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ABSTRACT

The Fourier-Stieltjes Transform and Absolutely Continuous

Invariant Measures

Rusldan Gémez Nesterkin

We present some results on the existence of absolutely continuous invariant measures

(acim’s) using the Fourier-Stieltjes transform. We consider the sequence of Perron

Frobenius operators
{f.Pf.P2f.P3f.... PPf.. .},

induced by the nonsingular transformation 7 : [ — I. with f € £!. and the associated

sequence of Fourier-Stieltjes transforms
(F(Fo). F(F). F(Fs)..... F(Fa)... .},

where F,(z) = ffx PI f(u)du and F(F,)(t) = [, e'*dF,(x). The main result is:

1

iy is a function of bounded variations.
Z(.

if 7 is plecewise monotonic expanding and

then 7 has an acim. Although this is a known result. the method of proof is new
and may allow generalizations needed. Finally, we introduce criteria on the Fourier

Stieltjes Transforms needded to ensure the existence of acirn’s.
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1 INTRODUCTION

The evolution of a dynamical system is usually represented by the iteration of a

function 7 : I — [.

In a measure-theoretic approach to dynamical systems. we consider the sequence

{f-Prf PEf.PEf....PIf....} (1)

where f is a probability density function and P, is the Frobenius Perron operator of

7. This sequence is similar to the sequence of distribution functions

(Fo. F\.Fs,F3.... . F,....}.

where F,(x) = [Z_ PP f(u)dA(u) and A(-) is the Lebesgue measure.

The intention of the present work is to find criteria on = which will gnarantee the
existence of an absolutely continuous invariant measure (acim) for 7. We shall use
the Fourier-Stieltjes Transform of the Perron Frobenius operator. and consider the

sequence

o

{(F(Fo). F(F). F(Ey)..... F(Fy)....). (

The problem of existence of an acim has been studied before. One of the main
results is due to Lasota and Yorke [3], where the existence of an acim is proved

assuming 7 is a piecewise continuous expanding transformation.



An important observation is that using the Lasota-Yorke’s Theorem. we can con-
clude that under certain assumptions on 7. there exists an absolutely continuous

wnvariant distribution function (acidf) F* of T such that
F(Fn,) — F(F™) (3)
uniformly when & — oc. with {F},, }%, subsequence of (2).

Here we prove that under similar assumptions. in our case considering the sequence

(2) instead of the sequence (1). results in
Plf — f* asn — x. (4)
where F*(z) = [Z__ f*(u)d\(u) an acidf of T.

An overview is shown in Table 1. where in the first column we show the iteration
of the transformation 7 : / — I. The second column shows the iterations of the

corresponding density functions represented by the Perron Frobenius operator.

The third column shows the distribution functions and the fourth column shows
the transformation of each of the Perron Frobenius operators P?. using the Fourier-

Stieltjes transform.

It is important to remark that the link between the first column and the second. is
given by measures of the distribution of the initial data represented here by x. The

relation between the second and third columns is given by F,.(z) = [I PFf(u)du.

We are interested in the acidfs of 7. To this end we introduce criteria in terms
of classes of functions to ensure the existence of such acidf’s, leading to restrictions

2



Fourier
Dynamics Densities. Distributions Stieltjes
Transform

(x el (zr el (rel) (teR)

z — f(zx) —_— Fo(x) —  F(Fy)(¢)

7(x) — P f(r) —_— Fi(z) - FE()

™(z)  —  Pf(z) — Fy(x) —  F(F)()

7™ (x) — PIrf(z) e— Fo(x) —  F(F.)()
—_ — 772 —

TABLE 1

imposed on 7 in order to obtain the result of [??], whenever these limit exists.

Since the problem of finding the limit | ?| in many cases is impossible. due to chaotic

behavior of the transformation 7, we focus on the following question: what is i‘.",’

and/or when these limits exists.

The first question to solve is then, under which circumstances do (and therc-
fore ) exists. We deal with this convergence problem in Section 2 of Chapter 3.
Then we consider the problem of the existence of acidfs in Section 3 of the same

Chapter.

Some remarks of interest: in the case of the limit |??] the Theorem of Lasota and

Yorke confirms the existence of an acim when 7 is piecewise monotonic continuous



and expanding transformation. Using this result and the fact that the limit is a
density function. we can see that the limit has to exist. and therefore under

the same assumptions. a subsequence of the sequence

{F(Fo). F(F), F(F).. .., F(F,)....}

should converge uniformly to F(F*). where the uniform convergence of the Fourier-
Stieltjes is due to the Continuity Theorem of Fourier-Stieltjes transforms (see Theo-

rem 2.2.4).

We know that under similar assumptions as in the Theorem of Lasota and Yorke.
there must be a way to prove the existence of acim’s of T using the Fourier-Stieltjes
Transform of the Perron Frobenius operator. This is the main motivation for the use
of this alternative approach to prove the existence of acim’s. in our case reduced to

the proof of the existence of acidfs with respect to 7.

The second motivation. is to consider a possible way of relaxing the assumptions
of the Lasota and Yorke Theorem to get a new type of existence theorem for the
actdfs of 7. In Chapter 4 we present general sufficient criteria on the Fourier-Stieltjes
Transform of the Perron Frobenius operator in order to ensure the existence of acidfs

for the transformation 7.



2 BACKGROUND MATERIAL

Before we start the presentation of the main results in Chapter 3. we introduce
in the present Chapter some concepts from measure theory. functional analysis. har-
monic analysis (mainly related with the Fourier-Stieltjes transform) and ergodic the-

ory (principally the Perron Frobenius operator).

2.1 MEASURE THEORY AND FUNCTIONAL

ANALYSIS

In the following. unless it is specified otherwise. we will consider I to be a closed
real interval. We use B(/) to denote the Borel set of [ and A to denote the Lebesgue
measure of any set of B([). We will represent a measurable space of X with measure

p by (X.B(X). p).

Definition 2.1.1 (SPACE £%) We define the space L% on the measurable space

(S.B(S).\) as follows:
LE = { : Pdi(z) < }
=1 [If@PdAz) <
where p is such that 1 < p < oc.

Remark 2.1.1 We will use in the sequel the representation of L” for the space L%

on (S.B(S).\). when S = R.

Definition 2.1.2 (£? NORM) Let f € LP, then we define the norm in LP as the



functional ||-|| ., : L7 — R. defined by

1 fllee = (/_Z 1f(2)IP dz)%_

Definition 2.1.3 (DENSITY) Let f € £L'. We say that f is a density function

if and only if f(z) > 0 for almost all z € R. and |fllz: = L.

Definition 2.1.4 (DISTRIBUTION) A right continuous positive and non de-
creasing function F on R with limy_._F(k) = 0 and limy_~ F(k) = 1 is called a

distribution function.

Definition 2.1.5 (INVARIANT MEASURE) We say that the measure p is
invariant (or measure preserving) with respect to the transform = : I — [ if and only

if for any A € B([I). follows that
p(r7HA) = p(A).
Definition 2.1.6 (BOUNDED VARIATION) The function f : [ — R is said

to be of bounded variation if and only if for any P; partition of /.

s;;pi @) = fleiy)l < x

I =0

where o < |, < --- < z, denote the border points of the partition P;.

Definition 2.1.7 (TOTAL VARIATION) Let f € BV}. then we define the total
variation of f in [ by

Vf=sup S (@) = flz)].
I Pr i=0

where P; represents a partition of I with zg < z; < --- < z, border points.



Definition 2.1.8 (NON-SINGULAR TRANSFORMATION) Let A be Lebesgue
measure. A function f : I — [ is called non-singular if and only if for any A € B([).

such that A(A) = 0. then A(f~}(A)) = 0.

Definition 2.1.9 (acm) Let A and i be two measures on the same measurable
space. We say that u is an Absolutely Continuous Measure (acm) with respect to A

(and we write g << A) if and only if
AMA)=0= pu(A) =0.
for all A € B(I).

Definition 2.1.10 (acim) Let u be acrm with respect to A\. Then u is an Abso-
lutely Continuous Invariant Measure (acim) with respect to A under the non-singular

transformation 7 : [ — [ if and only if

p(r7tA) = p(A).
where A € B([).

Remark 2.1.2 (acdf) We say that F is an Absolutely Continuous Distribution

Function (acdf) if the measure p([a.b]) = F(b) — F(a) is an acm.

Remark 2.1.3- (acidf) We say that F is an Absolutely Continuous Invariant Dis-
tribution Function (acidf) with respect to a non singular transformation 7 if the

measure u([a.b]) = F(b) — F(a) is an acim with respect to 7.

Definition 2.1.11 (VAGUE CONVERGENCE) A sequence of normed mea-
sures {un }52, is said to converge vaguely to the normed measure p if and only if there

7



exists a dense subset J C IR such that
Yae JbeJ: p,((a. b)) — u((a.b]).

Theorem 2.1.1 (LEBESGUE DOMINATED CONVERGENCE THEO-
REM) Let g : I — R be an integrable function. {f,}>, a sequence of measurable

functions such that |f,| < gon [ for all n. If f =lim,_. f, then

£ = lim [ fa.

{1

Proof: See [19].

Remark 2.1.4 (WEAK CONVERGENCE) A sequence of functions h,(r) is

said to converge weakly to a limiting function A(z) if

lim hy(z) = h(z)

k—oc

for all continuity points & of h(x).

Theorem 2.1.2 (HELLY'’S FIRST THEOREM) Every sequence {F,}%, of
uniformly bounded non-decreasing functions. contains a subsequence {F,, }<, which

converges weakly to some non-decreasing bounded function F'.

0

Proof: See [13. page 44. Theorem 3.5.1].

Theorem 2.1.3 (HELLY'’S SECOND THEOREM) Let g(x) be a continuous
function and assume that { F;.} 32, is a sequence of uniformly bounded . non-decreasing
functions which converge weakly to some function F(z) at all points of the interval
[a.b]. then

b b
lim [ g()dFi(z) = [ g(z)dF(a)

8



Proof: See [13. page 45, Theorem 3.5.2] -

Corollary 2.1.3.1 (EXTENSION OF HELLY'’S SECOND THEOREM)
Let g(r) be continuous and bounded in the infinite interval —> < r < x and
let {Fi(x)}, be a sequence of non-decreasing. uniformly bounded functions which

converges weakly to some function F(z). Suppose that
Jim Fi(-x) = F(—=x) and lim Fi(+3) = F(+).
then

lim [~ g(@)dFiz) = [ gla)dF ().

—2C

0

Proof: See [13. page 45]

Theorem 2.1.4 (L% = L) Let p > 1. S C R bounded and f € L%. Then

fecLk.

]

Proof: See [1. page 34 item 23c].

Theorem 2.1.5 The sequence of functions {f,}3%,. defined on /. converges uni-

formly on [ if and only if for every = > 0 there exists an integer .V such that

T

m > N.n > N. implies

Ifﬂ-(l) - fm(-r){ _<_ z.

for every z € I.

Proof: See [19. page 147. Theorem 7.8]. O



2.2 HARMONIC ANALYSIS

Definition 2.2.1 (FOURIER-STIELTJES TRANSFORM) Consider the mea-
sure F'(z). We define the Fourier-Stieltjes Transform of F by

F(F)(t) = / T e qF (1),

-

and when F(zr) = [Z__ f(u)dA(u) we also call F(F)(t) the Fourier-Stieltjes Transform

of the £! function f.

Properties 2.2.1 (of the Fourier-Stieltjes Transform) Consider the distri-
bution function F. Then we have the following properties of the Fourier-Stieltjes

Transform of F:

(1) F(F): R — C.

(z) FF)0) = 1. [F(F)(¢)] £ 1 and F(F)(~t) = F(F)(t).
(121) F(F)(t) is-uniformly continuous in R.
{iv) The function g(t) = Re (F(F)(t)) is also a Fourier-Stieltjes Transform function.

2

(v) The function g(t) = |F(F)(t)|” = F(F)(t) - F(F)(t) is also a Fourier-Stieltjes

transform function.

(v2) If g(t) = F(F1)(t) - F(F3)(¢t) then g(t) is itself a Fourier-Stieltjes Transform

function.

10



Definition 2.2.2 (FAMILY OF FOURIER STIELTJES TRANSF ORMS)

We define the family of Fourier Stieltjes transforms by
H = {F(F): R — €| F is a distribution function} .

Remark 2.2.1 There exists different ways to represent a family of Fourier-Stielt jes
transforms. One possible way is to consider the properties of the Fourier-Stieltjes

Transform given above. See [13] for other representations.

Definition 2.2.3 (LIM) Consider the sequence of £? functions {f,}>,. Then f

is the limit in £2 (we denote it by f(t) =%_I_l\°£ fa(t)) if and ounly if
(&) = fa(t)lee — O when n — x.

Theorem 2.2.1 (PLANCHEREL’S THEOREM) Let F(F) € £>. Then there

exists f € £2? such that

n

F(8) =LIM — [" e~ F(F)(u)du

n—< 2T J-n

and
Il 2 = NF ()l e
where
FF)E) = [ e fu)du.
Proof: See [2. page 24] or [9, page 51]. O

Theorem 2.2.2 (LEVY’S INVERSION FORMULA) Let A~ € IR. we have

that

1 ml—eth |
P =LiM—4 [f 1 e ey (e
Flz+h) = F(z) = LIM o— /_n ——e " F(F) (1)

11



provided that r and r + h are continuity points of F ().
Proof: See [13, page 31, Theorem 3.2.1]. ad

Theorem 2.2.3 (UNIQUENESS) If two distribution functions F and G have

the same Fourier-Stieltjes transform. then £ = G almost everywhere.
Proof: See [6. page 143. Theorem 6.2.2]. a

Theorem 2.2.4 (CONTINUITY THEOREM) Let {F,}<, be a sequence of
distribution functions. Then F,, converges weakly to F~ if and only if F(F,)(¢)
converges to F(F*)(t) for all ¢ and F(F™*)(t) is continuous function in a neighborhood

around zero.

£

Proof: See (13, page 48. Theorem 3.6.1].

Theorem 2.2.5 (UNIFORM CONVERGENCE) If {F(F,)}>, converges to

F(F~)(t). then the convergence is uniform in every t-interval [-7.T].

Proof: See [13. page 50. Corollary 1]. -

2.3 ERGODIC THEORY

Definition 2.3.1 (PERRON FROBENIUS OPERATOR) Let 7 : [ — [.

f € L!. The Perron Frobenius operator P; : £! — L!. is defined by the equation:
[ Prf@dN=) = [ | f@)dra).

where A C B(I).



Definition 2.3.2 (KOOPMANN OPERATOR) Let 7: I — . We define the

Koopmann operator U : L= — L= by

Urg(z) = g(7(z))-

Properties 2.3.1 (PERRON FROBENIUS OPERATOR) Consider f € £!.
then we have the following properties of the Perron Frobenius operator P f. assuming

7 : [ — [ is a non-singular transformation:

(1) (UNIQUENESS) P, f is an L' function a.e. unique such that [, P, f(r)dA(r)

J--14 f(z)dX(x). (The proof is based in the Radon-Nikodym’s Theorem)
(i) (LINEARITY) P.(af + 3g) = aP, f + 3P.g.
(11) (POSITIVITY) If f > 0 then P, f > 0.
(iv) (MASS PRESERVATION) [, P f(z)d\(z) = [; f(x)d\(z)
(v) (CONTRACTION) |\P, fll . < fll for any f € L*.
(v)) (CONTINUOUS) ||P; fo — Prfllp < 1f = flior-

(vii) (COMPOSITION) If o : I — [ is non-singular transformation. then P.., f =

P.o P, f a.e. In particular. P f(x) = P f(x).

(viit) Let f € L' and g € £=. Then (P.f.g) = (f.U,g). where the brackets

represent scalar product and U, is the Koopmann operator.

(iz) Let 7 : I — I be non-singular transformation. Then P f* = f* & u(Ad) =

[ fr(z)dX(z) is T-invariant.

13



For a proof any of these properties refer to [4].

Theorem 2.3.1 (LASOTA YORKE, ACIM) Let [ = [0.1]. Consider 7: [ —
I. piecewise C} and s = inf,c; |7'(z)] > 1 whenever the derivative exists. Then. for

any f in £
1 n—1

> PEf - f
=0

nk

as n — . where f* € £! and has the following properties:
() f20=f"2>0
(i) Jo f*(x)dM(z) = Jy f(z)dM(z).
(1) Prf* = f* = p*(A) = [, fr(z)dA(z) is invariant measure. with 4 € B([).
(i) f* € BV[0.1] and 3¢ such that \V; f* < ¢||f||. .
Proof: See [12]. a

From this last Theorem. we can conclude under the assumptions that 7 is piccewise

C? and expanding. that u*(A) = [, f*(z)d\(r) is an acim.

Proposition 2.3.1 (REPRESENTATION OF F(F,)) Let I CR.7:[ — [.
The Fourier-Stieltjes Transform of the Perron Frobenius operator P! (also called
Fourier-Stieltjes transform of the measure F,(z) = [Z__ P’ f(u)dA(u) ) can be repre-

sented as
F(F)() = [ e DdF ()
where F(z} = [Z__ f(u)d\(u). In this case, we use the notation
On(t) = /{ TN DG ()

14



to represent F(F,)(¢).

Proof: We have that

FENE) = [ edFa(e) = [ e PP f(x)ar)

—2C

using the property (viii) of the Perron Frobenius operator. we obtain that

(€. P f())r = (7O f()) = J; " f(z)dM(@) = [y e S dF ()

c
then

o} (t) = F(F,)(t) = /[el”““-')dp(x).

G

This last result is very important. because this is the representation used in the

sequel for the Fourier-Stieltjes Transform of the Perron Frobenius operator.

15



3 ANALYSIS OF THE PROBLEM

In this Chapter, we show the existence of acidfs for T using a bound on the Fourier-
Stieltjes Transform of(t). We assume 7 is piecewise monotonic with i%r( x)! a func-
tion of bounded variation. The exposition is divided in four parts. The first Section
presents previous results. the second Section shows the convergence of a subsequence
of {o}(t)};<,. In the third Section we present a bound on o7(t). which is nsed to
prove the existence of an acm F*. Finally. in the fourth Section we show that F* is
also an invariant measure with respect to 7 with density function f* € £!. We notice

that this result is similar to the Lasota Yorke Theorem.

3.1 PRELIMINARIES

Lemma 3.1.1 Let / CR. 7: [ — [. 7*(r) differentiable a.e. in [ for all n > L. If

s5p =inf ¢ i%r(r)i > 1 and n > m. then

where z is a point where both £7™(z) and L77(z) exist.

Proof: Let us define s, = inf,<; !%7‘"’(1‘)'. Using the chain rule we have:

16



s2 = infae [£7%(2)] = infre/ [7/(7(2)) - ()] 2 51 infaes |7/(2)]
> S15).,
39 = infaer | £79(2)| = infoer |7 (72()) - £73(2)|

2 infyer [7'(y)| - infzes '%72(1?)' 2 sainf e |7(z)| > 525
$p = inf 'ir"(r)l = inf “"("”‘I(I ) - Ll
n rel | gz el |1 U ) el ‘I)‘

> infyer |7(y)] - infoe; |77 ()|

2 Sp—rinfoer {7'(2)| > spoys1-

It follows by induction that s, > s,, for all n > m. In other words

for all n > m. =

Lemma 3.1.2 Let CR. f: I — IR. f € C} and X be Lebesgue measure. Then

I F (@) dA(x) =V, f.

{1

Proof: See [4. page 19. Theorem 2.3.8]. or [13].

Lemma 3.1.3 Let [ C R interval. f : [ — R and h € BV;. Assume also that

Ja > 0 such that |h(z)| > a for all z € [. Then 7 is a function of BV} and

V(R =z

Proof: See [4, page 18, Theorem 2.3.3]. =

17



Lemma 3.1.4 Let [/ C R interval. 7 : [ — [. 7 piecewise C}.inf,-; i%r(r)i >a >

1. If %T(.’L‘) is a function of BV}. then

V (;> < M(a).

I %Tn(l')

for all n > 1 and M («a) a real constant independent of n.

Proof: First notice that £7(-) € BV} implies that the function —— is also of

dr

. then we notice with the help

bounded variation by Lemma3.1 3. Let g,(z) = o

2= 7T

of the chain rule that

1 1 -

Jn = — = (3)
P L] T e ’

Now. assume as hypothesis of induction that for some & € IN.
V g < M(a)
I

it is true. Then by definition of total variation we have

m(k)

Va=> ‘gk(I_I;—;-I) - gk(rf)'
[ =0

where here the supremum is taken over all the possible finite partitions of the interval

I. resulting in the partition with endpoints given by {zf.z%..... ry o} and where
m(k) represents the number of endpoints of the partition.
Now, consider the total variation of the function g,
m(k)+m(k+1)
k+1 k+1
\/9k+1 = Z lgk+1(~"3j+1) - 9k+1(1'j+ )‘
[ =0

The number of intervals of the partition considering the supremum of all possible
partitions of [ is given by {z§*! £+ .. :t:f_‘n“zi_l)} Since it is greater or equal to the

18



number of elements of the partition {z¥,z%..... Th k) for any k£ > 1. then we can

consider the variation of gx.as follows

m(k+1)
v9k+1 = Z 1gk+1(Zj41) — Grr1(z;)]
I j=0
with {zo. z1. ... Tikyemery } = {571 2570 .”L‘m(k nhu {zk. 25 ... Ly

Now. using the expression (5). results

Vigiar = 7075 gesi(z01) = gror(2))]
= S T g (7(25m0) - gu(2,1) = g(7(25)) - gu(2))]
< ST T gk (2540)) = gi((2))] - g1(ge)] + 1ge(T(2,)) - [g1(2,1) — gu(,)]]
< T i) [gr(T(2,41)) = ge((z)] - gr(zsmn)]
+ o e

9i(7(z5)) - [g1(zj+1) — g1(z5)]]

< &=Vigi+iVig

< (fk + a_kk) Vigi < &LV, g1 < M(a)
Hence. we have for all n > 1 that V/, g, is bounded by the constant M/ (a). O

Proposition 3.1.1 (INTEGRAL REPRESENTATION OF AN acdf) We
say that F(x) is an acdf if and only if there exists a function f € £! such that for
any r, < Iy:

2
F(zs) — F(z1) =/f(u)du. (6)
where f(u) is the derivative of F(u) (properly speaking, f(u) is the Radon Nikodym

derivative of F, f = "F )

Proof: See [15], [6, page 10] or [13, page 5]. =
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Lemma 3.1.5 Let {a,}, € €. limp—ca, = a. and L = [aiz. Then L =

lim, . |anf*.
Proof: Let a = (u + iv) and a, = (u, + ir,). We have that

lim a, =a = lim (u, + ir,) = u + iv
n—oxc n—oc

therefore

lim u, =u and lim v, =»
n—oC n—oc

Now consider

l'l

L=lo]®=|u+il]* =u®+r?

on the other hand.

: 2 - . 2 . 2 2
lim |la,|” = lim |u, +ir,]” = lim (un + l‘")
n-—2oxc n—2>x n—x

i

. 2 2 2 2 3 2 2,2
and since u, — u and v, — v, then u; — u* and v} — ¢*. Then u? + v5.— u” + 1=,
Hence we obtain that

L= lim |a,|*.
n—oC

{1

The next result plays a key role in the proof of the existence of an acidf of 7. since
the bound we present will be used to show that o} (t) is an L£? function. leading to

the desired result related with the existence of an acidf.



Proposition 3.1.2 (BOUND ON o}(t)) Let / C R botinded. 7 :

— 1

piecewise differentiable on [. £7(-) € BV. f: [ — R. f € L'NCI N BV, If

inf_ <, !%T(I)I > 1 then

|0} (t)] < wnlt).

1  whente[-1.1]

an whent g [—1.1]

el
M= 2+ Vi ()] upaer L) + Vi 1.

13

Spn=—/——F—.
" mftel!ﬁr"(z”

Proof: Consider {a.b] C I and u € [a.b]. Define the function T, (u) by

Tt = [

and the differential operators D,, as well as its transpose ‘D,,:

T e T dr \ L)

where it is clear that D, (e 51 = "7 (),
Finally, consider the transformation [,, defined by:
b ;pamTL
ngeMWan.
a

Now, we have that the integral

/u e @ D, (1)dz = "/u 7 L T‘l—" dz.
" a dr ztET"(I)



can be integrated by parts, obtaining

f: elt™(z) tDn(l)dIL' — _fau d% (eitr"(z) 1 ) dzr + f: < i ) %el”nu)dl‘

it%r"(z) ztdiz-r"‘(z)

n
ett™ (z)

|+ g Dae e

- [it;‘i—r"(z

n u
1 n T (x)
— fau ezt-r (z)dl. _ l: e i J

— d
ltET"'(I) r—a

Then. it follows that

wr™(zx)

u 't-r"-( ) e u ° Y |t
H ) 5. wr™(r )
/a e dr = {—itdrn(r)] -+-/a e D,(1)dr
Tdr Ir=a

in other words. using the definition of the function T,(u) given in the formula (8). we

have that

wrt(x)

€

To(u) z[ )} +/auemnm ‘Dn(1)dx (10)

- d
=T (x
Now. consider the following bound using the result obtained before in the equation

(10) together with the fact that le”"(’“)‘ =1:

1
2" ()

d [ 1 '
a‘(ﬁ)“) (1)

= ()
dx d%r”(r)

Using the Fundamental Theorem of Calculus and the definition given in formula

1
ITalu)] < H( +|

thus

1 (2 e .
Ta(u)l < 7 (S— +/a dr) (12)

n

(8). we know that T/ (u) = ™" () Therefore .

I, = /b ™) f(z)dz = /bT;(x)f(z)dx.

Integrating by parts we obtain

b d b d
= [ = (Tua) f@)dz = [ Tu(e)- T fla)dz
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then.

= T, (b) f(b) — /ab To(z) - %f(r)dr (13)

where in the last line we notice that by definition of the function T.(x). T(a) =0.

Finally. let us prove the inequality (7). presenting a bound on [,. We use rhe
expression obtained in (13). and noticing that the bound of |T,,(u)| given in formula

(12) is an increasing function of u. we have that

2 u| o 1 ‘ b
o< [+ i ()] [ven =

With these bounds in mind. we can consider the case for [¢{| > 1:

1L < & ’“’.“""( { —+V ( . )} {If(b)if\/b?f]

it fa.bj

d |
Ef(r)ldr} .

When |t| < 1. we simply use the property of the Fourier-Stieltjes Transform:

EHGIES!

(]

Therefore we obtain the stated result. since I, and o}(t) are the same.

Lemma 3.1.6 Let [ = [a.b]. 7: [ — [ piecewise differentiable on . &7(-) € BV.
f:I—TR.feLINCINBV; and |f(b)| < . Ifinf.e/ |£7(z)| > L. then forall n > L.

the bound w,(t) given in Proposition 3.1.2 is an £? function and lim,, . wa(t) < .

Proof: For all n € IN, we have

= 1 dt +2 [ 2l

[ fon(O)P de = 12 [ M| at

=2 (14 M Frdt) =2 (1= M) <
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Then w, € L2 for all n > 1. Now. consider s,, = inf'%T”(:r)l, then by Lemma 3.1.1
we have that

Iim — =0
n—oc Sn

and by Lemma 3.1.4 we have that

nh_’r{.lc\/ <-d_7_1n(’)> < M(a) < x.
[ \dz

Then. since f(b) is bounded. we obtain:

lim, .o M, = lim,_.o [é +V/ (:17(—)” [suppe; [ F (D) + V; f]

d
dr

= [supbe[ If(b){ -+ V[ f] hmn_.,x V1 <}j‘(—)') < XxX.

L]

Hence lim, ., w,(t) < x.

The next Theorem gives useful criteria to determine if the distribution function of

a Fourier Transform is singular.

Theorem 3.1.1 The distribution function F(z) has no atoms if and only if

.1 T 2,
lim ﬁ/_r \F(F)(t)2 dt = 0.

T—oc
Proof: For more details proceed to see [6, page 145. Corollary to the Theorem

6.2.5] or [13. page 42. Theorem 3.3.4]. -

The next result states that the distribution function F*(z) of the Fourier-Stieltjes
Transform ¢*(¢) = lim,_. @}(¢) is an acdf, and also that its density function f*(r)

is an £? function in I.



Theorem 3.1.2 Let F(F) be a function in £2. Then the distribution function
F(z) is an acdf and
F(z) =LIM i / " emtE E(F)(t)de

n—oc 7T

is an £? function. such that || f|| . = WF(F)|| z2. and with f(z) = F'(z).
Proof: (See [6. page 147. Problem 11])

By Plancherel’s Theorem (see Theorem 2.2.1) there exists f € £2 such that

flz) = Lmi /" e~ F(F)(t)dt

n—oc ’r

integrating everything we obtain

/ f(z)dz = o /O LIM [ e = F(F)(t)dtdz

—n

Now, using Fubini's Theorem.

3= Jo LIMy—oe [T, e F(F)(t)dtdr = & LM, [2, foF e~ dzF(F)(t)dt
= L LIMp o [T, 5 F(F) (t)dt
hence

n ] — —Ltu

[ r)dz = R T F(F) (e (14)

LT = J-n l

(14) for all u € R. we have that

n ] — —ztu

 F(u) — F(0) = —LIM L F(F)(t)dt

n—oc J_n it

thus

[ f@)dzs = Fu) - FO)

[\)
w



implying by the integral representation of an acdf (Proposition 3.1.1) that F(-) is an

acdf.

Finally. by Plarnicherel’s Theorem. we have that | f| 2 = | F(F)| 2.

(]



3.2 CONVERGENCE OF F(F,)

In this Section we present the results that confirms the convergence of the Fourier-
Stieltjes Transform of the Perron Frobenius operator F(F,)(t) with F,,(z) = JZ PXflu)dA(u).
It is important to remark that the existence of the limit of the sequence {F(F,)}X,

can be obtained using other results. namely the Lasota-Yorke Theorem. The intention

here is to obtain this result without the use of Lasota and Yorke Theorem.

Here we use Helly’s Theorems to prove the existence of a limit of the sequence
of Fourier-Stieltjes transforms of the Perron Frobenius operator F(F,)(t). We also
prove that this convergence is uniform for ¢ in any finite interval S = [—T.T] of the

real line.

Theorem 3.2.1 (CONVERGENCE OF F(F,)) Let F,(r) = [f_ P"f(u)du.
There exists a subsequence of {F(F,)(t)}2%, that converges for all t € R to the
Fourier-Stieltjes Transform of F~. The convergence is uniform for everv finite ¢-
interval [—T.T], and F(F~)(t) is a continuous function for ¢ in a neighborhood of

zero.
Proof:

We have that F,(z) is non-decreasing and uniformly bounded distribution func-
tion. Then by Helly’s First Theorem (see Theorem 2.1.2) there exists a subsequence
{Fn. 132, such that F,,, converges weakly to F~. where F~ is a non-decreasing and

bounded function:



Since the function e** is bounded for all = and ¢ real values. then using the extension

of the second Helly’s Theorem (Corollary 2.1.3.1), we have

lim [ e dF, (z) = [ emdr ().

k—x J_nc —oC

for all t € R and [ a real interval.

Therefore. using the Continuity Theorem 2.2.4. F(F*)(t) = [, e**dF~(r) is the
Fourier-Stieltjes Transform of the distribution function F*. Finally. by the Uniform
Convergence Theorem 2.2.5. we have that F(F,)(t) converges to F(F~)(t) uniformly

for every finite t-interval [—T.T]. c
3.3 ABSOLUTELY CONTINUOUS MEASURES

Having proved the existence of a limit of the subsequences {o7*(t)}3Z,. and with
the limit also a Fourier-Stieltjes transform. we proceed to show that the distribution

function F*(r) of the limit o*(t) = F(F~)(t) is an acdf.

Theorem 3.3.1 Let / C IR bounded. 7 : [ — [ piecewise differentiable on /.

Lr(z) € BV;. f : I — R such that f € £'NC} N BV; and infe; |&r(x)] > L

Assume that F*(t) was obtained by the limit

oc . oc
/ et dF*(z) = lim / &'t P f(£)dzx
- n—oc /_c
Then F*(z) is a continuous distribution function and o*(¢) is an £? function.

Proof: We will show that F*(z) has no atoms by proving that

/ (t)?dt = 0.
T—-oo 9T



as stated in the Theorem 3.1.1.

Consider the integral
L /T 2
o [l

By Proposition 3.1.2. we have that ‘(p”'f‘(t)l < wp(t). where w, is an £2 function for

all n € IN (see Lemma 3.1.6). defined by

M,
wn(t) = 61-1.1(t) + O—oc.—1y(1.50) (E) —

It]

where A, = [s—'i- +V/ (7_1—,,(7)] [supse; | f(B)] + V; fl.

dz

It follows that
T
L

Then

2

2 T , 1 T M,
o} (t)] dtS/_T]wn(t)l'dtz/_ldt—i-Q/l =

dt =2 [1 VAL (1 - %)J

: : 1 (T
my_ o lim, 7l

¢7(t)|2dt < limy_o limp_x 3 [1 + AL (1 — i)]

. 1+limp—oe | Mo 2 (1 -2
= lim7_ "°°T"( ’)=O.

Now. since the limit o"(t) = lim,_. 0}(t) exists (by Theorem 3.2.1). using the
Lebesgue Dominated Convergence Theorem 2.1.1 and Lemma 3.1.5. we obtain:
- 2
. T | wpyi2 - T |1 , 2
limr—oc 3 [2707(0)f° dt = lim7—oc 5 [T |limn—oc 0}(2)] dt
2
= lim7_oe 5 ST limy oo [@;(t)| dt
: . LT 2
= lim7 _oc limy e 5 77 |0}(2)| dt = 0

Then, we have that F*(z) has no atoms. Thus the measure F~(z) of the Fourier-

Stieltjes Transform ¢*(t) is continuous.



Finally. by Lemma 3.1.6, w, is an £? function and l@'f‘(t)l < wp(t). thus we can
conclude that o} is also an L? function for all n > 1. Moreover. since lim, .« «, € £2.

we finish the proof having that ¢* € £2. C

Corollary 3.3.1.1 (ACM) Let I ¢ R bounded. 7 : [ — [ piecewise differ-
entiable on [. £7(r) € BV;. f : [ — R such that f € £' nC} N Bly and

inf_.; }d%_‘/"(l')l > 1. Assume that F*(t) was obtained by the limit:

n—o>c J_

/ T et dF(z) = lim [ e PR f(r)dr.
Then F*(x) is an acdf.

Proof: By Theorem 3.3.1. we have that ¢*(¢) is an £ function. Then. using

Theorem 3.1.2. we obtain that F~ is acdf. -

3.4 ABSOLUTELY CONTINUOUS INVARIANT

MEASURES

Theorem 3.4.1 (acidf) Let / C IR bounded. 7 : [ — [ piecewise differentiable
onl. £7(z) € BV. f: [ — R. f € L' NC} N BV and inf.e; |£7(x)| > 1. Then
F*(z) is an acidf. obtained by the limit process:

/ " etdFt(x) = lim [ e Prf(x)dr.

—oc

with f* = 4= an £} function.

Proof: By the Corollary 3.3.1.1, F* is an acdf.
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By Theorem 3.3.1, ¢* € £2. By Plancherel Theorem 2.2.1 we have that fre L2
Because o™ is an integral on /. then we can consider f* having its support on /.

Applying the Theorem 2.2.1, results that f* € L}.

Rest to prove that F*(z) is an invariant distribution function. Using the Continuity
Theorem 2.2.4. we have that F,(r) = [*_ P™f(u)d\(u) converges weakly to F*(r) =
JZ o fr(u)dA(u). then

Zimk—-oan(I) = F*(I)

for all continuity points = of F~(z). Now, let p,([a.b]) = F,.(b) — F.(a). then
limg_ocpin([a. b]) = limy_oc Fo(b) — Fo(a) = F*(b) — F™(a) = p*([a.b])

and

limg—ccpin(77Ha. b)) = limg_oc [r-1qp PP f(w)dA(u)
= limy—se [ PP f(u)dA(w)
= limy_.ocFroo1 (0) — Fooy(a) = F(b) — F*(a) = p"([a. b])
Hence limg—ocpin (77 a. 8]) = u* (77 [a.b]) = p™([a.b]). and therefore F~ is an invari-

ant distribution function with respect to 7. O
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4 CRITERIA FOR ACM’S

So far. we have assumed that 7 is a piecewise expanding transformation. Although
we know that there exists acim’s for some other families of transformations not nec-
essarily piecewise expanding. for example the logistic function in [ = [0. 1j given by

the transformation

T: [ —1T.

T(z) = 4z(1 — 1)

For this transformation we know there exists an acim. in this case also an acidf of

7. given by the density function:

0 84

Q 8+

o a2 aa o8 08 1 5] o2 o4 as K] 1

x x
1

T x(l-1r)

Figure 1. 7(z) = 4z(1 — z) Figure 2. f~(x) =

This is why we presume the Lasota and Yorke Theorem can be relaxed. In this
Chapter we present some criteria on the Fourier-Stieltjes Transform ensuring that

it corresponds to an acdf. The problem we consider here can be stated as follows:
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having the Fourier-Stieltjes transforms
n i itr™(z)
. 3
of(t) = [ e @dF(q)
-
and its limit
o™ (¢).
under what conditions (imposed on 7) is the distribution function F~ of o an acdf?

The answer to this question can be seen as a generalization of the criteria. used

before in the Chapter 3 to prove the existence of acidfs of .

We presume this can lead to future existence results with less restrictions on .

4.1 A FAMILIES

x<

Recall from Theorem 3.2.1 that for any f € L' there exists a subsequence {71722
of the sequence {0}} 72, which converges uniformly to some Fourier-Stieltjes Trans-

form o™(t). for all t € R.

We will introduce a family of complex functions A which will represent the Fourier-
Stieltjes transforms of acm’s. With this in mind, we will present some results which

may be a way to relax the assumptions on 7 in the Lasota and Yorke Theorem.

Definition 4.1.1 (A FAMILY) We define A to be the family of Fourier-Stieltjes

transforms of acm’s. That is.
A={F(F)eH | F acm}.

Therefore, our goal in this Section is to present some criteria on ¢* in order to prove
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that ©” belongs to the family A. In other words, we are looking for some criteria on

the Fourier-Stieltjes Transform to guarantee the existence of an acm of o*.

4.1.1 A FAMILIES FOR FUNCTIONS IN £! AND £?

Let us begin considering the case when the Fourier-Stieltjes Transform F(F) is a
function in £' (or £2). In this case we have that the distribution function F results
from an acm in £} (or £?). We will represent this by the families of functions A, and
."\-_).

Definition 4.1.2 (FAMILY A,) The family of functions A, is defined as:

AM={HeH|HeL}.
Definition 4.1.3 (FAMILY A,) The family of functions A, is defined as:

M={HeH|HeL}.

Theorem 4.1.1 If H € A, then the distribution function F is an acm. where

F'(x) = &= [25 e "=H(t)dt.

(]

Proof: See [13, page 33, Theorem 3.2.2].

Theorem 4.1.2 If H € A, then the distribution function F is an acm. where

F'(x) = 5= [25 e H(t)dt.
Proof: See Theorem 3.1.2. o

Corollary 4.1.2.1 A; C A and A, C A.
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With this last results. we can consider the restrictions on r necessary to have that
o" belongs to either A, or A,; this way we can confirm the existence of a distribution
function F* of ¢* which is an acm. In our case in Chapter 3 we used a bound on o-

to prove that @™ € A,. This result leads us to the next Corollary:

Corollary 4.1.2.2 If we assume [/ C IR bounded. 7 : [ — [ piecewise differentiable
on I. £7(z) € BV;, f: I — IR such that f € £} NC} N BV; and inf,¢; ’fir(r)é > 1.

then o~ € ZXQ.

4.1.2 A FAMILIES WITH CONTINUOUS MEASURES

We can consider continuous measures to be either absolutely continuous measures.
singular measures or mixed. We present a criteria on 0 which shows when the distri-
bution function F* of the Fourier-Stieltjes Transform o* is a continuous distribution

function.

Definition 4.1.4 (BOHR’S INNER PRODUCT) The inner product (also called

Bohr’s inner product) is defined by:
(.)g:F xF —R.
(2. ) = e - [T 205
where I is a linear functional space (instead of IF. it is usually considered IF, the

space of periodic functions with period n).

Remark 4.1.1 The inner product (-.-) 5 on the space of periodic functions IF', with

period n defines a non-separable Hilbert space. See [2, page 29, item 19].
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Definition 4.1.5 (FAMILY Ac) The family A. is defined by means of the Bohr’s
inner product as:

Ac={HeH| (H.H)y, =0}.

Theorem 4.1.3 If F(F) € Ac then F is a continuous distribution finction.

(]

Proof: See [13. page 42. Theorem 3.3.4].

Remark 4.1.2 If we assume I C IR bounded. 7 : [ — [ piecewise differentiable
on /. %T(l‘) eBV.. f: I =R such that feLtNnC}N BV, and inf,.¢; [%T(I)E > 1.

then o™ € Ac.

4.1.3 A FAMILIES WITH SUMMABILITY OF INTEGRALS

The following approach uses what is called summability of integrals in the real line.
This approach is of common use in harmonic analysis to obtain an inversion of the
Fourier and Fourier-Stieltjes transforms. Here we use this method as a technique to

ensure the existence of acidfs of 7.

Definition 4.1.6 (6-FACTOR) An even function § € L' is called §-factor (on

the real line) if its Fourier Transform

is in £! and satisfies

If 6 is continuous, we call it a continuous #-factor.
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Example 4.1.1 Some typical examples of 8-factors are:

(1—|z|). when ze&[-1.1]
i) (Cesaro Factor) 8(z) = )
0 when = & [—1.1]

(i7) (Abel Factor) 6(z) = e~ for all r € R.
(i42) (Gauss Factor) 6(z) = e=*". for all z € R.
Remark 4.1.3 Reference [1. page 118. item 64] considers other types of #-factors.

Definition 4.1.7 (FAMILY A,(6)) Consider a continuous §-factor with Fourier

Transform
6(t) = /oc e4%9(x)dz

positive and monotonic decreasing on [0. >c). then

r 3\

dp a density function. such that:

p(z) = limr—oc 5= [T e720 (&) H(t)dt
A0 ={HecH T—oc 37 J-T (r)

whose distribution function P is such that:

F(P)(t) = H(t).

\

defines the family of functions A;(6).

Proposition 4.1.1 For a #-factor the integral

1 = t
U(F(p):z:T) := 5 _xH (T) e F () (t)dt

exists for all z € R, belong to £L! and for T > 0 satisfy
IU(F ) =Dl < 6], v -

fim [~ g@U(F )iz Tz = [ glz)du()

T—oo J—oc —-oC
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for every continuous function g(x).
Proof: See [5, page 222. Proposition 5.3.7]. a

Theorem 4.1.4 Let u € BVg. If a f-factor has Fourier Transform 6(¢) positive

and is monotonely decreasing on [0. >), then

lim L z "'”0( )f(,u)(t) = y'(z) a.e.

T—oc 27 /-

[

Proof: See [5. page 222. Proposition 5.3.8] .

Remark 4.1.4 Instead of using §-factors with 6(t) positive and monotonic decreas-
ing on [0, oc). it is possible to consider 6 to be a Fourier Transform of an absolutely
continuous distribution function with density function q(x) = O(zx72) as jx| — x and

8 an L' function. See [13. page 38] and [1. page 120 item 63].

Theorem 4.1.5 Let F(F) € A;(8). with 8-factor with Fourier Transform 6 positive

and monotonic decreasing on [0, >c). Then F is an acm.
Proof: We have that for all z € IR. 3p(z) density function such that

p(x) = lim L [T usg (-;—) F(F)(t)dt.

T—oc 277 J—-T

Then by considering the function of bounded variation Q(z f,' plu)du. and by

Theorem 4.1.4. Q(z) is a distribution function such that

Q'(z) = p(z) = lim L Te—“fe(i)f(Q)(t)dt a.e.
-T T

T—oc 27

Since F(Q) = F(F), then by the Uniqueness of the Fourier-Stieltjes Transform
Theorem 2.2.3, results that F(z) = Q(z) a.e., hence F' € BVr. Applying Theorem
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4.1.4 to F. results that

and using the integral representation of an acm (see Proposition 3.1.1). we have that

F(z) is an acdffor all z € R. -

Corollary 4.1.5.1 Consider a #-factor with 6 positive and monotonic decreasing

on [0. >c). Then A,;(8) C A.

Corollary 4.1.5.2 Let F(F) € A[(0) with the -factor defined as one of the fol-

lowing cases:

—|z]), when ze€|-1.1
() 6(z) = (1 —|z]). en z€[-1.1] ’
0 when & [—1.1]

(i2) O(x) =e ' forall r € R.
(iti) O(z) =e * . forall r € R.
Then F is an acm.

Proof: See [1. page 120. item 65], [13. page 40 Corollary 3 to Theorem 3.3.2] and

[5. page 222. Proposition 5.3.8]. - O

Other #-factors can be seen on [1, page 118 item 64|, where they are represented as

Fejér integral kernels.

Hence. we have that imposing restrictions on 7 in order to have that o* belongs to

A, Ay or A[(6) . the distribution function F™* of ¢* will be an acdf.
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5 EXAMPLES

5.1 THE TENT MAP

Consider the Dynamical System on the measurable space (1. B(I). \) with I = [0. 1.

7: 1 — [. 7(z) = 22 (mod 1) and f uniform density function on the interval [0. 1]

(flr) = 5[0.1}(1))-

We have that the Fourier-Stieltjes Transform of the Perron Frobenius operator

Pr f(z) is given by

- n 1 ; n
oj(t) = [ @ f(z)dz = [ etz
I 0

Also. we notice that the n-th iteration of 7. given by
7"(x) = 2"z (mod 1).
can be expressed as follows:
T(z)=2"r —k+1

where z € [k‘l.ziu) and k=1.2.3.....2".

211

Then

2".
of(t) = /:l et =kl for all n.
k=1

which gets reduced to

@R (t) = % (ei‘ - 1) . for all n.

40



We notice that 0*(¢) = 0}(t) for all n. Also. we have that 0* € A, (i.e. 0 € L3):

o 5 x 1
/ Io'(t)l'dt§2+2/ Sdt < >
=

—c

Therefore. by Theorem 4.1.1. there exists an acm F*(x) of 7 such that

d * 1 = —ttr =
—F (1'):5;/_066 o™ (t)dt.

in this case given by the density function f*(z) = 6j04(z). See figure 4.

084 0.3.

0d 0

Q :02<

0 02 CENA T Y] ] -30 -2& J»m' 0 m't o0
Figure 3. 7(z) Figure 4. ]o;(t)' = Io';(t)] for all n

5.2 THE LOGISTIC MAP

Consider now the Dynamical System on the measurable space ([.B([).A). given

by

L] [= [01].
e 7: [ — [ 7(r) =4z(l — z), and

« f uniform density function on the interval [0, 1], i.e. f(z) = dp.1j(x)-

In this case, 7 is called the “Logistic Transformation”, and the iteration of 7 induces
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a dynamical system which is a classical example of chaotic behavior.

We have that the Fourier-Stieltjes Transform of the Perron Frobenius operator

P! f(z) is given by

o (t) = /{e“" @) f(z)dx =/ et @ dr

0

As we said before on Chapter 4. 7 has an acidf F*(z) = %/1__ even though
T ril—r;
T IS not a piecewise monotonic expanding function. However. we can see from the

behavior of o}(t) that in this case it is possible to search for a proof of existence of

acidf’s. perhaps considering A families of functions as approach.

Figures 6 to 11 show different stages of the Fourier-Stieltjes Transform of(t). Figure

12 shows the Fourier-Stieltjes Transform of the acidf of 7.

Perhaps a possible way to prove the existence of acidfs of 7 may be obtained by
considering a bound w,(¢) on |e™(t)]. In any case. we do not solve this problem
which remains for future research. but we consider that some of the A subfamilies

(A1.As. Ac. Af(8)) may be a possible route to solve it.

1 pr— 1
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osr a " c o
0 ar g a4
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02 oa ) 08 1 -30 20 -9 o o 0
- Figure 5. 7(z) Figure 6. lo‘}(t)l
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6 CONCLUSIONS

The results obtained here represent an alternative method to prove the existence
of absolutely continuous invariant measures (acim’s) by using the Fourier-Stieltjes
Transform under the assumptions that 7 is a piecewise monotonic expanding trans-

formation.

The idea of using a bijective transformation to analyze the original problem in
another space is not new. However. the analysis of the existence of acim’s using the

Fourier-Stieltjes transform, we believe, can give more existence results.

We consider important to present criteria that the Fourier-Stieltjes Transform should
satisfy in order to ensure that it correspond to an acdf . The use of bounds of the
Fourier Stieltjes transforms o} and the A-families. represent the first step in this direc-
tion using the Fourier-Stieltjes transform. We believe that there are more possibilities

not vet explored using this approach.

As a final note. the Fourier-Stieltjes Transform represents one type of bijective
transformation. and it is possible to consider other kinds of bijective transformations
in order to study existence problems of acim’s. Here we did use the Fourier-Stieltjes
Transform successfully, but there are more ways to attack this problem in the future

using similar techniques.
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7 GLOSSARY OF SYMBOLS

(.-) g: Bohr's inner product. which defines a non separable Hilbert space.
acdf: an Absolutely Continuous Distribution Function.

acidf: an Absolutely Continuous Invariant Distribution Function.

acimm: an Absolutely Continuous Invariant Measure.

acm: an Absolutely Continuous Measure.

a.e.: Almost everywhere (i.e. except a set of zero measure).

B(I): Borel set in the interval [.

BVp: Family of functions of Bounded Variation on [.

C: Set of Complex numbers

C}: Family of Adifferentiable functions on /. with continuous derivative.
C#: Family of twice differentiable functions on /. with continuous second

derivative.

1 .iftel
67(t): The delta function. §;(¢) =

0 .iftgl

d
=f
—_ —dz’
D"'f Lt—d'i T{(r)

Duf = 2 ()

[F': Space of linear functions of the form f: IR — (.

IF,.: Space of -linear periodic functions with period n.

o(t): Representation of the Fourier Stieltjes Transform of the n-th iterate
of the Perron Frobenius Operator (¢}(t) = [; e P} f(z)dx).

*(t): Function limit of the sequence {¢}(t)}32,. (¢*(t) = limp_.o [; €7 FdF(z)).

f*(z): Density function of the Fourier-Stieltjes Transform o~(t).

47



F*(r): Distribution function of the Fourier-Stieltjes Transform o= (t).

f(x): Density function of the distribution function F(z).

F(z): Distribution function.

F.(z): Distribution function of the n-th iterate of the Perron Frobenius operator.
(Falz) = [Z PP f(u)du)

F(F)(t): Fourier-Stieltjes Transform of the measure F. (F(F)(t) = [ e"**dF(r))
IH: Family of Fourier-Stieltjes transforms.

H: The Fourier Stieltjes Transform of some distribution function.

[: Subset of R. usually considered as the interval [0.1].

A: Lebesgue measure.

A: Family of Fourier—Stieltjes transforms F(F') with F acm.

A;: Family of Fourier-Stieltjes transforms F(F) with F(F) € L.

As: Family of Fourier-Stieltjes transforms F(F) with F(F) € L.

A;(g): Family of Fourier-Stieltjes transforms F(F') invertible by the

inversion formula (limy—.c /7 e " g(%)F(F)(z)dzx).

Ac: Family of Fourier-Stieltjes transforms F(F') with Bohr’s inner product.
(F(F).F(F))g=0.

L%: Set of integrable functions such that [¢|f(z)|Pdr < <.

p << A: The .measure 1 is absolutely continuous with respect to A.

M,,: Part of the bound w,(t). (M, = [-52: + V¢ <%-Tl,,—())] [supse; [F(O) + Vi f])
M (a): The upper bound of V; (%)

|||l zp: Norm in £LP.

wn(t): Bound of ¢%(t):
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(0 1 <
wnlt) =
b2+ vi(22s)] e N Vi) > 1

Sn

P: f(z): Perron Frobemus operator applied to the £! function f.
under the maping 7: [ — [.
IR: Set of real numbers.
8: f-factor.
g: Fourier Transform of 6.(4(t) = /7. et=0(z)dx).
To(u) = [“el™@idg
Ta(u) = [ et @dz
U;: Koopmann operator. (U f(x) = f(7(z))).
V2 f: Total Variation of the function f in the interval [a.b]. (V2 f = Vis f)

Sp =1inf ¢y [&”‘"(r)‘





