

Pattern-Based Trace Correlation Techniques for

Software Evolution

Maher Idris

A Thesis

In

The Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science

(Electrical and Computer Engineering)

at

Concordia University

Montreal, Quebec, Canada

March 2011

© Maher Idris 2011

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Maher Idris

Entitled: “Pattern-Based Trace Correlation Techniques for Software Evolution”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. D. Qiu

 __ Examiner, External

 Dr. O. Ormandjieva, CSE To the Program

 __ Examiner

 Dr. A. Agarwal

 __ Supervisor

 Dr. A. Hamou-Lhadj

Approved by: ___

 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

____________20_____ ___________________________________

 Dr. Robin A. L. Drew

 Dean, Faculty of Engineering and

 Computer Science

iii

ABSTRACT

Pattern-Based Trace Correlation Techniques for Software Evolution

Maher Idris

Understanding the behavioural aspects and functional attributes of an existing software system is

an important enabler for many software engineering activities including software maintenance

and evolution.

In this thesis, we focus on understanding the differences between subsequent versions of the

same system. This allows software engineers to compare the implementation of software features

in different versions of the same system so as to estimate the effort required to maintain and test

new versions. Our approach consists of exercising the features under study, generate the

corresponding execution traces, and compare them. Traces, however, tend to be considerably

large. We propose in this thesis to compare them based on their main behavioural patterns. Two

trace correlation metrics are also proposed and which vary whether the frequency of the patterns

is taken into account or not.

We show the effectiveness of our approach by applying it to traces generated from an open

source object-oriented system.

iv

Acknowledgment

During my study, I had the privilege to work with some experts and experienced professionals,

which was truly an enriching experience. I would like to thank everyone who has helped me and

contributed to this research project during my entire graduate study.

Dr. Abdelwahab Hamou-Lhadj has been the ideal thesis supervisor. I am heartily thankful for his

sage advice, insightful criticisms, guidance and patient encouragement that have aided the

completion of this thesis from the initial to the final level of working on my research.

Also, I would like to thank all my friends, lab mates, and colleagues including Ali, Akanksha,

Amir, Khalid and Luay who made themselves available whenever I needed them to support and

help me pursue this degree by sparing their precious time and sharing the literature and their

invaluable assistance.

v

Dedication

This thesis is dedicated to my parents, who are like the candles that always lighten my life to

help me touch my goals and dreams. Their unconditional support and having the feeling of their

spirits around me make me reach the desired ultimate success full of achievements throughout

every single step of my life in innumerable ways.

Special thanks to my sisters and brothers. Without your love, encouragement and being there, I

would not have finished my Master‟s degree.

No words to express my feeling and love towards my family.

Thank you…

vi

Table of Contents

LIST OF FIGURES VIII

LIST OF TABLES IX

CHAPTER 1 INTRODUCTION 1

1.1 Problem and Motivation 1

1.2 Research Contributions 3

1.3 Thesis Outline 3

CHAPTER 2 BACKGROUND 5

2.1 Software Maintenance and Evolution 5

2.2 Program Comprehension 8

2.3 Reverse Engineering 10

2.4 Software Development Effort Estimation 12

2.5 Static and Dynamic Analyses 13

2.6 Trace Abstraction and Summarization 14

CHAPTER 3 TRACE CORRELATION APPROACH 17

3.1 Traces of Routine Calls 17

3.2 Trace Correlation Approach 19

3.2.1 First Phase: Trace Pre-processing 21

3.2.2 Second Phase: Trace Correlation Technique 22

3.2.2.1 Pattern Detection 23

3.2.2.2 Trace Correlation Metrics 33

 Non-weighted Trace Correlation Metric 33

 Weighted Trace Correlation Metric 34

3.3 Summary 37

CHAPTER 4 EVALUATION 38

vii

4.1 Target System 38

4.2 Usage Scenario 39

4.2.1 Feature Selection 39

4.2.2 Generation of Feature-Traces 39

4.3 Applying the Trace Correlation Algorithm 40

4.3.1 Quantitative Analysis 42

4.3.2 Qualitative Analysis 43

4.4 Summary 51

CHAPTER 5 CONCLUSION 53

5.1 Research Contributions 53

5.2 Opportunities for Further Research 54

5.3 Closing Remarks 55

BIBLIOGRAPHY 57

viii

List of Figures

Figure Description Page

Figure 2.1 Software Maintenance Process 7

Figure 2.2 Relationship between terms; reverse engineering and forward engineering 11

Figure 3.1 An example of routine (method) call trace 18

Figure 3.2 Execution Trace Generation Process 19

Figure 3.3 Overall Approach Diagram 20

Figure 3.4 1) Raw Trace. 2) Trace after removing utilities; we assume utilities start with „u‟. 3)

Trace after removing contiguous repetitions. 22

Figure 3.5 Detecting Patterns using Identity Matching Criterion 23

Figure 3.6 Example of detecting patterns using the „ordering‟ criterion 24

Figure 3.7 Detecting Patterns using Depth-Limiting Criterion 25

Figure 3.8 Extracting Patterns using Set Criterion 26

Figure 3.9 Extracting Patterns using Flattening Criterion 27

Figure 3.10 Extracting Patterns using Set-Depth Criterion 28

Figure 3.11 Extracting Patterns using Ordering-Depth Criterion 28

Figure 3.12 Two Raw Sample Routine (method) Call Traces Example 30

Figure 3.13 Two Refined Sample Routine (method) Call Traces Example 31

Figure 3.14 Extracting the Final Set of Similar Patterns of Sample Traces T1 and T2 (two sets of

extracted patterns) of Figure 3.13 35

ix

List of Tables

Table Description Page

Table 3.1 Similar Patterns extracted from Sample Trace 1 of Figure 3.13 32

Table 3.2 Similar Patterns extracted from Sample Trace 2 of Figure 3.13 32

Table 3.3 The Properties of the Two Sample Traces of Figure 3.13 36

Table 3.4 Final Set of Common Patterns of Two Sample Traces of Figure 3.13 36

Table 4.1 The Execution Traces of Weka System for Versions 3.4 and 3.7 41

Table 4.2 Behavioural Patterns of Two Execution Traces of Two Weka Versions 42

Table 4.3 Results of Running Trace Correlation Metrics on Execution Traces 43

Table 4.4 New Method Samples of Weka 3.7 in scenario or scenario and source code 44

Table 4.5 Samples of Patterns with the Same Parent Nodes 46

Table 4.6 Samples of New Patterns in Execution Trace of Weka 3.7 49

Table 4.7 The Responsibilities of New Pattern Samples of Table 4.6 50

Table 4.8 The Frequency Values of both Traces of Weka Versions 3.4 and 3.7 50

1

Chapter 1 Introduction

1.1 Problem and Motivation

Understanding the behavioural aspects and functional attributes of an existing software

system is an important enabler for many software engineering activities including

software maintenance and evolution [Dunsmore 00], which is recognized to account for

almost 80% of the cost of the software life cycle [Martin 83, Pigoski 97].

One challenge that engineers constantly face while maintaining an existing system is to

answer questions like what the system does, how it is built, and why it is built in a certain

way [Dunsmore 00]. Documentation is normally the main source of information where

answers to these questions should be found, but it has been shown in practice that

documentation is rarely up to date if at all exists. The problem is further complicated by

the fact that software engineers, the initial designers of the system often move to new

companies taking with them valuable information about the system.

In this thesis, we focus on the problem of understanding the differences between

subsequent versions of the same system, an activity that can help in many software

engineering tasks including estimating the time and effort required to maintain new

versions of the system, uncovering places in the code where faults have been introduced,

understanding the rationale behind some design decisions, and so on.

2

We propose a novel approach that allows software engineers to compare the

implementation of software features in different versions of the same software system.

Our approach is based on information gathered from two sources. We use execution

traces (dynamic analysis) by exercising the target features of the system under study to

identify the differences between the implementation of the features under study. Once

these differences are identified, we refer to the source code (static analysis) to understand

the causes of these differences.

Execution traces have been used in various studies to observe and investigate the

behavioural aspects of a software system. Traces, however, have been found to be

difficult to work with. This is due to the large size of typical traces. Although many trace

analysis tools and techniques have been proposed (e.g., [Cornelissen 08, Hamou-Lhadj

05a, De Pauw 98]), none tackles the problem of comparing traces.

In this thesis, we propose a novel trace correlation algorithm by comparing traces based

on their main behavioural patterns instead of a mere event-to-event mapping. We have

also developed two metrics to calculate the similarity of the generated traces.

We focus in this thesis on traces of routine calls. We use the term routine to mean

procedure, function, and method. Our approach is independent from the programming

language used to develop the application as long as the language supports the concept of

routines.

3

1.2 Research Contributions

The main contributions of this thesis are as follows:

 A novel trace correlation approach based on comparing traces based on their

behavioural patterns. The patterns are extracted by varying different matching

criteria.

 We introduce two trace correlation metrics to measure the similarity between two

different system versions based on the extracted patterns from execution traces

that represent the underlying features.

 We applied correlation metrics to execution traces generated from an object-

oriented target software system to show the applicability of our approach.

1.3 Thesis Outline

The rest of the thesis is structured as follows:

 Chapter 2 - Background: This chapter consists of the literature review. We

present background information, including a brief overview of related topics to

our research, namely, program comprehension, software maintenance and

evolution, reverse engineering, software effort estimation, feature location, trace

abstraction, and static and dynamic analysis. A survey of existing techniques for

comparing different versions of software system is proposed along with their

advantages and limitations.

4

 Chapter 3 – Trace Correlation Approach: The trace correlation approach and

metrics are presented in this chapter. The chapter starts by presenting the

definition of an execution trace and behavioural patterns. This is followed by

explaining the matching criteria used to generalize patterns. The chapter continues

with an overview of the feature trace generation process. Next, we present the

overall trace correlation approach by explaining the main two phases; the first

phase consists of pre-processing the trace whereas the second phase consists of

applying the trace correlation technique. In the end, we complete this chapter with

a discussion on the applicability of the presented metrics.

 Chapter 4 – Evaluation: This chapter introduces the case study which is used to

validate our trace correlation algorithm. Initially, we describe the target system on

which we apply our approach. Then, the chapter covers the usage scenario,

followed by applying the trace correlation algorithm to the generated traces. The

results of quantitative and qualitative analyses are then presented. The chapter

ends with a summary discussion concerning the evaluation process of applying

the trace correlation metrics to the target system.

 Chapter 5 – Conclusion: We conclude the thesis in this chapter. We revisit the

main contributions and introduce future work directions. The chapter ends with

our closing remarks.

5

Chapter 2 Background

In this section, we present the related topics to our work. These topics include program

comprehension, software maintenance and evolution, reverse engineering, software effort

estimation, feature location, trace abstraction and summarization, and finally static and

dynamic analysis.

2.1 Software Maintenance and Evolution

Software maintenance and evolution is an important area in software engineering and

also the most costly. Brooks states that over 90% of the usual system cost is spent on

maintenance, and that any part of the system that is successfully implemented will

inevitably need to be maintained [Brooks 95].

Parnas defines software maintenance as “Programs, like people, get old. We can’t

prevent aging, but we can understand its causes, take steps to limit its effects, temporarily

reverse some of the damage it has caused, and prepare for the day when the software is

no longer viable. ... (We must) lose our preoccupation with the first release and focus on

the long term health of our products.” [Parnas 94]. According to IEEE, software

maintenance is defined as all the modifications made to a program that are performed

after the delivery to correct discovered problems, improve performance or to keep it

adaptable and usable in the changing or changed environment [ANSI/IEEE Std].

6

There exist four types of maintenance activities [Lientz 80, ISO/IEC, Pfleeger 98]:

 Corrective Maintenance: This activity comprises all modifications of a software

system that are performed after the delivery to fix and correct faults that caused

the system to fail.

 Adaptive maintenance: All changes to the existing system after delivery to keep

it usable in the new environment so as to meet new requirements.

 Preventive Maintenance: This activity consists of all the corrections and

detections that might take place in the system to prevent failures before even they

occur.

 Perfective Maintenance: This maintenance type comprises improvements and

enhancements made to an existing program to improve its performance and

maintainability.

Yau et al. have proposed in their research that the software maintenance process is

comprised of four phases, and when a specific maintenance objective is set up, it can go

through these four phases to be accomplished [Yau 80]. Figure 2.1 shows the

maintenance process along with its four phases.

In conclusion, all the systems need to be maintained as they evolve with time, which

often leads to many versions of the system to be released. This leads to the need to

understand the differences between subsequent versions of a system in order to estimate

the effort required to maintain the new versions. In this thesis, we tackle the challenging

issue of understanding how subsequent versions of the same system vary.

7

Determine

Maintenance

Objective

Understand

Program

Generate Particular

Maintenance

Proposal

Account for Ripple

Effect

Testing

Pass Testing

Phase 2

Phase 3

Phase 4

No

Phase 1

Yes

Correct program errors

Add new capabilities

Delete obsolete features

Optimization

Complexity

Documentation

Self descriptiveness

Extensibility

Stability

Testability

Figure 2.1 Software Maintenance Process (taken from [Yau 80])

8

2.2 Program Comprehension

“A person understands a program when he or she is able to explain the program, its

structure, its behaviour, its effects on its operation context, and its relationships to its

application domain in terms that are qualitatively different from the tokens used to

construct the source code of the program”

Biggerstaff et al. [Biggerstaff 93]

Program comprehension is defined by Rugaber as the process of obtaining knowledge

about a software system under study to reach a certain level of insight to facilitate tasks

such as fixing or correcting the system‟s bugs and errors, system enhancements, reusing

and recovering the documentation [Rugaber 95]. This comprehension can be acquired

through analyzing the system‟s static and dynamic aspects, features, and documentation

[Ng 04]. Fjeldstad and Hamlen have reported that 50% of the time and effort is dedicated

to program understanding during a maintenance task [Fjeldstad 83]. This is also

supported by Standish, who states that “if maintenance costs 70-90 percent of the life

cycle, and understanding occupies 50-90 percent of maintenance cost [Lientz 78],

program understanding time may be the dominant time in the entire software life cycle

and thus the dominant cost.” [Standish 84].

According to Mayrhauser et al., during the program comprehension process, software

engineers often use existing knowledge about the software system in order to come up

with new knowledge that would be considered as part of the system knowledge to

ultimately meet the targets of a code cognition task [Mayrhauser 95]. They identified two

types of knowledge that developers might have:

9

 General Knowledge: This type represents the knowledge gained from the past

experience in the domain of software engineering. It is completely independent

from the program that engineers try to comprehend.

 Software-Specific Knowledge: This is the second type of knowledge that

developers can possess which stands for their deep insight and level of

understanding the software application under study.

In addition, a study has been conducted by Littman et al. in which they have specified

strategies for program comprehension [Robson 91]. In the experiment, they have showed

the relationship between these strategies and summarized their experiment with main

conclusions that there are two fundamental approaches to program comprehension:

 Systematic Approach: where the maintainer examines the entire program and

elicits the interactions between the different modules. This is achieved before any

attempt to perform modifications or changes to the program.

 As-needed Strategy: where the maintainer tries to reduce the amount of study

prior to perform any modifications that take place in the system. Consequently, he

or she tries to locate the section of the program which needs to go under the

maintenance process to commence the modifications.

In fact, the systematic approach is applicable to small programs only, where larger

program may require an as-needed approach to be adopted instead. Erdös et al. have

accomplished a study which states that partial comprehension of complex programs is

enough to perform maintenance process [Erdös 98]. Many legacy systems are so large

and complex to be entirely comprehended regardless of the forms used for representation

10

and yet they need to be maintained. In other words, it is not necessary for programmer to

fully understand the program to perform maintenance. It is only necessary to comprehend

parts of the program affected by the maintenance request. Our work supports this idea as

we only focus on particular features of a system that need to be understood.

2.3 Reverse Engineering

The major tools used by engineers to assist and ease the process of program

comprehension are reverse engineering tools. Nelson stated that reverse engineering is

related to explore tools and techniques which help software engineers comprehend legacy

systems [Nelson 96]. The objective is to improve the productivity of the maintainers as

they solve maintenance tasks. Chikofsky et al. define reverse engineering as: “the

process of analyzing a subject system to identify the system’s components and their

interrelationships and create representations of the system in another form or at a higher

level of abstraction” [Chikofsky 90]. Reverse engineering has many benefits such as

handling the complexity of the system, recovering high-level models of the system and

retrieving the missing information [Chikofsky 90, Biggerstaff 89].

Before we present the reverse engineering processes, we have to mention about the

forward engineering besides the reverse engineering as both of them are fundamental

concepts in the software system lifecycle. Forward engineering term is completely the

opposite of reverse engineering term, and it is suggested to differentiate the traditional

software engineering process from reverse engineering process. According to the study

conducted by Chikofsky et al., we propose the relationship between the forward and

reverse engineering in Figure 2.2.

11

Figure 2.2 Relationship between terms; reverse engineering and forward

engineering (taken from [Chikofsky 90])

As illustrated in Figure 2.2, the terms forward engineering and reverse engineering are

defined as follows:

 Forward Engineering: is the traditional process for the typical software system

where we move through the main phases starting from high-level abstractions and

models to design phase and ending up the process in the last phase; the low-level

implementation of the system. As shown in Figure 2.2, this process is comprised

of steps to map the higher-level such as requirements to design and then to the

low-level implementation [Chikofsky 90].

 Reverse Engineering: it is the opposite process of forward engineering. Reverse

engineering is the analysis process of the subject system to categorize the

components of the system and interrelationships between them and to show the

system in a high-level abstraction. Figure 2.2 demonstrates the reverse

engineering as a sequence of recovery steps to in the opposite direction, starting

12

from implementation through design and finishing at the high-level abstractions

and models of the program [Chikofsky 90].

2.4 Software Development Effort Estimation

In software effort estimation, effort may refer to different things including time, cost and

physical efforts. Software development effort estimation is the process of measuring in

advance according to some specific techniques, the realistic effort need required to

develop and maintain a software program to either complete it by adding new

requirements or enhance it by deleting or modifying unnecessary or old features that

might have errors, noise and uncertain functionality. The effort estimates can be used in

many areas of software engineering, for example, project plans, iteration plans, budgets,

investment analysis and for prices and bids purposes. Researches who work on the effort

estimation are divided into groups depending on how they define the effort: time or cost.

For example, a project might be concerned with estimating the required time more than

the costs.

According to a research conducted by Boehm, cost and delivery time must be taken under

consideration as coherent elements in the production of quality software that raises the

customer level of satisfaction [Boehm 96].

The work we present in this thesis aims to help engineers estimate the actual effort with

time and cost needed to maintain and evolve software systems by examining how newer

versions of a system differ from older versions.

13

2.5 Static and Dynamic Analyses

Two major approaches of system analysis have been established: Static analysis and

dynamic analysis.

1. Static Analysis: This type of analysis can be done without the need to execute the

program. It is based on understanding the source code to provide a complete

feedback on the system. Static analysis process examines the program code to

derive all properties for all possible executions [Ball 99]. The static information

gained by performing the static analysis of software systems expresses the

structure of the software system under study with all its behavioural aspects and

features that can be invoked in any system execution.

2. Dynamic Analysis: Dynamic analysis, the focus of this thesis, is the process of

analyzing all the data gathered by executing a program according to a certain

scenario to understand the run-time behaviour of the software system. Ball has

defined it as “Dynamic analysis is the analysis of the properties of a running

program” [Ball 99]. In contrast to static analysis, dynamic analysis examines the

running program (through program instrumentation) to derive the properties that

hold for one or more program executions (executed scenarios).

Dynamic analysis is control-based environment which depends on the program inputs

such as using certain features in a particular scenario as well as the program outputs that

reflect the program behaviours. Dynamic analysis involves instrumenting a program

under investigation to record its runtime events. The run-time information or run-time

events typically take the form of execution traces.

14

Static and dynamic analyses have been considered to be complementary techniques in

many dimensions including completeness, scope and precision [Ball 99]. In addition,

using both of them helps in the comprehension process of the program and speed up the

maintenance activities. For this reason, we make use of both types of analysis techniques

in this thesis. However, dynamic analysis occupies the bigger proportion of this thesis

compared to static analysis. Nevertheless, static analysis is still important and useful so as

it is needed to validate some of the information used to compare traces generated from

different versions of a system.

2.6 Trace Abstraction and Summarization

Traces are known to be hard to work with due to the large size of typical traces, often

millions on lines long. Therefore, there is a need to find ways to reduce their size while

keeping as much of their essence as possible. Trace abstraction and summarization

techniques aim to achieve this objective. We surveyed the most cited techniques in what

follows:

2.6.1 Pattern Detection Techniques

Trace patterns are defined as non-contiguous repetitions of the same sequence of events.

[De Pauw 98, Hamou-Lhadj 03a]. De Pauw and Hamou-Lhadj proposed techniques to

reduce the trace size generated from the target system by extracting the patterns which

can be used to reflect the main events invoked in a trace. Maintainers can focus on

understanding these patterns instead of reading the whole trace.

15

2.6.2 Sampling

In the context of execution traces, a sample means a representation of part of the trace

that consists of a specific number of events based on the sampling parameters [Chan 03,

Whaley 00, Dugerdil 07]. Sampling is a good technique for reducing the initial trace size

but suffers from the challenging task of defining proper sampling parameters that can be

generalized to other applications.

2.6.3 Grouping

Grouping is considered as summarization technique since it summarizes and compresses

the monotone subsequence of execution traces into one event, which results in

considerable saving of space and allow up to two dozen feature traces to be presented

simultaneously. Kuhn et al. introduced a grouping technique, namely, monotone

subsequence summarization that represents entire traces as signals in time [Kuhn 06].

They describe their approach as a trace signal which is composed of monotone

subsequences separated by pointwise discontinuities. The technique cuts the signal at the

pointwise discontinuities to create the monotone subsequences and compress each one

into a summarized one method-call chain. Therefore, the summarized chain is much

shorter that the original trace signal.

Utilities removal is another trace summarization technique presented in [Hamou-Lhadj

06], Hamou-Lhadj et al. built a trace summarization algorithm that consists of removing

utility components from large traces. The authors argued that utilities clutter trace content

without adding much information. They proposed a way to detect automatically utility

16

components by analyzing the source code. Once the utilities are identified, they devised a

technique that filters out these utilities from traces to reduce their size without loss of

important information.

2.6.4 Visualization

Many studies have been conducted for visualizing information about the behaviour of the

target system by focusing on features of interest. Visualization is an efficient technique

for engineers who want to achieve some activities concerning particular parts of the

source code or the system‟s attributes including large traces [Hamou-Lhadj 04, De Pauw

93]. Limitations of using these techniques are summarized in the need of user

intervention as well as the inability to reuse various visualization techniques in other

tools.

17

Chapter 3 Trace Correlation Approach

3.1 Traces of Routine Calls

An execution trace is a record of what goes on when executing the target system, usually

by exercising its features according to specific user-scenarios. There are different types of

traces including traces of inter-process communication, statement-level traces, routine

call traces, and so on. In fact, one can trace about anything in the system that can help the

task at hand. Traces have been used in many software engineering areas where there is a

need to gain insight of the behavioural aspects of a software system.

In this thesis, we focus on traces of routine calls. Traces of routine calls have been shown

to be useful for program comprehension tasks [Hamou-Lhadj 04]. A trace of routine calls

is a tree structure consisting of subsequent calls of routines that are represented as tree

nodes. Each node is considered as a root for its subtree. The routine that invokes other

methods is called parent while the invoked method in this case becomes a child. In

addition, if the node is the last routine call, namely, the end of the tree or subtree, then it

is named leaf. An example of a trace of routine calls is depicted in Figure 3.1.

Figure 3.1 also shows a relationship between the depth limit and nesting level; the higher

the depth, the higher the nesting level. Each node has a specific label to identify the name

of the routine. This name can be a full name of the routine, which consists of the package,

class name (for object-oriented systems), and the routine name.

18

A

L

S

F

B

D

C

B

D

Direction of Depth Limit (Level)

Depth Level = Nesting Level

Level 0 Level 1 Level 2 Level 3

Figure 3.1 An example of routine (method) call trace

There exist many mechanisms for generating execution traces, among which code

instrumentation is the most popular one. This technique is automatic and supported by

many tools; many of them are available as open source. Code instrumentation consists of

inserting probes into the code. A probe can be seen as a print out statement. When the

instrumented code is executed, a log file is generated. To generate traces of routine calls,

we need to have at least two probes for each routine: One probe at the entry of the routine

and another one at the exit. Figure 3.2 illustrates the typical process of generating routine

call traces through code instrumentation.

19

Probe Insertion

User-specific Scenario

Instrumentation Environment
(Source Code Instrumentation)

Target Software

System Run-time

Information

(Execution Trace)

Execution EnvironmentInputs Output

Figure 3.2 Execution Trace Generation Process

3.2 Trace Correlation Approach

Figure 3.3 shows a general overview of our approach for comparing traces generated

from subsequent versions of the same system. Both versions of the system are first

instrumented and run using the same usage scenario. The generated traces go then

through two main phases (see Figure 3.3). The first phase consists of pre-processing the

traces by removing continuous repetitions and noise in the trace caused by the presence

of low-level utility components. The second phase consists of comparing the traces

resulting from Phase 1.

20

Trace 1

Trace 2

Contiguous Repetitions and
utilities Removal Operation

(Algorithm)

input

input

output output

Patterns Detection and
Extraction based on

matching criteria

Pattern-based trace
comparison using correlation

metrics according to the
selected matching criteria

Output
(from trace1)

Output
(from trace2)

output

Processed trace 1

Processed trace 2

First Phase: Preprocessing

(Trace Preparation Process)

Phase 1

Set of patterns (T1)

Set of patterns (T2)

Second Phase: Trace Correlation
Technique

Phase 2

(Pattern Detection)

Correlation
Metric Result

Phase 2

(Trace Correlation Metrics)

The inputs to this phase
are raw execution traces

In this phase, the inputs
are the outputs of phase

1 which are the
processed (refined)

traces

The two pattern sets
extracted in phase 2-

step 1 are the inputs to
phase 2- step 2

- Step 1

- Step 2

Figure 3.3 Overall Approach Diagram

21

There are different ways for comparing traces. Perhaps the most naive one is to compare

the traces line by line. This is often ineffective due to the fact that many events could

have been invoked in different orders due to the existence of threads. In this thesis, we

propose a novel approach for comparing traces based on their main behaviour. These

behaviours are represented in the form of trace patterns as we will describe in Section

3.2.2.

3.2.1 First Phase: Trace Pre-processing

As we mentioned before, a trace is first pre-processed to reduce its complexity. During

this step, the raw traces go through the trace preparation process where we first filter out

utility routines such as accessing methods (sets and gets). We rely on naming conventions

to identify utilities. For example, any routine that starts with „set‟ or „get is automatically

removed. Also, in some cases, we refer to the system folder structure to identify packages

that serve as utilities. Any routines that belong to these packages are also removed from

the trace. These utilities clutter the trace without adding much information to its content.

Hamou-Lhadj et al. showed that effective analysis of a trace should include a utility

removal stage that cleans up the trace content from noise [Hamou-Lhadj 06]. The second

pre-processing step consists of removing contiguous repetitions due to the presence of

loops and recursion. An example of applying the pre-processing phase is shown in Figure

3.4 where utility routines are first removed then the contiguous repetitions as well.

22

A

F

B ECBC

GFG

A

F

B EC

G

u1 u2

u3

A

F

B ECBC

GFG

1 2 3

Figure 3.4 1) Raw Trace. 2) Trace after removing utilities; we assume utilities start

with ‘u’. 3) Trace after removing contiguous repetitions.

3.2.2 Second Phase: Trace Correlation Technique

In this section, we describe the second phase of our approach which is the trace

correlation technique. Comparing traces based on their events is rather ineffective since

the events can occur in different orders due to threading and other factors such as the

presence of noise (utilities). It is therefore important to investigate another unit of

comparison. In this thesis, we propose comparing traces based on the main behaviours

they embed. These behaviours are reflected in the trace in the form of trace patters

[DePauw 04, Hamou-Lhadj 06]. A trace pattern is defined as a sequence of events that is

repeated non-contiguously in the trace. Trace patterns have been used in other studies to

help software engineers understand the key aspects of a trace (e.g. [Jerding 97b]). The

trace correlation phase is comprised of two main steps: The pattern detection step and the

trace correlation measure. The idea is to take the two traces in question, extract their

behavioural patterns, and compare the extracted patterns using different similarity

measures. Two traces exhibit the same behaviour if the pattern sets are similar.

23

3.2.2.1 Pattern Detection

As mentioned earlier, we define a trace pattern as a sequence of events that is repeated

non-contiguously in the trace. This translates into non-contiguous repetitions of similar

subtrees in a trace of routine calls. Hamou-Lhadj et al. have proposed a very efficient

algorithm for automatically detecting such patterns in large traces [Hamou-Lhadj 03b].

To reduce the number of patterns, several matching criteria have been proposed in the

literature to measure the extent to which two sequences of events could be deemed

similar without being necessarily identical [De Pauw 98]. In the following subsections,

we present the most common matching criteria used to generalize patterns.

A. Identity

The identity matching criterion is the basic and simplest criterion. Two sequences of calls

are considered similar if their corresponding subtrees are isomorphic. In other words,

they have the same labels, structure, order of calls and topology [De Pauw 98, Hamou-

Lhadj 03b]. Identical matching can result in a large number of patterns that might differ

only slightly. Figure 3.5 shows an example of the identity matching criterion.

A

CDBCB

Pattern 1 = B

Pattern 2 = C

Figure 3.5 Detecting Patterns using Identity Matching Criterion

24

B. Ordering

The idea behind this criterion, which is also called the commutativity criterion [De Pauw

02], is to consider two sub-trees as similar if they have the same method calls and number

of calls no matter the order in which the calls occur. Figure 3.6 illustrates an example of

the ordering criterion. In this figure, the subtrees rooted at B are considered similar if the

order in which the child routines occur is not taken into account.

B

A

EYFYB

ZZXDC

HH

CDX

P1 = B

DC

H

= B

H

CD

P2 = Y

ZX

= Y

Z X

Figure 3.6 Example of detecting patterns using the ‘ordering’ criterion

C. Depth-limiting

Using this criterion, two subtrees are considered similar if they have the same method

calls with the same order at specific depth. The rest of the methods that go beyond this

level are ignored and not taken into account. Figure 3.7 shows how this criterion can be

used to consider the subtrees B as similar if the depth of comparing sequences of calls is

limited to level 1.

25

B

A

HBFBE

CDCDC X DCD

B

X

Level 0

Level 1

Level 2

At level 1:

At level 2:

P1 = B

P1 = B
C

D

P2 = B
C

X

D

Figure 3.7 Detecting Patterns using Depth-Limiting Criterion

D. Set

The set matching criterion is about ignoring the order of method calls in a specific

subtree as well as assuming each method is called only once even if it is called many

times in the subtree; all redundancies are ignored. Figure 3.8 shows an example where

two patterns can be detected rooted at B and E respectively by treating the sequences of

calls rooted at these nodes as a set.

26

H

ALJA

DC

EB

ZF YX

B

XY

E

Z C DF

B

CC FD

E

X Y YZZXD

Pattern 1
Pattern 2

Pattern 3

X X X X X

Figure 3.8 Extracting Patterns using Set Criterion

E. Flattening

The flattening criterion ignores the hierarchical structure of the sequences of calls to be

compared [De Pauw 02]. It lines up all the method calls in a linear structure where the

routine call is occurred and mentioned only once regardless of the number of repetitions

for each routine invoked in the subtree. This is perhaps the most extreme way to group

sequences into instances of the same pattern. Figure 3.9 shows an example of using the

flattening criterion.

27

A

BLB

DDC CDF

G

F

C F

F

GC

A

BLB

DDC CGF F G

Pattern

Figure 3.9 Extracting Patterns using Flattening Criterion

F. Combination of Matching Criteria

The above matching criteria can be combined in various ways. In this thesis, we propose

using two new criteria. The first one is “Set-Depth” which is a combination of the set and

depth-limiting criteria. The second one is “Ordering-Depth” which is a combination of

ordering and depth-limiting. The set-depth criterion considers two sequences as similar

using the set matching criteria applied to a certain depth. Figure 3.10 shows an example.

In this figure, depending on the depth, we can distinguish different patterns. At level 1,

we can see one pattern rooted at B with three sequences. At level 2, we have also one

pattern with only two sequences. The subtree B in the middle cannot be considered as a

sequence of this pattern using the set-depth criterion by setting the depth to 2.

28

B

A

BB

GF FEE GG

C

F

Level 0

Level 1

Level 2

At level 1:

At level 2:

P1 = B

P1 = B
E
F

 B

EE

G

=

G
F
E

D

F

Frequency = 3

X X X

Figure 3.10 Extracting Patterns using Set-Depth Criterion

The ordering-depth criterion is similar to the depth-limiting criterion except that instead

of treating the calls as a set we only ignore the order of calls. Figure 3.11 shows an

example of applying this criterion.

B

A

SB

CDDC E CE

B

D

Level 0

Level 1

Level 2

At level 1:

At level 2:

P1 = B

P1 = B
C
D

 B

E C

E

=

E
D
C

Figure 3.11 Extracting Patterns using Ordering-Depth Criterion

29

In [Hamou-Lhadj 03b], Hamou Lhadj et al. presented an algorithm to detect and extract

the patterns from a trace using predefined matching criteria. The algorithm uses one

criterion at a time. Our technique adopted the idea of the algorithm with some

modifications and improvements. These improvements include providing the ability for

using and applying more than one matching criteria to extract the similar patterns as

desired. Besides this, we implemented the two new combined matching criteria

introduced earlier. For example, we can use the combined matching criteria at a time or

two separate criteria one after another to gain the precise similar patterns from the list of

similar patterns resulting from applying the first criterion.

An example of application of the pattern extraction technique on the refined sample

traces 1 and 2 of Figure 3.13 are shown in Tables 3.1 and 3.2. Figure 3.12 shows the

same sample traces, but before we apply the first phase of our approach, namely, pre-

processing (raw traces). In this example, one matching criterion is used to detect and

extract the similar patterns from the refined ones, which is ignoring the order of calls

(Ordering matching criterion).

30

B

A

BFFB

IHGDC

S

E DEJ

B

DE C

B

DE C

FFF

JGH

L

I J I

B

CD E R

L L B

R

B

ED

D B

R

Sample Trace 1:

u2u1 u4 u5u3 u6

X

A

B FF B

IJI CD EYZJ

X

Z Y

B

DE C

FFX

JIJ

S

Y Z I

B

DC EL

B

L

X

ZY

B

L

Sample Trace 2:

u6u5u2u3u1 u4

B

L

MM B

L

Figure 3.12 Two Raw Sample Routine (method) Call Traces Example

31

B

A

BFFB

IHGDC

S

E DEJ

B

DE C

FF

JGH

L

I

B

CD E R

B

R

B

ED

D B

R

Refined Sample Trace 1:

X

A

B FF B

IJI CD EYZJ

X

Z Y

B

DE C

FX

IJ

S

Y Z

B

DC EL

B

L

X

ZY

Refined Sample Trace 2:

B

L

M B

L

Figure 3.13 Two Refined Sample Routine (method) Call Traces Example

32

Table 3.1 Similar Patterns extracted from Sample Trace 1 of Figure 3.13

Pattern Number

Trace 1 Pattern Content

Frequency

1
C
D
E

B

3

2 G
H

F

2

3 I
J

F

2

4 D
E

B

2

5
R

B

3

Table 3.2 Similar Patterns extracted from Sample Trace 2 of Figure 3.13

Pattern Number

Trace 2 Pattern Content

Frequency

1
L

B

4

2 I
J

F

3

3
D
C
E

B

3

4 Y
Z

X

4

33

The outputs of this step are two sets of extracted patterns from two execution traces.

These pattern sets will be used in the next step to measure the similarity between these

sets. We explain the trace correlation metrics step in the next section.

3.2.2.2 Trace Correlation Metrics

In this section, we present two metrics to calculate the similarity between the traces of

two versions of the same system based on their behavioural patterns. The two trace

correlation metrics are: Non-weighted trace correlation metric and the weighted trace

correlation metric.

Non-weighted Trace Correlation Metric:

The non-weighted trace correlation metric, NW_TCM, is used to compare two execution

traces based on the total number of extracted patterns to the total number of the common

similar patterns that they have in common. More formally, NW_TCM is defined as

follows:

Where:

 CPtrnN: Total Number of Common Similar Patterns of both Traces.

 T1TotalPtrnN and T2TotalPtrnN: Total Number of Patterns of Trace 1 and Trace

2 respectively.

34

Weighted Trace Correlation Metric:

The weighted trace correlation metric, W_TCM, improves over the previous metric by

taking into account the frequency of the patterns, i.e., the number of times the patterns

occur in the traces. More formally, W_TCM can be calculated as follows:

Where:

 T1CPtrnFreqN and T2PtrnFreqN: The frequency of occurrence in each trace of

the patterns shared between traces T1 and T2.

 CPtrnN: Total number of similar patterns contained in both Traces.

 T1TotalPtrnN and T2TotalPtrnN: Total number of patterns of Trace T1 and Trace

T2 respectively.

 T1TotalFreqN and T2TotalFreqN: Total number of frequencies of Trace T1

Patterns and Trace T2 patterns respectively.

Both correlation metrics range between 0 and 1. The traces are similar if the metric

converges to 1. They are completely dissimilar if the metric is close to 0. The number of

common similar patterns will never exceed the total number of all patterns in each trace.

The same applies to the total number of frequencies of common similar patterns which is

35

always less than or equal to the total number of frequencies of patterns related to each

trace.

We illustrate the application of these metrics on the examples of Figure 3.12. After we

performed the patterns detection algorithm, we obtained two sets of patterns, among

which the common patterns are extracted. Figure 3.13 shows the patterns extracted from

Traces 1 and 2 as well as the common patterns between the two traces. Notice that we

used in this step the “Ordering” matching criterion.

Figure 3.14 Extracting the Final Set of Similar Patterns of Sample Traces T1 and T2

(two sets of extracted patterns) of Figure 3.13

Now, all the relevant information needed to perform and compute the two correlation

metrics is available to be used in the next process. Table 3.3 shows the number of

patterns and their frequencies in the traces of Figure 3.12.

Trace 1 Patterns Trace 2 Patterns

C
D
E

B
D
C
E

B

I
J

F
I
J

F

G
H

F

D
E

B

R

B

L

B

Y
Z

X

Match / Similar Pattern 1

Match / Similar Pattern 2

36

Table 3.3 The Properties of the Two Sample Traces of Figure 3.13

 Properties

Sample Traces

Total Number of Patterns

Total Number of Pattern

Frequencies

Trace 1

5

12

Trace 2

4

14

Table 3.4 Final Set of Common Patterns of Two Sample Traces of Figure 3.13

Pattern Number

Content of Similar Pattern

Frequency

Trace 1

Trace 2

1
C
D
E

B

3 3

2 I
J

F

2 3

Total number of frequencies of similar patterns 5 6

The results of applying the non-weighted and weighted correlation metrics are as follows:

37

In view of the fact that it is almost half of each sample trace patterns considered similar

in this example, the result obtained by applying NW_TCM seems to be reasonable. The

outcome of applying this metric has resulted in 45% similarity between the feature traces

Trace 1 and Trace 2. Using the W_TCM metric, we take the frequency into account as

well. The result obtained was 19% due to the fact that the frequency of the common

patterns is much less than the total number of frequencies of the Traces 1 and 2 patterns.

Moreover, the number of common patterns is less than the half in Trace1.

3.3 Summary

In this chapter, we presented our approach of comparing two traces based on their main

behavioural patterns. We discussed the various matching criteria used to measure the

extent by which sequences of events can be deemed similar. This is because identical

matching alone would result in many patterns that differ only slightly. We also

introduced two metrics that measure the similarity between two traces based on the

number of common patterns they have, the weighted correlation metric and the non-

weighted correlation metric, which vary whether the frequency of the patterns is taken

into account or not. In the next chapter, we show the applicability of our approach on

traces generated from a real system.

38

Chapter 4 Evaluation

4.1 Target System

We have applied the proposed trace correlation algorithm to traces generated from two

versions of the same Java-based software system called Weka [WEKA]. The versions of

Weka that have been selected for this case study are versions 3.4 and 3.7. Weka is an

open source software which was developed in the University of Waikato, New Zealand.

It is a machine learning tool that supports several algorithms such as classification

algorithms, regression techniques, clustering and association rules. Weka version 3.4 is

comprised of 55 packages, 732 classes, 8980 methods and 147,335 lines of code

(approximately 147 KLOC) while Weka version 3.7 contains 76 packages, 1129 classes,

14111 methods and 224,556 lines of code (approximately 224 KLOC).

We selected the Weka system because it is popular (well-known) and also well

documented. The Weka system framework and its components including packages and

the most important classes are documented in a book dedicated to the tool and machine

learning in general [Witten 99]. In addition, Weka enjoys an active online community

which resulted in many documents and tutorials made available on the Weka official

website [WEKA]. Some of these documents contain overviews and detailed description

of the Weka architecture to help developer use and improve the tool if need be. In this

research, we used Weka‟s documentation to validate some of the results obtained by

applying our approach.

39

4.2 Usage Scenario

4.2.1 Feature Selection

We have applied our trace correlation techniques to a specific software feature supported

in both versions of Weka, which is the use of the J48 classification algorithm used for

machine learning to construct efficient decision trees. Our choice of J48 was motivated

by the fact that it is a feature available in both versions and that it does not require

extensive knowledge on how to trigger it. The application of our approach aims to reveal

the similarities or differences in the way each version implements the J48 algorithm and

if there are any major change in the newer version of Weka with respect to this algorithm.

4.2.2 Generation of Feature-Traces

In order to generate the execution traces that correspond to the selected feature for this

case study, we instrumented Weka using TPTP Eclipse plug-in (the Eclipse Test and

Performance Tool Platform Project). TPTP is an open source platform which allows the

software developers to build test and performance tools. The detailed description of this

tool can be found on the website and the entire information of the plug-in and its

download is provided on [Eclipse TPTP]. Probes were inserted at each entry and exit

method (including constructors) of the intended system in order to instrument it including

all the invoked routines that are specific to the scenario chosen to examine Weka.

For the feature discussed in the previous section, we generated two execution traces,

which correspond to the same selected feature, by executing the two instrumented

versions of Weka. We used a sample input data provided in the documentation and the

40

source code package (folder) of Weka system to exercise the J48 feature in Weka

versions 3.4 and 3.7.

4.3 Applying the Trace Correlation Algorithm

The first step of the algorithm is preprocess the traces by filtering out utilities such as get

and set methods as well as removing contiguous repetitions. We also removed from each

trace the methods responsible for generating the graphical interface and initializing the

Weka environment. The removal of parts of the trace that are concerned with initializing

the Weka environment was necessary so as to focus on only parts of the traces concerned

with the implementation of the J48 algorithm, since the objective of the study is to

understand the variation that may occur in both versions of Weka with respect to this

algorithm.

In Table 4.1, we show statistical information regarding the size of the traces before and

after the preprocessing stage. We can see the removal of contiguous repetitions and

utilities reduces considerably the size of raw traces. But the resulting traces are still in the

order of thousands of calls, which are still hard for humans to comprehend manually. The

size of the initialization part turned out to be very small compared to the size of the raw

traces.

41

Table 4.1 The Execution Traces of Weka System for Versions 3.4 and 3.7

 Weka Version

 Properties of Execution Traces

Weka V.

3.4

Weka V.

3.7

Original (raw) Trace Size 35,974 103,009

Original Trace Size after Removing Contiguous Repetitions 6,850 26,978

Initialization Trace Size 5,919 17,534

Initialization Trace Size after Removing Contiguous Repetitions 682 1,288

Original Trace Size after Removing Initialization Phase (Initialization

Trace)
5,510 24,700

Note that the information reported in this table is in ordered steps where we can see that

the original traces went through several processes starting by removing the contiguous

repetitions, followed with the removal of the initialization part. Since we eliminated all

contiguous repetitions out of original traces, we did the same thing for the generated

initialization traces as well.

Also, we can see in Table 4.1 that the size of the J48 trace in Weka 3.7 is considerably

higher than the size of the J48 trace generated from the older version Weka 3.4. This

indicates that new enhancements have been made to this algorithm in the newer version.

We further exploited this aspect using our pattern detection algorithm.

The second step was to apply the pattern detection algorithm. We used the “ordering”

matching criterion during the extraction process. Future work should focus on

experimenting with other matching criteria to study their impact on the final result. The

last step is to apply the correlation metrics to measure the differences between the two

42

pattern sets extracted from the Weka traces. In the next subsequent sections, we present

the quantitative and qualitative analysis of the results.

4.3.1 Quantitative Analysis

Table 4.2 shows the number of extracted patterns from each trace and the total number of

similar patterns in both traces.

Table 4.2 Behavioural Patterns of Two Execution Traces of Two Weka Versions

Weka Version

Matching Criteria Number of Patterns

All Extracted

Patterns

Similar Patterns of Two

Versions

Weka 3.4 Ordering (Ignore Order) 162
64

Weka 3.7 Ordering (Ignore Order) 299

As we see in Table 4.2, the total number of patterns that belong to Weka 3.7 is almost the

double the total number of patterns of Weka 3.4. This result shows that the

implementation of the J48 algorithm in Weka has undergone several changes from Weka

3.4 to Weka 3.7. Moreover, the similar patterns of both traces which are 64 patterns are

less than the half of the total patterns relevant to the used versions of target system (i.e.

all extracted patterns of Weka 3.4 and 3.7 that are 162 and 299, respectively). This

number of similar patterns compared with the whole patterns influences the final results

of the correlation metrics.

43

Table 4.3 shows the results of applying the correlation metrics to the patterns of both

traces of Weka. The results show that both traces are considerably different (NW_TCM =

31%, W_TCM = 5%).

Table 4.3 Results of Running Trace Correlation Metrics on Execution Traces

Trace Correlation Metrics Results

NW_TCM (t1,t2) 30.45%

W_TCM (t1,t2) 5%

To be able to justify these differences, we examined the patterns that are not common

between the two traces by exploring the source code of the two Weka versions. This

qualitative analysis is presented in the next section.

4.3.2 Qualitative Analysis

The dissimilarity between the two versions in terms of the total number of all extracted

patterns (without taking into account the frequency) is almost 70%. After exploring the

content of both traces, we found that the number of distinct methods of the J48 trace in

Weka 3.4 is 656, whereas the number of distinct methods in the trace generated from

Weka 3.7 has 1024 distinct methods. This has led to the generation of many patterns that

are in one trace and not in another trace (patterns triggered by the new methods). By

exploring the source code of both versions, we found that many of these methods have

been introduced in newer versions of Weka starting from Weka 3.7. Table 4.4 shows an

example of methods that we either newly invoked only in the trace of Weka 3.7 (new in

scenario), and not in Weka 3.4 but they existed in the source code of both versions of the

44

system or new methods that were introduced in the source code of Weka 3.7 and

therefore did not exist in Weka 3.4 (new in source code and scenario of Weka 3.7).

Table 4.4 New Method Samples of Weka 3.7 in scenario or scenario and source code

Method

Number
New in Scenario

Method

Number
New in Source Code and Scenario

1

weka.classifiers.evaluation.

ThresholdCurve.makeInstance

1

weka.gui.explorer.ClassifierP

anel.updateCapabilitiesFilter

2

weka.classifiers.evaluation.

ThresholdCurve.makeHeader

2

weka.core.Capabilities.clone

3

weka.core.Memory.isOutOfMemo

ry

3

weka.core.AbstractInstance.nu

mClasses

4
weka.core.Utils.checkForRema

iningOptions
4

weka.core.DenseInstance.value

5
weka.core.Utils.splitOptions

5
weka.core.WekaEnumeration.nex

tElement

6

weka.classifiers.evaluation.

NominalPrediction.distributi

on

6

weka.classifiers.Evaluation.w

eightedFalsePositiveRate

After we gathered all the information regarding the patterns including the distinct

methods and the independent patterns related to each trace, two inspection strategies have

been achieved to validate the results of our approach. The first one is for the similar

patterns in two versions with respect to the parent roots and the second one is for the new

patterns of Weka 3.7. For the first inspection strategy, we detected various patterns in

both pattern sets that can be deemed to be similar in terms of having the same first

method call but their content is different. In other words, we investigated these similar

patterns which only share the equivalent parent node of their subtrees.

We studied some of these patterns and discovered that many refactoring has been used in

Weka 3.7 to modify the way these methods were implemented. This includes adding new

45

classes and methods, changing the names of existing methods or moving the classes and

routines to other existing or new classes and components. For example, the size()

method in FastVector class of Weka 3.4 is changed to be considered as utility routine

in Weka 3.7 and replaced by the size() method implemented in the Collection

interface which is a built-in class in Java package java.util. There are many

size() methods in Java classes that are invoked according to the type of the predefined

object that calls the right one according to its type that can be List, ArrayList, etc. Thus,

the size() method did not appear in the extracted patterns of Weka 3.7 since it is not

traced and logged in the corresponding execution trace while it is considered as a utility

method of the system components and external routine to the Weka project.

Another example of what we have observed in examining the patterns and the source

code of both versions is that some invoked methods have been moved to new classes

introduced in Weka 3.7. The method named hasMoreElements() was in the

FastVectorEnumeration class of the old version while it was shifted to a new class

called WekaEnumeration in the new version. AbstractInstance and

DenseInstance are other examples of new classes added to the Core package of the

new version that contain new methods as well. Table 4.5 shows few samples of these

detected patterns that share the same parent node but different implementation due to

refactoring of the code.

As we can see in Table 4.5, each pair seems similar according to the first method call but

their contents are different. In the following, we explain each pair of patterns in addition

to their responsibilities in the source code.

46

Table 4.5 Samples of Patterns with the Same Parent Nodes

P
a
tt

er
n

N
u

m
b

e
r Pattern

V 3.4 V 3.7

1

 weka.core.Instances.attrib

ute

 weka.core.FastVector.eleme

ntAt

 weka.core.Instances.attribute

 weka.core.Instances.numAttribut

es

 weka.core.Instances.attribute

 weka.core.Attribute.name

 weka.core.Instances.attribute

2

 weka.classifiers.trees.J48

.Distribution.add

 weka.core.Instance.classVa

lue

 weka.core.Instance.classIn

dex

 weka.core.Instances.classI

ndex

 weka.core.Instance.value

 weka.core.Instance.weight

 weka.classifiers.trees.J48.Dist

ribution.add

 weka.core.AbstractInstance.clas

sValue

 weka.core.AbstractInstance.clas

sIndex

 weka.core.Instances.classIndex

 weka.core.DenseInstance.value

 weka.core.AbstractInstance.weig

ht

3

 weka.classifiers.Evaluatio

n.makeDistribution

 weka.core.Instance.isMissi

ngValue

 weka.classifiers.Evaluation.mak

eDistribution

 weka.core.Utils.isMissingValue

4

 weka.classifiers.trees.J48

.C45Split.weights

 weka.core.Instance.isMissi

ng

 weka.classifiers.trees.J48.C45S

plit.weights

 weka.core.AbstractInstance.isMi

ssing

 weka.core.DenseInstance.value

 weka.core.Utils.isMissingValue

The first pattern in version 3.4 consists of two method calls while its matching pattern in

version 3.7 includes five method calls. In version 3.4, the attribute() method has

one parameter of integer data type that invoked another routine called elementAt()

located in the class FastVector. By referring to the source code of the two versions,

the attribute() method that was called is not the same as the one invoked in its

corresponding pattern of version 3.4 since its parameter is of string data type. It calls

47

many other methods to achieve its task starting with numAttributes() and then

attribute() which is the same one as in the corresponding pattern in the old version.

It continues with the name() procedure and ends with calling again the attribute()

method. The responsibility of the version 3.4 pattern is to return an attribute while the

pattern of version 3.7 responsibility is to return an attribute given its name. If there is

more than one attribute with the same name, it returns the first one, otherwise it returns

null if the attribute cannot be found.

According to the second pair of patterns, if we try to analyze it, we will find that both of

them have the same first method call, namely, add() with same parameters as well

which are integer and Instance data types. Add() invokes the method classValue()

in both versions but with one difference which is in the old version the classValue()

is located in class Instance while it is shifted to new class called

AbstractInstance in the new one. Then, classValue() calls classIndex()

from class Instance in version 3.4 while it is called from the class

AbstractInstance in version 3.7. The subsequent methods value() and

weight() are retrieved in both patterns where their place in Weka 3.4 is the class

Instance while they are placed in the new classes in Weka 3.7; DenseInstance

and AbstractInstance, respectively. Both of them have the same responsibility

(functionality) in the system which is to add a given instance to a given bag.

Now, if we take a look at the third pair of patterns in the source code of Weka versions,

we notice that their parent method which is makeDistribution() consists of one

parameter with the data type double. It invokes the method isMissingValue()

48

which is located in the class Instance regarding the old Weka while it is moved to

another class in Weka 3.7 called Utils.

We finally examined the last matching patterns in the above table and found that the

method weights() with one parameter of Instance data type invokes the routine

isMissing() from the class Instance in old version when it is invoked from the

new class AbstractInstance in the new Weka. In version 3.4, another procedure

has been called by the routine isMissing() but not traced since it is a routine of built-

in class in Java named isNaN. The routine isMissing() in the new version retrieves

isMissingValue() which is a procedure of class Utils. It invokes another method

which is value() located in the new class DenseInstance. Their functionality is to

return weights if instance is assigned to more than one subset and return null if instance is

only assigned to one subset.

We also studied the patterns that were introduced in Weka 3.7 and not in Weka 3.4. Table

4.6 shows the results of these patterns and their corresponding source code methods.

As shown in this table, many patterns are triggered by methods that are new in Weka 3.7.

The responsibilities of the same new pattern samples presented in the above table are

shown in Table 4.7. Notice that each pattern is summarized into only one method call

which is the first (parent) method of its entire routine calls.

49

Table 4.6 Samples of New Patterns in Execution Trace of Weka 3.7
P

a
tt

e
r
n

 N
u

m
b

e
r

Pattern

Method Calls

New in

Source

Code

of

Weka

3.7

New in

Scenari

o of

Weka

3.7

Existed

in both

Scenarios

of Weka

versions

(3.4 , 3.7)

Existed in

both

Source

Code of

Weka

Versions

(3.4 , 3.7)

1

weka.classifiers.evaluation.ThresholdCurve.makeInstance

weka.core.DenseInstance.<init>

weka.core.AbstractInstance.<init>

2

weka.classifiers.evaluation.ThresholdCurve.makeInstance

weka.core.Utils.missingValue

weka.core.DenseInstance.<init>

weka.core.AbstractInstance.<init>

3

weka.core.AbstractInstance.classIsMissing

weka.core.AbstractInstance.classIndex

weka.core.Instances.classIndex

weka.core.AbstractInstance.isMissing

weka.core.DenseInstance.value

weka.core.Utils.isMissingValue

4

weka.core.DenseInstance.copy

weka.core.DenseInstance.<init>

weka.core.AbstractInstance.<init>

weka.core.Memory.isOutOfMemory

weka.core.AbstractInstance.weight

5

weka.core.DenseInstance.freshAttributeVector

weka.core.DenseInstance.toDoubleArray

6

weka.classifiers.evaluation.ThresholdCurve.makeHeader

weka.core.FastVector.<init>

weka.core.Attribute.<init>

weka.core.ProtectedProperties.<init>

weka.core.Attribute.<init>

weka.core.FastVector.addElement

weka.core.Instances.<init>

weka.core.Attribute.name

weka.core.Instances.numAttributes

weka.core.Instances.attribute

weka.core.Instances.numAttributes

50

Table 4.7 The Responsibilities of New Pattern Samples of Table 4.6

Pattern

Number

Pattern Responsibility

1
weka.classifiers.evaluation.

ThresholdCurve.makeInstance
Creates an instance out of the given data.

2
weka.classifiers.evaluation.

ThresholdCurve.makeInstance
Creates an instance out of the given data.

3
weka.core.AbstractInstance.c

lassIsMissing
Tests whether the class of an instance is missing or

not (returns true if the instance‟s class is missing).

4
weka.core.DenseInstance.copy Generates a shallow copy of the instance as well as it

has an access to the dataset as well.

5

weka.core.DenseInstance.fres

hAttributeVector

Clones the attribute vector of the instance and

overwrites it with the clone.

6
weka.classifiers.evaluation.

ThresholdCurve.makeHeader
Generates the header of an instance.

To support and validate the result obtained from the W_TCM, we retrieved all the

frequencies that are related to the similar patterns in both traces as well as the total

frequency numbers for all the extracted patterns of the whole traces; one for each Weka

version. The frequencies for each version are shown in Table 4.8.

Table 4.8 The Frequency Values of both Traces of Weka Versions 3.4 and 3.7

Weka Version Total Number of Frequency

 Similar Patterns All Extracted Patterns

Weka 3.4 411 1939

Weka 3.7 581 8389

The significant discrepancy in the frequency of patterns in both versions combined with

the number of patterns that differ from one system to another contributes to the very low

value of W_TCM (5%) obtained by comparing the traces of both systems.

51

4.4 Summary

In this chapter, we applied our trace correlation algorithm to traces generated by

exercising two subsequent versions of the Weka systems using the same software feature.

Our metrics revealed that the versions differ significantly in the way this feature is

implemented. We showed by examining the source code that the newer version of the

system contained many new methods that did not exist in previous versions. In addition,

many changes were made to the methods of the older version. The changes consist of the

emergence of new methods and/or the removal of existing ones introduces and validates

these variant correlation results since many components and classes have been newly

added or updated in the source code.

One of our metrics, NW_TCM, can be used to provide engineers with an estimation on

the differences between the two scenarios. When applied to the Weka trace, it showed

that the two traced scenarios were only 30% similar from one version to another. This can

be exploited by software engineers to develop additional tests, or account for additional

maintenance tasks. It also gives them an initiative that the source code of both selected

versions of the system has many changes due to many activities such as refactoring

techniques concerning the intended feature. These activities apparently influence the

result obtained from the NW_TCM. The second metric W_TCM is very sensitive to the

way the scenario is triggered (e.g. input data, etc) since the frequency of patterns often

depends on the number processing needed to process the input data. We only recommend

using it for stable scenarios that are not sensitive to the input data. W_TCM can be

beneficial for software engineers who are into enhancing and working on the

52

performance of the target system since it takes into account the number of repetitions for

all the events occur in the execution trace of the user-specific scenario.

53

Chapter 5 Conclusion

5.1 Research Contributions

In this dissertation, we presented a new approach for comparing the implementation of

same or different features in subsequent versions of the same system - Finding the

similarity between two traces generated from two different versions of the same software

system for the same feature under study. In particular, we focused on calculating the trace

correlation and similarity based on all the behavioural patterns extracted from the

execution traces using one or more matching criteria.

We introduced two metrics for measuring the similarity between two traces based on

trace patterns, W_TCM, NW_TCM, which vary whether the number of occurrences of

patterns is taken into account or not.

Our approach is comprised of two main phases: trace preprocessing and trace correlation

technique. In the first phase, we prepared and refined the generated traces by removing

utility methods invoked during the generation process as well contiguous repetitions due

to the presence of loops and recursion.

The second phase, namely, trace correlation technique contains two steps: pattern

detection and trace correlation metrics. In patterns detection step, we extracted all the

behavioural trace patterns based on applying one or more of the existing and/or new

matching criteria to the input traces. Many matching criteria have been introduced to

54

generalize patterns instead of counting on identical matching which often results in large

and yet similar patterns. In addition, we proposed some new matching criteria in this

thesis to expand the area of study for more opportunities and give more options to extract

different kinds of patterns upon request once we increase the number of matching criteria

(see Chapter 3 – section 3.3). Once the patterns are extracted from both traces, they are

compared using the trace correlation metrics (second step of this phase). In this step, all

the similar patterns in both sets were extracted after we selected the matching criteria to

be used to compare the two pattern sets of both versions. Consequently, all the similar

patterns are essentially required to participate with their frequencies as the main factor in

the correlation metrics to have the final similarity percentage.

 Finally, we applied our approach to traces generated from two different versions of the

same object-oriented software system, named Weka. The results obtained from the

correlation metrics showed the differences in the implementation of the two features in

each system. We validated our results by examining the Weka source code and

documentation and found that the metrics reflected the differences that exist in the traces.

We want to note that our approach is not complex and can be supported by tools since it

does not need a lot of human intervention.

5.2 Opportunities for Further Research

Many ideas and directions are available to be employed for future research in the context

of trace correlation approach. This future work includes the need to conduct more

experiments with other different software systems that have more than one version to

further assess the efficiency of our approach. Moreover, there is a need to apply the

55

techniques on different types of execution traces such as statement-level traces that tend

to be considerably larger than routine call traces. On the other hand, instead of focusing

on the internal aspects of the feature under analysis, a study can be conducted to work on

the external functional attributes of the feature whereas the similarity percentage might be

completely different while we study the feature from different point of view. For

example, considering all the method calls with their body (statement-level traces) will

considerably increase the size of the generated traces and introduce new types of patterns

that are completely different than those extracted from the routine call traces. Hence,

while some patterns extracted by our techniques from routine call traces are considered

different regarding the refactoring activities, they might be considered similar as one

pattern since we go to another level of abstraction, a statement-level.

Finally, there is a need to compare our results with other software comparison techniques

and perhaps end up with combined techniques that can reveal similarities and

dissimilarities among feature implementation.

5.3 Closing Remarks

Understanding an entire software system is a significant challenge that maintainers and

developers face when they develop, maintain and add new features to the target software

system. Locating some features under study by referring to the source code could be very

costly in terms of time and resources, specially, when the subject systems become more

complex due to the increased code size. The main objective of trace correlation approach

is to assist developers when trying to understand the difference between various versions

of the same system using tracing techniques. This can help in many maintenance tasks

56

such as estimating the cost and effort needed to perform maintenance task on newer

versions of the system.

57

Bibliography

ANSI/IEEE Std ANSI/IEEE Standard 729-1983.

Arnold 89 R. S. Arnold,” Software restructuring”, Proceedings of the IEEE

77, pp. 607–617, 1989.

Ball 99 T. Ball, “The concept of dynamic analysis”, In Proc. 7th European

Software Engineering Conference and ACM SIGSOFT Symp. on

the Foundations of Software Engineering(ESEC/FSE), pp. 216-

234, Springer, 1999.

Bennett 00 K. H. Bennett, and V. T. Rajlich, “Software maintenance and

evolution: a roadmap”, In Proc. of the Conference on the Future of

Software Engineering, pp.73-87, 2000.

Biggerstaff 89 T. J. Biggerstaff, “Design Recovery for Maintenance and Reuse”,

IEEE Computer, Volume 22, Issue 7, IEEE Computer Society, pp.

36-49, 1989.

Biggerstaff 93 T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept

assignment problem in program understanding”, In Proceedings of

the 15th International Conference on Software Engineering, pp.

482-498, IEEE C.S., 1993.

58

Boehm 00 B. Boehm, C. Abts, and S. Chulani, “Software Development Cost

Estimation Approaches – A Survey”, Annals of Software

Engineering, 10: pp. 177-205, 1-Em, 2-Rganejwbfpnnthby, 3-Re,

4-Nr, 5-No, 2000.

Boehm 81 B.W. Boehm, “Software Engineering Economics”, Prentice-Hall,

Englewood Cliffs, N J, 1981.

Boehm 96 B. W. Boehm, and Hoh In, “Identifying Quality- Requirements

Conflicts”, IEEE Software, pp. 25-35, 1996.

Brooks 83 R. Brooks, “Towards a theory of the comprehension of computer

programs”, International Journal of Man-Machine Studies, 18(6),

pp. 542-554, 1983.

Brooks 95 F. Brooks, “The Mythical Man-Month”. Addison-Wesley, 1975 &

1995. ISBN 0-201-00650-2 & ISBN 0-201-83595-9.

Canfora 96 G. Canfora, L. Mancini, and M. Tortorella, “A workbench for

program comprehension during software maintenance”, in: Fourth

Workshop on Program Comprehension, IEEE Computer Society

Press, Silver Spring, MD, pp. 30±39, 1996.

Chan 03 A. Chan, R. Holmes, G. C. Murphy, and ATT. Ying, “Scaling an

object-oriented system execution visualizer through sampling”. In

Proc. 11th Int. Workshop on Program Comprehension (IWPC),

IEEE, pp. 237–244, 2003.

http://en.wikipedia.org/wiki/Fred_Brooks
http://en.wikipedia.org/wiki/The_Mythical_Man-Month
http://en.wikipedia.org/wiki/Addison-Wesley
http://en.wikipedia.org/wiki/Special:BookSources/0201006502
http://en.wikipedia.org/wiki/Special:BookSources/0201835959

59

Chikofsky 90 E. J. Chikofsky, and J. H. Cross, “Reverse engineering and design

recovery: A taxonomy”, IEEE Software, 7(1), pp. 13–17, 1990.

Coleman 94 D. M. Coleman, D. Ash, B. Lowther, and P.W. Oman, “Using

Metrics to Evaluate Software System Maintainability,” Computer,

vol. 27, no. 8, pp. 44-49, 1994.

Cornelissen 08 B. Cornelissen, and L. Moonen, “On Large Execution Traces and

Trace Abstraction Techniques”, Delft: Software Engineering

Research Group, ISSN 1872-5392, 2008.

De Pauw 02 W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and

J. Yang, "Visualizing the Execution of Java programs", In Proc. of

the International Seminar on Software Visualization, LNCS 2269,

Springer-Verlag, pp. 151-162, 2002.

De Pauw 93 W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides,

“Visualizing the Behaviour of Object-Oriented Systems”, In

Proceedings of the 8th Conference on Object-Oriented

Programming, Systems, Languages,and Applications, ACM Press,

pp. 326-337, 1993.

De Pauw 98 W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman, “Execution

Patterns in Object-Oriented Visualization”, In Proceedings of the

69 4th USENIX Conference on Object-Oriented Technologies and

Systems (COOTS), Santa Fe, NM, pp. 219-234, 1998.

60

Dugerdil 07 P. Dugerdil, “Using trace sampling techniques to identify dynamic

clusters of classes”, In proc. 2007 conference of the center for

advanced studies on Collaborative research, pp. 306-314, 2007.

Dunsmore 00 A. Dunsmore, M. Roper, and M. Wood, “The role of

comprehension in software inspection”, J. Syst. Softw. 52, 2-3,

121-129, 2000.

Eclipse TPTP http://www.eclipse.org/tptp/

Erdös 98 K. Erdos, H. M. Sneed, "Partial Comprehension of Complex

Programs (enough to perform maintenance)", IEEE Proceedings -

Sixth International Workshop on Program Comprehension, pp. 24-

26, 1998.

Fjeldstad 83 R. K. Fjeldstad, and W. T. Hamlen, “Application Program

Maintenance Study: Report to Our Respondents,” In Proceedings

GUIDE 48, Philadelphia, PA, Tutorial on Software Maintenance,

G. Parikh and N. Zvegintozov, Eds., IEEE Computer Society,

1983.

Fowler 99 M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,

“Refactoring: Improving the Design of Existing Code”, Addison-

Wesley, 1999.

Greevy 05 O. Greevy, and S. Ducasse, “Correlating features and code using a

compact two-sided trace analysis approach”, In Proceedings of

http://www.eclipse.org/tptp/

61

CSMR 2005 (9th European Conference on Software Maintenance

and Reengineering, pp. 314-323, 2005.

Guimaraes 83 T. Guimaraes, “Managing Application Program Maintenance

Expenditure”, Comm. ACM, vol. 26, no. 10, pp. 739-746, 1983.

Hamou-Lhadj 03a A. Hamou-Lhadj, and T. Lethbridge, “Techniques for Reducing

the Complexity of Object-Oriented Execution Traces”, In Proc. of

VISSOFT, pp. 35-40, 2003.

Hamou-Lhadj 03b A. Hamou-Lhadj, and T. Lethbridge, “An Efficient Algorithm for

Detecting Patterns in Traces of Procedure Calls”, In Proc. of the

1st ICSE International Workshop on Dynamic Analysis (WODA),

Portland, Oregon, USA, 2003.

Hamou-Lhadj 04 A. Hamou-Lhadj, and T. C. Lethbridge, “A Survey of Trace

Exploration Tools and Techniques”, In Proc. of CASCON 2004,

67 IBM Press, ACM Digital Library , Toronto, Canada, pp. 42-54,

2004.

Hamou-Lhadj 05a A. Hamou-Lhadj, T. Lethbridge, and L. Fu, “SEAT: A Usable

Trace Analysis Tool”, International Workshop on Program

Comprehension (IWPC), IEEE CS, St. Louis, Missouri, USA, pp.

157-160, 2005.

Hamou-Lhadj 05b A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge,

“Recovering behavioral design models from execution traces”, In

62

Proceedings of the 9th European Conference on Software

Maintenance and Reengineering, pp. 112-121, 2005.

Hamou-Lhadj 06 A. Hamou-Lhadj, and T. C. Lethbridge, "Summarizing the content

of Large Traces to Facilitate the Understanding of the Behaviour of

a Software System", In Proc. of the 14th IEEE International

Conference Program Comprehension, pp. 181-190, 2006.

ISO/IEC ISO/IEC 14764:2006, 2006.

Jensen 83 R. Jensen, “An Improved Macrolevel Software Development

Resource Estimation Model”, Proceedings 5th ISPA Conference,

pp. 88-92, 1983.

Jerding 97a D. Jerding, J. Stasko, and T. Ball, “Visualizing Interactions in

Program Executions”, in Proceedings of the 19th ICSE, Boston,

Massachusetts, pp. 360-370, 1997.

Jerding 97b D. Jerding, and S. Rugaber, "Using Visualization for Architecture

Localization and Extraction", In Proc. of the 4th Working

Conference on Reverse Engineering, pp. 219-234, 1997.

Jerding 98 D. F. Jerding, and J. T. Stasko, “The Information Mural: A

Technique for Displaying and Navigating Large Information

Spaces”, In Proceedings of the IEEE Transactions on Visualization

and Computer Graphics, vol. 4, pp. 257-271, 1998.

http://en.wikipedia.org/wiki/ISO/IEC

63

Jones 97 C. Jones, “Applied Software Measurement”, 2nd Ed., McGraw-

Hill, NY, 1997.

Kerievsky 04 J. Kerievsky, ” Refactoring to Patterns”, Addison-Wesley, 2004.

Kuhn 06 A. Kuhn, and O. Greevy, “Exploiting the analogy between traces

and signal processing”, 22nd IEEE International Conference on

Software Maintenance (ICSM'06), 2006.

Lange 97 D. B. Lange, Y. Nakamura, “Object-Oriented Program Tracing and

Visualization”, IEEE Computer, Volume 30, Issue 5, pp. 63-70,

1997.

Lientz 78 B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics

of application software maintenance”, Commun. ACM 21, pp.

466-471, 1978.

Lientz 80 B. P. Lientz, and E. B. Swanson, “Software Maintenance

Management: A Study of the Maintenance of Computer

Application Software in 487 Data Processing Organizations”,

Addison-Wesley, 1980.

Low 90 G. C. Low, and D. R. Jeffery, “Function points in the estimation

and evaluation of the software process”, IEEE Transactions on

Software Engineering, 16(1), pp. 64-71, 1990.

64

Malony 91 A. D. Malony, D. H. Hammerslag, and D. J. Jablonowski,

“Traceview: A Trace Visualization Tool”, In the Proceedings of

IEEE Software”, Illinois University, pp. 19-28, 1991.

Martin 83 J. Martin, and C. Mcclure, “Software Maintenance: The Problem

and its Solutions”, Prentice-Hall: Englewood Cliffs NJ, 1983.

Mayrhauser 95 A. von Mayrhauser, and A. M. Vans, “Program comprehension

during software maintenance and evolution”, IEEE Computer, pp.

44-55, 1995.

Nelson 96 M. L. Nelson, “A Survey of Reverse Engineering and Program

Comprehension”, ODU CS-551 Software Engineering Survey,

1996.

Ng 04 D. Ng, D. R. Kaeli, S. Kojarski, and D. H. Lorenz, “Program

Comprehension Using Aspects”, In Proceedings of the ICSE

Workshop on Directions in Software Engineering Environments

(WoDiSEE‟2004), Edinburgh, Scotland, 2004.

Parnas 94 D. L. Parnas, “Software Aging”, In Proc. of the 16th International

Conference on Software Engineering, pp. 279-287, 1994.

Pfleeger 98 S. L. Pfleeger, “Software Engineering: Theory and Practice”,

Prentice Hall, Englewood Cliffs, New Jersey, 1998.

65

Pigoski 97 T. M. Pigoski, “Practical Software Maintenance: Best Practices

for Managing Your Software Investment”, John Wiley and Sons,

New York NY, pp. 384, 1997.

Pirzadeh 10 H. Pirzadeh, A. Agarwal, and A. Hamou-Lhadj, “An Approach for

Detecting Execution Phases of a System for the Purpose of

Program Comprehension”, In Proc. of the 8th International

Conference on Software Engineering Research, Management &

Applications (SERA 2010), Montreal, Canada, 2010.

Putnam 92 L. H. Putnam, and W. Myers, “Measures for Excellence: Reliable

Software on Time, Within Budget”, Englewood Cliffs, Yourdon

Press Computing Series, 1992.

Renieris 99 M. Renieris, and S. P. Reiss, “Almost: Exploring Program Traces”,

In Proceedings of the 1999 Workshop on new paradigms in

information visualization and manipulation in conjunction with the

eighth ACM international conference on Information and

knowledge management, pp. 70-77, United States, 1999.

Robson 91 D. J. Robson, K. H. Bennett, B. J. Cornelius, and M. Munro,

“Approaches to Program Comprehension”, The Journal of Systems

and Software, Elsevier North Holland, 14, pp. 79-84, 1991.

Rohatgi 08 A. Rohatgi, “An Approach towards Feature Location Based on

Impact Analysis”, Master‟s Thesis, Department of Computer

Science, Concordia University, 2008.

66

Rugaber 95 S. Rugaber, “Program Comprehension”, Encyclopedia of

Computer Science and Technology, 35(20), 341-368.Technical

report, College of Computing, Georgia Institute of Technology,

1995.

Standish 84 T. A. Standish, “An essay on software reuse”, IEEE Trans.

Software Engineering, SE-10(5), pp. 494-497, 1984.

Suri 07 P. K. Suri, and B. Bhushan, “Simulator for Time Estimation of

Software Development Process”, IJCSNS, Vol 7 No. 7, 2007.

Systä 00 T. Systä, “Understanding the Behaviour of Java Programs”, In

Proc. of the 7th Working Conference on Reverse Engineering,

IEEE Computer Society, pp. 214-223, 2000.

Walker 98 R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Swanson, and

J. Isaak, “Visualizing Dynamic Software System Information

through High-level Models”, In Proc. of the Conference on Object-

Oriented Programming, Systems, Languages, and Applications,

ACM Press, pp. 271-283, 1998.

WEKA Weka 3: Data Mining Software in Java

http://www.cs.waikato.ac.nz/ml/weka/

Whaley 00 J. Whaley, “A portable sampling-based profiler for Java virtual

machines”, In Proc. of the ACM 2000 conference on Java Grande,

pp. 78-87, 2000.

http://www.cs.waikato.ac.nz/ml/weka/

67

Wilde 03 N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Pounds, “A

comparison of methods for locating features in legacy software”,

Journal of Systems and Software, 65(2), pp.105-114, 2003.

Witten 99 I. H. Witten, and E. Frank, “Data Mining: Practical Machine

Learning Tools and Techniques with Java Implementations”,

Morgan Kaufmann, 1999.

Yau 80 S. S. Yau and J. S. Collofello, “Some Stability Measures for

Software Maintenance”, IEEE Transactions on SofhYare

Engineering, 6, pp. 545-552, 1980.

