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ABSTRACT 

 
Pattern-Based Trace Correlation Techniques for Software Evolution 

 

Maher Idris 
 

 
Understanding the behavioural aspects and functional attributes of an existing software system is 

an important enabler for many software engineering activities including software maintenance 

and evolution. 

In this thesis, we focus on understanding the differences between subsequent versions of the 

same system. This allows software engineers to compare the implementation of software features 

in different versions of the same system so as to estimate the effort required to maintain and test 

new versions. Our approach consists of exercising the features under study, generate the 

corresponding execution traces, and compare them. Traces, however, tend to be considerably 

large. We propose in this thesis to compare them based on their main behavioural patterns.  Two 

trace correlation metrics are also proposed and which vary whether the frequency of the patterns 

is taken into account or not. 

We show the effectiveness of our approach by applying it to traces generated from an open 

source object-oriented system. 
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Chapter 1      Introduction 

 

1.1 Problem and Motivation  

Understanding the behavioural aspects and functional attributes of an existing software 

system is an important enabler for many software engineering activities including 

software maintenance and evolution [Dunsmore 00], which is recognized to account for 

almost 80% of the cost of the software life cycle [Martin 83, Pigoski 97].  

One challenge that engineers constantly face while maintaining an existing system is to 

answer questions like what the system does, how it is built, and why it is built in a certain 

way [Dunsmore 00]. Documentation is normally the main source of information where 

answers to these questions should be found, but it has been shown in practice that 

documentation is rarely up to date if at all exists. The problem is further complicated by 

the fact that software engineers, the initial designers of the system often move to new 

companies taking with them valuable information about the system. 

In this thesis, we focus on the problem of understanding the differences between 

subsequent versions of the same system, an activity that can help in many software 

engineering tasks including estimating the time and effort required to maintain new 

versions of the system, uncovering places in the code where faults have been introduced, 

understanding the rationale behind some design decisions, and so on.  
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We propose a novel approach that allows software engineers to compare the 

implementation of software features in different versions of the same software system. 

Our approach is based on information gathered from two sources. We use execution 

traces (dynamic analysis) by exercising the target features of the system under study to 

identify the differences between the implementation of the features under study. Once 

these differences are identified, we refer to the source code (static analysis) to understand 

the causes of these differences.  

Execution traces have been used in various studies to observe and investigate the 

behavioural aspects of a software system. Traces, however, have been found to be 

difficult to work with. This is due to the large size of typical traces. Although many trace 

analysis tools and techniques have been proposed (e.g., [Cornelissen 08, Hamou-Lhadj 

05a, De Pauw 98]), none tackles the problem of comparing traces.  

In this thesis, we propose a novel trace correlation algorithm by comparing traces based 

on their main behavioural patterns instead of a mere event-to-event mapping. We have 

also developed two metrics to calculate the similarity of the generated traces.  

We focus in this thesis on traces of routine calls. We use the term routine to mean 

procedure, function, and method. Our approach is independent from the programming 

language used to develop the application as long as the language supports the concept of 

routines. 
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1.2 Research Contributions 

The main contributions of this thesis are as follows: 

 A novel trace correlation approach based on comparing traces based on their 

behavioural patterns. The patterns are extracted by varying different matching 

criteria.  

 We introduce two trace correlation metrics to measure the similarity between two 

different system versions based on the extracted patterns from execution traces 

that represent the underlying features.  

 We applied correlation metrics to execution traces generated from an object-

oriented target software system to show the applicability of our approach. 

1.3 Thesis Outline 

The rest of the thesis is structured as follows: 

 Chapter 2 - Background: This chapter consists of the literature review. We 

present background information, including a brief overview of related topics to 

our research, namely, program comprehension, software maintenance and 

evolution, reverse engineering, software effort estimation, feature location, trace 

abstraction, and static and dynamic analysis.  A survey of existing techniques for 

comparing different versions of software system is proposed along with their 

advantages and limitations.   
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 Chapter 3 – Trace Correlation Approach: The trace correlation approach and 

metrics are presented in this chapter. The chapter starts by presenting the 

definition of an execution trace and behavioural patterns. This is followed by 

explaining the matching criteria used to generalize patterns. The chapter continues 

with an overview of the feature trace generation process. Next, we present the 

overall trace correlation approach by explaining the main two phases; the first 

phase consists of pre-processing the trace whereas the second phase consists of 

applying the trace correlation technique. In the end, we complete this chapter with 

a discussion on the applicability of the presented metrics. 

 Chapter 4 – Evaluation: This chapter introduces the case study which is used to 

validate our trace correlation algorithm. Initially, we describe the target system on 

which we apply our approach. Then, the chapter covers the usage scenario, 

followed by applying the trace correlation algorithm to the generated traces. The 

results of quantitative and qualitative analyses are then presented. The chapter 

ends with a summary discussion concerning the evaluation process of applying 

the trace correlation metrics to the target system. 

 Chapter 5 – Conclusion: We conclude the thesis in this chapter. We revisit the 

main contributions and introduce future work directions. The chapter ends with 

our closing remarks. 
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Chapter 2      Background 

 

In this section, we present the related topics to our work. These topics include program 

comprehension, software maintenance and evolution, reverse engineering, software effort 

estimation, feature location, trace abstraction and summarization, and finally static and 

dynamic analysis. 

2.1 Software Maintenance and Evolution 

Software maintenance and evolution is an important area in software engineering and 

also the most costly. Brooks states that over 90% of the usual system cost is spent on 

maintenance, and that any part of the system that is successfully implemented will 

inevitably need to be maintained [Brooks 95]. 

Parnas defines software maintenance as “Programs, like people, get old.  We can’t 

prevent aging, but we can understand its causes, take steps to limit its effects, temporarily 

reverse some of the damage it has caused, and prepare for the day when the software is 

no longer viable.  ... (We must) lose our preoccupation with the first release and focus on 

the long term health of our products.” [Parnas 94]. According to IEEE, software 

maintenance is defined as all the modifications made to a program that are performed 

after the delivery to correct discovered problems, improve performance or to keep it 

adaptable and usable in the changing or changed environment [ANSI/IEEE Std].   
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There exist four types of maintenance activities [Lientz 80, ISO/IEC, Pfleeger 98]: 

 Corrective Maintenance: This activity comprises all modifications of a software 

system that are performed after the delivery to fix and correct faults that caused 

the system to fail. 

 Adaptive maintenance: All changes to the existing system after delivery to keep 

it usable in the new environment so as to meet new requirements. 

 Preventive Maintenance: This activity consists of all the corrections and 

detections that might take place in the system to prevent failures before even they 

occur. 

 Perfective Maintenance: This maintenance type comprises improvements and 

enhancements made to an existing program to improve its performance and 

maintainability.  

Yau et al. have proposed in their research that the software maintenance process is 

comprised of four phases, and when a specific maintenance objective is set up, it can go 

through these four phases to be accomplished [Yau 80]. Figure 2.1 shows the 

maintenance process along with its four phases. 

In conclusion, all the systems need to be maintained as they evolve with time, which 

often leads to many versions of the system to be released. This leads to the need to 

understand the differences between subsequent versions of a system in order to estimate 

the effort required to maintain the new versions.  In this thesis, we tackle the challenging 

issue of understanding how subsequent versions of the same system vary.  
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Figure 2.1 Software Maintenance Process (taken from [Yau 80]) 
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2.2 Program Comprehension 

“A person understands a program when he or she is able to explain the program, its 

structure, its behaviour, its effects on its operation context, and its relationships to its 

application domain in terms that are qualitatively different from the tokens used to 

construct the source code of the program” 

Biggerstaff et al. [Biggerstaff 93] 

Program comprehension is defined by Rugaber as the process of obtaining knowledge 

about a software system under study to reach a certain level of insight to facilitate tasks 

such as fixing or correcting the system‟s bugs and errors, system enhancements, reusing 

and recovering the documentation [Rugaber 95]. This comprehension can be acquired 

through analyzing the system‟s static and dynamic aspects, features, and documentation 

[Ng 04]. Fjeldstad and Hamlen have reported that 50% of the time and effort is dedicated 

to program understanding during a maintenance task [Fjeldstad 83]. This is also 

supported by Standish, who states that “if maintenance costs 70-90 percent of the life 

cycle, and understanding occupies 50-90 percent of maintenance cost [Lientz 78], 

program understanding time may be the dominant time in the entire software life cycle 

and thus the dominant cost.” [Standish 84]. 

According to Mayrhauser et al., during the program comprehension process, software 

engineers often use existing knowledge about the software system in order to come up 

with new knowledge that would be considered as part of the system knowledge to 

ultimately meet the targets of a code cognition task [Mayrhauser 95]. They identified two 

types of knowledge that developers might have: 
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 General Knowledge: This type represents the knowledge gained from the past 

experience in the domain of software engineering. It is completely independent 

from the program that engineers try to comprehend. 

 Software-Specific Knowledge: This is the second type of knowledge that 

developers can possess which stands for their deep insight and level of 

understanding the software application under study. 

In addition, a study has been conducted by Littman et al. in which they have specified 

strategies for program comprehension [Robson 91]. In the experiment, they have showed 

the relationship between these strategies and summarized their experiment with main 

conclusions that there are two fundamental approaches to program comprehension: 

 Systematic Approach: where the maintainer examines the entire program and 

elicits the interactions between the different modules. This is achieved before any 

attempt to perform modifications or changes to the program. 

 As-needed Strategy: where the maintainer tries to reduce the amount of study 

prior to perform any modifications that take place in the system. Consequently, he 

or she tries to locate the section of the program which needs to go under the 

maintenance process to commence the modifications. 

In fact, the systematic approach is applicable to small programs only, where larger 

program may require an as-needed approach to be adopted instead. Erdös et al. have 

accomplished a study which states that partial comprehension of complex programs is 

enough to perform maintenance process [Erdös 98]. Many legacy systems are so large 

and complex to be entirely comprehended regardless of the forms used for representation 
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and yet they need to be maintained. In other words, it is not necessary for programmer to 

fully understand the program to perform maintenance. It is only necessary to comprehend 

parts of the program affected by the maintenance request. Our work supports this idea as 

we only focus on particular features of a system that need to be understood. 

2.3 Reverse Engineering 

The major tools used by engineers to assist and ease the process of program 

comprehension are reverse engineering tools. Nelson stated that reverse engineering is 

related to explore tools and techniques which help software engineers comprehend legacy 

systems [Nelson 96]. The objective is to improve the productivity of the maintainers as 

they solve maintenance tasks. Chikofsky et al. define reverse engineering as: “the 

process of analyzing a subject system to identify the system’s components and their 

interrelationships and create representations of the system in another form or at a higher 

level of abstraction” [Chikofsky 90]. Reverse engineering has many benefits such as 

handling the complexity of the system, recovering high-level models of the system and 

retrieving the missing information [Chikofsky 90, Biggerstaff 89]. 

Before we present the reverse engineering processes, we have to mention about the 

forward engineering besides the reverse engineering as both of them are fundamental 

concepts in the software system lifecycle. Forward engineering term is completely the 

opposite of reverse engineering term, and it is suggested to differentiate the traditional 

software engineering process from reverse engineering process. According to the study 

conducted by Chikofsky et al., we propose the relationship between the forward and 

reverse engineering in Figure 2.2. 
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Figure 2.2 Relationship between terms; reverse engineering and forward 

engineering (taken from [Chikofsky 90]) 

As illustrated in Figure 2.2, the terms forward engineering and reverse engineering are 

defined as follows: 

 Forward Engineering: is the traditional process for the typical software system 

where we move through the main phases starting from high-level abstractions and 

models to design phase and ending up the process in the last phase; the low-level 

implementation of the system. As shown in Figure 2.2, this process is comprised 

of steps to map the higher-level such as requirements to design and then to the 

low-level implementation [Chikofsky 90].  

 Reverse Engineering: it is the opposite process of forward engineering. Reverse 

engineering is the analysis process of the subject system to categorize the 

components of the system and interrelationships between them and to show the 

system in a high-level abstraction. Figure 2.2 demonstrates the reverse 

engineering as a sequence of recovery steps to in the opposite direction, starting 
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from implementation through design and finishing at the high-level abstractions 

and models of the program [Chikofsky 90]. 

2.4 Software Development Effort Estimation 

In software effort estimation, effort may refer to different things including time, cost and 

physical efforts. Software development effort estimation is the process of measuring in 

advance according to some specific techniques, the realistic effort need required to 

develop and maintain a software program to either complete it by adding new 

requirements or enhance it by deleting or modifying unnecessary or old features that 

might have errors, noise and uncertain functionality. The effort estimates can be used in 

many areas of software engineering, for example, project plans, iteration plans, budgets, 

investment analysis and for prices and bids purposes. Researches who work on the effort 

estimation are divided into groups depending on how they define the effort: time or cost. 

For example, a project might be concerned with estimating the required time more than 

the costs.  

According to a research conducted by Boehm, cost and delivery time must be taken under 

consideration as coherent elements in the production of quality software that raises the 

customer level of satisfaction [Boehm 96].  

The work we present in this thesis aims to help engineers estimate the actual effort with 

time and cost needed to maintain and evolve software systems by examining how newer 

versions of a system differ from older versions.  
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2.5 Static and Dynamic Analyses 

Two major approaches of system analysis have been established: Static analysis and 

dynamic analysis. 

1. Static Analysis: This type of analysis can be done without the need to execute the 

program. It is based on understanding the source code to provide a complete 

feedback on the system. Static analysis process examines the program code to 

derive all properties for all possible executions [Ball 99]. The static information 

gained by performing the static analysis of software systems expresses the 

structure of the software system under study with all its behavioural aspects and 

features that can be invoked in any system execution. 

2. Dynamic Analysis: Dynamic analysis, the focus of this thesis, is the process of 

analyzing all the data gathered by executing a program according to a certain 

scenario to understand the run-time behaviour of the software system. Ball has 

defined it as “Dynamic analysis is the analysis of the properties of a running 

program” [Ball 99]. In contrast to static analysis, dynamic analysis examines the 

running program (through program instrumentation) to derive the properties that 

hold for one or more program executions (executed scenarios). 

Dynamic analysis is control-based environment which depends on the program inputs 

such as using certain features in a particular scenario as well as the program outputs that 

reflect the program behaviours. Dynamic analysis involves instrumenting a program 

under investigation to record its runtime events. The run-time information or run-time 

events typically take the form of execution traces.  
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Static and dynamic analyses have been considered to be complementary techniques in 

many dimensions including completeness, scope and precision [Ball 99]. In addition, 

using both of them helps in the comprehension process of the program and speed up the 

maintenance activities. For this reason, we make use of both types of analysis techniques 

in this thesis. However, dynamic analysis occupies the bigger proportion of this thesis 

compared to static analysis. Nevertheless, static analysis is still important and useful so as 

it is needed to validate some of the information used to compare traces generated from 

different versions of a system. 

2.6 Trace Abstraction and Summarization 

Traces are known to be hard to work with due to the large size of typical traces, often 

millions on lines long. Therefore, there is a need to find ways to reduce their size while 

keeping as much of their essence as possible. Trace abstraction and summarization 

techniques aim to achieve this objective. We surveyed the most cited techniques in what 

follows: 

2.6.1 Pattern Detection Techniques 

Trace patterns are defined as non-contiguous repetitions of the same sequence of events. 

[De Pauw 98, Hamou-Lhadj 03a]. De Pauw and Hamou-Lhadj proposed techniques to 

reduce the trace size generated from the target system by extracting the patterns which 

can be used to reflect the main events invoked in a trace. Maintainers can focus on 

understanding these patterns instead of reading the whole trace. 
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2.6.2 Sampling 

In the context of execution traces, a sample means a representation of part of the trace 

that consists of a specific number of events based on the sampling parameters [Chan 03, 

Whaley 00, Dugerdil 07].  Sampling is a good technique for reducing the initial trace size 

but suffers from the challenging task of defining proper sampling parameters that can be 

generalized to other applications.   

2.6.3 Grouping 

Grouping is considered as summarization technique since it summarizes and compresses 

the monotone subsequence of execution traces into one event, which results in 

considerable saving of space and allow up to two dozen feature traces to be presented 

simultaneously. Kuhn et al. introduced a grouping technique, namely, monotone 

subsequence summarization that represents entire traces as signals in time [Kuhn 06]. 

They describe their approach as a trace signal which is composed of monotone 

subsequences separated by pointwise discontinuities. The technique cuts the signal at the 

pointwise discontinuities to create the monotone subsequences and compress each one 

into a summarized one method-call chain. Therefore, the summarized chain is much 

shorter that the original trace signal. 

Utilities removal is another trace summarization technique presented in [Hamou-Lhadj 

06], Hamou-Lhadj et al. built a trace summarization algorithm that consists of removing 

utility components from large traces. The authors argued that utilities clutter trace content 

without adding much information. They proposed a way to detect automatically utility 
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components by analyzing the source code. Once the utilities are identified, they devised a 

technique that filters out these utilities from traces to reduce their size without loss of 

important information.  

2.6.4 Visualization 

Many studies have been conducted for visualizing information about the behaviour of the 

target system by focusing on features of interest. Visualization is an efficient technique 

for engineers who want to achieve some activities concerning particular parts of the 

source code or the system‟s attributes including large traces [Hamou-Lhadj 04, De Pauw 

93]. Limitations of using these techniques are summarized in the need of user 

intervention as well as the inability to reuse various visualization techniques in other 

tools. 
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Chapter 3      Trace Correlation Approach 

 

3.1 Traces of Routine Calls 

An execution trace is a record of what goes on when executing the target system, usually 

by exercising its features according to specific user-scenarios. There are different types of 

traces including traces of inter-process communication, statement-level traces, routine 

call traces, and so on. In fact, one can trace about anything in the system that can help the 

task at hand. Traces have been used in many software engineering areas where there is a 

need to gain insight of the behavioural aspects of a software system.  

In this thesis, we focus on traces of routine calls. Traces of routine calls have been shown 

to be useful for program comprehension tasks [Hamou-Lhadj 04]. A trace of routine calls 

is a tree structure consisting of subsequent calls of routines that are represented as tree 

nodes. Each node is considered as a root for its subtree. The routine that invokes other 

methods is called parent while the invoked method in this case becomes a child. In 

addition, if the node is the last routine call, namely, the end of the tree or subtree, then it 

is named leaf. An example of a trace of routine calls is depicted in Figure 3.1.  

Figure 3.1 also shows a relationship between the depth limit and nesting level; the higher 

the depth, the higher the nesting level. Each node has a specific label to identify the name 

of the routine. This name can be a full name of the routine, which consists of the package, 

class name (for object-oriented systems), and the routine name.  
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Figure 3.1 An example of routine (method) call trace 

There exist many mechanisms for generating execution traces, among which code 

instrumentation is the most popular one. This technique is automatic and supported by 

many tools; many of them are available as open source. Code instrumentation consists of 

inserting probes into the code. A probe can be seen as a print out statement. When the 

instrumented code is executed, a log file is generated. To generate traces of routine calls, 

we need to have at least two probes for each routine: One probe at the entry of the routine 

and another one at the exit. Figure 3.2 illustrates the typical process of generating routine 

call traces through code instrumentation. 
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Figure 3.2 Execution Trace Generation Process 

3.2 Trace Correlation Approach 

Figure 3.3 shows a general overview of our approach for comparing traces generated 

from subsequent versions of the same system. Both versions of the system are first 

instrumented and run using the same usage scenario. The generated traces go then 

through two main phases (see Figure 3.3). The first phase consists of pre-processing the 

traces by removing continuous repetitions and noise in the trace caused by the presence 

of low-level utility components. The second phase consists of comparing the traces 

resulting from Phase 1.  
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Figure 3.3 Overall Approach Diagram 
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There are different ways for comparing traces. Perhaps the most naive one is to compare 

the traces line by line. This is often ineffective due to the fact that many events could 

have been invoked in different orders due to the existence of threads. In this thesis, we 

propose a novel approach for comparing traces based on their main behaviour. These 

behaviours are represented in the form of trace patterns as we will describe in Section 

3.2.2.  

3.2.1 First Phase: Trace Pre-processing 

As we mentioned before, a trace is first pre-processed to reduce its complexity. During 

this step, the raw traces go through the trace preparation process where we first filter out 

utility routines such as accessing methods (sets and gets). We rely on naming conventions 

to identify utilities. For example, any routine that starts with „set‟ or „get is automatically 

removed. Also, in some cases, we refer to the system folder structure to identify packages 

that serve as utilities. Any routines that belong to these packages are also removed from 

the trace. These utilities clutter the trace without adding much information to its content. 

Hamou-Lhadj et al. showed that effective analysis of a trace should include a utility 

removal stage that cleans up the trace content from noise [Hamou-Lhadj 06]. The second 

pre-processing step consists of removing contiguous repetitions due to the presence of 

loops and recursion. An example of applying the pre-processing phase is shown in Figure 

3.4 where utility routines are first removed then the contiguous repetitions as well. 
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Figure 3.4 1) Raw Trace. 2) Trace after removing utilities; we assume utilities start 

with ‘u’. 3) Trace after removing contiguous repetitions. 

3.2.2 Second Phase: Trace Correlation Technique 

In this section, we describe the second phase of our approach which is the trace 

correlation technique. Comparing traces based on their events is rather ineffective since 

the events can occur in different orders due to threading and other factors such as the 

presence of noise (utilities). It is therefore important to investigate another unit of 

comparison. In this thesis, we propose comparing traces based on the main behaviours 

they embed. These behaviours are reflected in the trace in the form of trace patters 

[DePauw 04, Hamou-Lhadj 06]. A trace pattern is defined as a sequence of events that is 

repeated non-contiguously in the trace. Trace patterns have been used in other studies to 

help software engineers understand the key aspects of a trace (e.g. [Jerding 97b]). The 

trace correlation phase is comprised of two main steps: The pattern detection step and the 

trace correlation measure. The idea is to take the two traces in question, extract their 

behavioural patterns, and compare the extracted patterns using different similarity 

measures. Two traces exhibit the same behaviour if the pattern sets are similar.   
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3.2.2.1 Pattern Detection 

As mentioned earlier, we define a trace pattern as a sequence of events that is repeated 

non-contiguously in the trace. This translates into non-contiguous repetitions of similar 

subtrees in a trace of routine calls. Hamou-Lhadj et al. have proposed a very efficient 

algorithm for automatically detecting such patterns in large traces [Hamou-Lhadj 03b].  

To reduce the number of patterns, several matching criteria have been proposed in the 

literature to measure the extent to which two sequences of events could be deemed 

similar without being necessarily identical [De Pauw 98]. In the following subsections, 

we present the most common matching criteria used to generalize patterns. 

A. Identity 

The identity matching criterion is the basic and simplest criterion. Two sequences of calls 

are considered similar if their corresponding subtrees are isomorphic. In other words, 

they have the same labels, structure, order of calls and topology [De Pauw 98, Hamou-

Lhadj 03b]. Identical matching can result in a large number of patterns that might differ 

only slightly. Figure 3.5 shows an example of the identity matching criterion.  

A

CDBCB

Pattern 1 = B

Pattern 2 = C

 

Figure 3.5 Detecting Patterns using Identity Matching Criterion 
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B. Ordering 

The idea behind this criterion, which is also called the commutativity criterion [De Pauw 

02], is to consider two sub-trees as similar if they have the same method calls and number 

of calls no matter the order in which the calls occur. Figure 3.6 illustrates an example of 

the ordering criterion. In this figure, the subtrees rooted at B are considered similar if the 

order in which the child routines occur is not taken into account. 

B

A

EYFYB

ZZXDC

HH

CDX

P1 = B

DC

H

= B

H

CD

P2 = Y

ZX

= Y

Z X

 

Figure 3.6 Example of detecting patterns using the ‘ordering’ criterion 

C. Depth-limiting 

Using this criterion, two subtrees are considered similar if they have the same method 

calls with the same order at specific depth. The rest of the methods that go beyond this 

level are ignored and not taken into account. Figure 3.7 shows how this criterion can be 

used to consider the subtrees B as similar if the depth of comparing sequences of calls is 

limited to level 1. 
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Figure 3.7 Detecting Patterns using Depth-Limiting Criterion 

D. Set 

The set matching criterion is about ignoring the order of method calls in a specific 

subtree as well as assuming each method is called only once even if it is called many 

times in the subtree; all redundancies are ignored. Figure 3.8 shows an example where 

two patterns can be detected rooted at B and E respectively by treating the sequences of 

calls rooted at these nodes as a set.  



26 
 

H

ALJA

DC

EB

ZF YX

B

XY

E

Z C DF

B

CC FD

E

X Y YZZXD

Pattern 1
Pattern 2

Pattern 3

X      X X          X     X

 

Figure 3.8 Extracting Patterns using Set Criterion 

E. Flattening 

The flattening criterion ignores the hierarchical structure of the sequences of calls to be 

compared [De Pauw 02]. It lines up all the method calls in a linear structure where the 

routine call is occurred and mentioned only once regardless of the number of repetitions 

for each routine invoked in the subtree. This is perhaps the most extreme way to group 

sequences into instances of the same pattern. Figure 3.9 shows an example of using the 

flattening criterion.  
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Figure 3.9 Extracting Patterns using Flattening Criterion 

F. Combination of Matching Criteria 

The above matching criteria can be combined in various ways. In this thesis, we propose 

using two new criteria. The first one is “Set-Depth” which is a combination of the set and 

depth-limiting criteria. The second one is “Ordering-Depth” which is a combination of 

ordering and depth-limiting. The set-depth criterion considers two sequences as similar 

using the set matching criteria applied to a certain depth. Figure 3.10 shows an example. 

In this figure, depending on the depth, we can distinguish different patterns. At level 1, 

we can see one pattern rooted at B with three sequences. At level 2, we have also one 

pattern with only two sequences. The subtree B in the middle cannot be considered as a 

sequence of this pattern using the set-depth criterion by setting the depth to 2. 
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Figure 3.10 Extracting Patterns using Set-Depth Criterion 

The ordering-depth criterion is similar to the depth-limiting criterion except that instead 

of treating the calls as a set we only ignore the order of calls. Figure 3.11 shows an 

example of applying this criterion. 
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Figure 3.11 Extracting Patterns using Ordering-Depth Criterion 
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In [Hamou-Lhadj 03b], Hamou Lhadj et al. presented an algorithm to detect and extract 

the patterns from a trace using predefined matching criteria. The algorithm uses one 

criterion at a time. Our technique adopted the idea of the algorithm with some 

modifications and improvements. These improvements include providing the ability for 

using and applying more than one matching criteria to extract the similar patterns as 

desired. Besides this, we implemented the two new combined matching criteria 

introduced earlier. For example, we can use the combined matching criteria at a time or 

two separate criteria one after another to gain the precise similar patterns from the list of 

similar patterns resulting from applying the first criterion. 

An example of application of the pattern extraction technique on the refined sample 

traces 1 and 2 of Figure 3.13 are shown in Tables 3.1 and 3.2. Figure 3.12 shows the 

same sample traces, but before we apply the first phase of our approach, namely, pre-

processing (raw traces). In this example, one matching criterion is used to detect and 

extract the similar patterns from the refined ones, which is ignoring the order of calls 

(Ordering matching criterion). 
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Figure 3.12 Two Raw Sample Routine (method) Call Traces Example 
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Figure 3.13 Two Refined Sample Routine (method) Call Traces Example 
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Table 3.1 Similar Patterns extracted from Sample Trace 1 of Figure 3.13 

 

Pattern Number 

 

Trace 1 Pattern Content 

 

Frequency 

1 
C
D
E

B

 

 

 

3 

2 G
H

F

 

 

2 

3 I
J

F

 

 

2 

4 D
E

B

 

 

2 

5 
R

B

 

 

3 

 

Table 3.2 Similar Patterns extracted from Sample Trace 2 of Figure 3.13 

 

Pattern Number 

 

Trace 2 Pattern Content 

 

Frequency 

1 
L

B

 

 

4 

2 I
J

F

 

 

3 

3 
D
C
E

B

 

 

 

3 

4 Y
Z

X

 

 

4 
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The outputs of this step are two sets of extracted patterns from two execution traces. 

These pattern sets will be used in the next step to measure the similarity between these 

sets. We explain the trace correlation metrics step in the next section. 

3.2.2.2 Trace Correlation Metrics 

In this section, we present two metrics to calculate the similarity between the traces of 

two versions of the same system based on their behavioural patterns. The two trace 

correlation metrics are: Non-weighted trace correlation metric and the weighted trace 

correlation metric.  

Non-weighted Trace Correlation Metric: 

The non-weighted trace correlation metric, NW_TCM,  is used to compare two execution 

traces based on the total number of extracted patterns to the total number of the common 

similar patterns that they have in common. More formally, NW_TCM is defined as 

follows: 

              
 

      
               

      
             

 
 

Where: 

 CPtrnN: Total Number of Common Similar Patterns of both Traces. 

 T1TotalPtrnN and T2TotalPtrnN: Total Number of Patterns of Trace 1 and Trace 

2 respectively. 
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Weighted Trace Correlation Metric: 

The weighted trace correlation metric, W_TCM, improves over the previous metric by 

taking into account the frequency of the patterns, i.e., the number of times the patterns 

occur in the traces. More formally, W_TCM can be calculated as follows: 

             

 
 
            
            

 
      

            
   

            
            

 
      

            
 

 
 

Where: 

 T1CPtrnFreqN and T2PtrnFreqN: The frequency of occurrence in each trace of 

the patterns shared between traces T1 and T2.  

 CPtrnN: Total number of similar patterns contained in both Traces. 

 T1TotalPtrnN and T2TotalPtrnN: Total number of patterns of Trace T1 and Trace 

T2 respectively. 

 T1TotalFreqN and T2TotalFreqN: Total number of frequencies of Trace T1 

Patterns and Trace T2 patterns respectively. 

Both correlation metrics range between 0 and 1. The traces are similar if the metric 

converges to 1. They are completely dissimilar if the metric is close to 0. The number of 

common similar patterns will never exceed the total number of all patterns in each trace. 

The same applies to the total number of frequencies of common similar patterns which is 
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always less than or equal to the total number of frequencies of patterns related to each 

trace.  

We illustrate the application of these metrics on the examples of Figure 3.12. After we 

performed the patterns detection algorithm, we obtained two sets of patterns, among 

which the common patterns are extracted. Figure 3.13 shows the patterns extracted from 

Traces 1 and 2 as well as the common patterns between the two traces. Notice that we 

used in this step the “Ordering” matching criterion. 

 

 

Figure 3.14 Extracting the Final Set of Similar Patterns of Sample Traces T1 and T2 

(two sets of extracted patterns) of Figure 3.13 

Now, all the relevant information needed to perform and compute the two correlation 

metrics is available to be used in the next process. Table 3.3 shows the number of 

patterns and their frequencies in the traces of Figure 3.12. 
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Table 3.3 The Properties of the Two Sample Traces of Figure 3.13 

 

                         Properties 

 

Sample Traces 

 

 

Total Number of Patterns 

 

 

Total Number of Pattern 

Frequencies 

 

Trace 1 

 

5 

 

12 

 

Trace 2 

 

4 

 

14 

 

Table 3.4 Final Set of Common Patterns of Two Sample Traces of Figure 3.13 

 

Pattern Number 

 

Content of Similar Pattern  

Frequency 

 

Trace 1 

 

Trace 2 

1 
C
D
E

B

 

3 3 

2 I
J

F

 

2 3 

Total number of frequencies of similar patterns 5 6 

 

The results of applying the non-weighted and weighted correlation metrics are as follows: 
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In view of the fact that it is almost half of each sample trace patterns considered similar 

in this example, the result obtained by applying NW_TCM seems to be reasonable. The 

outcome of applying this metric has resulted in 45% similarity between the feature traces 

Trace 1 and Trace 2. Using the W_TCM metric, we take the frequency into account as 

well. The result obtained was 19% due to the fact that the frequency of the common 

patterns is much less than the total number of frequencies of the Traces 1 and 2 patterns. 

Moreover, the number of common patterns is less than the half in Trace1.  

3.3 Summary 

In this chapter, we presented our approach of comparing two traces based on their main 

behavioural patterns. We discussed the various matching criteria used to measure the 

extent by which sequences of events can be deemed similar. This is because identical 

matching alone would result in many patterns that differ only slightly.  We also 

introduced two metrics that measure the similarity between two traces based on the 

number of common patterns they have, the weighted correlation metric and the non-

weighted correlation metric, which vary whether the frequency of the patterns is taken 

into account or not. In the next chapter, we show the applicability of our approach on 

traces generated from a real system. 
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Chapter 4     Evaluation 

 

4.1 Target System 

We have applied the proposed trace correlation algorithm to traces generated from two 

versions of the same Java-based software system called Weka [WEKA]. The versions of 

Weka that have been selected for this case study are versions 3.4 and 3.7. Weka is an 

open source software which was developed in the University of Waikato, New Zealand. 

It is a machine learning tool that supports several algorithms such as classification 

algorithms, regression techniques, clustering and association rules. Weka version 3.4 is 

comprised of 55 packages, 732 classes, 8980 methods and 147,335 lines of code 

(approximately 147 KLOC) while Weka version 3.7 contains 76 packages, 1129 classes, 

14111 methods and 224,556 lines of code (approximately 224 KLOC). 

We selected the Weka system because it is popular (well-known) and also well 

documented. The Weka system framework and its components including packages and 

the most important classes are documented in a book dedicated to the tool and machine 

learning in general [Witten 99]. In addition, Weka enjoys an active online community 

which resulted in many documents and tutorials made available on the Weka official 

website [WEKA]. Some of these documents contain overviews and detailed description 

of the Weka architecture to help developer use and improve the tool if need be. In this 

research, we used Weka‟s documentation to validate some of the results obtained by 

applying our approach. 
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4.2 Usage Scenario 

4.2.1 Feature Selection 

We have applied our trace correlation techniques to a specific software feature supported 

in both versions of Weka, which is the use of the J48 classification algorithm used for 

machine learning to construct efficient decision trees. Our choice of J48 was motivated 

by the fact that it is a feature available in both versions and that it does not require 

extensive knowledge on how to trigger it. The application of our approach aims to reveal 

the similarities or differences in the way each version implements the J48 algorithm and 

if there are any major change in the newer version of Weka with respect to this algorithm. 

4.2.2 Generation of Feature-Traces 

In order to generate the execution traces that correspond to the selected feature for this 

case study, we instrumented Weka using TPTP Eclipse plug-in (the Eclipse Test and 

Performance Tool Platform Project). TPTP is an open source platform which allows the 

software developers to build test and performance tools. The detailed description of this 

tool can be found on the website and the entire information of the plug-in and its 

download is provided on [Eclipse TPTP]. Probes were inserted at each entry and exit 

method (including constructors) of the intended system in order to instrument it including 

all the invoked routines that are specific to the scenario chosen to examine Weka.  

For the feature discussed in the previous section, we generated two execution traces, 

which correspond to the same selected feature, by executing the two instrumented 

versions of Weka. We used a sample input data provided in the documentation and the 
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source code package (folder) of Weka system to exercise the J48 feature in Weka 

versions 3.4 and 3.7.  

4.3 Applying the Trace Correlation Algorithm 

The first step of the algorithm is preprocess the traces by filtering out utilities such as get 

and set methods as well as removing contiguous repetitions. We also removed from each 

trace the methods responsible for generating the graphical interface and initializing the 

Weka environment.  The removal of parts of the trace that are concerned with initializing 

the Weka environment was necessary so as to focus on only parts of the traces concerned 

with the implementation of the J48 algorithm, since the objective of the study is to 

understand the variation that may occur in both versions of Weka with respect to this 

algorithm.  

In Table 4.1, we show statistical information regarding the size of the traces before and 

after the preprocessing stage. We can see the removal of contiguous repetitions and 

utilities reduces considerably the size of raw traces. But the resulting traces are still in the 

order of thousands of calls, which are still hard for humans to comprehend manually. The 

size of the initialization part turned out to be very small compared to the size of the raw 

traces.  
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Table 4.1 The Execution Traces of Weka System for Versions 3.4 and 3.7 

                                           

                                                                                          Weka Version 

         Properties of Execution Traces               

 

Weka V. 

3.4 

 

Weka V. 

3.7 

Original (raw) Trace Size 35,974 103,009 

Original Trace Size after Removing Contiguous Repetitions 6,850 26,978 

Initialization Trace Size 5,919 17,534 

Initialization Trace Size after Removing Contiguous Repetitions 682 1,288 

Original Trace Size after Removing Initialization Phase (Initialization 

Trace) 
5,510 24,700 

 

Note that the information reported in this table is in ordered steps where we can see that 

the original traces went through several processes starting by removing the contiguous 

repetitions, followed with the removal of the initialization part. Since we eliminated all 

contiguous repetitions out of original traces, we did the same thing for the generated 

initialization traces as well.  

Also, we can see in Table 4.1 that the size of the J48 trace in Weka 3.7 is considerably 

higher than the size of the J48 trace generated from the older version Weka 3.4. This 

indicates that new enhancements have been made to this algorithm in the newer version. 

We further exploited this aspect using our pattern detection algorithm. 

The second step was to apply the pattern detection algorithm. We used the “ordering” 

matching criterion during the extraction process. Future work should focus on 

experimenting with other matching criteria to study their impact on the final result. The 

last step is to apply the correlation metrics to measure the differences between the two 
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pattern sets extracted from the Weka traces. In the next subsequent sections, we present 

the quantitative and qualitative analysis of the results.  

4.3.1 Quantitative Analysis 

Table 4.2 shows the number of extracted patterns from each trace and the total number of 

similar patterns in both traces. 

Table 4.2 Behavioural Patterns of Two Execution Traces of Two Weka Versions 

 

Weka Version 

 

Matching Criteria Number of Patterns 

All Extracted 

Patterns 

Similar Patterns of Two 

Versions 

Weka 3.4 Ordering (Ignore Order) 162 
64 

Weka 3.7 Ordering (Ignore Order) 299 

 

As we see in Table 4.2, the total number of patterns that belong to Weka 3.7 is almost the 

double the total number of patterns of Weka 3.4. This result shows that the 

implementation of the J48 algorithm in Weka has undergone several changes from Weka 

3.4 to Weka 3.7. Moreover, the similar patterns of both traces which are 64 patterns are 

less than the half of the total patterns relevant to the used versions of target system (i.e. 

all extracted patterns of Weka 3.4 and 3.7 that are 162 and 299, respectively). This 

number of similar patterns compared with the whole patterns influences the final results 

of the correlation metrics. 
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Table 4.3 shows the results of applying the correlation metrics to the patterns of both 

traces of Weka. The results show that both traces are considerably different (NW_TCM = 

31%, W_TCM = 5%).  

Table 4.3 Results of Running Trace Correlation Metrics on Execution Traces 

Trace Correlation Metrics Results 

NW_TCM (t1,t2) 30.45% 

W_TCM (t1,t2) 5% 
 

To be able to justify these differences, we examined the patterns that are not common 

between the two traces by exploring the source code of the two Weka versions. This 

qualitative analysis is presented in the next section. 

4.3.2 Qualitative Analysis 

The dissimilarity between the two versions in terms of the total number of all extracted 

patterns (without taking into account the frequency) is almost 70%. After exploring the 

content of both traces, we found that the number of distinct methods of the J48 trace in 

Weka 3.4 is 656, whereas the number of distinct methods in the trace generated from 

Weka 3.7 has 1024 distinct methods. This has led to the generation of many patterns that 

are in one trace and not in another trace (patterns triggered by the new methods). By 

exploring the source code of both versions, we found that many of these methods have 

been introduced in newer versions of Weka starting from Weka 3.7. Table 4.4 shows an 

example of methods that we either newly invoked only in the trace of Weka 3.7 (new in 

scenario), and not in Weka 3.4 but they existed in the source code of both versions of the 
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system or new methods that were introduced in the source code of Weka 3.7 and 

therefore did not exist in Weka 3.4 (new in source code and scenario of Weka 3.7).  

Table 4.4 New Method Samples of Weka 3.7 in scenario or scenario and source code 

Method 

Number 
New in Scenario 

Method 

Number 
New in Source Code and Scenario 

1 

weka.classifiers.evaluation.

ThresholdCurve.makeInstance 

 

1 

weka.gui.explorer.ClassifierP

anel.updateCapabilitiesFilter 

2 

weka.classifiers.evaluation.

ThresholdCurve.makeHeader 

 

2 

weka.core.Capabilities.clone 

3 

weka.core.Memory.isOutOfMemo

ry 

 

3 

weka.core.AbstractInstance.nu

mClasses 

4 
weka.core.Utils.checkForRema

iningOptions 
4 

weka.core.DenseInstance.value 

5 
weka.core.Utils.splitOptions 

5 
weka.core.WekaEnumeration.nex

tElement 

6 

weka.classifiers.evaluation.

NominalPrediction.distributi

on 

 

6 

weka.classifiers.Evaluation.w

eightedFalsePositiveRate 

 

After we gathered all the information regarding the patterns including the distinct 

methods and the independent patterns related to each trace, two inspection strategies have 

been achieved to validate the results of our approach. The first one is for the similar 

patterns in two versions with respect to the parent roots and the second one is for the new 

patterns of Weka 3.7. For the first inspection strategy, we detected various patterns in 

both pattern sets that can be deemed to be similar in terms of having the same first 

method call but their content is different. In other words, we investigated these similar 

patterns which only share the equivalent parent node of their subtrees. 

We studied some of these patterns and discovered that many refactoring has been used in 

Weka 3.7 to modify the way these methods were implemented. This includes adding new 
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classes and methods, changing the names of existing methods or moving the classes and 

routines to other existing or new classes and components. For example, the size() 

method in FastVector class of Weka 3.4 is changed to be considered as utility routine 

in Weka 3.7 and replaced by the size() method implemented in the Collection 

interface which is a built-in class in Java package java.util. There are many 

size() methods in Java classes that are invoked according to the type of the predefined 

object that calls the right one according to its type that can be List, ArrayList, etc. Thus, 

the size() method did not appear in the extracted patterns of Weka 3.7 since it is not 

traced and logged in the corresponding execution trace while it is considered as a utility 

method of the system components and external routine to the Weka project. 

Another example of what we have observed in examining the patterns and the source 

code of both versions is that some invoked methods have been moved to new classes 

introduced in Weka 3.7. The method named hasMoreElements() was in the 

FastVectorEnumeration class of the old version while it was shifted to a new class 

called WekaEnumeration in the new version. AbstractInstance and 

DenseInstance are other examples of new classes added to the Core package of the 

new version that contain new methods as well. Table 4.5 shows few samples of these 

detected patterns that share the same parent node but different implementation due to 

refactoring of the code.  

As we can see in Table 4.5, each pair seems similar according to the first method call but 

their contents are different. In the following, we explain each pair of patterns in addition 

to their responsibilities in the source code. 
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Table 4.5 Samples of Patterns with the Same Parent Nodes 

P
a
tt

er
n

 

N
u

m
b

e
r Pattern 

V 3.4 V 3.7 

1 

 weka.core.Instances.attrib

ute 

 weka.core.FastVector.eleme

ntAt 

 weka.core.Instances.attribute 

 weka.core.Instances.numAttribut

es 

 weka.core.Instances.attribute 

 weka.core.Attribute.name 

 weka.core.Instances.attribute 

2 

 weka.classifiers.trees.J48

.Distribution.add  

 weka.core.Instance.classVa

lue  

 weka.core.Instance.classIn

dex  

 weka.core.Instances.classI

ndex  

 weka.core.Instance.value  

 weka.core.Instance.weight 

 weka.classifiers.trees.J48.Dist

ribution.add  

 weka.core.AbstractInstance.clas

sValue  

 weka.core.AbstractInstance.clas

sIndex  

 weka.core.Instances.classIndex  

 weka.core.DenseInstance.value  

 weka.core.AbstractInstance.weig

ht  

 

3 

 weka.classifiers.Evaluatio

n.makeDistribution 

 weka.core.Instance.isMissi

ngValue 

 

 weka.classifiers.Evaluation.mak

eDistribution 

 weka.core.Utils.isMissingValue 

 

4 

 weka.classifiers.trees.J48

.C45Split.weights 

 weka.core.Instance.isMissi

ng 

 

 weka.classifiers.trees.J48.C45S

plit.weights  

 weka.core.AbstractInstance.isMi

ssing  

 weka.core.DenseInstance.value  

 weka.core.Utils.isMissingValue 

 

The first pattern in version 3.4 consists of two method calls while its matching pattern in 

version 3.7 includes five method calls. In version 3.4, the attribute() method has 

one parameter of integer data type that invoked another routine called elementAt() 

located in the class FastVector. By referring to the source code of the two versions, 

the attribute() method that was called is not the same as the one invoked in its 

corresponding pattern of version 3.4 since its parameter is of string data type. It calls 
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many other methods to achieve its task starting with numAttributes() and then 

attribute() which is the same one as in the corresponding pattern in the old version. 

It continues with the name() procedure and ends with calling again the attribute() 

method. The responsibility of the version 3.4 pattern is to return an attribute while the 

pattern of version 3.7 responsibility is to return an attribute given its name. If there is 

more than one attribute with the same name, it returns the first one, otherwise it returns 

null if the attribute cannot be found. 

According to the second pair of patterns, if we try to analyze it, we will find that both of 

them have the same first method call, namely, add() with same parameters as well 

which are integer and Instance data types. Add() invokes the method classValue() 

in both versions but with one difference which is in the old version the classValue() 

is located in class Instance while it is shifted to new class called 

AbstractInstance in the new one. Then, classValue() calls classIndex() 

from class Instance in version 3.4 while it is called from the class 

AbstractInstance in version 3.7. The subsequent methods value() and 

weight() are retrieved in both patterns where their place in Weka 3.4 is the class 

Instance while they are placed in the new classes in Weka 3.7; DenseInstance 

and AbstractInstance, respectively. Both of them have the same responsibility 

(functionality) in the system which is to add a given instance to a given bag. 

Now, if we take a look at the third pair of patterns in the source code of Weka versions, 

we notice that their parent method which is makeDistribution() consists of one 

parameter with the data type double. It invokes the method isMissingValue() 
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which is located in the class Instance regarding the old Weka while it is moved to 

another class in Weka 3.7 called Utils. 

We finally examined the last matching patterns in the above table and found that the 

method weights() with one parameter of Instance data type invokes the routine 

isMissing() from the class Instance in old version when it is invoked from the 

new class AbstractInstance in the new Weka. In version 3.4, another procedure 

has been called by the routine isMissing() but not traced since it is a routine of built-

in class in Java named isNaN. The routine isMissing() in the new version retrieves 

isMissingValue() which is a procedure of class Utils. It invokes another method 

which is value() located in the new class DenseInstance. Their functionality is to 

return weights if instance is assigned to more than one subset and return null if instance is 

only assigned to one subset. 

We also studied the patterns that were introduced in Weka 3.7 and not in Weka 3.4. Table 

4.6 shows the results of these patterns and their corresponding source code methods. 

As shown in this table, many patterns are triggered by methods that are new in Weka 3.7. 

The responsibilities of the same new pattern samples presented in the above table are 

shown in Table 4.7. Notice that each pattern is summarized into only one method call 

which is the first (parent) method of its entire routine calls. 
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Table 4.6 Samples of New Patterns in Execution Trace of Weka 3.7 
P

a
tt

e
r
n

 N
u

m
b

e
r
  

 

Pattern 

Method Calls 

New in 

Source 

Code 

of 

Weka 

3.7 

New in  

Scenari

o of 

Weka 

3.7 

Existed 

in both 

Scenarios 

of Weka 

versions 

(3.4 , 3.7) 

Existed in 

both 

Source 

Code of 

Weka 

Versions 

(3.4 , 3.7) 

1 

weka.classifiers.evaluation.ThresholdCurve.makeInstance     

weka.core.DenseInstance.<init>     

weka.core.AbstractInstance.<init>     

2 

weka.classifiers.evaluation.ThresholdCurve.makeInstance     

weka.core.Utils.missingValue     

weka.core.DenseInstance.<init>     

weka.core.AbstractInstance.<init>     

3 

weka.core.AbstractInstance.classIsMissing     

weka.core.AbstractInstance.classIndex     

weka.core.Instances.classIndex     

weka.core.AbstractInstance.isMissing     

weka.core.DenseInstance.value     

weka.core.Utils.isMissingValue     

4 

 

weka.core.DenseInstance.copy     

weka.core.DenseInstance.<init>     

weka.core.AbstractInstance.<init>     

weka.core.Memory.isOutOfMemory     

weka.core.AbstractInstance.weight     

5 

weka.core.DenseInstance.freshAttributeVector      

weka.core.DenseInstance.toDoubleArray      

6 

weka.classifiers.evaluation.ThresholdCurve.makeHeader     

weka.core.FastVector.<init>     

weka.core.Attribute.<init>     

weka.core.ProtectedProperties.<init>     

weka.core.Attribute.<init>     

weka.core.FastVector.addElement     

weka.core.Instances.<init>     

weka.core.Attribute.name     

weka.core.Instances.numAttributes     

weka.core.Instances.attribute     

weka.core.Instances.numAttributes     
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Table 4.7 The Responsibilities of New Pattern Samples of Table 4.6 

Pattern 

Number  

Pattern Responsibility 

1 
weka.classifiers.evaluation.

ThresholdCurve.makeInstance 
Creates an instance out of the given data. 

2 
weka.classifiers.evaluation.

ThresholdCurve.makeInstance 
Creates an instance out of the given data. 

3 
weka.core.AbstractInstance.c

lassIsMissing 
Tests whether the class of an instance is missing or 

not (returns true if the instance‟s class is missing). 

4 
weka.core.DenseInstance.copy Generates a shallow copy of the instance as well as it 

has an access to the dataset as well. 

5 

weka.core.DenseInstance.fres

hAttributeVector  

 

Clones the attribute vector of the instance and 

overwrites it with the clone. 

6 
weka.classifiers.evaluation.

ThresholdCurve.makeHeader 
Generates the header of an instance. 

 

To support and validate the result obtained from the W_TCM, we retrieved all the 

frequencies that are related to the similar patterns in both traces as well as the total 

frequency numbers for all the extracted patterns of the whole traces; one for each Weka 

version. The frequencies for each version are shown in Table 4.8. 

Table 4.8 The Frequency Values of both Traces of Weka Versions 3.4 and 3.7 

Weka Version Total Number of Frequency 

 Similar Patterns All Extracted Patterns 

Weka 3.4 411 1939 

Weka 3.7 581 8389 

 

The significant discrepancy in the frequency of patterns in both versions combined with 

the number of patterns that differ from one system to another contributes to the very low 

value of W_TCM (5%) obtained by comparing the traces of both systems.  
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4.4 Summary 

In this chapter, we applied our trace correlation algorithm to traces generated by 

exercising two subsequent versions of the Weka systems using the same software feature. 

Our metrics revealed that the versions differ significantly in the way this feature is 

implemented. We showed by examining the source code that the newer version of the 

system contained many new methods that did not exist in previous versions. In addition, 

many changes were made to the methods of the older version. The changes consist of the 

emergence of new methods and/or the removal of existing ones introduces and validates 

these variant correlation results since many components and classes have been newly 

added or updated in the source code. 

One of our metrics, NW_TCM, can be used to provide engineers with an estimation on 

the differences between the two scenarios. When applied to the Weka trace, it showed 

that the two traced scenarios were only 30% similar from one version to another. This can 

be exploited by software engineers to develop additional tests, or account for additional 

maintenance tasks. It also gives them an initiative that the source code of both selected 

versions of the system has many changes due to many activities such as refactoring 

techniques concerning the intended feature. These activities apparently influence the 

result obtained from the NW_TCM. The second metric W_TCM is very sensitive to the 

way the scenario is triggered (e.g. input data, etc) since the frequency of patterns often 

depends on the number processing needed to process the input data. We only recommend 

using it for stable scenarios that are not sensitive to the input data. W_TCM can be 

beneficial for software engineers who are into enhancing and working on the 
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performance of the target system since it takes into account the number of repetitions for 

all the events occur in the execution trace of the user-specific scenario.  
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Chapter 5      Conclusion 

 

5.1 Research Contributions  

In this dissertation, we presented a new approach for comparing the implementation of 

same or different features in subsequent versions of the same system - Finding the 

similarity between two traces generated from two different versions of the same software 

system for the same feature under study. In particular, we focused on calculating the trace 

correlation and similarity based on all the behavioural patterns extracted from the 

execution traces using one or more matching criteria. 

We introduced two metrics for measuring the similarity between two traces based on 

trace patterns, W_TCM, NW_TCM, which vary whether the number of occurrences of 

patterns is taken into account or not.   

Our approach is comprised of two main phases: trace preprocessing and trace correlation 

technique. In the first phase, we prepared and refined the generated traces by removing 

utility methods invoked during the generation process as well contiguous repetitions due 

to the presence of loops and recursion.  

The second phase, namely, trace correlation technique contains two steps: pattern 

detection and trace correlation metrics. In patterns detection step, we extracted all the 

behavioural trace patterns based on applying one or more of the existing and/or new 

matching criteria to the input traces. Many matching criteria have been introduced to 
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generalize patterns instead of counting on identical matching which often results in large 

and yet similar patterns. In addition, we proposed some new matching criteria in this 

thesis to expand the area of study for more opportunities and give more options to extract 

different kinds of patterns upon request once we increase the number of matching criteria 

(see Chapter 3 – section 3.3).  Once the patterns are extracted from both traces, they are 

compared using the trace correlation metrics (second step of this phase). In this step, all 

the similar patterns in both sets were extracted after we selected the matching criteria to 

be used to compare the two pattern sets of both versions. Consequently, all the similar 

patterns are essentially required to participate with their frequencies as the main factor in 

the correlation metrics to have the final similarity percentage. 

 Finally, we applied our approach to traces generated from two different versions of the 

same object-oriented software system, named Weka. The results obtained from the 

correlation metrics showed the differences in the implementation of the two features in 

each system. We validated our results by examining the Weka source code and 

documentation and found that the metrics reflected the differences that exist in the traces. 

We want to note that our approach is not complex and can be supported by tools since it 

does not need a lot of human intervention.  

5.2 Opportunities for Further Research 

Many ideas and directions are available to be employed for future research in the context 

of trace correlation approach. This future work includes the need to conduct more 

experiments with other different software systems that have more than one version to 

further assess the efficiency of our approach. Moreover, there is a need to apply the 
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techniques on different types of execution traces such as statement-level traces that tend 

to be considerably larger than routine call traces. On the other hand, instead of focusing 

on the internal aspects of the feature under analysis, a study can be conducted to work on 

the external functional attributes of the feature whereas the similarity percentage might be 

completely different while we study the feature from different point of view. For 

example, considering all the method calls with their body (statement-level traces) will 

considerably increase the size of the generated traces and introduce new types of patterns 

that are completely different than those extracted from the routine call traces. Hence, 

while some patterns extracted by our techniques from routine call traces are considered 

different regarding the refactoring activities, they might be considered similar as one 

pattern since we go to another level of abstraction, a statement-level. 

Finally, there is a need to compare our results with other software comparison techniques 

and perhaps end up with combined techniques that can reveal similarities and 

dissimilarities among feature implementation. 

5.3 Closing Remarks  

Understanding an entire software system is a significant challenge that maintainers and 

developers face when they develop, maintain and add new features to the target software 

system. Locating some features under study by referring to the source code could be very 

costly in terms of time and resources, specially, when the subject systems become more 

complex due to the increased code size. The main objective of trace correlation approach 

is to assist developers when trying to understand the difference between various versions 

of the same system using tracing techniques. This can help in many maintenance tasks 
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such as estimating the cost and effort needed to perform maintenance task on newer 

versions of the system. 
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