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Abstract

On Routing, Backbone Formation and Barrier Coverage in Wireless

Ad Hoc and Sensor Networks

Mona Mehrandish, Ph.D.

Concordia University, 2011

In this thesis, we provide some primitives for wireless ad hoc and sensor networks to

facilitate applications such as disaster relief, community mesh networks, area moni-

toring and surveillance, and environmental monitoring. We introduce a local learning

algorithm for routing that uses feedback from neighbors to avoid voids in the network.

After five retrials, our algorithm achieves almost 100% delivery rate and has a stretch

factor close to that of greedy routing. We then give an algorithm for the construction

of a connected dominating set to serve as a data gathering and dissemination backbone

in networks modeled by unit disk graphs as well as quasi unit disk graphs. We also

consider the more general case of nodes with different transmission ranges modeled

by disk graphs and we give an algorithm for the construction of a strongly connected

dominating and absorbent set. Both our backbone construction algorithms are local

and have constant approximation ratio. Through extensive simulations, we show that

our algorithms outperform the existing algorithms for the same problems. Finally, we

study problem of covering a barrier with mobile sensors in order to detect intruders

as they cross the border of a protected area. We consider the problem of assigning

final positions to sensors to provide maximum coverage of the barrier while minimiz-

ing the maximum movement of any sensor on both multiple line barriers as well as

circular barriers. Furthermore, we consider the problem of minimizing the number of

sensors moved so as to achieve maximum coverage of multiple line barriers as well as

a circular barrier. For both our barrier coverage problems, we consider all possible

scenarios depending on whether complete coverage is possible or not, and if complete

coverage is not possible, whether the coverage is contiguous or non-contiguous. For

each case, we either give efficient polynomial algorithms or we show the problem to

be NP-hard.

iii



Acknowledgments

It is a pleasure to thank those who made this thesis possible. I am heartily thank-

ful to my supervisors, Lata Narayanan and Jaroslav Opatrny, whose encouragement,

guidance and support from the initial to the final level enabled me to develop an

understanding of the subject. Also, I would like to recognize many valuable contri-

butions from my colleague Hossein Kassaei with whom I explored the CDS problem

for UDGs.

iv



Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Backbone Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Barrier Coverage and Intrusion Detection . . . . . . . . . . . . . . . . 4

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 River Routing 9

2.1 Literature Review on Geographic Routing in Sensor Networks . . . . 9

2.2 The River Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Routing Between All Pairs . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Corner to Corner Routing . . . . . . . . . . . . . . . . . . . . 22

2.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 24

3 The Connected Dominating Set Problem 28

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The CDS Problem for Unit Disk Graphs . . . . . . . . . . . . . . . . 33

3.2.1 Definitions and Preliminaries . . . . . . . . . . . . . . . . . . 34

3.2.2 Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Local Spanner . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



3.2.4 Selecting the Vertices in the CDS . . . . . . . . . . . . . . . . 36

3.2.5 Pruning Procedure . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.6 Proof of Correctness and Performance . . . . . . . . . . . . . 42

3.2.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 The CDS Problem for QUDGs . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 QUDG Models . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Strongly Connected Dominating and Absorbent Set 67

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 The Local Approximation Algorithm for the Construction of the MSC-

DAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Definitions and Preliminaries . . . . . . . . . . . . . . . . . . 71

4.2.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Minimizing the Maximum Sensor Movement for Barrier Coverage 86

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 The MinMax Problem on a Single Line Barrier . . . . . . . . . . . . . 89

5.3 The MinMax Problem with Multiple Barriers . . . . . . . . . . . . . 92

5.3.1 L1 + L2 = 2rn . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 L1 + L2 > 2rn . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3 L1 + L2 < 2rn . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 The MinMax Problem on a Circle . . . . . . . . . . . . . . . . . . . . 106

5.4.1 R ≤ L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.2 R > L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Minimizing the Maximum Number of Sensors Moved for Barrier

Coverage 124

6.1 The MinNum Problem on a Single Line Barrier . . . . . . . . . . . . 126

6.1.1 Definitions and Preliminaries . . . . . . . . . . . . . . . . . . 126

vi



6.1.2 Unequal Range Sensors . . . . . . . . . . . . . . . . . . . . . . 127

6.1.3 Equal Range Sensors . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 The MinNum Problem on Multiple Barriers . . . . . . . . . . . . . . 142

6.2.1 L1 + L2 = 2rn . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2.2 L1 + L2 > 2rn . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.3 L1 + L2 < 2rn . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3 The MinNum Problem on a Circle . . . . . . . . . . . . . . . . . . . . 151

6.3.1 Unequal Range Sensors . . . . . . . . . . . . . . . . . . . . . . 151

6.3.2 Equal Range Sensors . . . . . . . . . . . . . . . . . . . . . . . 153

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Conclusions and Future Work 158

Bibliography 160

vii



List of Figures

1 Dividing the graph into 8 sectors at node u. . . . . . . . . . . . . . . 14

2 The effect of number of retrials on average delivery ratio . . . . . . . 18

3 The effect of the obstacle size on the average delivery ratio when k is

equal to 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 The path generated by the river routing algorithm between nodes u

and v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 The path generated between the same pair of nodes u and v as in

Figure 4 using GFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 The effect of the obstacle size on the average path length when k is

equal to 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 The effect of number of retrials on the delivery ratio from corner to

corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 The effect of the obstacle size on the delivery ratio from corner to

corner when k is equal to 5. . . . . . . . . . . . . . . . . . . . . . . . 24

9 The average shortest path length between the all pair of nodes from

the top right corner of the obstacle to the bottom left corner of the

obstacle and from the top left corner of the obstacle to the bottom

right corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

10 A tile divided into 12 hexagons of unit diameter. The bold edges belong

to hexagon 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

11 An example to illustrate the pruning procedure . . . . . . . . . . . . 41

12 Percentage of nodes in the CDS for different heuristics . . . . . . . . 46

13 Percentage of nodes in the CDS for different algorithms . . . . . . . . 47

14 Average shortest path in the CDS for different algorithms . . . . . . . 50

15 Percentage of nodes in the CDS for different pruning localities . . . . 51

16 Number of nodes per hexagon . . . . . . . . . . . . . . . . . . . . . . 53

viii



17 A Rhombus with sides equal to one of its diameters . . . . . . . . . . 57

18 Constructing the optimal tile . . . . . . . . . . . . . . . . . . . . . . 58

19 A 5 by 5 parallelogram-shaped tile . . . . . . . . . . . . . . . . . . . 59

20 Percentage of nodes in the CDS for different pruning localities when

r = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

21 Percentage of nodes in the CDS for different pruning localities when

r = 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

22 Percentage of nodes in the CDS for different pruning localities when

r = 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

23 Percentage of nodes in the CDS for different pruning localities when

r = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

24 Percentage of nodes in the CDS for different node densities when r = 0.7 64

25 Percentage of nodes in the CDS for different node densities when r = 0.8 65

26 Percentage of nodes in the CDS for different node densities when r = 0.9 66

27 Percentage of nodes in the CDS for different node densities when r = 1 66

28 Impact of the locality of the strong k−connectivity test of the pruning

procedure on the size of the SCDAS when transmission ranges are in

[10, 50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

29 Impact of the locality of the strong k−connectivity test of the pruning

procedure on the size of the SCDAS when transmission ranges are in

[20, 50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

30 Impact of the locality of the strong k−connectivity test of the pruning

procedure on the size of the SCDAS when transmission ranges are in

[30, 50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

31 Impact of the locality of the strong k−connectivity test of the pruning

procedure on the size of the SCDAS when transmission ranges are in

[40, 50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

32 Impact of the locality of the strong k−connectivity test of the pruning

procedure on the size of the SCDAS when transmission ranges are in

[50, 50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

33 Impact of percentage of unidirectional links on the size of the SCDAS

when number of nodes is 50 . . . . . . . . . . . . . . . . . . . . . . . 82

ix



34 Impact of percentage of unidirectional links on the size of the SCDAS

when number of nodes is 300 . . . . . . . . . . . . . . . . . . . . . . . 83

35 Impact of node density on the size of the SCDAS when transmission

ranges are in [10, 50] . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

36 Impact of node density on the size of the SCDAS when transmission

ranges are in [50, 50] . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

37 Arrangements of sensors for proving the NP-completeness of the Min-

Max optimization problem on two barriers when sensors have arbitrary

ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

38 The coverage of sensor S on the barrier C = (o, r) . . . . . . . . . . . 107

39 Possible scenarios in which Si succeeds Si+1 in the counterclockwise

traversal of sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

40 Possible scenarios in which Si has a negative shift, and Si+1 has a

positive shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

41 Different shift values of S1 ,S2 and S3 as they are shifted clockwise on

C by π
6

at each step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

42 Arrangement of sensors for proving the NP-completeness of the con-

tiguous MinNum problem on an infinite line. . . . . . . . . . . . . . . 130

43 Arrangement of sensors for proving the NP-completeness of the Min-

Num problem for unequal sensor ranges on a line segment [0, L] where

L =
∑n+1

i=1 2ri. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

44 Arrangement of sensors on a line segment I = [0, 5]. . . . . . . . . . . 137

45 The graph representing sensors arrangement in Figure 44 . . . . . . . 138

46 Arrangements of sensors for the coverage of the line segment I = [0, 3] 141

47 The graph representing sensors arrangement in Figure 46 . . . . . . . 142

48 Arrangement of sensors for proving the NP-completeness of the Min-

Num optimization problem for unequal sensor ranges on a circle barrier

C = (o, d
2
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

49 Clockwise distance between (α, d
2
) and (β, d

2
) . . . . . . . . . . . . . . 154

x



List of Tables

1 Summary of time complexities of the algorithms in [CKK+09], where

sensors have identical ranges . . . . . . . . . . . . . . . . . . . . . . . 92

2 Algorithm complexities for the MinMax problem for homogeneous sen-

sors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3 Summary of results in [DHM+09] . . . . . . . . . . . . . . . . . . . . 125

4 Algorithm complexities for the MinNum problem for homogeneous sen-

sors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xi



Chapter 1

Introduction

Recent advances in wireless communications and electronics are paving the way for

the deployment of low-cost, low-power networks of untethered and unattended sensors

and actuators. Wireless ad hoc and sensor networks are infrastructureless networks

formed by autonomous nodes communicating via radio interfaces.

A variety of applications such as disaster relief, community mesh networks, area

monitoring, surveillance and environmental monitoring, and intrusion detection have

been proposed for these networks. To enable the deployment of large scale ad hoc

and sensor networks, a number of fundamental problems need to be solved in an

efficient manner. Such problems include routing, broadcasting, topology control, data

aggregation, backbone formation, and coverage of a given region or barrier. In this

thesis, we consider the routing problem, backbone formation for data gathering and

dissemination and barrier coverage for intrusion detection. In the following sections,

we provide some brief background on each of the problems considered in this thesis.
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1.1 Routing

Routing in wireless sensor networks (WSNs) is very challenging due to the inherent

characteristics that distinguish these networks from other wireless networks like cel-

lular networks. Due to energy restrictions of sensor nodes, it is not possible to build a

global addressing scheme for the deployment of a large number of sensor nodes as the

overhead of ID maintenance is high. Thus, traditional IP-based protocols may not

be applicable to WSNs. Furthermore, sensor nodes that are deployed in an ad hoc

manner need to be self-organizing as the ad hoc deployment of these nodes requires

the system to form connections and cope with the resultant nodal distribution espe-

cially when the operation of the sensor networks is unattended. Additionally, sensor

nodes are tightly constrained in terms of energy, processing, and storage capacities.

Thus, they require careful resource management.

Since nodes not within the transmission range of each other cannot communicate

directly, geometric proximity information has a high correlation with the network

topology. Such an abstraction of the network connectivity based on nodes’ Euclidean

coordinates has tremendously simplified the design of routing protocols and improved

routing efficiency. The class of routing algorithm in which each node along a source-

destination path makes a message-forwarding decision based on some position infor-

mation is called geometric routing [LW07]. For example, in geographical forwarding,

forwarding decisions are based on the geographical locations of destinations and the

one-hop (in some cases up to k-hop) neighborhood of a node. In a greedy manner, a

packet is forwarded to the one-hop neighbor to make the most progress according to

some metric such as Euclidean distance, angle with the source-destination line and

etc [Fin87, KSU99, SSB99]. For a sensor network with uniform and dense sensor de-

ployment in a flat and regular region, geographical forwarding is an efficient, scalable,

and local scheme that produces almost shortest paths with very little overhead.
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However, these greedy protocols would fail in presence of voids (an area where

there are no sensor nodes) or when none of the neighboring nodes would make progress

toward the destination. In situations where guaranteed delivery is critical, a recovery

phase can be used to guarantee the delivery of the packets. Typically, the recovery

phase uses the right hand rule to guarantee the delivery of the packets. Since greedy

algorithms usually result in routes that are close to the shortest path, these algorithms

use a combination of greedy and a variation of face routing also referred to as planar

graph routing as their recovery process [BMSU99, KK00, KGKS05, KWZZ03]. These

algorithms have been studied in networks usually modeled by a unit disk graph (UDG)

or a quasi unit disk graph (QUDG). A network is modeled by UDG when all the

nodes have the same transmission range. There is an edge between two nodes u and

v in the graph, whenever the Euclidean distance between two nodes is less than the

transmission range. A QUDG with parameters r and R (0 < r < R) over a set of

points in the plane is defined as follows. For any two points u and v, if the Euclidean

distance between u and v is at most r, then {u, v} is an edge in the graph, and if the

Euclidean distance is in (r, R], then edge {u, v} may or may not exist.

The only known local approach to dealing with voids is face routing. However,

face routing has two disadvantages: it requires planarization, which may not always

be possible, and secondly, the routes produced by the face routing algorithm tend to

be quite long. An alternative local approach for avoiding voids is investigated in this

thesis.

1.2 Backbone Formation

The major task in all monitoring applications in WSNs such as air pollution mon-

itoring, forest fires detection, machine health monitoring and landslide detection is

to gather and disseminate the sensed data. The resource scarcity of WSNs requires

3



that the data gathering and dissemination backbone be as small as possible to re-

duce interference and possibly increase network throughput as well as deplete fewer

nodes and thus prolonging network lifetime. A minimum connected dominating set

MCDS is a good candidate for a routing as well as a data gathering and dissemina-

tion backbone. A MCDS S, is the smallest set of nodes in a network where every

node in the network not in S, has a neighbor in S and the subgraph induced by

nodes in S connected. However, the problem of finding an MCDS even for the case

of UDGs is NP-hard [CCJ90]. Thus, there are many heuristics that have been pro-

posed for the problem as well as some algorithms with constant approximation ratio

[AWF02, DSW02, ACR07, PDDB05]. However, some of these heuristics have been

shown to perform poorly in the worst case, and some of them are not local. The

existence of a simple local algorithm with small approximation ratio that performs

very well in practice remains to be investigated.

1.3 Barrier Coverage and Intrusion Detection

A major application category of WSNs consists of military and security-related ap-

plications, including perimeter surveillance, critical infrastructure protection, and

country border control, to name a few. The goal is to effectively detect intruders that

attempt to penetrate the region of interest. This type of coverage is referred to as

barrier coverage, where the sensors form a barrier for the intruders. However since

most of the time, the sensors are deployed arbitrarily around the perimeter of the

region to be protected, complete barrier coverage is not always guaranteed.

The approaches to address the barrier coverage problem can be widely divided

into two groups depending on the mobility of the sensor nodes used for the cover-

age. The first approach deals with the scenario in which once sensors are arbitrarily

dispersed along the perimeter of the barrier they remain stationary. The studies in

4



this category deal with either estimating a density to cover the barrier with high

probability once the nodes are arbitrarily dispersed or the question of whether the

barrier is completely covered or not [CKL07, KLA05, BBSK07]. Clearly this ap-

proach uses way more sensors than actually needed for the barrier coverage. The

second approach takes advantage of node mobility and once sensors have been de-

ployed, it instructs them to move to final positions so as to achieve maximum coverage

[BBH+08, CKK+10, CKK+09, SLX+10, WCLP06]. The goal here is to minimize the

energy while maximizing the coverage. Two different aspects of energy minimization,

namely minimizing the maximum movement and minimizing the sum of movements

have been considered in the literature [BBH+08, CKK+10, CKK+09]. The problem

of minimizing the maximum movement have been considered for only a single line

barrier and a variation of the problem, where one sensor is assigned a predetermined

position is NP-hard even for a line segment when nodes have different transmission

ranges [CKK+09]. This is an area that has attracted a lot of interest in recent years

and there are many interesting questions that remain unsolved so far.

1.4 Thesis Contributions

In this thesis, we first introduce a localized learning routing algorithm, that we call

river routing, which learns about voids or obstacles during the course of the execution

of the algorithm. In the beginning, the river routing algorithm follows the greedy path.

When the algorithm reaches a local minimum, the node at which river routing failed

sends some information about the direction of the obstacle to its neighbors and the

next time the route diverts from the greedy path when it gets close to the obstacle

area. In networks with small obstacles, the river routing algorithm has a delivery

ratio of almost 100% and it generates a route close to the shortest path in the graph

representing the network. This algorithm can be used in graphs with nodes that have

5



information about their geographical positions.

Furthermore, we give an algorithm to form a connected dominating set (CDS) that

can serve as a data gathering and dissemination backbone. Our CDS approximation

algorithm is local and it has a constant approximation ratio. We consider networks

with equal range sensors, modeled by UDGs as well as graph with irregularities in

sensor ranges, modeled by QUDGs. Our algorithm for the construction of a CDS is

local with constant approximation ratio and through extensive simulations, we show

that it outperforms all the existing CDS construction algorithms in the literature.

Moreover, we consider a more realistic scenario where sensor nodes might have

different transmission ranges or due to energy constraint they might not use their

full power. In this case, we model the graph with a disk graph (DG), in which there

is a directional edge (u, v) from u to v, if the Euclidean distance between u and

v is less than or equal to the transmission range of u. In case of directed graphs,

the dominating set problem translates to the dominating and absorbent set (DAS)

problem. Given a directed graph, a subset of nodes D is a dominating set for any

vertex v not in D, there exists an incoming edge to v from D. Analogously, a set A

is an absorbent set if for any vertex v′ not in A, there exists an outgoing edge from

v′ to A . A vertex set is a DAS if it is both a dominating set and an absorbent

set. A DAS is a strongly connected dominating and absorbent set (SCDAS) if the

subgraph induced by nodes in the DAS is strongly connected. Our local algorithm

for the construction of a SCDAS has a constant approximation ratio and we show

that the SCDAS generated by our algorithm is smaller than that of the other SCDAS

algorithms through simulations.

Also, we consider the barrier coverage and intrusion detection problem. We gen-

eralize the results for minimizing the maximum movement (MinMax ) in [CKK+09] to

the case of multiple barriers as well as circular barriers. For identical range sensors we
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provide centralized polynomial time algorithms for all possible scenarios depending

on whether or not complete coverage is possible and when complete coverage is not

possible whether or not the maximum coverage forms a contiguous interval or not.

We also show that for non-identical sensor ranges the problem remains NP-hard for

circular barriers.

Finally, we study a new aspect of minimizing the energy, referred to as MinNum

for the barrier coverage problem, where we minimize the number of sensors that need

to be moved in order to achieve maximum coverage. Although the MinNum problem

has been mentioned before [DHM+09], it has never been considered for the barrier

coverage problem. Minimizing the number of sensors moved can minimize the total

energy especially when the energy needed to initiate a movement is significantly large.

We address the MinNum problem on line barriers as well as circular barriers and we

present centralized polynomial algorithms for identical range sensors. For the case of

non-identical range sensors we show the problem to be NP-hard for some cases.

1.5 Outline of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we present the local

learning river routing algorithm and we evaluate the performance of our algorithm

through simulations. Chapter 3 introduces a local algorithm for the CDS construction

in UDGs and QUDGS and the performance of the algorithm compared to the other

state-of-the-art algorithms is studied through extensive simulations. These results

appeared in [KMNO09, KMNO10]. We adapt the local CDS construction algorithm

of Chapter 3 for construction of a local SCDAS for DGs in Chapter 4. We compare

the SCDAS computation algorithm through simulations with the other algorithms

for the SCDAS construction in the literature. In Chapter 5, the generalization of

the MinMax problem in [CKK+09] is studied for multiple barriers as well as circular

7



barriers and several efficient polynomial algorithms are introduced. The MinNum

problem for the barrier coverage is studied in Chapter 6 and our results are published

in [MNO11]. We conclude with some directions for future research in Chapter 7.
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Chapter 2

River Routing

In this chapter, we propose a new local learning routing algorithm, called river routing

in a sensor network of location-aware nodes. The algorithm uses feedback from the

other sensor nodes in order to fulfill its routing task.

In Section 4.1, we discuss the related work on geographic routing in wireless sen-

sor networks, WSNs. The river routing algorithm is presented in Section 2.2. The

performance of our algorithm is evaluated through simulations in Section 2.3, followed

by the concluding remarks in Section 2.4.

2.1 Literature Review on Geographic Routing in

Sensor Networks

The most trivial approach to routing is flooding where a node, upon reception of

a message forwards it to all its neighbors, unless it has heard the message before.

Clearly, if there is a path between two nodes u and v, flooding guarantees delivery.

However, this method is inefficient and expensive. Thus, several routing algorithms for

WSNs and ad hoc networks have been developed. The first routing algorithms for ad
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hoc networks followed the traditional approach of topology-based routing [ASSC02].

They can be categorized as table-driven protocols or demand-driven protocols. Table-

driven routing protocols maintain up-to-date routing information between every pair

of nodes. The changes to the topology are maintained by propagating updates of

the topology throughout the network. Source-initiated on-demand routing creates

routes only when desired by the source node. At this time a route discovery process

is initiated within the network. Since information about paths is maintained in these

protocols, a topology change possibly requires distant nodes to change their routing

tables [ASSC02, AY05].

Several novel geographic routing algorithms have been proposed that allow routers

to be nearly stateless since packet forwarding is achieved by using information about

the position of candidate nodes in the vicinity and the position of the destination node

only [GSB03, MH01]. These protocols select the next-hop towards the destination

based on the known position of the neighbors and the destination. The position of the

destination may denote the centroid of a region or the exact position of a specific node.

In these algorithm the next node is always selected according to a heuristic usually to

make progress toward the destination [LS98, Fin87, KSU99]. Location-based routing

protocols can avoid the communication overhead caused by flooding, but the local

minimum problem is common for most decentralized location-based routing protocols.

A local minimum happens at node u, when none of the neighbors of node u makes

progress toward the destination compared to node u. In order to circumvent this

problem, several routing techniques have been proposed. These techniques usually

include a greedy approach with a recovery phase when the greedy part fails. The

recovery process is usually a variation of face routing or also referred to as planar graph

routing as their recovery process [BMSU99, KK00, KGKS05, KWZ03, KWZZ03].

In [BMSU99], the authors introduced an algorithm referred to as GFG which
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was a combination of the greedy distance based algorithm GEDIR in [LS98] and a

recovery phase called FACE 2. GFG needs a preprocessing phase in which a planar

subgraph of the graph representing the network is extracted. Then, it uses GEDIR to

find the path toward the destination. If GEDIR fails at node u, it then uses FACE 2

until it finds a vertex v which is closer to the destination than v and then it starts

GEDIR from v. The recovery phase FACE 2 is simply a variation of the Compass

Routing II in [KSU99]. The basic idea in Compass Routing II is to use the right-hand

rule to traverse the faces in the graph, intersecting the line connecting the source to

the destination.

Most non-backbone based algorithms guaranteeing delivery follow a variation of

the greedy algorithm and a variation of the Compass Routing II in [KSU99] in the

recovery phase [BMSU99, KK00, KGKS05, KWZZ03, KWZ03]. All these algorithms

need to extract a planar subgraph of the underlying graph before they can proceed

with their recovery phases. However, in some cases extracting a planar subgraph

might not be possible.

In this chapter, we present a routing algorithm, river routing, which takes advan-

tage of the negative feedback from nodes each time it fails. Our algorithm does not

need a planar graph. To the best of our knowledge, none of the studies except one

have considered routing using negative feedback. The only exception is the study of

Yu et al. [YEG01]. In [YEG01], a routing algorithm called GEAR was presented

which discussed the use of geographic information while disseminating queries to ap-

propriate regions since data queries often include geographic attributes. The protocol

used energy-aware and geographically-informed neighbor selection heuristics to route

a packet towards the destination region. The key idea was to restrict the number of

interests in directed diffusion by only considering a certain region rather than sending

the interests to the whole network. Each node in GEAR keeps an estimated cost and
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a learning cost of reaching the destination through its neighbors. The estimated cost

was a combination of residual energy and distance to destination. The learned cost

was a refinement of the estimated cost that accounted for routing around voids in the

network. In case of absence of any voids, the estimated cost was equal to the learned

cost. The learned cost was propagated one hop back every time a packet reaches the

destination so that route setup for next packet will be adjusted.

Our work differs from GEAR in the way that the negative feedback is used. In

GEAR, when a closer neighbor to the destination exists GEAR picks a next-hop node

among all neighbors that are closer to the destination. If there is a hole, GEAR picks

a next-hop node that minimizes some cost value of this neighbor, using the negative

feedback. Unlike GEAR, in river routing we try to route smoothly around the hole

in advance before hitting the obstacle.

2.2 The River Routing Algorithm

Geographic routing is becoming the protocol of choice for many sensor network ap-

plications. In the current state of the art, there are some algorithms with guaranteed

delivery rate, however they require a preliminary planarization of the communication

graph [BMSU99]. Planarization induces overhead and is not possible in some scenar-

ios. On the other hand, georouting algorithms which do not rely on planarization have

fairly low success rates and either fail to route messages around all but the simplest

obstacles or have a high topology control overhead (e.g. contour detection algorithms)

[BGJ05],[FGG+05]. We present a local algorithm called river routing where the nodes

would gradually learn about the obstacle either by hitting the obstacle, or by being

informed by those neighboring nodes who hit the obstacle. The idea of river routing

comes from the water current around stones (obstacles). We aim to emulate the way

water flows smoothly around the stones. In the river routing algorithm when a node
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reaches a local minimum, it informs its neighbors that there is an obstacle nearby,

and that the obstacle is in the same direction as the destination for which the routing

failed. The next time, when another node wants to send a message towards the same

direction when the message reaches the area close to the obstacle, it diverts from the

greedy path and goes around the obstacle. The algorithm presented here is a local

algorithm and needs constant size memory in each sensor node. Our algorithm uses

a weighted greedy function which takes into account the Euclidean distance to the

destination as well as the probability of hitting the obstacle by moving in a certain

direction. The details of the algorithm are discussed in the next section.

2.2.1 The Algorithm

In the beginning, nodes have no information about any obstacle. When a source node

S wants to send a packet to a destination node D with no information available, the

algorithm uses greedy routing (i.e. each node chooses the node, which is nearest to

the destination amongst its neighbors as the next node). If it fails at node u (i.e.

the node chosen as the next node is the same as the previous node), node u learns

about the existence of an obstacle in the direction of the destination and broadcasts

a message to its k−hop neighborhood in order to inform them that it is blocked for

destination D.

Upon reception of such a message from u, the receiving node v assumes that

it might be blocked for any destination within the same direction as D, and also

updates its information about the distance of the closest obstacle. Each node divides

its neighborhood into eight different sectors, and uses these sectors to estimate the

direction as depicted in Figure 1. If node v, does not have any information about the

distance for the nearest obstacle, it updates its obstacle estimate in the direction of

D to be u. Otherwise, if u is closer than the current estimate, it updates its obstacle
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Figure 1: Dividing the graph into 8 sectors at node u.

estimate.

Furthermore, each node keeps a blocked neighborhood information list, which is a

list of 3−tuples containing the sector s for which the node is blocked, the hop distance

hd from the blocked node, and the number of blocked nodes for sector s at hop distance

hd. When node v receives the broadcast message (u, D, k) from u, it calculates the

sector s which D falls into and the hop distance hd from v. Then it verifies if a 3-tuple

(s, hd, x) belongs to its blocked neighborhood information list. If such a tuple exists,

the node would update its list by adding one to x (i.e. incrementing the number of

blocked nodes at a certain distance for a certain sector). If not, it would just add the

new tuple (s, hd, 1) to its list. Afterwards, if k is not zero, node v sends the message

(u, D, k − 1) to its one-hop neighbors. Each node also keeps an array of size eight

containing the farthest blocked node as an estimation of the obstacle in that direction

for each sector, which is null in the beginning. Therefore, the total memory needed

in each sensor node is 8(k + 1).
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Algorithm 1 River Routing Algorithm

procedure RiverRouting(Current, Destination)
Next← Null
Previous← Null
while (NextNode(Previous, Current,Destination) 6= Null)&(Next 6=

Destination) do
Previous← Current
Current← Next
Next← NextNode(Previous, Current,Destination)

end while
if Next = Null then

Broadcast(Current,Destination, k)
end if

end procedure

The river routing algorithm is described in Algorithm 1. At every step the

next node is selected locally using the NextNode method. If no node is returned

by NextNode(previous, current, destination), the algorithm fails at the current node

and the k-hop neighborhood of the current node are informed using the method

Broadcast(current, destination, k). The broadcast function takes care of updating

the blocked neighborhood list as well as the obstacle estimates.

After a number of packets have been transmitted between different pairs of nodes

(training phase), the nodes starts to build up information about the obstacle and

their distance to the obstacle. In order to make sure that the gathered information

would not cause any conflict when the source S and the destination D are at the same

side of the obstacle, we would only use the weighted distance function to choose the

next node only if the destination is not at the same side of the obstacle as the current

node. The method Sameside(current, destination) in Algorithm 2 verifies if the cur-

rent node and the destination are on the same side of the obstacle by verifying if the

Euclidean distance between the current node and the destination node is less than

the distance of the obstacle estimate in the direction of the destination for the cur-

rent node, i.e. distance(current, obstacleEstimate[sector(current, destination)]) ≥
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distance(current, destination). Algorithm 2 shows how the next node is chosen in

detail.

Algorithm 2 Next Node Algorithm

procedure NextNode(Previous, Current, Destination)
Next← Null
if Sameside(Current,Destination) then

return NextGreedyNode(Current,Destination)
else

for all N ∈ Neighborhood(Current) do
if !Blocked(N,Destination)&WeightedDistance(N,Destination) <

WeightedDistance(Next,Destination) then
Next← N

end if
end for
return Next

end if
end procedure

As mentioned before, each node keeps a list of blocked nodes in its neighborhood.

As the number of blocked nodes for a sector increases, it is more probable that the

current node is blocked for the destination. More precisely, we consider the number

of blocked nodes over the total size of that neighborhood. Clearly, a node with only

1 blocked neighbor which is its only neighbor is more probable to drop the message

than a node with 10 blocked neighbors out of 100 neighbors. Thus, the ratio would

give us a more precise heuristic than only the number of blocked neighbors. Besides,

we would assume a stronger impact when the blocked nodes are closer to the the

current node, compared to when they are farther. The weighted distance function

described in Algorithm 3 takes all these into account, and it aims at balancing out

the distance to the destination and the ratio of blocked neighbors for the destination

direction.

16



Algorithm 3 Weighted Distance Algorithm

procedure WeightedDistance(N , Destination)
x← 0
for all t = (s, k, n) ∈ blockedNeighborhoodList(N) do

if s = sector(Current,Destination) then
x← x+ n/neighborhoodSize(N, k)

end if
end for
return EuclideanDistance(N,Destination) ∗ (1 + x)

end procedure

2.3 Simulation Results

We implemented our algorithm using Java JDK 6 update 23. We model our network

by a unit disk graph in an area of 200 by 200 meters, where the transmission range is

30 meters. We considered different rectangular obstacles in the middle of the graph

area, with width and length equal to p percent of the width and length of the network

area, respectively. We considered several obstacle sizes by varying p from 10 to 60 in

increments of 10. For every obstacle size, we generated as many graphs as required

so as to obtain 1000 connected graphs. In order to generate graphs with uniform

distribution in the region around the void, we first generated a graph of 300 nodes

with uniform distribution and then we removed any node that fell within the obstacle

area. Note that although the region of the obstacle is a rectangle, using this method

the void is not necessarily convex.

It should be noted that when the river routing algorithm is executed between

all pairs of nodes in the graph, in many scenarios the source and destination are on

the same side of the obstacle and greedy succeeds without ever hitting the obstacle.

Thus, in order to show the effectiveness of our algorithm in bypassing the obstacles,

in addition to calculating the delivery ratio between all pair of nodes in the graph, we

also considered the success ratio of those packets, which are being transferred from

one corner of the obstacle to the other corner. More precisely, nodes which are in
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Figure 2: The effect of number of retrials on average delivery ratio

the top right (top left) corner of the network region send information to bottom left

(bottom right) corner of the network region. Consequently, we present our results

for the general case of routing between all pairs of nodes in the graph and corner to

corner routing separately. In each case, we consider the delivery ratio as well as the

average path length to study the performance of our algorithm.

2.3.1 Routing Between All Pairs

Figure 2 depicts the average delivery ratio when all nodes send a message to every

other node in the network for different retrials. River Routing Op represents the

river routing algorithm in a graph where the obstacle has width and length equal

to p percent of the width and length of the network area, where p varies from 10

to 60 in increments of 10. It can be seen that when the number of retrials is zero,

the algorithm has the same delivery ratio as the greedy algorithm [Fin87]. As the
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Figure 3: The effect of the obstacle size on the average delivery ratio when k is equal
to 5.

number of retrials increases, the delivery ratio increases as well. In fact, after 10

retrials, for small obstacles and even average obstacles of up to 40% the delivery ratio

is at least 99%. For larger obstacles of 60%, this ratio is at most 94%. Since the gain

is negligible after 5 retrials, we fix k to be 5, and we refer to it as River Routing 5. We

compare the delivery ratio as well as the average path length of of River Routing 5

with the greedy [Fin87] and GFG [BMSU99] algorithms.

The average delivery ratio for River Routing 5 is illustrated in Figure 3. As ex-

pected GFG always has a 100% delivery ratio. Although for small obstacles of 10%,

both greedy and River Routing 5 have a delivery ratio of near 100%, the difference

between the delivery ratio of greedy and River Routing 5 increases as the obstacle

size increases.

Furthermore, we have examined a qualitative measure the average path length

used by river routing from one side of the obstacle to the other side. Although the

GFG algorithm in [BMSU99] always has a delivery ratio of 100% on planar graphs, it
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(a) The path generated by the river routing algorithm between
two arbitrary nodes u and v after the first attempt

(b) The path generated by the river routing algorithm between
nodes u and v after the second attempt

Figure 4: The path generated by the river routing algorithm between nodes u and v
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Figure 5: The path generated between the same pair of nodes u and v as in Figure 4
using GFG
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Figure 6: The effect of the obstacle size on the average path length when k is equal
to 5.
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doesn’t necessarily choose the best path to reach the destination. Figures 4 and 5 de-

pict different paths generated by the river routing algorithm and the GFG algorithm.

It can be seen that while the path generated by river routing has length 11, the path

generated by GFG between the same pair of nodes has length 24, more than twice as

large as that of river routing. This difference becomes more significant in scenarios

where many messages are sent between the same pair of nodes.

As illustrated in Figure 6, when the obstacle size is small, GFG has an average

path length close to that of greedy. This is due to the fact that in an all to all

communication pattern with a very small obstacle, the greedy part of GFG succeeds

most of the time and thus there is no need for the face routing part of GFG as the

recovery phase. However, as the obstacle size increases the gap between the average

shortest path of greedy and River Routing 5 widens, the River Routing 5 manages

to generate a route close to that of greedy. In fact, for a 60% obstacle, while the

average path length of GFG is 75% larger than that of greedy, the average route path

generated by River Routing 5 is only 9% larger than that of greedy.

2.3.2 Corner to Corner Routing

In order to show the effectiveness of our algorithm, we study the delivery ratio as

well as the average path length only between pair of nodes from one corner of the

obstacle to the other corner and we refer to it as corner to corner. We first study the

effect of number of retrials for different obstacle sizes. As expected as the obstacle

size increases, the delivery ratio decreases. Figure 7 shows the effect of number of

retrials on the delivery ratio around the obstacle for different obstacle sizes, where

the neighborhood size is equal to two and maximum number of retrials is 10. When

the number of retrials is equal to zero, the river routing algorithm performs as the

greedy algorithm [Fin87]. Since almost all curves flatten after k = 5, we have fixed
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Figure 7: The effect of number of retrials on the delivery ratio from corner to corner.

the number of retrials to be 5, and we refer to the river routing algorithm with k

equal to 5 as River Routing 5.

Figure 8 illustrates the delivery ratio from corner to corner when k is equal to five.

While, for a small obstacle of 10%, both greedy and river routing have a delivery ratio

of 99%, as the obstacle increases the gap between greedy and river routing becomes

bigger. In fact for a large obstacle of 60%, while greedy has a delivery ratio of 49%,

after 5 retrials river routing has a delivery ratio of 90%.

We have studied the average path length parameter for different obstacle sizes

and the average path length for river routing is very close to that of greedy. We have

considered the path generated by the river routing algorithm after 5 trials so that

the delivery ratio from corner to corner is at least 90% for all obstacle sizes and we

refer to it as River Routing 5. This is depicted in Figure 9. As before, for small

obstacles, GFG uses its greedy component rather than the face routing component

and thus it has an average shortest path length close to that of greedy. As the size
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Figure 8: The effect of the obstacle size on the delivery ratio from corner to corner
when k is equal to 5.

of the obstacle increases so does the gap between the average shortest path length of

GFG and greedy. For a large obstacle of 60%, while River Routing 5 has an average

shortest path length of only 6% of that of greedy, the average route path generated

by GFG is 58% that of greedy.

2.4 Conclusion and Future Work

We introduced a local location-aware learning routing algorithm called river routing

which learns about the voids in the network using the negative feedback from other

neighbors when they fail to deliver a message. Although river routing does not have

guaranteed delivery, through simulations we showed that with enough number of

retrials, the river routing algorithm had a high delivery ratio and it generated a path

with a stretch factor very close to that of greedy. Furthermore, it should be mentioned

that although there is an initial cost for retrials, they are only needed in the initial
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Figure 9: The average shortest path length between the all pair of nodes from the
top right corner of the obstacle to the bottom left corner of the obstacle and from the
top left corner of the obstacle to the bottom right corner

training phase, and once the routes are established they will be used with no needs

for retrials later on during the course of the execution of the algorithm. Below we

discuss some of the possible future work.

Most of the routing algorithms for ad hoc networks assume that all wireless links

are bidirectional. In reality, some links may be unidirectional (different transmission

ranges would need a directional model). The presence of such links can jeopardize

the performance of the existing distance vector routing algorithms. One adaptation

of the river routing algorithm can consider routing in directed graphs. In case the

of directed graphs, the nodes informed about the obstacle might not be the same as

the nodes who are trying to send the message. One can consider the problem in the

class of α-reciprocal graphs, which are defined as: A directed graph G = (V,E) is

α-reciprocal if and only if, for every directed edge (u, v), there exist a path of length

less than or equal to alpha between v and u, i.e., (u, v) ∈ E ⇐⇒ |P (v, u)| ≤ α, where
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P (v, u) is the shortest path between v and u.

Furthermore, most of the routing algorithms developed for multi hop wireless

networks, model the network as a two-dimensional geometric graph. However, there is

increasing interest in applications where ad hoc and sensor networks may be deployed

in three-dimensional space, such as in the atmosphere, or in a building. Recently,

the authors in [DKN08] have shown that there is no simple local routing algorithm

that guarantees delivery in unit ball graphs. They showed that for any fixed k, there

could be no k-local routing algorithm that guaranteed delivery on all unit ball graphs.

Furthermore, they showed that guaranteed delivery is possible if the nodes of the unit

ball graph are contained in a slab of thickness 1/
√

2. One can study the river routing

algorithm by applying some restrictions on the node positions, where the network to

be considered is cylindrical graph, where the difference between the z coordinates of

the nodes in bounded by a constant. This can be achieved by replacing sectors with

cones.

Another interesting problem to consider is the effect of river routing on congestion.

Network congestion occurs when offered traffic load exceeds available capacity at any

point in a network. In wireless sensor networks, congestion causes overall channel

quality to degrade and loss rates to rise, leads to buffer drops and increased delays

(as in wired networks), and tends to be grossly unfair toward nodes whose data has to

traverse a larger number of radio hops [HJB04]. Most georouting schemes for ad hoc

networks select paths using a function only based on their position and the destination

position. This implicitly predefines a route for any source-destination pair of a static

network, independent of the pattern of traffic demand and interference/contention

among links. This may result in congestion at some region while other regions are

under-utilized. However, in river routing the decisions are based on the nodes’ posi-

tions as well as the information about the blocked neighborhood. This would result in
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different routes each time the blocked neighborhood changes. We are expecting that

the river routing algorithm helps in congestion control by selecting different routes

between same pair of source and destinations at different times. Furthermore, we can

modify the weighted-distance function to include congestion information in order to

avoid sending messages to congested nodes.
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Chapter 3

The Connected Dominating Set

Problem

In this chapter, we consider the connected dominating set CDS problem, and we

propose a distributed local approximation algorithm to find a CDS in a UDG as

well as a QUDG, with constant performance ratio. We model the wireless network

as a graph of location-aware nodes. Nodes could either obtain their geographical

coordinates from a GPS receiver or be assigned virtual coordinates by a unique source.

This information along with a tiling scheme that we will describe later helps enforce a

local ordering on the execution of the algorithm. Our local algorithm is very efficient;

it can be shown to have time complexity dependent only on the degree of the network.

We prove that the CDS produced by our algorithm is at most a constant times the

size of the optimal CDS. Additionally, simulation results on random graphs illustrate

that the size of the CDS generated by our algorithm is by far smaller than other local

algorithms, and even smaller than its distributed non-local competitors.

We believe that the low complexity and locality of our algorithm is as valuable as

its capability in producing a very thin, tree-like CDS . The low complexity/scalability

of our algorithm makes it particularly suitable for different conceivable applications
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of WSNs which typically call for deployment of large and relatively dense networks.

Moreover, resource constraints such as low bandwidth and limited power make the

efficiency of an algorithm in terms of communication and computation a top priority.

In addition, the locality of this algorithm makes it highly responsive to topological

changes which are frequent in wireless networks. Topological changes might be caused

as a result of node mobility, power depletion, or a node switching to sleep mode for

energy conservation purposes. In such cases, it is easy to recalculate the CDS and

prevent the local changes from rippling throughout the entire network.

The remainder of this chapter is organized as follows. In Section 3.1, we give an

overview of the relevant previous work. The local CDS construction as well as the

simulation results for UDGs is presented in detail in Section 3.2. Finally, Section

3.3 discusses different probability models for construction of the QUDGs as well as

different tiling schemes, along with simulation results comparing the performance of

our algorithm with several competitors.

3.1 Literature Review

Since the problem of finding a minimum dominating set is NP-hard [GJ90], a number

of algorithms have been developed for the computation of a minimum dominating set

(MDS) in a graph. It has been proved in [Fei98] that Chvátal’s greedy algorithm’s

approximation ratio of ln ∆ [Chv79] is a tight bound for the computation of DS in

general graphs. We will study the general trends in the formation of CDS used by the

state-of-the-art algorithms and will take a look at the algorithms and heuristics that

are most relevant to our proposed algorithms. These algorithms, many of which have

been simulated for performance comparison in this thesis, are among the most efficient

algorithms in the literature. All the studies we’ll consider can be broadly categorized

into two groups. The first group constructs an independent set of nodes, usually called
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cluster-heads, and then connects them up by adding bridges. The second approach

entails building a connected dominating set (backbone) directly without classifying

nodes into cluster-heads and bridge nodes.

Although the problem of finding a minimum dominating set remains NP-hard even

for the case of UDGs [CCJ90], the authors of [MBHI+95] showed that constant ap-

proximation ratio is achievable. The first algorithm running in polylogarithmic-time

with a non-trivial expected approximation ratio of O(log ∆) and an approximation ra-

tio of O(log n) with high probability was proposed by the authors of [JRS02]. Nieberg

and Hurink [NH05] presented a polynomial-time approximation scheme (PTAS) for

the MDS problem in UDGs. Their approach does not assume a geometric repre-

sentation of the graph as the input. Given any graph as the input, their algorithm

recognizes whether or not the input graph is a UDG. If so, it returns a dominating

set with the approximation ratio of 1 + ε. Otherwise, it returns a certificate indicat-

ing that the input graph is not a UDG. However, since the time complexity of their

algorithm is O(nc
2
) with c = O( 1

ε2
log 1

ε
), ε cannot be arbitrarily small in practice.

Kuhn and Wattenhofer [KW05] gave a distributed algorithm using LP relax-

ation techniques to compute a dominating set of expected approximation ratio of

O(k∆
2
k log ∆) with time complexity O(k2), where k is an arbitrary constant and ∆

is the maximum node degree.

A simple local algorithm is proposed in [WL99]. This algorithm is based on a

marking rule: every node with two unconnected neighbors marks itself as a dominator.

This simple rule usually generates a very large CDS. To address this problem, they

propose two pruning rules to reduce the size of the set returned by their algorithm.

These two rules are applied to the nodes in the CDS. The first rule removes a node

u if it has a neighbor v in the CDS that covers all neighbors of u. The second rule,

which is an extension of the first one, eliminates a node u if it has two neighbors in
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the CDS, say v and w, and all neighbors of u are dominated either by v or by w. In

order to avoid simultaneous removal of neighboring nodes in the CDS, an ordering

using distinct IDs is imposed. This scalable algorithm is very simple and has a low

message complexity that gives it particular practical merits, but can generate a CDS

that is quite large. In the worst case, it can produce a CDS as large as Θ(n) times the

optimum CDS, but in practice, it demonstrates an acceptable average performance.

In [DW04], Dai and Wu proposed a generalization of the two existing rules referred

to as Rule K, in which a node u could unmark itself if it was covered by K other

connected nodes. Since Rule K needed global information, they restricted Rule K to

only consider immediate neighbors.

Wan et al. presented a distributed algorithm in [WAF04] which, in experiments,

generated the smallest CDS size prior to our work [BMP04]. Their distributed algo-

rithm consists of two phases. Similar to all cluster-based algorithms, first an MIS is

constructed and then additional nodes are used to form a dominating tree. In con-

structing the MIS, they use an arbitrary rooted spanning tree T to create a ranking

given by (level, ID) where level of a node is its hop distance, in the tree T , to the root

of the tree. Constructing the tree T , which can be achieved through a distributed

leader election algorithm, has a high message complexity of O(n log n) and time com-

plexity of O(n). In the second phase, a dominating tree is constructed whose internal

nodes form a CDS. The time and message complexity of this phase is O(n). The CDS

generated by this algorithm has a constant approximation ratio of 8. In practice, it

produces a very good CDS in terms of size; however, its high communication overhead

and time complexity overshadow this advantage.

Basagni [Bas99] proposed an algorithm that adopts the same cluster-based ap-

proach in constructing a CDS. Their Distributed Clustering Algorithm (DCA) makes
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use of a generic weight assigned to nodes to give rise to a local ordering for the execu-

tion of the algorithm. The idea is that a node decides whether to become a cluster-

head or not when all its neighbors with bigger weights have made their decisions.

This weight can be adjusted to select cluster-heads that have desirable properties

based on a given application. For example, in order to generate a CDS of minimal

size, node degree could be a good criterion for a node that intends to assume the role

of a cluster-head while energy level is a more suitable metric for an algorithm whose

aim is to prolong the lifetime of the network. Once an MIS is constructed using this

cluster-based scheme, cluster-heads that are at most three hops apart are connected

up via intermediate nodes (gateways) to form a connected backbone. DCA generates

CDS’s that are larger than those constructed by Wu and Li’s algorithm [WL99] for

relatively sparse networks and only a little better (smaller) for more dense networks.

Later they added sparsification rules in [BMP04] to reduce the size of the backbone.

The idea is to sparsify the CDS and generate a sparsified CDS that they call DCA-S,

by breaking cycles of size 3 and 4, namely DCA-S(3), and DCA-S(4). The sparsifi-

cation phase does not add much to the complexity of the algorithm, but does reduce

the size of the CDS particularly as network density increases.

The first local algorithms with constant approximation ratios for both the dom-

inating set and connected dominating set were proposed in [CDF+08]. In their al-

gorithm, they assume nodes are aware of their geographical coordinates. Using this

information and a tiling scheme, they impose an ordering on the local execution of the

algorithm that enforces a constant bound on the time complexity of the algorithm.

The cluster-based approach employed by this algorithm results in an MIS that is at

most 5 times the size of the optimal dominating set. It is further proved that the

connected dominating set generated by adding bridges to the MIS has a competitive

ratio of 7.453 + ε, where ε could be arbitrarily small.
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In [WK08], a local 1 + ε PTAS for the minimum dominating and the connected

dominating set problems in location aware UDGs was presented. The locality distance

of their algorithm for the connected dominating set is smaller than that of [CDF+08],

but their dominating set algorithm has a much larger locality distance. For example,

in order to achieve the same approximation ratio of 5 as in [CDF+08], they use a

locality distance of 917.18 times larger. Furthermore, construction of the connected

dominating set is entirely dependent on the dominating set in that it uses the latter as

an input. In summary, they show that, theoretically, a 1 + ε approximation ratio for

the construction of DS and CDS is feasible. However, it is not a practical algorithm.

In [KMNO10], a distributed algorithm to construct a CDS has been proposed.

The algorithm is different from the other studies in that instead of adding nodes

to CDS, the authors proposed a coloring scheme to eliminate non-CDS nodes. At

every step a node is eliminated from the set if its elimination neither leaves any

node undominated or disconnects the CDS. The distributed algorithm has O(n) time

complexity and O(n∆k) message complexity, where ∆ is the degree of the maximum

degree node in the network and k is the hop-distance of the farthest neighbor that

needs to be included in the connectivity test in the algorithm. The simulation results

show that in practice the algorithm generates a thin CDS.

3.2 The CDS Problem for Unit Disk Graphs

In this section, we propose a new local algorithm to compute a connected dominating

set of a location-aware UDG. To be able to make decisions locally, we need to enforce

some sort of ordering that ensures the decisions made by a node only depend on the

nodes within a certain distance. To achieve this, we use a tiling scheme described

later. Our algorithm relies on a local spanner as a guideline for the construction

of the CDS. Using this information, the nodes then select a set of candidate nodes
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among themselves from which a subset of the nodes are selected as the dominating

node(s) based on one of the heuristics described later in this section. When the local

computation of the CDS is finished, every node in the CDS runs a local pruning test

to reduce the size of the CDS.

3.2.1 Definitions and Preliminaries

We consider a wireless network of homogeneous nodes where all nodes have the same

transmission range. The network is modeled by a graph G = (V,E) where V denotes

the set of vertices and E represents the set of edges between distinct vertices in V

whose Euclidean distance is less than or equal to the transmission range of nodes.

Also, throughout this study, we use the terms node and vertex interchangeably. Node

u is a neighbor of node v if and only if they are adjacent in the graph. We use Nu to

denote the set of neighbors of node u, referred to as neighborhood of u.

We assume that every node is aware of its geographic location. Using this in-

formation, a node determines its class number which is described in detail in the

following section. A hexagon H is a logical grouping of adjacent nodes with the same

class number. Connectivity between two hexagons A and B implies the existence of

an edge between two nodes u and v where u ∈ A and v ∈ B.

Nu,i denotes those nodes in the neighborhood of u whose class number is i. N ′u,i

is the set of neighbors of u whose class number is not i; i.e. N ′u,i = Nu −Nu,i. Hu is

the set of nodes in the same hexagon as u; i.e. Hu = Nu,classNum(u) ∪ {u}. Finally, we

say that Hu,i is the set of nodes in the same hexagon as u, with at least one neighbor

of class number i; i.e. Hu,i = {v|v ∈ Hu ∧Nv,i 6= ∅}.
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3.2.2 Tiling

We use the tiling scheme first proposed in [CDF+08] in order to ensure the locality

of our algorithm. In this scheme, the plane is divided into tiles of twelve hexagons

of diameter one as depicted in Figure 10. In this tiling, the first tile is placed such

that the center of hexagon one is placed in coordinates (0, 0). The rest of the tiles are

placed so that hexagon three is adjacent with hexagons seven and ten, or hexagon

eleven is adjacent with hexagons eight and four. Those edges of each hexagon that lie

on the path between the top and bottom apexes in a clockwise traversal belong to the

hexagon. Since every hexagon has diameter one, any two nodes within one hexagon

are adjacent. A node is assigned a class number corresponding to the class number

of the hexagon containing it. This approach guarantees that two nodes of the same

class number are either adjacent or are of Euclidean distance greater than two, which

is used to ensure the locality of our algorithm. This tiling scheme is optimal in this

respect.

3.2.3 Local Spanner

As mentioned earlier, we build an approximation of a minimum spanning tree using

the local algorithm proposed in [CDK+06, LWS04]. This spanner is used as a guideline

to ensure that the resulting dominating set is indeed connected. In this algorithm,

an edge is in the local spanner if and only if it belongs to the set of spanner edges of

the graphs induced by the closed k-hop neighborhood of both its incident nodes. Our

simulation results show that a very good approximation of the spanner is achievable

when k equals 2 and the additional gain which is obtained by further increasing k is

negligible. We only consider connecting two hexagons if there exists an edge on the

local spanner between them. If there is no edge between two hexagons on the local

spanner despite the fact that they are connected on the original graph, it implies that
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Figure 10: A tile divided into 12 hexagons of unit diameter. The bold edges belong
to hexagon 1.

they are connected via some other path that goes through other hexagons.

3.2.4 Selecting the Vertices in the CDS

This section elaborates the core of our algorithm. We first describe the algorithm

along with its pseudocode. Then, the different heuristics that could be used to select

nodes are discussed.

3.2.4.1 Algorithm

Every node v first computes its class number using its coordinates and the tiling

information. Afterwards, each node v sends a message to every neighbor u and

exchanges information including the node’s class number, ID and a marker value

inCDS(u) indicating whether the node is a dominator. If a node has the lowest
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ID in its hexagon (i.e. among its neighbors with the same class number), it selects

itself as the coordinator. While only coordinators execute Algorithm 4 to determine

CDS nodes in their hexagons, Algorithm 5 is executed by every node in the network,

whether it is a coordinator or not.

Algorithm 4 Local connected dominating set algorithm executed by coordinator u
with class number cl

Hu ← Nu,cl ∪ {u}
Wait for the lower class neighbors of Hu to finish executing the algorithm
LCDS ← {v|v ∈ Hu ∧ inCDS(v)}
S ← ∅
Send the message REQ SE to all neighbors in Hu

Wait for all neighbors in Hu to send a REP SE
When all the replies are received, S contains the class number of all hexagons i for
which there exists a node in Hu with an spanner edges to Hi

if S = ∅ then
inCDS(u)← true

else
for all i ∈ S do

if ¬(∃v ∈ LCDS ∧ ∃w ∈ Nv,i ∧ inCDS(w)) then
if ∃v ∈ LCDS ∧Nv,i 6= ∅ then

dominator ← v
else

Choose a node dominator in Hu,i according to the heuristic
LCDS ← LCDS ∪ {dominator}
Send msg = MARK D to dominator

end if
Send msg = (SELECT D,Ndominator,i) to Ndominator,i via dominator

end if
end for

end if
Notify the higher class neighbors of the nodes in Hu that CDS calculation in the
hexagon is finished

A coordinator node starts the algorithm only when all the lower class neighbors

of the nodes in its hexagon have finished running the algorithm. When it has all the

necessary information, the coordinator initializes a local connected dominating set

(LCDS), which includes all those nodes in the hexagon which have been marked as
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dominators as a result of dominator selection in lower class neighboring hexagons.

Then it sends a REQuest Spanner Edge (REQ SE) message to all nodes in the

hexagon to determine if they have any edges on the spanner to the neighboring

hexagons. All the nodes which have received the REQ SE message, examine their

neighbors and send a REPly Spanner Edge (REP SE) message including the hexagon

numbers to which they have a spanner edge to the coordinator. When the coordinator

receives REP SE messages from all its neighbors it constructs a set, which contains

the class number of the neighboring hexagons which should be covered. For each class

number i, two scenarios are conceivable.

(i) There already exists a node v in the local connected dominating set (LCDS)

that has an edge to the neighboring hexagon Hi (i.e. Nv,i 6= ∅). In this case, there

is no need to designate a new node to cover Hi. Furthermore, if any neighbor of v

in Hi is marked as a dominator (i.e. ∃w ∈ Nv,i ∧ inCDS(w)), there is no need for

the nodes of Nv,i to select among themselves a new dominator as the other side of v.

Otherwise, u sends a SELECT Dominator message (SELECT D,Nv,i) to Nv,i via v

to select a dominator among themselves according to the heuristic. Upon receiving a

SELECT D message, the receiver determines if it is the one that should be selected

as the dominator among the nodes in the set according to the heuristic.

(ii) There is no node in the local dominating set that has an edge to Hi. In this

scenario, any node within the hexagon with an edge to Hi is added to the candidate

set. Then, the coordinator selects a node v from the set that meets the criteria

of the heuristic, and sends a MARK as Dominator message (MARK D) to node v

instructing v to mark itself as a dominator. In order to maintain connectivity, the

coordinator node sends a message SELECT D to v’s neighbors in Hi via v to select

among themselves the one that satisfies the heuristic if no such dominator already

exists.
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As we noted earlier, the algorithm is executed by the nodes of a hexagon only when

all lower class neighbors of the nodes of the hexagon have finished their computations.

Using Lemma 2 in [CDF+08], our algorithm terminates in a constant number of

rounds regardless of the network size.

Algorithm 5 Local connected dominating set algorithm executed at every node u
with class number cl

Upon receiving a message, msg:
if msg = (MARK D) then

inCDS(u)← true
Inform all your neighbors that inCDS(u) is true

else if msg = (SELECT D,N) then
if ¬(∃v ∈ N ∧ inCDS(v)) then

if u is the chosen dominator from the set N then
inCDS(u)← true

end if
end if

else if msg = (REQ SE) then
HexSet← ∅
for all v ∈ N ′u,cl do

if SpannerEdge(u, v) then
HexSet← HexSet ∪ classNumber(v)

end if
end for
Send msg = (REP SE,HexSet) to coordinator

else if msg = (REP SE,HexSet) then
S ← S ∪HexSet

end if

3.2.4.2 Heuristics

As noted in the previous section, in the algorithm, we select a node among a set of

candidate nodes in a hexagon based on some heuristic. In our experiments, we consid-

ered four different heuristics for selecting a node from the set of possible candidates.

In this section, we describe these heuristics.

1. Maximum degree heuristic: In this heuristic, the node with maximum

degree is selected from the set of candidate nodes. This heuristic is indeed a local
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adaptation of the greedy algorithm for the set covering problem by Chvátal [Chv79].

The intuition is that the node with maximum degree is more likely to cover a larger

number of nodes in neighboring hexagons. Therefore, fewer nodes need to be selected

in the hexagon whose nodes are executing the algorithm in order to dominate all

those neighboring hexagons.

2. Closest to the center heuristic: In this heuristic, first proposed by

[CDF+08], the node that is closest to the center of hexagon is selected. The in-

tuition is that this node would have a more symmetrical coverage of the neighboring

hexagons and thus covers a larger number of hexagons compared to a node that is

closer to a given neighbor and cannot cover the other neighbors. Again, this should

help reduce the number of nodes that we select in the current hexagon to dominate

all neighboring hexagons.

3. Longest edge heuristic: The longest edge heuristic selects the node with

the longest edge to a node in the neighboring hexagon.

4. Greedy heuristic: This greedy heuristic selects the node which covers the

largest number of neighboring hexagons among the candidate nodes and thus attempts

to reduce the number of local dominators selected subsequently.

3.2.5 Pruning Procedure

In this section, we present our pruning procedure that can be executed locally at each

node that has been selected as a dominator in the algorithm. The order in which nodes

run the pruning test is similar to that of executing Algorithm 4; i.e. based on class

numbers, to ensure the required consistency while maintaining the locality of the test.

Furthermore, in order to make sure that the distributed execution of this test does

not lead to simultaneous elimination of neighboring nodes, we assign a rank to every

node. The rank of a node is an ordered pair of its class number and its ID.
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A node that has been selected as a dominator waits to hear from all its lower-

ranked neighbors before running the pruning procedure, which consists of evaluating

two conditions. Node v meets the domination condition if all its neighbors have at

least one other dominator. Node v meets the connectivity condition if the subgraph

induced by its neighbors that are marked as belonging to the CDS is connected. It is

clear that both these conditions can be evaluated locally by node v using information

obtained from its neighbors. At this stage, node v decides to opt out of the CDS if it

meets both the domination and connectivity conditions. Finally, node v informs all

its neighbors about the results of its pruning procedure.

The use of a distinct rank ensures that the elimination of a node v that meets both

the domination and connectivity conditions neither leaves any node un-dominated,

nor disconnects the CDS.

Figure 11: An example to illustrate the pruning procedure

Consider the example in Figure 11. Suppose black nodes have been selected to

form the CDS in the first phase of the algorithm and white nodes are the nodes outside
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the CDS (CDS = {1, 2, 3, 4, 5}). Also assume that the assignment of class numbers

are such that the order in which the pruning test is run by the nodes follows their

IDs. In the pruning phase, only black nodes run the pruning test to decide whether

to remain in the CDS or opt out. Node 1 has four neighbors, three of which are in

the CDS and therefore will not be left un-dominated if node 1 drops out of the CDS.

Node 7 has also another dominator, node 5. Note that node 7’s other dominator does

not have to be a neighbor of node 1. Thus, all neighbors of node 1 are covered by

some other node in the CDS and node 1 can proceed to connectivity test. It has

three neighbors in the CDS, nodes 2, 3, and 4. These three nodes form a connected

component. Therefore, node 1 is a redundant dominator and opts out. Running the

same test, nodes 2 and 3 will also remove themselves from the CDS. When node 4

runs the test, the domination test fails since nodes 1,2,3 have only one dominator,

node 4. Therefore, node 4 remains in the CDS. Same applies to node 5. At the end

of the pruning phase, the CDS is reduced to {4, 5}. Note that nodes’ IDs can affect

the way pruning is carried out.

The connectivity test can be extended to check whether the set of dominators in

the k−hop neighborhood of the dominator v form a connected component since there

might be connected components of nodes in the CDS which are not detectable in the

immediate neighborhood of node v. Obviously, this extension will result in pruning

more nodes as k increases, but at the expense of the locality of the algorithm. Using

the same tiling scheme k can have values 1 or 2, so that the pruning test is conducted

in a local manner. Larger values of k requires a larger tile.

3.2.6 Proof of Correctness and Performance

We show that the set of nodes marked as dominator by our algorithm dominates or

covers all nodes in the network, that it is a connected set of nodes, and finally that

42



it is at most a constant times larger than the optimal CDS.

Proof of coverage Since every hexagon has diameter one, it is sufficient to show

that there is at least one node selected as dominator in every non-empty hexagon. We

will show that this is indeed the case for the nodes marked as dominator by Algorithm

1. If all the network nodes are in the same hexagon, then the set S in Algorithm

4 would be equal to the empty set and therefore the coordinator marks itself as the

dominator, which covers all the other nodes. Now, assume that the network nodes

are scattered in more than one hexagon. Since the local spanner is connected, every

non-empty hexagon has at least one spanner edge crossing its boundary. Therefore,

the candidate set S is non-empty. If the local connected dominating set, LCDS, is

non-empty, then the proof is complete. Otherwise, the algorithm states that at least

one node has to be selected as the dominator to cover the neighboring hexagon Hi,

where i ∈ S, which completes the proof that the set of nodes marked as dominators

by Algorithm 1 dominates all nodes in the graph. We have already shown that the

pruning procedure preserves the property of domination.

Proof of connectivity Assume to the contrary that the graph GC induced by

the set of nodes C = {v ∈ V |inCDS(v)} produced by Algorithm 1 is disconnected.

Therefore, there should be at least two separate components C1 and C2 in the graph.

Let the set of hexagons that contain nodes in C1 and C2 be called HS1 and HS2

respectively. Note that the intersection of HS1 and HS2 must be empty. Also, let u

and v be two nodes in C1 and C2 respectively. There should be a path P between u

and v in the local spanner. The path P should exit HS1 and enter another hexagon

H that is not in HS1. By our construction, HS1 and H will be connected by some

edge in GC which implies that H ∈ HS1, which yields the desired contradiction.

This completes the proof that the set of nodes marked as dominators by Algorithm

1 induces a connected subgraph. We have already shown that the pruning procedure
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preserves the connectivity property.

Proof of performance Consider the unit-radius disk centered at a node v in an

optimal CDS. Clearly this disk intersects a constant number of hexagons of diameter

one as used in our tiles. Since in our algorithm, in any hexagon at most eleven nodes

are chosen to be in the local CDS by Algorithm 1, there are at most a constant

number of nodes in our CDS (even before the pruning procedure is applied), that

are contained in the disk centered at v. It should be noted that this is only a trivial

upper bound before pruning is applied and a more careful analysis could, most likely,

lead to a tighter upper bound. Applying the pruning procedure would considerably

reduce the percentage of nodes in the CDS, but the resulting bound seems difficult

to analyze. Our simulation results show that, on the average, the maximum number

of nodes per hexagon before and after pruning are 2.41 and 2.04 respectively, as

described in Section 4.

Thus, the following theorem is a consequence of the above discussion:

Theorem 3.2.1. The algorithm of Section 3.4 produces a connected dominating set

whose size is at most a constant times larger than the optimal CDS.

3.2.7 Simulation Results

We compared the performance of our algorithm with several state-of-the-art algo-

rithms through extensive simulations on randomly generated UDGs. The metrics we

selected to measure in our simulations are among the most relevant factors in the

study of algorithms that generate a dominating set for routing purposes ; (i) CDS

size and (ii) average route length. We also investigated the impact of the locality of

our pruning test on the size of the CDS. Moreover, the maximum and average number

of nodes per hexagon before and after the pruning phase are presented to support the

argument made earlier about the performance of the algorithm.
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We used Java Platform (JDK 6 update 10) in all our simulations. Given that the

transmission range of nodes and the area of the network are fixed, we vary the density

of the network by assigning different values to n. In our simulations, we assigned the

values 50, 100, 150, 200, 250, and 300 to n to start with a sparse network of average

node degree of 3.53 and end with a dense network of average node degree of 21.2.

In order to generate random UDGs with n nodes, we first created n ordered pairs

of real numbers as nodes’ coordinates, each generated using the Java Random class

whose seed is initialized to a value based on the current system time in milliseconds.

The nodes are randomly distributed in a geographic area of 200 meters by 200 meters

Since the transmission range of nodes in our network model is 30 meters, two nodes

are adjacent if and only if their Euclidean distance is less than or equal to 30 meters.

For each value of n, we generated as many random graphs as required until we had

1000 connected graphs. The connected graphs were stored in a file and used across

all simulations for the same value of n.

Figure 12 depicts a performance comparison of the four possible heuristics used

in Algorithm 4. As expected, as the density of the network increases, the percentage

of nodes in the CDS drops. This is due to the fact that in a dense network, the

average number of nodes per hexagon increases which translates to a decrease in the

ratio of the number of hexagons to nodes. As a result, the ratio of nodes in the CDS

given by Algorithm 4 decreases. As shown in this figure, Max-Degree performs better

than other heuristics. This result shows that Chvátal’s centralized greedy algorithm

[Chv79] for the set covering problem, which is known to have the best approximation

ratio, might be the best in a local setting as well. While the difference is almost

negligible for n = 50 and all four heuristics generate a CDS of size approximately

56% of nodes, it becomes more noticeable as the density grows and when n = 300,
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Figure 12: Percentage of nodes in the CDS for different heuristics

the difference between Max-Degree and Greedy is 10%. Our best heuristic, Max-

Degree, produces a backbone consisting of only 16.8% of nodes for networks with 300

nodes.

With regard to the results obtained from the performance comparison among the

four heuristics, we selected Max-Degree as our best candidate and compared it against

four other most relevant algorithms presented in [CDF+08],[DW04], [WAF04], and

[WL99]. The first algorithm presented in [WL99], hereafter referred to as WuLi after

the names of the authors was selected because it is a simple and local algorithm that,

like our algorithm, builds a backbone directly. The second algorithm is an extension

to WuLi by adding a KRestricted rule, and therefore, we refer to it as WuLi-KR.

The third algorithm presented in [WAF04], which we will call WAF after the initials

of the authors’ last names, is a distributed algorithm that produces the smallest
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CDS size known to the authors prior to our work. Although WAF is not a local

algorithm, and in this sense it is not perfectly comparable with our work, we chose

it to highlight the comparative advantage of our approach in terms of backbone size.

Finally, the algorithm presented in [CDF+08] which we refer to as TBC (tile-based

and cluster-based) algorithm was selected since it is most relevant to our work in that

it is a location-aware local algorithm. However, unlike our algorithm, it follows the

two-step approach in CDS construction by first generating a maximal independent

set (MIS) and then connecting up the nodes via bridges. We will call our algorithm

TBLS-MD since it is a tile-based algorithm that is based on a locally constructed

spanner and the Max-Degree heuristic. Note that the tiling used in our algorithm is

only used to ensure locality.
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Figure 13: Percentage of nodes in the CDS for different algorithms

A comparison of the percentage of nodes in CDS with respect to network density
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is illustrated in Figure 13. It can be seen that the size of the CDS generated by TBLS-

MD is consistently smaller than all the other competitors. While for sparse networks

(n = 50), TBLS-MD and WAF generate backbones of almost the same size which

consist of approximately 56% of nodes, WuLi and WuLi-KR produce a backbone that

is 10% larger. For such networks TBC does not perform very well mainly because it

tries to push the nodes selected in MIS as far away as possible. It then has to add

more nodes to bridge the gaps between these nodes which will consume a rather large

percentage of the nodes. A study of other algorithms in the literature, such as DCA

[BMP04], which employ the same approach shows that this method does not work

well for sparse networks and generates relatively large backbones. For networks with

average density (n = 150), TBC catches up and demonstrates a great improvement

by building backbones of size 40%, whereas WuLi continues to generate a relatively

large set despite an improvement of 22% in its performance due to the higher efficiency

of its pruning rules for denser networks. While WuLi-KR remains the next to the

last, its performance shows improvement as the density of the network increases. It

generates a backbone of size 89% of WuLi, whereas it produced a backbone of almost

the same size of WuLi when n = 50. TBLS-MD makes the most of this increase

in density, both in the first phase and in the pruning phase, to generate a small

backbone of 32%, smaller than the set of size 35% produced by WAF. For dense

networks (n = 300), both TBC and WAF produce backbones of acceptably small

sizes of 23% and 22% respectively, keeping in mind that TBC does so at a much

lower cost due to is locality. Remarkably, TBLS-MD generates a very small backbone

of size 16% in these networks, which is 25% smaller than that of WAF, and at a cost

lower than it. The size of the backbone produced by WuLi-KR is still 70% larger than

that of TBLS-MD and WuLi’s backbone is more than twice the size of TBLS-MD’s.

To summarize, TBLS-MD constantly demonstrates a superior performance in terms
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of backbone size and complexity among the competitors.

We also compared the average shortest path length on the backbone generated by

the five algorithms TBLS-MD, TBC, WuLi, WuLi-KR, and WAF. It should be noted

that the average shortest path length ratio of all our four heuristics are very close and

thus we chose Max-Degree heuristic as the candidate to compare against the other

algorithms. The significance of this metric lies in the essential role it plays in how

well a backbone-based routing or data gathering/dissemination protocol performs.

In other words, it can be deemed a major qualitative parameter in the performance

evaluation of an algorithm that generates a backbone. The ratios depicted in Figure

14 were calculated as follows. Let D(u, v) be the shortest path (hop distance) between

nodes u and v calculated by Dijkstra algorithm [CLRS01]. The average shortest path

length is l̄, where

l̄ =

∑
u,v∈V D(u, v)(|V |

2

) (1)

Let D′(u, v) be the shortest distance between nodes u and v via the backbone.

In order to calculate D′(u, v), if one or both are not on the backbone, we would

choose the neighbor(s) on the backbone that minimize(s) the shortest path length.

The average shortest path length via backbone is then computed using Equation 1

by replacing D with D′.

As expected, since WuLi generates a rather dense backbone, the average shortest

path length on its backbone is close to that of the original graph. The average

shortest path on the backbone generated by WuLi-KR is at most (where n = 300)

5% shorter than that of TBLS-MD. Although the backbone built by TBLS-MD is

smaller than both TBC and WAF, it has the same average shortest path length as

TBC and a much better ratio compared to WAF. While the average shortest path

length on WAF’s backbone is 56% longer than on the original graph when n = 150,
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Figure 14: Average shortest path in the CDS for different algorithms

it is only 13% longer on the backbone formed by TBLS-MD. For n = 300, TBLS-

MD continues to achieve its small ratio of 12.3%, but this ratio increases for WAF

and becomes approximately 64%. In summary, both TBLS-MD and TBC generate

backbones of high quality in terms of average shortest path length in spite of their

small size.

In order to further study the efficiency of the pruning test and the performance

of our algorithm, we conducted two other simulations which are discussed in the

remainder of this section.

As mentioned earlier, our pruning test is a local test. In all the above scenarios,
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we assumed that nodes perform the pruning test by just looking at their 1-hop neigh-

borhood; i.e. (k = 1). However, it is conceivable that more nodes can be pruned

if nodes can look farther while performing the pruning test and simulation results

corroborated this intuition. In order to study the impact of the degree of locality on

the efficiency of the pruning test, we increased the size of the neighborhood involved

in the pruning procedure, k, from 1 to 20 and ran TBLS-MD on the same set of

graphs we had generated earlier. The results depicted in Figure 15 show that it is

advantageous to increase k up to four, but no considerable gain is achieved beyond

that. While we achieve an improvement of 5.5% for sparse networks (n = 50), a

relatively considerable gain of almost 33% is obtained in the case of dense networks

(n = 300) by increasing the degree of locality to 4. It should be noted that k = 4 is

an acceptable degree of locality. It should be mentioned that the results for values

of k greater than or equal to 3 are not local, and are only presented to show that
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the gain by increasing k is negligible for larger values of k. At the moment, we are

investigating the tile layouts for larger values of k.

In our theoretical analysis of the algorithm, we mentioned that at most eleven

nodes per hexagon could be chosen by Algorithm 1 to be in the CDS. This gives

a constant upper bound on the approximation ratio of our algorithm; however, this

constant is rather large. To illustrate that this is, in fact, not a very tight bound

and to explain the good performance of our algorithm in practice, we measured the

average and maximum number of nodes per hexagon as chosen by TBLS-MD to be

in the CDS before as well as after pruning. The results are shown in Figure 16, the

maximum number of CDS nodes per hexagon does not exceed 2.41 on the average and

it is further reduced to 2.04 after pruning. Furthermore, the average number of nodes

per hexagon does not increase in proportion with the number of nodes in the network

which explains the enhanced performance of our algorithm in dense networks. As

shown in Figure 16, the average number of CDS nodes per hexagon varies between

1.1 and 1.17 before pruning and fluctuates between 1.07 and 1.09 after pruning.

3.3 The CDS Problem for QUDGs

In this section, we study the performance of our algorithm in case of quasi unit disk

graphs (QUDG), which is a more realistic model than the UDG model. In Section

3.3.1, we discuss two possible models for a QUDG. The tiling used in Section 3.2.2

cannot be used for QUDGs. We present an optimal tiling for QUDG as well as a

non-optimal but efficient tiling scheme in Section 3.3.2. Finally, we compare our local

algorithm with the other local CDS construction algorithms in Section 3.3.3.
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3.3.1 QUDG Models

In an r QUDG, where r ∈ [0, 1], two nodes are connected if their Euclidean distance

is less than or equal to r, and not connected if their Euclidean distance is greater

than one. However, if their distance is between r and 1, the two nodes may or may

not be connected. We assume that there are n nodes dispersed randomly in an area

A = wl with maximum transmission range one. In order to model an r QUDG, we

have used two different methods to determine if an edge exists between two nodes u

and v where r < d(u, v) ≤ 1 . In the first model the edge (u, v) exists with a fixed

probability p, where in the second one, the closer d(u, v) is to r , the more probable

is the existence of the edge (u, v). In both models a node u is connected to a node v
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if d(u, v) ≤ r. We discuss the two models in the next two sections respectively.

3.3.1.1 Random Probability

In this model for a pair of nodes u and v, such that r < d(u, v) ≤ 1, the edge (u, v)

exists with fixed probability p.

Probability(edge (u, v) exists) =


1, 0 < d(u, v) ≤ r;

p, r < d(u, v) ≤ 1;

0, d(u, v) > 1.

(2)

Let E(Cu,r) be the expected number of nodes in circle a C in the network area A,

centered at u with radius r. Thus, the expected degree of a node u is:

E(du) = E(Cu,r) + p ∗ [E(Cu,1)− E(Cu,r)] (3)

=
nπr2

wl
+ p

nπ(1− r2)

wl

= nπ
(1− p)r2 + p

wl

In our simulations, we have set p to 0.5, and consequently, the expected degree is

nπ(r2+1)
2wl

.

3.3.1.2 Linear Probability

In this model, the probability that two nodes at distance between r and one are

connected is proportional to their distance. More precisely, for a pair of nodes u and

v, such that r < d(u, v) ≤ 1, the edge (u, v) exists with probability:

54



Probability(edge (u, v) exists) =


1, 0 < d(u, v) ≤ r;

1−d(u,v)
1−r , r < d(u, v) ≤ 1;

0, d(u, v) > 1.

(4)

We now derive the expected degree of nodes using this probability model. Without

loss of generality, we can assume that node u has coordinates (0, 0). Divide the ring

between Cu,1 and Cu,r into m rings with width equal to ∆ = 1−r
m

. Using the linear

probability model above, if m goes to infinity, the probability of any node within ring

i being connected to u is equal to 1−(r+i∆)
1−r . Thus, the expected degree of node u is:

E(du) = E(Cu,r) + lim
m→∞

m∑
i=1

[(E(Cu,r+i∆)− E(Cu,r+(i−1)∆))
1− (r + i∆)

1− r
] (5)

=
nπ

wl
[r2 +

1

1− r
lim
m→∞

m∑
i=1

[((2i− 1)∆2 + 2r∆)(1− (r + i∆))]]

=
nπ

wl
[r2 + lim

m→∞
[

1

1− r

m∑
i=1

[(2i− 1)∆2 + 2r∆][1− r]− ∆

1− r

m∑
i=1

[(2i− 1)∆2 + 2r∆]i]]

=
nπ

wl
[r2 + lim

m→∞
[2∆2

m∑
i=1

i−m∆2 + 2rm∆− 2∆3

1− r

m∑
i=1

i2 +
∆3 − 2r∆2

1− r

m∑
i=1

i]]

Replacing ∆ by 1−r
m

, we have:

=
nπ

wl
[r2+ lim

m→∞
[
2(1− r)2m(m+ 1)

2m2
−m(1− r)2

m2
+

2rm(1− r)
m

−2(1− r)3m(m+ 1)(2m+ 1)

6m3(1− r)
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+
(1− r)3m(m+ 1)

2m3(1− r)
− 2r(1− r)2m(m+ 1)

2m2(1− r)
]]

=
nπ

wl
[r2 + (1− r)2 + 2r(1− r)− 2

3
(1− r)2 − r(1− r)]

=
nπ(r2 + r + 1)

3wl

3.3.2 Tiling

To ensure that all nodes in one hexagon are adjacent, we cover the area of the graph

with hexagons of diameter r. Furthermore, in order for the CDS algorithm to remain

local in the case of QUDGs, one should ensure that every two nodes of the same class

number are either adjacent or have no common neighbor. This can be achieved by

providing a tiling scheme in which every two hexagons of the same class number in

different tiles have Euclidean distance greater than two. We first discuss the optimal

tiling, which is only possible for certain values of r. Then, we provide a different

tiling scheme, which is close to the optimal scheme, and which we have used in our

simulations.

3.3.2.1 Rhombus Tiling

We start constructing the optimal tile by first calculating the minimum number of

hexagons needed to ensure minimum distance two between hexagons of the same

class number in different tiles. Let k be equal to the minimum number of hexagons

between two non-adjacent nodes u and v of the same class number, so that the

Euclidean distance between u, and v is greater than two, i.e. k = d2
r
e.

For any pair of non-adjacent nodes u and v, if u and v have the same class number,

they should be at least k hexagons apart. Thus v can not be in any hexagon less
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than k hexagons away in any direction from u. The smallest parallelogram in which

v cannot exist is shown in Figure 17. Thus any tile used for covering the network

area should have an area at least as big as the parallelogram with sides equal to k.

Note that the optimal size parallelogram is a rhombus with one of its diagonals equal

to the length of its sides. The rhombus can only be constructed when k is equal to

3m+ 2, where m is some integer.

Figure 17: A Rhombus with sides equal to one of its diameters

The number of hexagons that can fit in the area of the rhombus corresponds to

the minimal tile size, and the tile can be constructed by dividing the rhombus into

any four parts and putting them beside each other to form a tile. One way of dividing

the rhombus into four parts and the resulting tile are illustrated in Figures 18(a) and

18(b).

However, it is not always possible to construct the rhombus and the tile construc-

tion is not trivial. Furthermore, in the rhombus tile calculating the class numbers

complicates the algorithm. Thus, we consider the parallelogram-shaped tiling in the

next section.
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Figure 18: Constructing the optimal tile

3.3.2.2 Parallelogram-shaped Tiling

In this tiling scheme, we construct a k by k parallelogram-shaped tile to ensure that

every two non-adjacent nodes with the same class number have distance greater than

two, as illustrated in Figure 19. Thus, the minimum value of k is equal to d 2
r
√

3/2
e+1.

Clearly a tile generated using this tiling scheme has more hexagons than the optimal

one. For example when r = 1, the optimal tile has 12 hexagons while using this tiling

scheme a 4 by 4 tile is needed. However, since a parallelogram-shaped tile is close to
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optimal yet easier to implement and works for all values of r, we use these tiles in our

simulations. We show through simulations that even by using this tiling scheme, our

algorithm outperforms the best state-of-the-art algorithms in term of the CDS size.

u

u

u

u

UU

Figure 19: A 5 by 5 parallelogram-shaped tile

3.3.3 Simulation Results

We compared the performance of our algorithm with other local algorithms for con-

struction of the CDS on randomly generated QUDGs. We used Java Platform (JDK

6 update 22) in our simulations. Given that the transmission range of nodes and

the area of the network are fixed, we vary the density of the network by assigning

different values to n and r, where n is the number of nodes in the network and r is

the quasi factor. The nodes are randomly distributed in a geographic area of 200m by

200m, with maximum transmission range 30m. In our simulations, we assigned the

values 50, 100, 150, 200, 250, and 300 to n and values 0.7, 0.8, 0.9 and 1 to r to start

with a sparse network of average node degree 2.58 and end with a dense network of

average node degree of 21.2. In order to generate random QUDGs with n nodes, we

first created n ordered pairs of real numbers as nodes’ coordinates, each generated

using the Java Random class and then we used both probability models mentioned
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before to generate two sets of 1000 random graphs. For sparse networks, for example

when r = 0.7 and n = 50 most of the random generated graphs are disconnected.

We kept on generating graphs until we had a set of 1000 connected graphs for each

probability model. The results for the two probability models are very close and thus

here we only present the results for the linear probability model.
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Figure 20: Percentage of nodes in the CDS for different pruning localities when r = 0.7

First, we executed our algorithm with pruning localities between 1 to 10 to find

the trade off between the locality of the pruning procedure and the performance of

our algorithm in terms of the CDS size. Figures 20 to 23 show the CDS size for

different pruning localities for different quasi factors 0.7, 0.8, 0.9 and 1. For every

quasi factor, we study the effect of increasing k for different node densities. It can
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Figure 21: Percentage of nodes in the CDS for different pruning localities when r = 0.8

be seen in Figures 20 to 23, that for very dense networks (n = 300, n = 250) no

significant improvement in the CDS size can be gained by increasing k beyond 3. It

has been shown in Section 3.3.1 that the average degree of a node is proportional to

the number of nodes in the network and has an inverse relation with the quasi factor.

Thus, as r decreases so does the average degree of nodes, and Figure 20 shows that the

CDS size can be improved by increasing k up to 5 for fewer number of nodes (n = 50

and n = 100). This has been confirmed in Figure 21 for n = 50 as well.Thus, we have

decided to use the pruning locality k = 4 through our simulations, and we refer to

our algorithm with pruning localities one and four as tile-based local 1 (TBL 1) and

tile-based local 4 (TBL 4) respectively.
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Figure 22: Percentage of nodes in the CDS for different pruning localities when r = 0.9

We evaluate the performance of our algorithm by comparing it with the other

local algorithms for QUDGs in the literature, namely Wu and Li’s local algorithm in

[WL99], and the tile-based cluster-based local algorithm presented in [CDF+08]. We

refer to the former as WuLi and the later as TBC throughout this section. Figure 24

to 27 depict the percentage of nodes in the CDSs produced by WuLi, TBC, TBL 1

and TBL 4 for fixed values of the quasi factor r from 0.7 to 1 with increments of 0.1.

For networks with smaller expected degree, when n = 50, or even when n = 100 and

r = 0.7, WuLi performs better than TBC. However, as soon as the number of nodes

reaches 100 (150 for r = 0.7), TBC performs better than WuLi. In fact for very dense

networks n = 300, the size of the CDS produced by TBC is half of that of WuLi. For

both sparse and dense networks, TBL 1 and TBL 4 consistently outperform WuLi
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Figure 23: Percentage of nodes in the CDS for different pruning localities when r = 1

and TBC. Although as the density of the network increases the gap between WuLi

as one group and TBC, TBL 1 and TBL 4 as another group increases, TBL still

produces a thin CDS. In fact for very dense networks, the size of the CDS produced

by TBC is at least 120% that of TBL 1 and 160% that of TBL 4.
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Figure 24: Percentage of nodes in the CDS for different node densities when r = 0.7

3.4 Conclusion

We proposed an efficient, distributed, and local algorithm to find a connected dom-

inating set in a unit disk graph as well as a quasi unit disk graph. The CDS pro-

duced by our algorithm is provably at most a constant times larger than the opti-

mal CDS. In our simulations on randomly generated UDGs, our algorithm produces

a CDS that is significantly smaller compared to those produced by algorithms in

[Bas99, CDF+08, DW04, WAF04, WL99]. It also demonstrates a good quality in

terms of the average shortest path ratio.
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Figure 25: Percentage of nodes in the CDS for different node densities when r = 0.8
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Figure 26: Percentage of nodes in the CDS for different node densities when r = 0.9
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Figure 27: Percentage of nodes in the CDS for different node densities when r = 1
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Chapter 4

Strongly Connected Dominating

and Absorbent Set

In some wireless networks nodes might have different powers and transmission ranges

due to different functionalities or they may adjust their transmission range for topol-

ogy control purposes. Thus, some links may be unidirectional. In such cases, the

network can be modeled as a disk graph (DG) rather than a UDG. Consequently,

in this chapter we adapt our local constant ratio approximation algorithm for the

construction of the MCDS of a QUDG presented in Chapter 3 to generate a strongly

connected backbone in DGs. Every node in the network is either in the backbone,

or it has an outgoing edge to the backbone as well as an incoming edge from the

backbone. Such backbone is called a strongly connected dominating and absorbent set

SCDAS [Wu02]. We consider the problem of finding the minimum strongly connected

dominating and absorbent set MSCDAS.

The remainder of this chapter is organized as follows. There are only a few

studies in the litreture considering the problem of construction a SCDAS in wireless

networks. In Section 4.1, we discuss the few existing studies in the literature for the

construction of a SCDAS in wireless networks. The local approximation algorithm
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for the construction of the MSCDAS along with the definitions and preliminaries is

presented in Section 4.2 followed by the simulation results comparing the performance

of our algorithm with the other existing algorithms in the literature in Section 4.3.

4.1 Related Work

In [Wu02] , Wu extended the local algorithm for the construction of the CDS of an

undirected graph in [WL99], to construct a local SCDAS in DGs. The algorithm used

an extended marking process in which a node is marked to be included in the SCDAS,

if it is on the shortest path from one neighbor to another. More formally, u changes

its marker m(u) to true, if there exist vertices v and w such that (w, u) ∈ E and

(u, v) ∈ E and (w, v) /∈ E. Furthermore, every node is assigned a unique id to give an

ordering to the execution of the two pruning rules introduced to further reduce the

size of the SCDAS generated by the extended marking process. The first rule removes

a node u from the SCDAS if there is another node v with id(v) > id(u) in the SCDAS,

for which all dominating neighbors of u are also dominating neighbors of v and all

absorbent neighbors of u are absorbent neighbor of v. The second rule removes a node

u from the SCDAS, if there are two vertices v and w with higher ids than u , where

every dominating neighbor of u is either a dominating neighbor of v or a dominating

neighbor of w and every absorbent neighbor of u is either an absorbent neighbor of v

or an absorbent neighbor of w. The author then discusses the implementation issues

to implement the algorithm in a distributed manner. Clearly to apply either of both

rules nodes require information about at least their 2-hop neighbors. However, using

only 2- hop neighborhood informations enforces v and w in the second rule to be

bidirectionally connected and thus this implementation version has been referred to

as the restricted implementation and it has message complexity O(∆2), where ∆ is

the degree of the maximum degree node in the network. A more general version, not
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requiring v and w to be neighbors has been introduced using 3-hop neighborhood

information and is referred to as general implementation with message complexity

O(∆3)

The authors in [PWW+07], present centralized approximation algorithms to con-

struct the DAS as well as the SCDAS of a DG. When the ratio of the maximum

to the minimum transmission range is bounded, both algorithms have constant ap-

proximation ratios of 2.4(k +
1

2
)2opt+ 3.7(k +

1

2
)2 and 9.6(k +

1

2
)2opt+ 14.8(k +

1

2
)2

respectively, where k is the ratio of the maximum to the minimum transmission range.

The centralized algorithm first constructs a dominating spanning tree of the outgoing

edges rooted at an arbitrary node r by coloring the nodes black and blue at every

other level. The algorithm then reverses the direction of all the edges, and constructs

another spanning tree of the outgoing edges, rooted at the same node r. The black

nodes in both trees then form a DAS and the non-leaf nodes of the spanning trees form

a SCDAS. The centralized algorithm is referred to as dominating-absorbent spanning

trees DAST . Furthermore, two heuristics for the construction of the SCDAS are pre-

sented. Both heuristics first use a subroutine referred to as finding dominating and

absorbent set FDAS to form a DAS and then connect it up using a greedy manner.

The algorithm FDAS consists of two stages, construction of a DS and construction of

an AS, and returns the union of them as the DAS. The DS is generated by coloring

a node u black at every step and coloring its outgoing neighbors gray until no uncol-

ored node is remained. Node u is selected either randomly, or by choosing the highest

degree node at every step. Once DS is constructed, a preprocessing is used to mark

the dominated nodes (gray nodes) that are already absorbed as white nodes. Then a

similar method is used to add black nodes to AS so that all gray nodes are absorbed

and marks a gray node white as soon as they are absorbed by a black node. This

will terminate when all gray nodes are either marked black or white. Once the DAS
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calculation is completed, each of the heuristics uses a different technique to construct

a SCDAS from the DAS returned by the FDAS algorithm. The first one, namely

greedy spider contraction algorithm G-SCA, finds the largest v-spider in the graph

and uses a contracting operation to form a SCDAS. A v-spider is an outconnected

subtree rooted at v satisfying the following conditions: (1) all the other nodes except

the root in the tree are non-white and (2) there exists a directed path in the tree from

the root to every node in the tree. In the second heuristic, namely greedy strongly

connected component merging algorithm G-GMA, two strongly connected components

, SCCs, of black nodes are continually merged by using a shortest path between them

until there is only one SCC of black nodes in the network.

In [KN10], the authors extended the distributed algorithm for the construction

of the CDS in UDGs in [KMNO10], to construct the SCDAS in DGs. They first

presented a centralized description of their algorithm in which all nodes in the network

are initially in the SCDAS. Every node is assigned a unique rank which is an ordered

pair of its number of neighbors in SCDAS and its id. At every iteration of the

algorithm a node u with the minimum rank runs a dominating and absorbent test

DAT to verify if all its outgoing neighbors have a dominator other than u, and if all its

incoming neighbors have an absorbent neighbor other than u. If the DAT is successful,

a connectivity test is executed which verifies if the subgraph induced by neighbors

of u in SCDAS form a strongly connected component. A node u removes itself from

the SCDAS if both tests are successful. Furthermore, a distributed implementation

of the algorithm, namely PInOut UD is presented in which initially all nodes have

a pending status. Every node u exchanges its rank with all its neighbors and can

only run the algorithm if none of its lower ranked neighbors have a pending status.

Once a node finishes running the algorithm it will change its status to either in or out

and will send a message to all its neighbors along with its new status. The authors
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also discuss the k-hop extension of the connectivity test and refer to the algorithm

as PInOut UDk, for different values of k. The PInOut UDk has time complexity

O(n2) and message complexity O(n2k2). Through simulations, they showed that two

variants of their algorithm, namely PInout UD1 and PInout UD4 produce a thin

SCDAS and outperform the algorithms presented in [PWW+07] and [Wu02].

4.2 The Local Approximation Algorithm for the

Construction of the MSCDAS

Before presenting the algorithm, we first present some of the terms and definitions

used in this section.

4.2.1 Definitions and Preliminaries

We model the network with asymmetrical links with a disk graph G = (V,E), where

V is the set of vertices and E is the set of directed edge. Every node i in V has a

range ri in [rmin, rmax]. For every vertex j, there is a directed edge between vertices

i and j if and only if the Euclidean distance between i and j is less than or equal to

ri, (i, j) ∈ E ⇐⇒ dist(i, j) ≤ ri.

In a directed graph, we say node u is dominated by node v, if there exists an

incoming edge (v, u) from v to u. Analogously, u is absorbed by node v, if there

exists an outgoing edge (u, v) from u to v. A set A ⊆ S, is a dominating and

absorbent set DAS of S, if for every vertex u ∈ S − A, there are nodes v and w

in A (not necessarily distinct), where u is dominated by v and is absorbed by w,

(v, u) ∈ E and (u,w) ∈ E. If the vertices in A induce a strongly connected graph, A

is called a strongly connected dominating and absorbent set SCDAS. We use Nd(u) to

denote the dominating neighbor set of node u, i.e. Nd(u) = {v|(v, u) ∈ E}. A node
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v ∈ Nd(u) is also referred to as an incoming or ingress neighbor of node u in the

literature. Likewise, Na(u) is used to denote the absorbent neighbor set of node u, i.e

Na(u) = {v|(u, v) ∈ E}. A node v ∈ Na(u) is also referred to as an outgoing or egress

neighbor of u in the literature. Every node u has a rank (classNumber(u), id(u))

which is an ordered pair of its class number and id, where the class number indicates

the number of the hexagon that contains u, using the parallelogram-shaped tiling

scheme presented in Chapter 3. Assigning a unique id to every node ensures that

when comparing nodes’ ranks ties are broken.

4.2.2 The Algorithm

Every node first computes its class number using its coordinates and the tiling infor-

mation, where the diameter of the hexagons is equal to the minimum range in the

network. This ensures that all nodes in the same hexagon are connected via bidirec-

tional links, and as long as at least one node per hexagon is selected the resulting

set is a DAS. Each node sends a message to its neighbors and exchanges information

including the node’s class number, id and a marker value indicating whether the node

is in the DAS. Once all nodes in the hexagon have exchanged messages with their

neighbors in the other hexagons, every node u sends Nd(u) and Na(u) to the cell

coordinator which is lowest id node in the hexagon (i.e. among its neighbors with the

same class number). While only coordinators execute Algorithm 6 to determine SC-

DAS nodes in their hexagons, Algorithm 8 is executed by every node in the network,

whether it is a coordinator or not.

The coordinator starts the algorithm only when all the lower class neighbors of

the nodes in its hexagon have finished running the algorithm. All nodes v in the

hexagon send the set of their dominating neighbors Nd(v) as well as their absorbent

neighbors Na(v) to the coordinator. The coordinator then uses this information to
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Algorithm 6 Local strongly connected dominating and absorbent set algorithm ex-
ecuted by coordinator u with class number cl

Hu ← Nu,cl ∪ {u}
Wait for the lower class neighbors of Hu to finish executing the algorithm
Wait for all neighbors v in Hu to send a Nd(v) and Na(v)
Sd ← ∅
Sa ← ∅
for all v ∈ Hu do

for all w ∈ Nd(v) do
if classNumber(w) 6= cl ∧ classNumber(w) /∈ Sd then

Sd ← Sd ∪ {classNumber(w)}
end if

end for
for all w ∈ Na(v) do

if classNumber(w) 6= cl ∧ classNumber(w) /∈ Sa then
Sa ← Sa ∪ {classNumber(w)}

end if
end for

end for
if Sa ∪ Sd = ∅ then

inDAS(u)← true
else

ConnectUTo(Sa, Sd, Hu)
end if

determine the set of class numbers Sd with outgoing edges to nodes in Hu and the set

of class numbers Sa with incoming edges from Hu. For every class number i in Sd (Sa),

Algorithm 6 first verifies if there is already a node in Hu that has been selected as a

dominator or absorbent node with an incoming (outgoing) edge from (to) i. If such

node does not exist, a node in Hu is selected as a dominator (dominatee) according to

one of the heuristics mentioned in Chapter 3, and a SELECT DAS message would

then be sent to all neighbors of dominator (dominatee) in i, so that at the end of the

algorithm there is an incoming (outgoing) edge in the DAS from (to) i. This ensures

the connectivity of the backbone.

Once Algorithm 6 has terminated, we use an adaptation of the pruning procedure

presented in Chapter 3 , to further reduce the number of nodes in the SCDAS. A node
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Algorithm 7 ConnectUTo(Sa, Sd, Hu): Choose local DAS nodes in Hu such that the
resulting DAS is connected to DAS nodes in neighboring hexagons with class numbers
in Sa and Sd

for all i ∈ Sd do
if ¬(∃v ∈ Hu ∧ inDAS(v) ∧ ∃w ∈ Nd(v, i) ∧ inDAS(w)) then

if ∃v ∈ v ∈ Hu ∧ inDAS(v) ∧Nd(v, i) 6= ∅ then
dominator ← v

else
Cd ← {v ∈ Hu ∧ inDAS(v) ∧Nd(v, i) 6= ∅
Choose a node dominator in Cd according to the heuristic

end if
Send Mark DAS to dominator
Send SELECT DAS(Nd(dominator, i)) to Nd(dominator, i) via dominator

end if
if ¬(∃v ∈ Hu ∧ inDAS(v) ∧ ∃w ∈ Na(v, i) ∧ inDAS(w)) then

if ∃v ∈ v ∈ Hu ∧ inDAS(v) ∧Na(v, i) 6= ∅ then
dominatee← v

else
Ca ← {v ∈ Hu ∧ inDAS(v) ∧Na(v, i) 6= ∅
Choose a node dominatee in Ca according to the heuristic

end if
Send Mark DAS to dominatee
Send SELECT DAS(Na(dominatee, i)) to Na(dominatee, i) via dominatee

end if
end for
Notify the higher class neighbors of the nodes in Hu that CDS calculation in the
hexagon is finished

that has been selected as dominator or dominatee waits to hear from all its lower-

ranked neighbors before running the pruning procedure, which consists of evaluating

two conditions. Node v meets the domination an absorption condition if all its

neighbors have at least one other dominator and one other absorbent neighbor. Node

v meets the strong k-connectivity condition if the subgraph induced by its k-hop

neighbors that are marked as belonging to the SCDAS is strongly connected. It is

clear that both these conditions can be evaluated locally by node v using information

obtained from its k-hop neighbors. At this stage, node v decides to opt out of the

SCDAS if it meets both the domination and strong k- connectivity conditions. Finally,
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Algorithm 8 Local strongly connected dominating and absorbent set algorithm ex-
ecuted at every node u with class number cl

Upon receiving a message, msg:
if msg = (MARK DAS) then

inDAS(u)← true
Inform all your neighbors that inDAS(u) is true

else if msg = SELECT DAS(N) then
if ¬(∃v ∈ N ∧ inDAS(v)) then

Choose a node u in N according to the heuristic
inDAS(u)← true

end if
end if

node v informs all its neighbors about the results of its pruning procedure. Like before,

the use of a distinct rank ensures that the elimination of a node v that meets both the

domination and strong connectivity conditions neither leaves any node un-dominated

or un-absorbed, nor disconnects the SCDAS.

4.3 Simulation Results

To evaluate the performance of our algorithm in networks with unidirectional links,

we conducted a series of simulations to study the impact of different node densities,

different pruning localities and the different percentage of unidirectional links on the

size of the constructed SCDAS.

Extensive simulations to study the performance of all the few algorithms presented

for the construction of a SCDAS in directed graphs prior to our study has been

conducted in [KN10]. In our simulations, we have used the same series of graphs used

in [KN10] and we reproduced the results. In all input graphs, nodes are randomly

distributed in a geographic area of 200m by 200m, and the density is varied by

changing the number of nodes from 50 to 300 in increments of 50. Furthermore, to

study the effect of percentage of unidirectional links on the size of the SCDAS, random
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transmission ranges in [rmin, rmax] are assigned to every node, where rmax is 50m and

rmin has values 10m, 20m, 30m, 40m and 50m so as to simulate different percentage

of unidirectional links in the networks. For each value of (n,rmin), as many random

graphs as required are generated until there are 1000 strongly connected graphs.

The graphs were stored in files and used across different simulations using different

algorithms. As before, we used Java Platform (JDK 6 update 10) for our simulations.

First, we investigated the effect of the locality of the strong k-connectivity test of

the pruning procedure to determine the best trade-off between the degree of locality

in this test and the number of nodes that can be pruned. It can be seen that in sparse

graphs n = 50 and n = 100, specially when the average number of neighbors with

bidirectional links is small we can not benefit from increasing k by more than 5. This

is illustrated in Figures 28 and 29.
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Figure 28: Impact of the locality of the strong k−connectivity test of the pruning
procedure on the size of the SCDAS when transmission ranges are in [10, 50]
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Figure 29: Impact of the locality of the strong k−connectivity test of the pruning
procedure on the size of the SCDAS when transmission ranges are in [20, 50]

In denser networks, this number even decreases to 3. This behavior is expected

since in denser networks, the expected number of nodes per hexagon increases and

thus the initial SCDAS becomes sparse. It has been shown that as the percentage of

unidirectional links decreases, increasing k would not result in significant decrease in

the SCDAS size (See Figure 30,31,32).

In fact it is clear that in Figure 32 when all links are bidirectional the curve flattens

after k = 2. Consequently, we have chosen k = 4 to be a good trade-off between the

locality of the pruning phase of the algorithm and the gain that can be achieved by

increasing k.
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Figure 30: Impact of the locality of the strong k−connectivity test of the pruning
procedure on the size of the SCDAS when transmission ranges are in [30, 50]
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Figure 31: Impact of the locality of the strong k−connectivity test of the pruning
procedure on the size of the SCDAS when transmission ranges are in [40, 50]
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Figure 32: Impact of the locality of the strong k−connectivity test of the pruning
procedure on the size of the SCDAS when transmission ranges are in [50, 50]

Therefore, in the performance evaluation of our algorithm, we selected two in-

stances of our local algorithm with pruning localities 1 and 4 for the connectivity test

of the pruning procedure, referred to as TBL 1 and TBL 4 respectively. We compare

our algorithm with the few algorithms in the literature proposed for the construction

of SCDAS in DGs, namely Wu’s local algorithm [Wu02], hereafter referred to as Wu

after the name the author, the two variant of the distributed algorithm in [KN10],

referred by the authors as PInout UD1 and PInout UD4, and the two centralized al-

gorithms in [PWW+07], namely Dominating-Absorbent Spanning Tree (DAST) and

Greedy Strongly Connected Component Merging Algorithm (G CMA). The extensive

simulations in [KN10] show that PInout UD1 and PInout UD4 consistently outper-

forms the other algorithms. Thus, we only need to compare TBL 1 and TBL 4 with
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PInout UD1 and PInout UD4. However, for completeness we have included the the

results for Wu, DAST, and G CMA in our figures. In our performance comparison,

we focused on the impact of node density and the percentage of unidirectional links

on the size of the SCDAS.

In order to show the impact of the percentage of unidirectional links independent

of the node density, we have fixed the number of sensors and we investigated the

effect of percentage of unidirectional links on graphs with 50, 100, 150, 200, 250 and

300 nodes separately. Our simulation results showed that the size of the SCDAS

produced by the TBL algorithm is very close to the size of the SCDAS produced

by the PInOut UD in all cases. Thus, we only show the two extreme cases of very

sparse networks and very dense networks when n is equal to 50 and 300 . These have

been depicted in Figures 33 and 34 respectively. As it can be seen in Figure 33, our

algorithm consistently outperforms all the other algorithms except for PInout UD1

and PInout UD4. Although TBL 4 and PInOut UD4 generate SCDASs of almost the

same size, TBL 1 generates a slightly smaller SCDAS than PInOut UD1. It is note-

worthy that despite the fact that TBL 1 and TBL 4 are local algorithms they perform

as well as and sometimes even better than the distributed algorithms PInOut UD1

and PInOut UD4. As the number of nodes increases to 100 and 150 (moderate densi-

ties), the gap between DAST and Wu as one group and PInOut UD1, PInOut UD4,

TBL 1 and TBL 4 as the other group widens. It can be seen in Figure 34 that

as the percentage of unidirectional links decreases the gap between PInOut UD1,

PInOut UD4, TBL 1 and TBL 4 becomes smaller and they all perform almost the

same.

Analogously, to study the impact of node density on the size of the SCDAS, we

fixed the percentage of unidirectional links and studied the effect the node densi-

ties for each set of graphs. As before, our simulations always showed that TBL and
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Figure 33: Impact of percentage of unidirectional links on the size of the SCDAS
when number of nodes is 50

PInOut UD produce SCDASs of almost the same size and for brevity we show the re-

sults for the two sets of graphs representing the sets with the maximum and minimum

number of unidirectional links in Figures 35 and 36 respectively. Although TBL and

PInOut UD produce SCDASs of almost the same size, one can see that in very dense

networks with high percentage of unidirectional links the difference between TBL 1

and PInOut UD1 becomes even more significant (See Figure 35). In fact while the

size of the SCDAS generated by PInOut UD1 is 18.52% bigger than that of TBL 1,

the size of the SCDAS produced by TBL 1 is only 1.5% bigger than PInOut UD4.

This implies that for dense networks with a high ratio of irregularities between the

ratio of nodes’ transmission ranges, TBL 1 performs as well as PInOut UD4, which
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Figure 34: Impact of percentage of unidirectional links on the size of the SCDAS
when number of nodes is 300

can significantly reduce the message complexity.
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Figure 35: Impact of node density on the size of the SCDAS when transmission ranges
are in [10, 50]
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Figure 36: Impact of node density on the size of the SCDAS when transmission ranges
are in [50, 50]
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4.4 Conclusion

We proposed an efficient, local algorithm with constant approximation ratio for the

construction of a strongly connected dominating and absorbent set in disk graphs.

The SCDAS produced by our algorithm is significantly smaller compared to those

produced by all the other SCDAS algorithms in the literature.
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Chapter 5

Minimizing the Maximum Sensor

Movement for Barrier Coverage

In this chapter, we consider generalizations of the MinMax problem studied in [CKK+09].

In Section 5.1, the previous studies for the intrusion detection problem with mobile

sensors are described. In section 5.2, we discuss the problem of minimizing the maxi-

mum sensor movement MinMax for the coverage of line barriers studied in [CKK+09].

We then introduce two new generalizations for the MinMax problem: multiple barri-

ers and circular barriers in Sections 5.3 and 5.4 respectively.

5.1 Related Work

Intrusion detection and border surveillance constitute a major application category

for wireless sensor networks. A major goal in these applications is to detect intruders

as they enter a region. This type of coverage is referred to as barrier coverage,

where the sensors form a barrier for the intruders. Unlike the extensively studied

problem of full coverage, [HT03, KLB04, MKPS01], where any point within the area

is ensured to be covered by at least one sensor, in the barrier coverage problem only
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the perimeter of the region is protected. This makes sense in applications involving

boundary guard or movement detection where the intruder has to cross a boundary

to enter the protected area, since full coverage requires many more sensors than the

barrier coverage.

Furthermore, since some applications require deploying sensors in inhospitable

terrains (e.g., forests, mountains, enemy regions), deployment of sensors in prede-

termined positions so as to achieve complete coverage is not always possible. Conse-

quently, in these applications nodes are usually dispersed arbitrarily. In the literature,

two approaches to attain complete barrier coverage are considered. In the first, sen-

sor nodes are static and the dispersal is very dense around the boundary to ensure

complete coverage. The studies using this approach either deal with the question

of whether the barrier is completely covered or not, once the nodes are arbitrarily

dispersed [CKL07, KLA05], or they estimate the density needed to achieve barrier

coverage with a desired probability [BBSK07]. This approach needs many redundant

sensors, leading to significant waste of sensors. In the second approach, sensors are

mobile and once arbitrarily dispersed, they are instructed to move to final positions

to achieve complete coverage. This is considered in [BBH+08, CKK+10, CKK+09,

SLX+10, WCLP06], where some aspects of minimizing the energy consumption for

the movements are studied. Since this chapter studies a generalization of the Min-

Max problem studies in [CKK+09], we discuss the results in [CKK+09] thoroughly in

Section 5.2. Below, the other studies are discussed with more details.

The authors of [WCLP06] considered the full coverage problem in a protected

area and proposed protocols to calculate the target positions of the sensors so as to

eliminate coverage holes (the area not covered by any sensor) . They used Voronoi

diagrams to discover the coverage holes and designed three movement-assisted sensor

deployment protocols, VEC (VECtorbased), VOR (VORonoi-based), and Minimax
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based on the principle of moving sensors from densely deployed areas to sparsely

deployed areas. For these three protocols, VEC pushes sensors away from a densely

covered area, VOR pulls sensors to the sparsely covered area, and Minimax moves

sensors to their local center area. Furthermore, they evaluated their protocols from

aspects such as coverage, deployment time, moving distance, scalability to initial

deployment and communication range through simulations.

In [BBH+08], the authors considered the barrier coverage problem on a circle and

a simple polygon using n mobile sensors with identical sensing ranges. It is assumed

that the the sum of sensors’ coverages is equal to the length of the barrier to be

covered. Also, each sensor has knowledge of the region to be barrier-covered, and

of its geographic location. The authors first considered the scenario where sensors

all lie on a line or on the perimeter of circle and they gave algorithms to assign

final position to the sensors so as to achieve complete coverage while minimizing

the sum of sensor movements, (MinSum problem). Then, they considered the case

where sensors are lying in the interior of the polygon (circle), and they presented

algorithms to assign final positions on the perimeter of the polygon (circle) so as to

achieve complete coverage. They gave an O(n3.5 log n)-time algorithm for the MinMax

problem on a circle that moves the sensors to the perimeter of the circle to form a

regular n-gon and an O(mn3.5 log n)-time algorithm for the MinMax problem on a

simple polygon, where m is the number of edges of the simple polygon. Furthermore,

they studied the problem of minimizing the sum of movements of equal range sensors

so as to achieve complete coverage of a circle and a simple polygon, and provided

approximation algorithms for them. For a circle, they presented a PTAS and a π+ 1

approximation algorithm with time complexities O(1
ε
n4) and O(n2), respectively. For

a simple polygon, they presented a PTAS with running time of O(1
ε
mn5).

The intrusion detection problem in a thin strip l ∗w, where l >> w, is considered
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in [SLX+10]. The authors assume that m mobile sensors and n stationary sensors

have been arbitrarily dispersed in the thin strip area, and they studied the problem

of moving the mobile sensors in order to form horizontal line barriers with the sensors

along the thin strip area. They investigated the limit of the barrier coverage that a

mobile sensor network can provide, as well as the requirement on the sensor mobility

to reach the limit. Furthermore, they presented a sensor movement scheme to pro-

vide the maximum barrier coverage while minimizing the maximum moving distance

among all sensors. In the presented scheme final positions assigned to sensors are co-

ordinates on a grid, using a binary search with time complexity O(log lV E2), where

l is the area length and V and E are the number of vertices and edges on a graph G

representing the UDG network formed by sensors.

In [CKK+10] the barrier coverage problem on a line segment barrier with mobile

sensors have been studied. The mobile sensors are assigned final positions so as to

achieve maximal coverage of the barrier while minimizing the sum of sensor move-

ments. It is shown that the MinSum problem for sensors with non-identical ranges is

NP-hard. For the case of sensors with identical ranges, the authors considered sev-

eral scenarios depending on whether or not complete coverage is feasible. When the

sum of sensors’ coverages is less than the length of the area to be covered, complete

coverage is not feasible, and they considered the maximal coverage problem. In case

where complete coverage is not feasible, they distinguished two different problems

depending on whether the coverage of sensors form a contiguous interval or not. For

all the problems mentioned above, linear or quadratic algorithms were given.

5.2 The MinMax Problem on a Single Line Barrier

The problem of covering a line segment barrier with wireless mobile sensors was

considered in [CKK+09], where sensors are initially placed arbitrarily on the same
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line. The goal is to move the sensors to their final position so that maximum coverage

is established while the maximum displacement of any sensor is minimized (MinMax ).

Three variants of the problem, based on (i) whether or not complete coverage is

possible and (ii) in the case when complete coverage is impossible, whether or not

the maximal coverage is required to be contiguous, have been studied.

If the total coverage of all sensors R is either greater than or equal to the length of

the barrier L, then complete coverage is feasible. The MinMax optimization problem

for R ≥ L is defined as follows.

MinMax optimization problem:

minimize {max
1≤i≤n

|mi|} subject to [0, L] ⊆
n⋃
i=1

[xi − ri, xi + ri]

Where, mi is the distance Si has traveled from its initial position. A movement

to the left will be denoted by mi ≤ 0 and movement to the right by mi ≥ 0.

When R < L and thus complete coverage of [0, L] is not feasible, they introduced

the problem of finding an arrangement of sensors that attains the largest possible

coverage while at the same time minimizing the maximum movement of sensors. They

consider two variants of the optimization problem referred to as the non-contiguous

MinMax optimization problem and the contiguous MinMax optimization problem for

R < L, defined below.

Non-contiguous MinMax optimization problem:

minimize {max
1≤i≤n

|mi|} subject to
n⋃
i=1

[xi − ri, xi + ri] ⊆ [0, L] and

|
n⋃
i=1

[xi − ri, xi + ri]| = R.
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Contiguous MinMax optimization problem:

minimize {max
1≤i≤n

|mi|} subject to
n⋃
i=1

[xi − ri, xi + ri] ⊆ [0, L] and

|
n⋃
i=1

[xi − ri, xi + ri]| = R and

n⋃
i=1

[xi − ri, xi + ri] is an interval.

All the algorithms given for sensors with equal ranges use the following lemma,

referred to as the order-preservation lemma.

Lemma 5.2.1. (Order Preservation). Let S1, S2, . . . , Sn be sensors with ranges

r1, r2, . . . , rn in initial positions x1 ≤ x2 ≤ . . . xn. If there are no two sensors Si and

Sj , 1 ≤ i 6= j ≤ n such that xj − rj < xi + ri and xj + rj > xi + ri then there

is an order-preserving optimal solution of any of the three versions of the MinMax

optimization problem.

Note that the condition of the above lemma is clearly satisfied when the covering

intervals of the sensors form a proper interval graph, where the interval graph is

a graph in which sensor ranges represent the vertices and a proper interval graph

is an interval graph in which no interval properly contains another (see [Fis85]).

Consequently, the condition of the lemma always satisfies in the case of sensors with

identical ranges.

When the sensors have unequal ranges, if the covering intervals of the sensors form

a proper interval graph, all the algorithms in Table 1 are still valid. However, it is an

open problem whether or not the MinMax optimization problem is NP-complete in

general. The MinMax problem whereby one of the sensors is assigned a fixed position

is shown to be NP-complete.

Table 1 shows the results for the MinMax problem when sensors have identical
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ranges, L is the length of the barrier and R the sum of length of covering intervals.

Table 1: Summary of time complexities of the algorithms in [CKK+09], where sensors
have identical ranges

contiguous non-contiguous
R < L O(n) O(n)
R = L O(n) N.A.
optimal O(n2) N.A.

R > L 2−approximation O(n) N.A.

1 + ε−approximation O(n log log(C/g)
log(1+ε)

) N.A.

5.3 The MinMax Problem with Multiple Barriers

In this section, we consider the problem of covering multiple barriers with a set of n

sensor nodes with identical sensing range r. The barriers are disjoint line segments

with lengths L1, L2, . . . , Lm. We consider all possible scenarios: R =
∑m

i=1 Li, R <∑m
i=1 Li and R >

∑m
i=1 Li, and we peresent centralized polynomial algorithms for

all of them. For each of the mentioned scenarios, we first study the corresponding

problem on two barriers, and then we generalize the solution to the case of m barriers.

The shift value of sensor Si is its displacement value, di, from its initial position.

The left shifts are shown by negative values, and right shifts by positive values. The

maximum shift is found by comparing the absolute values of shifts for all sensors, i.e.

Maxi∈{1,..,n}|di|.

We generalize the ordering lemma for the case of multiple barriers.

Lemma 5.3.1. (Order preservation on multiple barriers) Let S1, S2, ..., Sn be

sensors with identical sensing range r in initial positions x1 ≤ x2 ≤ ... ≤ xn. Also,

let B1, B2, ..., Bm be disjoint line segments on the same infinite line, with lengths
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L1, L2, ..., Lm. There is an order−preserving optimal solution of all three versions of

the MinMax optimization problem on m barriers.

Proof. Consider a solution of a MinMax problem y1, y2, ..., yn, where yi is the final

position of Si, in which a sensor Si preceding Sj in initial order, succeeds Sj in final

position; i.e., there are sensors Si and Sj, where xi < xj and yi > yj. The shift of

sensors Si and Sj are |yi − xi| and |yj − xj| respectively. Swapping Si and Sj in the

final position would result in shifts |yj−xi| and |yi−xj|. It can be easily seen that we

can swap these two sensors without increasing the value of the maximal move while

covering the same area in the solution. Therefore by a sequence of switches we can

obtain an optimal solution that preserves the original order of sensors. �

Furthermore, unlike the MinMax optimization problem for different sensor ranges

on a single barrier where sensor ranges form a proper interval graph, the order preser-

vation lemma does not generalize for multiple barriers with arbitrary range sensors.

In fact, the order preservation lemma does not hold as soon as we increase the number

of barriers to two. Consider the following example. There are two sensors S1 and

S2, at initial positions 2 and 8 with transmission ranges 2 and 1 respectively. Also,

we have two barriers B1 = [0, 2] and B2 = [6, 10]. The only solution that provides

complete coverage of B1 and B2 is to move S2 to final position 1, and S1 to final

position 8. Clearly this does not preserve the original order of the sensors.

Furthermore, we show that when sensors have arbitrary ranges, the MinMax op-

timization problem on m barriers is NP-hard. In fact, below we show that even with

two barriers the problem remains NP-hard.

Theorem 5.3.2. Let S1, S2, ..., Sn be sensors with sensing ranges r1, r2, ..., rn in initial

positions x1 ≤ x2 ≤ ... ≤ xn. Also, let B1 and B2 be disjoint line segments on the

same infinite line, with lengths L1 and L2 respectively. The MinMax optimization

problem on two barriers is NP-hard.
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Figure 37: Arrangements of sensors for proving the NP-completeness of the MinMax
optimization problem on two barriers when sensors have arbitrary ranges.

Proof. We reduce the partition problem [GJ90] into the MinMax optimization problem

on two barriers. The partition problem is defined as follows:

Given a sequence of integers a1 ≤ a2 ≤ ... ≤ an, determine whether there exists a

set of indices J such that
∑

i∈J ai = 1
2

∑n
i=1 ai.

Let C = 1
2

∑n
i=1 ai. Given an instance of the partition problem, we transform it

to the MinMax optimization problem on two line segments for the sensor set S =

{S1, S2, ..., Sn, Sn+1, Sn+2}. The sensors S1, S2, ..., Sn have sensing ranges a1

2
≤ a2

2
≤

... ≤ an
2

and have initial positions 2C + an
2

. Furthermore, sensors Sn+1, Sn+2 with

sensing range C
2

are at initial positions −C
2

and an + 9C
2

(see Figure 37).

Now if there is a set of indices J such that
∑

i∈J ai = C, there is a solution to the

barrier coverage problem such that for any i ∈ J the sensor Si is moved to B1 and

for any i /∈ J the sensor Si is moved to B2. Thus, this way we can cover regions of

size C on both B1 and B2 with all shifts being at most of size C. The half left of B1
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and half right of B2 can be covered by Sn+1 and Sn+2 with shifts being at most C

If such a partition does not exist, then any distribution of sensors in S covers a

region of size less that C either on B1 or B2. Therefore, we have to move one of the

sensors Sn+1 or Sn+2 more than C to get a solution.

Thus, if there is an algorithm that can determine if there are movements of sensors

on two line segments so as to achieve maximum coverage while the maximum move-

ment of any sensors is at most C, we can determine whether the partition problem

has a solution. Clearly, the transformation from the partition problem to the sensor

movement problem is polynomial. �

In view of theorem 5.3.2, through the rest of this section, we always assume that

nodes have identical sensing ranges.

5.3.1 L1 + L2 = 2rn

Theorem 5.3.3. Let S1, S2, ..., Sn be sensors with identical sensing range r in initial

positions x1 ≤ x2 ≤ ... ≤ xn. Also, let B1 and B2 be two disjoint line segments with

lengths L1 and L2 respectively; i.e. B1 = [0, L1] and B2 = [L1 + g, L1 + L2 + g],

where g is the gap length between the two barriers B1 and B2, and L1 + L2 = 2rn.

There is an O(n2) algorithm that solves the MinMax optimization problem of covering

two line segments B1 and B2, so that the maximal value of the shift of any sensor is

minimized.

Proof. We need dL1

2r
e + dL2

2r
e sensors to cover L1 and L2 completely. Since L1 + L2

is a multiple of 2r, either both L1 and L2 are multiples of 2r or neither L1 nor L2

is a multiple of 2r. In the former, dL1

2r
e + dL2

2r
e is equal to n, and complete coverage

is possible. The later implies that dL1

2r
e + dL2

2r
e is n + 1, indicating that complete

coverage is not feasible. Thus, we consider two scenarios:
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1. Both L1 and L2 are multiples of 2rn; i.e. ∃i ∈ N,∃j ∈ N, L1 = 2ri ∧ L2 = 2rj.

In this case complete coverage is possible, and all sensors have predetermined

positions. Move senors S1, S2, ... ,Si to positions le(B1) + r, le(B1) + 3r,

..., le(B1) + (2i − 1)r and sensors Si+1, Si+2, ... ,Sn to positions le(B2) + r,

le(B2) + 3r, ..., le(B2) + (2j − 1)r. Clearly, this can be done in O(n) time.

2. Neither L1 nor L2 are multiples of 2rn; i.e. 6 ∃i ∈ N, 6 ∃j ∈ N, L1 = 2ri ∧ L2 =

2rj. Let n1 and n2 be the minimum number of sensors needed to completely

cover B1 and B2 respectively; i.e. n1 = dL1

2r
e and n2 = dL2

2r
e. Furthermore,

let f1 and f2 be L1 − 2r(n1 − 1) and L2 − 2r(n2 − 1) respectively. Since,

n1+n2 is equal to n + 1, and we only have n sensors, we aim at achieving

maximum possible coverage while minimizing the maximum sensor movement.

Using Lemma 5.3.1, sensors {S1, S2, . . . , Sn1−1} are used toward coverage of B1

and sensors {Sn1+1, Sn1+2, . . . , Sn} are used toward coverage of B2 . In order

to achieve maximum coverage Sn1 can cover B1 , B2 or a part of B1 and a

part of B2 at the same time providing coverage 2rn− f2, 2rn− f1 and 2rn− g

respectively. Note that the coverage 2rn − g is only feasible when g < 2r. We

distinguish three possible scenarios.

(a) f1 = min(g, f1, f2): maximum coverage is achieved by using {Sn1 , Sn1+1, . . . , Sn}

to cover B2 completely, and using sensors in {S1, S1, ..., Sn1−1} to cover B1

partially. The former can be achieved in O(n2) using the algorithm in

[CKK+09] for R > L, and the later can be achieved in O(n) using the

algorithm in [CKK+09] for R < L.

(b) f2 = min(g, f1, f2): maximum coverage is achieved by using {S1, S1, ..., Sn1}

to cover B1 completely, and using sensors in {Sn1+1, Sn1+2, . . . , Sn} to cover

B2 partially. The former can be achieved in O(n2) using the algorithm in
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[CKK+09] for R > L, and the later can be achieved in O(n) using the

algorithm in [CKK+09] for R < L.

(c) g = min(g, f1, f2): maximum coverage is achieved only if Sn1 completely

covers the gap (covers a part of B1 and a part of B2 at the same time).

We show that any optimal solution that minimizes the maximum sensor

movement while maximizing the coverage on virtual barrier [0, L1 +L2 +g]

has a sensor that completely covers [L1, L1+g]. Assume there is an optimal

solution with maximal coverage 2rn on [0, L1 +L2 +g] with no sensor that

completely covers the gap. Therefore, the number of sensors that are

to the left of L1 + g is less than or equal to bL1+g
2r
c = b2rn1−2r+f1+g

2r
c =

n1 + bf1+g−2r
2r
c, and the number of sensors that are to the right of L1 is less

than or equal to bL2+g
2r
c = b2rn2−2r+f2+g

2r
c = n2 + bf2+g−2r

2r
c .

Note that since g = min(g, f1, f2), either g < r or f1 = f2 = r. In the

later, using Sn1 toward coverage of B1, B2 or a part of B1 and a part of B2,

provides the same coverage of 2rn − r, and therefore return the solution

that minimizes the maximum movement. In the later, both f1+g and f2+g

are less than 2r and therefore n1 +bf1+g−2r
2r
c = n1−1 and n2 +bf2+g−2r

2r
c =

n2 − 1. This means that there are maximum n1 − 1 + n2 − 1 = n − 1

sensors used to cover the barrier [0, L1 + L2 + g] which contradicts the

fact that the maximal coverage is equal to 2rn. Therefore, any optimal

solution that minimizes the maximum sensor movement while maximizing

the coverage on virtual barrier [0, L1 +L2 +g] has a sensor that completely

covers [L1, L1 + g], and this can be obtained in O(n) using the algorithm

in [CKK+09] for R < L.

�
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Corollary 5.3.4. Let S1, S2, ..., Sn be sensors with identical ranges r in initial posi-

tions x1 ≤ x2 ≤ ... ≤ xn. Let B1, B2, . . . Bm be m line segments on the same infinite

line with lengths L1, L2, . . . , Lm. Let ni > 0 be the minimum number of sensors that

can be fully contained in Bi, ni = bLi

2r
c, and let fi = Li − 2rni. Furthermore, let

gi be the length of the gap between Li and Li+1. There is an O(n2 + mn) algorithm

that solves the MinMax optimization problem of covering m line segments B1 and B2,

..., Bm with
∑m

i=1 |Bi| = 2rn so that the maximal value of the shift of any sensor is

minimized.

Proof. If all the barriers are multiple of 2r, then the final positions are predeter-

mined and the optimal solution can be obtained in linear time. Otherwise, let f be

max1≤i≤m(fi). Let k be the number of barriers with fi = f . Clearly, k is less than m.

For every barrier Bi with fi = f , overcover Bi in O(n2
i ) and the undercover the rest of

barriers in O(n−ni). This can be done in O(n2 +mn). Furthermore, when covering a

gap gi provides more coverage, covering the combined barrier takes O(ni +ni+1) time

and since there are at most m
2

combined barriers that adds at most another O(mn)

resulting in total time complexity O(n2 +mn). �

5.3.2 L1 + L2 > 2rn

It is obvious that when the combined length of the barriers is greater than the total

sensor coverage 2rn, complete coverage is not possible. Therefore, we consider the

problem of maximizing the possible coverage, while minimizing the maximum sensor

movement.

Let n1 and n2 be the maximum number of sensors that can be fully contained

in B1 and B2 respectively; i.e. n1 = bL1

2r
c and n2 = bL2

2r
c. Clearly, if n1 + n2 ≥ n,

maximal coverage of 2rn is feasible. Using Lemma 5.3.1, the problem reduces to

the problem of partitioning the set of sensors into two sets N1 = {S1, S2, ..., Sj} and
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N2 = {Sj+1, Sj+2, ..., Sn}, and using the sensors in N1 and N2 toward coverage of B1

and B2 respectively. We can the use the linear algorithm is provided in [CKK+09]

for the case where R < L to cover both B1 and B2. Throughout this study, we use

the index of the last sensor in N1 to represent the two partitioned sets and refer to it

as the cutting point j.

It should be noted that when L1 +L2 is just slightly bigger than 2rn, i.e. n1 +n2 =

n−1, the coverage of 2rn is not possible, and we should consider this case separately.

Lemma 5.3.5. Let S1, S2, ..., Sn be sensors with identical ranges r in initial positions

x1 ≤ x2 ≤ ... ≤ xn. After solving the two MinMax problems for B1 with sensor set

N1 = {S1, S2, ..., Sj} and B2 with sensor set N2 = {Sj+1, Sj+2, ..., Sn}, let rs(B1),

ls(B1), rs(B2), and ls(B2) be the maximum right shift in N1, the maximum left shift

in N1, the maximum right shift in N2, and the maximum left shift in N2 respectively.

Then,

i) If rs(B1) = Max{|rs(B1)|, |ls(B1)|, |rs(B2)|, |ls(B2)|}, the solution is optimal.

ii) If |ls(B1)| = Max{|rs(B1)|, |ls(B1)|, |rs(B2)|, |ls(B2)|}, none of the cutting points

k, where k > j, is better than j.

iii) If rs(B2) = Max{|rs(B1)|, |ls(B1)|, |rs(B2)|, |ls(B2)|}, none of the cutting points

k, where k < j, is better than j.

iv) If |ls(B2)| = Max{|rs(B1)|, |ls(B1)|, |rs(B2)|, |ls(B2)|}, the solution is optimal.

Proof. i) In order to show that if rs(B1) = Max{|rs(B1)|, |ls(B1)|, |rs(B2)|, |ls(B2)|},

the current solution is optimal, we show that there is no other cutting point with

a smaller right shift than the current cut. First we show that choosing a cutting

point k, with k < j would not give a better solution. Then, we show that the

right shift cannot be reduced by choosing a cutting point k, with k > j.
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(a) A cutting point k, with k < j either shifts the sensors in {Sk+1, Sk+2..., Sj}

further to the right or does not move them at all and thus adding a value

ci ≥ 0 to all the Dis. Since cis are non−negative, the maximum shift cannot

be reduced.

(b) The optimal solution for the MinMax problem with the sensor set {S1, S2, ..., Sj}

on B1 is obtained by first solving the problem on an infinite line. The al-

gorithm for the infinite line would only shift the sensors so that the sensing

range of no two sensors intersect. Since L1 + L2 > 2rn all the sensors have

to used for the coverage and thus these shift values cannot be reduced. Once

the problem is solved for the infinite line, we check if all sensors are con-

tained in B1. If they are already in B1, then the MinMax problem with the

sensor set {S1, S2, ..., Sj} is solved and none of the shifts including rs(B1)

can be reduced further. If sensors {S1, S2, ..., Sm} are to the left of the left

point of B1, le(B1), then S1,S2,...,Sm have to move to le(B1)+r, le(B1)+3r

,..., le(B1) + (2m1)r respectively and thus incrementing the right shifts val-

ues. Again, since all the sensors have to be used this cannot be avoided

either.

So the value of right shift cannot be reduced by choosing a different cutting

point and therefore the solution obtained by choosing Sj as a cutting point is an

optimal solution.

ii) If |ls(B1)| = Max{|rs(B1)|, |ls(B1)|, |rs(B2)|, |ls(B2)|}, any cutting point k, where

k > j, would shift sensors {S1, S2, ..., Sj} further to the left and thus adding the

shift value ci ≤ 0 to all Dis for i ∈ {1, 2, ..., j}. Since ls(B1) is non−positive,

|ls(B1)| cannot further be reduced, thus none of the cutting points k, where k > j

is a better solution than Sj.
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iii) If rs(B2) = Max{|rs(B1)|, |ls(B1)|, |rs(B2)|, |ls(B2)|}, any cutting point k, where

k < j, would shift sensors {Sk+1, Sk+2, ..., Sn} further to the left and thus adding

the shift value ci ≤ 0 to all Dis for i ∈ {j + 1, j + 2, ..., n}. Since rs(B2) is

non−negative, rs(B2) cannot further be reduced, and so, none of the cutting

points k, where k < j is a better solution than Sj.

iv) Similar to the proof for part (i), we first show that choosing a cutting point k,

with k > j would not give a better solution. Then, we show that the left shift

cannot be reduced by choosing a cutting point k, with k < j.

(a) Choosing a cutting point k, with k > j would shift sensors {S1, S2, ..., Sk}

to the left and thus adding non−positive values to all Dis for i ∈ {j +

1, j + 2, ...k}, and since ls(B2) is a non−positive value as well, the left shift

|ls(B2)| cannot be reduced by choosing a cutting point k, with k > j.

(b) Similar to (i)-b, if after finding the optimal solution for the set of sensors

N2 on the infinite line, there are still sensors Sm, Sm+1, ..., Sn to the right of

B2, re(B2), they have to go to positions re(B2)− [2(n−m) + 1]r, re(B2)−

[2(n−m− 1) + 1]r, ..., re(B2)− r, respectively. Therefore, the value of the

left shift cannot be reduced by choosing a different cutting point.

Therefore, the solution obtained by choosing Sj as a cutting point is an optimal

solution.

�

Theorem 5.3.6. Let S1, S2, ..., Sn be sensors with identical ranges r in initial posi-

tions x1 ≤ x2 ≤ ... ≤ xn with L1 + L2 > 2rn. There is an O(n log n + n2) algorithm

that solves the MinMax optimization problem of covering two line segments B1 and

B2 so that the maximal value of the shift of any sensor is minimized.
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Proof. Let n1 and n2 be the maximum number of non−intersecting sensors that can

be contained on barriers B1 and B2, respectively; i.e. n1 = bL1

2r
c and n2 = bL2

2r
c.

Furthermore, if n1 > n (n2 > n), let n1 = n (n2 = n). The algorithm would then find

an optimal cutting point j, using a binary search, for which the maximum movement

for the MinMax problems, {S1, S2, ..., Sj} on B1 and {Sj+1, Sj+2, ..., Sn} on B2, is

minimized.

Unlike the case where n1 + n2 < n, when n1 + n2 ≥ n, 2rn coverage is possible .

We consider three different cases depending on the values of n1 and n2.

i) n1 + n2 = n− 1. This case is similar to the case where L1 + L2 = 2rn, and can

be solved in O(n2) using the algorithm proposed in Section 6.2.1.

ii) n1 +n2 = n. Then the only possible solution is to solve the MinMax problem on

B1 for {S1, S2, ..., Sn1} and on B2 for {Sn1+1, sn1+2, ..., Sn} using the algorithm in

[CKK+09] for R > L with time complexity O(n2) +O(n2) = O(n2).

iii) n1+n2 > n. In this case 2rn coverage is possible and we can consider the problems

of covering barrier B1, and B2 independently. Since the maximum number of

sensors that can be contained on B1 without intersecting is n1, the possible cuts

are in N1 = {1, 2, ..., n1}. Similarly, in order to avoid having more than n2 sensors

on B2, the possible cuts should belong to N2 = {n− (n2 − 1), n− (n2 − 2)..., n}

as well. Since n1 + n2 > n, then N1 ∩N2 6= ∅. If neither n1 nor n2 are equal to

n, let l be n1 + n2 − n, otherwise let l be min{n1, n2}. The candidate set for the

valid cutting points C = N1 ∩ N2 would then {n1 − (l − 1), ..., n1 − 1, n1}. The

algorithm would then take i the middle element in C, i = (n1− (l−1)+n1)/2, as

a cutting point and solves the two MinMax problems in O(n) for the sensors sets

{S1, S2, ..., Si} and {Si+1, Si+2, ..., Sn} on B1 and B2, respectively. Depending on

values of rs(B1), ls(B1), rs(B2), ls(B2), and using Lemma 5.3.5, either the cut is
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the optimal solution or the optimal cut is in C1 = {n1− (l− 1), n1− (l− 2), ..., i}

or C2 = {i+ 1, i+ 2, ..., n1}. Let C be the subset containing the optimal cut and

repeat the same procedure. Since we are reducing the set size, which contains

the optimal cut, by half each time, the algorithm has time complexity O(log n)

and knowing that l ≤ n, the algorithm has time complexity O(n log n).

�

Corollary 5.3.7. Let S1, S2, ..., Sn be sensors with identical ranges r in initial posi-

tions x1 ≤ x2 ≤ ... ≤ xn. There is an O(max(n(log n)k, n2 + mn)) algorithm that

solves the MinMax optimization problem of covering m = 2k line segments B1 and

B2, ..., Bm with
∑m

i=1 |Bi| > 2rn so that the maximal value of the shift of any sensor

is minimized.

Proof. If coverage of 2rn is not possible, the problem is similar to the case where∑m
i=1 |Bi| = 2rn and can be solved in O(n2 + mn) time. Otherwise the cutting

points can be found using binary search in O((log n)k), and the problem can be

solved in O((log n)k). Thus, the solution can be found with total time complexity

O(max(n(log n)k, n2 +mn)). �

5.3.3 L1 + L2 < 2rn

In this scenario, since the sum of the the barrier lengths is smaller than the maximal

coverage provided by all sensors, not all sensors need to participate in the coverage

problem. Therefore, we need to move some of the sensors in order to cover the two

barriers while minimizing the maximum movement. In the case of single barrier, an

O(n2) algorithm for an optimal solution is provided in [CKK+09]. We show that the

following lemma holds, in order to use the algorithm presented in [CKK+09] for the

case of two barriers.
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Lemma 5.3.8. Let S1, S2, ..., Sn be sensors with identical ranges r in initial positions

x1 ≤ x2 ≤ ... ≤ xn. Let j be any number in {1, 2, ..., n}, such that 2rj ≥ L1 and

2r(n − j) ≥ L2. After solving the the two MinMax problems for B1 with sensor set

N1 = {S1, S2, ..., Sj} and B2 with sensor set N2 = {Sj+1, Sj+2, ..., Sn}, let rs(B1),

ls(B1), rs(B2), and ls(B2) be the maximum right shift in N1, the maximum left shift

in N1, the maximum right shift in N2, and the maximum left shift in N2 respectively.

The followings are true:

i) If Max{|rs(B1)|, |ls(B1)|, |rs(B2)|, |ls(B2)|} = {|rs(B1)| ∨ |rs(B2)|}, none of the

cutting points k, where k < j, is a better solution than Sj.

ii) If Max{|rs(B1)|, |ls(B1)|, |rs(B2)|, |ls(B2)|} = {|ls(B1)| ∨ |ls(B2)|}, none of the

cutting points k, where k > j, is a better solution than Sj.

Proof. i) If the maximum shift occurred is a right shift on B1 (B2), any cutting

point k, with k < j shifts the sensors in {Sk+1, Sk+2..., Sj} ({Sj, Sj+1, ..., Sn})

further to the right and thus adding a value ci ≥ 0 to all the Dis. Since cis are

non−negative, the maximum shift cannot be reduced.

ii) If the maximum shift occurred is a left shift on B1 (B2), any cutting point k,

where k > j, would shift sensors {S1, S2, ..., Sj} ({Sj+1, Sj+2, ..., Sk}) further

to the left and thus adding the shift value ci ≤ 0 to all Dis. Since cis are

non−positive, the maximum shift cannot be reduced.

�

Theorem 5.3.9. Let S1, S2, ..., Sn be sensors with identical ranges r in initial posi-

tions x1 ≤ x2 ≤ ... ≤ xn with L1 + L2 < 2rn. There is an O(n2 log n) algorithm that

solves the MinMax optimization problem of covering two line segments B1 and B2 so

that the maximal value of the shift of any sensor is minimized.
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Proof. Let n1 and n2 be the minimum number of sensors that are needed to completely

cover barriers B1 and B2, respectively; i.e. n1 = dL1

2r
e and n2 = dL2

2r
e. We consider

two different cases depending on the distance between B1 and B2 .

i) le(B2)−re(B1) ≥ 2r. Therefore, no sensor can cover a part of B1 and a part of B2

at the same time, and thus the problems of covering B1 and B2 are independent

of each other. We consider the following possibilities:

(a) n1 + n2 < n. Since L1 + L2 < 2rn, this implies that n1 + n2 = n − 1. In

this case complete coverage is not possible, and we aim at maximizing the

coverage while minimizing the maximum movement. This can be done in

O(n2) using the algorithm in Section 6.2.1.

(b) n1+n2 ≤ n. Let α be the smallest number in {1, 2, ..., n} such that 2rα ≥ L1

and (2r − n)α ≥ L2. Let β be the greatest number in {1, 2, ..., n} such

that 2rβ ≥ L1 and (2r − n)β ≥ L2. Let j = d(α + β)/2e and solve the

two MinMax problems for B1 with sensor set N1 = {S1, S2, ..., Sj} and B2

with sensor set N2 = {Sj+1, Sj+2, ..., Sn} with time complexity O(n2), using

the algorithm in [CKK+09] for R > L. Let rs(B1), ls(B1), rs(B2), and

ls(B2) be the maximum right shift in N1, the maximum left shift in N1, the

maximum right shift in N2, and the maximum left shift in N2 respectively.

Using Lemma 5.3.8, if the maximum shift is a right (left) shift either the

cutting point j is an optimal solution, or an optimal solution can be found

using another cutting point in N2 (N1). Clearly, an optimal solution can be

obtained by repeating the same procedure. Since we are cutting our set into

half each time, this can be done in log n steps, and thus finding an optimal

solution in O(n2 log n) time, which completes the proof.

ii) le(B2)−re(B1) < 2r. Thus, it is possible that a sensor in the solution for covering
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B1 (B2), covers a part of B2 (B1), and therefore it is possible to obtain complete

coverage with a smaller maximum shift by not covering the part of B2 (B1) that

is already covered by B1 (B2). To ensure that this doesn’t happen, we solve the

problem of complete coverage for the virtual barrier [le(B1), re(B2)] as well as

covering the barriers separately, and we return the better solution.

�

Corollary 5.3.10. Let S1, S2, ..., Sn be sensors with identical ranges r in initial po-

sitions x1 ≤ x2 ≤ ... ≤ xn. There is an O(max(n2(log n)k, n2 + mn)) algorithm that

solves the MinMax optimization problem of covering m = 2k line segments B1 and

B2, ..., Bm with
∑m

i=1 |Bi| < 2rn so that the maximal value of the shift of any sensor

is minimized.

Proof. When complete coverage is not possible, the problem is similar to the case

where
∑m

i=1 |Bi| = 2rn, and can be solved with time complexity O(n2 +mn). Other-

wise, the cutting points can be found in O((log n)k), resulting in total time complexity

O(max(n2(log n)k, n2 +mn)) . �

5.4 The MinMax Problem on a Circle

We are interested in the problem of protecting an area by detecting intruders as they

enter a protected region by passing through a barrier. Such a barrier can be usually

modeled by a closed curve. Thus, a circle is a more realistic model to represent the

barrier than a straight line. Furthermore, any results that are valid on a circular

barrier approximate very well the problem for smooth curves on which each sensor

covers the same segment size of the curve.

Let S = {S1, S2, ..., Sn} be a set of sensors with initial polar positions x1 =

(θ1, r), x2 = (θ2, r), ..., xn = (θn, r) arbitrary dispersed on the circumference of barrier
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circle C = (o, r), where r is radius of C and o is the origin. Since all the sensors

are on the circumference of the circle, for simplicity, we can refer to their positions

by only using their angles. Assume that sensors are sorted by their initial positions,

0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θn ≤ 2π, and that they all have the same coverage cr. The

coverage of any sensor S, cr, is the length of the arc covered by S on the barrier, as

illustrated in Figure 38. Since all the other coordinates are angular, we use the angle

of coverage rΩ instead of cr. Furthermore, it should be noted that the results of this

chapter are not limited to a circular barrier and are still valid for any smooth curve

as long as the sensors provide equal coverage.

rΩ

S

O

cr

Figure 38: The coverage of sensor S on the barrier C = (o, r)

Here, we consider the problem of assigning final positions to sensors in S =

{S1, S2, ..., Sn} so as to provide maximal barrier coverage while minimizing the max-

imum movement of any sensor along the circle. We refer to this problem as MinMax

on a circular barrier.

We indicate the dislocation of a sensor Si by angle αi, and thus αi is equal to

r ∗min(|φi − θi|, 2π − |φi − θi|), where θi and φi are the initial and final positions of

Si respectively. If Si has to travel the distance αi to reach its final position counter-

clockwise, the shift of Si is denoted by αi, and by −αi, otherwise.
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Let L and R be the barrier length (2rπ) and the total coverage of all sensors (ncr),

respectively. We consider all scenarios: R < L, R = L, and R < L. The following

i

i+1

k

i+1= i+1

i= i

(a) Si and Si+1 have positive shifts

k

i+1

i

i= i

i+1= i+1

(b) Si and Si+1 have negative shifts

k

i

i+1

i= i
i+1= i+1

(c) Si has a positive shift, and Si+1 has a
negative shift

k

i

i+1

i= i

i+1= i+1

(d) Si has a negative shift, and Si+1 has a
positive shift

Figure 39: Possible scenarios in which Si succeeds Si+1 in the counterclockwise traver-
sal of sensors.

lemma holds for all cases.

Lemma 5.4.1. Order Preserving Lemma: Let S1, S2, ..., Sn be sensors with sensing

coverage cr in initial positions 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θn ≤ 2π on a circular barrier

C = (o, r). There exists an optimal solution for the MinMax optimization problem on
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C for which the order of sensors in the counterclockwise traversal of sensors, is the

same as the initial order of sensors.

Proof. In order to show that the lemma holds, it is sufficient to show that there

exists an optimal solution in which every sensor Si+1 immediately follows Si in the

counterclockwise traversal of sensors.

We show that for every optimal solution P , if there are two sensors Si and Si+1,

where Si+1 does not immediately follow Si in the counterclockwise traversal of sensors,

it is possible to change the solution to get another optimal solution in which Si+1

immediately follows Si in the counterclockwise traversal of sensors.

We consider all possible scenarios where Si+1 does not immediately follow Si in

the counterclockwise traversal of sensors:

• Both Si and Si+1 have positive shift values [See Figure 39(a)]: Let β be the

initial distance between Si and Si+1; i.e. β = r ∗ (θi+1 − θi). Also, let γ be

the distance between the final positions of Si and Si+1. It is easy to see that

αi = αi+1 + β + γ. Swapping Si and Si+1, would result is shifts αi+1 + β and

αi+1 +γ which are clearly less than αi. Thus, swapping Si and Si+1 would cover

the same area without increasing the maximal shift.

• Both Si and Si+1 have negative shift values [See Figure 39(b)]: Similar to the

previous case, we can show that swapping Si and Si+1 would cover the same

area without increasing the maximal shift.

• Si has a positive shift, and Si+1 has a negative shift [See Figure 39(c)]: Let β

be the distance between final positions of Si and Si+1. Swapping Si and Si+1

would then result in shifts αi−β and αi+1−β, and thus covering the same area

without increasing the maximal shift.

• Si has a negative shift, and Si+1 has a positive shift [See Figure 39(d)]: If in
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(a) xk is between xi+1 and yi+1 and Sk has
a positive shift

k
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a negative shift
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k

i

i+1
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(d) xk is between yi+1 and yi and Sk has a
positive shift
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i
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i= i

i+1= i+1
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positive shift
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i+1= i+1

k= k

(f) xk is between yi and xi and Sk has a
negative shift

Figure 40: Possible scenarios in which Si has a negative shift, and Si+1 has a positive
shift. 110



the counterclockwise traversal of sensors, there is no sensor between Si and

Si+1, they are already in order. Therefore, in the counterclockwise traversal of

sensors, there should be at least on sensor between Si and Si+1. Let Sk be such

sensor that is the closest to Si+1. One of the following can happen:

1. xk is between xi+1 and yi+1: If Sk has a positive shift value [see Figure

40(a)], swapping Sk and Si would clearly decrease both αi and αk, and

thus the new solution provides the same coverage without increasing the

maximum shift, while Si, and Si+1 are in order. If Sk has a negative shift

value [see Figure 40(b)], swapping Si+1 and Sk would decrease both αi+1

and αk by dist(Si+1, Si). The new solution would have the same coverage,

without increasing the maximum shift while the number of sensors between

Si and Si+1 has decreased by one.

2. xk is between yi+1 and yi: If Sk has a negative shift value [see Figure

40(c)], the shift value of Sk, αk is greater than the shift value of Si+1,

αi+1. Therefore, it is sufficient to show that by swapping Sk and Si+1

neither of the new shifts exceeds αk. Swapping Sk and Si+1 would result

in shift values of dist(xk, yi+1) and dist(xi+1, yk) which are smaller than

αk = dist(xk, yi+1) + αi+1 + dist(xi+1, yk). Thus, the new solution has the

same coverage without increasing the maximum shift while the number of

sensors between Si and Si+1 has decreased by one. On the other hand, if

Sk has a positive shift value [see Figure 40(d)], similar to the case where

Sk has a negative shift value, we can swap Si and Sk, and thus the solution

would be an optimal solution in which Si and Si+1 are in order.

3. xk is between yi and xi: If Sk has a positive shift value [see Figure 40(e)],

similar to the case illustrated in Figure 40(b), we can swap Si and Sk,

and thus obtain an optimal solution in which Si and Si+1 are in order.
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Otherwise, if Sk has a negative shift value [see Figure 40(f)], similar to the

case depicted in Figure 40(a), swapping Sk and Si+1 would result in an

optimal solution in which the number of sensors between Si and Si+1 has

decreased by one.

Therefore, in any of the steps either we get an optimal solution in which Si and

Si+1 are in order, or we decrease the number of sensors between Si and Si+1

which would in at most m steps (m is the number of sensors between Si and

Si+1 in the initial optimal solution) give an optimal solution in which Si and

Si+1 are in order.

�

Unlike line barriers, where shifting a sensor to the right (left) would monotonically

increase its right (left) shift value, on a circular barrier shifting a sensor more than π

clockwise (counterclockwise) would change the direction of the shift and the absolute

value of shift would eventually decrease. The absolute value of shifts corresponds

to a sine wave. Thus, there might be several balance points, where the maximum

clockwise and counterclockwise shifts in a connected interval formed by a group of

sensors come to equilibrium. For example, assume there are three sensor S1, S2 and

S3 with coverage rΩ, where rΩ is close to zero. Furthermore, assume that S1 ,S2 and

S3 are located at initial positions 5π
6

, 7π
6

+ rΩ and 11π
6

+ 2rΩ respectively. Moving S1,

S2 and S3 to positions 0, rΩ and 2rΩ to form a contiguous interval will introduce shift

values −5π
6

, 5π
6

and π
6
. Figure 41 depicts different shift values as we shift the interval

by π
6

clockwise at each step, and it shows there are 3 different rotations in which the

maximum clockwise and counterclockwise shifts are equal. However, only the middle

one is the one that minimizes the maximal shift values. Below, we show how such a

point can be obtained.
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Figure 41: Different shift values of S1 ,S2 and S3 as they are shifted clockwise on C
by π

6
at each step.

Lemma 5.4.2. Let S1, S2, ..., Sn be sensors with sensing coverage cr initially posi-

tioned on a circular barrier C = (o, r). Let P be a solution that leads to an optimal

solution for the MinMax optimization problem on C by rotating all sensors in P

equally. Furthermore, let −π ≤ d1 ≤ d2 ≤ . . . ≤ dn ≤ π be the sorted shift values of

S1, S2, . . . , Sn in P . An optimal solution for the MinMax optimization problem on C

can be obtained from P in linear time.

Proof. Let Sti be the sensors with shift value di, and let δi be the modular difference

between any two consecutive shift values di and d(i+1) mod n.

δi =

 di+1 − di, i ≤ n− 1;

2π − (dn − d1), i = n.
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Note that two consecutive shift values do not necessarily correspond to two con-

secutive sensors. The minimum shift value can be obtained by balancing the maximal

clockwise and counterclockwise shifts. However, unlike line barriers, there might be

several balance points where the maximal clockwise and counterclockwise shifts are

equal on a circle [See Figure 41]. Let δj be the maximum value among all δis. A

minimum balance point can be obtained by shifting the sensors such that Sti and

Sti+1
have the maximum clockwise and counterclockwise shifts respectively. This can

be easily done by rotating all sensors counterclockwise by π − δj
2
− di+1. Clearly,

finding δj as well as all the computations can be done in linear time. �

Corollary 5.4.3. Let S1, S2, ..., Sn be sensors with sensing coverage cr initially posi-

tioned on a circular barrier C = (o, r). Let P be any solution to the MinMax coverage

problem where the maximum clockwise and counterclockwise shifts are equal, and let

−π ≤ d1 ≤ d2 ≤ . . . ≤ dn ≤ π be the sorted shift values of S1, S2, . . . , Sn in P .

Furthermore, let δi be the modular difference between any two consecutive shift values

di and d(i+1) mod n.

δi =

 di+1 − di, i ≤ n− 1;

2π − (dn − d1), i = n.

Let δ be the maximum value among δis. If 2(π − dn) ≥ δ, no better solution can be

obtained from P by rotating the sensors.

5.4.1 R ≤ L

Theorem 5.4.4. Let S1, S2, ..., Sn be sensors with sensing coverage cr in initial po-

sitions 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θn ≤ 2π on a circular barrier C = (o, r) with ncr = 2rπ.

There is an O(n log n) algorithm for the MinMax optimization problem on C.

Proof. Since L = R, all sensors should be in attached positions in the final solu-

tion. Using Lemma 5.4.1, there is an optimal solution in which sensors are in their
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initial order. Move sensors S1, S2, ..., Sn to positions 0, rΩ, 2rΩ, ..., (n − 1)rΩ to form

a contiguous interval. This can be done in linear time. The optimal solution can

then be obtained by rotating the sensors once they are in attached position. Let

d1 ≤ d2 ≤ . . . ≤ dn be the sorted shift values of S1, S2, . . . , Sn in this setting. All

dis can be calculated in O(n log n). Using Lemma 5.4.2, the optimal solution can

be obtained by rotation, using an additional O(n) time, which results in total time

complexity O(n log n). �

When R < L, the barrier circumference is greater than the total coverage of all

sensors. Thus, complete coverage is not possible. Consequently, we consider two

optimization problems to provide maximal coverage, where sensors can either form a

contiguous interval or a set of contiguous intervals.

5.4.1.1 Non-contiguous Coverage

Since R < L, and all the sensors are already on the barrier, the non-contiguous

MinMax optimization problem reduces to the problem of eliminating all the overlaps,

while keeping the maximum movement of any sensor minimized.

Theorem 5.4.5. Let S1, S2, ..., Sn be sensors with sensing coverage cr in initial posi-

tions 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θn ≤ 2π on a circular barrier C = (o, r) with ncr < 2rπ..

There is an optimal O(n) algorithm for the non-contiguous MinMax optimization

problem on C.

Proof. Let Si be the sensor with the smallest index that intersects with the next

sensor Si+1; i.e. θi+1 − θi < rΩ. Let Li = {St, St+1, ..., Si} be the set of sensors with

indices less than or equal to i in attached position to Si. Furthermore, let ms(Li)

be the current maximum shift of Li in any direction (initially for all i, Li = 0). Let

oi be the overlap between Si, and Si+1; i.e. oi = rΩ − θi+1 + θi. If |ms(Li)| ≥ oi,
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shift Si+1, oi clockwise. Clearly, this does not change the maximum shift. Otherwise,

shift Si+1, oi−|ms|
2

counterclockwise, and shift sensors in Li by oi−|ms|
2

clockwise. If

L′i = Li∩{S1, ..., St−1} 6= ∅, shift sensors in L′i by oi−|ms|
2

clockwise, and let Li = L′i∪Li.

Also, update ms(Li) to be the current maximum shift of Li. It is obvious that the

overlap can not be eliminated with a smaller shift value. The same procedure can be

repeated until there are no more overlaps. Furthermore, each step takes constant time

and since there are at most n steps, all final positions can be calculated in linear time.

Also, since at each step the maximum shift is increased at most by half of the overlap

size, the total maximum shift is at most
∑m

i=1
|oi|
2

. Clearly the sum of the overlaps

is less than 2π − rΩ. Thus, we have dn ≤ πr − rΩ
2

, where dn is the maximum shift.

Furthermore, the maximum difference between any two consecutive shift values, δ, is

at most as big as the greatest overlap, and therefore we have δ ≤ rΩ. This implies

2(π−dn) ≥ δ. Therefore, according to Corollary 5.4.3, the solution cannot be further

improved by rotation. �

5.4.1.2 Contiguous Coverage

According to Lemma 5.4.1, we only need to consider solutions that preserve the

original order of sensors. When complete coverage is not feasible, in a contigu-

ous coverage every sensor Si is attached to its immediate neighbors in the origi-

nal setting, S(i−1 mod n) and S(i+1) mod n, except for the two endpoints of the con-

tiguous interval. It is natural to consider all the n possible contiguous intervals

Sj, S(j+1) mod n, ..., S(j+n−1) mod n and use the algorithm in the proof of Theorem 5.4.4

for each of the n contiguous intervals. The optimal solution can be then gained in

O(n2 log n) by selecting the contiguous interval which minimizes the maximum shift.

However, by using two additional data structures, we can improve the complexity of

the algorithm to O(n log n) as shown below.
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Theorem 5.4.6. Let S1, S2, ..., Sn be sensors with sensing coverage cr in initial po-

sitions 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θn ≤ 2π on a circular barrier C = (o, r) with ncr < 2rπ.

There is an O(n log n) algorithm for the contiguous MinMax optimization problem on

C.

Proof. Using Lemma 5.4.1, there exists an optimal solution in which all sensors

are in their initial order. However, since R < L, in a contiguous coverage, there

would be exactly one non-covered interval on the barrier between the two end-

points of the contiguous interval formed by sensors in attached positions. Let Pi

be the problem of covering the barrier with a contiguous interval formed by sen-

sors Si, S(i+1) mod n, ..., S(i+n−1) mod n, while the maximum movement of any sensor is

minimized. The optimal solution can be then gained by finding a Pi with minimum

maximal shift.

We now show how to inductively find the maximal shift in an optimal solution

for Pi. We use two data structures to get Pi+1 from Pi in O(log n) time. In order to

find the maximal shift in an optimal solution for P1, form a contiguous interval by

assigning positions y1 = 0, y2 = rΩ, ..., yn = (n − 1)rΩ to S1, S2, ..., Sn. This can be

done in linear time. Let T be a balanced binary search tree holding the shift values of

sensors when S1, S2, . . . , Sn are moved to 0, rΩ, . . . , (n− 1)rΩ. Also, let T ′ be another

balanced binary search tree holding the difference between consecutive shift values

(δi = d(i+1) mod n − di). Using Lemma 5.4.2, and noting that maximum δi can be

obtained from T ′ in constant time, the maximal shift in an optimal solution for P1

can be obtained in constant time.

Similarly, Pi+1 can be obtained from Pi in constant time, once T and T ′ are

updated. T can be updated in logarithmic time to hold the shift values for Pi+1 by

removing the shift value of Si when it is at position (i− 1)rΩ from T and adding the

new shift value of Pi to T , when it is moved to position −(n− i+ 1)rΩ. Furthermore,
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the corresponding δi should be updated in T ′. This can be done in logarithmic time

as well.

Thus, once T and T ′ are initially constructed in O(n log n), every step takes

O(log n), resulting in total time complexity O(n log n).

�

5.4.2 R > L

When the coverage of sensors is more than the barrier length, the problem reduces to

the problem of covering all the gaps such that the maximum movement of any sensor

is minimized.

Lemma 5.4.7. (Sufficient condition for optimality) Let S1, S2, ..., Sn be sensors with

sensing coverage cr in initial positions 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θn ≤ 2π on a circular

barrier C = (o, r) with ncr > 2πr. Let P be an order preserving solution to the

MinMax optimization problem on C. Let d1 ≤ d2 ≤ · · · ≤ dn be the sorted shift values

of sensors in P . If dn = 0, clearly no solution could have a maximum shift less than

dn. For any 0 < dn ≤ π− rΩ
2

, if the following conditions are satisfied, then no optimal

solution to the MinMax problem on C has a maximum shift less than dn.

a) There exists a pair of sensors Si and Sj, such that the counterclockwise shift of Si is

equal to dn, the clockwise shift of Sj is equal to dn, and sensors Si, S(i+1) mod n, ..., Sj

are in attached positions.

b) The difference between any two consecutive shift values is at most rΩ.

Proof. Let P be a solution of an instance of the MinMax optimization problem on

C with ncr > 2πr (nrΩ > 2π) satisfying the condition of the lemma with sensors

Si and Sj as given in condition (a) . Let P ′ be an optimal solution to the same

problem with maximum shift less than dn. Note that the shift value of sensor Si in
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P is equal to dn. According to Lemma 5.4.1, we only need to consider solutions that

preserve the original order of sensors. Let αi be the angular position of sensor Si in

solution P . Clearly P ′ must place Si in position αi − β where 0 ≤ β ≤ 2dn. Since

P ′ is an order preserving solution and Si, S(i+1) mod n, ..., Sj are in attached positions,

Si, S(i+1) mod n, ..., Sj should be moved by at least β, so as provide complete coverage.

Since the maximum difference between any two consecutive shift values δ is at most

rΩ, and dn ≤ π− rΩ
2

, this implies 2(π−dn) ≥ δ. According to Corollary 5.4.3, shifting

sensors Si, S(i+1) mod n, ..., Sj clockwise by β does not lead to a better solution than

P , which contradicts the fact that P ′ has a maximum shift less than dn. �

Before giving an algorithm for the MinMax optimization problem on a circular

barrier with ncr > 2rπ, we need to introduce two more definitions. Let oi be the

overlap between sensors Si and S(i+1) mod n.

oi =

 0, if |θ(i+1) mod n − θi| ≥ rΩ;

rΩ − |θ(i+1) mod n − θi|, otherwise.

Also, we introduce the the term shift by θ with gap preservation to be the following.

Definition Let k an integer such that
∑k−1

j=0 |o(i+j) mod n| < θ ≤
∑k

j=0 |o(i+j) mod n|.

Also, let k′ be an integer such that
∑k−1

j=0 |o(i−1−j) mod n| < θ ≤
∑k

j=0 |o(i−1−j) mod n|.

We say Si has been shifted by θ with gap preservation clockwise (counterclockwise)

if Si has been shifted clockwise (counterclockwise) by θ and for every 1 ≤ j ≤

k, sensor Sj has been shifted clockwise (counterclockwise) by θ −
∑j

l=1 |o(i+l) mod n|

(θ −
∑j

l=1 |o(i−l) mod n|).

Theorem 5.4.8. Let S1, S2, ..., Sn be sensors with sensing coverage cr in initial po-

sitions 0 ≤ θ1 ≤ θ2 ≤ ... ≤ θn ≤ 2π on a circular barrier C = (o, r) with ncr > 2πr.

There is an O(n2) algorithm for the MinMax optimization problem on C.
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Proof. According to Lemma 5.4.7, we can obtain the optimal solution by covering

all gaps while always satisfying both conditions (a) and (b). Let αcw and αccw be

the current maximum clockwise and counterclockwise shift respectively and let x =

max(αcw, αccw). Initially αcw = αccw = 0.

Let g1, g2, . . . , gl be all the gaps on C to be covered in counterclockwise order.

Furthermore, let Sti and Sti+1
be the two sensors defining the gap gi; i.e. gi =

[φti + rΩ
2
, φti+1− rΩ

2
], where φj is the current position of Sj in the solution. We specify

how to cover the gaps inductively while maintaining as an invariant the conjunction

of the conditions (a) or (b) of Lemma 5.4.7. Note that as long as the sensors are

shifted by gap preservation only, the difference between sorted shifts can be at most

as big as the largest overlap rΩ. Furthermore, at every step the maximum shift is

incremented by at most half of the current gap that is being covered. Consequently

the maximum gap is at most 1
2

∑l
i=1 gi ≤

1
2
(2π−rΩ), and thus condition (b) of Lemma

5.4.7 is always satisfied. Therefore, we only need to verify condition (a) is satisfied at

every step.

First we show how to cover g1 satisfying the invariant. Shift St1 and St1+1 coun-

terclockwise and clockwise respectively with gap preservation by g
2
. The maximum

shift x is now g
2
, and St1 has counterclockwise shift x, St1+1 has clockwise shift x, and

all sensors in between (zero sensors) are in attached positions. Thus, the invariant

holds between sensors inve = St1+1 and invb = St1 . For brevity, we will say that the

condition (a) holds at node inve.

Assume gaps g1, g2, . . . gi−1 are all covered satisfying the conditions (a) and (b),

just before we cover gap gi. After covering gi−1, inve has been assigned to be the sensor

node with maximum index such that its clockwise shift equals x and such that it is

preceded by the node invb whose counterclockwise shift equals x, and all intermediate

nodes are in attached position. We define cwsurplus(gi) to be the surplus sensor range
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starting counterclockwise at inve up to the node Sti and we define ccwsurplus(gi) to

be the surplus sensor range starting counterclockwise at Sti+1 up to the node invb.

Since R > L, we have cwsurplus(gi) + ccwsurplus(gi) > 0 and thus there are three

possible scenarios depending on the values of cwsurplus(gi) and ccwsurplus(gi).

i) Both clockwise and counterclockwise surpluses are greater than zero: in this case

neither Sti nor Sti+1 has been moved and their current shift value is zero. Let

m = min(gi
2
, cwsurplus(gi), ccwsurplus(gi), x), and shift Sti and Sti+1 counter-

clockwise and clockwise respectively with gap preservation by m.

If m = gi
2

, the gap is now closed, and invb and inve remain the same satisfying

both conditions of Lemma 5.4.7. Otherwise, if m = x, shift Sti and Sti+1 counter-

clockwise and clockwise respectively with gap preservation by g
2
− x to cover the

gap completely and let invb = Sti and inve = Sti+1 satisfying the conditions of

Lemma 5.4.7. Otherwise, update the clockwise and counterclockwise surpluses of

gi; cwsurplus(gi) = cwsurplus(gi)−m and ccwsurplus(gi) = ccwsurplus(gi)−m,

and either cwsurplus(gi) = 0 or ccwsurplus(gi) = 0.

• cwsurplus(gi) = 0: This implies that sensor Sti , S(ti−1) mod n, . . . , invb are

all in attached positions, and all the surplus is between Sti+1 up to node invb,

in the counterclockwise traversal of C. Let m′ = min(x−m, gi−2m). Shift

Sti+1 clockwise with gap preservation by m′. Thus either the gap is covered

without changing the invariants or Sti+1 has a clockwise shift equal to x. In

the later case, shift both Sti and Sti+1 counterclockwise and clockwise with

gap preservation by half of the remaining gap, gi−2m−m′

2
. Note that since

cwsurplus(gi) = 0, Sti , S(ti−1) mod n, . . . , invb are all in attached positions

and the maximum counterclockwise shift occurs at invb with value equal to

x + gi−2m−m′

2
. Also, since the gap is now closed Sti+1 is now in attached

positions with Sti , S(ti−1) mod n, . . . , invb, with the maximum clockwise shift
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value equal to x+ gi−2m−m′

2
. Let Sti+1 be inve and update x to be x+ gi−2m−m′

2

satisfying the condition of Lemma 5.4.7.

• ccwsurplus(gi) = 0: Thus all the surplus is between inve up to the node Sti

int he counterclockwise traversal of the circle. Reverse the order of covering

gaps gi, gi+1, ..., gl, and start by covering gl. Note that gl is the first gap after

invb in the clockwise traversal of the circle and the problem reduces to the

case where cwsurplus(gi) = 0. Also, it should be mentioned that this order

reversal procedure happens at most once during the course of execution of

the algorithm.

ii) The clockwise surplus is zero: Thus all the surplus is between Sti+1 up to node

invb, in the counterclockwise traversal of C. In this case either both Sti and

Sti+1 have shift value zero or they both have equal clockwise shift b. If the

shift values are zero, follow the algorithm for case (i). Otherwise, let m =

min(x− b, gi). Shift Sti+1 by m clockwise with gap preservation. If m = gi, the

gap is now covered, and invb and inve remain the same, satisfying both conditions

of Lemma 5.4.7. Otherwise Sti+1 has a clockwise shift equal to x. Close the

remaining gap gi−m, by shifting Sti+1 with gap preservation by gi−m
2

clockwise,

and shifting Sti with gap preservation by gi−m
2

counterclockwise. Furthermore,

since Sti , S(ti−1) mod n, . . . , invb are all in attached positions, the invariant now

holds at Sti+1, invb with maximum shift value x+ gi−m
2

.

iii) The counterclockwise surplus is zero: Reverse the order of covering gaps gi, gi+1, ..., gl,

and start by covering gl, using the algorithm for the case where cwsurplus(gi) =

0.

�
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5.5 Conclusion

We studied the MinMax optimization problem both on multiple line barriers and

circular barriers for all possible scenarios where the barrier (sum of barriers) length is

smaller than, equal to or greater than the total coverage of all sensors. When sensors

had unequal ranges, we showed that all three optimization problems on a line segment

barrier as well as circular barriers were NP-hard. In contrast, when sensors had equal

ranges, we presented several efficient algorithms to solve the optimization problems

stated above. All our algorithms were centralized: they were given initial positions of

sensors and they calculated optimized final positions. A summary of the complexities

of the algorithms given for all cases for sensors with identical ranges r, is given in

Table 2. Furthermore, since O(n) is a trivial lower bound for the time complexities

of all the algorithms presented in this chapter, all our linear algorithms are optimal.

Table 2: Algorithm complexities for the MinMax problem for homogeneous sensors.
Contiguous Non-contiguous

m line segments O(n2 +mn) O(n2 +mn)
R = 2rn =

∑m
i=1 Li

m line segments O(max(n(log n)logm O(max(n(log n)logm

2rn <
∑m

i=1 Li , n2 +mn)) , n2 +mn))
m line segments O(max(n2(log n)logm O(n2 +mn)
2rn >

∑m
i=1 Li , n2 +mn))

Circular barrier O(n log n) N.A.
crn = L = 2πr
Circular barrier O(n log n) O(n)
crn < L = 2πr
Circular barrier O(n2) N.A.
crn > L = 2πr
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Chapter 6

Minimizing the Maximum Number

of Sensors Moved for Barrier

Coverage

In this chapter, we introduce the problem of achieving maximal coverage of a barrier

with movable sensors while minimizing the number of sensors moved MinNum. Min-

imizing the number of sensors moved can minimize the total energy especially when

the energy needed to initiate a movement is significantly large. Although minimizing

the maximum movement and minimizing the sum of sensor movements have been

studied before [BBH+08, CKK+10, CKK+09, SLX+10, DHM+09, WCLP06], to the

best of our knowledge, the MinNum problem has never been studied for the barrier

coverage problem.

In fact, [DHM+09] is the only study considering the MinNum problem for mobile

sensors. The authors in [DHM+09] consider n mobile nodes initially dispersed on the

plane with different transmission ranges and they move the sensors so as to achieve

a final configuration property on the graph induced by the nodes. They refer to this
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problem as the movement problem and they consider three different optimization

problems so as to achieve property P : MinMax, MinSum and MinNum where they

aim at minimizing the maximum movement, sum of movements, and the number of

sensors moved respectively.

They consider movement problems such as collocation and dispersion, where in

the former they consider properties such as connectivity, strong connectivity in case

of directed graphs, and connectivity between two specific vertices s and t. In the

later, the goal is to distribute the nodes in order to guarantee a minimum pairwise

separation between nodes, resulting in an independent set of nodes. The authors

also consider the perfect matching property, where they move the sensors into nearby

pairs so that these pairs can exchange information.

The results for the problems listed above. The results of their study is shown in

Table 3.

Table 3: Summary of results in [DHM+09]
Max Sum Num

connectivity
O(
√

m
OPT

) O(min{n,m}) O(mε)
Ω(n1−ε) O(log n)

directed connectivity
O(εm) open O(mε)
Ω(n1−ε) O(log2 n)

s-t connectivity O(
√

m
OPT

) O(n) polynomial

independence
1√
3

additive open PTAS in R2

in R2

perfect matchability polynomial polynomial polynomial

We study the case when the barrier of the region that must be protected is one

dimensional, and sensors are initially dispersed arbitrarily on the infinite line contain-

ing the barrier. It should be mentioned that the discrete case where sensors can only

move to specific positions can be solved similarly to the case where the barrier length

is equal to the total coverage of sensors. We consider single line segment and multiple
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line segment barriers as well as circular barriers. All our algorithms presented in this

chapter are centralized polynomial algorithms. Furthermore, we show that even for

a single line segment barrier, the problem remains challenging and we show it to be

NP-hard for some cases.

The remainder of this chapter is organized as follows. Section 6.1 shows NP-

hardness results for sensors with unequal ranges on an infinite line as well as a line

segment, and presents efficient algorithms for identical range sensors. Section 6.2 deals

with sensors with identical ranges on multiple barriers. Finally, Section 6.3 considers

the MinNum problem on a circular barrier and presents polynomial algorithms for

identical range sensors as well as NP-hardness results for arbitrary range sensors.

6.1 The MinNum Problem on a Single Line Bar-

rier

We consider the problem of minimizing the number of sensors moved so as to achieve

maximal coverage on a line barrier I = [0, L] as well as an infinite line. We first

show that when sensors have arbitrary ranges the problem is NP-hard for most cases.

Then, we consider the problem with sensors with identical ranges.

6.1.1 Definitions and Preliminaries

We assume that a barrier is a closed interval I = [0, L] on the real line. Furthermore,

we define the set S = {S1, S2, ..., Sn} to be the set of sensors dispersed arbitrarily on

the real line with initial positions x1 ≤ x2 ≤ ... ≤ xn with sensing ranges r1, r2, ..., rn.

Thus, a sensor Si covers the closed interval C(Si) = [xi − ri, xi + ri] of length 2ri.

The sum of the coverage lengths of all sensors
∑n

i=1 2ri is denoted by R. The barrier

coverage of a set S, C(S), is the union of the intervals covered by its sensors on
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the barrier I; i.e. C(S) =
⋃
Si∈S C(Si) ∩ [0, L]. We are interested in the problem of

minimizing the number of sensors that must be moved in order to achieve barrier

coverage of [0, L]; i.e. C(S) = [0, L]. Throughout this study, we refer to this problem

as MinNum optimization problem. Clearly the MinNum optimization problem is only

feasible if R ≥ L. For the case where R < L, we are interested in minimizing the

number of sensors that must be moved so as to cover either a sub-interval of length R

or sub-intervals of total length R. We refer to the former as the contiguous MinNum

optimization problem, and to the latter as the non-contiguous MinNum optimization

problem.

6.1.2 Unequal Range Sensors

In this section, we consider sensors with unequal ranges, and we discuss all possible

scenarios. In every case, we either give polynomial algorithms or we show that the

problem is NP-hard. We first consider the maximal MinNum optimization problem

on an infinite line, and we present an algorithm for the non-contiguous MinNum

optimization problem. We then present the NP-hardness results.

6.1.2.1 The MinNum Problem on an Infinite Line

When the barrier is an infinite line, the maximal coverage could be either contiguous

or non-contiguous.

For the case of non-contiguous coverage, we can use the greedy algorithm for the

activity selection problem [CLRS01] defined as follows:

Definition Activity selection: Given a set S of n activities ai with start time si and

finish time fi, find the maximum size set of mutually compatible activities. Activities

i and j are compatible if the half-open internal [si, fi) and [sj, fj) do not overlap, that

is, i and j are compatible if si ≥ fj or sj ≥ fi.
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Algorithm 9 Greedy Algorithm for the Activity Selection Problem

Input: A set of activities a1, a2, . . . , an sorted by their finish time; i.e. f1 ≤ f2 ≤
· · · ≤ fn
A← {1}
j ← 1
for i← 2 to n do

if Si ≥ fj then
A← A ∪ {i}
j ← i

end if
end for
Return A

Using Algorithm 9, we present below anO(n log n) algorithm for the non-contiguous

MinNum optimization problem.

Theorem 6.1.1. Let S1, S2, ..., Sn be sensors with sensing ranges r1, r2, ..., rn in initial

positions x1 ≤ x2 ≤ ... ≤ xn. There is an O(n log n) algorithm that solves the non-

contiguous MinNum optimization problem on an infinite line.

Proof. Maximum coverage on the infinite line would be obtained by eliminating all

the overlaps between sensors. This can be achieved in two steps: First find a maximal

set of non-intersecting sensors as fixed sensors. Then, assign final positions to the

remaining sensors. The former translates to the activity selection problem [CLRS01]

of finding the maximum set of non-intersecting activities, where the left endpoint

of any sensor Si represents si, the start time of activity ai and the right endpoint

represents the finish time fi. Once the sensors are sorted by their right endpoints,

this can be calculated in linear time. However, since we assume that sensors are

sorted by their initial positions, and they may have unequal ranges, first we have to

sort them by their right endpoints, resulting in a time complexity of O(n log n) to find

a maximal set of non-intersecting sensors M . Let Sl be the leftmost sensor in M ; i.e.

Sl = S1. For every sensor Si in S, if Si is already in M , Si stays in its initial position.

Otherwise assign final position yi = xl− rl− ri to Si, and update the leftmost sensor,
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i.e. Sl = Si. This can be achieved with time complexity O(n), resulting in total time

complexity of O(n log n). �

The next theorem shows that the additional requirement of contiguous coverage

results in NP-Completeness.

Theorem 6.1.2. Let S1, S2, ..., Sn be sensors with ranges r1, r2, ..., rn in initial po-

sitions x1 ≤ x2 ≤ ... ≤ xn. The contiguous MinNum optimization problem on an

infinite line when sensors have unequal ranges is NP-hard.

Proof. We reduce the partition problem [GJ90] into the problem of maximal contigu-

ous coverage on an infinite line. The partition problem is defined as follows:

Given a sequence of integers a1 ≤ a2 ≤ ... ≤ an, determine whether there exists a

set of indices J such that
∑

i∈J ai = 1
2

∑n
i=1 ai.

Given an instance of the partition problem, we transform it to the contiguous

MinNum problem on an infinite line for the sensor set S = {S1, S2, ..., Sn, Sn+1, Sn+2}.

The sensors S1, S2, ..., Sn have sensing ranges a1

2
≤ a2

2
≤ ... ≤ an

2
and have initial

positions 0. Furthermore, sensors Sn+1, Sn+2 with sensing range 1
2

are at initial

positions 2C + an+1
2

and 3C + an+3
2

(see Figure 42), where C = 1
2

∑n
i=1 ai.

Clearly, to achieve contiguous coverage, at least n sensors have to move, and at

most two sensors can stay fixed. If there is a set of indices J , such that
∑

i∈J ai = C,

there is a solution to the contiguous MinNum problem such that the sensors Sn+1 and

Sn+2 stay in their initial positions and the sensors Sis where i ∈ J cover the interval

between Sn+1 and Sn+2. All the other sensors with indices in {1, 2, ..., n} − J cover

the interval [C + an
2
, 2C + an

2
]. The number of sensors moved is n.

If such a partition does not exist, either Sn+1 or Sn+2 has a final position different

from its initial position and the minimum number of sensors moved is n+ 1.

Thus, if there is an algorithm that solves the contiguous MinNum optimization

problem, we can determine whether the partition problem has a solution. Clearly, the
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S1

Sn-1

Sn Sn+1 Sn+2

0

Figure 42: Arrangement of sensors for proving the NP-completeness of the contiguous
MinNum problem on an infinite line.

transformation from the partition problem to the contiguous MinNum optimization

problem is polynomial. �

6.1.2.2 The MinNum Problem on a Line Barrier I = [0, L]

Theorem 6.1.3. Let S1, S2, ..., Sn be sensors with sensing ranges r1, r2, ..., rn in initial

positions x1 ≤ x2 ≤ ... ≤ xn. The MinNum optimization problem on a line segment

I = [0, L], where L =
∑n

i=1 2ri is NP-hard, when sensors have unequal sensing ranges.

Proof. We prove it by reducing the partition problem [GJ90] into the MinNum opti-

mization problem. Let a1 ≤ a2 ≤ ... ≤ an be integers and let C = 1
2

∑n
i=1 ai. Given

an instance of the partition problem, we transform it into the MinNum optimization

problem on a line segment I = [0, L] with the sensor set S = {S1, S2, ..., Sn+1}, where

L = 2C + 1. For every 1 ≤ i ≤ n, Si with sensing range ai
2

is initially located at

position xi = −an
2

. Also, there is a sensor Sn+1, with sensing range 1
2

initially at

position C + 1
2

(see Figure 43). If there is a set of indices J , such that
∑

i∈J ai = C,

there is a solution to the MinNum optimization problem such that the sensors cover

the segment I = [0, L] and the maximum number of sensors moved is n. Assign final
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S1

Sn-1

Sn Sn+1

0 L

Figure 43: Arrangement of sensors for proving the NP-completeness of the MinNum
problem for unequal sensor ranges on a line segment [0, L] where L =

∑n+1
i=1 2ri.

positions to sensors with indices in J such that they cover the interval [0, C] and with

indices not in J to cover the interval [C + 1, L] and Sn+1 does not move.

If such a partition does not exist, Sn+1 has to move as well and thus all sensors

move.

Thus, if there is an algorithm that can solve the MinNum optimization problem

on a line segment I = [0, L], where R = L, we can determine whether the partition

problem has a solution. Clearly, the transformation from the partition problem to

the MinNum optimization problem is polynomial. �

It is easy to show that the problem for R < L and R > L remains NP-hard, by

using the same proof above and considering a line segment of length R+ ε and R− ε

respectively, where ε is less than the minimum range of sensors. Observe that the

argument holds for the non-contiguous coverage as well as the contiguous coverage

for the case R < L.
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6.1.3 Equal Range Sensors

In view of the NP-completeness results, we consider sensors with equal sensing ranges.

In contrast to unequal sensor ranges, we present efficient algorithms for all subcases.

The rest of this section is organized as follows. Section 6.1.3.1, provides algorithms

for the contiguous as well as for the non-contiguous coverage when the barrier is an

infinite line. Sections 6.1.3.2, 6.1.3.3, and 6.1.3.4, give algorithms for the coverage of

a line segment I = [0, L] for cases where R = L, R < L and R > L respectively.

6.1.3.1 The MinNum Problem on an Infinite Line Barrier

Since the barrier is an infinite line, we are looking for maximal coverage, and we

consider both contiguous and non-contiguous coverage.

For contiguous coverage, we present an O(n2) algorithm.

Theorem 6.1.4. Let S1, S2, ..., Sn be sensors with identical range r in initial positions

x1 ≤ x2 ≤ ... ≤ xn. There is an O(n2) algorithm that solves the contiguous MinNum

optimization problem on the infinite line.

Proof. Since the final positions of sensors introduce a contiguous interval, the final

positions would be equally distanced, where every two consecutive sensors are distance

2r apart. Let Mi be a maximal set of sensor nodes succeeding Si with distinct initial

positions and at distances which are multiples of 2r from Si that can form a contiguous

interval; Mi = {Sk|(xi−xk) mod 2r = 0∧xk−xi ≤ 2r(n−1)∧∀Sk∀Sm(Sk ∈Mi∧Sm ∈

Mi)→ xk 6= xm}. Clearly, for every i, Mi can be calculated in O(n) time.

Let Mm be a set among Mis with maximum cardinality, which can be found in

O(n2). Assume that there is an optimal solution with more than |Mm| fixed sensors.

Let Smin be the leftmost sensor in the optimal solution that has not moved. The

maximum number of fixed sensors in the optimal solution would then be equal to
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|Mmin| which contradicts the fact that the optimal solution has more than |Mm| fixed

nodes.

To fill the gaps between sensors in Mm, for every 0 ≤ i ≤ n − 1, if there is no

sensor with initial position xm + 2ri, assign final position yj = xm + 2ri to a sensor

Sj ∈ S − Mm, and remove Sj from S. This provides a contiguous interval, since

|xi−xm| ≤ 2r(n−1) for every Si in Mm. Clearly the algorithm takes time O(n2). �

For the non-contiguous MinNum optimization problem, since sensors have equal

ranges, they are already sorted by their right endpoints, and thus we can use the

linear algorithm presented in Theorem 6.1.1 on the set of sensors that are completely

contained in I = [0, L] to find a maximal set of non-intersecting sensors.

Corollary 6.1.5. Let S1, S2, ..., Sn be sensors with identical range r in initial positions

x1 ≤ x2 ≤ ... ≤ xn. There is an optimal O(n) algorithm that solves the non-contiguous

MinNum optimization problem on the infinite line.

6.1.3.2 L = 2rn

Theorem 6.1.6. Let S1, S2, ..., Sn be sensors with identical ranges r in initial posi-

tions x1 ≤ x2 ≤ ... ≤ xn, and let L = 2rn. There is an optimal O(n) algorithm that

solves the MinNum optimization problem on a line segment I = [0, L].

Proof. Since L = 2rn, the final positions of sensors are predetermined; i.e. sensors

should be located at positions Y = {−r + 2ri|1 ≤ i ≤ n}. Let M and Xm be the

set of sensors at distinct initial positions in Y , and the initial positions of sensors in

M , respectively; i.e. M = {Si|xi ∈ Y ∧ ∀Si∀Sj(Si ∈ M ∧ Sj ∈ M) → xi 6= xj},

Xm = {xi|Si ∈M}. Let N = S−M be the set of sensors that are not in M . Also, let

R be the set of coordinates to be assigned to the remaining sensors so as to provide

contiguous coverage; i.e. R = Y −Xm. Assign a final position to every sensor in N

by an on-to map from R. Clearly, this can be done in linear time. �
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6.1.3.3 L > 2rn

When L > 2rn, complete coverage is not possible. Therefore, we study the maximal

MinNum optimization problem in both contiguous and non-contiguous scenarios, and

we present efficient algorithms for each case.

For the contiguous optimization problem, we give the following quadratic algo-

rithm.

Theorem 6.1.7. Let S1, S2, ..., Sn be sensors with identical range r in initial positions

x1 ≤ x2 ≤ ... ≤ xn, and let L > 2rn. There is an O(n2) algorithm that solves the

contiguous MinNum optimization problem on a line segment I = [0, L].

Proof. In order to provide maximum coverage all sensor nodes should be used, and the

final positions should be in B = [r, L−r]. Let C = {Si ∈ S|r ≤ xi ≤ L−r}. The final

positions would be equally distanced on B, and every two consecutive sensors would

be distance 2r apart. For every Si ∈ C, if there is no contiguous interval including Si,

such that the interval is completely contained in I = [0, L] (bxi−r
2r
c+bL−xi−r

2r
c < n−1),

let Mi = ∅. Otherwise, let Mi be a maximal set of sensor nodes Sk in C with distinct

initial positions with the following properties:

• The distance between Sk and Si is a multiple of 2r.

• It is possible to form a connected interval with Sk and Si both contained in it;

i.e. |xi − xk| ≤ 2r(n− 1).

• k ≥ i.

For every i, Mi can be calculated in linear time, and thus a set with maximum

cardinality, Mm, among all Mis can be found in O(n2). Let k be the maximum index

in Mm. For every 0 ≤ i ≤ k − 1, if there is no sensor at position xm + 2ri, move a

sensor from S−Mm to xm+2ri to fill in the gaps. Move the remaining sensors to the
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right(left) endpoint of the contiguous interval to form a bigger contiguous interval.

The algorithm takes time O(n2). �

Although the problem of maximal non-contiguous coverage on I = [0, L] is similar

to the problem of maximal non-contiguous coverage on the infinite line, in that the

sensor nodes should be moved to eliminate the overlaps, when the barrier is not

big enough, it is possible that the gaps between the sensors in a maximal set of

non-intersecting sensors are not big enough to fit all the remaining sensors. Thus,

different algorithms are needed to find the minimum number of sensors that need to

be moved to maximize the coverage depending on the barrier size. We consider two

different scenarios: (i) when the barrier length is at least twice the coverage provided

by all nodes; i.e. L ≥ 4rn and (ii) when the barrier length is smaller than twice the

coverage provided by all nodes; i.e. L < 4rn.

6.1.3.3.1 L ≥ 4rn

Lemma 6.1.8. Let S1, S2, ..., Sn be sensors with identical ranges r in initial positions

x1 ≤ x2 ≤ ... ≤ xn. Let set M be any set of non-intersecting sensors completely

contained in I = [0, L]; M ⊆ S = {Si|r ≤ xi ≤ L−r}. If L ≥ 4rn, there is a solution

with |M | fixed sensors that solves the problem of non-contiguous maximal coverage on

I = [0, L].

Proof. Let M = {S ′1, S ′2, ..., S ′k} where S ′i = Sj for some 1 ≤ j ≤ n. Let S ′0 and S ′n+1

be two virtual sensors with sensing range 0 at the beginning and end of the barrier

respectively; i.e. re(S ′0) = le(S ′0) = 0, re(S ′n+1) = le(S ′n+1) = L. Also, let gi be the

gap between S ′i and S ′i+1, i.e. gi = le(S ′i+1)− re(S ′i). Hence, L = 2rk +
∑k

i=0 gi.

Let εi be gi − 2rb gi
2r
c (εi < 2r). In order for the solution to be valid on the line

segment B, the n− k remaining sensors should fit in the gaps gis; i.e. it is sufficient

to show that
∑k

i=0 b
gi
2r
c ≥ n− k.

135



Since L ≥ 4rn, we have,

L ≥ 2rn+ 2rn ≥ 2rn+ 2rk.

Hence,

L = 2rk +
k∑
i=0

gi = 2rk + 2r
k∑
i=0

b gi
2r
c+

k∑
i=0

εi ≥ 2rn+ 2rk.

Therefore,

2r
k∑
i=0

b gi
2r
c ≥ 2rn−

k∑
i=0

εi > 2rn− 2rk − 2r.

Consequently,
k∑
i=0

b gi
2r
c ≥ n− k.

which completes the proof. �

Theorem 6.1.9. Let S1, S2, ..., Sn be sensors with identical range r in initial positions

x1 ≤ x2 ≤ ... ≤ xn. If L ≥ 4rn, there is an O(n) algorithm that solves the non-

contiguous MinNum optimization problem on a line segment I = [0, L].

Proof. Since L > 4rn, all sensors should be used to provide maximum coverage.

Therefore, the candidate sensors that can stay in their initial position are the sensors

Si that are completely contained on the barrier; i.e. r ≤ xi ≤ L− r. The maximum

number of non-intersecting sensors can be calculated in O(n) time similar to the

problem on the infinite line. Using Lemma 6.1.8, the remaining sensors can fit in the

gaps in between the fixed sensors without intersecting, and thus providing maximum

coverage with minimum sensor movement. �

6.1.3.3.2 2rn < L < 4rn When the barrier length is less than twice the maximum

coverage provided by all sensors, the greedy algorithm in Theorem 6.1.1 does not

necessarily work. Consider the following example where S1, S2, S3 and S4 are sensors
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with initial positions 1, 1.9, 2.8 and 4.1 respectively, with identical sensing range 0.5 as

illustrated in Figure 44. Here, the maximal set of non-intersecting sensors {S1, S3, S4}

does not solve the non-contiguous MinNum optimization problem, since no sensors

can fit in the gaps between {S1, S3, S4}. The optimal number of fixed sensors in

this example is 2. Indeed, we need to find the maximum number of non-intersecting

0

S1

S2

S3 S4

54321

Figure 44: Arrangement of sensors on a line segment I = [0, 5].

sensors k such that remaining n − k sensors can fit in the gaps between the fixed

sensors. The problem can be reduced to the problem of finding the maximum-hop

path of a certain minimum weight on an edge-weighted graph which represents the

sensors, where every vertex on the path represents a sensor that remains fixed in the

final position. Since R < L, in order to achieve maximal coverage, all sensors need

to participate in the coverage. Thus only sensors that are completely included on

the barrier can stay fixed and consequently, the vertices of the graph are sensors that

are completely contained in the barrier. Furthermore, we need two more sensors to

indicate the beginning and the end of the interval. If two sensors Si and Sj (i < j) do

not intersect there is a directed edge between Si and Sj and the weight of the edge

indicates the maximum number of sensors that fit in the gap between Si and Sj plus

the one sensor Sj that has been fixed already and cannot be used toward covering

the remaining gaps.

Let S ′ be the set of sensors that are completely contained in [0, L] and let m be
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the size of S ′; i.e. S ′ = {Si ∈ S|r ≤ xi ≤ L − r}, m = |S ′|. We model the sensors

with a directed acyclic graph G = (V,E), where V = S ′ ∪ {S0, Sm+1}, where S0 and

Sm+1 are virtual sensors at positions 0 and L with sensing ranges 0 indicating the two

endpoints of the barrier, and E = {(Si, Sj)|Si ∈ S ′ ∧ Sj ∈ S ′ ∧ i < j ∧ xj − xi ≥ 2r}.

Also, we define the weight of an edge w(Si, Sj) as the following:

w(Si, Sj) =


b le(Sj)−re(Si)

2r
c+ 1 if j ≤ m,

b le(Sj)−re(Si)

2r
c if j = m+ 1.

Figure 45 shows the graph representing the sensor arrangement in Figure 44. One

can see that there is no 4-hop path with total weight at least 4. The maximum-hop

path with weight at least 4, has three hops. The paths S0S1S4S5, S0S2S4S5, and

S0S3S4S5 all have weight 4, and they are all optimal solutions with two fixed sensors.

S4 S5S3S2S1S0
1 1 0

2 1 2 1

3 3 2

4 3

5

Figure 45: The graph representing sensors arrangement in Figure 44

Theorem 6.1.10. Let S1, S2, ..., Sn be sensors with identical range r in initial posi-

tions x1 ≤ x2 ≤ ... ≤ xn. If 2rn < L < 4rn, there is an O(n3) algorithm that solves
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the non-contiguous MinNum optimization problem on a line segment I = [0, L].

Proof. Let the weight of a path P to be equal to the summation of the weights of

its edges; i.e. w(P ) =
∑

e∈P w(e). The number of hops on a path on the graph

corresponds to the number of fixed sensors and its weight corresponds to the total

number of non-intersecting sensors that can fit on the barrier once the vertices on the

path have been fixed. The problem now reduces to finding the maximum-hop path

P on G such that w(P ) ≥ n. Let L(j, k) be the weight of a k-hop path P between

nodes S0 and Sj such that w(P ) is maximized. A solution L(n + 1, k) is feasible if

L(n+ 1, k) ≥ n.

L(j, k) =


max0<i<j(L(i, k − 1) + w(Si, Sj)) if k > 1,

w(S0, Sj) if k = 1.

Thus, using dynamic programming, by calculating L(j, k) for all values of j, k, an

optimal feasible solution can be calculated with time complexity O(n3). Furthermore,

in order to calculate the path, we can store the vertex Si for which L(i, k−1)+w(Si, Sj)

gets its maximum value during the course of calculation of L(j, k). The vertices on the

path would then represent the sensors that remain in their initial position. We can

assign final positions to the remaining sensors in O(n) time by scanning the barrier

from the beginning and filling the gaps with the remaining sensors. �

6.1.3.4 L < 2rn

Since L < 2rn, complete coverage is possible. We have the following theorem.

Theorem 6.1.11. Let S1, S2, ..., Sn be sensors with identical ranges r in initial po-

sitions x1 ≤ x2 ≤ ... ≤ xn. If L < 2rn, there is an O(n3) algorithm that solves the

MinNum optimization problem on a line segment I = [0, L].
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Proof. Let gi,j be the minimum number of sensors that are needed to cover the gap

between two sensors Si and Sj, where j > i. In other words:

gi,j =



0 if xj ≤ r ∨ xi ≥ L− r,

d le(Sj)−0

2r
e if xi < −r ∧ xj ≤ L− r,

d le(Sj)−re(Si)

2r
e if xi ≥ −r ∧ xj ≤ L+ r,

dL−re(Si)
2r
e if xi ≥ r ∧ xj > L+ r,

dL−0
2r
e if xi < −r ∧ xj > L+ r.

An optimal solution contains a maximal set of sensors S ′ of size k, where∑
i and j are consecutive sensors in S′ gi,j ≤ (n− k)2r.

As before, we model the sensor arrangement by a graph G, where nodes represent

the sensors and any edge between two sensors Si and Sj has a weight equal to the

minimum number of sensors needed to cover the gap between them plus the one

sensor Sj that is already used.

w(Si, Sj) =


gi,j + 1 if j ≤ n,

gi,j if j = n+ 1.

Assume sensors S1, S2, S3, S4, and S5, initially positioned at locations−1, 0.3, 1, 2.7,

and 3.3 with sensing range 0.5 are used to cover the line segment I = [0, 3] (see Figure

46). The graph representing sensors arrangement is illustrated in Figure 47. Sensors

S0 and S6 represent the two endpoints of the line segment and any path between

S0 and S6 represents a configuration in which vertices on the path stay fixed. For

example, the path P = S0S1S2S4S5S6 represent a setting in which sensors S1, S2,

S4 and S5 remain stationary. The weight of the path represents the number of fixed
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Figure 46: Arrangements of sensors for the coverage of the line segment I = [0, 3]

sensors plus the minimum number of sensors that are needed to cover the gaps. In

this example P has weight 6, which implies that for such a configuration at least

six sensors are needed. However, we only have five sensors, and thus this setting is

infeasible.

In general, a path P in G represents a solution in which the sensors on P remain

fixed, and the weight of P represents the minimum total number of sensors that

are needed to provide complete coverage, once the sensors on P have been fixed.

Moreover, we add two virtual sensors S0 and Sn+1 with sensing ranges r to represent

the beginning and end of the barrier; i.e. x0 = −r, xn+1 = L+r. An optimal solution

would then be a maximum hop path P between S0 and Sn+1 such that there are

enough sensors to cover the gaps; i.e. w(P ) ≤ n.

Let L′(j, k) be the weight of minimum weight path P between nodes S0 and Sj

that has exactly k hops. L′(n+ 1, k) is a feasible solution if L′(n+ 1, k) ≤ n. s.

L′(j, k) =


min0<i<j(L

′(i, k − 1) + w(Si, Sj)) if k > 1,

w(S0, Sj) if k = 1.
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Figure 47: The graph representing sensors arrangement in Figure 46

Using dynamic programming, by calculating L′(j, k) for all values of j, k, an op-

timal feasible solution can be calculated with time complexity O(n3). By storing the

vertex Si for which L′(i, k− 1) +w(Si, Sj) gets its minimum value for the calculation

of L′(j, k), the optimal path P can be calculated in O(n3) time as well.

The vertices on the path would then represent the sensors that remain in their

initial position. We can assign final positions to the remaining sensors in O(n) time

by scanning the barrier from the beginning and filling the gaps with the remaining

sensors, which completes the proof. �

6.2 The MinNum Problem on Multiple Barriers

In this section, we first consider the problem of covering two barriers with a set of n

homogeneous sensor nodes with sensing ranges r. The barriers are two disjoint line

segments, B1 and B2, on the same infinite line with lengths L1 and L2 respectively.
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We develop centralized algorithms to minimize the number of sensors moved so as to

provide maximum coverage in all the possible scenarios: L1+L2 > 2rn, L1+L2 = 2rn

and L1 + L2 < 2rn. We then extend our results for the coverage of any number of

barriers.

6.2.1 L1 + L2 = 2rn

Theorem 6.2.1. Let S1, S2, ..., Sn be sensors with identical ranges r in initial posi-

tions x1 ≤ x2 ≤ ... ≤ xn. Also, let B1 and B2 be two disjoint line segments with

lengths L1 and L2 respectively; i.e. B1 = [0, L1] and B2 = [L1 + g, L1 +L2 + g], where

g > 0 is the gap length between the two barriers B1 and B2, and L1 +L2 = 2rn. There

is an O(n3) algorithm that solves the MinNum optimization problem of covering two

line segments B1 and B2, so that the number of sensors moved is minimized.

Proof. We consider two possible scenarios:

1) Both L1 and L2 are multiples of 2rn. i.e ∃i ∈ N,∃j ∈ N, L1 = 2ri∧L2 = 2rj. In

this case complete coverage is possible, and all sensors have predetermined positions.

Thus, sensors with initial positions in {r, 3r, . . . , (2i − 1)r} ∪ {L1 + g + r, L1 + g +

3r, . . . , L1 + g + (2j − 1)r} remain stationary, and the remaining sensors should be

moved to fill in the gaps in between. Clearly, this can be done in linear time.

2) Neither L1 nor L2 is multiple of 2rn; i.e. 6 ∃i ∈ N, 6 ∃j ∈ N, L1 = 2ri∧L2 = 2rj.

In this case, complete coverage is not possible, since there is at least one sensor that

provides partial coverage, covering a part of the gap between the two barriers. Here

we try to achieve maximum possible coverage while minimizing the number of sensors

moved. We consider two scenarios depending on the length of the gap g. First, we

consider the case where it is feasible for a sensor to cover both barriers at the same

time (g < 2r). Then, we consider the case where any sensor can only cover one barrier

(g ≥ 2r).

143



i) g < 2r. To achieve maximum coverage, we consider the fraction of a sensor

size that would cover the gap (is wasted), and therefore trying to minimize it.

Let n1 and n2 be the number of sensors that fit on B1 and B2, respectively; i.e.

n1 = bL1

2r
c and n2 = bL2

2r
c. Also, let f1 and f2 be the fractional parts of barriers

B1 and B2; i.e. f1 = L1 − n1 ∗ 2r and f2 = L2 − n2 ∗ 2r.

Clearly, at least n1 sensors should cover B1 and at least n2 sensors should cover

B2. The remaining one sensor, S, could cover B1, B2 or both B1 and B2 providing

maximum coverage L1 + n2 ∗ 2r, n1 ∗ 2r + L2, or n1 ∗ 2r + (2r − g) + n2 ∗ 2r

respectively. First we assume f1 > f2. Therefore, S should either cover B1 only,

or should cover both B1 and B2.

If f1 > 2r − g, maximum coverage is achieved by using n1 + 1 sensors to cover

B1 completely, and using n2 to cover B2. This can be achieved in O(n3) using

the algorithms in Theorems 6.1.11 and 6.1.10, respectively.

If f1 < 2r − g, maximum coverage is achieved only if there exists one sensor

S that completely covers the gap (covers both B1 and B2). We show that any

optimal solution that minimizes the number of sensors moved while maximizing

the coverage on virtual barrier [0, L1 + L2 + g] has a sensor that completely

covers [L1, L1 + g]. Assume there is an optimal solution with maximal coverage

2rn on [0, L1 +L2 + g] with no sensor that completely covers the gap. Therefore,

the number of sensors that are to the left of L1 + g is less than or equal to

bL1+g
2r
c = b2rn1+f1+g

2r
c = n1. Furthermore, the number of sensors that are to

the right of L1 is less than or equal to bL2+g
2r
c = b2rn2+f2+g

2r
c = n2 (Note that

we assumed f2 < f1). This means that there are maximum n1 + n2 = n − 1

sensors used to cover the barrier [0, L1 + L2 + g] which contradicts the fact that

the maximal coverage is equal to 2rn. Therefore, any optimal solution that

minimizes the maximum sensor movement while maximizing the coverage on
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virtual barrier [0, L1 + L2 + g] has a sensor that completely covers [L1, L1 + g],

and this can be obtained in O(n3) using the algorithm in Theorem 6.1.10.

If f1 = 2r − g, compare two optimal solutions for both cases above, and select

the one with the smaller number of sensors moved.

The case where f2 > f1 is similar to f1 < f2, except for that B2 should be covered

instead of B1. When f1 = f2, the optimal solution is the better of the solutions

for f1 < f2 and f1 > f2.

ii) g ≥ 2r. Let n1 = bL1

2r
c and f1 = L1 − 2rn1. Consider the following subcases:

(a) f1 > f2. Use the O(n3) algorithm in Theorem 6.1.11 for the MinNum

optimization problem with n1 + 1 sensors on B1, and the O(n3) algorithm

in Theorem 6.1.10 for the MinNum optimization problem with n − n1 − 1

sensors on B2.

(b) f1 < f2. Use the O(n3) algorithm in Theorem 6.1.10 for the MinNum

optimization problem with n1 sensors on B1, and the O(n3) algorithm in

Theorem 6.1.11 for the MinNum optimization problem with n− n1 sensors

on B2.

(c) f1 = f2. Execute both algorithms for cases where f1 > f2 and f1 < f2 with

time complexity O(n3). Compare the optimal solutions of both algorithms.

The solution with the minimum number of sensors moved is the optimal

solution.

�

Corollary 6.2.2. Let S1, S2, ..., Sn be sensors with identical ranges r in initial po-

sitions x1 ≤ x2 ≤ ... ≤ xn. There is an O(mn3) algorithm that solves the Min-

Num optimization problem of covering m line segments B1 and B2, ..., Bm with∑m
i=1 |Bi| = 2rn so that the number of sensors moved is minimized.
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Proof. If the barrier lengths are multiples of 2r, the sensors’ positions are predeter-

mined and the final positions can be assigned in O(n) time. Otherwise, a barrier with

the maximum fractional part should be overcovered and the rest are undercovered.

There are at most m barriers with maximum fractional part and thus this can be

done in O(mn3). Furthermore, if it is possible that a sensor covers more than one

barrier using the similar argument used in the proof of the theorem, an optimal solu-

tion for the coverage of the virtual barrier [0,
∑n−1

i=1 |Bi|+ |gi|+ |Bn|] is the optimal

solution. �

6.2.2 L1 + L2 > 2rn

It is obvious that when the sum of the barriers’ lengths is greater than the sens-

ing range provided by all the sensors, complete coverage is not possible. Therefore,

we consider the problem of maximizing the possible coverage, while minimizing the

number of sensors moved, and we study the contiguous as well as the non-contiguous

MinNum optimization problem.

For the contiguous MinNum optimization problem, we distinguish two cases de-

pending on whether maximal coverage of 2rn is feasible or not. Let n1 and n2 be the

maximum number of sensors than can be completely contained in B1 and B2 respec-

tively. If n > n1 + n2, the maximal coverage is not possible. However this can only

happen if none of L1 and L2 are multiples of 2r, and n = n1 + n2 + 1. This case can

be handled similar to the case where L1 +L2 = 2rn, where one of the barriers would

be undercovered and the other one would be overcovered. Thus, we only consider the

scenario where maximal coverage of 2rn is feasible, n1 + n2 ≥ n. In other words we

have L1 + L2 ≥ 2r(n+ 1).

Theorem 6.2.3. Let S1, S2, ..., Sn be sensors with identical ranges r in initial posi-

tions x1 ≤ x2 ≤ ... ≤ xn. Also, let B1 and B2 be two disjoint line segments with
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lengths L1 and L2 respectively; i.e. B1 = [0, L1] and B2 = [L1 + g, L1 +L2 + g], where

g > 0 is the gap length between the two barriers B1 and B2, and L1 +L2 ≥ 2r(n+ 1).

There is an O(n2) algorithm that solves the MinNum optimization problem of covering

two line segments B1 and B2, so that the number of sensors moved is minimized.

Proof. Since R < L1 + L2, and L1 + L2 ≥ 2r(n + 1), maximal coverage of 2rn is

feasible, and thus only sensors completely contained in either L1 or L2 can remain

fixed. Let T1 and T2 be the set of sensors that are completely contained in B1

and B2 respectively; i.e. T1 = {Si|Si ∈ S ∧ r ≤ xi ≤ L1 − r} and T2 = {Si|Si ∈

S∧L1+g+r ≤ xi ≤ L1+L2+g−r}. The optimal solution to the contiguous MinNum

optimization problem can be obtained by using the algorithm in Theorem 6.1.7 to sloe

the contiguous MinNum optimization problem for the set of sensors T1 to cover B1 and

the set of sensors T2 to cover B2 with time complexity O(|T1|2 + |T2|2) = O(n2). �

Corollary 6.2.4. Let S1, S2, ..., Sn be sensors with identical ranges r in initial po-

sitions x1 ≤ x2 ≤ ... ≤ xn. There is an O(n2) algorithm that solves the contiguous

MinNum optimization problem of covering m line segments B1 and B2, ..., Bm with∑m
i=1 |Bi| ≥ 2r(n+m) so that the number of sensors moved is minimized.

We now study the non-contiguous MinNum optimization problem.

Theorem 6.2.5. Let S be the set of sensors S1, S2, ..., Sn with identical ranges r in

initial positions x1 ≤ x2 ≤ ... ≤ xn with L1 +L2 > 2rn. There is an O(n3) algorithm

that solves the non-contiguous MinNum optimization problem of covering two line

segments B1 = [0, L1] and B2 = [L1 + g, L1 + L2 + g] so that the number of sensors

moved is minimized.

Proof. Since L1 + L2 > 2rn, complete coverage is not possible. Therefore, the goal

is to provide maximum coverage 2rn while minimizing the number of sensors moved.

However, if L1 and L2 are not multiples of 2rn and L1 + L2 is close to 2rn, 2rn <
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L1 + L2 < 2r(n + 1), coverage of 2rn is not feasible, since one of the sensors would

partially cover the gap in between B1 and B2. In this case, use the O(n3) algorithm

in Theorem 6.2.1. Otherwise, coverage of 2rn is possible and the problem can be

reduced to the problem of finding the maximum-hop path P with total weight at

least n on G, where the vertices in G are the sensors in S ′ = {Si ∈ S|r ≤ xi ≤

L1 − r ∨ L1 + g + r ≤ xi ≤ L1 + L2 + g − r} and the weight of a directed edge

Ei,j = (Si, Sj), j > i, indicates the number of non-intersecting sensors that can fit

between Si and Sj including Si, if both Si and Sj are stationary. More formally, the

weight of and edge can be described as follows:

w(Si, Sj) =


w′(Si, Sj) + 1 if j ≤ n,

w′(Si, Sj) if j = n+ 1.

w′(Si, Sj) =


b le(Sj)−re(Si)

2r
c if xj ≤ L1 − r ∨ xi ≥ L1 + g + r,

bL1−re(Si)
2r

c+ b le(Sj)−L1−g
2r

c if xi ≤ L1 − r ∧ xj ≥ L1 + g + r.

Clearly, G can be constructed in quadratic time, and once constructed, we can

use the dynamic programming approach used in Theorem 6.1.10, to get the optimal

solution with time complexity O(n3). �

Corollary 6.2.6. Let S1, S2, ..., Sn be sensors with identical ranges r in initial posi-

tions x1 ≤ x2 ≤ ... ≤ xn. There is an O(n3) algorithm that solves the non-contiguous

MinNum optimization problem of covering m line segments B1 and B2, ..., Bm with∑m
i=1 |Bi| ≥ 2r(n+m) so that the number of sensors moved is minimized.

Proof. The set of vertices in G can be found in linear time by checking the sensors

coordinate and verifying if they fall completely on one of the barriers. Once the
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vertices are determined, weights can be determined in constant time, and thus G can

be constructed in quadratic time. The problem of finding the maximum-hop path P

with total weight at least n on G is independent of the number of barriers m. �

6.2.3 L1 + L2 < 2rn

In this scenario, since the sum of the barrier lengths is smaller than the maximal

coverage provided by all sensors, not all sensors need to participate in the coverage

problem. Therefore, we need to move some of the sensors in order to cover the two

barriers while minimizing the number of sensors moved.

Theorem 6.2.7. Let S = {S1, S2, ..., Sn} be the set of sensors with identical ranges

r in initial positions x1 ≤ x2 ≤ ... ≤ xn with L1 + L2 < 2rn. There is an O(n3)

algorithm that solves the MinNum optimization problem of covering two line segments

B1 = [0, L1] and B2 = [L1 + g, L1 + L2 + g] so that the number of sensors moved is

minimized.

Proof. Let n1 and n2 be the minimum number of sensors that are needed to completely

cover barriers B1 and B2, respectively; i.e. n1 = dL1

2r
e and n2 = dL2

2r
e. We consider

the following scenarios:

i) n1 + n2 = n + 1. Thus, we have n1 + n2 = n − 1, and complete coverage is

not possible. Therefore, we aim at maximizing the coverage while minimizing

the number of sensors moved. This can be done in O(n3) using the algorithm in

Theorem 6.2.1.

ii) n1 +n2 ≤ n. In this case complete coverage is possible, and the problem reduces

to the problem of maximum-hop path P with total weight at most n on G, where

the vertices in G are the sensors in S ′ = {Si ∈ S|−r < xi < L1 +r∨L1 +g−r <

xi < L1 + L2 + g + r} and the weight of a directed edge Ei,j = (Si, Sj), j > i,
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indicates the minimum number of sensors needed to cover the gap between Si

and Sj including Si, if both Si and Sj are stationary. More formally, the weight

of and edge can be described as follows:

w(Si, Sj) =


w′(Si, Sj) + 1 if j ≤ n,

w′(Si, Sj) if j = n+ 1.

w′(Si, Sj) =



d le(Sj)−re(Si)

2r
e if xj < L1 + r ∨ xi > L1 + g − r,

0 if L1 − r ≤ xi < L1 + g − r

< xj ≤ L1 + g + r,

dL1−re(Si)
2r

e if xi < L1 − r ≤ xj ≤ L1 + g + r,

d le(Sj)−L1−g
2r

e if L1 − r ≤ xi

≤ L1 + g + r < xj,

dL1−re(Si)
2r

e+ d le(Sj)−L1−g
2r

e if xi < L1 − r ∧ xj > L1 + g + r.

The graph G can be constructed with time complexity, and then the O(n3)

algorithm in Theorem 6.1.11 can be used to obtain the optimal solution.

�

Corollary 6.2.8. Let S1, S2, ..., Sn be sensors with identical ranges r in initial po-

sitions x1 ≤ x2 ≤ ... ≤ xn. There is an O(n3) algorithm that solves the Min-

Num optimization problem of covering m line segments B1 and B2, ..., Bm with∑m
i=1 |Bi| ≤ 2r(n−m) so that the number of sensors moved is minimized.
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6.3 The MinNum Problem on a Circle

In this section, we assume that the sensors are arbitrarily dispersed on the circum-

ference of a circular barrier C, with diameter d, centered at o = (0, 0). The goal is

to move the fewest number of sensors possible so as to achieve maximal coverage of

circle C. First, we consider the case where sensors have arbitrary ranges, and we

show it to be NP-complete. Then we present polynomial algorithms for sensors with

identical ranges.

6.3.1 Unequal Range Sensors

We show that when sensor nodes have unequal ranges, all variations of the MinNum

optimization problem on a circle barrier is NP-Complete.

Theorem 6.3.1. Let S1, S2, . . . , Sn be sensors with arbitrary ranges r1, r2, . . . , rn in

initial positions 0 ≤ θ1 ≤ θ2 ≤ ... ≤ θn ≤ 2π. The MinNum optimization problem on

a circle barrier C = (o, d
2
), where L =

∑n
i=1 2ri is NP-hard.

Proof. We prove it by reducing the Partition Problem [GJ90] into the MinNum op-

timization problem. Let a1 ≥ a2 ≥ ... ≥ an be integers, and let a =
∑n

i=1 ai. Given

an instance of the partition problem, we transform it into the MinNum optimization

problem on a circular barrier C = (o, d
2
) with the sensor set S = {S1, S2, ..., Sn+1, Sn+2},

where L = πd = a + 4δ. For every 1 ≤ i ≤ n, Si with sensing range ai
2

is initially

located at angular position π
2
. Also, there are two sensors Sn+1 and Sn+2, with sensing

ranges δ ≤ 1
2
, with initial positions π

2
and 3π

2
respectively (see Figure 48). If there is

a set of indices J , such that
∑

i∈J ai = a
2
, there is a solution to the MinNum opti-

mization problem such that the sensors with indices in J cover the clockwise segment

between Sn+1 and Sn+2 and the rest cover the counterclockwise segment between Sn+1

and Sn+2, and the maximum number of sensors moved is n.
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n

n+1
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Figure 48: Arrangement of sensors for proving the NP-completeness of the MinNum
optimization problem for unequal sensor ranges on a circle barrier C = (o, d

2
).

If such a partition does not exist, n+ 1 sensors have to move.

Thus, if there is an algorithm that can solve the MinNum optimization problem on

a circle C = (o, d
2
), where R = L, we can determine whether the partition problem has

a solution. Clearly, the transformation from the partition problem to the MinNum

optimization problem is polynomial. �

It is easy to show that the problem for R < L and R > L remains NP-complete,

by using the same proof above and considering a circle of circumference R + ε and

R− ε respectively, where ε is less than twice the minimum range of sensors. Observe

that the argument holds for the non-contiguous coverage as well as the contiguous

coverage for the case R < L.
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6.3.2 Equal Range Sensors

In view of the NP-completeness, we consider sensors {S1, S2, ..., Sn} with identical

sensing range r. Every sensor Si is located at polar coordinate pi = (θi,
d
2
). Further-

more, assume that 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn ≤ 2π. Since all the sensors are located

on the circumference of the circle, throughout this study, we use the angle θ in their

polar coordinate as the nodes’ positions.

Let cw dist(α, β) be the angular distance between α and β, when we traverse the

circle from (α, d
2
) to (β, d

2
) clockwise (see Figure 49).

cw dist(α, β) =


α− β if α ≥ β,

2π − (β − α) if α < β.

Analogously, let ccw dist(α, β) be the counterclockwise angular distance between

α and β; i.e. ccw dist(α, β) = 2π − cw dist(α, β).

We study all possible scenarios: 2rn = L, 2rn < L and 2rn > L, where L = πd.

The only case where complete coverage is not possible is when 2rn < L. Therefore,

when 2rn < L, we consider both contiguous and non-contiguous coverage.

Lemma 6.3.2. Let S1, S2, ..., Sn be sensors with sensing ranges r1, r2, ..., rn in initial

positions 0 ≤ θ1 ≤ θ2 ≤ ... ≤ θn ≤ 2π. The MinNum optimization problem has at

least one stationary sensor in all cases.

Proof. Assume that there is an optimal solution in which all sensors have been relo-

cated. Rotate the sensors clockwise until one of the sensors is at its initial position.

This assignment of final positions provides exactly the same coverage as the optimal

solution with one more stationary sensor, which contradicts the assumption that the

solution was optimal. �

Using Lemma 6.3.2, we show that the optimal solution to the barrier coverage
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Figure 49: Clockwise distance between (α, d
2
) and (β, d

2
) .

problem on a circle can be obtained by converting it to the barrier coverage problem

on a line segment by breaking the circle at one of the sensor nodes.

Lemma 6.3.3. Let S1, S2, ..., Sn be sensors with identical range r in initial positions

0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θn ≤ 2π. Let Pi be the MinNum optimization problem on

the line segment [0, πd] with sensors {S ′1, S ′2, ..., S ′n} with identical range r at initial

positions r ≤ r+ d
2
ccw dist(θ(i+1) mod n, θi) ≤ · · · ≤ r+ d

2
ccw dist(θ(i+n−1) mod n, θi) .

The MinNum optimization problem on a circle C = (o, d
2
) has a solution in a set of

solutions to the MinNum optimization problems Pi.

Proof. Let P be an optimal solution on the circle C. Furthermore, let T ⊆ S be the

set of stationary sensors in P . Note that according to Lemma 6.3.2, T 6= ∅. For every

Si in T , since Si is stationary, converting the problem into Pi on line segment [0, L]

would preserve the gaps exactly the way they are on the circle, and therefore P is

also an optimal solution for the problem Pi. Thus, by solving all the optimization

problems Pi, we can get an optimal solution on the circle. �
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Corollary 6.3.4. Let S1, S2, ..., Sn be sensors with identical range r in initial positions

0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θn ≤ 2π. There is a polynomial algorithm for the MinNum

optimization problem on a circular barrier C = (o, d
2
) for all possible scenarios: R <

L, R = L, R > L with time complexities O(n4), O(n2), and O(n4) respectively.

We showed that the optimal solution for the MinNum optimization problem P

on a circular barrier is among the optimal solutions for the MinNum optimization

problems Pi on line barriers, where the circle is broken into line at sensor Si. We

proceed to show better algorithms for the contiguous MinNum optimization problem

when R < L, as well as the and non-contiguous MinNum optimization problem when

2R ≥ L.

Theorem 6.3.5. Let S1, S2, ..., Sn be sensors with identical ranges r in initial posi-

tions 0 ≤ θ1 ≤ θ2 ≤ ... ≤ θn ≤ 2π with πd > 2rn. There is an O(n2) algorithm that

solves the contiguous MinNum optimization problem on a circle C = (o, d
2
).

Proof. Let ω be the angular coverage of sensors; i.e. ω = 4r
d

. Using Lemma 6.3.2,

at least one of the sensors can remain stationary. For every sensor Si, find the

sets Tcw,i and Tccw,i of sensors that are at angular distances multiples of ω from Si

in both clockwise and counterclockwise order; i.e. Tcw,i = {Sj ∈ S|∃k ∈ N, 0 ≤

k ≤ n − 1, cw dist(θi, θj) = kω} and Tccw,i = {Sj ∈ S|∃k ∈ N, 0 ≤ k ≤ n −

1, ccw dist(θi, θj) = kω}. The maximum number of sensors that can stay fixed once

Si is fixed is max(|Tccw,i|, |Tcw,i|) which can be calculated in linear time and the optimal

solution is the one that maximizes the number of fixed sensors among all Sis and can

be calculated in quadratic time. Once the fixed sensors are determined, the non-

covered intervals can be covered with the remaining sensors in linear time which

results in total time complexity O(n2). �

The maximal non-contiguous coverage problem can be divided into two subprob-

lems: (1) Finding a set of non-intersecting sensors as the fixed sensors (2) Assigning
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final positions to the non-fixed sensors. In order to solve the non-contiguous MinNum

optimization problem, one should find a maximal set of fixed sensors, such that the

remaining sensors fit in the gaps. Clearly, any optimal solution has at most as many

fixed sensors as the size of a maximal set of non-intersecting sensors. Therefore, if

the barrier is big enough the problem reduces to the problem of finding a maximal

set of non-intersecting sensors on a circle. Using the same argument which was used

in Lemma 6.1.8, we can show that if L = πd ≥ 4rn, once the maximal set of non-

intersecting sensors is found, the remaining sensors can fit in between the non-covered

intervals so as to provide maximal coverage of 2rn. As a result, we distinguish two

cases: 2rn < πd < 4rn and πd ≥ 4rn, and we give a better algorithm than the one

given in Corollary 6.3.4, for the case where πd ≥ 4rn.

Theorem 6.3.6. Let S1, S2, ..., Sn be sensors with identical ranges r in initial posi-

tions 0 ≤ θ1 ≤ θ2 ≤ ... ≤ θn ≤ 2π with πd ≥ 4rn. There is an optimal O(n) algorithm

that solves the non-contiguous MinNum optimization problem on a circle C = (o, d
2
).

Proof. Partition the set of sensors S into subsets Ni such that for every sensor Sj ∈ Ni

and S(j+1) mod n ∈ Ni, Sj ∩ S(j+1) mod n 6= ∅, and for every Ni and Nj, ∀Sk ∈ Ni, Sl ∈

Nj, Sk ∩ Sl = ∅. A maximal independent set for every Ni can be calculated using the

greedy algorithm for the activity selection in time O(|Ni|). A set of non-intersecting

sensors is thus the union of maximal independent sets of Nis. Clearly, this approach

has linear time complexity. �

6.4 Conclusion

We studied the MinNum optimization problem, as well as the contiguous MinNum

optimization problem, and the non-contiguous MinNum optimization problem. When

sensors had unequal ranges, we showed that all three optimization problems on a line
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segment barrier as well as circular barriers were NP-hard. In contrast, when sensors

had equal ranges, we presented several efficient algorithms to solve the optimization

problems stated above. All our algorithms were centralized: they were given initial

positions of sensors and they calculated optimized final positions. A summary of the

complexities of the algorithms given for all cases for sensors with identical ranges r,

is given in Table 4. Furthermore, since O(n) is a trivial lower bound for the time

complexities of all the algorithms presented in this chapter, all our linear algorithms

are optimal.

Table 4: Algorithm complexities for the MinNum problem for homogeneous sensors.
Contiguous Non-contiguous

Infinite line O(n2) O(n)
Line segment R = 2rn = L O(n) N.A.
Line segment R = 2rn < L O(n2) O(n3)
Line segment R = 2rn > L O(n3) N.A.

m line segments R = 2rn =
∑m

i=1 Li O(mn3) N.A.
m line segments 2r(n+m) ≤

∑m
i=1 Li O(n3) O(n2)

m line segments 2r(n−m) ≥
∑m

i=1 Li O(n3) N.A.
Circular barrier crn = L = 2πr O(n2) N.A.

Circular barrier crn < L = 2πr < 2crn O(n2) O(n4)
Circular barrier 2crn ≤ L = 2πr O(n2) O(n)
Circular barrier crn > L = 2πr O(n4) N.A.
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Chapter 7

Conclusions and Future Work

In this thesis, we studied the fundamental problem of routing, backbone formation and

the barrier coverage problem in wireless ad hoc and sensor networks. We introduced a

new local learning routing algorithm which learns about the existence of an obstacle or

void using negative feedback from its neighbors. Using this information, the algorithm

diverts from the greedy path when it gets close to the obstacle region. Through

simulations we showed that after five retrials our algorithm has a delivery ratio of

almost 100% and an average path length which is very close to that of the greedy

algorithm. The weighted distance function that we used in the algorithm is a heuristic

and it can be further improved by taking some other information into consideration.

Furthermore, analyzing the effect of the river routing algorithm on load balancing and

congestion control is an interesting problem, since unlike the GFG routing algorithm

which usually hugs the border of void especially in the case of large voids, river routing

selects different routes each time.

Then, we considered the problem of forming efficient local data gathering and dis-

semination backbones. For the class of UDGs and QUDGs, we presented a local CDS

approximation algorithm with constant approximation ratio. We also considered the
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more realistic model of DGs and we presented a local SCDAS approximation algo-

rithm with constant approximation ratio. Through extensive simulations, we showed

that our algorithms outperform the best existing algorithms in the literature in terms

of the CDS size. Although our algorithms construct very thin CDSs and SCDASs in

practice, the tiling that we use does not lead to a small theoretical approximation

ratio. Finding a simple local algorithm with a small approximation ratio and that

also performs very well in practice remains an interesting open problem.

Finally, we considered the problem of barrier coverage using mobile sensors. We

presented centralized algorithms to instruct sensors to move to final positions so as

to achieve maximum coverage of the barrier. We considered two different aspects of

minimizing energy while providing maximum coverage, MinMax and MinNum. We

studied the barrier coverage problem when barriers are multiple line segment as well

as circular barriers. We considered all possible scenarios depending on whether or not

the sensors have equal sensing ranges, whether or not complete coverage is feasible,

and if complete coverage is not feasible, the maximal coverage is contiguous or non-

contiguous. For all scenarios we either give efficient polynomial algorithms or we

show the problem to be NP-hard. Neither MinNum nor MinMax has been studied in

the case where there are several sets of sensor ranges, and these problems still remain

open. Furthermore, one can consider MinNum and MinMax on different barrier types

such as polygons. Finally, for the MinMax problem, the case where sensors are not

initially on the perimeter of the circular barrier needs to be investigated.
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