phase Branch Mass Flow Rate and Quality

Below HOGE a two-phase mixture of air and water flows in the branch. The two-phase

flow distribution at the inlet and branch are presented in Fig. 4.10 as a function of the

liquid height, H , at λ/D = −5 and pressure drop, ∆P . Sketches of the observed flow

structure with decreasing H below HOGE, and constant ∆P , specifically the air-spout
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relative to the branch, are presented in Fig. 4.11. The beginning of gas entrainment

is shown in Fig. 4.11(a), with two-phase branch flow in Fig. 4.11(b) and (c). No

appreciable difference in VSL1 over the three pressure drops is found in Fig. 4.10(a),

however an overall increase is found when compared to case SS-1. As H decreases

below HOGE, VSG1 increases due to the inception of air into the branch, as shown in

Fig. 4.10(b). Increasing VSG1 has shown however to cause flow regime transitions in

cases SS-1 and SS-2, and in the case of BB-3 the slug regime was encountered well

below HOGE with a value of approximately VSG1 = 0.35 m/s. In this case the slug

was initiated due to wave formation in the inlet region. The onset of gas entrainment

corresponds to X3 = 0 in Fig. 4.10(d). The relationship between the interface height

and the branch two-phase mass flow rate and quality are shown in Fig. 4.10(c) and

4.10(d), respectively. As H decreases below HOGE the two-phase mass flow rate

decreases due to the increased amount of air entrained into the branch, which can be

observed by the increase of X3. It was observed that as H decreased, the air spout

increased in size, as shown in Fig. 4.11(a) to (c). This effectively increased the air

flow area at the branch inlet while decreasing the water flow area. The higher air flow

area at the branch inlet helped to promote a higher mass of air to flow into the branch

and is why the decrease in the two-phase mass flow rate with H is accompanied by

an increase in the flow quality.

The inlet and branch two-phase quantities are presented in relation to the interface

height, H at λ/D = −5. Since an interfacial liquid gradient exists along the inlet,

according to Fig. 4.2, this makes it difficult to compare the absolute values of H

and X3 with other studies. By non-dimensionalizing H with the critical height at the
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Figure 4.10: Two-phase distribution at the bottom branch in relation to the interface
height at λ/D = −5.
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Figure 4.11: Sketches of observed air spout development during two-phase flow in the
bottom branch with decreasing interface height from (a) to (c).
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OGE as,

H+ =
H

HOGE
, (4.4)

the measured values of X3 have been shown to collapse together (Smoglie and Reimann,

1986; Hassan et al., 1997). For cases BB-1 and BB-2 the critical height can be found

directly from Fig. 4.10, whereas HOGE for case BB-3 was not achieved due to the

regime transition from smooth-stratified to slug flow. This can be remedied using

the relationship developed from the separator calibration in Eq. (4.1) along with the

critical height relationship developed in Eq. (4.2) to estimate the anticipated value

of HOGE. At ∆P = 68.94 kPa the corresponding value of ṁL3 is 0.253 kg/s, which

results in Frd = 32. Using Eq. (4.2) at Frd = 32, the expected value of HOGE is

found to be 32.1 mm.

The branch quality is presented in Fig. 4.12 as a function of the dimensionless

height, H+. The effect of ∆P is dissipated when H is scaled with HOGE, and the

values of X3 collapse together at each corresponding value of H+. Interestingly,

the results were found to agree well with Smoglie and Reimann (1986)’s correlation,

even though there are stark differences between the length scales used in the two

studies (L/D,d/D, λ/D). Comparison with Hassan et al. (1997) showed that X3 is

approximately 40 to 50% lower in the region where 0.5 < H+ < 0.7. This may be

attributed the size and shape of the air spout at the branch inlet. The sketches in Fig.

4.11(a) and (b) show that the liquid flow area at the branch inlet is much larger than

that of the gas phase. This is because the air spout, due to the momentum of the inlet

liquid flow, was squeezed against the side of the branch. This caused the gas flow
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area at the branch inlet to be reduced, and helps to explain why a lower two-phase

quality was found. In the lower ranges of H+ the momentum of the inlet liquid phase

decreases, and the air spout is nearly symmetric about the branch, as shown in Fig.

4.11(c). In stagnant reservoir studies the air spout has been described as symmetrical

about the branch inlet (Hassan et al., 1997). The similarity in flow structures, the

symmetrical air spout, and the fact that the inlet liquid velocity approaches the

stagnant case, helps to explain why Hassan et al. (1997)’s data begins to approach

Smoglie and Reimann (1986)’s correlation where H+ < 0.3.
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Figure 4.12: Comparison of two-phase quality in the bottom branch with Smoglie
and Reimann (1986) and Hassan et al. (1997).
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4.3.3 Inclined Branch

Critical Height

The critical height at the onset of gas entrainment in the inclined branch was de-

termined under co-current smooth-stratified conditions with VSG1 = 0.3 m/s, as well

as quasi-stagnant conditions with VSG1 = 0 m/s and ṁL2 = 0 kg/s. It is considered

quasi-stagnant because the water height in the inlet-TEE and outlet-TEE were nearly

identical, with less than 5% difference in H . This was achieved by closing the valve

controlling ṁL2, allowing water to flow from the inlet-TEE and outlet-TEE into the

branch. The critical height results were compared with stagnant reservoir studies in

Fig. 4.13(a), accompanied by the two-phase inlet conditions in Fig. 4.13(b). The

critical liquid flow distribution is presented in Fig. 4.14. At the upper limit of HOGE

the slug regime was observed to occur, and Fig. 4.13(b) shows that this occurred at a

value of VSL1 that is nearly 25% higher than that of case SS-1. At the lower limit the

interface height was H/D = 0.325, but visual observation showed that the air-water

interface was nearly touching the top edge of the branch. The top edge of the branch

is defined as the vertical distance from the bottom of the pipe to the upper limit of the

branch, at H/D = 0.19, and Ahmad and Hassan (2006) also show this as the physical

limit for the OGE. In effect H decreases by approximately 6.8 mm over a horizontal

distance of 254 mm (λ/D = −5). Interestingly, the present data tends to converge on

the stagnant results near the branch upper edge. This might be expected since VSL1

decreases with H/D, and consequently the air-water interface kinetic energy becomes

negligible (stagnant). The present quasi-stagnant results agreed with those obtained
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by Ahmad and Hassan (2006) and Hassan et al. (1997), with an average difference

in HOGE/D of 11%. As was the case with the bottom branch results, a much higher

value of Frd was needed to induce OGE with a stagnant interface at a particular

interface height, HOGE/D. The branch mass flux is at least an order of magnitude

larger than that of the run, and a correlation was developed for the critical height as,

HOGE

D
= 0.23Fr0.4

d ,

2 ≤ Frd ≤ 9.

(4.5)

Over this range between 20 to 30% of the total inlet liquid flow goes towards the

branch, consequently the run mass flux, shown in Fig. 4.14, is approximately five

times larger than that of the bottom branch. The critical liquid flow distribution

between the run and branch was correlated as,

ρLVSL2

ρLVL3

= 0.13Fr−0.34
d ,

2 ≤ Frd ≤ 9,

λ
D

= −5.

(4.6)

which can be used to determine the branch and run mass flow rates associated with

the OGE.

Two-phase Branch Mass Flow Rate and Quality

For the three values of ∆P tested in cases IB-1, IB-2, and IB-3, with liquid only flow

in the branch the corresponding values of Frd are found using Eq. (4.1) and Eq. (2.6)
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Figure 4.13: Critical conditions at the onset of gas entrainment in the inclined branch
at λ/D = −5.
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Figure 4.14: Critical liquid flow distribution between the inclined branch and run.

as 22.4, 27.6, and 32.1, respectively. The corresponding values of HOGE/D using Eq.

(4.5) are 0.783, 0.850, and 0.902 for cases IB-1, IB-2, and IB-3, respectively. It can

be anticipated from Fig. 4.13 that at the OGE the three cases would lie within the

slug regime. Therefore the upper limit for cases IB-1, IB-2, and IB-3 are expected to

be met by a two-phase regime transition rather than the OGE.

The two-phase flow distribution at the inlet and branch is presented in Fig. 4.16.

At the upper limit of cases IB-1 and IB-2 the slug regime was observed, while the

wavy regime was observed in case IB-3. Sketches of the observed flow structure

development near the branch are presented in Fig. 4.15. In Fig. 4.15(a) the air spout

is shown entraining into the right side of the branch as a result of the inlet liquid

momentum forcing it downstream, towards the run. As H decreased the air spout was
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observed to dissipate, and air and water flowed into the branch similar to as shown in

Fig. 4.15(b). Further decreasing the interface height resulted in the development of a

water spout being pulled up into the branch, as in Fig. 4.15(c). The water spout was

also observed to be affected by the inlet liquid momentum, and observed to entrain

on the downstream side of the branch.

In all three cases the lower limit corresponds to dry-out. Figure 4.16(d) shows

that dry-out occurs at a value of H/D that is higher than the critical height at the

onset of liquid entrainment (OLE), as X3 is between 0.2 and 0.3 in this range. The

inlet superficial liquid velocity is shown in Fig. 4.16(a) to be up to 17% higher than

case SS-1 with H/D > 0.4. Although VSG1 is up to three times higher than that of

case SS-1, it was demonstrated in Fig. 4.2 that this would only yield up to a 6%

increase in VSL1. The increase in VSL1 is therefore likely attributed to the portion of

liquid entering the branch - which in this case is found to be between 30 to 35% of the

total inlet liquid mass flow rate. The branch two-phase mass flow rate shown in Fig.

4.16(c) is approximately 40% lower than in the bottom branch. This is attributed

to the much higher portion of the gas phase in the mixture, as demonstrated by the

branch quality in Fig. 4.16(d).

The inlet height, H , was non-dimensionalized according to Eq. (4.4) and the

branch quality is presented as a function of H+ in Fig. 4.17. This allows compari-

son with Hassan et al. (1997)’s results, which were obtained using a large stagnant

air-water reservoir. In their study the authors described the air water interface, par-

ticularly the air and water spouts, as nearly symmetric about a vertical line passing

through the branch center. Here, as shown in Fig. 4.15, the inlet liquid momentum
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Figure 4.15: Sketches of observed air/water spout development during two-phase flow
in the inclined branch with decreasing interface height from (a) to (c).
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Figure 4.16: Two-phase distribution at the inclined branch in relation to the interface
height at λ/D = −5.
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forces the air and water spouts to the run side of the branch, the effect of which

is a reduction in the spout size at the branch inlet. This translates in Fig. 4.17

to a lower flow quality than Hassan et al. (1997), which is evident over the range

0.4 < H+ < 0.7. As H+ decreases the inlet liquid momentum decreases and X3

converges on Hassan et al. (1997)’s data. It is expected that as H+ approaches 1 the

two data sets will also begin to converge. This is because the portion of the air spout

at the branch inlet decreases significantly, and its influence on the two-phase mass

flow rate becomes less apparent as in the bottom branch case.
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Figure 4.17: Comparison of two-phase quality in the inclined branch with Hassan
et al. (1997).
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4.3.4 Side Branch

The two-phase flow distribution at the inlet and branch is presented in Fig. 4.18.

Figure 4.18(a) shows that at H/D = 0.48 the inlet air-water interface was observed

to be wavy. The upper edge of the side branch is physically located at H/D = 0.562,

which is higher than the two-phase regime transition height. Therefore, due to the

regime transition limit, the OGE could not be achieved since the interface height

was always below the branch’s upper edge. At the lower limit, however, the onset of

liquid entrainment was encountered prior to dry-out. The OLE was found to occur

at H/D = 0.254, and can be confirmed in Fig. 4.18(d) where X3 = 1. The two-phase

mass flow rate in the branch, from Fig. 4.18(c), is considerably lower than the inclined

or bottom branch results but is coupled with a substantially higher branch quality, as

shown in Fig. 4.18(d). The higher portion of air entering the branch translates to a

much larger inlet superficial gas velocity, and is shown to be as high as 1.4 m/s in Fig.

4.18(b) which is over four times greater than case SS-1. The inlet superficial liquid

velocity is marginally higher than case SS-1; a maximum increase of approximately

10% was observed at H/D = 0.48. Due to the presence of the wavy regime at this

interface height, and the fact that the portion of liquid entering the branch is only

around 12% of the total inlet liquid mass flow, interfacial shearing induced by the

flowing air is likely the main contributor to the observed increase in VSL1.

In Fig. 4.19 the OLE is compared to experimental (Maier et al., 2001a; Bowden

and Hassan, 2008; Smoglie and Reimann, 1986) and theoretical (Maier et al., 2001b)

investigations. Since these studies include branches on the side of a flat horizontal
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Figure 4.18: Two-phase distribution at the side branch in relation to the interface
height at λ/D = −5.
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wall, D is therefore infinite, it is appropriate to reference the interface height from a

horizontal line passing through the side branch center rather than the bottom of the

pipe. The interface height relative to the side branch, HA, is therefore,

HA = H − D

2
, (4.7)

and the critical height at OLE is re-defined here for comparison purposes as HA,OLE.

Similar to the bottom and inclined cases, at an equivalent critical height, a lower

branch Froude number is needed to induce OLE when compared to stagnant reser-

voir studies (Maier et al., 2001a,b; Bowden and Hassan, 2008). For example Frd

is 20% lower when compared to Bowden and Hassan (2008), which is the closest in

geometrical similarity to the present study. In the worst case the difference in Frd is

nearly 56% when the present data is compared to Smoglie and Reimann (1986). This

difference is not as severe as the inclined branch results shown in Fig. 4.13 where

the stagnant reservoir values of Frd were between two to five times higher. The dif-

ference is attributed to the interfacial drag caused by the flowing air. At the OLE

VSL1 is quite low, almost near dry-out in Fig. 4.18(a), however VSG1 is highest at 1.4

m/s. The interfacial drag forces the entraining liquid spout to one side of the branch,

similar to the observations for the inclined branch in Fig. 4.15(c), and results in a

thinning of the spout at the branch inlet just prior to the OLE. This consequently

reduces the liquid flow area at the branch inlet, resulting in a higher branch quality.

The branch quality is compared to Smoglie and Reimann (1986)’s correlation, as

well as Hassan et al. (1997)’s data in Fig. 4.20. The interface height relative to the
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Figure 4.19: Comparison of the present critical height λ/D = −5 at the OLE in the
side branch with available models and experimental data.

side branch, HA, is scaled here using HA,OLE as,

H−
A =

HA

|HOLE|
. (4.8)

The present results are in very good agreement with Smoglie and Reimann (1986)’s

correlation, which is re-written here using the present nomenclature as,

X3 =

(

1.15

1 + ( ρL

ρG
)

)2.5H−

A

×
[

1 − H−
A

2
(1 + H−

A ) ×
(

1.15

1 + ( ρL

ρG
)

1

2

)1−H−

A
]

1

2

(4.9)

while there is poor agreement with Hassan et al. (1997)’s data, particularly where

H−
A < 0. This can be explained since interfacial shear causes thinning of the water

spout, thereby reducing the liquid flow area at the branch inlet, which consequently

increases the branch quality. In the region where H−
A > 0, Hassan et al. (1997)’s data
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approaches Smoglie and Reimann (1986)’s correlation since the water spout dissipates

as the interface approaches the branch center, as in Fig. 4.15(b), thereby reducing

the influence of its size and shape on X3.
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Figure 4.20: Comparison of the two-phase quality in the side branch with Smoglie
and Reimann (1986) and Hassan et al. (1997).

4.4 Summary

Under co-current two-phase conditions one of the consequences of a gas-liquid mix-

ture flowing in the branch is the effect on the inlet flow regime. Under certain con-

ditions transitions from the smooth-stratified to wavy-stratified or slug regimes were

observed. Although these regimes could not be accurately controlled, in part due

to their transient nature, they nevertheless have very important implications on the

branch two-phase characteristics. There is evidence that a passing wave can initiate
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or hinder gas entrainment, based on flow visualization, however a quantitative anal-

ysis of this phenomenon is lacking. Detailed image analysis of the phenomenon is a

potential way to quantify the effects of the wavy regime on the branch two-phase flow

quantities, although more exploration in this area would be needed.

The two-phase quantities, including mass flow rate and quality, were reported as

a function of the liquid height within the inlet. Due to the developing nature of

the flow within the inlet the measured height is dependent on the length scales of

the facility. These effects are essentially smoothed out when an appropriate scaling

factor is used. In this case the critical height at the onset of gas or liquid entrainment

was used, which resulted in excellent agreement with the tested correlations. The

consequence of this, however, is that the effect of the interfacial liquid gradient is

somewhat lost in the smoothing of results. The scaling factor must be carefully

assessed in order to effectively use correlations of this nature. It would be impractical

to try to experimentally investigate how every scaling parameter impacts the critical

height but improved analytical models could serve this purpose.
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Chapter 5

Experiments with Dual

Discharging Branches at Low to

Moderate Froude Numbers

5.1 Chapter Overview

The critical height at the onset of gas entrainment in a small branch has been shown to

be affected by the flow through additional branches within large stratified gas-liquid

reservoirs (Ahmad and Hassan, 2006; Bowden and Hassan, 2008). In co-currently

flowing gas-liquid horizontal pipes, however, the critical height can be quite different

from that obtained in a stratified reservoir due to the effects of the crossflow velocities.

Studies dealing with the onset of gas entrainment in multi-branch configurations, par-

ticularly where co-currently flowing two-phase pipes are concerned, are very limited.

This chapter will investigate the effect of a second branch on the critical height at
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the OGE in a horizontal pipe with co-currently flowing gas-liquid streams within the

smooth-stratified regime.

5.2 Experimental Methodology

With a total of three branch orientations available (side/inclined/bottom), there are

three possible two-branch combinations:

• Inclined and bottom branches

• Side and inclined branches

• Side and bottom branches

The fluid in each branch is either a single phase liquid or a single phase gas, and

flowing with a constant mass flow rate. The branch Froude number, described in

Chapter 3, is the governing dimensionless parameter to describe the related flow

phenomena in the branches. Subscripts A, B, and C will be used to distinguish the

branch Froude numbers as FrA for the side branch, FrB for the inclined branch, and

FrC for the bottom branch. The OGE is expected to be related to the interface

level and the branch Froude number. Subscript OGE will be used in reference to the

interface height in order to distinguish the related phenomena. The two-phase flow

regime is classified according to the superficial liquid, VSL1, and gas, VSG1, velocities

within the inlet, as defined in Chapter 3. As was shown in Chapter 4, VSL1 is also

related to the interface height since gravity is a main driving force. Therefore, where
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the inlet regime is concerned the interface height will simply be denoted as H to

distinguish the two-phase inlet regime data from the OGE data.

5.2.1 Procedures

The methodology to obtain the critical height differs from the single branch cases

investigated in Chapter 4. Instead of setting the branch Froude number constant and

varying the inlet height until the OGE occurs, the inlet superficial velocities (VSL1,

VSG1) are set constant and the branch Froude numbers are slowly varied until the

OGE occurs. This difference in methodology allowed more control over the OGE in

the desired branch. The branch Froude number was varied at very small increments,

on the order of 2 to 5% of the critical Froude number and care was taken to ensure

that the OGE occured with a steady Froude number and not due to the inertia

induced by the sudden change in the branch Froude number. A typical settling time

of approximately one minute was observed before classifying the state of the branch’s

fluid flow, i.e. the OGE or single phase.

5.2.2 Test Matrix

Five cases were tested in order to demonstrate the effects of a second active branch,

these are listed in Table 5.1. The first, Case 1, examines the OGE in the inclined

branch with low to moderate values of FrC. Case 2 tests the effect of low values of

FrB on the OGE in the bottom branch. Case 3 presents the critical values of FrB and

FrC that cause the OGE in both the inclined and bottom branches simultaneously.
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Cases 4 and 5 demonstrate the effects of gas flow in the side branch using low to

moderate values of FrA. Uncertainty estimates for the branch Froude numbers and

inlet superficial velocities follow from Chapter 4.

5.3 Results and Discussion

This section is organized into three main parts. In the first section a discussion regard-

ing the observed phenomena is presented. The discussion is accompanied by images

and sketches in order to enhance the physical description of related flow phenomena

and in support of the recorded quantitative data. The second section presents the

recorded data of cases 1 to 5 in a concise manner. The critical height at the OGE,

HOGE, is presented for each case as a function of the branch’s Froude number. Data

is presented in order to show the effects of the second branch Froude number and

the measurement location, λ, on the critical height. The third section compares the

present data with applicable models and experimental data found in the literature.

5.3.1 Flow Visualization

The cases outlined in Table 5.1 were established first through extensive trials aimed

at defining the related phenomena, appropriate flow ranges, and limitations. Since

the methodology used during these trials was slightly different, the single branch

experiments were repeated to ensure consistency with previous experiments. The

discussion presented here will be on a case by case basis, following from Table 5.1,

and will highlight typical visual observations of related phenomena.
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Table 5.1: Test matrix of dual branch experiments.

Branch Fluid Phase VSG1 VSL1

Case Description Side Inclined Bottom FrA FrB FrC OGE Branch (m/s) (m/s)
1 Dual Liquid Liquid 1-8 0,1,10,FrB Inclined 0.3 0.05-0.15
2 Dual Liquid Liquid 0,1,2 6-23 Bottom 0.3 0.05-0.15
3 Dual Liquid Liquid 1-4 8-21 Inclined & Bottom 0.3 0.05-0.15
4 Dual Gas Liquid 0,1,10 1-4.2 Inclined 0.3,0.4,1 0.04-0.1
5 Dual Gas Liquid 0,1,10 4-21 Bottom 0.3,0.4,1 0.04-0.15
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Inclined and Bottom Branches: Cases 1 to 3

In Fig. 5.1 a sketch of dip profile development, with increasing FrB, is presented for

the OGE in the inclined branch. The superficial inlet liquid and gas velocities are

constant at 0.1 m/s and 0.3 m/s, respectively, and the air-water interface within the

inlet is smooth-stratified. In Fig. 5.1 (i) there is no flow inside the branch, FrB = 0.

Increasing FrB to 3, in Fig. 5.1 (ii), a small dip was observed to form in the air-water

interface above the branch, away from the pipe wall, and slightly shifted towards the

run side. As FrB was increased the dip was observed to grow in both depth and

width. Initially the dip profile was near parabolic, however as FrB increased to 4.2

the dip began to form a sharp tip at its bottom until, at a certain instant, the tip

collapsed into the branch causing air to entrain. At this point a portion of the dip is

attached to the side of the pipe wall, as shown in Fig. 5.1 (iii). An example of the

dip shape at this critical point is presented in Fig. 5.2. A similar sketch is presented

in Fig. 5.3 for the dip profile development for the OGE in the bottom branch. Again

VSL1 and VSG1 are constant at 0.1 m/s and 0.3 m/s, respectively, and the inlet is

smooth-stratified. The branch Froude number is increased from 0 to 17 in Fig. 5.3

(i) to (iii), respectively, with the latter demonstrating the critical conditions at the

OGE. The dip develops similarly to that described for the inclined branch, however,

it remains detached from the side wall throughout.

Comparing Fig. 5.3 (iii) with Fig. 5.1 (iii), it can be seen that for the same inlet

conditions the critical branch Froude number is affected by the branch orientation.

In the bottom branch the OGE occurred with FrC = 17 while in the inclined it was
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Figure 5.1: Sketches of the onset of gas entrainment at the inclined branch with
constant values of VSL1 and VSG1.
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Figure 5.2: Sample image of the onset of gas entrainment at the inclined branch with a low value of FrC .
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Figure 5.3: Sketches of the onset of gas entrainment at the bottom branch with
constant values of VSL1 and VSG1.
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found with a much lower value, at FrB = 4.2. What this implies is that for dual

discharge experiments, for a given inlet condition (VSL1, VSG1), the branch Froude

numbers can be varied between the single branch critical limits. That is to say at

VSL1 = 0.1 m/s and VSG1 = 0.3 m/s, one limit will be the OGE in the inclined branch

at critical values of FrB = 4.2 and FrC = 0. The other limiting case is found with

the OGE in the bottom branch at critical values of FrC = 17 and FrB = 0. During

dual discharge, with values of FrB and FrC in between these limits, three distinct

modes of gas entrainment are expected to occur:

• Mode 1: OGE in the inclined branch only

• Mode 2: OGE in the bottom branch only

• Mode 3: OGE in both branches simultaneously

These modes can be found through trial and error, and for various inlet conditions.

For Mode 1, and constant inlet conditions, the maximum value that FrC can

attain is defined by the critical value at the OGE in the bottom branch. This is

not a practical choice for a test value, however, since the effects of FrC on Mode 1

are unknown at this point. Therefore a more systematic approach is to test different

values of FrC , below this maximum value, and find the critical value of FrB given

constant inlet conditions.

In Fig. 5.4 the air-water interface development local to the active branches are

presented with FrB = FrC , and VSL1 = 0.15 m/s, which is 50% higher than that

discussed in the single branch examples. In Fig. 5.4(a) there is no flow in the

branch. In Fig. 5.4(b) a small dip above and to the right of the inclined branch
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begins to form. In Fig. 5.4(c) the dip has extended into the branch at the OGE. As

the branch Froude number is increased from 0 to 7.2, the air-water interface shape

changes considerably. The observed change is not only the local dip formation, but

the inlet (left of the branch) and run (right of the branch) interface levels are also

visibly altered. Therefore, although the inlet liquid mass flow rate is constant, the

quantity of the liquid mass flowing through the branches effects the interface levels

upstream of the branch. Consider that at a branch Froude number of 7.2 the liquid

velocity entering the branch is around 1.8 m/s. The inlet liquid velocity will vary

according to the interface height, and consider for comparison purposes that the inlet

velocity is VSL1 = 0.15 m/s. This rough comparison demonstrates that the liquid

velocity entering the branch is approximately an order of magnitude larger than the

liquid velocity within the inlet. The liquid flowing within the inlet must therefore

accelerate towards the branch in order to accomodate the much higher liquid velocity

entering the branch. As the fluid accelerates towards the branch the interface level

will be forced to adjust, by decreasing in height, in order to conserve the inlet liquid

mass flow rate. This has obvious implications on the critical height, HOGE, and

precisely how the fluid accelerates in the presence of the branch flow is a point of

future interest.

The discussion on the effects of FrC on the OGE in the inclined branch is continued

by considering a case where FrC is greater than the critical limiting value of FrB

but still lower than the critical limiting value of FrC. Consider VSL1 = 0.1 m/s,

VSG1 = 0.3 m/s and FrC = 10, which was chosen since it is lower than the critical

value of FrC = 17, yet higher than the critical value of FrB = 4.2. A sketch of this
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Figure 5.4: Sample images of the local air-water interface development with increasing
FrB = FrC and constant VSL1 and VSG1.
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case is presented in Fig. 5.5. In Fig. 5.5(i) there is only flow through the bottom

branch and a dip was observed to form in the air-water interface as a result of the flow

entering the branch. With a small increase in FrB to 2 another dip was observed to

form in the interface near the inclined branch, as shown in Fig. 5.5(ii). Another small

increase in FrB to 3.9, and the second dip collapsed into the inclined branch thereby

causing the OGE, as shown in Fig. 5.5(iii). As FrB was increased from 0 to 3.9 there

was no noticeable change in the dip near the bottom branch, however its presence

affected the value of FrB at the OGE. In the single branch case (FrC = 0), the OGE

in the inclined branch was found at FrB = 4.2, and in comparison with FrC = 10

the OGE in Fig. 5.5(iii) was found at a slightly lower value, with FrB = 3.9. One

explanation for this decrease in FrB is that the interface level above the inclined

branch was reduced due to the presence of the dip near the bottom branch. As

a result a lower value of FrB was needed to induce air entrainment. The second

explanation for this decrease is that the fluid entering the bottom branch does so at

a velocity that is about two and a half times of that entering the inclined branch.

The liquid must accelerate from the much slower inlet liquid stream into each branch.

The acceleration of the fluid entering the bottom branch can affect the velocity of

the liquid near the inclined branch dip to the point that a reduced value of FrB is

needed to initiate the OGE.

To evaluate the effects of FrC further consider a constant value of FrB = 2, or half

of the value needed to initiate OGE in the inclined branch in Fig.5.5, with increasing

FrC . In Fig. 5.6 a sketch of this case is presented. In Fig. 5.6 (i) FrC = 0 and a dip

appears in the interface above the inclined branch. Increasing FrC to 10 a second
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Figure 5.5: Sketches of the onset of gas entrainment at the inclined branch with a
moderate value of FrC and constant values of VSL1 and VSG1 (Mode 1).
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dip near the bottom branch forms in the interface, as shown in Fig. 5.6 (ii), which

coincides with the description provided in Fig. 5.5(ii). Increasing FrC to 17 leads

to the OGE in the bottom branch, however, the first dip does not collapse into the

inclined branch. This case refers to the second mode of entrainment, that is the OGE

in the bottom branch without entrainment in the inclined branch.

In order to cause the OGE in the inclined branch through an increase in FrC

the value of FrB must therefore be higher than 2, Fig. 5.6(iii), but lower than the

critical limit of FrB = 4.2. Consider a constant value of FrB = 3.5 while again

increasing FrC , as shown in Fig. 5.7. In Fig.5.7(i) FrC = 0 and a dip forms in the

interface above the inclined branch. Increasing FrC to 10 results in a second dip

in the interface, as shown in Fig. 5.7(ii). By increasing FrC to 17 both dips were

observed to collapse simultaneously into each respective branch, as in Fig. 5.7(iii).

This is referred to as the third mode of gas entrainment, simultaneous entrainment

in both branches. A sample image of the simultaneous OGE in both branches is

presented in Fig. 5.8. In the foreground of the image is the dip just as air is about

to entrain into the bottom branch, and in the background the dip as it is about to

entrain in the inclined branch. Interestingly the value of FrB at which this occurs is

found in between the other two described modes, that is, FrB is lower than found in

Mode 1 and higher than in Mode 2 for the same inlet conditions. In summary, for

a constant inlet condition (VSL1, VSG1), the three modes of gas entrainment may be

found through trials of different combinations of the two branch Froude numbers.
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Figure 5.6: Sketches of the onset of gas entrainment at the bottom branch with a low
value of FrB and constant values of VSL1 and VSG1(Mode 2).
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Side and Inclined Branches: Case 4

As was discovered in Chapter 4 the air-water interface was always at or below the level

of the side branch during single branch experimentation. As a result the flow entering

the side branch consisted of either a two-phase gas-liquid mixture or single phase

gas. Increasing the interface above the side branch was typically met with a regime

transition boundary. It was also discussed that small to moderate increases in VSG1,

within the smooth-stratified regime, did not dramatically affect VSL1 or the interface

height, H . It did however affect the regime transition boundary, and specifically in

regards to the interface level where wavy or slug flows were encountered. Therefore,

activating the side branch is expected to come at the expense of this regime boundary

transition limitation. That is to say, increasing the gas phase Froude number in the

side branch, FrA, will increase the inlet superficial gas velocity VSG1, and ultimately

affect the two-phase regime transition boundary. In addition, since the side branch

will be flowing gas only, and the gas-liquid interface is always below the side branch,

there is a possibility that liquid entrains into the side branch (OLE). These two

phenomena, regime transition and the OLE, are expected to limit the range of FrA

and FrB that can be tested. Therefore, a systematic approach was used to determine

the range of these limits at constant values of VSL1, by keeping FrA at a constant

value, and determining the critical values of FrB for OGE in the inclined branch.

With FrA = 1, the inertia of the gas phase is on the order of gravity. In Fig.

5.9 three cases are presented for FrA = 1 at three different values of VSL1. The inlet

superficial gas velocity was therefore increased to 0.4 m/s, which is a small increase
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over the single branch case where VSG1 = 0.3 m/s and FrA = 0. With VSL1 = 0.05

m/s the critical value of FrB was found to be 1.35, as shown in Fig. 5.9(i). At

this point the air-water interface was considerably below the side branch inlet, and

therefore no discernible effect on the OGE dip was observed. Increasing VSL1 to 0.08

m/s, in Fig. 5.9(ii), the critical value of FrB was found to be 3.2. The distance

from the side branch to the air-water interface was decreased, however the OGE dip

was visibly unaffected. Further increasing VSL1 to 0.1 m/s, as in Fig. 5.9(iii), the

critical value of FrB was found as 4.25, which is not unlike the single branch case

where FrA = 0. A low value of FrA seems to have little effect on the critical value

of FrB to induce the OGE in the inclined branch. In addition, the small increase in

VSG1 did not visibly affect the inlet regime, as it remained relatively smooth-stratified

throughout.

Increasing FrA to a moderate value of 10, as in Fig. 5.10, showed that both

the OLE and a regime transition can occur simultaneously. The inlet superficial gas

velocity is increased to 1 m/s as a result of FrA = 10, which is over three times more

than the single branch case, where VSG1 = 0.3 m/s. In Fig. 5.10(i), VSL1 = 0.05

m/s, and the critical value of FrB to cause OGE in the inclined branch was found

to be 1.5, which is 10% higher than the single branch case. The air-water interface

within the inlet remains relatively smooth, and at this point the OGE dip was not

observed to be affected by the air flowing in the side branch. Increasing VSL1 to 0.08

in Fig. 5.9(ii), however, showed that very small interfacial waves, less than 0.5 mm

in height, began to form on the air-water interface within the inlet. Closer inspection

showed that the OGE dip was oscillating vertically with FrB below the critical value
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Figure 5.9: Sketches of the onset of gas entrainment at the inclined branch with a
low value of FrA and variable inlet conditions.
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of 3.5. Consequently, on the low peak of the oscillation air began to entrain into the

inclined branch, and as the upper peak was approached air stopped entraining. The

waves seemed to generate as a result of interfacial shear within the inlet, however,

the oscillations at the dip seem to also be caused by the gas flowing into the side

branch. To illustrate this in a simple way, consider that the two branches are on

opposite sides of the air-water interface, and in effect apply competing forces on the

interface. The inclined branch flow pulls the interface down, while the side branch

pulls the interface up. Therefore, the small interfacial waves observed within the inlet

could be the result of the dip oscillation emanating outwards rather than interfacial

shear induced by the flowing gas phase within the inlet. Increasing VSL1 to 0.1 m/s,

as shown in Fig. 5.10(iii), the interfacial waves within the inlet increased in size and

frequency, approximately 0.5 to 1 mm in height. The wave frequency was such that it

was beyond the capability of the digital camera, and images could not be captured to

provide a more accurate description. A critical value of FrB = 5 was found to cause

the OGE in the inclined branch, and at the same time the liquid was observed to be

pulled up into the side branch. Just below the critical value of FrB, the OGE dip

oscillations intensified as a result of the shortened distance between the side branch

and the air-water interface. Compared to the single branch case, a slightly higher

value of FrB was needed in order to induce the OGE in the inclined branch. This

can be explained through the analogy of competing forces at the interface. With a

reduction in the distance to the interface the gas flowing into the side branch exerts a

greater upward force on the interface. In order to induce the OGE the liquid flowing

into the inclined branch must therefore compensate with an increase in the downward
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Figure 5.10: Sketches of the onset of gas entrainment at the inclined branch with a
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force (FrB).

Side and Bottom Branches: Case 5

At low values of FrA, as was observed with the inclined branch, there is no appre-

ciable change in the OGE mechanism in the bottom branch. Moderate values of FrA

however, produce similar phenomena as found with the inclined branch. A value of

FrA = 10 was used to test values of VSL1 at 0.05 m/s, 0.1 m/s and 0.15 m/s. The

inlet superficial gas velocity is VSG1 = 1 m/s. The critical Froude number in the bot-

tom branch was found for the associated flow conditions, and sketches of the related

phenomena are provided in Fig. 5.11. In Fig. 5.11(i), with VSL1 = 0.05 m/s, the

critical Froude number is found to be FrC = 6. The air-water interface within the

inlet is relatively smooth, and there is minimal observed effect of the air flow through

the side branch on the OGE dip. Increasing VSL1 to 0.1 m/s, in Fig. 5.11(ii), the

OGE dip is shown to oscillate vertically, causing transient entrainment of the air in

the bottom branch with FrC below the critical value. Increasing FrC to 12.9 resulted

in steady entrainment. This is in contrast to the single branch case, with same VSL1,

where the critical Froude number was found as FrC = 17. Small waves were apparent

on the air-water interface within the inlet, and as described for the inclined branch

case, the initial wave formation could be a result of the OGE dip oscillations or inter-

facial shear. Increasing VSL1 to 0.15 m/s however, as shown in Fig. 5.11(iii), the wave

height and frequency was found to intensify. The wave height was approximately 1

mm, and was suspected to be caused by the interfacial shear of the flowing gas phase

within the inlet. The OGE dip oscillates vertically with transient entrainment of air
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in the branch at values of FrC below the critical value. At a value of FrC = 19.1 the

OGE was steady in the bottom branch. The air-water interface was close enough for

a spout of water to be pulled up into the side branch.

The inlet flow regime has an impact on the critical branch Froude number as seen

when comparing the bottom and inclined branch single and dual cases. Waves can be

formed by either the OGE dip oscillation or interfacial shear induced by the flowing

gas within the inlet. Using the bottom branch case illustrated in Fig. 5.11(iii) as an

example, the transition from the wavy to slug regime will occur as VSG1 is increased,

keeping VSL1 constant. This phenomenon is illustrated in Fig.5.12. In Fig. 5.12(i)

the flow conditions are as described in the bottom branch case, in Fig. 5.11(iii), that

is for VSL1 = 0.15 m/s and VSG1 = 1 m/s. If VSG1 is increased, by either increasing

FrA or increasing the gas mass flow rate in the run, ṁG2, the wave height can grow

to the point where it touches the top of the pipe, as shown in the left side of Fig.

5.12(ii). Liquid accumulates behind the wave front causing a slug of liquid to form,

as shown in Fig. 5.12(iii). The pressure difference on either side of the slug causes it

to flow rapidly towards the low pressure side, from the inlet towards the run. This

phenomenon was also observed in the single branch studies examined in Chapter 4.
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Figure 5.11: Sketches of the onset of gas entrainment at the bottom branch with a
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Figure 5.12: Sketches of the inlet flow during wavy to slug regime transition.
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5.3.2 Critical Conditions at the Onset of Gas Entrainment

This section presents the results obtained from cases described in Table 5.1. The

results are presented in Figs. 5.13 to 5.30. Each figure presents the relationship

between the critical height (HOGE/D), branch Froude numbers (FrA, FrB, FrC),

and measurement location (λ/D) on the onset of gas entrainment in the inclined

and bottom branches. In addition, each figure presents the relationship between the

inlet height (H/D) measurement location (λ/D) and inlet superficial liquid and gas

velocities, VSL1 and VSG1, respectively.

To help interpret the figures presented in this section it is emphasized that HOGE/D

and H/D refer to the same measured interface height. These heights are measured

relative to the bottom of the horizontal pipe at three distinct inlet locations mea-

sured relative to the branch, where λ/D equals -36, -17.5 and -5. Traditionally the

critical height is measured relative to the branch inlet (Ahmad and Hassan, 2006;

Bartley et al., 2008) since the phenomena is expected to be related to the vertical

distance above the branch. This referencing methodology is practical in cases where

the measured gas-liquid interface is stationary however in flowing systems it is more

practical to adopt the channel bottom as the reference frame. The reason for this is

that it allows the related OGE phenomena to be more readily correlated to the inlet

conditions.

For example, at a branch Froude number of 8 the critical height at λ/D = −5

is found to be HOGE/D = 0.5 in Fig. 5.13(a). Moving to Fig. 5.13(b), it can be

found that at this interface height VSL1 is approximately 0.14 m/s, with VSG1 = 0.3

123



m/s constant from Table 5.1. From this single data point the superficial velocities

can be used to compare the observed two-phase flow regime with existing empirical

models, such as presented in Fig. 4.5. Alternatively, local inlet quantities that are

dependent on the flow area, such as the average fluid phase velocities, or Reynolds

and cross-flow Froude numbers, can be evaluated. These quantities may be used as

empirical boundary conditions in future models, such as providing an estimate of the

interfacial kinetic energy, or used to select appropriate models in order to estimate

wall friction terms within the inlet.

Methodology Validation: Single Branch Test

Measurements of the onset of gas entrainment in the inclined and bottom branches,

which were investigated in Chapter 4, were repeated using the refined methodology

outlined in §5.2 in order to verify that it yields similar results. The results are

presented in Figs. 5.13 to 5.15.

The critical conditions at the onset of gas entrainment in the inclined and bottom

branch are presented in Figs. 5.13 and 5.14, respectively. In Figs. 5.13(a) and

5.14(a) the critical height is presented at the three locations upstream of the branch.

In general, the further upstream of the branch the higher the value of HOGE/D. The

effect of branch orientation can be evaluated through use of the traditional referencing

method employed in recent literature, that is the critical height is the vertical distance

between the branch and two-phase interface (Ahmad and Hassan, 2006; Bartley et al.,

2008). There is no change to the bottom branch critical height value, however for the

inclined branch the reference height is at HOGE/D = 0.146, which coincides with the
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vertical distance from the bottom of the pipe to the inclined branch center. This value

must be subtracted from the values of HOGE/D in Fig. 5.13(a). For example with the

inclined branch at λ/D = −5 and FrB = 9.5, the critical height is HOGE/D = 0.531.

The vertical distance from the branch center to the air-water interface, at this Froude

number, is found to be HOGE/D = 0.385, or alternatively 19.55 mm. Alternatively

for the bottom branch case, and the same branch Froude number, the critical height

is HOGE/D = 0.35. The resulting vertical distance from the branch center to the air-

water interface is 17.78 mm, a difference of 2.25 mm or HOGE/D = 0.044. These two

critical values occur at significantly different values of VSL1, in the inclined branch

it is found as 0.16 m/s while in the bottom branch as 0.07 m/s. As a result the

liquid superficial velocity on the run side is found to be 0.125 m/s for the inclined

branch and 0.034 m/s for the bottom branch. The run liquid superficial velocity

is found as the difference in the inlet and branch liquid mass flow rates divided by

the liquid density and total cross-sectional area of the pipe. What this points to

is that although the critical heights found using the traditional referencing method

are similar, the velocity at the interface can be quite different. From the modeling

perspective, this would translate to differences in the interfacial kinetic energy terms

at the inlet and dip.

The effect of measurement location, λ/D, can be evaluated by comparing two

branch Froude numbers. For example in Fig. 5.13(a), at FrB = 1, comparing the

three values of HOGE/D a decrease of 0.04 is found between the height measured at

λ/D = -36 with that at -5. On the other hand at FrB = 9.5 a reduction in HOGE/D

of 0.085 is found. This is because the air and water flow co-currently within the
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Figure 5.13: The onset of gas entrainment at the inclined branch demonstrating the
effect of measurement location, λ.
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Figure 5.14: The onset of gas entrainment at the bottom branch demonstrating the
effect of measurement location, λ.
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inlet, towards the branch, and as the fluid accelerates from the inlet towards the

run a gradient in the interface height is naturally formed along the length of the

pipe (Sadatomi et al., 1993). This is collaborated by Fig. 5.13(b) where the lowest

interfacial gradient is found at the lowest inlet liquid superficial velocity, around

VSL1 = 0.04 m/s, and the highest gradient at the upper limit where VSL1 = 0.16 m/s.

At the lower limit the portion of liquid that remains downstream of the branch,

flowing into the run, is reduced to the point that accurate measurements of the

run liquid mass flow rate using the outlet-TEE separator could not be performed.

This lower limit is referred to as dry-out. At this lower limit the fluid velocity is

also reduced, and begins to approach stagnation conditions, and therefore a smaller

interfacial gradient is expected. Between the lower and upper limit the interface is

in the smooth-stratified regime. Increasing VSL1 beyond the upper limiting value will

cause a fast moving slug to propagate from the inlet to the run. The slug forms

without wave formation, as the value of VSG1 = 0.3 m/s is relatively low, and the slug

is a consequence of the smooth interface touching the top of pipe near the mouth of

the inlet pipe where the liquid suddenly accelerates from a stagnant region. The upper

and lower limits are not exact values, but represent the beginning of transition regions

and where accurate measurements are not viable with the current experimental setup.

The effect of the measurement methodology is presented in Fig. 5.15. The two

correlations developed in Chapter 4 for the critical height at the OGE in the inclined

and bottom branches are presented along with the data recorded using constant inlet

conditions (VSL1, VSG1) in the present chapter. Measurements at λ/D = −5 are shown

since the correlations were developed from data at these locations. For the inclined
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and bottom branches mean relative errors of 6.4% and 3.0% were found, respectively,

when comparing the correlation and experimental values of HOGE/D over the range

of branch Froude numbers. The mean relative error was calculated as,

MRE(%) = 100 × 1

N

N
∑

i=1

∣

∣

∣

∣

HOGE(Experiment)i − HOGE(Correlation)i

HOGE(Experiment)i

∣

∣

∣

∣

(5.1)

In absolute terms this translates to a maximum error of approximately 1.5 mm at

the highest Froude numbers. In Chapter 4 the uncertainty in HOGE was estimated

as 1 mm, and is subject to the observers own perception of the beginning of gas

entrainment. Since the observer did not change in this case the incurred error is

likely due to the differences in methodology.

A further comparison between the methodologies is presented for the inlet super-

ficial liquid velocity in Fig. 5.15(b). The inclined and bottom branch data obtained

using the constant inlet condition method is presented at two locations, λ/D = -36

and -5, in comparison to the data obtained in Chapter 4 using the previous methodol-

ogy. The present data shows that there is a marginal difference between the inclined

and bottom branch data, a maximum difference of approximately 5%. The maximum

uncertainty in VSL1 was estimated in Chapter 4 as 14%, so the difference is within

the expected experimental uncertainty.

A more significant difference is found between the inclined and bottom branch

data using the previous method from Chapter 4. The difference is on the order

of 0.005 to 0.01 m/s, which translates to a maximum difference of approximately

20%, and is higher than the estimated uncertainty in VSL1. Therefore the difference
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observed in VSL1 is more likely due to the methodology rather than an effect of the

branch flow conditions. The refined methodology of setting the inlet flow conditions

constant (VSL1,VSG1) and varying the branch Froude number until the OGE occurs

yields similar results with the previous method. There is, however, better control

over the experiment, as evidenced in comparisons of VSL1, and therefore this method

is preferred and will be used throughout the dual branch cases.

Case 1

The effect FrC on the OGE in the inclined branch is presented in Figs. 5.16 to

5.19. The first three figures demonstrate the effect of measurement location, λ/D, at

constant values of FrC , while the fourth figure shows the effect of FrC at λ/D = −5.

In Fig. 5.16 a value of FrC = 1 was used, this is considered a low value since the

ratio between the branch fluid inertia and gravity are on the same order of magnitude.

As shown in Fig. 5.16(a), the range of FrB tested is always greater than or equal

to one, and therefore the inclined branch Froude number is dominant in the liquid

side flow field. Setting FrC equal to FrB, as in Fig. 5.17, the inclined branch Froude

number is no longer dominant. However since it is located above the bottom branch,

and is therefore closer to the air-water interface, air was always entrained into the

inclined branch. At the upper limit, between 6 ≤ FrB ≤ 7, a second dip was visible

in the air-water interface near the bottom branch. Increasing FrC to 10, as in Fig.

5.18, ensured that it would dominate over the entire range of FrB. With FrB > 1.2

the OGE was observed to occur in the inclined branch with a second visible dip near

the bottom branch. As FrB decreased from 7 the second dip near the bottom branch
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(b) Inlet conditions

Figure 5.15: Effect of branch orientation and measurement methodology on the crit-
ical conditions at the onset of gas entrainment.
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was observed to grow in size until, at FrB = 1.2, the second dip collapsed and air

began to entrain into the bottom branch. At the same instant that air entrained in

the bottom branch air also began to entrain into the inclined branch. This point

is designated as Mode 3 in Fig. 5.18, which becomes the lower measurement limit

at a value of VSL1 that is above dry-out. Comparing Figs. 5.16 to 5.18 with the

single branch case in Fig. 5.13, there is a noticeable increase in the critical height

at any measurement location as FrC increases. There is no significant change in the

two-phase regime, the inlet is smooth-stratified, and values of VSL1 are comparable

at the upper limit where the slug regime is encountered. The lower limit is affected

however, and dry-out typically occurs at a much lower value of VSL1 than found with

Mode 3. In all cases the interfacial development is presented according to the three

measurement locations at λ/D = −36, −17.5 and −5.

To demonstrate the effect of FrC on HOGE, and VSL1, the results recorded at

λ/D = −5 are presented in Fig. 5.19. In general increasing FrC leads to an increase

in HOGE/D. This result is sensible since FrC provides an additional downward force,

which is analogous to increasing FrB in the single branch case (FrC = 0). Somewhat

surprising is that even at low values of FrC the effect on the critical height is evident.

For example, comparing the FrC = 0 and FrC = 1 results in Fig. 5.19(a), the critical

height is shown to increase where FrB ≤ 6, it is most pronounced at low values

of FrB, specifically where FrB ≤ 3. In this low range HOGE/D with FrC = 1 is

higher than the single branch case (FrC = 0) by approximately 0.04. By comparison

increasing FrB by a value of 1, over the same range of the single branch case, yields

an increase in HOGE/D of approximately 0.04. Therefore, the increase in the critical
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Figure 5.16: Effect of measurement location, λ, on the OGE in the inclined branch
with FrC = 1 (Mode 1).
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height is sensible since an increase in FrB by 1 in the single branch case shows a

similar increase, albeit over a limited range, in comparison to the dual branch case

with FrC = 1. This is not to suggest that the effect of FrC on the critical height is this

simple, as similar comparisons at higher values of FrC do not demonstrate the same

linear behavior. For example, increasing FrC from 1 to 10 over the same low range

of FrB yields an increase in HOGE/D between 0.02 and 0.04, as FrB increases the

effect of FrC on HOGE/D diminishes. The increase in HOGE/D is comparatively quite

low to that exhibited with FrC = 1. A simple physical explanation for this is that

the bottom branch flow provides an assisting downward force as well as a competing

lateral force, which pulls the dip in its direction and away from the inclined branch.

The lateral force becomes more significant with values of FrC well above FrB, which

helps explain why at low values of FrB the increase in HOGE/D between the FrC = 1

and FrC = 10 results are marginal. The effect of FrC on VSL1 is presented in Fig. 5.19

at two different locations, λ/D = −36 and λ/D = −5, respectively, and for simplicity

only the minimum and maximum values of FrC are shown. Far upstream of the

branch at λ/D = −36, over the entire range of H/D there is little or no effect of FrC

on VSL1. Physically this implies that far upstream the local average liquid velocity

remains unaffected by the liquid flow accelerating into the branches. On the other

hand, closer to the branch at λ/D = −5, and with a constant inlet liquid superficial

velocity, the associated liquid height is shown to decrease with increasing FrC . This

decrease in the liquid height, keeping VSL1 constant, points to an increase in the local

average velocity. Therefore the acceleration of the liquid entering the branch affects

the local velocity of the fluid five pipe diameters away, but has negligible influence
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Figure 5.17: Effect of measurement location, λ, on the OGE in the inclined branch
with FrC = FrB (Mode 1).
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Figure 5.18: Effect of measurement location, λ, on the OGE in the inclined branch
with FrC = 10 (Mode 1).
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further upstream, at 36 pipe diameters. From a modeling point of view the critical

height must be referenced according to a local velocity which may or may not be

influenced by the fluid acceleration induced by the branch flow.

Case 2

The second mode was described as the OGE in the bottom branch with liquid flowing

in the inclined branch, this mode is investigated in Case 2. The effect FrB on the

OGE in the bottom branch is presented in Figs. 5.20 to 5.22. The first two figures

demonstrate the effect of measurement location, λ/D, at constant values of FrB,

while the third figure shows the effect of FrB at λ/D = −5.

The single branch case in Fig. 5.14 showed a range of FrC between 6 and 24, and

from Fig. 5.18 at FrC = 10 a value of FrB = 1 resulted in the OGE in both branches.

At the lower limit, where FrC = 6, a value of FrB < 1 is necessary to ensure that the

OGE occurs in the bottom branch only. With values of FrB lower than 1, however,

gravity and surface tension forces become increasingly dominant over the branch fluid

inertia (Bowden and Hassan, 2008). Decreasing FrB below 1 is a moot point if the

effects of FrB on the OGE in the bottom branch are to be investigated. A value of

FrB = 1 is therefore presented in Fig. 5.20 while a value of FrB = 2 is presented in

Fig. 5.21.

Comparing the critical height measurements in Figs. 5.20 and 5.21 it is apparent

that increasing FrB from 1 to 2 results in a shift in the dual onset point (Mode 3).

With FrB = 1, Mode 3 is found with FrC = 10 as expected, while with FrB = 2

the dual onset point occurs at FrC = 13, with the difference in HOGE/D of 0.06, or
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(b) Inlet conditions

Figure 5.19: Effect of FrC on the OGE in the inclined branch at λ/D = −5 (Mode
1).
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3.05 mm, at λ/D = −5. Mode 3 is therefore the lower limit of VSL1 in both cases,

since lower values of VSL1 can only come as a result of decreasing H/D in this gravity

driven liquid flow scenario. The two-phase inlet regime is smooth-stratified in both

cases with the exception at the upper limit, around VSG1 = 0.16 m/s slug flow occurs.

There is a marginal effect of FrB on the critical height, as shown in Fig. 5.22, however

it is within the experimental uncertainty of HOGE/D and can therefore be considered

negligible. The main effect is the increase in HOGE/D where the dual onset occurs.

The effect on the inlet superficial liquid velocity is also negligible, from Fig. 5.22,

which is shown in comparison to the single branch measurements (FrB = 0) at the

location closest to the branch (λ/D = −5).

Case 3

Cases 1 and 2 presented the critical conditions of the first and second modes of

gas entrainment during dual discharge. The third mode of gas entrainment, that is

entrainment in both branches simultaneously, was observed under very limited con-

ditions. The critical relationship between the associated flow conditions (VSL1,VSG1,

FrB,FrC) and the critical height, HOGE/D is investigated here. To obtain these

points the procedure is similar to the previous two cases however, with the modifica-

tion that both branch Froude numbers are slowly varied until the desired phenomenon

occurs.

The critical conditions for the third mode are presented in Fig. 5.23 as a triple

point curve. The branch Froude numbers are presented on the two ordinate axes with
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Figure 5.20: Effect of measurement location, λ, on the OGE in the bottom branch
with FrB = 1 (Mode 2).
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(b) Inlet conditions

Figure 5.21: Effect of measurement location, λ, on the OGE in the bottom branch
with FrB = 2 (Mode 2).
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Figure 5.22: Effect of FrB on the OGE in the bottom branch at λ/D = −5 (Mode
2).
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the corresponding inlet height presented along the abscissa. Only the height mea-

surements obtained at λ/D = −5 are presented, but similar curves may be obtained

for the other two locations. The recorded values span the full physical range, with

the lower limit coinciding with FrB = 1 in Fig. 5.23(a) and the upper limit relating

to the transition of the smooth-stratified to the slug regime in Fig. 5.23(b).

To help interpret the third mode of entrainment results, a map of the three modes

was developed in Fig. 5.24. This was done by combining results from Cases 1 and 2,

along with the results from Case 3. The symbols connected by dashed lines indicate a

constant inlet condition; VSL1 is used since H is known to vary with the measurement

location. A smooth curve is drawn through the dual onset data points identified

in Fig. 5.23. Above this line the OGE occurs in the bottom branch, while below

this line it occurs in the inclined branch. Along a constant VSL1 line the split of

liquid mass flow rate between the two branches is indicated by values of FrB and

FrC , respectively. Taking VSL1 = 0.1 m/s as an example, the first symbol on the

left ordinate axis indicates the single branch case where FrB = 0 and OGE is in the

bottom branch. With increasing FrB along the dashed line the transition boundary

is encountered around FrB = 3.75. At this point the OGE occurs in both branches.

Between FrB = 0 and FrB = 3.75, FrC does not vary significantly, as expected due

to the relatively low values of FrB in comparison to FrC. Increasing FrB to the

right of the transition curve the OGE occurs in the inclined branch only. There is

a significant reduction in FrC , from 18 to 0, over a relatively small increase in FrB,

from 3.75 to 7.2. The final right most data point on the dashed line is the single

inclined branch case where FrC = 0.
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(b) Inlet conditions

Figure 5.23: Critical conditions at the simultaneous OGE in the inclined and bottom
branches (Mode 3).
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Case 4

The critical height is measured at various points using differential pressure transduc-

ers. These devices have a very low response time and are not intended for transient

measurements. As a result there is an additional uncertainty introduced into the

measurement of the critical height in the presence of small waves using these devices.

Waves were estimated to be on the order of 0.5 to 1 mm in height. Coupling this

with the uncertainty estimate under steady conditions, using the method outlined by

Kline and McClintock (1953), results in an uncertainty of 1.4 mm when small waves

are present. If waves were observed to cause unreasonably high fluctuations on the

differential pressure gages, or in the run liquid mass flow rate, ṁL2, the measurements

were classified as having low accuracy and were rejected from the data set. This same

reasoning was used in reference to Case 5 below.

The effect of FrA on the OGE in the inclined branch, Case 4, is presented here.

The air-water interface is located between the two branches, with air flowing in the

side branch and water flowing in the inclined branch. The effect of measurement

location is presented in Fig. 5.25 with FrA = 1 and in Fig. 5.26 with FrA =

10. Air and water flow co-currently within the inlet and split at the branch, with

the remainder flowing into the run. Increasing the side branch gas Froude number

increases the inlet superficial gas velocity above the initial condition (VSG1 = 0.3 m/s).

A value of FrA = 1 increases VSG1 to 0.4 m/s while a value of FrA = 10 increases

VSG1 to 1 m/s. The consequence, as discussed in the flow visualization section, is that

the two-phase inlet regime may become wavy-stratified.
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The height of the lower edge of the side branch, and the height of the inclined

branch upper edge, are included in the figures to provide a physical reference to

which the measurements can be compared against. In Fig. 5.25(a) the furthest two

measurement points upstream from the branch, λ/D = -36 and-17.5, with FrB = 4.2,

indicates that the air-water interface is above the side branch entrance. As the water

accelerates from the inlet towards the run the interface height gradually decreases,

and measurements show that closer to the branches the interface is actually below

the side branch entrance. Local to the branch however, due to the OGE dip shape,

the interface can be considerably lower than the side branch entrance. The inertia

of the flowing gas phase entering the side branch is insufficient to cause the water to

entrain into the branch in this case. With an increase in FrA to 10 however, in Fig.

5.26(a), there is a small reduction in HOGE/D at λ/D = -36 and -17.5 in comparison

to the side branch edge at FrB = 4.2. Increasing FrB to 5, the interface height at the

OGE in the inclined branch increases to the point that the water begins to entrain

into the side branch (OLE). Under these conditions however, small waves begin to

form within the inlet, as indicated in Fig. 5.26(b).

The effect of FrA on HOGE/D, at λ/D = −5, is presented in Fig. 5.27. The

critical height is shown to be unaffected below FrB < 4, where the interface remains

relatively smooth. Above this, between 4 ≤ FrB ≤ 5, an increase in FrA shows

a marginal change in the critical height, for example at FrB = 4.2 a decrease in

HOGE/D of 0.02 (1.02 mm) is observed. This value happens to be close to the

wavy regime transition, and is lower than the estimated uncertainty, and therefore is

considered as data scatter resulting from the presence of small waves. There is little
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effect of increasing VSG1 on VSL1 as shown in Fig. 5.27(b). The main difference is

that at VSG1 = 1 m/s wavy flow occurs near VSL1 = 0.1 m/s while at VSG1 = 0.4 m/s,

the inlet air-water interface remains smooth-stratified.

Case 5

The same values of FrA were tested at the OGE in the bottom branch, the effect

of measurement location is presented in Fig. 5.28 and Fig. 5.29 at values of FrA =

1 and 10, respectively. The effect of FrA on HOGE/D and VSL1 is presented in Fig.

5.30 at λ/D = −5.

Interestingly, at values of FrC ≥ 14 the critical height is shown to be above the

side branch lower edge at all upstream locations, however water did not entrain into

the side branch. The reason for this is that the dip formed by the water flowing in the

bottom branch causes a significant decrease in the local interface height, as shown in

Fig. 4.6. With a low value of FrA = 1 the inertia of the air flowing into the side branch

is insufficient to pull the flowing water into the branch. At FrA = 10, however, the air

flowing into the side branch has enough inertia to pull the water up into the branch

at approximately HOGE/D = 0.53 (λ/D = −5). As was found in Case 4, increasing

FrA to 10 causes the inlet superficial gas velocity to increase to 1 m/s. The air-water

interface within the inlet began to exhibit small waves at around VSL1 = 0.1 m/s,

similar to Case 4, with HOGE/D = 0.43, however the OLE in the side branch did not

occur until around HOGE/D = 0.53 (λ/D = −5). The wave height visibly increased

as H/D increased above 0.43, therefore between 0.43 ≤ HOGE/D ≤ 0.53 the air-water

interface went through a transition from smooth-stratified to wavy-stratified. The slug
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(b) Inlet conditions

Figure 5.25: Effect of measurement location, λ on the OGE in the inclined branch
with FrA = 1.
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Figure 5.26: Effect of measurement location, λ on the OGE in the inclined branch
with FrA = 10.

150



FrB

H
O

G
E/

D

0 1 2 3 4 5 6
0.20

0.30

0.40

0.50

0.60
FrA = 0
FrA = 1
FrA = 10

Inclined branch upper edge

Side branch lower edge

} /D = -5λ

OLE in
Side branch

FrA

FrB

(a) Critical height

H/D

V
S

L1
(m

/s
)

0.2 0.3 0.4 0.5 0.6
0.00

0.05

0.10

0.15

0.20

FrA = 0 (VSG1 = 0.3 m/s)
FrA = 1 (VSG1 = 0.4 m/s)
FrA = 10 (VSG1= 1 m/s)

Slug (FrA = 0)

Wavy (FrA = 10)

/D = -5λ

Dry-out

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(b) Inlet conditions

Figure 5.27: Effect of FrA on the OGE in the inclined branch at λ/D = −5.
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regime at the upper limit, depicted in Figs. 5.28(b) and 5.29(b), comes as a result of

two different interface conditions. With VSG1 = 0.4 m/s the air-water interface was

smooth-stratified while with VSG1 = 1 m/s it was wavy-stratified. Similar to Case

4, there is no significant effect of FrA on HOGE/D in the bottom branch. Minor

differences do occur at higher values of VSL1 and VSG1, but these are due to data

scatter caused by the wavy interface, as shown in Fig. 5.30. The main effect of FrA

is on the inlet two-phase regime transition. With FrA = 0 and 1, the inlet superficial

gas velocity is relatively low, and therefore the interface remains smooth-stratified.

5.3.3 Comparison with Existing Studies

In this section the present dual experimental results are compared with existing the-

oretical models, empirical correlations, and experimental data sets. Comparison to

existing single branch studies were covered in Chapter 4, however these were limited

to comparisons for the specific branch orientations. A recent study by Bartley et al.

(2008) demonstrated the effect of branch orientation on the critical height in a single

branch. For completeness, the present single branch results are compared with Bart-

ley et al. (2008)’s results. The dual branch comparisons cover the three modes of gas

entrainment. In Fig. 5.32 and 5.33 comparison of the Mode 1 (Case 1) results are

presented, in Fig. 5.34 comparison of the Mode 2 results (Case 2) are presented, and

in Fig. 5.34 comparison of the Mode 3 results are presented.

Several studies were conducted using flat walls (Parrott et al., 1991; Hassan, 1995;

Bartley et al., 2008), with the critical height being referenced to the branch center.
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Figure 5.28: Effect of measurement location on the OGE in the bottom branch with
FrA = 1.
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(b) Inlet conditions

Figure 5.29: Effect of measurement location on the OGE in the bottom branch with
FrA = 10.
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Figure 5.30: Effect of FrA on the OGE in the bottom branch at λ/D = −5.
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To provide useful comparisons the critical height is presented in this section using the

same referencing method, with the only change coming to the inclined branch results.

In order to achieve this a constant defined by,

D

2
− D

2
sin

π

4
(5.2)

is subtracted from the critical height HOGE value, and then non-dimensionalized using

the branch diameter, d, as HOGE/d.

Single Branch: Effect of Branch Orientation

Bartley et al. (2008) performed experiments with a 6.35 mm branch that was ma-

chined perpendicularly into a flat wall, and exposed to a large stratified air-water

reservoir. Their test section design was unique since it permitted the flat wall to be

oriented at various angles above and below the interface. They examined the critical

height at the onset of gas and liquid entrainment at the various wall angles. They

developed an empirical correlation for the OGE according to,

HOGE

d
= 0.475Fr0.444, (5.3)

for a flat vertical wall, or an inclination of 0 degrees from vertical. They found that the

critical height only varied by a maximum of 15% for a vertical, inclined, or horizontal

wall over a range of low, moderate, and high branch Froude numbers.

Two data sets were selected for comparison, the horizontal wall (bottom oriented
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branch), and inclined wall (inclined branch at 30 degrees from horizontal) results.

These are presented in Fig. 5.31 along with the present critical height measurements

using the inclined and bottom branches. Examining the data sets from each study

individually first, it is evident that there is similarity in the effects of branch incli-

nation, with the difference in HOGE/D within 10% at overlapping Froude numbers.

Comparing the two studies however, for either branch orientation, the critical height

is significantly higher in the present results than found in Bartley et al. (2008). The

reason for this difference is due to the inlet liquid crossflow velocity. This can be

illustrated by considering that the inlet superficial liquid velocity decreases with de-

creasing height. At low values of HOGE/d the present data approaches stagnation

conditions, as VSL1 → 0, and consquently converges on the stagnant reservoir critical

height results provided by Bartley et al. (2008). Take for example a branch Froude

number of 20, the approximate difference in HOGE/d between Bartley et al. (2008)

and the present results is on the order of HOGE/d = 2, or more simply 12.7 mm. On

the other hand at a branch Froude number of 2, the difference decreases to HOGE/d

= 0.7, or 4.4 mm. Between these points VSL1 decreases from 0.14 m/s to nearly 0.05

m/s. The effect of the inlet crossflow velocity is also applicable to the dual branch

cases.

Dual Discharging Branches: Modes 1, 2, and 3

Parrott et al. (1991) had conducted experiments with two 6.35 mm diameter branches

machined perpendicularly into a flat vertical wall, the branches were located in the

same vertical plane. They tested several vertical separating distances between the
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Figure 5.31: Effect of branch orientation on the OGE in comparison to Bartley et al.
(2008).
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two branches, l/d, and developed an empirical correlation to depict the critical height

at the OGE in the upper branch (Mode 1) based on the two branch Froude numbers

and separating distance. Their correlation is reproduced here as,

HOGE

d
= 0.887

[

FrB + FrCexp
{

− 2.52
(

l

d

)1.1

Fr−0.22
B Fr−0.16

C

}

]0.334

. (5.4)

The upper and lower branch Froude numbers are defined as FrB and FrC , respec-

tively, in order to be consistent with the present nomenclature. The authors also

examined the critical branch Froude numbers needed to induce gas entrainment in

the bottom branch only (Mode 2) or both branches simultaneously (Mode 3). They

developed a map using the two branch Froude numbers and outlined the transition

regions between the three modes.

Hassan (1995) performed similar experiments on a flat vertical wall, using similar

separating distances. They developed an empirical correlation for the OGE in the

upper branch, where FrB = FrC , as,

HOGE

d
= 0.57

[

(

1 + exp
{

− 1.96
(

l

d

)1.2

Fr−0.32
B

}

FrB

)

]0.4

. (5.5)

Hassan (1995) also performed experiments using a semi-circular wall in close dimen-

sional similarity to the present study, and presented a limited set of data points for

the OGE in the inclined branch. Later, Ahmad and Hassan (2006) expanded this

data set over a wider range of Froude numbers.

More recently Saleh (2008) developed an analytical model for one, two, and three
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branches mounted on a curved surface exposed to a large stratified gas-liquid reservoir.

The model was based on a two-fluid separated flow approach which considered a

potential flow field local to the branches. Their results included branch inclinations

at 45 and 90 degrees down from horizontal, which coincide to the inclined and bottom

branch orientations used in the present study. Their model could be used to determine

the critical height of the three modes of gas entrainment using the inclined and bottom

branches, and presented several results to this effect.

The critical height results for Mode 1, the OGE in the inclined branch with flow

in the bottom branch, are compared to these aforementioned studies in Figs. 5.32

and 5.33. The measurement point closest to the branch at λ/D = −5 was used

for comparison purposes. The objective of these comparisons is to demonstrate the

effects of FrC on the critical height in a stagnant and a co-currently flowing gas-liquid

regime. In general for all studies increasing FrC leads to an increase in HOGE/d. A

simple physical explanation for this is that the inertia of the liquid flowing into the

bottom branch provides an additional downward force on the gas-liquid interface.

The result is that the flow through the inclined branch does not need to provide

as much downward force on the interface to induce entrainment, this is seen as a

reduction in FrB at a constant HOGE/d. Another general observation in these two

figures is that for similar branch Froude numbers in a co-currently flowing pipe the

OGE occurs with a higher critical height than in a stagnant reservoir. The reason for

this, as explained for the single branch cases, is due to the effect of the inlet liquid

crossflow velocity.

As FrB → 0, and with a constant value of FrC , the single bottom branch flow
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configuration is approached. Therefore, as this lower limit is approached (FrB = 0)

the critical height should approach the value for the OGE in the bottom branch at

the particular value of FrC. With FrC = 10 the present results demonstrate this

behavior, the corresponding value of HOGE/d for the OGE in the bottom branch

acting alone is 1.76. In comparison at FrB = 1.2, the left most point in Fig. 5.32,

the value of HOGE/d is 1.71, which is in very good agreement with the critical height

in the bottom branch only. Parrott et al. (1991)’s correlation also demonstrates this

behavior, as seen by the gradual reduction in the slope of the FrC = 10 curve, with

decreasing FrB, this is in comparison to the FrC = 0 curve which has a constant slope

on the log-log scale. At the upper limit, as FrB → 100 all three studies demonstrate

that low and moderate values of FrC becomes less significant in comparison to FrB,

and the critical height collapses on the FrC = 0 result.

These limiting values are different in scenarios where both branches have the same

Froude number, as in Fig. 5.32. A simple explanation for this is that the strength of

each branch relative to the other remains practically unchanged. In this case the main

parameters affecting the OGE would be related to the geometry and positioning of

the branches relative to the gas-liquid interface, as has been demonstrated in earlier

studies (Parrott et al., 1991; Hassan, 1995). In single branch cases, both stagnant

gas-liquid reservoirs and co-currently flowing gas-liquid channels, the critical height

has been found to be related to the branch Froude number to the power of 0.4. On a

log-log scale, as in the figure, this power relationship is exhibited by a line of constant

slope. The critical height of the present data, with FrC = FrB, is best fit by an

exponent of 0.39. In comparison, the stagnant gas-liquid reservoir studies exhibit
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similar relationships and the majority can be fit using the branch Froude number

with exponents varying between 0.39 to 0.44. Included in this comparison is Bartley

et al. (2008)’s correlation for a single branch, which was best fit using an exponent of

0.44. This special case can therefore be explained in a simple way, the effect of FrC

on the OGE in the inclined branch is a proportional increase in the critical height

with Fr0.4
B . The proportionality constant is expected to be dependent on geometrical

constraints, as was found in correlations by Parrott et al. (1991) and Hassan (1995).

No attempt was made to correlate the present data since the inlet conditions are

contingent on the channel dimensions, and more experimental data would be needed

to investigate the effects of different values of L and D.

In the case of Mode 2, the OGE in the bottom branch with FrB > 0, little

effect was found on the critical height at low values of FrB. Saleh (2008)’s model is

capable of predicting the critical height for Mode 2 in a stagnant gas-liquid reservoir.

They presented a sample of these results for moderate values of FrB, a sample of

their results have been included in Fig. 5.34 for comparison purposes. Their results

show that with FrB = 30, the effect is an increase in HOGE/d, however, this is

someone misrepresented over the range of FrC since at FrC = 10, the OGE would

be expected in the inclined branch rather than bottom branch. Their dual onset

results at FrB = 30, however, more appropriately show that the OGE will occur in

both branches at nearly FrC = 100. What this means is that over the range of FrC

presented in their results, the OGE occurs in the inclined rather than the bottom

branch. The effect of FrB on HOGE is not lost however, as an increase in the critical

height is reasonably expected. Their single branch result is also included, and shows
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good agreement in comparison to Bartley et al. (2008)’s experimental data at the

bottom oriented branch, differences between these two results could be attributed

to differences in geometry and the uncertainty of measurements. Also shown in the

figure is Smoglie and Reimann (1986)’s correlation for the OGE in a single branch

exposed to a co-currently flow gas-liquid regime, their critical height was recorded at

approximately λ/D = −2.5. Since the critical height is not dramatically affected by

FrB, the present results agree well with their correlation.

Comparing the present data with Saleh (2008)’s prediction of the dual onset con-

ditions of Mode 3, in Fig. 5.35, the value of FrC at any FrB is consistently lower

than their prediction. The reason for this decrease in FrC is due to the liquid cross-

flow velocity, which provides an additional force at the dip. In a simple way, the

liquid crossflow velocity assists the OGE. This results in the bottom branch needing

to apply a smaller force to induce the OGE - read as a reduction in FrC . The effect

of geometry is quite significant, and is seen by comparing measurements obtained by

Parrott et al. (1991) with Saleh (2008)’s prediction. Parrott et al. (1991) found that

very small values of FrB, below 1, were needed to induce the OGE in both branches.

Since both branches were located in the same vertical plane, any dip formed as a result

of the bottom branch would pass almost immediately in front of the upper branch.

This is in contrast to the present study, where two separate dips were observed to

form in the air-water interface due to the lateral shift of the branches.
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Figure 5.34: Effect of FrB on the OGE in the bottom branch at λ/D = −5 in
comparison to published models and data (Mode 2).
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5.4 Summary

Two active branches, initially flowing liquid only, exposed to a stratified gas-liquid

regime have shown to produce three different modes of gas entrainment. The mode

is dependent on the branch Froude numbers, as well as the inlet conditions. If the

branch where the OGE is expected to occur has a significantly higher Froude number

than the second active branch, for example an order of magnitude or more, a minor

effect will be found on the critical conditions. Conversely, the opposite is true if

the branch where OGE occurs has a significantly lower branch Froude number than

the second branch. Although the dual onset conditions were presented as a smooth

curve, it is expected that there is a high variability near this region, as the interfacial

instability describing the OGE is affected by the relative strengths of each branch

flow, as well as the inlet liquid superficial velocity.

To complement the onset of gas entrainment mode map developed in this study,

additional investigations on geometrical effects are needed. Differences in the channel

and branch diameter, length of the inlet channel, and inclination of channel from

horizontal, are expected to affect the inlet conditions such as interface height and

fluid phase velocity.
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Chapter 6

Theoretical Analysis of the Onset

of Gas Entrainment

6.1 Chapter Overview

This chapter presents analytical modeling of the onset of gas entrainment (OGE) in

small branches exposed to a flowing gas-liquid regime. The sections in this chapter

discuss the various stages that were undertaken to model the OGE phenomenon. Both

the successes and pitfalls encountered in this process are discussed. The chapter

begins by modeling OGE in a single branch installed on a semi-infinite horizontal

plane. The objective of this preliminary study was to incorporate liquid crossflow

into an established model that was successfully used for predicting OGE in a large

stratified reservoir. Section 6.3 focuses on the criteria incorporated in the model which

were used to predict the OGE critical dip. This discussion is extended in §6.4 with

the incorporation of a second branch, and outlines limitations of the OGE criterion.
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6.2 Single Branch on a Semi-infinite Horizontal

Plane

6.2.1 Problem Description

The geometry considered here is presented in Fig. 6.1. A single circular downward

branch, with a diameter d, is installed on a flat horizontal wall. The origin of the

Cartesian co-ordinate system (x = 0, y = 0, z = 0) is located at the center of the

branch inlet, with the vertical, y co-ordinate, shown perpendicular to the branch inlet.

A semi-infinite stratified two-phase region, of heavier and lighter fluids, exists above

the branch. Here the heavier fluid is considered as the liquid phase, subscript L, with

density ρL, and the lighter fluid as the gas phase, subscript G with density ρG. The

heavier fluid initially flows through the branch with a mass flow rate of ṁL3. The

bulk liquid flow which passes parallel to the flat wall, called herein crossflow, enters

with a mass flow rate of ṁL1 and exits through the run with ṁL2. The two-phases

extend towards infinity in the x and z directions and are bounded at y = 0 by the

solid wall. The heavier fluid flows with a uniform velocity, U , throughout the domain

in the positive x -direction. The lighter fluid phase is considered stagnant.

With single phase liquid flow through the branch, and the inlet liquid height well

above the branch inlet, the two-phase interface is flat. As the gas-liquid interface

height is reduced a vortex-free dip begins to form in the interface, as shown in Fig.

6.1. The dip is located at point B (x = b, y = h, z = 0). A small reduction in

the interface height causes the dip to suddenly collapse into the branch, resulting in
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both gas and liquid to flow into the branch. This sudden collapse of the interface is

termed the onset of gas entrainment and it occurs at a critical interface height called

HOGE. The sudden collapse of the interface is a result of the liquid acceleration at

point B, the lowest point of the dip, exceeding that of gravity (Ahmed et al., 2003).

The inlet liquid momentum causes the critical dip to shift downstream by a distance

of x = b. The existence of the dip shift is based on earlier photographic evidence

of the phenomena by Reimann and Khan (1984) and Smoglie and Reimann (1986),

although not explicitly discussed in their studies. The dip shift will be considered in

the development of the present model.

Flow Field Simulation

The flow field is considered quasi-steady, incompressible, inviscid, and irrotational,

with negligible surface tension. These assumptions reduce the problem to a potential

flow which is governed by forces of inertia and gravity. The steady continuity equation,

in Cartesian coordinates (x, y, z), with the velocity vector V described by,

V = ui + vj + wk, (6.1)

is,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (6.2)
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The irrotationality condition can be satisfied through the definition of a scalar

potential function, φ, which is related to the velocity through,

V =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k, (6.3)

or in a more convenient compact form using the differential operator, ∇, as,

V = ∇φ, (6.4)

where,

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k. (6.5)

Inserting the definition of the potential function into the continuity equation in Eq.

(6.2) produces Laplace’s well known differential equation as,

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0, (6.6)

which is an elliptic type linear homogeneous partial differential equation. A linear

combination of two solutions, say φI and φII , is also a solution as,

φ = φI + φII . (6.7)

The branch flow can be simulated by a three-dimensional point-sink intersected
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by a flat wall, which produces a hemi-spherical flow area. The radial velocity, VLd, is

uniformly distributed along this area at any radius, r, according to,

VLd = − ṁL3

2πρLr2
. (6.8)

The minus sign indicates that the velocity is directed towards the branch origin, at

r = 0. Assuming that a potential function exists, φI , and the flow is uniquely radial

towards the sink, it can be shown that,

φI =
ṁL3

2πρLr
, (6.9)

where it is convenient in this case to describe the potential function in Cartesian

co-ordinates using,

r =
√

x2 + y2 + z2, (6.10)

which results in,

φI =
ṁL3

2πρL

√
x2 + y2 + z2

. (6.11)

With a semi-infinite domain, the crossflow velocity is assumed to have a uniform

horizontal profile, U , aligned parallel to the x -direction. Assuming that a potential

function exists, φII , following Schetz and Fuhs (1996) it can be shown that,

φII = Ux. (6.12)
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The superposition of these two known potential functions, using the linearity

theorem in Eq. (6.7), results in the three dimensional flow field being represented by,

φ =
ṁL3

2πρL

√
x2 + y2 + z2

+ Ux. (6.13)

Equilibrium along the Gas-Liquid Interface

The potential flow field allows Bernoulli’s equation to be applied along the gas-liquid

interface between two convenient points, namely A and B. On the liquid side it

can be defined using the difference in static pressure, P , between points A and B

(PLA − PLB) as,

PLA − PLB =
ρL(V 2

LB − V 2
LA)

2
+ ρLg(h − HOGE). (6.14)

Similarly, on the lighter fluid phase side, which is considered stagnant, the pressure

difference can be expressed as,

PGA − PGB = ρGg(h − HOGE). (6.15)

At any point along the gas-liquid interface the pressure in either fluid phase must

be equal (White, 1991). Combining the right hand sides of Eq.’s (6.14) and (6.15)

results in,

V 2
LB = V 2

LA − 2∆ρ

ρL
g(h − HOGE), (6.16)

174



U

h

HOGE

b

y

x

ρG

Lighter fluid

ρL
Heavier fluid

g

d

A

B 

d

z

y

B 

v

u

v

w

HL2

Side View Front View

Inlet

Run

Branch
Wall

Interface

3Lm&

1Lm&

2Lm&

3Lm&

U

h

HOGE

b

y

x

ρG

Lighter fluid

ρL
Heavier fluid

g

d

A

B 

d

z

y

B 

v

u

v

w

HL2

Side View Front View

Inlet

Run

Branch
Wall

Interface

3Lm&

1Lm&

2Lm&

3Lm&

Figure 6.1: Geometry and coordinate system.
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where ∆ρ = ρL − ρG, is the difference in density between both fluid phases. The

liquid velocity at point B can be found from the magnitude of the velocity vector as,

VLB = (u2
LB + v2

LB + w2
LB)

1

2 . (6.17)

The liquid velocity at point B is found by inserting the potential function definition

from Eq. (6.4) and the co-ordinates of point B (x = b,y = h,z = 0) as,

uLB =
∂φ

∂x

∣

∣

∣

∣

(x=b,y=h,z=0)
= U − ṁL3b

2πρL(b2 + h2)
3

2

, (6.18)

vLB =
∂φ

∂y

∣

∣

∣

∣

(x=b,y=h,z=0)
= − ṁL3h

2πρL(b2 + h2)
3

2

, (6.19)

wLB =
∂φ

∂z

∣

∣

∣

∣

(x=b,y=h,z=0)
= 0, (6.20)

Considering that VLA = U , and substituting Eq.’s (6.17) to (6.20) into Eq. (6.16), it

can be shown that,

HOGE

d
=

h

d
+

Fr2
d

128

(

d4

(b2 + h2)2

)

− FrdFrU

8

(

bd2

(b2 + h2)
3

2

)

. (6.21)

where the branch Froude number Frd is defined by,

Frd =
4ṁL3

π(gd5ρL∆ρL)
1

2

, (6.22)

176



and introducing the crossflow Froude number, FrU defined as,

FrU =
U√
gd

(
ρL

∆ρ
)

1

2 . (6.23)

Equation (6.21) demonstrates that the critical inlet height, HOGE is governed by the

Froude number, which is a ratio of inertial to gravitational forces. There are three

unknowns in Eq. (6.21), namely, HOGE, h, and b, which requires two additional

equations to close the system.

Onset of Gas Entrainment Criterion

When the vertical acceleration, ay, of point B is equivalent to the gravitational ac-

celeration, g, the interface becomes unstable thereby causing the dip to collapse into

the branch (Ahmed et al., 2003; Andaleeb et al., 2006; Saleh et al., 2009). The onset

of gas entrainment criterion can therefore be stated as,

ay

∣

∣

∣

B
= −g. (6.24)

The vertical acceleration of any point, following White (1991), is,

ay =
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
. (6.25)

With steady state, and no variation in the x or z directions, the acceleration of point

B can be obtained through substitution of the potential function definition from Eq.
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(6.4) into Eq. (6.25) as,

ay

∣

∣

∣

(x=b,y=h,z=0)
=

(

∂φ

∂y

∂2φ

∂y2

)

. (6.26)

Taking the second derivative of φ with respect to y yields,

∂2φ

∂y2
=

ṁL3

2πρL(x2 + y2 + z2)
3

2

(

3y2

(x2 + y2 + z2)
− 1

)

. (6.27)

Substituting Eq. (6.19) and Eq. (6.27) into Eq. (6.26) evaluated at point B, and

equalizing it with −g as in Eq. (6.24), it can be shown that,

Fr2
d

(

hd5

(b2 + h2)3
− 3h3d5

(b2 + h2)4

)

+ 64
(

ρL

∆ρ

)

= 0. (6.28)

Offset Distance Criterion

The third equation is proposed by considering that the dip is stationary in the x-

direction. This occurs as a result of the point-sink and uniform flow velocities having

equal magnitudes, and opposite directions, at point B. The criterion may be expressed

as,

∂φI

∂x

∣

∣

∣

∣

x=b,y=h,z=0
=

∂φII

∂x

∣

∣

∣

∣

x=b,y=h,z=0
, (6.29)

or substituting the definitions of φI and φII yields,

ṁL3x

2πρL(x2 + y2 + z2)
3

2

∣

∣

∣

∣

∣

x=b,y=h,z=0

= U. (6.30)
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Evaluating this equation at point B it can be shown that,

FrU − Frd

8

(

d2b

(b2 + h2)
3

2

)

= 0. (6.31)

Special Case (FrU = 0)

When the crossflow Froude number is zero (FrU = 0) the physical model reduces to

a single branch in a large two-phase reservoir. This implies that the offset distance,

b, is uniquely zero. The number of unknowns is reduced to two, requiring only two

equations to close the system. A quick check of Eq. (6.31) verifies that with FrU = 0,

and Frd > 0, the offset distance must be b = 0. With b = 0, Eq. (6.28) reduces to,

h

d
= 0.5Fr0.4

d

(

∆ρ

ρL

)0.2

, (6.32)

and substituting this into Eq. (6.21) results in,

HOGE

d
= Fr0.4

d

(

1

2

(

∆ρ

ρL

)0.2

+
1

8

(

ρL

∆ρ

)0.8)

. (6.33)

If the lighter fluid density is negligible, that is ∆ρ ∼= ρL then Eq. (6.33) is reduced

to,

HOGE

d
= 0.625Fr0.4

d . (6.34)

6.2.2 Results and Discussion

The model consists of three non-linear equations, Eqs. (6.21), (6.28), and (6.31),
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respectively, with three unknowns, these being the critical inlet height, HOGE, and

the location of the dip at x = b, and y = h. These unknowns are governed by the

applied flow conditions defined by the branch and crossflow Froude numbers, Frd

and FrU , respectively. The system of equations was evaluated numerically through

the use of MatLab 7.0’s built in fsolve function. The branch Froude number, Frd,

was tested between 0.1 and 100, while the crossflow Froude number, FrU , ranged

between 0 and 1. With these parameters, residuals in each of the three equations

were 1 × 10−11 or less.

The special case, where FrU = 0, along with cases of FrU = 0.2, 0.4, and 0.8 are

presented in Fig. 6.2. The FrU = 0 case shows the highest critical height for any

combination of Frd or FrU . This implies that any imposed constant crossflow velocity

will decrease the critical height. For a constant crossflow Froude number, FrU , as the

branch strength, Frd, increases the curve approaches the FrU = 0 line. Physically,

this means that the branch becomes increasingly dominant in the flow field. At lower

branch Froude numbers (Frd < 10) the influence of the crossflow Froude number is

more pronounced. The variation of the dip height, h/d, is presented in Fig. 6.3.

The trend is similar to that of HOGE/d shown in Fig.6.2. The ratio of the critical

height to dip height, HOGE/h, is presented in Fig.6.4 - demonstrating the effects of

crossflow and branch strengths, FrU and Frd, respectively. The FrU = 0 line shows

a constant value where HOGE/h = 1.25, and is consistent with an earlier point-sink

analysis for a side branch on a flat vertical wall with no imposed crossflow (Ahmed

et al., 2003). For cases with crossflow the effect of FrU is a decrease in HOGE/h for

all Frd. At low values of Frd, HOGE/h decreases dramatically with FrU = 0.8 and
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Figure 6.2: Effect of FrU on the critical height HOGE/d.
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indicates that values of HOGE/h < 1 were found. Values of HOGE/h lower than 1

violate the physics of the problem because it implies the dip is located above the gas-

liquid interface. A value of HOGE/h = 1, as Frd approaches zero, would be physically

more appropriate since it implies the dip disappears from the two-phase interface -

substitution of Frd = 0 into Eq. (6.21) yields the same conclusion. The shift in the

dip location downstream of the branch centerline was defined at x = b. The effects

of Frd and FrU on b/d (b was non-dimensionalized with the branch diameter d) are

shown in Fig. 6.5. An increase in crossflow strength, FrU , demonstrates an increase

in b/d, which comes as a result of a shift in the stagnation point obtained from Eq.

(6.31). On the other hand, the results indicate that an increase in branch strength,

Frd, also results in an increase in the dip offset distance, b/d. While an increase in

b/d with Frd might not be implicit, this trend can be explained with the aid of Fig.

6.6. This figure highlights the behavior of the dip location using a ratio of dip offset

distance and dip height, b/h. As the branch strength, Frd, increases the result is a

decrease in b/h. As Frd increases it becomes the dominant player in the flow field

and, as a result, forces the dip to move closer to the y-axis resulting in a decrease of

b/h.

Control Volume Analysis

A control volume approach is used in order to evaluate the crossflow mass flow rate

at the inlet and exit of the domain. This step is necessary in order to compare with

published experimental data which typically cite the crossflow term as a mass flow

rate. The analysis is presented for cases with an imposed liquid flow, i.e. FrU > 0.
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The bottom wall is assigned a finite size in the z-direction, called the plate width,

W , so the liquid cross-sectional areas at the inlet (x → −∞) and exit (x → ∞) can

be defined. This follows from considering the inlet mass flow rate, ṁL1 as,

ṁL1 = ρL(HL1W )VL1, (6.35)

the outlet (run) mass flow rate (ṁL2) as,

ṁL2 = ρL(HL2W )VL2 (6.36)

and the branch mass flow rate (ṁL3) as,

ṁL3 = ρL(
πd2

4
)VL3. (6.37)

The liquid velocity passing through each of the three control surfaces, defined as VL,

is assumed to have a uniform profile. Subscripts 1, 2, and 3 denote the inlet, run, and

branch, respectively. The liquid height at the inlet and run are defined as HL1 and

HL2, respectively. The cross-sectional areas of the liquid phase at the inlet and run

are therefore HL1W , and HL2W , respectively. Considering the conservation of mass

from the definitions in Fig. 6.1 the resulting liquid mass flow rates at the inlet, ṁL1,

run, ṁL2, and branch, ṁL3 are conserved as,

ṁL1 = ṁL2 + ṁL3. (6.38)
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The definition of ṁL3 could be found in terms of the branch Froude number by

rearranging Eq. (6.22) using,

ṁL3 =
Frd

4
(π
√

gd5ρL∆ρ). (6.39)

At the onset of gas entrainment HL1 = HOGE and VL1 = U . To find the liquid

velocity through the run control surface, VL2, consider the definition of the velocity

field from the potential function, as x → ∞, which results in VL2 → U . The inlet and

run mass flow rates can be rewritten as a function of the crossflow Froude number

using Eq. (6.23) as,

ṁL1 = ρL(HOGEW )FrU

√

gd, (6.40)

and,

ṁL2 = ρLHL2WFrU

√

gd. (6.41)

Inserting these definitions into the conservation of mass in Eq. (6.38), and rearranging

in terms of the liquid height in the run, HL2, result in,

HL2

d
=

HOGE

d
− π

4

(

d

W

)(

∆ρ

ρL

)
1

2

(

Frd

FrU

)

. (6.42)

The equation states that the run liquid height, HL2, will be less than the inlet critical

liquid height, HOGE, if the plate width, W , has a finite size. As the plate width

approaches infinity the run liquid height, HL2, approaches the inlet value of HOGE.

If a positive real value of the run liquid height, HL2, is found from Eq. (6.42) -
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given that the crossflow and branch Froude numbers are positive and non-zero, and

the plate has a finite size, W - then the run mass flow rate, ṁL2, will have a real

positive value. If a run liquid height of HL2 = 0 is found it implies that there is

no flow (ṁL2 = 0) passing through the run control surface. Furthermore, negative

values of HL2 imply that the run mass flow rate, ṁL2, is also negative. In such a

case the liquid flow direction is reversed and is flowing into (−ve x-direction) the

control volume at the run control surface rather than flowing out (+ve x-direction).

By inserting HL2 = 0 into Eq. (6.42), and rearranging the equation, the limit where

this flow reversal occurs can be defined as,

HOGE

d

∣

∣

∣

∣

∣

HL2=0

=
π

4

(

d

W

)(

∆ρ

ρL

)
1

2

(

Frd

FrU

)

. (6.43)

A sample of flow conditions causing flow reversal are shown in Fig. 6.7 with d/W =

0.05 and ∆ρ = ρL.

Comparison with Earlier Experimental Studies

Experiments conducted without any imposed crossflow, FrU = 0, are representative of

the special case derived in Eq. (6.33). Both quasi-steady (Hassan et al., 1997; Ahmad

and Hassan, 2006; Bowden and Hassan, 2007) and unsteady (Lubin and Springer,

1967; Abdalla and Berenyi, 1969) experimental results have been reported, and are

presented in Fig.6.8. The present model agrees well with the experiments with FrU =

0 and demonstrates a 30% range of maximum error. It is interesting to note, however,

that the maximum deviation occurs at either low (Frd < 1) or high (Frd > 100)
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Figure 6.7: Example of critical values causing flow reversal (d/W = 0.05).
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branch Froude numbers. It is possible to speculate that in these ranges the critical

height is influenced by additional forces that are not considered by the branch Froude

number. Aside from the methodologies used by these experimental studies to record

the critical height (quasi-steady versus unsteady) there are also significant differences

in the two-fluids used (gas-liquid and liquid-liquid), as well as the geometry of the

test sections. All things considered, the agreement helps to validate the point-sink

approach, which includes the inviscid, incompressible, irrotational, quasi-steady and

negligible surface tension assumptions used in the development of the present model.

The analytical model developed by Andaleeb et al. (2006) is also presented in Fig.

6.8. Their prediction lies on the same line as the present study with less than 1%

deviation for Frd > 0.1.

The effects of crossflow on the critical height are presented in Fig. 6.9 by com-

paring correlations developed from selected quasi-steady experimental studies. These

correlations are presented in the figure with the benchmark case with no imposed

crossflow, FrU = 0, as described by Eq. (6.34). There is poor agreement between

these correlations and the present model, which is particularly true at high branch

Froude numbers. The results presented in Fig. 6.2 demonstrated that as Frd in-

creased the model predictions converged to the FrU = 0 case. The convergence at

FrU = 0 is physically appropriate since the branch flow becomes dominant over the

crossflow. The experimentally derived correlations presented in Fig. 6.9, however, do

not converge to the FrU = 0 prediction as Frd increases, but rather run parallel or

even diverge.

There is also a large discrepancy between the correlations regarding the effects of
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Figure 6.8: Comparison of the special case model (FrU = 0) with theoretical work
of (1)Andaleeb et al. (2006), (2) and experimental work of (2)Bowden and Hassan
(2007), (3)Ahmad and Hassan (2006), (4)Hassan et al. (1997), (5)Abdalla and Berenyi
(1969), and (6)Lubin and Springer (1967).
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crossflow on the critical inlet height. Comparing with the benchmark case, FrU = 0,

two of the correlations indicate that crossflow causes the critical height to increase

(Smoglie and Reimann, 1986; Schrock et al., 1986) while the remaining three corre-

lations indicate a decrease in HOGE (Maciaszek and Micaelli, 1990; Yonomoto and

Tasaka, 1991; Kowalski and Krishnan, 1987). Maciaszek and Micaelli (1990) had

explained that liquid crossflow caused the vortex-free gas core formation to be sup-

pressed which resulted in a substantial decrease in critical height. They had tested run

liquid velocities up to 3 m/s, which was substantially higher than the approximately

0.36 m/s liquid velocity reported by Smoglie and Reimann (1986), and attributed this

difference to the sharp decrease in critical height. The present model corroborates

Maciaszek and Micaelli (1990)’s findings that an imposed liquid crossflow, FrU > 0,

decreases the critical height for a given branch Froude number, Frd, - as was verified

in Fig. 6.2. The critical height predicted by their correlation is presented in Fig. 6.10

for a range of momentum fluxes using a selected crossflow value of FrU = 0.8. The

critical height predicted by the present model is also presented in this figure.

The correlation developed by Yonomoto and Tasaka (1991) includes a ratio of

the run to inlet mass flow rates as a compensating factor for crossflow effects. This

correlation is presented in Fig. 6.11 for a range of mass flow rate ratios using a selected

value of FrU = 0.6. Their experiments were conducted using a square (190mm by

190mm) channel with a single downward branch (d/W = 0.052, 0.079, and 0.105).

Using the conservation of mass it is possible to compare the present model with their

correlation for a range of mass flow rate ratios.
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6.3 The OGE Criterion in Crossflow

6.3.1 Problem Description

The onset of gas entrainment was predicted analytically in §6.2 using two distinct cri-

teria to define the dip location. In the first, the onset of gas entrainment was found

assuming that the dip was located at a point where the vertical acceleration, ay, was

equivalent to gravity. The second criterion stated that the dip was located where the

sink and crossflow velocities produced a horizontal stagnation point, i.e. the resul-

tant velocity was equivalent to the vertical velocity component. The total potential

function is a linear combination of the point-sink, φI , and uniform crossflow velocity,

φII , potential functions. The velocity components are found from the gradient of the

total potential function, as in Eq. (6.4), where the unit vectors in (x, y, z) directions

are denoted as (i, j, k) with magnitudes of (u, v, w). The kinetic energy term, V 2
LB,

at the lowest point of the dip (x = b, y = h, z = 0) follows from Eq. (6.17) as,

V 2
LB

∣

∣

∣

∣

∣

(x=b,y=h,z=0)

=

[(

U − ṁL3b

2πρL(b2 + h2)
3

2

)2

+

(

ṁL3h

2πρL(b2 + h2)
3

2

)2]

. (6.44)

The squared velocity term on the left hand side of Eq. (6.44) also arises naturally, in

§6.2.1, when Bernoulli’s equation is applied on either side of the gas-liquid interface

following from Eq. (6.16). The interface height at point A is HOGE, while the interface

height at the lowest point of the dip, point B, is h. The liquid kinetic energy term at

point B, V 2
LB, is therefore a function of the upstream kinetic energy at point A, V 2

LA,

and interfacial heights, h, and H . If the crossflow velocity, U , is considered uniform
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and constant over the entire domain, as was the case in §6.2, Eq. (6.16) may be

re-written here as,

V 2
LB = U2 + 2g

∆ρ

ρL
(H − h). (6.45)

Craya (1949)’s Criterion

Craya (1949) defined the criterion for the onset of liquid entrainment (OLE) in a

small branch from a large stratified gas-liquid reservoir (U = 0). It stated that the

kinetic energy at point B obtained from Bernoulli’s equation should be equivalent

to that found when simulating the branch flow as a point-sink. Craya (1949) cited

that three distinct solutions were possible when scanning a range of dip heights, h,

for a given branch mass flow rate, ṁL3 and the stagnant interface height (in this case

HOGE) as:

• Case 1: Eq. (6.45) and Eq. (6.44) do not intersect anywhere (No solution)

• Case 2: Eq. (6.45) and Eq. (6.44) intersect at two distinct values of h (Non-

critical)

• Case 3: Eq. (6.45) and Eq. (6.44) intersect at a single value of h (Critical

solution)

Craya (1949) indicated that Case 3 was representative of the OLE problem, which

was satisfied when Eq. (6.45) and Eq. (6.44) were tangent as,

dV 2
LB

dh

∣

∣

∣

∣

∣

Eq.(6.45)

=
dV 2

LB

dh

∣

∣

∣

∣

∣

Eq.(6.44)

. (6.46)
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Applying this methodology to the simple OGE case of a single branch in a large

stratified gas-liquid reservoir (U = 0), the dip is located vertically above the branch

at point B (b = 0, h, z = 0). The kinetic energy term in Eq. (6.44) can therefore be

shown to reduce to,

V 2
LB =

ṁ2
L3

4π2ρ2
Lh4

. (6.47)

The derivative of Eq. (6.47) with respect to h yields,

dV 2
LB

dh
=

−ṁ2
L3

π2ρ2
Lh5

. (6.48)

Similarly, finding the derivative of Eq. (6.45) with respect to h, where HOGE is

constant and U = 0, yields,

dV 2
LB

dh
= −2g

∆ρ

ρL
. (6.49)

Combining Eq. (6.48) and (6.49) it can be shown that the dip height is related to

the branch Froude number as,

h

d
= 0.5Fr0.4

d . (6.50)

This result was also found when using the acceleration based criterion in §6.2.1, where

∆ρ ∼= ρL in Eq. (6.32). Substituting the relationship for the dip height back into

Eq. (6.45) leads to the stagnant interface height, HOGE, being related to the branch

Froude number as found earlier in Eq. (6.33). Craya (1949)’s criterion is therefore

capable of predicting the onset of gas entrainment in the simple stagnant stratified

gas-liquid reservoir case. It is therefore instructive to investigate this criterion for the

crossflow problem described in §6.2.1.
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Rather than imposing a criterion for the offset distance, b, it is assumed here

that a solution will exist somewhere along a line defined by a constant ratio of b/h.

Doing so relaxes the dip height solution thereby allowing Craya (1949)’s criterion to

be isolated, and investigated more readily. The range tested here is,

0 ≤ b

h
≤ 0.8 (6.51)

A constant crossflow velocity of 0.25 m/s and a branch Froude number of 10 were

chosen as test conditions. Solutions were obtained numerically, using a trial and error

approach, while scanning a wide range of values of h and HOGE. A sample of the

solutions are presented here.

6.3.2 Results and Discussion

Equations (6.44) and (6.45) are presented as a function of the dip height, h, in Fig.

6.12. A ratio of b/h = 0 is presented in Fig. 6.12(a), and a ratio of b/h = 0.5 in Fig.

6.12(b). In each figure three inlet heights, HOGE, are tested in order to demonstrate

the three cases described by Craya (1949) above. In Fig. 6.12(a) an inlet height

of HOGE = 0.05 m represents Case 1, as there is no intersection of Eq. (6.45) and

(6.44). An example of Case 2 is represented at an inlet height of HOGE = 0.02 m,

as h is found to equal either 0.00473 m or 0.02 m. Case 3, the critical solution, is

found with an inlet height of HOGE = 0.01 m and a single dip height of h = 0.008

m. The intersection of the two equations is labeled as p1. A critical solution is also

found at a ratio of b/h = 0.5 in Fig. 6.12(b), with an inlet height of HOGE = 0.0066
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m and a corresponding dip height of h = 0.0066 m. This point is labeled as p6.

These two points represent the physical limits of the solution. In the case of p1 the

dip is located vertically above the branch, since b/h = 0. At p6 a solution is found

where HOGE = h; in effect, the dip becomes virtually non-existent as the interface

is flat between points A and B. Numerical solutions where h > HOGE were found,

however these are not physically appropriate since they indicate a dip located above

the stagnant interface. These solutions were therefore ignored.

A selection of six points that were found to satisfy Eq. (6.46) are presented

within the horizontal and vertical velocity fields, and corresponding kinetic energy

field, in Fig. 6.14. The critical points are presented in each figure with the upper and

lower physical limits labeled at p1 and p6, respectively. The contours represent the

magnitude of each variable with the vector field superimposed to demonstrate the flow

direction. The streamline that divides the flow going into the branch, or downstream

towards the run, is denoted as the stagnation streamline. This streamline was found

to pass through a stagnation point at x = 0.00715 m and y = 0. This point can be

observed in Fig. 6.14(c), where V 2
LB → 0, denoted by the dark blue contour region.

Alternatively, the branch is located at the center of the dark red contour region, where

V 2
LB → ∞. To the left, and below the stagnation streamline, the liquid flows uniquely

to the branch while everywhere else it flows towards the run.

All the critical points are found in the region to the left of the stagnation stream-

line. These points are also located well above the contour defined by ∂φI/∂x =

∂φII/∂x in Fig. 6.14(a), which is a statement of the proposed offset distance crite-

rion from Eq. (6.29). The proposed offset distance criterion is not simultaneously
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Figure 6.12: Evaluating Craya (1949)’s criterion at two different dip angles under
crossflow U = 0.25 m/s.
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satisfied with Craya (1949)’s criterion. The vertical velocity presented in Fig. 6.14(b)

shows a marginal variation of v = −0.20 and v = −0.22 between p1 and p6, respec-

tively. This vertical velocity, and its gradient in the vertical direction, were used in

the acceleration based OGE criterion in Eq. (6.26). It is therefore useful to compare

the six predicted points using Craya (1949)’s criterion with the vertical acceleration

field defined by Eq. (6.26). As can be seen in Fig. 6.14(d), only p1 and p6 coincide

exactly with the ay = −9.8 m/s2 contour. The points in between these two limits are

shown to lie just below the ay = −9.8 m/s2 contour.

One of the fundamental differences between Craya (1949)’s criterion and the ac-

celeration based criterion used earlier in Eq. (6.26) is that the former is insensitive

to the inlet conditions. Therefore, it is possible to find a solution for a critical dip

using the acceleration based criterion that can not be coupled to the inlet conditions

through Bernoulli’s equation. Craya (1949)’s criterion on the other hand explicitly

defines the exchange of energy between the inlet and the critical dip in their criterion.

In both instances however, coupling the critical dip and upstream conditions can be

problematic if the crossflow velocity is not constant at points A and B, as will be

discussed in more detail later in Chapter 7.

Horizontal Gradients in the a = −g Criterion Under Crossflow Conditions

A consequence of using the vertical acceleration criterion described in Eq. (6.26) is

that the crossflow velocity U vanishes from the OGE criterion when the horizontal,
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x-direction, gradients are neglected. The horizontal convection term is,

u
∂v

∂x
=

∂φ

∂x

∂

∂x

(

∂φ

∂y

)

. (6.52)

Including the horizontal convection term, the vertical acceleration at any point p(x, y, z)

becomes,

ay

∣

∣

∣

∣

p(x,y,z)
=

∂φ

∂x

∂

∂x

(

∂φ

∂y

)

+
∂φ

∂y

∂2φ

∂y2

∣

∣

∣

∣

p(x,y,z)
. (6.53)

In some cases the horizontal convection term may be negligible, for example when

the dip is located directly above the simulated branch - this comes as a result of

u → 0 when b → 0. This is a reasonable assumption for the stagnant reservoir

model. However, when the dip is not located directly above the branch, the horizontal

convection term is not negligible.

To test this a value of U = 0.25 m/s is imposed in Eq. (6.53), the resulting

acceleration field is shown in Fig. 6.15. Comparing this with Fig. 6.14(d), it is

evident that the shape of the a = −9.8 m/s2 contour changes quite dramatically.

This has direct implications on the OGE criterion, since it can be satisfied anywhere

along this contour where b ≥ 0. For example, at p6 in Fig. 6.14(d) ay = −9.8 m/s2,

however in Fig. 6.15 at the same point ay = −4.3 m/s2, or a difference of 56%.

This reasoning lead to the inclusion of the horizontal convection term in the analysis

presented in Chapter 7.
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6.4 The OGE Criterion for Two Branches

The geometry considered in this section is presented in Fig. 6.16. Two branches of di-

ameter, d, are installed on a flat inclined wall. The wall inclination, β, varies between

0 and 90 degrees, and the branches are separated by a center-to-center distance, LS.

The origin of the co-ordinate system (x = 0, y = 0, z = 0) is located at the center

of branch II ’s inlet. The branches are exposed to a semi-infinite stratified two-phase

environment of heavier and lighter fluids. The heavier fluid is considered as the liquid

(subscript L) phase and the lighter fluid as the gas (subscript G) phase. The fluid

phase densities are ρL and ρG. The heavier fluid initially flows through branches I

and II with mass flow rates of ṁL3−I and ṁL3−II , respectively. To investigate the

effect of a second branch, consider that the crossflow velocity of the heavier fluid is

zero, U = 0, and that the lighter fluid phase is negligible.

Flow Field Simulation

The flow field is considered steady, incompressible, inviscid, and irrotational, with

negligible surface tension. These assumptions reduce the problem to a potential flow

which is governed by forces of inertia and gravity. The three-dimensional continuity

equation, in Cartesian co-ordinates (x, y, z), reduces to Eq. (6.2). The irrotationality

condition is satisfied when a scalar potential function, φ, is defined such that the

velocity is defined through Eq. (6.4). Substitution of the scalar potential function

into the continuity equation yields the well known Laplace’s equation, as in Eq. (6.6).

A characteristic of this elliptic type partial differential equation is that a solution can
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be a linear combination of two or more solutions, say φI , and φII , which can be

written as,

φ = φI + φII . (6.54)

Potential flow theory has provided well-known solutions to Laplace’s equation for

point-sinks and uniform flows. By simulating each branch as a point-sink with a

hemi-spherical flow area the linearity theorem in Eq. (6.54) can be applied. For the

configuration presented in Fig. 6.16 the point-sink potential functions of branches I

and II can been described following Schetz and Fuhs (1996) as,

φI =
ṁL3−I

2πρL

√

x2 + (y − Ls sin β)2 + (z + Ls cos β)2
(6.55)

and,

φII =
ṁL3−II

2πρL

√
x2 + y2 + z2

(6.56)

Onset of Gas Entrainment Criterion

The onset of gas entrainment criterion follows from Eq. (6.24), with the vertical

direction denoted by the y-axis. In single branch scenarios Eq. (6.26) has been shown

to provide a reasonable prediction of the gas entrainment dip height, h in stagnant

reservoirs. One of the pitfalls of using this criterion in two-branch arrangements, as

will be discussed later, is that it can be difficult to distinguish which branch induces

the OGE without additional reasoning.
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Considering that the total potential function, φ, is a linear combination of solu-

tions, from Eq. (6.54), the total vertical acceleration, ay, can be found to be,

ay =
∂φI

∂y

∂2φI

∂y2

(

1 +
∂φII

∂φI

)

+
∂φII

∂y

∂2φII

∂y2

(

1 +
∂φI

∂φII

)

(6.57)

The first term on the right hand side of Eq. (6.57) represents the total vertical accel-

eration produced if branch I acted alone in the flow field. For example, substituting

φII = 0 into Eq. (6.57) reduces the bracketed expressions to a value of 1, and conse-

quently Eq. (6.57) reduces to the single branch expression in Eq. (6.26). A similar

result would be found if branch II acted alone, substituting φII = 0. The term in each

bracketed expression represents the relative change in one branch’s potential function

with the other. The bracketed term scales the contributed acceleration from each

respective branch to the total acceleration. Since the vertical velocity, v, is defined

using the potential function definition in Eq. (6.4), as v = ∂φ/∂y, the term contained

within the brackets can be conveniently written as a ratio of vertical velocities, v,

through the chain rule. Defining the vertical acceleration for branch I as aI and for

branch 2 as aII where,

aI =
∂φI

∂y

∂2φI

∂y2
(6.58)

and,

aII =
∂φII

∂y

∂2φII

∂y2
(6.59)

results in,

ay = aI

(

1 +
vII

vI

)

+ aII

(

1 +
vI

vII

)

, (6.60)
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where,

vI =
∂φI

∂y
(6.61)

and,

vII =
∂φII

∂y
. (6.62)

The OGE criterion, following from Eq. (6.24), results in the right hand side of Eq.

(6.60) being equal to −g at a single location within the flow field, denoted as point

B (the lowest point of the dip). While this criterion is sufficient for single branch

conditions it may not suffice for predicting the three modes that have been observed

experimentally by Parrott et al. (1991):

• Mode 1: OGE in branch I only

• Mode 2: OGE in branch II only

• Mode 3: OGE in branches I and II

Mode 1 was predominantly observed in Parrott et al. (1991)’s study, as branch I was

located above branch II in the same vertical plane, and OGE tended to occur in the

branch closest to the interface. In certain instances however, the gas phase would be

pulled into the lower branch with the air core by-passing the upper branch (Mode

2). This was usually the result of the flow rate in branch II being much greater

than that in branch I (FrII >> FrI). Slowly increasing the flow rate in branch

I, keeping the flow rate in branch II constant, showed that the gas phase would

eventually entrain in both branches simultaneously (Mode 3). Parrott et al. (1991)’s
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experiments showed that two dips can form in the gas-liquid interface during dual

branch scenarios. Theoretically this implies that two points in the flow field, BI and

BII from Fig. 6.16, respectively, satisfy the OGE criterion in Eq. (6.24). Considering

that each dip forms in the region above the branch, limitations arise as,

Ls → 0, (6.63)

and,

β = 90◦

Ls > 0.

(6.64)

The two dips are located within the flow field at points BI and BII for branch I

and branch II, respectively. From Fig. 6.16, using the assigned coordinate system,

these points are defined at:

BI







































x = bI

y = hI + LS sin β

z = −LS cos β

(6.65)

and,

BII







































x = bII

y = hII

z = 0

(6.66)

This section investigates the OGE criterion for dual branch cases, and looks specif-

ically to the limitations resulting from Eq. (6.63) and Eq. (6.64). The branch strength
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is represented by the branch Froude number, following from Eq. (6.22) for branches

I and II as FrI , and FrII , respectively. To predict the dip locations there are a total

four unknowns, these are hI , bI , hII , and bII . For the purpose of this study, the offset

distance term, b, will be considered negligible, which arises from U = 0. The dips are

therefore located vertically above each branch, by their respective dip heights, h. The

separating distance, LS, is varied between 0 to 10d while the wall inclination angle,

β, is varied between 0 degrees (horizontal wall) and 90 degrees (vertical wall).

6.4.1 Results and Discussion

Single Branch

A typical vertical acceleration field of a single branch case is presented in Fig. 6.17(a),

for FrI = 1. The acceleration is shown to dramatically increase as the branch inlet is

approached at the origin (x = 0,y = 0,z = 0). The acceleration contour correspond-

ing to the gravitational acceleration is shown to extend vertically until y = 3.175

mm. This corresponds to the predicted vertical location of the dip height, hI . The

corresponding critical height following from Eq. (6.33), was found to be 3.968 mm.

The acceleration profile along a vertical line passing through the branch inlet (x = 0,

z = 0) is presented in Fig. 6.17(b) for FrI = 1 and 20. The absolute value of the ac-

celeration is used in order to present the profile on a log scale. Increasing the branch

Froude number increases the acceleration magnitude at any y. Increasing the branch

Froude number from 1 to 20 lead to an increase in the dip height from 3.175 mm to

10.52 mm. Alternatively, the critical height, HOGE, yields an increase from 3.96 mm
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to 13.15 mm.

Two branches in the Same Horizontal Plane

The vertical acceleration field resulting from adding a second branch in the domain

along the same horizontal plane (β = 0) is presented in Fig. 6.18. In this case the

second branch has FrII = 20 with its origin located at (0,0,0) while FrI = 1 and

located at (0,0,−12.7mm). The spacing between the branches is 12.7 mm (LS/d = 2).

Two distinct contours are observed where the acceleration is equivalent to gravity

(−9.8 m/s2). The contour on the left hand side is located near branch I, while the

other is located near branch II. The area and maximum height achieved by branch

II’s contour is significantly larger than that of branch I - as might be expected since

FrII >> FrI . The dip height above branch I was found to be hI = 3.26 mm,

which is 2.7% larger than the single branch case presented in Fig. 6.17 for FrI = 1.

This demonstrates the effect that branch II has on the vertical acceleration local

to branch I. On the other hand the effect of branch I on brarnch II’s acceleration

field is negligible. Comparing with the single branch case, where FrII = 20, it was

found that hII changes by around 0.1%. The branch with the highest Froude number

will therefore have the greatest influence on the acceleration field local to the other

branch.

It was found that increasing the separating distance, LS/d, reduced these effects.

Conversely, as the separating distance decreases, or FrII increases, branch II’s effect

on the acceleration field surrounding branch I increases. It can increase to the point

where the contours begin to merge together, for example as seen along the ay = −0.1
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m/s2 contour. If the ay = −g(9.8m/s2) contours merge this implies that the OGE

criterion does not in itself distinguish which branch is responsible for the formation

of each dip at hI and hII . This is because the total acceleration, a combination of

acceleration fields induced by both branches, defines the OGE criterion.

The acceleration profile along a vertical line passing through each branch is pre-

sented in Fig. 6.18(a) and Fig. 6.18(b) for branches I and II, respectively. The total

acceleration, ay from Eq. (6.60) is presented along with the acceleration resulting

from each branch acting alone, aI and aII , respectively. At hI in Fig. 6.18(a), aII is

shown to be approximately an order of magnitude smaller than aI . As the vertical

distance above the branch increases beyond hI it can be seen that aI diverges from

ay, while at y > 0.008 m aII begins to converge on ay. At y = 0.02 m, where the

ay = −0.1 m/s2 contour was shown to merge in Fig.6.18(a), the difference between

ay and aII is approximately 20%. At the same location, aI is shown to be two orders

of magnitude smaller than ay. In Fig. 6.18(b) aII is nearly identical to ay, and aI is

several orders of magnitude smaller than ay. The dip and critical heights obtained for

each branch are also presented in Fig. 6.18. The critical stagnation height is found

following the methodology in §6.2.1 using the predicted dip conditions, specifically h

and V 2
B.

When the separating distance, LS/d, is reduced to the point where the ay = −9.8

m/s2 contours merge, branch II causes a dramatic increase in the vertical acceleration

above branch I, and consequently the dip height, hI . The OGE criterion at branch I,

can therefore be significantly influenced by branch II. Since the dip height at branch

II is much larger than branch I’s however, a comparison of the dip heights reveals
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that OGE will likely occur at branch II before it occurs at branch I. Reducing the

separating distance until LS = 0 produces a flow field represented by the single

branch case where the Froude number is sum of the two branch Froude numbers,

Frd = FrI + FrII . In such a scenario a single dip is created and OGE occurs

in both branches simultaneously. Although this scenario is practically impossible -

two branches can not occupy the same physical space - it is used to illustrate the

limitations of the OGE criterion. Another dual branch scenario arises when the two

branch Froude numbers are equal. The dip heights and critical heights produced are

identical, as are the acceleration profiles above the branches, which results in OGE

in both branches simultaneously.

Two branches in a vertical plane

Presented in Fig. 6.19 is the onset of gas entrainment prediction where the two

branches are aligned in the same vertical plane (β = 90◦). The secondary branch

Froude number is constant, FrII = 56.7, while FrI is varied. The branch separating

distance is constant at LS/d = 1.5. This case is representative of the experimental

study performed by Parrott et al. (1991) which described OGE in branch I while

branch II was active. Their measurements were performed by recording the vertical

distance from the tip of the liquid meniscus to the branch centerline (Hm) and the

vertical distance from the free surface to the branch centerline (Hf). In effect, the dif-

ference between these two readings is the meniscus height, which may vary according

to fluid and surface conditions. Parrott et al. (1991)’s data is also presented in Fig.

6.19 for comparison. The trend of the prediction is well suited to the experiments,
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however, it under-predicts Hm while over-predicting Hf . In absolute terms, Parrott

et al. (1991) quoted a meniscus height of approximately 3 mm, meaning that the

difference between the prediction and Hm, or Hf , is approximately 1.5 mm. It is rea-

sonable to expect that this small deviation will be within the bounds of experimental

uncertainty.

Parrott et al. (1991) reported experimental evidence that supported the three dif-

ferent modes of the OGE. From their experiments two dips can be produced however,

from the theoretical point of view, using the OGE criterion only a single dip can be

produced with two branches in the same vertical plane. This comes as a direct conse-

quence of assuming that the dip lies vertically above the branch. Typical acceleration

fields are presented in Fig. 6.20 and 6.21 to further illustrate this point.

The acceleration field produced when LS/d = 5 for FrI = 1 and FrII = 20

is presented in Fig. 6.20(a). The vertical acceleration profile passing though both

branch centers is presented in Fig. 6.20(b). Two distinct contours are shown where

the acceleration is equal to gravity (ay = −9.8 m/s2). These two contours are shown

to originate from each of the two branches, the upper at branch I and the lower

at branch II. These two contours correspond to the intersection where ay = −g in

Fig. 6.20(b). In this arrangement the highest dip location seemingly corresponds to

branch I, and would result in OGE in this branch. The acceleration profile also seems

to support OGE in branch I since aI is approximately equal to ay at the highest dip

point. Since two distinct locations are found where ay = −g, OGE will occur in the

branch with the highest h - as was the case in the horizontal plane arrangement.

Decreasing the branch spacing, LS/d, will cause the two acceleration fields to merge.
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Figure 6.20: Acceleration field of two branches in the same vertical plane with LS/d =
5.
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Figure 6.21: Acceleration field of two branches in the same vertical plane with LS/d =
1.
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If the spacing is sufficiently small, but keeping LS > 0, a single contour where ay = −g

will exist.

The resulting acceleration field from a reduction in LS/d, from 5 to 1, is presented

in Fig. 6.21. The branch spacing causes the two ay = −9.81 m/s2 contours from

Fig. 6.20 to merge into a single contour in Fig. 6.21. The acceleration profile along

a vertical line passing through both branch centers is presented in Fig. 6.21(b). The

effect of reducing the branch separating distance is that a single point exists where

the acceleration is equal to gravity, which implies the existence of a single dip. In this

case the OGE criterion alone does not distinguish at which branch gas entrainment

occurs. As seen from Fig. 6.21(b), where ay = 9.81 m/s2, aII is shown to be much

larger than aI and would seem to imply that OGE is in branch II. The fact that aII

is larger than aI is not sufficient evidence to establish which branch OGE occurs in.

This limitation requires that further considerations of the OGE criterion are required

in order to predict the conditions causing the three modes of gas entrainment.
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6.5 Summary

Section 6.2 outlines a novel theoretical model to predict the critical height at the

onset of gas entrainment in a single downward branch with liquid crossflow. The

model demonstrated that the OGE phenomenon was governed by the branch and

crossflow Froude numbers. Comparison of the critical height from the benchmark case

with both quasi-steady and unsteady experimental data showed good agreement with

a maximum deviation of 30%. Empirical correlations for the critical height derived

from flowing stratified channels, however, demonstrated significant discrepancies with

regards to the effects of crossflow on the critical height. These studies typically

omitted details of the inlet conditions, and more specifically, the relationship between

the critical height and the inlet liquid mass flow rate. As a result, the crossflow

velocity term could not be appropriately defined in their particular cases. This lack

of data had provided part of the motivation to experimentally investiagate the OGE

phenomenon in a single branch, as described in Chapter 4. Furthermore, the assumed

constant crossflow velocity throughout the analytical domain was not representative

of the experimental findings in Chapters 4 and 5. Due to interfacial liquid gradients

within the inlet, and the shape of the OGE dip, the crossflow velocity requires a local

definition. Sections 6.3 and 6.4 provided considerations, and improvements, to the

OGE criterion used in §6.2 in the presence of a liquid crossflow velocity term, or a

second branch. It was found that the proposed offset distance criterion may lead to

erroneous results. The next chapter explores the use of empirical boundary conditions

to address the definitions of the local crossflow velocity, and the offset distance.
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Chapter 7

Semi-Empirical Modeling of the

Onset of Gas Entrainment

7.1 Chapter Overview

Modeling the OGE in Chapter 6 was based on an unconfined geometry - a branch in

a semi-infinite medium. A constant horizontal liquid crossflow velocity was imposed

throughout the entire domain to simulate a flowing stratified gas-liquid regime. This

boundary condition, however, posed a challenge when attempting to compare the

predictions with experiments since in reality the crossflow velocity is not constant,

and should be defined locally. The present study improves upon the earlier analysis by

modeling the branch within a confined horizontal channel, and defines the crossflow

velocity locally at two distinct locations. To simplify the analysis a square cross-

section was employed, which allowed the velocity field to be modeled using well known

potential functions, following from Chapter 6. Empirical closure relations were found
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to be needed, and provided the motivation for performing a series of experiments

on the OGE phenomenon. Experiments were performed using a branch installed at

the bottom of a horizontal pipe with a flowing stratified gas-liquid regime within the

inlet, upstream of the branch. A digital imaging technique was incorporated in order

to determine the critical dip location, as well as the interfacial liquid profile upstream

of the branch.

7.2 Feasibility Study: Semi-Empirical Methods

One of the challenges associated with theoretically modeling the onset of gas entrain-

ment, in Chapter 6, was establishing the criteria needed to predict the critical dip

location relative to the branch. This is particularly true when there is an imposed

liquid crossflow, since the dip is no longer located directly above the branch, but

rather shifted a finite offset distance downstream. Digital imaging has been used in

the past to quantify gas-liquid interfacial features, and more specifically, the steady

dip profile at a bottom branch in a large stratified reservoir (Saleh et al., 2009). Tech-

nical challenges aside, Saleh et al. (2009) demonstrated it was feasible to record the

steady dip profile using digital imaging.

7.2.1 Problem Description

In their paper Saleh et al. (2009) used digital imaging to capture the side projection

of a steady dip at a bottom oriented branch from a large stratified gas-liquid reservoir.

The measurements were needed in order to quantify the effects of surface tension in
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their semi-empirical model. They were interested in the dip’s shape and curvature

rather than the dip location, since they were able to determine it analytically using

the OGE criterion following from Eq. (6.24). A sample image is shown in Fig. 7.1(a),

and a schematic of the problem is shown in Fig. 7.1(b). The measurements included

a digitized planar map of the dip profile (the side projection) in x, y coordinates. The

lowest point of the critical dip, referred to here as the vertical height h in Fig.7.1(b),

has been cited as the critical link needed to predict the OGE or OLE phenomena

in stratified reservoirs (Craya, 1949; Soliman and Sims, 1991; Ahmed et al., 2003;

Andaleeb et al., 2006).

7.2.2 Analysis and Results

In their analysis Saleh et al. (2009) argued that the OGE dip height was predicted

when the vertical acceleration at the lowest point of the dip was equivalent to the

gravitational acceleration. The criterion was then coupled with a two-fluid separated

flow model that was derived using Bernoulli’s equation on either side of the gas-

liquid interface, similar to the procedure outlined in Chapter 6. In effect the critical

stagnation height, HOGE, is found as a function of the dip height and dip kinetic

energy, V 2
LB as,

HOGE = h +
ρL

∆ρ

V 2
LB

2g
. (7.1)

In order to find V 2
LB, the branch flow can be simulated as a point-sink, and in

effect the fluid flows radially inward to the branch center. The flow area control

surface (Ad) becomes hemi-spherical, as shown in Fig. 7.1(b), where at any radial
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distance, r, the liquid velocity is uniformly distributed over the entire surface. The

liquid velocity, VLd, over the control surface area, Ad, at any r, can be found using

the branch liquid mass flow rate, ṁL3, as

VLd =
ṁL3

ρLAd
, (7.2)

where for a hemi-sphere of radius r,

Ad = 2πr2. (7.3)

At the onset of gas entrainment the lowest point of the dip is h and Ad has a radius

r = h, assuming that the dip is oriented directly above the branch. The critical dip

velocity, VLB, or more conveniently the kinetic energy term V 2
LB, can be determined

by re-arranging Eq. (7.2) while substituting r = h as,

V 2
LB =

(

ṁL3

2πρLh2

)2

. (7.4)

Saleh et al. (2009) reported both the free surface height, HOGE, as well as the

side projection of the dip profile for three branch Froude numbers. The dip height for

these branch Froude numbers can be found and used to determine the kinetic energy

at the lowest point of the dip using Eq. (7.4). The dip height was extracted from

their data and is reproduced here in Table 7.1. Substituting V 2
LB from Eq. (7.4) into

Eq. (7.1), the stagnation height can be determined. This is done in order to compare

with the measured values of HOGE in Table 7.1. The calculated values are also shown
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in Table 7.1; the results demonstrate that HOGE is predicted with a mean absolute

error of 11%. Simulation of the branch as a point-sink, coupled with measurements

of h, yields a reasonable prediction of the critical height. Digital imaging therefore

provides a reasonable method for defining the critical dip location. It can be used as

an alternative method to purely theoretical analysis in the prediction of the onset of

gas entrainment.
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Table 7.1: Saleh et al. (2009)’s data for OGE in a bottom branch

Frd HOGE (Experiment) h (Experiment)
∆ρV 2

LB

2gρL
(Eq. (7.4)) HOGE (Eq. (7.1)) Error (HOGE)

(mm) (mm) (mm) (mm) (%)
1.2 5.52 2.68 2.07 4.75 13.9
6.9 8.45 7.66 1.12 8.78 3.9
31.6 16.62 13.88 2.16 16.04 3.5
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7.3 Reduced T-Junction With Co-current Strati-

fied Gas-Liquid Flow

7.3.1 Theoretical Analysis

Problem Description

A horizontal channel with a square cross-section of side length D is shown in Fig.

7.2 to have a bottom oriented branch of diameter d. The branch inlet is the origin

of the Cartesian coordinate system (x = 0, y = 0, z = 0). Liquid flows into the

branch with a mass flow rate of ṁL3, and flows out of the run as ṁL2. Gas flows out

of the run with a mass flow rate of ṁG2. Subscripts L and G are used to denote the

liquid and gas phases, while subscripts 1, 2 and 3 denote the inlet, run, and branch,

respectively. The gas-liquid interface in the inlet is considered to be smooth-stratified

and the interfacial shear induced by the gas phase is assumed to be negligible. The

liquid side is assumed to be quasi-steady, incompressible, inviscid, and irrotational,

with negligible surface tension.

A steady dip is observed to form in the gas-liquid interface with its lowest point

at B (x = b, y = h, z = 0) at the onset of gas entrainment. Applying Bernoulli’s

equation on the gas side from a location within the inlet, at point A (x = −λ,

y = HOGE, z = 0), and point B results in,

PGA − PGB = ρGg(h − HOGE) +
ρG

2
(V 2

GB − V 2
GA). (7.5)
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The static pressure is defined as P , the density as ρ, gravitational acceleration as g,

the height of the interface at point A relative to the bottom of the channel as HOGE,

and at point B as h. Subscripts A and B are used to denote the two interfacial points.

The kinetic energy of the gas phase is considered negligible and therefore,

ρG

2
(V 2

GB − V 2
GA) = 0. (7.6)

Similarly, for the liquid phase, applying Bernoulli’s equation between point A and B

yields,

PLA − PLB = ρLg(h − HOGE) +
ρL

2
(V 2

LB − V 2
LA). (7.7)

Thermodynamic equilibrium is assumed on either side of the gas-liquid interface

(PLA = PGA, PLB = PGB) which requires that,

PLA − PLB = PGA − PGB. (7.8)

Setting the right hand sides of Eq. (7.5) and (7.7) equivalent to each other, and

re-arranging to solve for the liquid phase kinetic energy at point B, V 2
LB, yields,

V 2
LB = 2g

(ρL − ρG)

ρL

(HOGE − h) + V 2
LA. (7.9)
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Assuming that the local liquid velocity profile at the inlet, ULA, is horizontal and

uniform, the kinetic energy term at the interface, VLA, can be determined by,

V 2
LA = U2

LA =

(

ṁL1

ρLAL1

)2

, (7.10)

where the liquid flow area, AL1, is a product of the channel width, D, and liquid

height, HOGE, as,

AL1 = HOGED. (7.11)

The inlet liquid mass flow rate, ṁL1, is a summation of the run, ṁL2, and branch,

ṁL3, mass flow rates through conservation of mass as,

ṁL1 = ṁL2 + ṁL3. (7.12)

Substituting Eq. (7.10), (7.11) and (7.12) into Eq. (7.9) yields,

V 2
LB = 2g

(

∆ρ

ρL

)

(HOGE − h) +

(

ṁL2 + ṁL3

ρLHOGED

)2

(7.13)

For any given flow condition (ṁL2, ṁL3) there are three unknowns in Eq. (7.13),

namely V 2
LB, HOGE, and h.
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Simulation of the Liquid Side Flow Field at the Dip

As the liquid approaches the branch from the inlet, it splits partially into the branch

and partially into the run, as shown in Fig. 7.2. The dip is the linking point be-

tween the branch and run flows, having a kinetic energy of V 2
LB and height, h, as

defined in Eq. (7.13). The assumptions about the liquid side flow field (quasi-steady,

incompressible, inviscid, and irrotational) lead to a potential flow problem, which

is governed by the forces of inertia and gravity. At any point the resultant liquid

velocity is described through the three components (u,v,w) as,

V = ui + vj + wk, (7.14)

where (i,j,k) are unit directional vectors in (x,y,z). According to White (1991), the

three-dimensional steady incompressible continuity equation reduces to,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
, (7.15)

and the irrotationality criterion is satisfied when a potential function, phi, is defined

such that,

V =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k. (7.16)

Inserting the definition of the potential function in Eq. (7.16) into the continuity

equation in Eq. (7.15) yields Laplace’s equation,

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0. (7.17)
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which is an elliptic type linear homogeneous partial differential equation. A lin-

ear combination of two solutions (superposition), phiI and phiII , is also a solution

through,

φ = φI + φII . (7.18)

Simulating the branch flow as a three-dimensional point-sink intersected by a flat

horizontal wall produces a hemi-spherical flow area, Ad in Fig. 7.2, whose radius, r,

is defined by,

r = (x2 + y2 + z2)
1

2 . (7.19)

The velocity, VLd, is uniformly distributed along the hemi-spherical flow area, and

may be defined as,

VLd =
ṁL3

ρLAd
, (7.20)

where for a hemi-spherical flow area,

Ad = 2πr2, (7.21)

and at point B the critical radius is defined as,

r = (b2 + h2)
1

2 . (7.22)
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Following Schetz and Fuhs (1996), the potential function describing the radial flow

into the hemi-spherical flow area is defined by,

φI =
ṁL3

2πρL(x2 + y2 + z2)
1

2

. (7.23)

The local crossflow velocity induced by the run flow, at the dip, is assumed to have

a uniform horizontal profile, ULB. Its magnitude is found as a quotient of the liquid

mass flow rate in the run and the liquid flow area beneath the dip. The resulting

potential function is therefore found, following from Schetz and Fuhs (1996), as,

φII = ULBx, (7.24)

where,

ULB =
ṁL2

ρLAL2
, (7.25)

at the dip. The liquid flow area beneath the dip is a product of the dip height h and

channel width D, as,

AL2 = hD. (7.26)

The total potential function to describe the local flow at the dip, using superpo-

sition theorem in Eq. (7.18), is found to be,

φI =
ṁL3

2πρL(x2 + y2 + z2)
1

2

+ φII = ULBx, (7.27)

which is similar to the definition used in Chapter 6, however the crossflow velocity at
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the dip and inlet are defined locally through Eqs. (7.10) and (7.25), using the channel

geometry and flow conditions. The velocity components at the dip are found through

the first derivatives of Eq. (7.27), following from Eq. (7.16), and evaluated at point

B with (x = b, y = h, z = 0) as,

uLB =
∂φ

∂x

∣

∣

∣

∣

∣

(x=b,y=h,z=0)

=
ṁL2

ρLhD
− ṁL3b

2πρL(b2 + h2)
3

2

, (7.28)

vLB =
∂φ

∂y

∣

∣

∣

∣

∣

(x=b,y=h,z=0)

= − ṁL3h

2πρL(b2 + h2)
3

2

, (7.29)

wLB =
∂φ

∂z

∣

∣

∣

∣

∣

(x=b,y=h,z=0)

= 0, (7.30)

The velocity field is symmetrical about the x − y plane, and subsequently wLB =

0 in Eq. (7.30). The offset distance term, b, comes as a result of the transverse

liquid momentum forcing the dip downstream towards the run. With the velocity

components defined at point B, through Eq. (7.28) to (7.29), V 2
LB can be found as,

V 2
LB = u2

LB + v2
LB + w2

LB, (7.31)

which is derived from the squared length of the velocity vector, V = (u2 + v2 + w2)
1

2 .

Substituting the first derivatives into Eq. (7.31) results in,

V 2
LB =

(

ṁL2

ρLhD
− ṁL3b

2πρL(b2 + h2)
3

2

)2

+

(

− ṁL3h

2πρL(b2 + h2)
3

2

)2

, (7.32)
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which provides a definition for the left hand side of Eq. (7.13) in terms of b, h, ṁL2,

and ṁL3.

The steady vertical acceleration, ay, at any point in the liquid side flow field can

be found from White (1991) using the velocity vector components (u, v, w) in the

Cartesian coordinate system (x, y, z) through,

ay = u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
. (7.33)

The definition in Eq. (7.33) is a function of only convective terms, and the local

acceleration is negligible due to the quasi-steady assumption. The criterion to pre-

dict the dip instability at the onset of gas entrainment is defined from the vertical

acceleration at point B (x = b, y = h, z = 0) being equivalent to gravity as,

ay

∣

∣

∣

∣

(x=b,y=h,z=0)
= −g. (7.34)

The acceleration due to gravity is given by −g (-9.81 m/s2), with the negative sign

indicating that it is acting in the negative y-direction. Substituting the potential

function definition in Eq. (7.16) into Eq. (7.33), the onset criterion becomes,

[

∂φ

∂x

∂

∂x

(

∂φ

∂y

)

+
∂φ

∂y

∂

∂y

(

∂φ

∂y

)

+
∂φ

∂z

∂

∂z

(

∂φ

∂y

)]∣

∣

∣

∣

∣

(x=b,y=h,z=0)

= −g, (7.35)
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with partial derivatives of ∂φ/∂y evaluated at point B found to be,

∂

∂x

(

∂φ

∂y

)∣

∣

∣

∣

∣

x=b,y=h,z=0

=
3ṁL3bh

2πρL(b2 + h2)
5

2

, (7.36)

∂

∂y

(

∂φ

∂y

)∣

∣

∣

∣

∣

x=b,y=h,z=0

=
3ṁL3h

2

2πρL(b2 + h2)
5

2

− ṁL3

2πρL(b2 + y2)
3

2

, (7.37)

∂

∂z

(

∂φ

∂y

)∣

∣

∣

∣

∣

x=b,y=h,z=0

= 0. (7.38)

Substituting the first and second derivative definitions from Eq. (7.28) to (7.30)

and Eq. (7.36) to (7.38) into Eq. (7.35), the resulting equation describing the onset

of gas entrainment criterion can be found to be,

5

4

ṁ2
L3

ρ2
Lπ2

[

h3 − b2h

(b2 + h2)4

]

+
3

2

ṁL2ṁL3

ρ2
LπD

[

b

(b2 + h2)
5

2

]

= −g (7.39)

Closure Relations and Solution Methodology

The model to predict the onset of gas entrainment phenomenon in a flowing horizontal

channel is defined by the system equations provided by Eq. (7.13), (7.32) and (7.39).

These three equations have four unknowns, HOGE, h, b, and VLB, with applied flow

conditions defined by ṁL2 and ṁL3.

In stratified co-current gas-liquid channel flow the inlet liquid height and mass

flow rate are coupled, driving forces include gravity, interfacial shear induced by the

flowing gas phase, and wall shear stresses (Sadatomi et al., 1993). The division of

the inlet liquid mass flow rate between the branch and run at HOGE - the inlet liquid

height - is expected to share a particular relationship, and a closure equation is needed
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to satisfy this requirement. This relationship is referred to here as the critical liquid

flow distribution, and for a specific geometry (D, d, L) it can be described in a simple

way as a ratio of the run and branch liquid superficial mass fluxes, ρLVSL2/ρLVL3.

The momentum of the run liquid flow forces the dip downstream while the branch

flow forces the dip back towards its entrance. The resultant of these two opposing

forces is that the steady dip is offset in the positive x-direction (downstream) by a

distance, b. The dip position relative to the branch is related to the height and offset

distance through the dip angle, θB, as shown in Fig. 7.2, which is defined as,

θB = tan−1
(

h

b

)

. (7.40)

An additional closure equation is needed to determine the relationship between the

dip angle and liquid momentum ratio of the run and branch flows as,

θB = f(
ρLU2

LB

ρLV 2
LB

) (7.41)

The critical liquid flow distribution and dip angle relationships are particular to the T-

junction design, which necessitates that the closure equations be empirically derived.

An experimental investigation was conducted for this purpose, as described in the

following section, in order to determine the form of these two closure equations.

The model solution is a two step process. In the first step the dip characteristics

(position, velocity, and acceleration) are evaluated using values of ṁL2, ṁL3, and

θB that were determined through empirical closure relations. The OGE criterion in
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Eq. (7.39) was evaluated numerically using an in-house code where the radius of the

hemi-spherical branch flow area was restricted to,

0 < r <
D

2
, (7.42)

since the side wall is a physical limit at D/2. The root of Eq. (7.39), the dip location

(b, h), was found using an algorithm to verify that the acceleration at the given point

did not exceed 1% of the gravitational value (−9.81 m/s2). The dip kinetic energy,

V 2
LB, was then evaluating by substituting b and h into Eq. (7.32). In the second step,

V 2
LB and h are coupled with ṁL2 and ṁL3 in Eq. (7.13) to solve for the remaining

unknown, the upstream liquid height, HOGE. This was done numerically whereby Eq.

(7.13) was scanned over a range limited by,

h < HOGE < D. (7.43)

An algorithm was implemented to search for roots where V 2
LB from Eq. (7.32) was

within 1% of the value found using Eq. (7.13).

7.3.2 Experimental Methodology

A facility was established that incorporated a horizontal pipe with a single downward

oriented branch. The square cross-section used in the development of the theoretical

model, as shown in Fig. (7.2), was not a practical choice for the experimental in-

vestigation. Mechanical design constraints were imposed, due to elevated operating
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pressures, in order to improve operational safety. To avoid expected stress raisers

at the sharp corners, and potential mechanical failure points, a circular cross-section

design was employed.

Digital imaging was used to record the liquid interface within the acrylic test

section using a 3-CCD (charge coupled device) Sony progressive scan digital camera,

640× 3480 pixels, coupled with an objective lens. The camera output was connected

to a National Instruments image acquisition module and an in house LabVIEWTM

code was used to control the acquisition and storing of the images. The camera was

arranged such that the CCD plane was parallel to the flat side of the test section, and

blue dye was added to the water to enhance visualization of the interface. A linear

scale (mm resolution) was used to scale the image plane.

Calibration

Water was first added to the inlet-TEE until the outlet-TEE was filled to the same

level. With all rotameter valves closed, and the ball valve downstream of the branch

closed, air was added to the inlet-TEE to a static set-point pressure of P1. With the

camera aligned to view the side of the test section, as shown in Fig. 7.3, the image

plane was focused on the region of interest (ROI). The linear scale is shown within

the ROI and permits the image to be spatially calibrated. The image resolution was

typically around 0.125 mm/pixel. The image coordinate system (x′, y′) are corrected

to coincide with the coordinate system (x, y, z) in Fig. 7.2. This is done by first

taking an image of a static interface and extracting points along the interface in

order to determine the interface’s inclination relative to the image plane. A linear fit
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is applied to the points along the static interface as,

y′ = x′ ∆y′

∆x′
+ Constant, (7.44)

where the slope of the fitted data points is ∆y′/∆x′. If the slope is non-zero the

y-coordinate is corrected to ensure a zero slope in the image ROI by,

y′
corrected = y′ − x′ ∆y′

∆x′
. (7.45)

In most cases images of the static interface had a slope on the order of 1× 10−2, and

the corrected slope was on the order of 1×10−5. The image plane co-ordinate system

(x′, y′) is then translated using a known reference location so that all points are taken

relative to the branch origin at (x = 0, y = 0, z = 0).

Methodology Validation: Smooth-stratified Flow without an Active Branch

The needle valves connected to the rotameters were then opened, allowing air (ṁG2)

and water (ṁL2) to flow out of the outlet-TEE. The water level in the outlet-TEE

was then permitted to drop well below the run level, resulting in a difference in water

level between the inlet and outlet-TEE reservoirs. This caused water to flow through

the test section. The water flow rate supplied to the inlet-TEE was then adjusted

to compensate for the outflow of water. Steady-state was achieved when the water

level in the outlet-TEE and the inlet-TEE were observed to be constant. Images of

the smooth-stratified air-water interface were recorded at steady-state conditions, and
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Figure 7.3: Image calibration.
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points along the interface were extracted digitally through inspection. Two cases were

tested, as shown in Table 7.2, with water flowing within the horizontal pipe without an

active branch. The inlet was smooth-stratified in both cases, with an inlet superficial

gas velocity, VSG1, of 0.3 m/s used in both cases, and a liquid superficial velocity of

0.13 m/s in Case 1 and 0.061 m/s in Case 2.

The interface profiles obtained through image analysis were then compared against

those obtained from the differential pressure transducers in order to validate the

imaging methodology, as shown in Fig. 7.4. To estimate the uncertainty of the

imaging method the interface height obtained from image analysis is compared with

those obtained from transducer measurements. Assuming that the liquid interface

varies linearly between λ/D = −17.5 and λ/D = 17.5, a conservative estimate of

the maximum error between the imaging and transducer measurements is found to

be approximately 0.45 mm in Case 1, and 0.62 mm in Case 2. Perspective distortion

and the size of the liquid meniscus at the channel wall are observed to increase as the

interface height decreases, and accounts for the discrepancy between the two cases.

Table 7.2: Test matrix.

P1 VSG1 VSL1

Case Description (kPa λ/D Frd (m/s) (m/s)
1 No Branch 206 -17.5 to +17.5 0 0.3 0.13
2 No Branch 0 0.06
3 OGE 18 0.13
4 OGE 13 0.095
5 OGE 11.3 0.085
6 OGE 7.9 0.06
7 OGE -5 and -17.5 1 to 30 0.013 to 0.18
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Critical Dip at the Onset of Gas Entrainment

With steady smooth-stratified conditions achieved, the branch was next activated.

The branch liquid flow rate, ṁL3, was slowly increased, while the run liquid flow,

ṁL2, was slowly decreased. The inlet liquid mass flow rate, ṁL1, remained steady

while these two liquid flow rates were adjusted. The branch liquid mass flow rate

was increased until a steady stream of air was observed to flow into the branch. The

critical conditions at OGE were then recorded, including HOGE, P1, ṁL2, ṁG2, and

ṁL3.

With OGE established, a sequential set of images of the phenomenon were recorded

at a liquid height just prior to OGE in order to visualize the steady dip flow struc-

ture. The number of images captured was typically around 20. A sample image of

the steady dip is shown in Fig. 7.5. The raw image was then calibrated and the

interfacial liquid profile extracted digitally. This was achieved by selecting points

along the interface by visual inspection, as shown in Fig. 7.5.

The variables tested are summarized in Table 7.2. The OGE experiments scanned

the maximum and minimum allowable inlet water heights, and consequently inlet

flow rates, in the facility. Cases 3 to 6 have an active branch flow Froude number.

The liquid interface is recorded using image analysis in these four cases in conjunc-

tion with the traditional point-measurements provided by the differential pressure

transducers. It was not practical to employ digital imaging at every branch Froude

number as refraction at lower Froude numbers was observed to cause appreciable

imaging distortion. Four branch Froude numbers were therefore selected, where the
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Figure 7.5: Digitization of the critical dip profile.
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interface could be recorded using image analysis with reasonable certainty. Case 7

scans the full range of branch Froude numbers and provides measurements of the

liquid height in the inlet by transducer measurement only (λ/D = -5, -17.5). The

inlet was maintained in the smooth-stratified regime using a superficial gas velocity

of 0.3 m/s in all cases. The liquid superficial velocity for each case is also included

in Table 7.2. The allowable operating pressure deviation from the set-point value

was 6.8 kPa with an instrument uncertainty of 0.83 kPa. The instrument uncertainty

in measuring the liquid height using a transducer was 0.165 mm, and the maximum

uncertainty in the liquid Froude number, following Kline and McClintock (1953) was

estimated at 5%.

7.3.3 Results and Discussion

Empirical Closure Relations

Critical Liquid Flow Distribution

The critical liquid flow distribution was determined by scanning the full range of

allowable branch Froude numbers, from Case 7, and recording the corresponding

branch and run mass flow rates at OGE. The branch mass flow rate, ṁL3, is a function

of the branch diameter, d, while the run mass flow rate, ṁL2, is a function of the pipe

diameter, D. By dividing each of the liquid mass flow rates by the total flow areas

the critical flow distribution may be represented in terms of a ratio of superficial

mass fluxes, ρLVSL2/ρLVL3. The critical flow distribution is shown in Fig. 7.6 and is
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correlated here as,

ρLVSL2

ρLVL3

= 0.02Fr−0.16
d

1 ≤ Frd ≤ 30.

(7.46)

Multiplying Eq. (7.46) by the ratio D2/d2 yields the ratio of flow rates, ṁL2/ṁL3.

The total inlet mass flow rate, ṁL1, was observed to vary proportionally with the

inlet height, and this observation was collaborated by Reimann and Khan (1984).

They presented the inlet liquid mass flow rate at the maximum and minimum liquid

heights, and based on this, the critical distribution was estimated from their mea-

surements. Since they investigated two different branch diameters, 6 mm and 12

mm, respectively, the effect of d/D could be presented more readily. The critical flow

distribution extracted from Reimann and Khan (1984)’s results are also presented

in Fig. 7.6. Decreasing d/D leads to a decrease in the ratio ρLVSL2/ρLVL3. This is

expected since a smaller branch diameter requires less liquid flow rate to achieve the

same branch Froude number.

Dip Characteristics

The images presented in Fig. 4.6 showed the typical development of the gas entrain-

ment flow structure in the bottom branch. In Fig. 4.6(a) the image depicts the

formation of the steady dip, typical of the vortex-free gas entrainment phenomenon.

In this instance the inlet liquid height, and branch and run flow rates, have achieved

steady state. The dip structure remains relatively stable. Increasing the branch

Froude number, or alternately reducing the inlet height, typically less than 1 mm,
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Figure 7.6: Critical liquid flow distribution between run and branch.

resulted in air entrainment into the branch, as was shown in Fig. 4.6(b). Initially en-

trainment was observed to be transient as the dip experienced a sudden collapse into

the branch and then quickly reformed. As the liquid height was decreased further, the

gas phase began to steadily entrain into the branch. The visualization method used

to depict the OGE does cause a bias uncertainty in the measurement of the critical

height, and is estimated to be 1 mm, as it is dependent on the observer’s perception

of the OGE phenomenon.

The development of the OGE dip profile is presented in Fig. 7.7 for a branch

Froude number of 18. The profiles represent the side projection of the steady dip. As

the inlet liquid height decreases the dip becomes more pronounced and eventually a

sharp tip is formed at the lowest point of the dip at around x = 6 mm, and y = 5.9
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Figure 7.7: Example of the development of the steady OGE dip profile.

mm. This location is the critical dip location where x = b, and y = h in Fig. 7.2.

The dip flow structure was observed to be nearly symmetric about the x − y plane

passing through the branch, as assumed in the model development. Lowering the inlet

height further resulted in the dip break-up described in Fig. 4.6(b). Measurements

of the steady dip profile, just prior to dip break-up, were conducted for a total of four

different Froude numbers.

The steady dip profiles obtained at branch Froude numbers of 18, 13, 11.4, and

7.9 are presented in Fig. 7.8(a) and accompanied by the transducer measurements

obtained upstream (λ/D = -5, -17.5) and downstream (λ/D = 5, 17.5) of the branch

in Fig. 7.8(b). The dip angle was calculated for each Froude number, following

Eq. (7.40), and presented in relation to the run to branch momentum ratio in Fig.
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7.9. Since the channel has a circular cross-section the dip crossflow velocity, ULB,

is determined from Eq. (7.26) with a liquid flow area, AL2, represented by a circle

intersected by a horizontal chord along y = h, as shown in Fig. 7.10, and from

Zwillinger (1996),

AL2 =
D2

4
cos−1

(

D − 2h

D

)

−
(

D

2
− h

)√
Dh − h2. (7.47)

Similarly, the uniformly distributed liquid velocity, VLd, is determined from Eq.

(7.20) however the branch flow area, Ad, is represented as the intersection between a

sphere and cylinder, as shown in Fig. 7.10, and following Saleh (2008),

Ad = 2π(b2 + h2) − 4(b2 + h2)0.5
∫ (b2+h2)0.5

0
arctan

(

1
√

D2

(b2+h2)−y2 − 1

)

dy. (7.48)

The dip velocity magnitude, VLB, is found as a vector summation of the run and

branch components as,

VLB = [(ULB − VLd cos θB)2 + (VLd sin θB)2]
1

2 . (7.49)

The measured critical dip location is presented in Table 7.3, and the calculated ve-

locities are presented in Table 7.4. In Fig. 7.9, at the limit where ρLU2
LB/ρLV 2

Ld = 0,

Saleh (2008) showed that without an imposed liquid crossflow velocity the dip is

located vertically above the branch at θB = 90 degrees. Increasing ρLU2
LB/ρLV 2

Ld

demonstrated that the dip angle decreases as a result of the run liquid momentum
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forcing the dip downstream, which is collaborated by the trend of the data presented

in Fig. 7.9.

Using the semi-empirical dip velocities from Table 7.4 the dip offset distance cri-

terion proposed in Chapter 6 can be evaluated. The criterion stated that the dip

offset distance could be found at a stagnation point where the horizontal component

of branch velocity, VLd cos θB, and horizontal crossflow velocity, ULB, were equal as,

VLd cos θB = ULB. (7.50)

From this criterion the magnitude of VLB becomes the vertical component of VLd

as, VLd sin θB. The results are presented in Fig. 7.11, and demonstrate that in all
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Table 7.3: Measured critical dip location for OGE in a bottom branch

Frd h b θB

(mm) (mm) (degrees)
7.9 5.33 3.66 55.5
11.4 5.58 4.91 48.6
13 6.04 5.08 50.0
18 5.79 5.99 44.0

cases the run crossflow velocity is approximately three to four times higher than the

branch horizontal velocity. Consequently, this helps to disprove the criterion used to

determine the offset distance, b, in Chapter 6. Since h is common to both VLd and ULB,

the criterion could only be satisfied by an under-predicted value of b. In which case,

the effect ULB on the dip location is not represented appropriately. The number of

measurements points was insufficient for developing a confident relationship between

the dip angle and momentum ratio. The dip angle was seen to vary between 40 to

60 degrees over the four tested Froude numbers. For this reason three dip angles

were selected to test as closure relations for the theoretical model, these correspond

to values of θB = 40, 50, and 60 degrees.

Table 7.4: Calculated Dip Velocities

Frd VLd ULB VLB

(m/s) (m/s) (m/s)
7.9 0.253 0.506 0.418
11.4 0.279 0.644 0.505
13 0.284 0.641 0.507
18 0.355 0.896 0.687
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Figure 7.11: Calculated horizontal velocities at the dip.

Model Predictions

Using Eq. (7.46) as an empirical boundary condition, the onset of gas entrainment

criterion in Eq. (7.39) is used to determine the dip height, h by scanning three

dip angles, θB = 40, 50 and 60 degrees. By evaluating Eq. (7.39) for a single

branch Froude number and over a range of heights, y, as shown in Fig. 7.12(a),

a single root is found where the acceleration is equivalent to gravity for each dip

angle. For example, for a branch Froude number of Frd = 15, and a dip angle of

50 degrees, the predicted dip height corresponds to h = 4.9 mm. Increasing the dip

angle is shown to increase the predicted dip height. This can be explained through the

acceleration field presented in Fig. 7.12(b) for Frd = 15, thetaB = 50, and h = 4.9
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mm. The acceleration field is asymmetrical about the x-axis due to the imposed

crossflow velocity from Eq. (7.25). The dip criterion is satisfied anywhere along the

ay = −9.81 m/s2 contour. At a dip angle of 50 degrees, a single point can be defined

along this contour as the dip location.

The locus of dip heights, as a function of the branch Froude number and dip

angle, is presented in Fig. 7.13(a). The analytical prediction of h is compared in

the figure with experimental results. The results show that h is predicted at a dip

angle of around 60 degrees for the majority of experimental data points, although the

majority of the measured dip angles were found to be 50 degrees or below. There are

important implications from this observation which are linked to differences incurred

by the theoretical and experimental geometries, and more specifically the square

and circular cross-sections. Firstly, the uniform sink velocity, VLd, is affected due

to differences in Ad and secondly, ULB is affected due to differences in AL2. These

differences can compound to dramatically influence the dip kinetic energy term, V 2
LB.

For example, a square channel with Frd = 11.4, h/D = 0.109, and θB = 60 degrees,

results in a dip kinetic energy of 0.10 m2/s2. On the other hand, the cylindrical

channel results in Table 7.4 shows that for Frd = 11.4, h/D = 0.109, and θB = 48.

degrees, the calculated dip kinetic energy term can be calculated to be 0.255 m2/s2, or

2.5 times greater than the square channel value. Since V 2
LB is one of the major terms

in Eq. (7.13), and h is equal in both cases, it can be expected that the corresponding

value of HOGE for both geometries can be dramatically affected by the geometrical

differences. Therefore, the inlet height for a cylindrical channel was evaluated semi-

empirically, and discussed later in reference to Fig. 7.17.
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The predicted dip crossflow Froude number, FrUB, is presented in Fig. 7.13(b) as

a function of the dip height. The dip crossflow Froude number is re-defined here as,

FrUB =
ULB

(hg)
1

2

, (7.51)

which is used extensively in the study of open channel flows Chow (1959). It is a

ratio of the run liquid inertia to gravitational acceleration. Knowing h and FrUB the

dip crossflow velocity, ULB, can be determined from Fig. 7.13(b) and Eq. (7.51).

In general, the crossflow Froude number reveals three distinct types of flow regimes

(Chow, 1959):

• FrUB = 1 Critical flow

• FrUB < 1 Subcritical flow

• FrUB > 1 Supercritical flow

For any flow rate the coupling of the liquid height and velocity may have three unique

solutions defined by these flow regimes. Physically, a subcritical flow possesses a

lower velocity and higher liquid height than a supercritical flow. Supercritical flows

can also result in a flow phenomenon known as a hydraulic jump, where the flowing

fluid returns to a subcritical state through a sudden expansion of the liquid flow

area (Chow, 1959). For a dip angle of 50 degrees and h/D > 0.05, the flow regime

is shown to be supercritical, while the same regime is found for the 60 degree dip

angle and h/D > 0.1. The corresponding values of FrUB obtained from experiments

are shown to be uniquely supercritical, and the majority of points are predicted
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near θB = 50 degrees, similar to the experimental values. To interpret this result,

consider for example that the cylindrical and square channels share the same value

of FrUB at h/D = 0.109. In the cylindrical channel, for FrUB = 2.74, the run

mass flow rate corresponds to ṁL2 = 0.078 kg/s, while in the square channel it

is 0.172 kg/s. The higher run mass flow rate in the square channel comes as a

consequence of the larger liquid flow area, AL2, since h is the same for both geometries.

Interestingly, experiments showed a secondary phenomenon whereby a steady liquid

stream emanated from the dip, flowing in the direction of the run. This phenomenon

is shown in Fig. 4.6(a), just to the right of the dip. With gas entrainment, the

phenomenon was dissipated, as shown in Fig. 4.6(b). Since the run flow is shown to

be supercritical at the dip, one possible explanation for this observed phenomenon

is that a type of hydraulic jump is produced, and has also shown to occur in earlier

images of OGE in a bottom branch captured by Reimann and Khan (1984).

The character of Eq. (7.13) as a function of the upstream height, H , is shown in

Fig. 7.14(a). The figure presents the predicted dip kinetic energy from Eq. (7.13)

and from the potential field in Eq. (7.32). In the case of a large stagnant reservoir, a

comparison of kinetic energies between the tip of the OLE spout and static interface

was used to predict the critical height (Soliman and Sims, 1991, 1992). The critical

height being the vertical distance from the branch to the static interface, which follows

from Craya (1949)’s original analysis. The critical height is then found as a single root

where the dip kinetic energy obtained from the statement of Bernoulli’s equation and

the potential field are equal, with Eq. (7.13) and (7.32) being tangent to each other

at the root. The same methodology was employed in this study, however, no root
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was found when the upstream velocity was non-zero, as seen in the figure. This can

come as a consequence of an under-predicted value of the dip kinetic energy, or inlet

liquid mass flow rate. The inlet velocity, ULA, is presented using the inlet crossflow

Froude number, FrUA,

FrUA =
ULA

(gHOGE)
1

2

, (7.52)

which possesses the same physical characteristics to FrUB in that the flow regime

could be critical, subcritical, or supercritical depending on its value. The inlet velocity

is imposed in Eq. (7.13) implicitly as a function of the inlet height, using Eq. (7.10).

The consequence is that the inlet velocity is dominant in Eq. (7.13) at low values

of HOGE, and becomes less significant as HOGE increases. The effect is seen in the

figure as Eq. (7.13) decreases to a minimum value at Hcrit. This minimum peak

value is significant from a physical standpoint in that it represents the transition

from subcritical to supercritical flow regimes as evidenced by the corresponding value

of FrUA = 1. If the functional relationship between the upstream height and velocity

are relaxed, that is the upstream velocity is imposed explicitly rather than implicitly,

a solution can be found in the form of a single root, as shown in Fig. 7.14(b). The

difference between Fig. 7.14(a) and 7.14(b) is that the upstream velocity, ULA, is set

constant at 0.24 m/s in the latter.

In order to find a solution to Eq. (7.13) an empirical function for the average

upstream velocity, ULA, was developed. This was done following Eq. (7.10) using the

recorded values of the upstream height and flow rate, and where the inlet flow area,

AL1, is represented by a circle intersected by a horizontal chord along y = HOGE, as
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shown in Fig. 7.10,through,

AL1 =
D2

4
arccos

(

D − 2HOGE

D

)

−
(

D

2
− HOGE

)

√

DHOGE − H2
OGE. (7.53)

To evaluate this equation, the value of the upstream height was taken at a distance of

λ/D = −5. The resulting local average velocity is shown in Fig. 7.15(a) as a function

of Frd and was fit by,

ULA = 0.1Fr0.32
d

1 ≤ Frd ≤ 30.

(7.54)

Over the range of HOGE the flow is subcritical with FrUA ranging between 0.4 and

0.6, as shown from Fig. 7.15(b). The resulting locus of solutions for the upstream

heights, as a function of Frd, is presented in Fig. 7.16 and is shown in comparison

to the actual upstream height recorded at λ/D = −5. The upstream height is not

well predicted from the square channel analysis over the three dip angles tested, and

the error is on the order of approximately 50% for a dip angle of 50 degrees. As

was mentioned earlier, the dip kinetic energy is significantly different as a result of

geometrical differences, which in this case translated to a high error in the prediction

of the inlet height. Therefore an alternate method is needed to validate the upstream

height prediction.

The inlet height may also be determined semi-empirically for the circular chan-

nel from Eq. (7.9) since the dip position (b, h) was recorded experimentally, the

inlet velocity (VLA = ULA) is known from Fig. 7.15(a), and the dip velocity (VLB)

was calculated in Table 7.4. The calculated values of each term in Eq. (7.9) are
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tabulated in Table 7.5. The results are also presented in Fig. 7.17 in comparison

to the square channel results, which were calculated using the same dip angles and

inlet velocity. There is a significant improvement in the prediction of the inlet criti-

cal height, HOGE, using the circular channel, as might be anticipated, and the error

in relation to experimental values is within 20%. Several factors contribute to this

error, including geometrical differences, and the omission of energy changes due to

shear and inertial effects. The interfacial liquid gradient in horizontal channels with

co-current gas-liquid flow has been shown to be well predicted when wall friction and

interfacial shearing are considered (Sadatomi et al., 1993).
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Table 7.5: Calculation of the critical height using Eq.(7.9)

.

Frd HOGE(Experiment) h
∆ρV 2

LA

2gρL

∆ρV 2

LB

2gρL
HOGE(Calculated) Error (HOGE)

(mm) (mm) (mm) (mm) (mm) (%)
7.9 16.39 5.33 1.91 8.89 12.31 24.9
11.4 19.26 5.58 2.41 12.95 16.12 16.3
13 20.41 6.04 2.62 13.05 16.47 19.3
18 23.55 5.79 3.22 23.98 26.54 12.7
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7.4 Summary

Experiments have shown that the stratified air-water flow is hydrodynamically devel-

oping within the inlet region. This results in an interfacial liquid gradient within the

inlet region, and consequently, a single unique critical height to characterize the onset

of gas entrainment phenomenon is un-realistic. This is in contrast to the stagnant

reservoir case where a single critical height is reasonable. Experiments also showed

that the dip structure is dependent on the imposed flow conditions. The dip angle

was recorded over a limited range of Froude numbers and treated as a constant in the

theoretical predictions. In reality, this is not the case, as the dip position, size, and

orientation are expected to be influenced by the momentum ratio between the run

and branch flows. The analytical model was shown to predict the dip height; how-

ever the inlet height could not be predicted without an empirical function to describe

the inlet velocity. Differences between the theoretical and experimental geometries

were quantified, and in some cases shown to be substantial, as in the case of the dip

kinetic energy. Semi-empirical prediction of the inlet height, using the appropriate

geometrical constraints, showed a considerable improvement over the square cross-

section results. The dip and inlet region were coupled through Bernoulli’s equation

and consequently the effects of wall and interfacial shear, as well as inertial effects

due to the velocity profile development, were neglected.
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Chapter 8

Conclusions and Future Directions

8.1 Conclusions and Contributions

A state-of-the-art facility has been developed in order to investigate the related two-

phase (gas-liquid) phenomena in small branches on a horizontal channel. The test

section was designed for the purpose of flow visualization local to the branch, as well

enable quantitative measurements through digital imaging technologies. The test sec-

tion incorporated three branches at 0, 45, and 90 degrees down from horizontal and

the facility was designed to support both single and multi-branch discharge experi-

ments. Two types of gravitational based flow separators were incorporated into the

facility design in order to measure the mass flow rates of the gas and liquid flowing

through the branch and run.

Extensive experimental data were reported in Chapter 4 on the related two-phase

phenomena resulting from co-current separated gas-liquid flow in single side, inclined,

and bottom oriented branches. The relationship between the air-water interface
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height, the pressure drop across the branch, and the two-phase branch and inlet

quantities was reported. These included the branch two-phase mass flow rate and

quality, as well as the inlet superficial velocities of the gas and liquid phases. The

critical conditions at the onset of two-phase flow were identified, namely the onsets

of gas and liquid entrainment, and then the relationship between the interface height

and branch single phase Froude number was reported for the inclined and bottom

oriented branch. The majority of data corresponded to a smooth-stratified regime

within the inlet, but increases in the inlet superficial gas velocity by flow into the

branch were shown to induce transitions to the wavy-stratified and slug flow regimes.

These initial results revealed that the interface height was influenced by the mea-

surement location within the inlet region. Non-dimensionalizing the interface height

with the critical height was shown to dampen the effect of measurement location, as

well as the effect of crossflow velocity within the inlet. Comparisons of the relationship

between the dimensionless interface height and the two-phase branch quality demon-

strated good agreement with earlier studies, which included co-currently flowing and

stagnant stratified gas-liquid regimes. Comparisons between the critical height at the

onset of gas entrainment with empirical and theoretical models developed in large

stagnant two-phase reservoirs supported the effect of crossflow velocity and measure-

ment location. The result was that a lower branch Froude number was required, at a

specific interface height, to induce the onset of gas entrainment.

The effects a second active branch at low and moderate Froude numbers were

investigated in Chapter 5. Extensive experimental data were reported, relating the

critical liquid interface height, at three locations within the inlet, to the branch Froude
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numbers and inlet superficial liquid and gas velocities. The effect of fluid phase in the

second branch was also reported, with the second branch either above or below the air-

water interface. In the first configuration, with liquid flowing in both branches, three

distinct cases were observed. The onset of gas entrainment could occur in the top

branch only, the bottom branch only, or both branches simultaneously. From these

measurements a novel map of the three cases was developed, showing the relationship

between the inlet superficial liquid velocity and branch Froude numbers. In the second

configuration, with gas flowing in the second branch, the main effects were observed

to occur in relation to the inlet two-phase regime, specifically the transitions to wavy-

stratified and slug regimes. In limited cases, the onset of gas and liquid entrainment

was observed, and these points were shown to exist near the inlet two-phase regime

transition. Comparisons to earlier studies showed consistency in relation to the effects

of the second branch, however, these were limited to models and experimental data

developed for large stagnant two-phase stratified reservoirs.

A theoretical model to predict the critical height at the onset of gas entrainment

in a flowing stratified gas-liquid regime was developed in Chapter 6. To the best of

the authors knowledge this was the first attempt in open literature at modeling the

effects of the inlet crossflow velocity on the onset of gas entrainment. The model was

developed following an established methodology for large stagnant gas-liquid reser-

voirs. Comparisons to earlier studies were limited, due to availability of experimental

data, and presented the need for local measurements of the critical dip and inlet

velocity. Analysis was provided regarding the inaccuracy of the proposed onset of

gas entrainment criterion at a single branch in cases of liquid crossflow. Alternatives
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were explored for the onset of gas entrainment from established studies dealing with

liquid entrainment. In addition, limitations of the proposed onset of gas entrainment

criterion were explored for dual branch configurations in flat vertical or horizontal

planes.

A semi-empirical model was developed in Chapter 7 for the onset of gas entrain-

ment in a single branch on the bottom of a square channel to address some of the

challenges and inaccuracies faced in pure theoretical analysis. A digital imaging tech-

nique was developed to record the location of the critical dip relative to the branch

at four branch Froude numbers. This information was then used to determine the

relationship between the dip angle and liquid momentum flux ratio between the run

and branch flows. The dip angle, coupled with appropriate mass flow rates, were

used as empirical boundary conditions in the prediction of the dip height and dip

crossflow velocity. Predictions were comparable to measured and calculated values,

however, inaccuracies were identified to be due to differences in experimental and

modeled geometries. The dip prediction was coupled with the inlet through a two-

fluid statement of Bernoulli’s equation. It was shown that the local inlet velocity

needed to be defined in order to find a solution for the inlet critical height. Using the

measured average velocity the resulting prediction showed an average error of 50%

with experiments. Incorporating the cylindrical channel geometry, however, showed

an improvement in the prediction of the critical height to within 20% error.
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8.2 Future Directions

This study has shown that the related two-phase phenomena in small branches are

coupled to the two-phase conditions within the channel inlet. Under smooth-stratified

flow conditions, the inlet liquid mass flow rate is primarily gravity driven, while the

inlet gas phase mass flow rate is pressure driven. The inlet conditions are dependent

on the channel geometry (length, diameter), orientation (horizontal, slightly inclined),

material, as well as the two operating fluids. Such parametric studies are therefore

needed in co-current, and even counter-current, two-phase flow configurations. Broad-

ening the scope of tested inlet conditions will lead to improved models of the related

phenomena, for example for the critical height at the onset of gas entrainment, which

are currently limited to very specific geometries.

The facility was developed with multi-branch experiments in mind, however only

dual branch scenarios were investigated in the present study. Even these dual branch

cases were limited mainly to the bottom and inclined branches, due to the maxi-

mum air-water interface heights that could be tested within the smooth-stratified

regime. Furthermore, experiments were limited only to the beginning of two-phase

flow, mainly because increasing the branch flow quality affected the two-phase inlet

regime transition. The branch two-phase mass flow rate and quality will be affected by

flow through additional branches, however, some modifications to the present facility

are needed in order to conduct such experiments.

Increased hydraulic resistances should be tested, between the branch inlet and

separator, in order to limit the two-phase mass flow rate in the branch. This will
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consequently provide more control over the inlet superficial gas velocity, and moreover,

the two-phase regime transitions. This can be achieved by increasing the length

of the connecting pipe, as well as decreasing its diameter, between the branch and

separator. Lower two-phase branch mass flow rates will require increased sensitivity of

the separators, which can be achieved by reducing the overall volume of the separator,

for the gas side, and diameter, for the liquid side.

Two-phase regime transitions affected the ability to measure the run liquid and gas

mass flow rates at the outlet-TEE, which is essentially a gravity based flow separator,

with the run liquid flow directly draining into it. The reason for this is that mea-

surement of the run flow quantities required a steady air-water interface within the

outlet-TEE, and transient regimes, waves and slugs, caused significant disturbances

at this interface. To counteract this, two modifications are recommended. First, the

individual mass flow rates of the gas and liquid phases should be measured at the

inlet rather than at the run. This can be achieved by moving all related flow meter

devices before the inlet-TEE. Second, the outlet-TEE should be replaced by a second

air-water separator, similar to that used for the branch. This will require design trials,

to accommodate the expected mass flow rate ranges and regime transitions, however

it will permit measurements within the wavy-stratified, and slug regimes. Transient

regimes, such as wavy-stratified flow, will also require high frequency response de-

vices to measure the interface height. Potential candidates for such measurements

include direct measurement, such as parallel wire capacitance devices, or indirect

non-intrusive devices, such as high speed digital cameras.

The present test section was designed with digital imaging technologies in mind,

280



and specifically for local velocity measurements using particle image velocimetry.

These measurements were not performed in the present study, however they are

needed in order to quantify the effects of liquid branch flow on the liquid velocity

distribution within the inlet. Coupling local measurements of the liquid velocity and

interface height would provide a thorough description of the inlet conditions. These

measurements would enhance future models by providing local velocity distributions

for use as empirical boundary conditions, which would replace locally averaged values.

Local velocity measurements could also provide important boundary layer informa-

tion which could be used to describe the local shear stresses at the wall and interface.

Such quantities are important in determining appropriate models to use in evaluating

wall and interfacial friction factors, which can further improve models related to the

critical height by accounting for hydrodynamic losses within the inlet. Future models

should investigate the effect of branch orientation on the critical height in crossflow

scenarios. The present study was limited to a single bottom oriented branch, however

analytical and semi-empirical methodologies developed in this study could be adapted

for this purpose. Models for predicting the branch two-phase branch mass flow rate

and quality are highly limited, and are typically purely empirical or semi-empirical.

Analytical models could broaden the range of geometries, and flow conditions, for a

variety of applications.

To approach realistic header/feeder systems, additional branches should be inves-

tigated downstream of the main branch. This would be particularly interesting since

the interface shape is dramatically different on either side of the branch. This study

focused on the inlet region, which was mainly smooth-stratified, however on the run
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side a variety of flow phenomena, including hydraulic jumps, wakes and vorticies,

were observed. These phenomena can lead to dramatic changes in the downstream

branch mass flow rate and two-phase quality.
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A.1 Co-Current Air-Water Flow

Table A.1: Case SS-1 data

H (mm)
P1 VSG1 VSL1 λ/D = λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) -36 -17.5 -5 +5
208.91 0.30 0.152 32.89 31.40 29.14 25.49
210.29 0.30 0.149 32.46 31.01 28.69 24.96
209.60 0.30 0.145 31.82 30.37 28.35 24.75
209.60 0.30 0.140 31.18 29.94 27.86 24.12
210.29 0.30 0.132 30.32 28.91 26.96 23.32
210.98 0.30 0.127 29.89 28.66 26.57 23.05
210.29 0.30 0.123 29.25 28.07 26.02 22.62
206.02 0.30 0.115 28.61 27.16 25.29 21.76
206.15 0.30 0.107 27.54 26.11 24.65 20.91
210.29 0.30 0.099 26.69 25.36 23.79 20.27
212.36 0.30 0.095 25.83 24.38 22.94 19.63
208.91 0.30 0.088 24.55 23.31 21.90 18.55
208.91 0.30 0.082 23.69 22.48 21.23 17.78
209.53 0.30 0.078 22.84 21.82 20.36 17.27
210.98 0.30 0.076 22.24 21.17 19.94 16.63
209.60 0.30 0.074 22.20 20.89 19.52 15.78
210.29 0.30 0.068 21.55 20.60 18.88 15.30
206.98 0.30 0.066 20.91 20.11 18.45 14.85
209.60 0.30 0.064 20.91 20.11 18.29 14.55
208.91 0.30 0.058 20.06 19.04 17.57 14.24
208.22 0.30 0.058 19.84 19.04 17.34 14.09
207.53 0.30 0.049 18.80 17.94 16.52 13.21
208.91 0.30 0.047 18.13 17.46 15.88 12.78
209.39 0.30 0.040 17.28 16.47 15.24 12.14
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Table A.2: Case SS-2 data

H (mm)
P1 VSG1 VSL1 λ/D = λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) -36 -17.5 -5 +5
210.98 1.00 0.103 25.79 24.80 23.37 19.39
210.98 1.00 0.098 24.99 24.10 22.69 18.74
210.98 1.00 0.093 24.55 23.53 22.13 18.34
210.98 1.00 0.090 23.91 22.88 21.23 17.70
210.29 1.00 0.082 22.84 21.82 20.16 16.63
210.29 1.00 0.079 22.24 21.17 19.94 15.99
210.29 1.00 0.075 21.59 20.50 19.30 15.35
210.98 1.00 0.072 21.14 20.32 18.88 15.18
210.98 1.00 0.068 20.91 19.89 18.45 14.49
211.67 1.00 0.065 20.49 19.40 18.23 14.49
208.91 1.00 0.062 20.06 19.25 17.64 14.11
208.91 1.00 0.058 19.42 18.58 17.38 13.64
207.53 1.00 0.054 18.99 18.18 16.95 13.42
212.36 1.00 0.039 16.42 15.61 14.60 11.71
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A.2 Single Discharging Branch

Table A.3: Case SB-1 data

∆P = 34.47 (kPa), R = 1052 (kg − m)
−1

2

λ/D = −5, ṁG2 = 0.0022 (kg/s)
P1 P3 VSG1 VSL1 ṁTP3 X3 H

(kPa) (kPa) (m/s) (m/s) (kg/s) (mm)
211.67 171.89 0.757 0.118 0.0368 0.092 24.53
207.67 172.09 0.765 0.108 0.0314 0.110 23.57
210.43 173.08 0.812 0.099 0.0285 0.133 22.61
209.60 172.46 0.842 0.094 0.0270 0.149 22.07
208.77 171.99 0.880 0.085 0.0211 0.203 20.90
208.22 172.20 0.920 0.075 0.0209 0.219 19.72
208.57 172.30 1.033 0.056 0.0151 0.359 17.31
206.88 172.20 1.114 0.044 0.0143 0.423 15.97
204.08 173.54 1.377 0.025 0.0080 1.000 12.91
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Table A.4: Case IB-1 data

∆P = 34.47 (kPa), R = 1052 (kg − m)
−1

2

λ/D = −5, ṁG2 = 0.0022 (kg/s)
P1 P3 VSG1 VSL1 ṁTP3 X3 H

(kPa) (kPa) (m/s) (m/s) (kg/s) (mm)
207.33 173.39 0.411 0.161 0.1002 0.0081 27.54
204.08 173.13 0.418 0.152 0.0914 0.0095 26.68
200.09 173.13 0.426 0.139 0.0828 0.0112 25.40
206.91 172.20 0.507 0.133 0.0834 0.0183 24.94
205.60 172.20 0.522 0.124 0.0771 0.0213 23.86
204.15 172.20 0.561 0.115 0.0711 0.0272 23.01
210.29 172.20 0.606 0.116 0.0749 0.0303 22.95
206.84 172.71 0.638 0.100 0.0679 0.0368 21.59
208.08 173.75 0.688 0.091 0.0618 0.0464 20.58
207.88 173.13 0.762 0.078 0.0551 0.0622 18.97
207.33 171.68 0.864 0.061 0.0461 0.0907 16.83
210.29 172.20 0.976 0.049 0.0394 0.1273 14.91
205.05 172.20 1.012 0.033 0.0297 0.1777 12.98
203.67 172.20 1.065 0.014 0.0184 0.3085 9.13

Table A.5: Case IB-2 data

∆P = 51.71 (kPa), R = 1044 (kg − m)
−1

2

λ/D = −5, ṁG2 = 0.0022 (kg/s)
P1 P3 VSG1 VSL1 ṁTP3 X3 H

(kPa) (kPa) (m/s) (m/s) (kg/s) (mm)
209.53 156.68 0.513 0.154 0.0944 0.0167 27.43
209.53 154.93 0.543 0.143 0.0883 0.0203 26.62
210.77 155.13 0.606 0.139 0.0973 0.0232 25.51
208.91 155.13 0.645 0.130 0.0904 0.0282 24.60
210.98 155.44 0.714 0.120 0.0867 0.0354 23.19
208.36 155.55 0.778 0.099 0.0734 0.0482 21.28
209.60 155.44 0.919 0.077 0.0603 0.0760 18.72
206.43 155.13 1.031 0.053 0.0455 0.1190 15.84
204.22 155.13 1.112 0.036 0.0354 0.1698 13.41
202.77 155.13 1.134 0.021 0.0263 0.2352 10.64
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Table A.6: Case IB-3 data

∆P = 68.94 (kPa), R = 1038 (kg − m)
−1

2

λ/D = −5, ṁG2 = 0.0022 (kg/s)
P1 P3 VSG1 VSL1 ṁTP3 X3 H

(kPa) (kPa) (m/s) (m/s) (kg/s) (mm)
211.39 137.55 0.688 0.136 0.0891 0.0322 25.47
203.36 132.33 0.695 0.131 0.0939 0.0312 24.33
208.91 137.55 0.769 0.121 0.0908 0.0383 23.35
206.36 137.55 0.803 0.112 0.0851 0.0438 22.60
205.74 137.03 0.849 0.099 0.0774 0.0525 21.40
205.05 137.55 0.915 0.086 0.0695 0.0656 19.72
203.19 137.55 0.987 0.072 0.0608 0.0836 18.04
205.64 137.55 1.034 0.066 0.0580 0.0938 17.30
204.08 137.55 1.130 0.054 0.0494 0.1247 15.98
205.39 137.55 1.097 0.041 0.0397 0.1486 13.94
208.91 137.55 1.314 0.022 0.0286 0.2632 11.02

Table A.7: Case BB-1 data

∆P = 34.47 (kPa), R = 1052 (kg − m)
−1

2

λ/D = −5, ṁG2 = 0.0022 (kg/s)
P1 P3 VSG1 VSL1 ṁTP3 X3 H

(kPa) (kPa) (m/s) (m/s) (kg/s) (mm)
206.98 173.23 0.301 0.169 0.1921 0.0000 27.74
208.98 172.71 0.307 0.150 0.1747 0.0002 27.10
206.64 173.02 0.309 0.141 0.1628 0.0004 26.24
205.60 173.28 0.316 0.127 0.1437 0.0008 24.96
206.02 172.97 0.325 0.116 0.1300 0.0014 23.89
207.26 173.28 0.338 0.107 0.1201 0.0023 22.82
204.71 172.71 0.348 0.097 0.1092 0.0032 21.81
203.81 173.23 0.365 0.082 0.0910 0.0052 20.25
203.40 173.33 0.384 0.084 0.0998 0.0062 19.18
203.40 173.23 0.421 0.069 0.0852 0.0104 17.47
202.71 173.23 0.491 0.050 0.0699 0.0202 15.55
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Table A.8: Case BB-2 data

∆P = 51.71 (kPa), R = 1044 (kg − m)
−1

2

λ/D = −5, ṁG2 = 0.0022 (kg/s)
P1 P3 VSG1 VSL1 ṁTP3 X3 H

(kPa) (kPa) (m/s) (m/s) (kg/s) (mm)
215.12 162.37 0.301 0.189 0.2204 0.0000 30.09
211.53 160.77 0.301 0.180 0.2095 0.0000 29.46
207.88 155.16 0.309 0.175 0.2059 0.0003 28.70
207.67 154.93 0.316 0.166 0.1949 0.0006 27.93
212.29 159.84 0.323 0.154 0.1795 0.0009 26.76
207.53 152.84 0.329 0.150 0.1740 0.0012 26.68
215.67 163.61 0.342 0.135 0.1594 0.0019 25.42
209.60 158.54 0.354 0.128 0.1504 0.0026 24.59
205.74 156.89 0.364 0.118 0.1385 0.0033 23.70
209.19 162.01 0.370 0.110 0.1295 0.0040 22.76
207.39 158.13 0.411 0.090 0.1115 0.0073 21.34
210.15 161.44 0.435 0.081 0.1007 0.0099 20.23
205.60 155.13 0.482 0.075 0.0969 0.0139 19.16
204.77 155.34 0.545 0.061 0.0877 0.0206 17.70
204.08 155.65 0.577 0.054 0.0843 0.0243 16.66

Table A.9: Case BB-3 data

∆P = 68.94 (kPa), R = 1038 (kg − m)
−1

2

λ/D = −5, ṁG2 = 0.0022 (kg/s)
P1 P3 VSG1 VSL1 ṁTP3 X3 H

(kPa) (kPa) (m/s) (m/s) (kg/s) (mm)
208.57 137.45 0.352 0.147 0.1774 0.0021 26.57
210.22 137.55 0.377 0.133 0.1661 0.0034 25.48
210.29 138.38 0.395 0.118 0.1461 0.0048 24.01
207.60 137.81 0.434 0.102 0.1272 0.0078 22.21
210.43 138.22 0.499 0.087 0.1142 0.0129 20.61
206.36 137.45 0.536 0.076 0.0995 0.0175 19.41
208.98 138.02 0.593 0.069 0.0962 0.0225 18.49
205.46 137.03 0.630 0.068 0.1017 0.0240 17.47
204.43 137.76 0.734 0.054 0.0915 0.0351 15.76
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Table A.10: Data for the OGE in the inclined branch

HOGE (mm)
P1 VSG1 VSL1 FrB λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) -36 -17.5 -5
204.57 0.30 0.160 9.5 31.61 29.73 27.00
208.91 0.30 0.153 8.6 31.31 29.30 23.79
204.50 0.30 0.138 7.9 29.59 28.02 25.26
210.15 0.30 0.130 7.2 28.61 27.16 24.65
202.71 0.30 0.113 6.0 27.06 25.68 23.15
208.91 0.30 0.092 4.2 23.87 22.46 20.59
201.81 0.30 0.079 3.5 22.20 20.83 19.09
204.71 0.30 0.070 2.9 21.09 20.11 18.21
205.05 0.30 0.061 2.4 20.06 19.04 17.16
206.57 0.30 0.055 1.9 19.20 18.18 16.74
205.26 0.30 0.044 1.0 16.57 15.83 14.60

Table A.11: Data for the OGE in the bottom branch

HOGE (mm)
P1 VSG1 VSL1 FrC λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) -36 -17.5 -5
208.91 0.30 0.163 23.4 31.94 30.16 27.22
208.77 0.30 0.153 21.7 30.75 29.3 26.14
208.22 0.30 0.139 19.5 29.68 28.2 25.34
210.98 0.30 0.127 17.7 28.61 26.95 24.22
209.60 0.30 0.119 16.3 27.29 25.88 23.15
209.60 0.30 0.110 15.0 26.38 24.7 22.3
210.98 0.30 0.100 13.0 24.98 23.74 21.23
208.91 0.30 0.092 11.7 23.98 22.5 20.16
208.64 0.30 0.082 10.5 22.57 21.1 19.09
207.74 0.30 0.074 9.5 21.39 20.3 17.99
205.05 0.30 0.061 7.6 19.63 18.39 16.52
207.53 0.30 0.050 6.0 17.49 16.68 14.64
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Table A.12: Dip profile data from Fig. 7.8(a) (Frd = 18, 13)

Frd = 18 Frd = 13
x y x y x y x y

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
31.00 7.35 -9.00 15.33 30.00 7.16 -11.00 14.18
30.00 7.80 -10.00 15.68 29.00 7.23 -12.00 14.27
29.00 7.57 -11.00 15.80 28.00 7.14 -13.00 14.47
28.00 7.75 -12.00 15.91 27.00 7.22 -14.00 14.60
27.00 7.54 -13.00 16.39 26.00 7.24 -15.00 14.68
26.00 7.72 -14.00 16.31 25.00 7.26 -17.00 15.06
25.00 7.45 -15.00 16.51 24.00 7.25 -18.00 15.17
24.00 7.70 -16.00 16.74 23.00 7.23 -20.00 15.39
23.00 7.62 -17.00 16.79 22.00 7.36 -21.00 15.61
22.00 7.72 -20.00 17.16 21.00 7.09 -22.00 15.78
21.00 7.58 -21.00 17.28 20.00 7.52 -24.00 15.78
20.00 7.58 -22.00 17.44 19.00 7.14 -25.00 15.83
19.00 7.41 -23.00 17.52 18.00 6.99 -26.00 15.98
18.00 7.60 -25.00 17.88 17.00 7.26 -28.00 15.94
17.00 7.41 -26.00 17.91 16.00 7.10 -29.00 16.11
16.00 7.32 -27.00 18.01 15.00 7.11 -31.00 16.20
15.00 7.25 -28.00 18.17 14.00 6.82 -32.00 16.27
14.00 7.15 -29.00 18.28 13.00 7.14 -33.92 16.25
13.00 6.82 -30.00 18.25 12.00 6.83 -39.07 16.56
12.00 6.85 -32.00 18.30 11.00 6.75 -55.50 17.13
11.00 6.48 -33.00 18.52 10.00 6.60 -60.19 17.07
10.00 6.43 -36.49 18.47 9.00 6.41 -66.98 17.31
9.00 6.26 -38.61 18.58 8.00 6.34 -71.11 17.43
8.00 5.98 -40.53 18.68 7.00 6.03 -75.43 17.46
7.00 5.85 -43.29 18.70 6.00 5.94 -82.04 17.42
6.00 5.77 -46.23 18.90 5.00 6.08 -85.90 17.54
5.00 6.78 -49.35 19.02 4.00 6.83 -87.73 17.64
4.00 8.40 -50.27 19.02 3.00 8.55 -93.70 17.77
3.00 9.53 -54.77 19.24 2.00 9.78 -100.04 18.10
2.00 10.32 -58.26 19.27 1.00 10.45 -110.88 18.44
1.00 11.29 -61.29 19.38 0.00 10.70
0.00 11.86 -63.49 19.49 -1.00 11.45
-1.00 12.25 -65.97 19.50 -2.00 12.17
-2.00 13.00 -66.98 19.60 -3.00 12.12
-3.00 13.19 -69.92 19.71 -4.00 12.65
-4.00 13.98 -72.67 19.73 -5.00 12.83
-5.00 14.03 -75.06 19.75 -6.00 13.26
-6.00 14.74 -76.81 19.76 -7.00 13.31
-7.00 14.89 -79.01 19.88 -8.00 13.82
-8.00 15.15 -9.00 13.79
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Table A.13: Dip profile data from Fig. 7.8(a) (Frd = 11.4, 7.9)

Frd = 11.4 Frd = 7.9
x y x y x y x y

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
26.00 6.97 -17.00 13.82 19.18 6.86 -14.44 11.98
25.00 6.99 -18.00 13.94 18.05 6.67 -15.20 11.92
24.00 6.97 -19.00 13.90 16.82 6.62 -15.83 12.08
23.00 6.91 -20.00 14.04 15.74 6.53 -18.20 12.17
22.00 7.02 -21.00 14.01 14.71 6.54 -20.40 12.28
21.00 7.03 -22.00 14.24 13.68 6.44 -20.52 12.38
20.00 7.01 -22.90 14.52 12.65 6.50 -22.37 12.43
19.00 7.12 -23.00 14.41 11.77 6.40 -24.97 12.54
18.00 6.97 -24.00 14.36 10.74 6.41 -25.38 12.70
17.00 6.96 -25.00 14.40 9.76 6.36 -27.81 12.60
16.00 6.97 -25.02 14.62 8.92 6.32 -30.43 12.91
15.00 6.97 -26.00 14.48 8.23 6.27 -30.46 12.71
14.00 6.90 -27.00 14.53 7.35 6.27 -32.82 12.93
13.00 7.00 -28.00 14.58 6.37 6.13 -33.02 12.92
12.00 6.89 -28.78 14.83 5.73 5.94 -34.93 12.88
11.00 6.84 -30.00 14.67 5.09 5.85 -36.60 12.93
10.00 6.67 -32.00 14.79 4.45 5.70 -38.56 13.09
9.00 6.52 -33.00 15.05 4.06 5.41 -40.43 13.09
8.00 6.38 -33.00 14.77 3.66 5.32 -40.99 13.27
7.00 6.13 -38.79 15.27 3.52 5.71 -41.90 13.05
6.00 5.89 -39.52 15.37 3.42 6.10 -44.57 13.29
5.00 5.67 -44.67 15.59 3.33 6.58 -49.26 13.33
4.00 5.99 -49.44 15.63 3.08 7.12 -53.21 13.53
3.00 7.69 -50.27 15.63 2.74 7.66 -55.74 13.64
2.00 9.17 -57.43 15.68 2.35 8.19 -59.82 13.67
1.00 10.28 -61.93 15.72 1.91 8.78 -64.13 13.70
0.00 10.76 -65.42 15.83 1.38 9.32 -69.00 13.65
-1.00 11.33 -68.91 15.86 0.64 9.76 -76.35 13.79
-2.00 11.91 -76.53 16.09 -0.54 10.10 -82.22 14.02
-3.00 12.07 -81.03 16.21 -2.06 10.50 -93.24 14.28
-4.00 12.17 -81.49 16.21 -3.44 10.98 -100.59 14.33
-5.00 12.52 -85.07 16.15 -4.07 10.75 -110.60 14.49
-6.00 12.63 -87.18 16.26 -5.34 11.26
-8.00 12.91 -90.58 16.10 -6.08 10.95
-9.00 13.14 -91.59 16.29 -6.54 11.37
-11.00 13.16 -97.84 16.52 -7.24 11.38
-12.00 13.29 -104.72 16.66 -9.14 11.57
-13.00 13.41 -104.91 16.57 -10.25 11.51
-15.00 13.62 -112.07 16.80 -11.54 11.77
-16.00 13.62 -12.95 11.91

304



A.3 The OGE in Dual Discharging Branches

Table A.14: Dual case 1 data: OGE in the inclined branch (FrC = 1)

HOGE (mm)
P1 VSG1 VSL1 FrB FrC λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) (Liquid) -36 -17.5 -5
208.50 0.30 0.136 7.0 1.2 30.07 27.50 24.86
205.88 0.30 0.131 6.5 1.2 29.25 26.95 24.17
206.15 0.30 0.127 6.0 1.2 28.83 26.65 23.84
206.36 0.30 0.123 5.6 1.2 28.61 26.09 23.37
206.84 0.30 0.118 4.9 1.2 27.76 25.49 22.77
206.77 0.30 0.112 4.4 1.2 27.11 24.82 22.11
205.95 0.30 0.108 3.9 1.2 26.47 24.17 21.44
208.91 0.30 0.100 3.5 1.2 25.40 23.31 20.59
206.91 0.30 0.095 3.0 1.2 24.76 22.46 20.16
204.08 0.30 0.088 2.6 1.2 23.91 21.82 19.52
203.19 0.30 0.083 2.1 1.2 23.05 20.96 18.66
204.36 0.30 0.067 1.4 1.2 21.34 19.46 17.38
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Table A.15: Dual case 1 data: OGE in the inclined branch (FrC = 10)

HOGE (mm)
P1 VSG1 VSL1 FrB FrC λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) (Liquid) -36 -17.5 -5
203.12 0.30 0.169 7.0 10.0 33.10 30.37 26.89
201.46 0.30 0.161 6.5 10.0 32.25 29.56 26.23
204.98 0.30 0.157 6.0 10.0 31.49 29.09 25.75
205.39 0.30 0.151 5.6 10.0 30.96 28.49 25.50
206.08 0.30 0.144 4.9 10.0 30.11 27.84 24.65
205.12 0.30 0.139 4.4 10.0 29.47 27.50 24.40
206.43 0.30 0.132 3.9 10.0 28.80 26.51 23.37
207.19 0.30 0.126 3.5 10.0 27.97 25.95 22.94
205.74 0.30 0.120 3.0 10.0 27.33 25.07 22.30
202.15 0.30 0.110 2.6 10.0 26.26 24.26 21.27
203.40 0.30 0.102 2.1 10.0 25.19 23.46 20.74
203.40 0.30 0.083 1.4 10.0 23.05 21.37 18.88
202.77 0.30 0.078 1.2 10.0 22.63 20.75 18.27

Table A.16: Dual case 1 data: OGE in the inclined branch (FrC = FrB)

HOGE (mm)
P1 VSG1 VSL1 FrB FrC λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) (Liquid) -36 -17.5 -5
200.09 0.30 0.161 7.0 7.0 32.46 29.94 26.16
201.95 0.30 0.153 6.5 6.5 31.61 29.20 25.76
202.43 0.30 0.148 6.0 6.0 30.96 28.87 25.29
204.08 0.30 0.142 5.6 5.6 30.54 28.19 24.65
202.71 0.30 0.130 4.9 4.9 29.04 26.91 24.01
207.53 0.30 0.123 4.4 4.4 28.15 25.95 22.94
205.05 0.30 0.115 3.9 3.9 27.11 25.00 22.30
202.71 0.30 0.109 3.5 3.5 26.54 24.34 21.49
202.71 0.30 0.102 3.0 3.0 25.40 23.53 20.59
202.71 0.30 0.094 2.6 2.6 24.55 22.67 19.94
201.88 0.30 0.084 1.9 1.9 23.40 21.60 18.95
204.02 0.30 0.068 1.4 1.4 21.61 19.89 17.38
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Table A.17: Dual case 2 data: OGE in the bottom branch (FrB = 1)

HOGE (mm)
P1 VSG1 VSL1 FrC FrB λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) (Liquid) -36 -17.5 -5
205.46 0.30 0.168 23.0 1.1 33.55 30.82 27.64
204.77 0.30 0.162 22.5 1.1 32.85 30.35 27.34
204.08 0.30 0.157 21.9 1.1 32.25 29.73 26.57
207.53 0.30 0.149 20.9 1.1 31.61 28.89 25.93
207.53 0.30 0.139 19.4 1.1 30.54 28.23 24.86
209.60 0.30 0.132 18.2 1.1 29.59 27.38 24.63
207.95 0.30 0.124 17.0 1.1 28.59 26.70 23.79
208.43 0.30 0.111 14.7 1.1 27.42 25.24 22.52
208.36 0.30 0.101 13.3 1.1 26.47 24.38 21.75
206.08 0.30 0.095 12.2 1.1 25.62 23.52 21.01
204.43 0.30 0.086 11.6 1.1 24.06 22.03 19.73
202.71 0.30 0.078 9.9 1.1 22.63 20.75 18.27

Table A.18: Dual case 2 data: OGE in the bottom branch (FrB = 2)

HOGE (mm)
P1 VSG1 VSL1 FrC FrB λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) (Liquid) -36 -17.5 -5
203.40 0.30 0.174 23.7 2.0 33.74 31.22 27.64
204.84 0.30 0.166 22.5 2.0 33.11 30.60 27.20
217.18 0.30 0.151 20.5 2.0 31.61 29.30 25.99
214.43 0.30 0.145 19.5 2.0 30.79 28.60 25.50
212.36 0.30 0.137 18.4 2.0 30.27 27.99 24.66
213.05 0.30 0.131 17.3 2.0 29.38 27.38 24.22
212.36 0.30 0.126 16.6 2.0 28.83 26.95 23.87
213.74 0.30 0.115 14.7 2.0 27.76 25.88 22.94
212.29 0.30 0.109 13.8 2.0 26.90 24.98 22.51
213.05 0.30 0.102 12.6 2.0 26.26 24.38 21.66
203.40 0.30 0.101 12.8 2.0 25.19 23.31 20.68
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Table A.19: Dual case 3 data: OGE in the inclined and bottom branches

HOGE (mm)
P1 VSG1 VSL1 FrB FrC λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) (Liquid) -36 -17.5 -5
212.36 0.30 0.159 4.4 21.1 32.25 29.73 26.36
206.15 0.30 0.136 3.6 18.1 29.68 27.59 24.65
200.78 0.30 0.123 3.0 16.0 28.61 26.31 23.57
207.53 0.30 0.115 2.7 14.7 27.29 25.24 22.72
210.29 0.30 0.106 2.3 13.3 26.69 24.38 21.87
203.40 0.30 0.100 1.8 12.8 25.19 23.31 20.68
202.71 0.30 0.078 1.1 9.9 22.63 20.75 18.27
203.40 0.30 0.077 1.2 10.1 22.39 20.57 18.01
203.40 0.30 0.071 1.2 9.3 21.98 20.31 17.59
213.74 0.30 0.066 1.0 8.7 21.09 19.46 16.95

Table A.20: Dual case 4 data: OGE in the inclined branch (FrA = 1)

HOGE (mm)
P1 VSG1 VSL1 FrB FrA λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) (Gas) -36 -17.5 -5
205.26 0.40 0.099 4.3 1 24.76 23.31 21.18
206.15 0.40 0.093 3.8 1 23.91 22.67 20.39
213.05 0.40 0.078 3.2 1 22.36 21.17 18.85
210.91 0.40 0.074 2.7 1 21.55 20.53 18.45
212.22 0.40 0.067 2.5 1 20.91 19.65 17.59
211.60 0.40 0.059 1.9 1 19.63 18.82 16.86
210.63 0.40 0.056 1.7 1 18.99 18.18 16.31
206.15 0.40 0.050 1.4 1 18.19 17.33 15.67

Table A.21: Dual case 4 data: OGE in the inclined branch (FrA = 10)

HOGE (mm)
P1 VSG1 VSL1 FrB FrA λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) (Gas) -36 -17.5 -5
215.81 1 0.101 5.0 10.0 24.33 23.26 20.80
212.36 1 0.087 4.1 10.0 22.84 21.60 19.57
214.77 1 0.080 3.4 10.0 21.98 20.75 19.07
214.22 1 0.070 2.9 10.0 21.41 19.89 18.02
214.43 1 0.063 2.5 10.0 19.84 19.04 17.38
213.74 1 0.057 1.8 10.0 18.99 17.97 16.52
213.67 1 0.051 1.5 10.0 18.13 17.25 15.67
214.43 1 0.046 1.4 10.0 17.47 16.68 15.04
215.12 1 0.040 1.2 10.0 16.64 15.80 14.60
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Table A.22: Dual case 5 data: OGE in the bottom branch (FrA = 1)

HOGE (mm)
P1 VSG1 VSL1 FrC FrA λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) (Gas) -36 -17.5 -5
210.98 0.40 0.152 21.2 1.0 31.39 29.30 26.57
213.94 0.40 0.134 18.4 1.0 29.69 27.80 25.08
211.53 0.40 0.124 17.2 1.0 28.61 26.71 24.01
217.18 0.40 0.114 15.4 1.0 27.54 25.66 23.15
206.84 0.40 0.104 14.0 1.0 26.47 24.60 22.30
208.08 0.40 0.094 11.9 1.0 25.19 23.50 21.23
215.12 0.40 0.093 13.9 1.0 23.29 21.80 19.94
212.36 0.40 0.074 9.7 1.0 21.49 20.20 18.19
213.74 0.40 0.063 8.3 1.0 20.49 19.20 17.38
210.77 0.40 0.054 6.9 1.0 18.77 17.54 15.87
212.36 0.40 0.045 5.5 1.0 17.06 15.83 14.38
212.01 0.40 0.033 4.1 1.0 14.71 13.90 12.46

Table A.23: Dual case 5 data: OGE in the bottom branch (FrA = 10)

HOGE (mm)
P1 VSG1 VSL1 FrC FrA λ/D = λ/D = λ/D =

(kPa) (m/s) (m/s) (Liquid) (Gas) -36 -17.5 -5
213.74 1.00 0.152 18.4 10.0 30.49 29.51 26.79
208.22 1.00 0.122 16.1 10.0 28.38 26.50 24.15
204.08 1.00 0.113 15.2 10.0 27.29 25.60 23.26
205.46 1.00 0.110 14.5 10.0 26.71 24.88 22.72
206.15 1.00 0.099 12.9 10.0 25.40 23.74 21.68
208.08 1.00 0.091 11.7 10.0 24.28 22.44 20.37
208.01 1.00 0.084 11.3 10.0 23.02 21.43 19.52
208.64 1.00 0.078 10.6 10.0 22.49 20.75 19.07
208.98 1.00 0.072 9.5 10.0 21.55 20.07 18.44
206.15 1.00 0.068 9.1 10.0 21.13 19.68 18.02
205.88 1.00 0.062 8.1 10.0 20.06 18.61 16.98
205.67 1.00 0.056 6.9 10.0 18.77 17.33 15.86
206.15 1.00 0.048 5.8 10.0 17.49 16.26 14.60
206.15 1.00 0.042 5.1 10.0 16.29 15.19 13.74
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