

A TLM-RTL SYSTEMVERILOG-BASED

VERIFICATION FRAMEWORK FOR OCP DESIGN

Shihua Zhang

A Thesis

In

The Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

March 2011

 Shihua Zhang, 2011

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Shihua Zhang I.D. 6165443

Entitled: “A TLM-RTL SystemVerilog-Based Verification Framework For OCP

Design”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

___ Dr.Dongyu Qiu

___ Dr.Amr Youssef

___ Dr.Samar Abdi

___ Dr.Otmane Ait Mohamed

Approved by ___

 Chair of the ECE Department

__________ 2011 __

Dean of Engineer

iii

ABSTRACT

A TLM-RTL SystemVerilog-Based Verification Framework for OCP design

Shihua Zhang

Open Core Protocol (OCP) establishes itself as the only non-proprietary, openly

licensed, core-centric protocol that is used to support “plug-and-play” SoC

(System-On-Chip) design practices. Designer can reuse OCP-compliance IP cores

based on system integration and verification approach in multiple designs without

reworking, reducing the development time and cutting down overall design costs.

In this thesis, we develop a reusable verification framework of OCP.

Assertion-based verification was chosen in order to enforce the flow. An OCP

SystemVerilog monitor which is developed in house is used to verify the OCP SystemC

TL1 (Cycle-accurate Level) design. The monitor can also be reused for OCP designs

described at different abstraction level and thus dramatically reduce the time needed for

OCP functional verification. To increase the functional coverage of OCP models,

Cell-based Genetic Algorithm (CGA) with random number generators based on

different probability distribution functions is provided on OCP TL1 models for

generating and evolving the OCP transactions. Furthermore, SystemC Verification

Library (SCV) is employed as pure random number generator to compare with the

proposed CGA. The experiments show that some probability distributions have more

effect on the coverage than others. The best population of the CGA can be reused on

OCP RTL models to reduce the verification time.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to send my deepest gratitude to my supervisor,

Dr. Otmane Ait Mohamed, whose precious guidance, support and encouragement

were pivotal in establishing my self-confidence in this endeavor.

 To all my fellow researchers in the Hardware Verification Group (HVG) at

Concordia University, thank you for help and encouragement. I especially appreciate

Asif Iqbal Ahmed. This thesis would not have come into entirety without his constant

and invaluable technical guidance. His contribution played a major role in finalizing

this thesis.

 Finally, I wish to express my gratitude to my family members for their love and

support.

v

TABLE OF CONTENTS

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

LIST OF ACRONYMS ... ix

Chapter 1 .. 1

Introduction .. 1

1.1 Motivation .. 1

1.2 Functional Verification .. 3

1.3 Coverage Directed Test Generation ... 7

1.4 Related Work ... 9

1.5 OCP Verification Methodology ... 12

1.6 Thesis Contribution and Organization ... 15

Chapter 2 .. 17

Preliminary ... 17

2.1 Open Core Protocol.. 17

2.2 Genetic Algorithm ... 20

2.3 SystemC Language .. 24

2.3.1 SystemC Architecture ... 25

2.3.2 Transaction Level Modeling in SystemC 26

2.3.3 SCV ... 27

2.4 SystemVerilog.. 28

2.5 Probability Distribution ... 28

2.5.1 Uniform Distribution .. 29

2.5.2 Normal Distribution .. 29

2.5.3 Exponential Distribution ... 30

2.5.4 Beta Distribution ... 30

2.5.5 Gamma Distribution .. 30

2.5.6 Triangle Distribution ... 31

Chapter 3 .. 32

OCP Verification Methodologies .. 32

3.1 Reusable OCP TLM Verification Environment 32

3.1.1 OCP TL1 Channel... 33

3.1.2 OCP TL1 Generic Master Core .. 35

3.1.3 OCP TL1 Generic Slave Core ... 39

3.1.4 Reusable OCP Assertions ... 41

3.1.5 OCP TLM-to-RTL Adapter .. 45

3.2 OCP Verification Framework with SCV Generator 47

3.3 Cell-based Genetic Algorithm on OCP .. 49

3.3.1 Solution Representation .. 53

3.3.2 Random Number Generators .. 55

3.3.3 Initialization .. 56

vi

3.3.4 Selection and Elitism .. 57

3.3.5 Crossover .. 58

3.3.6 Mutation .. 59

3.3.7 Fitness Evaluation ... 59

3.3.8 Termination Criterion ... 61

3.3.9 OCP SystemC Functional Coverage Points 61

Chapter4 ... 63

Implementation Result ... 63

4.1 Directed Tests .. 63

4.1.1 Five OCP TL1 models .. 64

4.1.2 OCP TL1 generic master core and slave core configurations ... 68

4.1.3 Experimental results .. 70

4.2 Random Tests... 73

4.2.1 OCP Functional Coverage Points ... 75

4.2.2 CGA Configuration ... 77

4.2.3 SCV representation ... 80

4.2.4 Experiment I .. 81

4.2.4 Experiment II .. 84

4.2.5 Experiment III ... 87

4.2.5 Discussion ... 90

Chapter 5 .. 92

Conclusion and Future Work ... 92

5.1 Conclusion ... 92

5.2 Future Work ... 94

References .. 96

vii

LIST OF FIGURES

Figure 1.1 Design and Verification Gaps [45] ... 2

Figure 1.2 Manual Coverage Directed Test Generation 8

Figure 1.3 Proposed OCP Verification Methodology .. 13

Figure 1.4 Design and Execution Flow of CGA .. 14

Figure 2.1 Simple OCP System [16] .. 18

Figure 2.2 GA Chromosome and Population ... 21

Figure 2.3 Crossover Operators ... 23

Figure 2.4 Mutation Operator .. 23

Figure 2.5 SystemC Architecture ... 25

Figure 3.1 OCP Directed Verification Framework .. 33

Figure 3.2 OCP TL1 Generic Master Core .. 36

Figure 3.3 OCP TL1 Generic Slave Core .. 40

Figure 3.4 OCP TLM-to-RTL Adapter .. 46

Figure 3.5 OCP Verification Framework with SCV Random Generator 48

Figure 3.5 OCP CGA Verification Methodology .. 49

Figure 3.6 Flowchart of OCP CGA Verification Methodology 51

Figure 3.7 Cells for Different Probability Distributions [25] 53

Figure 3.8 CGA Random Initialization Schemes .. 57

Figure 4.1 Different OCP Configurations Assertions Hit Times 70

Figure 4.2 Waveform of an Assertion Failure ... 71

viii

LIST OF TABLES

Table 3.1 OCP TL1 Generic Master Configuration Table 39

Table 3.2 OCP TL1 Generic Slave Core Configuration Table 40

Table 3.3 Pseudo-Code of OCP CGA Verification Methodology 52

Table 4.1 Basic OCP Configuration .. 65

Table 4.2 OCP Data Handshake Configuration ... 66

Table 4.3 OCP Multi-thread Configuration ... 66

Table 4.4 OCP MRMD Configuration... 67

Table 4.5 OCP SRMD Configuration .. 68

Table 4.6 OCP Generic Master Core Configuration .. 69

Table 4.7 Pseudo-Code of getMCmdTrace Function .. 72

Table 4.8 Pseudo-Code of Modified getMCmdTrace Function 73

Table 4.9 CGA Configuration .. 79

Table 4.10 Multiple Stage Strategy Parameters ... 80

Table 4.11 Coverage Strategy Result of Experiment I 82

Table 4.12 Multiple Stage Strategy Result of Experiment I 83

Table 4.13 SCV Result of Experiment I .. 84

Table 4.14 Coverage Strategy Result of Experiment II 85

Table 4.15 Multiple Stage Strategy Result of Experiment II 86

Table 4.16 SCV Result of Experiment II ... 87

Table 4.17 Coverage Strategy Result of Experiment Three 88

Table 4.18 Multiple Stage Strategy Result of Experiment Three 89

Table 4.19 SCV Result of Experiment Three .. 90

ix

LIST OF ACRONYMS

AI Artificial Intelligence

ANN Artificial Neural Network

ABV Assertion-Based Verification

AVE Advance Verification Environment

BFS Breadth-First Search

CA Cycle Accurate

CDF Cumulative Distribution Function

CDG Coverage Directed-test Generation

CDV Coverage-Driven Verification

CGA Cell-based Genetic Algorithm

CRT Constraint-Random Test

DFS Depth-First Search

DUV Design Under Verification

EA Evolutionary Algorithm

GA Genetic Algorithm

IP Intellectual Property

MDV Metric-Driven Verification

MRMD Multiple Request Multiple Data

MT Mersenne Twister

x

OCP Open Core Protocol

OSCI Open SystemC Initiative

OVA OpenVera Assertion

PDF Probability Distribution Function

PDG Priority Directed test Generation

PRNG Pseudo-Random Number Generator

PSL Property Specification Language

PV Programmer‟s View

PVT Programmer‟s View plus Timing

RNG Random Number Generator

RTL Register Transfer Level

SCV SystemC Verification Standard

SoC System-on-Chip

SRMD Single Request Multiple Data

SVA SystemVerilog Assertion

SVWG SystemC Verification Working Group

TLA Transaction Level Assertion

TLM Transaction Level Modeling

TTM Time-to-Market

1

Chapter 1

Introduction

1.1 Motivation

During the last decades, the semiconductor industry has grown rapidly and

constantly. The silicon revolution has made ubiquitous electronics devices, such as

computers, cell phones, wireless networks, and portable MP3 players, in a constant

state of evolution. Providing more features in an electronics device need to add more

logic gates in a single chip. Moore‟s law predicts that the number of transistors on a

chip will double about every two years [17]. With the advent of high technology

applications, System-on-Chip (SoC) technology has been widely applied in recent

years. A SoC may contain on-chip memory, microprocessor, peripheral interface, I/O

logic control and so on. The major impediment to developing a new chip is no longer

the hardware design phase itself, but the verification of it [13]. It was noticed that

verification takes around 60% to 80% of chip development effort in terms of time.

Figure 1.1 shows the design and verification gaps.

Thousands of Intellectual Property (IP) cores and hundreds of hardware

interconnects or buses have been involved SoC design. Tens even hundreds of IP cores

can be integrated into a chip to provide various functions. For different SoC designs, IP

cores have to be readapted to different interconnects. This makes SoC design an

2

overwhelmingly complex amount of adaptation work. But the short Time-to-Market

(TTM) cycle of electronic devices does not allow long schedule for SoC design. To

satisfy the above requirement, OCP-IP association presents Open Core Protocol (OCP)

[1] as a complete socket standard to enable true core plug-and-play and reuse. Using

OCP, core designers can concentrate on core functionality and system integrators can

concentrate on SoC timing, system bandwidth and latency requirement. Design time,

design risk and manufacturing costs are reduced.

Figure 1.1 Design and Verification Gaps [45]

The high flexibility and configurability of OCP makes the IP core and system

interconnection reusable. But the real challenge is to perform functional validation of

an OCP model. Because of the wide usage of the OCP in SoC design, the reusable

verification framework is necessary to be developed for reducing the verification

efforts and shortening TTM. Since OCP is a core-specific, peer-to-peer protocol, OCP

Time

Transistors/Month
Transistors/Chip

Verifi
cation

 Produ
ctivit

y

Des
ign

 Pr
odu

cti
vit

y
Fe
at
ur
e
Si
ze
 –

 M
oo
re
’
s
La
w

Verification Gap

Design Gap

3

compliance IP cores can be verified independently with a universal OCP monitor with

OCP compliance assertions attached to OCP interface. Additionally, OCP monitor

should include OCP functional coverage points to measure verification progress. An

OCP random generator is also needed for OCP verification. The generator should also

be configurable to generate specific stimuli according to the configuration of the OCP

model. In fact, to develop a reusable OCP verification framework, we have to integrate

all possible aspects of features of the OCP protocol. The OCP model and all parts of the

verification framework constraints by the OCP configuration.

1.2 Functional Verification

Functional verification is a process that ensures the implemented hardware

design matches the intent of its specification prior to sending the device for

manufacturing [39]. The implemented design refers to Design Under Verification

(DUV). This is a complex task that spends the majority of time and effort in most large

electronic system designs. Not only main features of DUV, but also functions in

uncommon combinations of parameters (“corner cases”) should be verified. Either

directed test scheme or random test scheme can be utilized in functional verification.

There are several functional verification techniques divide into formal

verification and simulation-based verification.

Formal verification is the use of mathematical techniques to prove or disprove

the correctness of designs. Formal verification can be applied at different levels designs,

4

ranging from gate-level to Register Transfer Level (RTL). Main techniques of the

formal verification method are Equivalence Checking, Model Checking and Theorem

Proving [2]. Equivalence checking is a formal, static verification technology which

uses mathematical techniques to determine if two versions of the same design that are

designed by different abstraction levels are functionality equivalent. The two versions

could be two RTL versions, an RTL description and a gate-level netlist and two

gate-level netlists. Model checking is an automatic technique for verifying finite state

concurrent systems, such as digital circuits and communication protocol. The

procedure uses an exhaustive search of the state space of the system to find out whether

some specification is true or not. The procedure can terminate with a yes/no answer

with a given sufficient resources. Although the disadvantage of model checking is the

restriction on finite state systems, it is used on several important types of systems such

as hardware controller and many communication protocols. Additionally, in some cases

bugs can be found by restricting unbounded data structure to specific finite state

instances. Model checking is preferable to deductive verification because it can be

performed automatically. But some critical applications are necessary to be verified

completely by theorem proving. Theorem Proving (deductive verification) refers to the

use of axioms and proof rules to prove the correctness of the systems. It is a

time-consuming process that can be performed only by experts who are educated in

logic reasoning and have considerable experience. It can spend days or months to prove

a single protocol or circuit. So theorem proving is used rarely and applied primarily to

5

highly sensitive systems such as security protocols. Some mathematical tasks cannot be

performed by an algorithm. Because there cannot be an algorithm that decides whether

an arbitrary computer program terminates, correct termination of programs cannot be

verified automatically in general. Therefore, most proof system cannot be completely

automated. The main high order logic provers are HOL [3] and PVS [4].

Simulation-Based Verification, also called dynamic verification, is widely used

in hardware verification. A testbench is built to provide meaningful scenarios to verify

the logic behavior of the hardware design. A testbench can provide random, directed

and constrained random stimuli over the entire input space of the DUV. A testbench is

typically composed of the several types of verification components. Data Item

represents the input of the DUV. Examples include bus transactions, networking

packets and CPU instructions. A Driver repeatedly receives a data item and drives it to

the DUV by sampling and driver the DUV signals. A Sequencer is an advanced

stimulus generator that controls the data items that are provided to the driver for

execution. Constraints can be added in order to control the distribution of randomized

value. A Monitor is a passive entity that samples DUV signals but does not drive them.

Monitors collect coverage information and perform protocol and data checking.

Sequencer, driver and monitor can be reused independently. An Agent works as an

abstract container to encapsulate a driver, sequencer and monitor. The Environment is

the top-level component of the testbench which contains one or more agents. Some

reusable frameworks for verification components, such as VMM [5], AVM [6] and

6

OVM [7], have been provided by different EDA companies.

There are different verification methodologies including Assertion-Based

Verification (ABV), Coverage-Driven Verification (CDV) and Metric-Driven

Verification (MDV).

In ABV, assertions are quite simply design checks embedded in the module or IP

to capture specific design intent and verify that the design correctly implements that

intent either through simulation or formal verification. There are two types of assertions:

Concurrent Assertions and Immediate Assertions [8]. Concurrent assertions express

behavior spans over time. They are evaluated only at the occurrence of a clock tick.

Concurrent assertions can be used with both formal and simulation-based verification.

Immediate assertions are based on event semantics. Unlike concurrent assertions,

immediate assertions are not temporal in nature and are evaluated immediately. They

are used only with dynamic simulation. Assertion statements are written by HDL or

special assertion languages such as SystemVerilog Assertion (SVA) [9], OpenVera

Assertion (OVA) [10] and Property Specification Language (PSL) [11].

Coverage-driven verification combines automatic test generation, self-checking

testbench and coverage metrics to significantly reduce the time spent verifying a design

[7]. The CDV starts by setting verification goal using an organized planning process.

Then a smart testbench is created to generate and send stimuli to the DUV. A monitor is

connected to measure coverage process and identify undesired DUV behavior. The

verification is ended when the verification goal has been achieved. Coverage metrics

7

includes code coverage, finite state machine coverage, structural coverage and

functional coverage.

Metric-Driven Verification improves coverage-driven verification approach by

making the verification plan in an executable format. The executable verification plan

can be used directly to generate verification scenarios, measure verification progress

and identify verification closure.

1.3 Coverage Directed Test Generation

The functional specification of DUV can be translated to functional coverage

tasks in SoC verification. Two steps are employed to the functional coverage process:

(1) Define the cover points; (2) Finding meaningful stimuli to cover those points [12].

This process which is called Coverage Directed-test Generation (CDG) is repeated

until the exit criteria (verification goals) are met.

Figure 1.2 shows the manual CDG where verification engineers guide the

random number generator by setting up directives and constraints. The manual effort of

analyzing the coverage reports and translating them to directives for Random Number

Generator (RNG) can constitute a bottleneck in the verification process. Therefore, it is

worth to spend considerable effort on finding a method to automate this procedure and

close the loop of coverage analysis and test generation. The automated CDG can

dramatically reduce the manual effort in the verification process and increase its

efficiency.

8

Figure 1.2 Manual Coverage Directed Test Generation

Artificial Intelligence (AI) techniques can be employed to automate the CDG.

Several AI algorithms have been explored in the area of automatic CDG, such as

Neural Network, Bayesian Network and Genetic Algorithms. Normally, random

number generators, such as SCV [14] in SystemC and Randomization feature in

SystemVerilog [15], use uniform probability distribution random number generator to

create random stimuli to the DUV. Even though AI algorithms provide the constrained

directives to RNGs, the time consumption for achieving the verification goal depends

on the input of the DUV and its internal variable relationship. AI algorithms cannot

reach the maximum coverage in a short time if the stimuli that achieve maximum

coverage are not distributed uniformly across the input domain. Therefore, other

probability distributions can be utilized by RNGs to enhance the coverage and shorten

the time consumption. In this thesis, different probability distribution functions are

employed to generate random numbers for AI algorithms.

Simulator

Random

Verification

Stimulus

Generator

Directives for

Random

Stimulus

Generator

Design

Under

Verification

Functional

Coverage

Points

Coverage

Report

9

1.4 Related Work

In this section, we present the related work in the area of assertion-based

verification methodology for OCP TLM models. Then we give some methodologies for

verifying the correctness of RTL refinement from TLM modeling. Then we will focus

on functional coverage-based verification methodologies and algorithms such as

Bayesian Network, Neural Network and Genetic Algorithm. Finally, we present a

methodology of cell-based genetic algorithm with different probability distributions

that is utilized to automate coverage directed test generation.

Many considerable efforts have been spent on OCP TLM verification in ABV. In

[18], because the DUV is SystemC model, the authors developed a native assertion

mechanism „NSCa‟ in SystemC in order to employ their verification process. NSCa can

construct a cycle level accuracy rule of the design as assertion expression form. The key

variation in our approach is the formation of our assertion suite. Our scheme is based

on off the shelf SVA which does not need any tailored SystemC based assertions. In

addition, since SystemVerilog Assertions has a wider acceptance as an assertion

language our approach stands elevated. Another work [19] focused on an

assertion-based approach for system-level performance analysis applied to the

single-channel OCP system. The system was described with SystemC TLM and in the

analysis approach; performance primitives such as data rate and transaction latency

were described using the Transaction Level Assertion (TLA). The prime difference

between our research and the above mentioned research is in the method to construct of

10

Re-Usable Assertions for design models created in various abstraction levels. Our

assertion structure seamlessly integrates not only with models described at Transaction

Level (TLM) but also with models written at Register Transfer Level (RTL).

Therefore, our assertion suite minimizes the Design-Verification phase and enhances

Time-to-Market factor.

Several attempts have been made to automate CDG. In [20], Bayesian Network

is employed to model the relationship between coverage tasks space and the directives

of a random test generator. This approach includes two phases: Learning phase and

Evaluation phase. In the learning phase, a Bayesian network is constructed to

represent the relationship between the coverage tasks and the test generation

directives. Then a set of sample directives are used to run simulations and obtain a set

of coverage results respectively. After that, a learning algorithm can be applied to

estimate the parameters of the Bayesian network. In the evaluation phase, the trained

Bayesian network can be used to generate directives for desired coverage tasks. The

disadvantage of this approach is that the quality of certain sample directives has great

influence on the ability of the Bayesian network to generate efficient test generation

directives. In contrast, the CGA which is employed in this thesis starts with random

number initiation and the quality of the initiation only affects the speed of evolution

but not the quality of the generation. Artificial Neural Networks (ANNs) [44] are

utilized to solve the Priority Directed test Generation (PDG) problems in the work of

[21]. The DUV (OR1200 RISC CUP) was targeted by several directed test vectors.

11

The coverage result was represented by identified rate of predefined bugs for every

test vector. Then the ANN was used to analyze the coverage results and determine the

priority of each vector. Finally, the predefined test vectors with high priority can be

reused for further verifications. This algorithm uses predefined test vectors with

different priorities instead of random initialization in our CGA generator.

Genetic Algorithm has been employed to optimize the input test vectors in

several functional verification methodologies. A simple genetic algorithm is introduced

to guide random input sequences for improving coverage count of property checks in

[22]. But this work can target only one property at a time. Moreover, it cannot describe

sharp constrains on random inputs. In [23], a genetic algorithm is utilized to generate

biased random instructions automatically for microprocessor architecture RTL model

verification. The averages utilization statistics of specific buffers in PowerPC

architecture are defined as coverage metrics. This approach is only for microprocessor

verification. In contrast, our OCP verification framework is reusable for all

OCP-compliance IP cores or bus interfaces. The work of [24] introduced genetic

algorithm into a reusable verification environment. The environment adopts layered

architecture and includes five layers: Signal layer, Command layer, Function layer,

Scenario layer and Test layer. Only three chromosomes were initialized at the

beginning of the simulation. In our framework, the initialization size of the CGA can

be predefined and represent more complex solution.

The work of [12] provided a Cell-based Genetic Algorithm (CGA) to automate

12

CDG. The CGA divided the input domain into sequences of inputs called cells. Each

cell is represented by three parameters: upper limit, lower limit and weight. The

number of cells and the range of the input domain are configured according to the DUV

by the user. The process of the CGA begins from generating a certain number of cells

randomly. Each cell targets the DUV and the coverage information of the cell is

collected by the simulator. Then, the quality of each cell is evaluated by a predefined

evaluation function which is called fitness function. Based on predefined criteria, the

cells with good quality are preserved and forwarded to the next generation. The rest of

the cells are modified by genetic operations for the new generation. Only uniform

random generator is utilized in CGA. The work of [25] enhanced the CGA by adding

several random number generators which are based on different probability

distributions. The approach is applied to a SystemC 16×16 packet switch RTL model

with several coverage points. The experiment results show that some RNGs based on

specific probability distributions get greater fitness value within smaller number of

generations than others. In this thesis, the CGA is employed to verify higher abstraction

level TLM models instead of RTL models. The generation with the best coverage

quality should be reused in RTL models.

1.5 OCP Verification Methodology

Figure 1.3 depicts our proposed OCP verification methodology. The DUV is an

OCP model which normally includes different abstraction level of OCP master core,

13

slave core and OCP channel. Reusable OCP assertions are developed for protocol

compliance checking. OCP functional coverage points are provided to measure the

progress of the verification. The Advance Verification Environment (AVE)

QuestaSim6.4 is selected as the simulator to provide coverage reports of OCP

functional coverage points and assertions. The OCP transaction generator is used to

generate OCP transaction randomly. Coverage-driven Verification (CDV) Module

replaces the manual effort to analyze the coverage reports and modifying directives for

OCP transaction generator for enhancing the functional coverage. In this thesis, the

CGA [25] is chosen as our Coverage-driven Verification Module. In the CGA,

random number generators based on six probability distributions such as Uniform,

Normal (Gaussian), Exponential, Gamma, Beta and Triangle distributions are

integrated into the CGA to generate OCP transactions.

Figure 1.3 Proposed OCP Verification Methodology

OCP

Modules

Verification

Environment

Coverage

Report

OCP

Assertions

OCP

Transactions

Generator

CDV

Module

OCP

Functional

Coverage

Points

14

Figure 1.4 shows the design and execution flow of the CGA.

Figure 1.4 Design and Execution Flow of CGA

First of all, we define OCP functional coverage points and the representation of

the specific OCP module for CGA process. Then we set the CGA parameters. After

that, one kind of probability distribution with specific parameters is selected for

Random Number Generator. Then an initial population is generated by the RNG based

on the selected probability distribution functions. A fitness value is obtained based on

OCP functional coverage points after running the simulation. Different definitions of

fitness strategy can be used to evaluate how good the previous population is according

to its functional coverage information. Normally, the fitness is calculated based on the

OCP

Module

Define CGA representation for solution

Satisfy

Termination

 Criteria

Terminate and output

the results

Setting CGA parameters

Selecting Random Number Generator

Generating Initial Population

Run Simulation

Fitness Evaluation

Generating New Population

Applying Genetic Operators

Yes

No

OCP Functional Coverage Points

15

percentage of the cover points being hit over the total number of coverage points in the

DUV. The fitness evaluation guides the next generation of the process. Some of the

elements with good quality in the population are forwarded or preserved to perform

genetic operations such as crossover, mutation to the new population. The remaining

part of the new population is filled by new random number generation. The whole

evolution process is performed until the given termination criteria is reached.

1.6 Thesis Contribution and Organization

In light of the above related work review and discussions, we believe the

contributions of this thesis are as follows:

 A set of OCP assertions in SystemVerilog Assertion (SVA) for protocol

compliance checking have been defined.

 A reusable OCP verification framework for different abstraction levels

(TLM and RTL) OCP models has been developed.

 A Cell-based Genetic Algorithm (CGA) using different probability

distribution RNGs on different OCP TL1 channel models to enhance their

functional coverage automatically has been implemented.

 A random generator has been defined in SCV and the results have been

compared to the CGA approach.

The rest of the thesis is organized as following. Chapter 2 provides an

introduction of Open Core Protocol. Then we present the basic principles and operators

16

of the genetic algorithms. We also provide overviews of SystemC and SystemVerilog

language and formulas of different probability distributions. This chapter lays a

foundation for the better understanding of the thesis. Chapter 3 presents our reusable

OCP verification methodology. OCP TL1 channel models are selected as DUVs to be

verified by directed tests and random tests. The proposed CGA based on different

probability distribution RNGs is utilized to enhance the OCP functional coverage. To

compare with the CGA, SCV random generators are employed to generate OCP

random transactions as well. An OCP monitor with SVA assertions is attached to OCP

channel for protocol checking. In Chapter 4, the implementation results of both directed

tests and random tests are presented. We also describe functional coverage points

which are defined in SystemC and SystemVerilog for SCV and CGA simulations

respectively. After that, we discuss about the experiment results of CGA and SCV.

Finally, we present our conclusion and some possible future works.

Chapter 2

Preliminary

This chapter describes briefly the preliminary components on which we are

going to build our work in this thesis. They are Open Core Protocol, Genetic

Algorithm, SystemC, SystemVerilog and probability distribution functions.

2.1 Open Core Protocol

Open Core Protocol (OCP) [1] is a non-profit, open standard protocol that

facilitates IP cores reuse and SoC integration. It defines a high performance,

bus-independent interface between IP cores and it suits all hardware behaviors.

Because of its high flexibility and configurability, OCP can be configured for high

performance microprocessor, DMA blocks with out-of-order and outstanding

transactions, simple peripheral core and on-chip communication subsystem. SoC

designers can tailor the best OCP configuration socket with require features only for

each IP core.

An OCP module is comprised of three parts: OCP Master Core, OCP Slave

Core and OCP Channel (OCP interface). The OCP Channel is a points-to-point

interface for two communication entities such as IP cores and bus interface modules.

One of the entities is the OCP master core, and the other is the OCP slave core. The

18

master core is an active device which sends requests to the OCP channel. The slave

core responds to requests sent to him, either by accepting data from the master (write

type commands), or presenting date to the interface (read type commands). Figure 2.1

presents a simple system consisting of a wrapped bus and three IP cores: one

representing a system target, another one representing a system initiator, and an entity

representing both. The characteristics of the IP core determine whether the core needs

the master, the slave or both sides of the OCP. The bus interface modules must act as

the complementary side of the OCP for each connected entity.

Figure 2.1 Simple OCP System [16]

The main features of OCP are summarized below:

 Pipelining: OCP supports pipelining of transfers. An OCP transfer consists

of a complete request/response interaction. Multiple requests can be sent

before the first response comes back. Requests and responses form a single

System Initiator

Master

System Initiator/Target

Master

System Target

SlaveSlave

On-Chip Bus

Slave Slave Master Master

Bus

Initiator
Bus Initiator/Target

Bus

Target

OCP
OCP

Request

OCP

Response

Bus wrapper

interface module

19

ordered thread and responses must be returned in the order of the requests.

 Data handshake: OCP master sends request and data separately with the data

handshake signals instead of sending them together. To support data

handshake feature, we can simply set OCP parameter datahandshake to 1.

 Threads: OCP interface can proceed to multiple transfers concurrently and

out-of-order. OCP transfers in different threads have no ordering property

and can be implemented independently in different control flows. To support

multi threads feature, we set OCP parameter threads greater than 1.

 Burst: There are three kinds of burst in the OCP protocol: MRMD burst,

SRMD burst and Imprecise burst.

 The MRMD (Multiple Request Multiple Data) burst is one kind of OCP

precise burst. The length of the MRMD burst is constant. Each transfer

of the burst has its own request phase.

 The SRMD (Single Request Multiple Data) burst is the other kind of

precise burst. The length of the SRMD burst is constant but only one

request phase presents in the first transfer of a SRMD burst.

 Imprecise burst: The length of an imprecise burst is unknown and

changed. Each MBurstLength indicates the number of transfers left for

the current burst.

20

2.2 Genetic Algorithm

Genetic Algorithms (GAs) [26] are adaptive heuristic search techniques which

were first invented by John Holland in the 1960s. As a particular class of evolutionary

algorithm (EA), it follows Charles Darwin‟s principals of survival of the fittest to

simulate process in nature evolution and generate high quality solutions to search and

optimize problems. A genetic algorithm is an iterative procedure implemented in a

computer simulation. During the simulation, a population of an abstract artificial

representation is initialized and evaluated at first. Then some part of the solution with

good quality will be kept and forwarded to the next population. This evolution process

will run continuously until a satisfactory solution is found. Genetic algorithms cannot

guarantee a unique best solution, but it finds optimal solutions more efficiently than

traditional search techniques (linear programming [27], depth-first search (DFS) [28],

breadth-first search (BFS) [29], etc.) in optimizing search problems with large space.

Therefore, genetic algorithms have been studied, experimented and applied in many

fields of science and engineering.

A typical GA needs a genetic representation and a fitness function. Genetic

representation is used to represent solutions/individuals of the problems. Individuals of

the problem are represented in binary arrays or other encoding methods (trees, hashes,

etc.). As shown in Figure 2.2, the individual is called chromosome or genome.

Potential individuals make up a population. The size of the population rests on the

complexity of the search problem and the size of the search space. In generally, the size

21

of the population is fixed, but some specific applications use dynamic population size

[30]. Fitness function is provided to evaluate the optimality or satisfactoriness of an

individual so that optimal individuals can be selected and used to generating a more

optimal population.

Figure 2.2 GA Chromosome and Population

To obtain the optimum solutions in simulation, GA provides three main genetic

operators: selection, crossover and mutation.

Selection operator equates to survival of the fittest. During the evolution process,

a proportion of individuals in the existing populations are selected for recombination.

The selection methods include Roulette Wheel selection, Tournament selection,

Ranking selection, Top Percent selection, Best selection and Random selection. The

most popular methods are Roulette Wheel selection and Tournament selection [26].

Roulette Wheel selection is also called as fitness proportionate selection. In the

selection, the fitness function assigns the fitness value for each individual. This fitness

value is considered as the chromosome‟s quality and is used to decide the probability of

selection with each individual. A chromosome with better quality will be more likely

to be selected than the one with bad quality.

1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0

Chromosome / Genome

Population

22

In tournament selection method, a “tournament size” of individuals is chosen

from a population randomly. Then, the best one in the chosen individuals will be

selected for the new offspring. It is easy to adjust the selection pressure by changing the

tournament size. Weak individuals have a small chance to be selected in a large size

tournament. But the problem of the tournament selection method is that the best

individual may have no chance to be kept for the next generation if it is not in the

tournament. Elitism addresses this problem by copy the best individual to the elitism

set. Individuals in the elitism set are preserved for the evolution process and are never

changed by genetic operators.

After applying selection operator, the selected individuals can be kept and

forwarded to the next population directly or through crossover and/or mutation

operators.

Crossover operator is employed between two selected individuals by exchanging

parts of their genome to create new individuals. It is useful to preserve and forwards

good features of exist individuals to the next generation. There are many different kinds

of crossover methods, the most common types are one-point crossover and two-point

crossover. Figure 2.3 illustrates them respectively. Crossover is performed with a set

probability. If no crossover occurs, the selected individuals are copied to the new

generation directly.

23

Figure 2.3 Crossover Operators

After selection and crossover, mutation operator is performed to change an

arbitrary bit or bit-string in current individual as Figure 2.4 illustrates. The bits are

chosen randomly. The purpose of mutation operator in GA is to avoid slowing

evolution by preventing individuals from becoming too similar to each other.

Figure 2.4 Mutation Operator

Normally, a GA evolution process includes the following steps:

 Initialize a population (n) randomly

 Calculate the fitness of the population (n).

 Repeat until termination:

 Select a proportion of existing population (n) to produce the new

population (n+1)

 Perform crossover and mutation operators to generate the new

1 0 1 0 0 1 1 0 1 1 0 0

0 0 1 1 0 1 1 1 0 1 0 1

0 0 1 1 0 1 1 0 1 1 0 0

1 0 1 0 0 1 1 1 0 1 0 1

Single Point Crossover

1 0 1 0 0 1 1 0 1 1 0 0

0 0 1 1 0 1 1 1 0 1 0 1

0 0 1 0 0 1 1 0 1 1 0 1

1 0 1 1 0 1 1 1 0 1 0 0

Two Points Crossover

1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0
Mutation

Operator

24

population (n+1)

 Calculate the fitness of the population (n+1)

 Terminate due to obtain a satisfactory solution or a maximum number of

generations have been reached

First of all, the GA process starts by initializing a random population.

Traditionally, the initial population is produced randomly, but it can be generated using

some optimal algorithms that are easy to be found. After the initialization, the quality

(fitness value) of the population is calculated by the fitness function. Then the

population is evolved by three GA operators: selection, crossover and mutation to

generate new populations repeatedly until a satisfactory solution has been obtained or

the maximum number of generation have been reached.

2.3 SystemC Language

SystemC [31] is an open-source language based on C++. It is both a system level

and hardware description language [32]. It is a hardware description language because

SystemC allows register transfer level (RTL) modeling. It is a system level

specification language because it supports high abstraction level (TLM or System

Level) modeling. SystemC does not add new syntax to C++ programming language.

Actually, SystemC is a new C++class library which provides powerful new mechanism

to model system architecture with hardware timing, concurrency and reactive behavior.

25

2.3.1 SystemC Architecture

SystemC uses a layered approach that allows for the flexibility of introducing

new, high-level constructors that share an efficient simulation engine [33]. The

architecture of SystemC is shown in Figure 2.5.

Figure 2.5 SystemC Architecture

The bottom layer of the architecture presents that SystemC is built on standard

C++ language. The second shaded gray layer is the main part of the SystemC. The

core language includes some abstract elements and event-driven simulation kernel.

Modules and ports are used to present structure information. Interfaces and channels

are an abstraction for the communication. The simulation kernel works with processes

C++ Language Standard

Core Language
(Module, Processes, Events,

Ports, Interfaces, Channels)

Event-Driven Simulation Kernel

Elementary Channel

(Signal, Buffer, Clock, FIFO, Mutex, Semaphore)

TLM
(Transaction

Level Modeling)

AMS
(Analog and

Mixed Signal)

SCV
(SystemC

Verification

Library)

Data Types
(Integers, Logic, Vector, Fixed-

point, C++ user-defined types)

26

and events during the simulation. It does not know what the events actually represent

or what the processes do. It only operates on events and switches between processes.

On the right side of the core language, a set of data types can be used to model

hardware and program software. The elementary channel layer is immediately above

the core language. The elementary channels such as signals, buffers and FIFOs are

widely used in hardware modeling. On the top of the architecture, the layers of extend

design and methodology libraries are considered separate from the SystemC standard.

Some of the extend libraries, such as SCV, AMS and TLM, are widely used in

hardware design and verification. Over time, new libraries may be added and

conceivably be incorporated into the standard language.

2.3.2 Transaction Level Modeling in SystemC

Transaction Level Modeling (TLM) is a design and verification abstraction

above RTL. It provides an early platform for software development so that software can

be designed very early in the design flow. TLM abstracts hardware implementation

details and uses function calls to model the communication between blocks in the

system, and therefore it is much faster than RTL modeling. Additionally, designers can

modify and replace the IP cores and buses more easily than RTL in system level design

exploration and verification. TLM increases the productivity of software engineer,

architects, implementation engineers and verification engineers.

Open SystemC Initiative (OSCI) released standard SystemC TLM library [35]. It

provides a valuable set of templates and implementation rules for standardizing TLM

27

methodology. In fact, transaction level does not denote a single level of description.

Rather, it refers to a group of three abstraction levels. Programmer‟s View (PV) level is

the highest level which is widely used by programmers. There is no hardware timing

information in PV level. Programmer‟s View plus Timing (PVT) level enriches PV

level with approximately timing information. It can be used for preliminary

performance analysis. The lowest level is the Cycle Accurate (CA) level which adds

the hardware design notion of clock and describes what happens at each clock cycle.

Although CA level is cycle accurate, it is still faster RTL.

2.3.3 SCV

The SystemC standard can only be used to perform basic verification of a design.

The SystemC Verification Working Group (SVWG) has identified the applicable

verification requirements, discussed proposals from various members and provided the

SystemC Verification Standard (SCV) as a set of features to be incorporated into the

SystemC Standard [14]. SCV improves the capability of SystemC by adding APIs for

transaction-based verification, constraint and weighted randomization, exception

handling and other verification tasks. The main items within the SCV are as following:

 transaction-based verification

 data introspection

 constraint and weighted randomization

 transaction monitoring and recording

28

2.4 SystemVerilog

IEEE-1800, SystemVerilog [34] extends Verilog-2001 by adding important new

features for design, synthesis and verification. The extensions include simple

enhancements to existing constructs, extensions of data types and operators, a new

constructs of Object-Oriented mechanism, assertion mechanism for verifying design

intent and so forth.

As the integral part of SystemVerilog, SystemVerilog Assertions (SVA) is used

for the temporal aspects of specification, modeling and verification. It can embed

sophisticated assertions and functional checks in HDL code. It can also allow simple

boolean expressions into complex definitions of design behavior.

2.5 Probability Distribution

In probability theory and statistics, a probability distribution describes

probabilities that a random variable can take within all possible values. There are two

types of probability distribution functions: continuous probability distribution

functions and distribution probability distribution functions. A discrete probability

distribution function gives a discrete number of values and their certain probabilities

of occurrence at random events. The common discrete distributions are Binomial

distribution, Geometric distribution, Logarithmic distribution and Poisson distribution

[36]. Unlike discrete probability distributions, a continuous probability density

function (PDF) measure the probability of an infinite number of values over

29

continuous interval and the probability of each single value is always zero in

continuous PDF. The main PDFs include Uniform distribution, Normal distribution,

Beta distribution, Gamma distribution, Exponential distribution, Rice distribution,

Triangular distribution, Lognormal distribution and Weibull distribution [36]. In this

thesis, six continuous probability distributions are selected for generating random

number in CGA, their probability density functions are presented as follows.

2.5.1 Uniform Distribution

Uniform distribution is defined by two parameters: (lower limit) and

(upper limit). The probability of any value between and is equal. The PDF of

uniform distribution of variable is defined as:

 (2.1)

2.5.2 Normal Distribution

Normal distribution or Gaussian distribution is a continuous distribution that is

defined by two parameters: mean () and standard deviation (). The PDF is

defined as:

Where: x = variable = mean (average) = variance

30

2.5.3 Exponential Distribution

The PDF of Exponential distribution is defined as:

 （2.3）

Where: > 0 and x (1,)

2.5.4 Beta Distribution

Beta distribution is another continuous distribution that is defined by two parameters:

and . The PDF is defined as:

 (2.4)

Where: 0< x< 1

2.5.5 Gamma Distribution

Gamma distribution is a non-symmetric continuous probability distribution that has

two parameters: scale factor and shape factor . The PDF is defined as:

 (2.5)

Where: k and > 0

31

2.5.6 Triangle Distribution

Triangle distribution is defined by three parameters: low limit, mode, and upper limit.

The PDF is given in the equation.

 (2.6)

Chapter 3

OCP Verification Methodologies

In this chapter, we provide both directed test scheme and random test scheme to

verify OCP modules. In directed test scheme, a reusable OCP verification framework

is developed to verify both TLM and RTL OCP models. After that, we employ SCV

as a pure random number generator to generate OCP transactions to OCP TLM

modules. Finally, we present the proposed methodology that utilizing Cell-based

Genetic Algorithm with multiple probability distribution random number generators to

generate OCP transactions and enhance the functional coverage of the OCP TLM

models.

3.1 Reusable OCP TLM Verification Environment

Figure 3.1 depicts the proposed verification methodology. The DUV (Design

Under Verification) includes OCP generic master core, OCP generic slave core and

OCP TLM (Cycle-Accurate Level) channel. The master and the slave cores are

attached to one side of the OCP TL1 channel respectively. They communicate with

each other by the channel. During the simulation, the master gets OCP requests from

directed request tables and then sends the requests to the slave. The slave receives the

requests and returns the corresponding responses to the master. An implementing

33

adapter was developed for different abstract level modules communication. Reusable

OCP SVA assertions were also developed to verify OCP protocol compliance checks

in the OCP monitor. External OCP configuration files which stored in text files are

used to configure both the OCP TL1 channel and the OCP monitor. Another two

external configuration files are used for configuring OCP master and slave cores

respectively. Using QuestaSim6.4 AVE (Advanced Verification Environment) [37] as

our simulator, we can get the result of SVA assertions pass or failure from the AVE

during the simulation.

Figure 3.1 OCP Directed Verification Framework

3.1.1 OCP TL1 Channel

OCP-IP [1] released OCP2.2 SystemC TLM Channels including Transaction

Layer One (TL1), Transaction Layer Two (TL2) and Transaction Layer Three (TL3)

[38]. The TL3 (or PV) channel is built on OSCI TLM package [35]. It is untimed and

event-driven. The TL2 (or PVT) channel is designed for architecture evaluation and

OCP

SVA

 Assertions

OCP

Request

Tables

TL1

Slave

Generic

Core

OCP TL1 Channel

TL1

Master

Generic

Core

Advanced

Verification

Environment

Assertions

Coverage

Report

OCP configuration files

Master configuration files

Slave configuration files

T
L

1
 to

 R
T

L
 A

d
a

p
te

r

OCP TLM Model

34

modeling. It is approximately-timed. The TL1 (or CA) channel is cycle-accurate but

faster than RTL. Even though TL3 and TL2 channels are much more efficient than TL1,

they cannot be our DUV because they hide the protocol details. To develop a reusable

verification framework for both TLM and RTL modules, timing information is

necessary and cannot be ignored. The TL1 channel is the transfer layer channel which

is designed for simulations that are close to the hardware level. We choose the TL1

channel as our DUV because it supports all OCP transfer phases, timing and

configuration parameters of OCP hardware specification. The SVA assertions that are

developed for TL1 channel use to verify OCP protocol and configuration compliance

can be reused for RTL OCP models.

The OCP SystemC TL1 channel uses “request/update” methods for delta cycle

updates of the channel state. It implements the OCP API commands that process

request, data handshake and response OCP transfers. The OCP master and slave

interfaces in the TL1 channel provide port access to all OCP API commands. Moreover,

the TL1 channel implements the monitor interface so that the monitor can be connected

for protocol checking, performance analysis and trace dumping.

The TL1 channel is configured by a C++ STL (Standard Template Library) MAP

object that contains all of the OCP parameter settings. The MAP is constructed by the

key string being the name of the parameter and the value string being the value of the

parameter. An example is shown below:

 threads i:8

35

The left side (the key side) of the pair is the OCP parameter name. “threads”

indicates that how many threads are in the OCP channel. The right side (the value side)

are formatted as type_char:value, where type_char can be “i” for an integer or Boolean,

“f” for a floating point value and “s” for a string. A value followed a colon (:) indicates

the value of the OCP parameter. Accordingly, the example means the OCP TL1 model

is configured as an eight-thread OCP channel.

During the elaboration, the OCP TL1 channel loads the OCP parameters from an

external configuration file to build the configuration MAP and sends the corresponding

settings to the OCP generic master core and the OCP generic slave core.

3.1.2 OCP TL1 Generic Master Core

An OCP TL1 generic master core is connected to one side of the OCP TL1

channel. It can generate OCP transfer requests to mimic an initiator core. The master

core implements three SystemC thread processes: request thread process, optional data

handshake thread process and response thread process. The request thread process

handles the sending of OCP requests for the master core. The data handshake thread

process handles sending the corresponding data for the master core. The response

thread process handles the receiving of responses for the master core. Figure 3.2 shows

a diagram of single thread OCP master core.

36

Figure 3.2 OCP TL1 Generic Master Core

As a directed test generator, the master core generates OCP transactions from

few requests tables. The request tables contain OCP commands. The burstlength table

has the lengths for each OCP transaction. The threads table indicates which thread is

used for the corresponding OCP transfer request. The delays between the sending out of

each request are also set in a delays table. An example of request tables is shown as

follows. There are nine predefined OCP transactions in this example. For each table

entry, the master sends the corresponding requests to the corresponding thread then

waits the corresponding time before moving on to the next table entry. At the beginning

of the simulation, the master core gets OCP commands from the first row of the

command table. In this example, there are two OCP simple write commands in the

first transaction. The first element in the thread table indicates that these two

Request

Phase

SCmdAccept
Data

Handshake

Phase

SDataAccept

delay

request3

delay

request 2

delay

request 1

……………

Request

Stream

delay

Response

Response

Processing

and

Acceptancedata 4

data 6

data 5

data 4

data 3

data 2

data 1

……………

Data HS

Stream

New

Response
MRespAccept

OCP Master Core

Single-Threaded OCP

Delays

Table

BurstLength

Table

Threads

Table

Commands

Table

Request

Tables

37

commands should be sent to OCP thread 0. Similarly, the first element of the burst

table gives the burst length of the first transaction according to the number of the

valid OCP commands in the command table. After that, the first entry of the delay

table gives 100 cycles delay for the first command and 3 cycles delay for the second

one. When the first transaction is finished, the master will get the next one according

to the second entry of request tables. During the simulation, the master gets

transactions from request tables in an infinite loop.

// OCP command table

OCPMCmdType Commands[9][4] = {

{OCP_MCMD_WR,OCP_MCMD_WR, OCP_MCMD_IDLE,OCP_MCMD_IDLE},

{OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_IDLE},

{OCP_MCMD_RD,OCP_MCMD_IDLE,OCP_MCMD_IDLEOCP_MCMD_IDLE},

{OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE},

{OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE},

{OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD},

{OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE, OCP_MCMD_IDLE},

{OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_IDLE},

{OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD}

};

38

//Thread table

unsigned int TestThread[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};

//Burstlength table

int NumTr[] = {2, 3, 1, 3, 3, 4, 2, 3, 4};

// Delay table

int NumWait[NUM_TESTS][4] = {

 {100, 3, 0xF, 0xF},

 {7, 1, 3, 0xF},

 {6, 0xF, 0xF, 0xF},

 {10, 2, 1, 0xF},

 {7, 1, 3, 0xF},

 {6, 1, 1, 1},

 {7, 2, 0xF, 0xF},

 {8, 2, 1, 0xF},

 {7, 2, 2, 2}

};

The master core is generic for different OCP configuration settings. Dashed parts

are optional and can be enabled and disabled by OCP configuration settings. For

example, if the OCP parameter “datahandshake” is set to 1, the master will involve the

39

optional data handshake thread process and send request phase and data handshake

phase separately. Otherwise, it sends OCP transfer request with the data in the request

thread process only.

The master core has its own parameters as well. Table 3.1 gives the parameters

for the master core.

Parameter Description

mrespaccept_delay The number of cycles to delay before accepting a response from the

slave.

mrespaccept_fixeddelay MRespAccept Delay Style. If the parameter is true (1), the master

always waits for “mrespaccept_delay” cycles before accepting a

response. If the parameter is false (0), the master waits for a random

number of cycles before accepting the response. This random number

of cycles will vary uniformly from 0 to mrespaccept_delay.

Table 3.1 OCP TL1 Generic Master Configuration Table

3.1.3 OCP TL1 Generic Slave Core

A generic OCP slave core that reacts like a target memory core is connected to

the other side of the OCP TL1 channel. The slave core implements two SystemC thread

processes: request thread process and response thread process. The request thread

process handles the receiving of OCP requests for the slave core. The request thread

also combines request and data if data handshake phase is the part of the OCP channel.

The response thread process handles the sending of responses for the slave core. Figure

3.3 is a diagram of single thread OCP slave core.

40

Figure 3.3 OCP TL1 Generic Slave Core

Similarly to the OCP master core, the OCP generic slave core can not only deal

with different OCP parameter settings, but also has its own parameters. The following

table gives the parameters for the slave core.

Parameter Description

latencyX This is the response latency for thread number X. there is a latency

parameter for each thread in the channel. This parameter sets the

minimum number of cycles between receiving the request and issuing

the response.

limitreq_max The outstanding requests per thread are limited to limitreq_max.

Table 3.2 OCP TL1 Generic Slave Core Configuration Table

OCP Slave Core

Single-Threaded OCP

Simple Read/

Write Memory

Request

Phase

SCmdAccept

`

Read

Response

FIFO

Response Phase

MRespAccept

41

3.1.4 Reusable OCP Assertions

OCP-IP provides OCP2.2 compliance checks in the specification [16]. For a core

to be considered OCP compliant, it must satisfy all the compliance checks. The

compliance checks include protocol compliance checks and configuration compliance

checks. The compliance checks includes dataflow signals checks, dataflow phase

checks, dataflow burst checks, dataflow transfer checks, sideband checks and so on.

SVA language is chosen to design OCP SVA assertions according to these compliance

checks. All these assertions presented are embedded to a reusable OCP monitors.

The monitor contains a full set of OCP parameters, all OCP signals. During the

simulation, the OCP assertions can be activated or inactivated by the corresponding

OCP parameters. In order to illustrate the approach to verify OCP protocol compliance,

some SVA assertions are present as following.

Dataflow phase check 1.1.2: signal_valid_MCmd_when_reset_inactive [16]

The signal MCmd should never have an X or Z value on the rising edge of the

OCP clock.

property p_signal_valid_MCmd_when_reset_inactive;

 @(posedge ocpif.sv_clk) disable iff (!ocpif.MReset_n)

 !$isunknown(ocpif.MCmd);

endproperty

42

Dataflow phase check 1.2.3: request_hold_MCmd [16]

Once a request phase has begun, the signal MCmd may not change their value

until the OCP Slave has accepted the request. This check is active only if the OCP

parameter cmdaccept, is set to 1. The request phase begins when the master drives

MCmd to a value other than Idle and ends when SCmdAccept is sampled asserted (true)

by the rising edge of the OCP clock. The SVA assertion for this check shows below:

property p_request_hold_MCmd;

@(posedge ocpif.sv_clk) disable iff(!ocpif.MReset_n||!ocpif.SReset_n)

first_match (ocpif.MCmd!=OCP_MCMD_IDLE&&

!ocpif.SCmdAccept && ocpif.ocpParams.cmdaccept)

|=>$stable(ocpif.MCmd) throughout

(##[0:$]$rose(ocpif.SCmdAccept));

endproperty

Dataflow burst check 1.3.7: burst_sequence_MAddr_INCR [16]

Within an INCR burst, the address increases for each new master request by the

OCP word size. Because an INCR burst can be a precise burst or an imprecise burst.

Obviously, we cannot translate this check into one SVA assertion. We have to separate

the check into individual SVA assertions for all possible bursts.

There are two types of OCP precise burst, MRMD burst and SRMD burst. For

SRMD burst, only the first request will be sent out, so this check makes nonsense for

SRMD burst. For MRMD burst, although the burst length is constant, different MRMD

43

bursts can have different lengths. However, SVA repetition operator must have a fixed

value as the number of times the expression should match, so it‟s impossible to design

one assertion for different MRMD bursts with different lengths. This problem was

solved by defining a macro, putting the macro inside the repetition operator of the SVA

assertion as a constant. Even though the assertion can only check fixed length MRMD

burst in one simulation, different length bursts can be checked in different simulations

by changing the macro value then rebuilding the monitor module before running

another simulation. The SVA code shows below:

property p_burst_sequence_MAddr_INCR_precise;

logic[2:0] old_cmd;

@(posedge ocpif.sv_clk) disable iff(!ocpif.MReset_n)

if(ocpif.ocpParams.burstlength&& ocpif.ocpParams.addr &&

ocpif.ocpParams.burstseq_incr_enable&&

ocpif.ocpParams.burstseq)

(first_match(ocpif.MCmd!=OCP_MCMD_IDLE&&

ocpif.MBurstLength==`BURST_LENGTH &&

ocpif.MBurstSeq==OCP_MBURSTSEQ_INCR &&

((ocpif.MBurstPrecise&&ocpif.ocpParams.burstprecise)

|| !ocpif.ocpParams.burstprecise)&&

((!ocpif.MBurstSingleReq&&ocpif.ocpParams.burstsinglereq)

|| !ocpif.ocpParams.burstsinglereq)),

44

old_cmd = ocpif.MCmd)

|=>(((ocpif.MAddr-$past(ocpif.MAddr))==ocpif.ocpParams.data_wdt

h/8) && ocpif.MCmd==old_cmd) [->`BURST_LENGTH-1];

endproperty

For imprecise burst, the way to decide the beginning and the end of a burst are

different from precise burst. The beginning of an imprecise burst is the first request

phase with MBurstLength greater than 1. The end of an imprecise burst is the request

phase with MBurstLength equal to 1. So the SVA code shows below:

property p_burst_sequence_MAddr_INCR_imprecise;

logic[2:0] old_cmd;

@(posedge ocpif.sv_clk) disable iff(!ocpif.MReset_n)

if(ocpif.ocpParams.burstprecise && ocpif.ocpParams.burstlength &&

ocpif.ocpParams.addr && ocpif.ocpParams.burstseq_incr_enable &&

ocpif.ocpParams.burstseq)

first_match(ocpif.MCmd!=OCP_MCMD_IDLE&&

ocpif.MBurstLength>1 &&

ocpif.MBurstSeq==OCP_MBURSTSEQ_INCR &&

!ocpif.MBurstPrecise),

old_cmd = ocpif.MCmd

|=> ((ocpif.MAddr-$past(ocpif.MAddr)==ocpif.ocpParams.data_wdth/8)

&&ocpif.MCmd==old_cmd&&ocpif.MBurstLength>1)[->0:$] ##[1:$]

45

(ocpif.MAddr-$past(ocpif.MAddr)==ocpif.ocpParams.data_wdth/8) &&

ocpif.MCmd==old_cmd && ocpif.MBurstLength==1;

endproperty

The monitor includes not only the protocol compliance checks as above, but also

the configuration compliance checks which involve enable relationships of OCP

parameters. These configuration checks “param1_enable_param2” implies that param1

is somehow enabled by param2.

Request group check 2.1.7: req_cfg_sdata_enable_resp [16]

The parameter “sdata” can only be enabled if “resp” is enabled.

property P_req_cfg_sdata_enable_resp;

sdata==1 |-> resp==1;

endproperty

The OCP reusable monitor can load OCP parameters from the configuration text

files before the simulation just like the OCP TL1 channel does. All the SVA assertions

are activated only when the corresponding OCP parameters are enabled.

3.1.5 OCP TLM-to-RTL Adapter

Even though OCP TL1 channel is cycle accurate, it is still high level abstract

model without OCP signals in the Channel. The master and slave communicated by

functional calls. On the other hand, our reusable OCP SVA assertions are developed

based on OCP protocol compliance checks. All these checks are represented by OCP

signals. The OCP monitor that contains the reusable SVA assertions should be pin

46

accurate RTL models. Therefore, an OCP TLM-to-RTL implementing adapter is

required to connect the cycle-accurate OCP TLM model to the pin-accurate OCP RTL

monitor.

The OCP TL1 channel provides the monitor interface to access and sample the

channel states. Because the OCP signals are abstracted to request group, data

handshake group and response group, the TL1 monitor interface can only sample these

groups. The implementing adapter divides those groups into OCP signals and sends

them to the monitor by pin accurate port connections. Figure 3.4 shows the function of

the implementing adapter.

Figure 3.4 OCP TLM-to-RTL Adapter

OCP

Generic

Master Core

Request Group

O
C

P
 T

L
1

 C
h

a
n

n
e

l

OCP

Generic

Slave Core

O
C

P
 T

L
M

-t
o

-R
T

L
 A

d
a

p
te

r

OCP

Monitor

Datahandshake Group

Response Group

MCmd

MAddr

SCmdAccept

MData

SDataAccept

SResp

MRespAccept

Request Phase

DataHS Phase

Response Phase

47

First of all, the implementing adapter samples OCP TL1 request group, OCP TL1

data handshake group and OCP TL1 response group by the positive edge of each clock

cycle. Then those groups are divided into OCP signals. After that, a set of SystemC

ports (sc_out) for each OCP signal were defined for communication with the monitor.

Finally, the powerful QuestaSim6.4 AVE was employed to connect the SystemC model

(OCP TL1 channel) and the SystemVerilog model (OCP SVA monitor) because it

supports mix-language design and verification simulation. Following the QuestaSim

user‟s manual guidelines [37], the SystemC DUV can be instantiated in the

SystemVerilog monitor and communication with the monitor.

3.2 OCP Verification Framework with SCV Generator

The previous OCP verification framework utilized directed test scheme because

the generic OCP master core gets test scenarios from request tables. As SoC designs

grow larger, it becomes more difficult to generate a complete set of directed stimuli to

cover their full functionality. A solution to overcome the weakness of directed test is

using automatic constraint-random test (CRT). In this these, we employ SystemC

verification library (SCV) as a traditional pure random number generator to produce

random OCP transactions for our OCP models.

Figure 3.5 depicts the verification methodology. Instead of using directed OCP

request tables, a SCV random OCP transaction generator is developed to target our

OCP models. Because OCP has the high configurability and flexibility, the SCV

48

generator should have some configurable primitive directives to generate specific

OCP transactions for each given OCP models. For instance, if the OCP channel has

four-bit thread_wdth, random thread numbers of OCP transactions which are

generated by the SCV generator should be in the range of 0 to 15. Similar to the OCP

TL1 channel, the SCV generator gets OCP configuration from the external file before

the simulation. The OCP generic master core receives random OCP transactions from

the SCV generator and sends them to the OCP channel.

Figure 3.5 OCP Verification Framework with SCV Random Generator

When using random test scheme, a verification coverage plan is necessary to

measure and direct the verification progress. In this thesis, we develope several

configurable OCP functional coverage points in our reusable monitor. These

functional coverage points are developed in SystemVerilog because our verification

framework is designed in SystemVerilog. The verification goal is that all functional

coverage points should hit the least times. If the all coverage points reached the least

OCP

SystemVerilog

Functional

coverage points

SCV Random

OCP

Transactions

Generator

TL1

Slave

Generic

Core

OCP TL1 Channel

TL1

Master

Generic

Core

Advanced

Verification

Environment

Functional

Coverage

Report

OCP configuration files

Master configuration files

Slave configuration files

OCP

SVA

 Assertions

T
L

1
 to

 R
T

L
 A

d
a

p
te

r

OCP TLM Model

49

times, the simulation will be terminated.

3.3 Cell-based Genetic Algorithm on OCP

Instead using of pure random SCV generator, Cell-based Genetic Algorithm

with multiple probability distribution generators is provided as automatic CDV module

to generate and evolve test vector for enhancing the functional coverage of OCP

models. Figure 3.5 shows the proposed methodology.

Figure 3.5 OCP CGA Verification Methodology

First of all, one of the probability distributions and its parameters is selected to

generate random numbers. In this thesis, six distributions are selected, which are

Uniform distribution, Normal (Gaussian) distribution, Exponential distribution,

Gamma distribution, Beta distribution and Triangle distribution. Normal, Exponential

OCP

SystemC

Functional

Coverage Points

CGA OCP

Transaction

Generator

Functional

Coverage

Report

OCP configuration files

Master configuration files

Slave configuration files

OCP

SVA

 Assertions

CGA

Configuration

File

Advanced

Verification

Environment

TL1

Slave

Generic

Core

OCP TL1 Channel

TL1

Master

Generic

Core

T
L

1
 to

 R
T

L
 A

d
a

p
te

r

OCP TLM Model

50

and Uniform distributions are chosen because they are well-known and have been

widely employed in hardware design and verification tools. Gamma and Beta

distributions are employed because the different probability curves can be easily

obtained by controlling different value of their parameters. Triangle distribution is

selected because it can define the range of random value according the input domain

of the DUV. Then the maximum coverage rate can be achieved by adjusted one height

parameter only. Additionally, Uniform distribution is also used for generate random

values for the CGA to apply genetic operators. After that, OCP SystemC coverage

points should be defined according to the antecedents of the OCP SVA assertions so

that the OCP SystemC coverage points can reflect the coverage of the OCP SVA

assertions. Finally, we repeat simulations for different probability distributions with

different parameters and compare the coverage results of all the simulations for

obtaining the best coverage solution.

The flowchart of the proposed CGA is presented in Figure 3.6. First, a

probability distribution with its particular parameters is chosen to generate random

numbers. For instance, if Exponential distribution is chosen then the value of the rate

parameter λ is also set to predefined value. Then CGA parameters are loaded from an

external file. The parameters are maximum number of generations, maximum

population size, number of cells, number of OCP transactions, tournament size,

51

Figure 3.6 Flowchart of OCP CGA Verification Methodology

probability values for crossover, mutation and elitism, selection type, fitness definition,

fitness evaluation formula and so on. After the CGA configuration, the initial

population is generated by the random number generator which we selected from the

first step. The process will not finish until the maximum number of generations is

reached. In each generation, “maximum population size” of populations is generated

End

Start

Select a PDF for RNG

Set CGA Parameters

Initialize Random Population

Clear Coverage Counters

Run Simulation

Fitness Evaluation

Store Coverage Result

Apply Genetic Operators

Generate New Population

Output

Coverage

Results

No. of Population < Max.

Population Size

No. of Generation < Max.

Generation Size

Yes

Yes

No

No

Set OCP configuration

52

for simulation. The coverage counters which count hit times of each coverage point are

cleared before the simulation of each population starts. After each simulation, the

coverage result is evaluated by a fitness function and stored in a text file for further

analysis. Additionally, the applied genetic operators such as selection, elitism,

crossover and mutation are used on the current population for evolving and producing

the new one.

The pseudo-code of the CGA is present as follow:

Pseudo-code of the OCP CGA Methodology:

 Input : OCP Model (DUV)

 Input : OCP configuration settings

 Input : CGA parameters

 Input : Selected random distribution for RNG

 Output : Best fitness values with their population numbers for each generations.

1. Population_Num = 0

2. Generation_Num = 0

3. WHILE Generation_Num <GenerationSize DO

4. Initialize(Population)

5. FOR Population_Num=0 to PopulationSize DO

6. FORALL solution (a set of OCP Transactions) of Population DO

7. Reset(CoverageCounters)

8. Run simulation of DUV

9. Collect coverage result

10. Calculate fitness value of the current solution

11. ENDFORALL

12. Randomize(NewPopulation)

13. TempSolutions Elitism(Population, best solutions)

14. TempSolutions Selection(Population, selection_probability)

15. TempSolutions Crossover(crossover_probability)

16. TempSolutions Mutation(mutation_probability)

17. Population = TempSolulations + NewPopulation

18. ENDFOR

19. Generation_Num = Generation_Num + 1

20. ENDWHILE

Table 3.3 Pseudo-Code of OCP CGA Verification Methodology

53

The proposed Cell-based Genetic Algorithm (CGA) [12] is a search and

optimization technique to enhance functional coverage. Random number generators

based on different probability distribution functions are provided for CGA to generate

initial random population by [25]. The main components of the CGA are presented in

the following subsections.

3.3.1 Solution Representation

The CGA is based on genetic algorithm. Normally, genetic algorithms use a

fixed length bit string to representing a single value solution, but the proposed CGA

represents a solution by a number of cells. A cell is a fundamental unit which

represents a weighted uniform random distribution for a sub-range. Each cell has two

limits: upper limit and lower limit of the sub-range. A list of cells presents an optimal

random probability distribution for a test generator. The number of cells depends on

the complexity of the distribution.

Figure 3.7 Cells for Different Probability Distributions [25]

2

2
n 0

Cell1

Cell2
Cell3

2
n0

Cell1

Cell2
Cell3

a b

c

Cells based on Normal Distribution

Cells based on Normal Distribution

2

54

The solution of an OCP model in the CGA depends on the configuration of the

model and the verification plan (functional coverage points) of the model. For

instance, an OCP TL1 model only supports OCP simple read command

(OCP_MCMD_RD) and simple write command (OCP_MCMD_WR) and the

verification plan is that both OCP_MCMD_RD and OCP_MCMD_WR should be

presented on the OCP channel. Then, the solution of the CGA can be represented

by only 1 bit. The value of 0 represents OCP_MCMD_RD and the value of 1

represents OCP_MCMD_WR.

 If the solution of an OCP model is represented by n bits, the parameters of cells

are generated within the range of 0 to -1 by a random number generator. The initial

population of the CGA is comprised of a number of cells. The total number of cells is

configured by an external CGA configuration file which can be predefined by the user

before simulation. Each cell has three parameters, which are lower limit, high limit and

weight of the uniform distribution. The random generation of these parameters is

based on the selected probability distribution. Figure 3.7 shows two groups of cells

which are generated based on a Normal distribution and a Triangle distribution

respectively. Random numbers in each cell are stimuli of the OCP model. Coverage

information is collected for each cell for evaluation and evolution during the

simulation.

A group of cells which represents a probability distribution is called

Chromosome. Each chromosome is considered as a stimuli generator. Several

55

parameters in each chromosome, such as the maximum valid range and the total

weight of all cells, are provided for the evolution process. Normally, many test

generators are needed to drive the DUV. A collection of Chromosomes constitutes a

Genome which represents a whole solution. A genome also has many parameters for

the evolution process such as the complexity of a chromosome which is the total

number of cells in it, the mutation probability of a cell and the crossover

probability of a chromosome and so on. These parameters are also configured

from an external CGA configuration file are constant during the process.

3.3.2 Random Number Generators

A Random Number Generator (RNG) is computational program which is

designed to generate a sequence of stimuli for the DUV without any pattern. RNGs are

widely used in simulation-based verification and evolution processes. Normally, a

RNG with uniform distribution between 0 and 1 is required to generate any specific

probability distribution. In the CGA, a Pseudo-Random Number Generator (PRNG)

algorithm called Mersenne Twister (MT) [40] is utilized to generate good quality

random numbers uniformly distributed between 0 and 1. Normal distribution,

Exponential distribution, Gamma distribution, Beat distribution and Triangle

distribution random number generators are provided based on the MT algorithm to

generate stimuli for OCP model.

There are several techniques can be used for generating random numbers from

different probability distributions such as inverse Cumulative Distribution Function

56

(CDF) technique, Acceptance-Rejection technique [41]. The inverse CDF technique

substitutes a random uniform number between 0 and 1 in the CDF of the selected

probability distribution function (PDF) for generating distributed random numbers. The

acceptance-rejection technique samples two values. One is the PDF f(x), where x is a

random number. The other on is y from U(0,1). If f(x)>y, the value of x is accepted. If

not, reject the value x and repeat sampling. Some other methods are used for specific

probability distributions such as Box-Muller and Polar technique for normal

distribution [42].

In the proposed methodology, different techniques are applied to implement five

different probability distributions based on the work of [25]. Inverse CDF technique is

used for implementing exponential and triangle distributions [41].

Acceptance-rejection technique is used for formulating Gamma and Beta distributions

[43]. And Box-Muller method is chosen for Normal distribution [42]. Additionally,

uniformly distribution random numbers generated by MT are provided for all these

technique algorithms.

3.3.3 Initialization

The first step of a Genetic Algorithm is generating an initial random population.

The CGA utilized two optional initialization schemes: fixed period random

initialization and random period random initialization. Figure 3.8 illustrates a five-cell

initialization by these two schemes respectively.

In fixed period random initialization, the input valid range [0,] is divided

57

into five equal sub-ranges. One initial cell is generated within each sub-range randomly.

In random period random initialization, initial cells are generated randomly in the valid

range [0,]. The lower limit of the current cell must be higher than the upper limit

of the previous one. That means, if the previous cell span over the range [], the

current cell will be generated within the range [].

Figure 3.8 CGA Random Initialization Schemes

3.3.4 Selection and Elitism

The proposed CGA employs two selection methods: Roulette Wheel selection

Cell1 Cell2 Cell3 Cell4 Cell5

L1 H1

W1

L2 H2

W2

L3 H3

W3

L4 H4

W4

L5 H5

W5

12 n0

L1 H1

W1

L2 H2

W2

L3 H3

W3

L4 H4

W4

L5 H5

W5

12 n0

Initialization range of Celli

Fixed Period Initialization

Random Period Initialization

58

and Tournament selection [26]. This option is in the CGA configuration file and users

can choose one of them before the simulation. The elitism operator is also applied at

the same time to keep the fittest individuals in the next generation.

3.3.5 Crossover

Crossover operator is useful to preserve and forwards good features of exist

individuals to the next generation. In the CGA, crossover operators are applied to

chromosomes with a probability parameter . A uniformly random number

 is generated for each chromosome to compare with . If is less than ,

then crossover operator will be executed to the chromosome. Otherwise, the

chromosome will be copied to the new generation directly.

Two kinds of crossover operators are provided in the CGA, which are single

point crossover and inter-cell crossover. Single point crossover is the typical crossover

that exchanges cells between two chromosomes. Inter-cell crossover operator merges

two chromosomes by union () or intersection (

) rather than exchange parts of them. Which kind of crossover operator is

selected depends on the predefined weights and . Similar to the

previous scheme, a uniformly random number is

generated. Single point crossover operator is chosen if . Inter-cell

crossover is selected if .

59

3.3.6 Mutation

The purpose of mutation operators is introducing new features to new generators.

In the CGA, mutation operators are applied to chromosomes with a probability for

each cell. Many mutation operators are provided to mutate the low limit, high limit and

the weight of a cell. Similar to crossover operator, the predefined weights of the

mutation operators are used to decide which one will be applied. When a cell is selected

for mutation, one of the following operators should be applied:

 Insert or delete a cell

 Shift or adjust a cell

 Change the weight of a cell

3.3.7 Fitness Evaluation

A sequence of cells is considered as a potential solution of the CGA to direct a

random number generator to improve the coverage rate of a set of functional coverage

points. The fitness value which is calculated by an evaluation function represents the

quality of the solution. A greater fitness value that a solution has, a greater coverage

rate the solution can reach.

Different evaluation functions can be employed in the CGA. The average

coverage rate is the most common strategy. However, it is not a good evaluation

function to discriminate potential solutions when there are many coverage points to be

considered simultaneously. Assume we have two potential solutions. One solution

60

with high average rate is obtained by most of 100% coverage points and few totally

inactivated coverage point. The other solution with a low average coverage rate is

comprised of all the coverage points having a low but non-zero coverage rate.

Apparently, the second solution is better than the first one because all the coverage

points are activated. But the average coverage rates show the opposite result.

Consequently, two evaluation functions are defined in the CGA. One function is

Four-Stage Evaluation, the other one is Mean-Weighted Standard Deviation

Difference Evaluation.

Four-stage evaluation method ensures that the evaluation process will activate all

coverage points before tending to maximize the average coverage rate. The main steps

of the four-stage method are presented as follows:

 Find a solution that activates all the coverage points at least one time.

 Push the solution towards activating all the coverage points according to a

predefined coverage rate threshold CovRate1.

 Push the solution towards activating all the coverage points according to a

predefined coverage rate threshold CovRate2 which is higher than

CovRate1.

 After achieving the three steps, the average coverage rate of all the

coverage points is applied for continuous evolution.

The other evaluation function is Mean-Weighted Standard Deviation Difference

Evaluation. Its equation is presented below:

61

 (3.1)

Where and

 (3.2)

 (3.3)

According to the equation, better fitness value can be achieved by increasing the

average coverage () and decreasing the standard deviation coverage ().

The constant parameter k is used to adjust the effectiveness of the standard deviation.

We may not obtain an effective solution if the value of k is too small. While a large

value of k may also obstruct the way of evolving an effective solution.

3.3.8 Termination Criterion

The termination criterion of the CGA decides whether the evolution process

terminates or continues generating a new potential solution. If the process achieves 100%

or other predefined acceptable values of coverage rate for all the coverage points, the

process will terminate. Otherwise, the CGA runs until the maximum number of

generations is reached and reports the best solution in all potential solutions regardless

of the fitness value. In this thesis, the CGA process will be terminated only when the

maximum number of generations is reached.

3.3.9 OCP SystemC Functional Coverage Points

Our CGA is built in C++ language and our previous OCP functional coverage

62

points in the verification environment are built in SystemVerilog. The CGA module

must keep obtaining coverage information and using the information to evolve

populations during the simulation, but it‟s not efficient to share coverage information

between two different languages. Therefore, we design functional coverage points in

SystemC instead of SystemVerilog in our CGA methodology.

Chapter4

Implementation Result

In this chapter, directed tests are used for five different OCP TL1 models to

activate our protocol compliance assertions and debug both OCP models and

assertions. Then the proposed CGA methodology is utilized to generate random OCP

transactions and evolve transactions to enhance functional coverage of the OCP TL1

MRMD model. MRMD configuration is chosen because it integrates a lot of OCP

configurable features such as data handshake, multi-thread, precise burst and so on. The

SCV random OCP transaction generator is also implemented as pure random stimulus

generator on the MRMD model to compare with the CGA methodology.

4.1 Directed Tests

In this section, an OCP TL1 generic master core gets OCP transactions from

directed test request tables and sends them to an OCP TL1 generic slave core through

the OCP TL1 channel. Five external OCP configuration files are provides to configure

the OCP models. A monitor with reusable OCP SVA assertions is connected to the

OCP TL1 channel for protocol compliance checking. The experimental assertion

coverage results of different OCP models are shown and discussed as well.

64

4.1.1 Five OCP TL1 models

The OCP TL1 generic master core, slave core and channel can be configured to

specific OCP entities by external configuration files. Five OCP configuration settings

were created to demonstrate different OCP features, which are basic configuration,

data handshake configuration, multithreads configuration, MRMD burst configuration

and SRMD configuration. Since we are applying functional verification, some OCP

parameters such as “addr_wdth” and “data_wdth” are not important to demonstrate

OCP features, common values for these parameters are chosen to complete

configuration settings. Basic configuration only supports basic OCP features. The

master core can only send a single request command in each OCP transaction. In data

handshake configuration, the OCP TL1 channel includes data handshake phase so the

OCP master can send request and its data separately. Multithread configuration

enhances the data handshake configuration by adding multiple independent OCP

threads. Different OCP transactions can be transferred in different threads

independently. MRMD and SRMD configuration settings make the TL1 channel

support OCP burst transactions. Moreover, SRMD can accomplish an OCP burst

transaction by a single request. Because these five configuration settings cover main

OCP extension features, almost all of the OCP SVA assertions in the monitor can be

activated and exercised.

Table 4.1 summarizes the basic OCP configuration setting. The basic

configuration sets OCP TL1 channel with only basic OCP features. “addr_wdth=16”

65

and “data_wdth=32” indicate the channel has 16 bits address bus and 32 bits data bus.

“cmdaccept=1” configures the signal SCmdAccept is the part of the OCP channel. A

value of 1 indicates that the OCP slave core has already accepted the current request

from the master core. “write_enable=1” and “read_enable=1” indicate that the

channel only supports basic read and basic write OCP commands. “endian=1”

indicates the channel is little endian, which means lower addresses are associated with

lower numbered data bits (byte lanes).

Parameter Value Parameter Value Parameter Value

addr_wdth 16 broadcast_enable 0 mdata 1

data_wdth 32 rdlwrc_enable 0 sdata 1

threads 1 readex_enable 0 addrspace 0

datahandshake 0 burst_aligned 0 burstprecise 0

cmdaccept 1 force_aligned 0 byteen 0

dataaccept 0 write_enable 1 connid 0

sthreadbusy 0 read_enable 1 reqinfo 0

sthreadbusy_exact 0 writenonpost_enable 0 mdatainfo 0

respaccept 0 writeresp_enable 0 respinfo 0

mthreadbusy 0 addr 1 sdatainfo 0

mthreadbusy_exact 0 resp 1 endian 1

Table 4.1 Basic OCP Configuration

The following tables with highlight parameters show how to configure an OCP

TL1 channel with different OCP extension features.

In Table 4.2, “datahandshake” and “dataaccept” are toggled to 1, which added

data handshake phase with the signal SDataAccept to the OCP TL1 channel. So the

master core can sent the request and data separately during write transfer request. The

value of 1 on the SDataAccept indicates that the slave core accepts the pipelined write

66

data from the master.

Parameter Value Parameter Value Parameter Value

addr_wdth 16 broadcast_enable 0 mdata 1

data_wdth 32 rdlwrc_enable 0 sdata 1

threads 1 readex_enable 0 addrspace 0

datahandshake 1 burst_aligned 0 burstprecise 0

cmdaccept 1 force_aligned 0 byteen 0

dataaccept 1 write_enable 1 connid 0

sthreadbusy 0 read_enable 1 reqinfo 0

sthreadbusy_exact 0 writenonpost_enable 0 mdatainfo 0

respaccept 0 writeresp_enable 0 respinfo 0

mthreadbusy 0 addr 1 sdatainfo 0

mthreadbusy_exact 0 resp 1 endian 1

Table 4.2 OCP Data Handshake Configuration

The OCP TL1 channel is event driven module. During the simulation, several

processes can proceed in parallel with delta cycle delay updates. Therefore, OCP

master core can send a request, get a response and accept the response at the same cycle.

Similarly, OCP slave can get a request, accept the request and send a response

simultaneously.

Parameter Value Parameter Value Parameter Value

addr_wdth 16 broadcast_enable 0 mdata 1

data_wdth 32 rdlwrc_enable 0 sdata 1

threads 8 readex_enable 0 addrspace 0

datahandshake 0 burst_aligned 0 burstprecise 0

cmdaccept 1 force_aligned 0 byteen 0

dataaccept 0 write_enable 1 connid 0

sthreadbusy 0 read_enable 1 reqinfo 0

sthreadbusy_exact 0 writenonpost_enable 0 mdatainfo 0

respaccept 0 writeresp_enable 0 respinfo 0

mthreadbusy 0 addr 1 sdatainfo 0

mthreadbusy_exact 0 resp 1 endian 1

Table 4.3 OCP Multi-thread Configuration

67

For obtaining the multithread feature in the OCP model, the value of the

parameter “threads” in the configuration setting should be set greater than 1. In Table

4.3, “threads” is set to 8. So the corresponding OCP TL1 channel supports 8 threads

communication.

Parameter Value Parameter Value Parameter Value

addr_wdth 16 broadcast_enable 0 mdata 1

data_wdth 32 rdlwrc_enable 0 sdata 1

threads 1 readex_enable 0 addrspace 0

datahandshake 1 burst_aligned 0 burstprecise 1

cmdaccept 1 force_aligned 0 burstseq 1

dataaccept 1 write_enable 1 burstlength 1

sthreadbusy 0 read_enable 1 burstlength_wdth 3

sthreadbusy_exact 0 writenonpost_enable 0 burstsinglereq 0

respaccept 0 writeresp_enable 0 respinfo 0

mthreadbusy 0 addr 1 sdatainfo 0

mthreadbusy_exact 0 resp 1 endian 1

Table 4.4 OCP MRMD Configuration

In the MRMD configuration table, “burstseq” and “burstlength” are set to 1

which means the OCP TL1 channel supports OCP burst transaction. The value of

“burstprecise” is 1 that indicates the OCP TL1 channel supports both precise burst

and imprecise burst transactions. “burstlength_wdth=3”means that the OCP channel

supports 3 bits length of OCP burst transactions. So the maximum of the burst length

is “111” or 7. The parameter “burstsinglereq” equal to 0 indicates that the channel

cannot handle the OCP SRMD burst. Each OCP request in a burst has to have both

request phase and data phase. Additionally, the data handshake feature is supported by

the OCP channel according to the values of the parameter “datahandshake” and

68

“dataaccept”.

Parameter Value Parameter Value Parameter Value

addr_wdth 16 broadcast_enable 0 mdata 1

data_wdth 32 rdlwrc_enable 0 sdata 1

threads 1 readex_enable 0 addrspace 0

datahandshake 1 burst_aligned 0 burstprecise 1

cmdaccept 1 force_aligned 0 burstseq 1

dataaccept 1 write_enable 1 burstlength 1

sthreadbusy 0 read_enable 1 burstlength_wdth 3

sthreadbusy_exact 0 writenonpost_enable 0 burstsinglereq 1

respaccept 1 writeresp_enable 0 respinfo 0

mthreadbusy 0 addr 1 sdatainfo 0

mthreadbusy_exact 0 resp 1 endian 1

Table 4.5 OCP SRMD Configuration

Comparing with the MRMD configuration, SRMD configuration toggles

“burstsinglereq” to 1, which activate SRMD feature. So the OCP TL1 master core can

send one request phase with multiple data phases in a SRMD burst. Concurrently,

“respaccept” is set to 1 to make the signal MRespAccept as a part of the OCP TL1

channel. The value of 1 on the MRespAccept indicates that the master accepts the

current response from the slave.

4.1.2 OCP TL1 generic master core and slave core configurations

Some OCP corner cases are difficult to reach for specific models. In the directed

tests, to reach these corner cases, we can either modify directed request tables for

obtaining specific scenarios, or we can change the configuration of the OCP generic

master and slave cores for making corner cases easier to be reached. For instance, the

69

request_hold_MCmd assertion can only be hit in the condition of request accept

backpressure delay. If the outstanding request buffer of the OCP slave core is large,

we have to modify the request table having more continuous requests to fill the buffer.

One the other hand, this condition can also be reached in the model with low

outstanding request buffer and high response latency. The aim of our directed test is to

debug our SVA OCP compliance assertions and validate OCP models, so simplifying

the corner cases would be a better solution. Accordingly, this corner case assertion is

covered by decreasing the value of the slave core parameter “limitreq_max” and

increasing the value of “latency”. According to the aim of the directed tests, the master

and slave cores should be configured to simplify the hardness of covering OCP SVA

assertions. So the parameters of the master and slave cores are configured as following.

When a failure assertion is hit, the waveform from the verification environment

(QuestaSime6.4) can be checked manually to determine the bug is from the OCP DUV

or the SVA assertions. Table 4.6 shows the configurations of OCP TL1 master core

and slave core.

Master Parameter Value Slave Parameter Value

mrespaccept_delay 3 latencyX 3

mrespaccept_fixeddelay 1 limitreq_max 1

Table 4.6 OCP Generic Master Core Configuration

70

4.1.3 Experimental results

Figure 4.1 shows the total assertions hit times from five different OCP

configuration simulations. The basic configuration has the minimum assertions hit

times because only basic assertions are activated. The data handshake configuration

separates request with data, so it has data handshake phase and more assertions for data

handshake extension are activated. There are ten threads in the channel for the

multithreads simulation. So assertions for multithreads feature are activated. Although

SRMD configuration involves burst feature, only one request is sent for each burst. So

its assertions hitting times is less than data handshake and multithreads configuration

during the simulation. The MRMD configuration simulation has the most assertions hit

times because it keeps all features mentioned before and more assertions for burst

extension are involved.

Figure 4.1 Different OCP Configurations Assertions Hit Times

547

785 807

743

1072

544

780 802

728

1054

3 5 5 15 18

0

200

400

600

800

1000

1200

Basic DataHandshake Multithreads SRMD MRMD

Total

Pass

Fail

71

During the simulation the SVA assertion DataFlow Phase Check 1.2.3

p_request_hold_MCmd was violated, indicating a bug in the OCP TL1 model. Figure

shows the waveform of the assertion failure that was obtained from QuestaSim

verification environment. In the first clock cycle in the waveform, the master core sent

a RD request by driving the OCP signal MCmd to OCP_MCMD_RD. The signal

SCmdAccept was not asserted by the slave core at the same cycle, which means the

slave cannot accept the request at the current cycle. According to the protocol

compliance check p_request_hold_MCmd, the signal MCmd should hold the previous

value until the slave asserts the signal SCmdAccept. However, in the second clock

cycle, the value of the signal MCmd was OCP_MCMD_IDLE. So the assertion failure

was shown. This assertion failure indicated that the signal MCmd was changed before

the slave accepted the corresponding request.

Figure 4.2 Waveform of an Assertion Failure

After further inspection of the TL1 model code, the bug was found from a

method of the monitor interface called getMCmdTrace(), which samples the signal

72

MCmd from the OCP TL1 channel. Actually, there is a bool flag first_time in the

method. During the simulation, the flag decides what value of MCmd the method can

be sampled. If the flag is 1, MCmd can be sampled correctly. Otherwise, the method

returns an Idle OCP command instead. A new request has the flag value 1. Then the flag

will be changed to 0 after the first sampling. The pseudo code of the monitor interface

function getMCmdTrace() is shown as follows:

Pseudo-code of the function getMCmdTrace():

 Input : None

 Output : Return the value of MCmd

1. Define a Boolean variable first_time

2. Initialize first_time to TRUE

3. Get MCmd from the OCP TL1 Channel

4. IF the current command is not a new one THEN

5. Set first_time to FALSE

6. IF first_time equal to TRUE THEN

7. RETURN MCmd

8. ELSE

9. RETURN OCP_MCMD_IDLE

10. ENDIF

Table 4.7 Pseudo-Code of getMCmdTrace Function

To solve this bug, an argument “scmd_accept” is introduced to the function

getMCmdTrace(). The value of “scmd_accept” is provided by the slave core to

indicate whether the slave core accepts the request or not at the current clock cycle.

The new logic of the function is that if “scmd_accept” equals to “TRUE” which means

the request has been accepted by master. MCmd doesn‟t need to hold the value, so we

can use the return value as the old function. If “scmd_accept” is “FALSE” which means

the current request phase has not finished yet, so the OCP signal MCmd should hold

73

the previous command type instead of OCP_MCMD_IDLE. A valid command of the

request should be returned whatever it‟s the first time or not. The pseudo-code of the

modified code is:

Pseudo-code of the function getMCmdTrace():

 Input : Boolean parameter scmd_accept provide by the slave core

 Output : Return the value of MCmd

1. Define a Boolean variable first_time

2. Initialize first_time to TRUE

3. Get MCmd from the OCP TL1 Channel

4. IF the current command is not a new one THEN

5. Set first_time to FALSE

6. IF scmd_accept is true THEN

7. IF first_time equal to TRUE THEN

8. RETURN MCmd

9. ELSE

10. RETURN OCP_MCMD_IDLE

11. ENDIF

12. ELSE

13. RETURN MCmd

14. ENDIF

Table 4.8 Pseudo-Code of Modified getMCmdTrace Function

 Another two similar bugs are also be found which made the two OCP

compliance assertions DataFlow Phase Check 1.2.12 datas_hold_MDataValid and

DataFlow Phase Check 1.2.17 response_hold_SResp [16] fail during the simulation.

We use the same solution to correct the OCP TL1 channel model.

4.2 Random Tests

In this section, random OCP TL1 transactions are generated automatically by

74

both the SCV generator and the CGA module with different random number

generators based on six distribution functions. The simulations are running in the

Advance Verification Environment (AVE) QuestaSim6.4 under WindowsXP SP2

operating system on Intel Core Duo CPU E4500 at 2.2GHz, and with 2GB of RAM.

The OCP functional coverage points are expressed in SystemC for the CGA and in

SystemVerilog for the SCV. In the CGA, the RNGs based on Uniform distribution,

Exponential distribution, Beta distribution, Gamma distribution, Normal distribution

and Triangle distribution are designed as separate C++ classes and are integrated into

the CGA. For different PDFs, different sets of parameters are selected to compare their

effects to the functional coverage rate on the DUV.

In OCP, some of the compliance assertions are very easy to be covered such as

dataflow signal checks. All this kind of assertions is covered in every OCP clock cycle

during the simulation to check if the signals are valid or not. But some dataflow phase

assertions are difficult to be covered for the specific models. The assertion

request_hold_MCmd which we discussed in the previous section is one of them. This

assertion is only reached when MCmd accept backpressure delay happens. Larger the

outstanding request buffer of the OCP slave core is, harder the MCmd accept

backpressure delay is reached.

In this thesis, the OCP TL1 channel is configured to MRMD models as our DUV.

We choose MCmd accept backpressure delay for each OCP thread as our functional

coverage points. Different values of the OCP parameter threads are set to determine the

75

number of functional cover points. Additionally, the outstanding request buffer of the

slave core is set to different values for adjusting the difficult levels of the functional

coverage points to be covered.

4.2.1 OCP Functional Coverage Points

Since the MRMD OCP channel is a multi-thread model, the functional cover

points should be defined as the MCmd accept backpressure delay on every OCP thread.

Because the CGA module is designed in C++, it‟s better to defined functional cover

points in SystemC. With the same language standard, the coverage information can be

easily obtained and analyzed by the evaluation process of CGA. The SystemC code of

the functional coverage points is shown as below:

if(MCmd!=OCP_MCMD_IDLE && MThreadID==i && SCmdAccept==0)

 ++Covi;

Where

If the signal MCmd is non-idle valid command (MCmd!=OCP_MCMD_IDLE)

and the slave core is not ready to accept the current request (SCmdAccept==0) on the

specified thread (MThreadID==i), the value of the respective coverage point counter

plus one (++Covi). The coverage points are from thread number 0 to .

On the other hand, SCV is employed to generate random OCP transactions to

DUV. Because the SCV generator does not need to collect coverage information and

76

the top level of our verification framework is designed in SystemVerilog, it is better to

design the functional coverage points in SystemVerilog. The verification environment

can collect the coverage information from the top model directly and the simulation

can be controlled by the coverage result. When the functional coverage rate reaches the

verification goal, the simulation will be stopped automatically. The SystemVerilog

code is shown as follows:

MCmd: coverpoint ocpif.MCmd iff(ocpif.MReset_n){

 bins IDLE = {OCP_MCMD_IDLE};

 bins WR = {OCP_MCMD_WR};

bins RD = {OCP_MCMD_RD};

type_option.weight = 0;

}

MThreadID: coverpoint ocpif.MThreadID iff(ocpif.MReset_n){

 bins signal_state_MThreadID[] = {[0:`MAX_THREADS-1]};

type_option.weight = 0;

}

SCmdAccept: coverpoint ocpif.SCmdAccept iff(ocpif.SReset_n){

 type_option.weight = 0;

}

SCmdAcceptDelay: cross MCmd,SCmdAccept, MThreadID

{

77

ignore_bins MCMD_NON_RD =

binsof(MCmd)intersect {OCP_MCMD_IDLE,OCP_MCMD_WR};

ignore_bins SCmdAccept_Assert = binsof(SCmdAccept) intersect {1};

option.at_least = 1;

}

The first three phases define three single cover points which are only sampling in

cross cover points (type_option.weight = 0). The cover points SCmdAcceptDelay

combines three cover points in a group (MCmd, SCmdAccept and MThreadID) and

ignores the MCMD cover point bin (MCMD_NON_RD) and the SCmdAccept cover

point bin (SCmdAccept_Assert). The verification goal is each cover points must be hit

at least one time (option.at_least = 1).

4.2.2 CGA Configuration

To enhance the OCP functional coverage, the proposed CGA with different

random distribution number generators is utilized to generate and evolve OCP TL1

transactions. Because the OCP protocol is a universal interface protocol for all

hardware IP cores and bus protocols, the representation of the OCP TL1 transaction in

the CGA should be defined with high configurability and flexibility. The configurable

representation for MRMD OCP models is showed below:

78

Delay0 …… DelayN MBurstLength MThreadID MCmd

NDelay
Bits

THREAD_WDTH
Bits

1 Bit
BURST_WDTH

Bits

02
1

2
TotalN

Figure 4.2 CGA Representation of the OCP Protocol

Where and

The OCP TL1 MRDM model supports only two basic OCP commands, simple

write and simple read, so one-bit is assigned to MCmd field to represent them.

THREAD_WDTH bits are assigned in the representation for multithread

communication feature. The value of indicates how many threads are

supported in the OCP channel for communication. To support OCP burst feature, the

parameter BURST_WDTH is used to represent how many bits are assigned in the OCP

interface. The value of is the maximum number of burst length that

the OCP channel can handle. Two-bit delays represent the time intervals between two

contiguous commands in the burst. Because the maximum of burst length

is , the bit number of delay equals to .

The total number of bits equals to

 .

The CGA module has several predefined parameters. Determining an optimal

setting of these parameters is a nontrivial task. The Population Size decides the

quantity of coverage information that can be stored by the CGA. It affects the

79

efficiency of the evolution process and the quality of the best solution. Good quality

solutions cannot be obtained by evolutions with small number of Population Size. The

simulation time would be intolerable long if the Population Size is too large. The

Number of Generations determines the evolution times we implement for each

simulation. The Number of Cells indicates how many cells are generated in the initial

population. A set of OCP Transactions constitutes a potential solution. The Number of

OCP transaction is determined by the complexity of the OCP models. If tournament

selection scheme is chosen in the CGA, the Tournament Size should be defined

according to the number of cells. Crossover Probability, Mutation Probability and

Elitism Probability are also defined for applying corresponding genetic operators

during the simulation. We run simulation several times for each specific probability

distribution and determine the CGA configuration settings as Table 4.9.

Parameters Value

Population Size 50

Number of Generations 50

Number of Cells 5

Number of OCP Transactions 40

Tournament Size 5

Crossover Probability 90

Mutation Probability 20

Elitism Probability 2

Fitness Definition 1

Table 4.9 CGA Configuration

Moreover, two definitions of fitness are used in CGA: CoverageStrategy and

MultipleStageStrategy. If MultipleStageStrategy is chosen as the fitness function, the

80

parameters in Table 4.10 must be specified as well.

Parameters Value

Fitness Definition 0

StageWeight 1000.0

CoverageRate1 5

CoverageRate2 10

EnableCoverageStage1 1

EnableCoverageStage2 1

Table 4.10 Multiple Stage Strategy Parameters

4.2.3 SCV representation

SCV library is selected as traditional pure random number generator to compare

with our proposed CGA. It provides a smart pointer scv_smart_ptr to generate data

objects of arbitrary data types randomly. The parts of OCP TL1 transaction can be

defined as follows:

scv_smart_ptr<OCPMCmdType> p_cmd;

scv_smart_ptr<int> p_length;

scv_smart_ptr<int> p_thread;

scv_smart_ptr<int> p_delay[MAX_LENGTH];

To generate a random value from a specifying range, the method keep_only can

be used to modify the distribution. In the following code, MAX_LENGTH represents

the maximum of OCP burst length. For instance, when the value of OCP parameter

burst_wdth is 3, the value of MAX_LENGTH should be 7 and the generation range of

the OCP burst length should be from 1 to 7.

81

p_length->keep_only(1,MAX_LENGTH);

p_thread->keep_only(0,m_threads-1);

for(int i=0; i<MAX_LENGTH; i++)

 p_delay[i]->keep_only(1,MAX_DELAY);

After that, calling the method next() in the SCV library, a new OCP TL1

transaction can be generated in the specifying range randomly.

p_cmd->next();

p_length->next();

p_thread->next();

for (int i=0; i<*p_length; i++)

p_delay[i]->next();

4.2.4 Experiment I

In this experiment, an OCP TL1 channel with MRMD configuration setting is

selected as our DUV. The DUV is configured to 1-bit command, 3-bits burst width,

3-bits thread width and 14-bits delay. The parameters of the OCP TL1 slave core are

LatencyX=4 and limitreq_max=3. Because the number of OCP threads is eight (3-bit

thread width), eight MCmd accept backpressure delays are considered as functional

coverage points.

Table 4.11 summarizes the result of CGA with CoverageStrategy

implementation. The first column shows the probability distributions and their

parameters. The second column shows the values of the maximum fitness occurring

82

during the simulation. The value of maximum fitness refers to the maximum value of

total average hits of all coverage points. The coverage rate and simulation cycles of the

maximum fitness individual are listed in third and fourth columns respectively. The

fifth column shows the generation number where maximum fitness individual

happened. The last two columns record the CPU time of the maximum fitness

individual occurred and the consumption CPU time of the whole evolution process.

Probability

Distribution RNGs

Max.

Fitness

Coverage

Rate at

Max.

Fitness

Simulation

Cycles at

Max.

Fitness

Gen.

No. at

Max.

Fitness

CPU

Time at

Max.

CovRate

Total

CPU

Time

Uniform (MT) 4.4 87.5 321 24 44.2s 88.0s

Exponential 7.9 100 328 7 14.6s 90.0s

Beta(2-2) 8.4 100 336 4 9.0s 87.8s

Beta(5-10) 9.8 100 298 29 53.0s 88.3s

Beta(10-2) 5.8 100 342 43 77.8s 88.3s

Gamma(2-2) 8.5 100 373 38 68.5s 87.9s

Gamma(2-3) 9.0 100 280 41 73.9s 88.0s

Gamma(9-11) 9.9 100 312 12 23.8s 88.5s

Normal(10000-2000) 1.6 75 311 15 29.9s 90.7s

Normal(30000-2000) 0.4 62.5 435 18 33.9s 88.3s

Triangle(0-10000-65535) 0.4 62.5 428 9 18.3s 89.0s

Triangle(0-30000-65535) 0.9 75 399 29 53.5s 89.1s

Triangle(0-15000-30000) 1.1 75 376 22 41.6s 89.4s

Table 4.11 Coverage Strategy Result of Experiment I

The result shows that around 90 seconds CPU time consumption is needed for

each distribution simulation. Exponential, Beta and Gamma distributions generated the

individual with 100% coverage rate. Other distributions cannot reach 100% in fifty

83

generations. Even though the uniform distribution has the value 4.4 of maximum

fitness individual, the coverage rate of the individual is 87.5% which means that one of

eight coverage points had not been hit. The normal and triangle distributions only

generated about 75% coverage rate and low fitness value during the evolution

processes. In the case of Exponential distribution, it took only 7 generations in around

15 seconds to generate the maximum fitness individual. Gamma (2-3) distribution

generated the maximum fitness 9.0 individual which only spent 280 clock cycles to

finish.

Probability

Distribution RNGs

Max.

Fitness

Cover

Rate at

Max.

Fitness

Sim.

Cycles at

Max.

Fitness

Gen.

No. at

Max.

Fitness

CPU

Time at

Max.

CovRate

Total

CPU

Time

Uniform (MT) 870 87.5 300 14 26.9s 88.3s

Exponential 1746 100 284 29 54.8s 91.1s

Beta(2-2) 2614 100 346 13 24.9s 88.3s

Beta(5-10) 1866 100 324 21 38.9s 87.6s

Beta(10-2) 1613 100 338 36 64.5s 87.4s

Gamma(2-2) 1863 100 334 16 30.5s 88.2s

Gamma(2-3) 1867 100 324 42 75.4s 87.7s

Gamma(9-11) 2619 100 306 28 52.5s 90.4s

Normal(10000-2000) 743 75 370 45 84.5s 91.8s

Normal(30000-2000) 497 50 450 3 7.3s 88.5s

Triangle(0-10000-65535) 620 62.5 401 18 34.2s 89.0s

Triangle(0-30000-65535) 621 62.5 397 7 14.8s 89.5s

Triangle(0-15000-30000) 620 62.5 395 6 12.9s 88.9s

Table 4.12 Multiple Stage Strategy Result of Experiment I

The result Table 4.12 is the same with the previous table except that the CGA is

implemented by using MultipleStageStrategy fitness definition. Similar result shows

84

that Exponential, Beta and Gamma distributions had the individual with 100%

coverage rate and up to 2619 maximum fitness. The fitness value more than 2000

indicates all the coverage points were hit at least 5 times and some of them were hits 10

times. Beta (2-2) gave maximum fitness within 14 generations. Exponential

distribution provides the 100% coverage rate individual with 284 clock cycles to be

simulated. Other distributions still cannot generate 100% coverage rate individuals.

The SCV implementation results are shown in table 4.13. Coverage threshold is

the verification goal which indicates how many times being hit for each coverage point

to be counted as a covered point. The result notes that all three coverage thresholds

were reached 100% rate. The CPU time for all these simulations are much less than

CGA because no sophisticated generator likes CGA was involved. However, to reach

the 100% coverage rate, the simulation had to run for tens of thousands clock cycles.

Coverage Threshold Coverage Rate Simulation Cycles CPU Time

1 100 29,539 4.2s

3 100 67,360 9.6s

5 100 82,242 11.7s

Table 4.13 SCV Result of Experiment I

4.2.4 Experiment II

To adjust the functional coverage points more difficult to be hit, we can

configure the outstanding request buffer in the slave core deeper. Consequently, we

make the request buffer deeper by setting the slave parameters latencyX:6 and

85

limitreq_max:5 in the second experiment. The latency of every OCP threads is

increased from 4 to 6 and the outstanding request buffer is also increased from 3 to 5.

The DUV of this experiment is the same as the previous OCP TL1 MRMD channel

which has 1-bit command, 3-bits burst width, 3-bits thread width and 14-bits delay.

Table 4.14 and Table 4.15 show the results for CGA with CoverageStrategy and

MultipleStageStrategy fitness definitions respectively. Because of involving more

difficult coverage points, the coverage rate of the best individual in most of

implementations cannot reach 100%. All sets of generations of different probability

distributions consumed around 90 seconds.

Probability

Distribution RNGs

Max.

Fitness

Cover

Rate at

Max.

Fitness

Sim.

Cycles at

Max.

Fitness

Gen.

No. at

Max.

Fitness

CPU

Time at

Max.

CovRate

Total

CPU

Time

Uniform (MT) 3.5 75 364 44 80.5s 90.5s

Exponential 0.7 75 281 42 76.5s 88.9s

Beta(2-2) 10.0 100 330 2 5.5s 88.8s

Beta(5-10) 3.5 75 330 38 69.1s 88.6s

Beta(10-2) 1.1 75 337 32 58.3s 88.0s

Gamma(2-2) 3.3 75 302 35 65.5s 90.3s

Gamma(2-3) 1.8 75 303 37 67.0s 88.2s

Gamma(9-11) 1.5 62.5 313 43 78.1s 88.9s

Normal(10000-2000) - - - - - 89.9s

Normal(30000-2000) - - - - - 89.3s

Triangle(0-10000-65535) - - - - - 90.4s

Triangle(0-30000-65535) - - - - - 90.0s

Triangle(0-15000-30000) - - - - - 89.4s

Table 4.14 Coverage Strategy Result of Experiment II

86

In CoverageStrategy implementation, only Beta (2-2) distribution obtained 100%

coverage rate individual with high fitness value from a very early generation. Some of

the coverage points had not been hit even though the fitness values of Uniform, Gama

and other Beta distributions are greater than 1. Exponential also has a positive fitness

but less than 1. The simulation cycles of the best individuals are around 300 in these

implementations. Normal and Triangle distributions cannot get individual with a

positive fitness value.

Probability

Distribution RNGs

Max.

Fitness

Coverage

Rate at

Max.

Fitness

Sim.

Cycles

at Max.

Fitness

Gen.

No. at

Max.

Fitness

CPU

Time at

Max.

CovRate

Total

CPU

Time

Uniform (MT) 738. 75 363 4 9.0s 89.1s

Exponential 743 75 284 40 72.0s 87.8s

Beta(2-2) 870 87.5 276 13 24.8s 87.7s

Beta(5-10) 1744 100 268 32 59.3s 88.9s

Beta(10-2) 619 62.5 313 41 74.4s 88.5s

Gamma(2-2) 619 62.5 327 14 26.9s 88.8s

Gamma(2-3) 741 75 308 14 26.9s 88.6s

Gamma(9-11) 742 75 297 11 21.7s 89.1s

Normal(10000-2000) 497 50 373 48 88.0s 89.8s

Normal(30000-2000) 124 12.5 466 1 1.8s 89.2s

Triangle(0-10000-65535) 370 37.5 381 35 64.8s 90.0s

Triangle(0-30000-65535) 248 25 383 1 1.9s 90.4s

Triangle(0-15000-30000) 246 25 356 7 14.9s 90.2s

Table 4.15 Multiple Stage Strategy Result of Experiment II

The similar result is shown in CGA with MultipleStageStrategy, only Beta (5-10)

distribution got 100% coverage rate with high fitness. Normal and Triangle distribution

87

had poor coverage rates which were less than 50%. Other distributions provided more

than 600 fitness value and above 50% coverage rate individuals during their

simulations.

Table 4.16 summarized SCV simulations with different values of coverage

threshold. To activate all coverage points at least once, SCV generator spent 96 seconds,

which is more than 90 seconds of a signal CGA simulation CPU time, on activating all

coverage points once. It consumed about three hundred seconds to reach the coverage

threshold of 5. In addition, the simulation with coverage threshold of 5 ran more than 2

million clock cycles.

Coverage Threshold Coverage Rate Simulation Cycles CPU Time

1 100 697,981 96.4s

3 100 1,876,986 267.9s

5 100 2,164,230 307.8s

Table 4.16 SCV Result of Experiment II

4.2.5 Experiment III

In Experiment III, we keep the difficult level of coverage points in Experiment I

and increase the number of coverage points by changing the OCP parameter

Thread_Wdth from 3 to 4. The OCP TL1 channel supports 16-channel communication.

So there are sixteen MCmd accept backpressure delay coverage points instead of eight

in Experiment I.

From table 4.17, the result of CGA in CoverageStrategy shows there is no best

individuals reach 100% coverage rate in all probability distribution simulations. Beta

88

and Gamma distributions obtained the better fitness values than Uniform and

Exponential. Normal and Triangle distribution cannot generate an individual with a

positive fitness value.

Probability

Distribution RNGs

Max.

Fitness

Cover

Rate at

Max.

Fitness

Sim.

Cycles

at Max.

Fitness

Gen.

No. at

Max.

Fitness

CPU

Time at

Max.

CovRate

Total

CPU

Time

Uniform (MT) 0.9 75 298 41 74.5s 89.0s

Exponential 0.6 68.75 312 41 73.4s 87.2s

Beta(2-2) 2.3 75 313 5 10.9s 87.5s

Beta(5-10) 1.8 75 281 25 45.8s 87.6s

Beta(10-2) 1.8 75 344 6 12.6s 89.5s

Gamma(2-2) 1.2 75 306 48 85.4s 87.2s

Gamma(2-3) 2.0 75 344 33 61.1s 89.9s

Gamma(9-11) 1.2 68.75 331 43 77.4s 88.0s

Normal(10000-2000) - - - - - 87.2s

Normal(30000-2000) - - - - 88.7s

Triangle(0-10000-65535) - - - - - 87.8s

Triangle(0-30000-65535) - - - - 87.4s

Triangle(0-15000-30000) - - - - 86.7s

Table 4.17 Coverage Strategy Result of Experiment Three

Table 4.18 shows result of the CGA in MultipleStageStrategy. No individuals

reaches 100% coverage rate. All distributions provided above 50% coverage rate

except Normal and Triangle distributions. Normal and Triangle distributions still

present poor quality of generating OCP TL1 transactions.

Either of the CGA implements provided 100% coverage. The main reason is due

to the fact that it is very difficult to cover sixteen coverage points by an individual with

89

only forty OCP transactions by random number generators. The results that the CGA

produced are based on the best population result of the entire generation. In other words,

there are 50 populations in a single generation and only the one producing best vectors

that gives highest coverage in the generation is recorded as the best population even

though it does not activate all coverage points. The coverage rate of the entire

generation is 100% for all these simulation with different probability distributions.

Probability

Distribution RNGs

Max.

Fitness

Coverage

Rate at

Max.

Fitness

Sim.

Cycles

at Max.

Fitness

Gen.

No. at

Max.

Fitness

CPU

Time at

Max.

CovRate

Total

CPU

Time

Uniform (MT) 681 68.75 284 25 45.2s 86.7s

Exponential 743 75 289 42 75.3s 87.4s

Beta(2-2) 744 75 324 48 85.4s 87.2s

Beta(5-10) 740 75 288 14 26.3s 86.9s

Beta(10-2) 807 81.25 314 46 83.5s 88.9s

Gamma(2-2) 745 75 281 37 68.5s 90.1s

Gamma(2-3) 742 75 322 32 58.0s 88.0s

Gamma(9-11) 682 68.75 302 13 24.8s 88.8s

Normal(10000-2000) 493 50 405 3 7.1s 87.1s

Normal(30000-2000) 370 37.5 420 35 1.8s 89.2s

Triangle(0-10000-65535) 495 50 422 36 64.7s 87.4s

Triangle(0-30000-65535) 494 50 386 26 49.1s 90.6s

Triangle(0-15000-30000) 432 43.75 373 8 15.5s 85.9s

Table 4.18 Multiple Stage Strategy Result of Experiment Three

Since the SCV generator does not have the limitation of the number of

transactions, it can reach 100% coverage rate for all three coverage threshold. As Table

4.19 presented below, the CPU time and simulation cycles are two times than the SCV

90

result in Experiment I because only the number of coverage points is doubled.

Coverage Threshold Coverage Rate Simulation Cycles CPU Time

1 100 89,975 13.1s

3 100 114,459 16.8s

5 100 190,307 27.8s

Table 4.19 SCV Result of Experiment Three

4.2.5 Discussion

Several experiments have been done by the proposed CGA with different random

number generators based on different probability distributions and SCV random

generator. In CGA, different distributions produce different results. High value of

maximum fitness and maximum coverage rate are achieved in a shorter CPU time or

with a small number of generations for some probability distributions such as Beta and

Gamma distributions. On the contrary, Normal and Triangle distributions provide poor

quality to generate efficient OCP TL1 transactions. The performance results difference

is due to the nature of the OCP TL1 transaction structure. The results were not

consistent for all simulations due to the random nature of the CGA. It might be useful to

run the simulation for each probability several times and then apply statistics methods

determine more accurate effects of the different probability distributions on the

coverage.

For SCV random generator, the consumptions of simulation cycles are hundreds

even thousands times more than the best population of CGA. On the other hand, the

91

CPU time consumptions in SCV are much less than CGA in the relatively small size of

DUV because CGA spends most of time on random number generation and evolution

process. But when the DUV is large system model, the proportion of the CPU time

consumption of CGA will decrease because most of time will be consumed on the

DUV. So the difference of the CPU time consumptions could be ignored in large DUV.

Moreover, it is important to note that the OCP TL1 channel DUV is designed by

SystemC in TLM. TLM modeling allows up to 1000 times faster than RTL modeling.

Lots of time will be saved if we reused the best populations of CGA in RTL models

instead of using the SCV generator directly according to the huge difference between

the number of simulation cycles in CGA and SCV.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we presented a verification framework which is configurable and

reusable at various levels of hardware model abstraction. The OCP TL1 channel

models with different configuration settings are chosen as DUVs. A universal OCP

SVA monitor along with OCP compliance assertions and functional coverage points is

developed and attached to OCP interface during the simulations. Because of the

extensive usage of SystemVerilog both as a verification and assertion language, the

monitor can be integrated at different development stages of a SoC.

We utilized Cell-based Genetic Algorithm with different random number

generators to improve functional coverage for OCP TL1 models. The integrated

random number generators are based on Exponential, Normal, Gamma, Beta and

Triangle distributions. SystemC Verification library was also employed as random

generator to compare with CGA. The functional coverage points are designed by

SystemC and SystemVerilog languages for CGA and SCV random generators

respectively.

In CGA, different probability distributions have different effects on the

functional coverage. With some distributions, the best population which has high

93

fitness value, high coverage rate and low clock cycle consumptions is generated with a

small number generations. However, with others the best population is obtained after

several generations. The results of all probability distributions show slight difference

due to the random nature of the CGA. It would be good to run the simulation for each

probability distribution RNG several times and then apply statistical method to

determine more accurate effects on the functional coverage. In addition, the fitness

value and functional coverage rate did not improve with some RNGs and fluctuates

around a certain value because of the nature of the functional coverage of the DUVs.

In SCV, the 100% coverage rate is reached with less CPU time consumption but

much longer clock cycle simulations than CGA. The reason is SCV did not involve

complex RNGs and running a single simulation to reach the aim of 100% coverage.

SCV spent less execution time in less CPU time consumption in our small

SystemC TLM DUV. However, CPU time consumption of each clock cycle for RTL

could be 100 even 1000 times more than TLM model. For a large system RTL model

DUV, the consumption of each clock cycle could be very expensive. If the standard

SCV is used directly on such DUV, it executed CPU time to reach good functional

coverage rate would be huge. Instead, if the proposed CGA is utilized on high abstract

level model such as TLM with few more CPU time consumption. Then the best

population of CGA with optimized functional coverage and small number of clock

cycles consumption can be reused in the corresponding RTL model. Therefore, we can

spend a little bit effort on high level hardware models and get great benefit at low

94

level models.

5.2 Future Work

In this thesis, we developed SystemVerilog-based OCP verification framework

utilizing both assertion-based verification methodology and coverage-driven

verification methodology to verify OCP TL1 channel and model. However, the

enhancements can be made by providing configurable OCP CGA generator and

monitor since there are three abstraction level OCP channels. Be configured to

different abstraction levels such as TL3, TL2, TL1 or RTL, the enhanced CGA

generator should be able to generate OCP transactions and evolve functional coverage.

Accordingly, our OCP monitor can be enhanced by adding configurable OCP

assertions and coverage points for different abstraction level designs.

In addition, we provided implementing adapter to divide OCP TL1 transactions

into pin accurate port connections for OCP compliance checks in our OCP monitor.

However, configurable adapters can be added in master side, slave side and monitor

interface. With these configurable adapters, different abstraction layer OCP models

can communicate by different OCP channel. Different abstraction layer OCP

assertions in the monitor can be used to check different layer communication.

Finally, we consider proving the correctness of our framework by integrating it

with a Formal Verification Flow. This will allow re-using the OCP assertions by

transforming them to LTL (Linear Temporal Logic) properties in order to perform

95

Model-Checking.

References

[1] OCP-IP. “Open core protocol international partnership”. http://www.ocpip.org/,

2007.

[2] Thomas Kropf. Introduction to Formal Hardware Verification. Springer-Verlag,

1999.

[3] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving

Environment for Higher-Order Logic. Cambridge University Press, 1993.

[4] PVS. http://pvs.csl.sri.com, 2008.

[5] J. Bergeron, E. Cerny, A. Hunter, A. Nightingale. Verification Methodology

Manual for SystemVerilog. Springs, 2006

[6] Mentor Graphics. Advanced Verification Methodology Cookbook.

www.mentor.com, 2007.

[7] Sasan Iman. Step by Step Functional Verification with SystemVerilog and

OVM. Hansen Brown Publishing, 2008.

[8] Accellera Organizaion, Inc. SystemVerilog 3.1a Language Reference Manual:

Accellera‟s Extensions to Verilog, 2004.

[9] Srikanth Vijayaraghavan, Meyyappan Ramanathan. A Practical Guide for

SystemVerilog Assertions. Springer, 2005.

[10] OpenVera Assertion Language Reference Manual.

www.open-vera.com/technical/OVAIPGuidelines.pdf.

http://www.mentor.com/

97

[11] Accellera Property Specification Language Reference Manual (version 1.1).

http://www.eda.org/vfv/docs/PSL-v1.1.pdf.

[12] A. Samara, A. Habibi, S. Tahar, and N. Kharma. Automated Coverage Directed

Test Generation Using Cell-Based Genetic Algorithm. In Proc. of IEEE

International High Level Design Validation and Test Workshop, pages 19-26,

Monterey, California, USA, 2006.

[13] Mike Mintz and Robert Ekendahl. Hardware Verification with SystemVerilog,

May 2007.

[14] SystemC Verification Standard Specification V1.0e. SystemC Verification

Working Group, May 2003.

[15] Chris Spear, Synopsys Inc. SystemVerilog for Verification. Springer, 2006.

[16] OCP-IP. Open Core Protocol Specification Release 2.2, 2006

[17] Intel Corporation. Moores Law. http://www.intel.com/technology/mooreslaw/,

2005.

[18] Atsushi Kasuya and Tesh Tesfaye, “Verification methodologies in a

TLM-to-RTL design flow.” In Proc. IEEE/ACM Design Automation

Conference (DAC 2007), Pages: 199 – 204, San Diego, California, USA, June

2007.

[19] Kun Tong and Jinian Bian, “Assertion-based Performance Analysis for OCP

Systems.” In Proc. Circuits, Signals, and Systems (CSS 2007), Banff, Alberta,

Canada, July 2007.

http://www.intel.com/technology/mooreslaw/

98

[20] S. Fine and A. Ziv. Coverage Directed Test Generation for Functional

Verification using Bayesian Networks. In Proc. of Design Automation

Conference, pages 286-291, New York, NY, USA, 2003. ACM Press.

[21] H. Shen and Y. Fu. Priority Directed Test Generation for Functional Verification

using Neural Networks. In Proc. of the Conference on Design Automation - Asia

South Pacific, volume 2, pages 1052-1055, Shanghai, China, 2005.

[22] P. Faye, E. Cerny, and P. Pownall. Improved Design Verification by Random

Simulation Guided by Genetic Algorithms. In Proc. of ICDA/APChDL, IFIP

World Computer Congress, pages 456-466, P. R. China, 2000.

[23] M. Bose, J. Shin, E. M. Rudnick and M. Abadir. A Genetic Approach to

Automatic Bias Generation for Biased Random Instruction Generation. In Proc.

Congress on Evolutionary Computation, pages 442-448, Munich, Germany,

2001.

[24] R. Yang, L. Wu, J. Guo, and B. Liu. The Research and Implement of an

Advanced Function Coverage Based Verification Environment. In Proc. of 7th

International Conference on ASIC, pages 1253-1256, Guilin, China, 2007.

[25] Essam Arshed Ahmed. Enhancing Coverage Based Verification using

Probability Distribution. Concordia University, 2008.

[26] Melanie Mitchell. An introduction of genetic algorithms. MIT Press, 1999.

[27] Richard B. Darst. Introduction to Linear Programming. CRC Press, 1990.

[28] Thomas H. Cormen. Introduction to algorithms, Third Edition. MIT, 2009.

99

[29] Donald E. Knuth. The art of computer programming. Addison-Wesley

Professional, 2009.

[30] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution

Programs. Springer, 1996.

[31] IEEE Standard Association. IEEE Standard SystemC Language Reference

Manual. www.ieee.org, 2006.

[32] J. Bhasker. A SystemC™ Primer. Cadence Design Systems, 2002.

[33] T. Grotker, S. Liao, G. Martin and S. Swan. System Design with SystemC™.

Kluwer Academic Publishers, 2002.

[34] IEEE Standard Association. IEEE Standard for SystemVerilog - Unified

Hardware Design, Specification, and Verification Language. www.ieee.org,

2005.

[35] Transaction Level Modeling using OSCI TLM 2.0. http://www.systemc.org/,

May 31, 2007

[36] M. Spiegel, J. Schiller, and R. Srinivasan. Theory and Problems of Probability

and Statistics. McGraw-Hill, 2000.

[37] Mentor Graphics Corporation, Questa™ SV/AFV User‟s Manual,

2007.

[38] A SystemC OCP Transaction Level Communication Channel V2.2, February 6,

2007

[39] Hamilton B. Carter, Shankar Hemmady. Metric-Driven Design Verification.

http://www.systemc.org/

100

Springer, 2007.

[40] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally

Equidistance Uniform Pseudo-Random Number Generator. ACM Transaction

on Modeling and Computer Simulation, 8(1):3-30, 1998.

[41] D. T. Lang. Approaches for Random Number Generation. Class notes of

Statistical Computing: STAT 141, http://eeyore.ucdavis.edu/stat141/Notes/

RNG.pdf. University of California at Davis, USA, 2006.

[42] R. Roy. Comparison of Different Techniques to Generate Normal Random

Variables. Technical report. The State University of New Jersey, USA, 2004.

[43] W. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press,

1992.

[44] Simon Haykin. Neural Networks A Comprehensive Foundation (Second

Edition). Pearson Education, Inc., 2009.

[45] A. H. Warren. Introduction: Special Issue on Microprocessor Verifications.

Formal Methods in System Design, 20:135-137, 2002.

http://eeyore.ucdavis.edu/stat141/Notes/

