INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9” black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

A Syntax-Directed Compiler/Compiler
Emitting LR(1) Object-Oriented Code

David Bone

A Thesis
in
The Department
of
Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

September 1998

© David Bone, 1998

i~l

Nationa! Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre relérence

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Our file Notre rétérence

L’auteur a accordé€ une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-39110-8

Canada

ABSTRACT

A Syntax-Directed Compiler/Compiler
Emitting LR(1) Object-Oriented Code

David Bone

This is a study into applying Object-Oriented principles to a LR(1) compiler/compiler,
its grammar language, and the emission of output tables containing class objects. The
grammar'’s entities — rules, subrules, and terminals — are viewed as class structures
defined in the C++ language. Woven into the grammar’s language are constructs sup-
porting syntax-directed G++ code. Object-Oriented design decisions are discussed in
supporting the grammar’s symbols and various bottom-up behaviors, the definition
of the grammar language documented, and executed grammar examples illustrated

with commentary.

111

Contents

List of Figures xi

1 Preface 1
2 Theory 6
2.1 Context-free Grammar « « « o« ot v o o b e e e 7
2.2 Object-Oriented Paradigm oo 9
22.1 Class Packaging oo oo 10

299 InheritanCe . . - o v o v o v e e e e e e e e e e e e e e e 11

2.2.3 Polymorphismo 12

224 LifeCycleofaClass 13

29235 EVENES . . v o e i e e e e e e e e e e e e e e e e e e e 13

9.3 SUMIMATY . « « o o e 15

3 The Marriage of OO with CFG 16
3.1 Symbols e e 20

3.1.1 CAbs.Iri_sym Abstract Base Class: Mother Nature to All Sym-

v

3.1.2 CAbs.Irl_sym_workers Base Class for IDOW Pattern Support 24
3.1.3 CAbs_s_r_rtn Abstract Base Class for Shift, Reduce, Lookahead

Action Services L. Lo 26

3.2 Terminals 27

3.2.1 Specialization for the Terminals by Abstract Middlemen Classes 30

3.2.2 Concrete Terminal Classes 31
3.3 Relationships: Rules and Subrules Conventions 33
3.3.1 Class Naming Convention for Rules and Subrules 34
3.3.2 Enumerated Types for Rules and Subrules 36
3.3.3 Strongly Typed Accessing of Run Stack Objects 38
3.3.4 C#+ Access Facility Using Friends 39
3.4 Rules. e 39
3.4.1 CAbs_rule_sym Abstract Base Class to All Rules 40
3.4.2 Rule and Its Emitted Classes 41

3.4.3 Abstract Middlemen Classes For Specialization of Rules and
Subruleso 43

3.4.4 Concrete Rule Classes for Rule, Subrule, and Stack Action Ser-

VICES L it e e e e e e e e e e e e e e e 44
3.5 Symbols’ Life Cycle as Class Objects 46
3.6 SUMMATY o o e e e e e e e e e e e e e e e e 47
Finite State Machine 50
4.1 CAbs_fsm Abstract Base Class 50
4.2 CAbs_sob Abstract Base Class and Its Deriving Classes o4

4.3 A Real FSM Class Definition v v v . 57

Vv

(1}

4.4 A Real FSM LR(1) Table Implementation 39
Pushdown Automata 63
5.1 CAbs_parser Abstract Parser Class 63
52 ARealParserClass. 66
5.2.1 A Parser Implementation e 68
5.2.2 Implementation of Parser Operations 70
5.3 Supplemental Code to Parsing Operations 73
5.3.1 Supplemental Code Classes 74
54 WindingDowno oo 76
Future Research 81
Conclusion 84
The Grammar Language 89
Al Introduction Lo o 89
A2 @ —Filelnclude Operator 90
A3 G+Code Sections.« . o it i i 90
A.3.1 user-prefix-declaration Directive 92
A.3.2 user-suffix-declaration Directive 92
A.3.3 user-declaration Directive 92
A 3.4 user-implementation Directive 92
A.3.5 constructor Directive a3
A.3.6 destructor Directive 93
A3.7 opDirective 93

Vi

A4

A 3.8 rhs-user-declaration Directive 93

A.3.9 rhs-user-implementation Directive 93
A.3.10 rhs-constructor Directive oL 93
A 3.11 rhs-destructor Directive 93
A.3.12 rhs-op Directive Lo a3
A.3.13 lhs-constructor Directive oL L0000 L. 93
Fsm Section e 94
A41 Example Lo 94
A4.2 Skeleton View Lo Lo 95
A.4.3 Individual Components 95

A.4.3.1 fsm-id Attributeo 95

A.4.3.2 fsm-class Attributeo 95

A.4.33 fsm-version Attribute. 96

A.4.3.4 fsm-date Attribute 96

A.4.3.5 fsm-debug Attribute 96

A4.3.6 fsm-comments Attribute L. 97
Parallel-parser Section 97
A51 Example L 97
AS5.2 Skeleton View oo 97
A.5.3 Individual Components 97
Fsm-Operation Section — Supplemental Operations 97
A6.1 Example Lo 98
A6.2 Skeleton View Lo 98
A.6.3 Individual Components 98

vii

AT

A8

A6.3.1 fsm-operation-shift-class Attribute 98

A6.3.2 fsm-operation-reduce-class Attribute 99
A.6.3.3 fsm-operation-accept-class Attribute 99
A.6.3.4 fsm-operation-error-class Attribute 99
Terminals Sectiono 99
AT1 Example oL 100
A.72 Skeleton Viewol 102
A.7.3 Terminal Definition of Individual Components 102
A.7.3.1 Symbolic Name of Terminal 102
A.7.3.2 Automatic Delete Attribute 103
A73.3 sym-class Attribute 103
A.7.3.4 sym-look-ahead-rtn Attribute 104
A.7.3.5 sym-pushed-rtn Attributeo 104
A.7.3.6 sym-popped-rtn Attribute 104
Rules Section L 104
A81 Exampleo 106
A.8.2 Skeleton View Lo 106
A 8.3 Rule Definition of Individual Components 107
A83.1 Symbolic NameofRule 107
A.8.3.2 Automatic Delete Attribute 107
A 83.3 sym-class Attribute 108
A 83.4 lhs Attributeo Lol 108
A 8.3.5 sym-pushed-rtn Attribute 109
A 83.6 sym-popped-rtn Attributeo L. 109

viii

A R83.7 Subrule Definition 110

B IDOW Pattern — Iterator Dispatching Objects for Workers 111
B.1 Intent e 111
B.2 Reader’s Pre-requisites 111
B.3 Motivation L. e 111
B4 Comments o v o it e e e e e e e e e e e e e e 112
B3 USeS . . o o e e e e e e 113
B.6 Applicability. oo 113
B.7 Participants 114
B.8 Cs+Implementation 115
B.9 CORSeqUenCEeS . . . - « v v e v it e e e e e e e e e 121

C Lrl Grammar Test Suite 122
C.1 Common Terminals — Irl_test_terminalsh 122
C.2 Test Suite’s Lexical Grammar 124
C.3 Common C++ Terminals — Ctsuite.h 126
C.4 Test Suite of Grammarso 132

C.4.1 Deremer and Pennello Grammars 132
C.4.1.1 LALR(1) Grammar: Page 632 0of [3] 132
C.4.1.2 LR(0) Grammar: Page 633 0of [3] 133

C.4.2 Kristensen and Madsen Grammar 134
C.4.2.1 LALR(1) Grammar from[9] 134

C.4.3 Spector Grammars0 e e 135

ix

C.4.3.1 LR(1) G3 Grammar with Example of a Parsing Trace:
Page64of [13]
C.4.3.2 LR(1) G1 Grammar: Page 61 of [13]

List of Figures

3.1
3.2
3.3
3.4
3.5

Ot (&1} o]} (1} [1}
(@} ot W w [f\)

ot
~1

C.1

Class hierarchy of symbols 24
IDOW’'s workers class hierarchy 25
Class hierarchy of stack services 27
Emitted source files oo 29
Creation timings and interplay between the subrule and its rule . . . 47
Fsmclass hierarchy o L 51
Lrl table’s class components hierarchy 53
Parser class hierarchyo 66
Parser operationso oo 68
Class hierarchy of supplemental parse operations T4
Grammar objects with meta-rules 7
Finite state events to parsing objects 8
Run time information contexts available to parsing objects 79
Run stages of multi pass grammars 80
IDOW class hierarchy oo 114
Terminal class hierarchy for Ctsuite 124

C.2 Rule and Subrule class hierarchy for Clrl_sp3_rule_fsm using Ctsuite . 136

xii

Chapter 1

Preface

Here we are in 1998 approximately 30 years after the development of parsing tech-
niques and a new programming paradigm is object-oriented languages — some exam-
ples being Eiffel, C++, and Smalltalk. But what about the emitted tables produced
from compiler/compilers used to translate these languages? These are the tools that
are slaying the language dragon but there is nothing object-oriented in their out-
puts. Using these tools leads to a loose co-ordinate set of procedures to achieve
parsing. The following is a brief overview of my motives to investigate an object-
oriented approach to table-driven parsing — in particular shift-reduce parsing with
svntax-directed translation.

The basic benefit from grammars and their compiler/compilers is the fast man-
ufacture of recognizers with ambiguity detection. With special tools like YACC (7]
and LEX [10], compiler writers deliver products faster and with confidence know-
ing their grammar describes the language to be translated; at least that is the idea
behind the use of grammars with a compiler/compiler. Unfortunately due to a gram-

mar'’s coarseness in defining the new language, these tools still lead to difficulties. In

Stroustrup’s book “The Design and Evolution of C++” published in 1994 [14], he qui-
etly explains his frustration with YACC and the bottom-up approach to compiling
the C++ language:

In 1982 when I first planned Cfront, [wanted to use a recursive descent
parser because I had experience writing and maintaining such a beast,
because I liked such parsers’ ability to produce good error messages, and
because I liked the idea of having the full power of a general-purpose
programming language available when decisions had to be made in the
parser. However, being a conscientious young computer scientist I asked
the experts. Al Aho and Steve Johnson were in the Computer Science
Research Center and they, primarily Steve, convinced me that writing a
parser by hand was most old-fashioned, would be an inefficient use of my
time, would almost certainly result in a hard-to-understand and hard-
to-maintain parser, and would be prone to unsystematic and therefore
unreliable error recovery. The right way was to use an LALR(1) parser
generator, so I used Al and Steve’s YACC[Aho,1986].

For most projects, it would have been the right choice. For almost every
project writing an experimental language from scratch, it would have been
the right choice. For most people, it would have been the right choice.
In retrospect, for me and C++ it was a bad mistake. G-+ was not a new
experimental language, it was an almost compatible superset of C — and
at the time nobody had been able to write an LALR(1) grammar for C.
The LALR(1) grammar used by ANSI C was constructed by Tom Pennello
about a year and a half later — far too late to benefit me and G-+ .

In January 1997, ACM SIGPLAN Notice’s article “Programming Languages: Past,
Present, and Future” {17] where Peter Trott interviews a variety of computer scientists
intimate in language processing, Dr. Stroustrup again restates his frustration with
bottom-up processing and its over-exaggerated expressive powers (I apologize if this
is an overstatement).

So back in 1993 before the above observations were read, my preliminary thoughts

to bottom-up parsing were the following. LR(1) parsers should be the norm. With

LR(1) being the most powerful recognizer of deterministic grammars (8], so why

2

choose a lesser recognizer to compile languages? Having very little experience in
applying bottom-up parsers to real projects, [thought LR(1) resolution along with
object-oriented techniques would ease the limitations expressed. By making symbols
of a grammar act as classes as defined in the G-+ language, and adding other object-
oriented ideas to the emitted tables, this would convince people that table-driven

parsers should be the off-the-shelf way to go in compiling languages.

In this thesis we explore an objected-oriented framework applied to a com-
piler/compiler’s emitted tables representing the compiled grammar and its entities
— terminals and nonterminals with their associated syntax-directed code. It evolves
the class definitions from their abstract base classes through to the derived classes
required in supporting a table-driven compiler. As the object-oriented paradigm sep-

arates definition from implementation, the thesis only develops the class definitions.

Throughout the development, snippets of the grammar language are used to high-
light the developing section. The local development explains the relationship ex-
pressed in the language’s structure being exposed. The reader is not expected to be
completely familiar with the grammar language but for the curious, the appendix
defines the grammar language. Principally, keywords tie together the grammar’s en-
tities with their G-+ class names. \arious code directives are used to inject G-+ code

into the defining class structure and its implementation companion.

The thesis consists of the following chapters in its development. Chapter two
reviews the theories of both a context-free grammar and the G++’s objected-oriented
paradigm. The terminology for each discipline is presented along with their com-
ponents. Within the object-oriented paradigm, other class facilities are brought out

which augment the LR(1) bottom-up parsing environment. Chapter three, the mar-

3

riage of Object-oriented paradigm with Context-free Grammar is the essence of the
thesis. Object-oriented principles are applied in defining a grammar’s symbols for use
in a finite-state-machine, or FSM. Chapter four presents the finite-state-machine with
its ready-made C++ class definitions. A grammar example drawn from the appendix
is used to illustrate the generated LR(1) table. Chapter five discusses the pushdown
automata with its class definitions. The support classes are presented leading into an
experimental parser. The “firing off” mechanism for a symbol’s syntax-directed ser-
vices is commented-on tying together “how the services” are carried by the grammar’s
symbols, and “how the actions” are actual executed by the parser. Chapter six talks
about future research drawn from my experiences using the object-oriented output
of the compiler/compiler. The final chapter summarizes the thesis’s development.
Appendix A documents the grammar’s language, appendix B details the IDOW pat-
tern, and finally, appendix C gives examples of lexical and syntactic grammars, the
emitted terminals’ classes with its FSM class, and a grammar showing the parser’s
tracing capability for some input.

To aid the reader, the following typesetting convention is used throughout the
thesis:

e italics type indicates (abstract) base classes, and a class’s internal data variables
and procedures

e bold type indicates concrete symbol classes usually derived from base classes

e examples of G+ code use a fixed slightly smaller font with the exampled code
indented from the left margin.

For the reader who is familiar with the object-oriented discipline, a fast look at the

class diagrams within the thesis will quickly orient one to the relationships being

expressed throughout — within the grammar language, within the emitted parser’s

4

FSM table. and associated syntax-directed methods. To paraphrase an old adage —
a picture is worth a thousand curses or is it a thousand curses is worth one class?
To spice up a rather dry subject, bits of humour and personal comments on my trek

through the project are intertwined.

Chapter 2

Theory

The basic objective to the chapter is a review of terms used throughout the thesis
within the context of context-free grammars(CFG) as expressed in [2]. A grammar’s
structural make-up is defined without going into details of language generation. I
assume the reader is familiar with the capabilities of a compiler/compiler and has
some knowledge of the algorithms used to compile a context-free grammar into a
FSM {3] [12]. The grammar language, an extended Backus-Naur Form (EBNF) [11],
is completely documented in the appendix. Deviations from the Backus-Naur Form
(BNF) will be addressed within this chapter. These slight variations are done for the

economy of expression.

As to the Object-Oriented paradigm, also referred to as OO, the terms developed
are what's used in its literature; their definitions are as supported within the G+
language. C-+ examples will illustrate these support features which are heavily used

in the class definitions generated from the compiler/compiler.

6

2.1 Context-free Grammar

A Context-free grammar G is composed of a 4-tupple (N, £, P, S). The symbols
¥, N, P, and S are, respectfully, the terminal alphabet, the nonterminal alphabet,
productions, and the start symbol which is also known as the goal symbol. N, ¥, and
P are finite sets; N and ¥ are disjoint: there are no common elements. The symbol

V stands for the vocabulary of £ U N. An element of productions P has the form:

where x € N and y is a string of symbols in V, and the — expresses the mapping
between the string of x into the string of v. S is the start symbol in N. The following
is CFG’s restrictions place on x and y: x has only one element from N making up
its string of symbols. and y is a string of symbols from V including the empty string
e. To facilitate the description of a production of form x — ¥, the following terms
describe the production’s structural parts:

e x will be known as the left-hand-side of the production(lhs). It also takes on
other synonyms of a production rule, or just rule.

e v will be known as the right-hand-side(rhs) of the production. It will also be
addressed as a production’s subrule, or plain subrule.

Throughout the balance of the thesis, these terms are used extensively in the devel-
opment of classes from a grammar’s structural perspective.

Below is an example of a CFG:

G=({S.E,T,F}{+. % ~/.1.2,3 ()} P.9)

~1

where the productions P are:

1. S—E

2. E-E+T 3. E-E-T 4 E-T

5. T—=T= 6. T—-T/F 7. T—F

8. F—=(E) 9. F—1 10. F — 2 11. F — 3

This grammar represents arithmetic expressions using numbers 1, 2, and 3. Though
this is not a requirement of P, so that the productions can be individually referenced,
each production is numbered in the example above and productions with the same
left-hand-side are grouped on the same line for discussion sake.

From this formal definition of a CFG, two modifications are made to the grammar
in the name of economy. Productions having a common left-hand-side are grouped
together with the left-hand-side being expressed once followed by the multiple — ¥
forms. From the grammar above, the enumerated productions 8. — 11. having F' as

the left-hand-side would be written:

F - (E)
-1
— 2
— 3

This variation describes alternatives. The second savings is obtained by using produc-
tions to define N, and S. The left-hand-side of the first production in P is considered
the start symbol S. All left-hand-sides in P make up N. From this, the EBNF language

tupple is (X, P) from which N and S can be inferred.

8

2.2 Object-Oriented Paradigm

This section provides a thumbnail sketch of CO’s principles and components used
in the C++ language. The aim is to provide the user with the OO mechanisms used
and not to be a compendium of G-+ language features. I assume the reader has a
working knowledge of the C++ language and its constructs as documented in [4] [13].
The thesis reviews these OO features of C++ as applied to the symbols of a grammar
emitted as classes. The examples are simple and highlight the C++ mechanisms used
in the emitted class definitions. To note, for the syntax-directed code. all of C-+
language features can be used — classes, access control, friends, multiple inheritance,
exceptions, and templates. For well authored articles and discussions using G-+ and

OO, these magazines are recommended reading:

e C/C++ Users Journal
e Dr. Dobb’s Journal

C++ Report

JOOP - The Journal of Object-Oriented Programming

Within the thesis, the following are OO terms used with their benefits:

e Classes — packaging agents. They act like a cell’s enclosing membrane con-
taining these components and benefits:

— atomic and derived data types. Atomic data types are the computer’s
native data structures — character, integer, floating point number. etc. A
derived data type is a class. Using the “hasa” relationship, a class can be
built containing other classes.

— procedures or methods contained inside the class definition. This elim-
inates loosely assembled definitions of data types and their procedures
trying to act as one unit.

— encapsulation lessens global name space pollution. A class reduces and
can hide its components from the program that uses it. This should lead
to better program maintenance.

e Inheritance — the extension of a class definition. Inheritance acts as a stretching
force using the “isa” relationship. For example, a dog “isa” an animal. It is also
known as a class deriving from another class. This newly formed class inherits
the data structures and the procedures of the attached to class.

e Multiple inheritance — a bridging force. It combines or joins two or more
unrelated classes into an enclosing class acting as one unit. Each inherited from
class gives its controlled benefits to the newly formed class for its own use.

e Access control — who is allowed to access what within a class. Control covers
both atomic and derived data tvpes, and use of inheritance. G++ has public,
protected, and private access control.

e Polymorphism — dynamic run-time procedures. Procedures that are resolved
at run-time depending on the class object giving variation in run behavior. This
works in hand with inheritance. Depending on the language used, abstract base
classes can enforce a uniform set of behaviours. They are also known as virtual
behaviours.

e Strong data typing — compile time detection. Errors are immediately reported
at compile time instead run time. Strong data typing is not illustrated as this
is inherently built into the C++ language.

2.2.1 Class Packaging

This example shows how the class defines its name and contents. Further into the
thesis, the mapping of the grammar’s symbol into its C++ class name is discussed.
The compiler writer provides the class name within the EBNF.

class Canimal{// class definition for Canimal
public: // access control - allows anyone access
// within its domain
string=* idQ);
virtual “Canimal(); // destructor
virtual const char* sound() = 0; // an abstract polymorphic procedure that
// must be defined by the inheriting class

10

proctected: // access control on constructor forces
// the class to be derived from

Canimal (string* Name); // contructor

private: // access control - forces data hiding
string* id_;

};

From the G-+ comments within the class definition, as one can see, the class defin-
ing capabilities covers efficiently access control to hid data or procedures, polymorphic
procedures that can be made abstract, and control over how the class is to be used.
This is an elegant way to package data and procedures, and to regulate use. Choice
of a class name by a class designer can be as cryptic or as meaningful as one deems
fit. class packaging is succinct which is what I am trying to achieve with a grammar’s

entities emitted as classes for compilation.

2.2.2 Inheritance

Used extensively in the compiler/compiler’s emitted classes, inheritance provides the
“isa” relationship to all the grammar’s symbols translated into C++ classes. It does two
things: the class inherits the use of the class derived from, and the new class provides
its own spin on functionality. In view of the grammar’s symbols, the base class
— derived from class — enforces common symbol behaviours and polymorphism
provides dvnamic behaviours in various contexts. The simple example below shows
the class Cdog deriving from the abstract base class Canimal through the use of
C++’s inheritance list. It also shows defaulted parameters in its constructor: in this
case, the default dog is a Poodle having a ferocious sound “grrrr”. The polymorphic

procedure sound() is defined.

11

class Cdog
// indicator starting an inheritance list
public Canimal // a component in the inheritance list
// with explicit access control
// where Cdog inherits from Canimal

{
public:
~“Cdog Q) ;
Cdog(const char* Name = "Poodle"”,const char* Sound = "errrr");
const char* sound(); // defined polymorphic procedure
private:
const char= sound_;
};

If there is more then one class in the inheritance list, the class is said to be using
multiple inheritance. This is an over simplification of inheritance but illustrates how
the emitted symbol classes will be built. Left out of this explanation is shared base
classes with its access control available to the G++ programmer. Please see reference

[15] for a complete development of C-+’s inheritance.

2.2.3 Polymorphism

Base classes are the blocks from which the grammar symbols, action classes, and
patterns will get built. Polymorphism creates abstract base classes which allow the
class designer to enforce regular and dynamic behaviours. It is this abstractness that
gives enriched facilities to the class designer. Creatively, the designer has complete
command of enforcement: from default behaviours, optional behaviours, to no choice
must-do behaviours. It is polymorphism that prisms-out the software spectrum of
variation. All of this is done at run-time. From the example above, because Can-
imal uses abstract polymorphism, the deriving class Cdog is forced to define and

implement the abstract procedure sound(). This abstract procedure from Canimal

12

spawns the menagerie of sounds from all its derived animals.

2.2.4 Life Cycle of a Class

When a class is used in a program, an object of that class is created. It stays in
existence until its dies. The C++ framework for the birth/death cycle of a class’s
object is its contructor(s) and destructor constructs. C++ language allows explicit
and implicit execution of a class’s contructor and any derived-from classes with their
constructors. It always builds the class’s object from base-to-derived order. In death.
the destructors are run in derived-to-base class order, that is in opposite order to the
creation of the constructors. These are discrete execution points of the class’s object.
Knowing this, why not allow the compiler writer use of these discrete logic points for
his own purposes? Within these logic points, all other class procedures can be run.

Looked at this way, the constructor/destructor encapsulates all other activities of the

class.

2.2.5 Events

Like any developer of software, I prudently try to add functionality with minimum
cost. Within the life/death cycle of a class, there is a lot of room to impose func-
tionality. Now lets step back and reflect a little on what additional behaviours a
compiler writer might need with the grammar’s symbols. My first thought is tracing
of the symbol while parsing takes place or receiving the parsing environment for lo-
cal semantic processing. Well, use of constructors as a container to receive injected
functionality leads to the problem of distribution. Because a class can have many

constructors, how does one centralize a common execution point? My solution is to

13

not distribute the commonality throughout each constructor but to add a procedure
op parameterized with the parse environment to each class and to ensure that this
common procedure gets executed right after the constructor is executed. As there is
only one destructor to a class, this becomes a common stop for additional function-
ality at the tail end of a class’s life. And so, code directives of the grammar language
can be used to inject the compiler writer’s code into these end points.

A more deeper question arises when dealing with a grammar’s symbols. Modern
languages like C++ and Java have grammars with hundreds of symbols. What options
does a compiler writer have in corralling these symbols and associating code to be
executed in these contexts? Is there a nice way to corral these symbols such that the

following can be done?:

1. to traverse the symbols within a context. For example, the traversal of an
abstract syntax tree emitting compiled code.

(S

during the traversal of the symbols, polymorphic code associated per symbol
gets executed. Each traversal context should support different functionality.

3. the code to be executed per symbol should be encapsulated and should be
imported into the to-be-traversed context.

Yes there is an elegant way to do this within the OO paradigm: use of Patterns.
Such a pattern is developed in this thesis — Iterator-Dispatch of Objects and their
Works(IDOW). It is a variation on some of the patterns described in “Design Patterns
Elements of Reusable Object-Oriented Software”[5]. Basically the support procedure
is part of the symbol base class emitted. This procedure is accept-workers. All sym-
bols of a grammar — terminals, nonterminals, and productions — are built with
this functionality. Throughout the thesis, different contexts needing the IDOW sup-
port are developed. The abstract mechanisms driving the IDOW pattern is fully

documented in the appendix.

14

So, inherently built into a class will be its variations on birth, improvisations

during life. and its death throes — op, accept_workers, and use of the destructor.

2.3 Summary

To recapitulate, using all of these features of C++ provides a very powerful defin-
ing capability to encapsulate the grammar’s components. Throughout the following

chapters, these three points are illustrated:

1. the birth-life-death cycle of a class

N

inheritance — abstract base classes enforcing behaviours

w

polymorphism — dynamic variations in behaviors

The life cycle originates all the class designs emitted. Code directives of the gram-
mar language use this pattern to inject code into the constructors, destructor, and
ancillary methods of the class. Base classes build real classes through inheritance,
with the svntax-directed code being put into these newly formed classes. During the
compiler/compiler implementation, Microsoft Foundation Class Library (MFC) was
used; some of MFC'’s classes used are CObject, CString, and various container classes
[1]. These classes show up in the examples developed later. In the future, as the
Standard Template Library(STL) has stabilized, the emitted class definitions can be

converted to use STL.

Chapter 3

The Marriage of OO with CFG

As an introduction to this chapter, I am going to ask four related questions sur-
rounding different stages of syntax-directed parsing that a compiler writer reflects

on:

1. How does one intelligently certifv a grammar — both in the reading of the
source definition and at run time?

How does the compiler writer relate to the emitted code?

[Rv]

3. How does the emitted LR(1) table relate to the grammar definition?

4. How does the svntax-directed code use the defining grammar’s objects: rules
and terminals?

At whatever stage the compiler writer is in, each stage should relate back to the
grammar’s definition. All terms used in the definition should be embedded in the
other stages. In the world of program debuggers, the running program is mapped
back to the source code along with its run time values. In grammar debugging. one
should relate back to the definition and if inclined, use the compiler’s debugger to

examine the emitted code at run time.

16

From examining past bottom-up implementations, one principle issue surfaced
which is rules and terminals have parallel definitions: definitions within the grammar,
and definitions supplied for the emitted programs. The accompanying syntax-directed
code, where this code is injected into the execution flow and how it is implemented,
became the expertise of the bottom-up parsing guru. None of the definitions were
integrated; they were spread amongst global variables and constants. The syntax-
directed code was difficult to assess when debugging. Due to the computer language
used and space efficiency, the implementation process obscured the grammar’s vo-
cabulary and meaning. Table fiddling, due to grammar inadequacies, paid dearly in

understanding how the grammar was implemented.

So we can conclude that the vocabulary boundaries between the rules and their
terminals, and the syntax-directed code must be integrated into a framework solv-
ing the above observations with no distortion. Clarity and grammar certification are
number one in importance. The objects used must be synthesized across all compil-
ing boundaries so that the compiler’s code is readable. Now the fundamental issue
becomes “how to define and translate a grammar into emitted entities with attributes
and related personalities having a volubility?”. Clarity of definition throughout all
phases must be consistent. The names in the grammar must be identically expressed
in the emitted code. Their reference in the syntax-directed code, again, must be
identical. Their definitions should be centrally defined: they should not spread across
various global variables and constants. Multiple grammars used together must work in
harmony and if possible, each term within each grammar should be a self-contained
definition. Modularity should be supported in the syntax-directed code — global

awareness should be minimized: its local run environment should be imported via

17

passed parameters.

My solution to this problem is use an object-oriented discipline by applying class
definitions to the compiling objects at hand. This means that terminals, rules and
their subrules should all be defined by class definitions built from abstract base classes.
Class definition addresses the coherence of items used in all compiling parts along
with syntax-directed code’s association with and integration into these classes. To
lessen code shock, the syntax-directed code and the class definitions produced by
the grammar all use the C++ language. The grammar language itself models the G+
class construct. The grammar’s supporting constructs are designed to fit the G+
class’s life cycle which accompanies each entry in the grammar’s vocabulary. A class
name is chosen by the compiler writer for each rule and terminal. Naming control by
the compiler writer gives the C++ code its freedom; it is not held to implementation

restrictions (unless one feels C++’s naming convention restrictive).

Because the grammar is the source, I wanted the compiler writer to stay within
the grammar definition when debugging his code. To do this, the grammar’s rules and
terminals each have a symbolic key; this key is incorporated into the emitted object’s
class definition; in the case of the rule, it is also the class name. The symbolic
key becomes the translation between the running object and the grammar'’s defining
vocabulary which aids the debug process with its automatic action service facilities.
Its value is a constant literal equated in the class’s contructor id parameter. The

symbolic key is the handle used in the LR(1) table lookup of its objects.

Molded into this framework is the syntax-directed code which seamlessly injects
into the objects being compiled: in the grammar, code directives achieve the integra-

tion. For multiple parse staging using different grammars: one parsing stage’s output

18

becomes the following parsing stage’s input. The lexical and syntactical stages use
a centrally defined terminal vocabulary whereby tokens can be manufactured over
time: terminals built in previous grammars can become assembly units for other
more sophisticated meta-terminals being built in future parses.

But what about using these emitted objects in different contexts? Tracing of
tokens, copyving, or archiving of tokens are examples Qf such needs. To assist the
compiler writer, a skeleton IDOW pattern is emitted. The abstract class definition
becomes the building block in defining other specific actions.

A taste of parsing with objects is presented using multiple parse passes:

#include "clr_passi_lexer.h"

#include "clr_pass2_lexer.h"

Get_chr gt; // raw character dispenser

Token_container passl_tokens;

Clr_passl_lexer passl_table; // parse table

Parser passl_parser(&passl_table,>,&passl_tokens);

passi_parser.parse();

// Example: IDOW pattern for tracing of tokens
clog << "start trace of passl tokens\n";
Cprint_terminals_dv print_terminals(clog);
Cterminal_token_container_iterator
passl_tokens_iter(&pass1_tokens,&print_terminals);
passi_tokens_iter.access();

// Example: passl tokens piping into pass2 parsing

Token_container pass2_tokens;

Clr_pass2_lexer pass2_table; // parse table

Parser passQ_lex_parser(&passQ_table,&passl_tokens,&passZ_tokens);

pass2_lex_parser.parse();

// re-use of IDOW pattern on token dump
clog << "start trace of pass2 tokens\n";
Cterminal _token_container_iterator
lr_pass2_tokens_iter(&pass2_tokens,&print_terminals);
passQ_tokens_iter.access();

This example shows two grammar staging using the IDOW pattern to print-dump

their tokens. The C++ comments annotate the example’s sections.

19

The following subsections define my object-oriented approach to the grammar’s
vocabulary: rules and terminals. The use of these symbols as translated into G-~
classes is developed along with their predefined actions. The syntax-directed opera-
tions using these symbols, the mechanism to access these symbols through objects,
and extensions available to the compiler writer to enhance these symbols are also
evolved. The development of the subject uses a top-down approach starting with
the abstract base classes that are universal to all symbols followed with the concrete
class definitions building on these abstract classes. Throughout the development,
the skeletal dynamics of these symbols are explained in answer to the four questions

posed at the beginning of this section.

3.1 Symbols

As a reminder from CFG defined in chapter 2, productions are rules. Structurally, the
right-hand-side of a rule is its subrule. The make-up of productions are symbols drawn
from the terminal and nonterminal alphabets. Nonterminals and the start symbol can
be deduced from the productions. In the development of symbols, the terms used will
be drawn from the productions and terminals with the implicit understanding that
the nonterminal symbols are inferred. Interchangeably, rules and nonterminals will
be used as nonterminal symbols. When the structure of the production is important,
its context will be explicitly expressed.

In my class design of a grammar’s symbols, there is one abstract class spawning all
the terminal and nonterminal symbols , and two companion abstract classes providing
syntax-directed services for these symbols. As previously developed, a base class acts

as a common repository of data and functionality. These classes are:

20

e CAbs_Irl_sym base class for all grammar symbols: rules and terminals
e CAbs_lrl_sym_workers support class for the IDOW pattern service

e CAbs_s_r_rtn action class for stacking services

The companion classes are part of the CAbs_Iri1_sym class using the “hasa” relation-

ship. These classes are now explained.

3.1.1 CAbs_lri_sym Abstract Base Class: Mother Nature to

All Symbols
CAbs_lr1_sym class raison d’étre is:

e to provide a symbolic identity used in tracing and as a key in the LR(1) table
lookup of objects.

e to contain action classes supporting the parsing activities of shift and reduce
stacking operations, and lookahead symbol used in the reducing operation.

Its C++ class definition is:

class CAbs_parser;
class CAbs_1lri_sym: public CObject{
public:
CString* idQ);
const char=* sym_id Q) ;
virtual void op(CAbs_parser= Parser_env)=0;

void look_ahead_rtn(CAbs_s_r_rtn* Look_ahead_rtn);

CAbs_s_r_rtn* look_ahead_rtn();

void shift_rtn(CAbs_s_r_rtn* Shift_rtn);

CAbs_s_r_rtn#* shift_rtn();

void reduce_rtn(CAbs_s_r_rtn* Reduce_rtn);

CAbs_s_r_rtn* reduce_rtn();

virtual ~Cabs_lri_sym();

virtual void accept_workers(CAbs_lrl_sym_workers* Worker);
protected:

CAbs_lrl_sym
(CAbs_s_r_rtn* Look_ahead_rtn
,CAbs_s_r_rtn* Shift_rtn
,CAbs_s_r_rtn* Reduce_rtn
,const charx Id);

private:
CString= id_;

-

CAbs_s_r_rtnx look_ahead_rtn_;

CAbs_s_r_rtn* shift_rtn_;
CAbs_s_r_rtn* reduce_rtn_;

}; S

Two routines are special and were described in OO’s Events of the previous chap-
ter: op and accept.workers. The op routine always gets executed right after the
constructor ends — injected code is placed inside it by the “op” language directive.
It is virtually declared without an implementation which forces the deriving class to
define and to implement. It is a constant execution point between the constructor,
and the symbol’s destructor. Passed to it is a CAbs_parser object defining the run-
ning parse environment. The compiler writer’s code for op uses the cast-operator to
turn the abstract parser into a specific class — usually the LR(1) parse table class
that is emitted from the language’s “fsm” construct which is described in a future
chapter. Between the op and destructor events, user code routines execute along with
the parser’s stacking routines associated with the symbol. op also has a stack tracing
macro included in its implementation. This execution point is applied to all emitted
classes where there is an “op” language directive.

The accept_workers routine supports the IDOW pattern. It is the gateway for
the symbol to execute code-specific routines imported into it. Due to the base class
passed parameter, only one general action can occur. Because the grammar defines
specific rules, the parameter must be abstract specific to the grammar and not to
an abstract singularity. The workers are local to each defining grammar and hence
each grammar must have their distinct abstract middlemen classes. Because I found

this pattern very useful, as a courtesy to other compiler writers using this tool I have

22

included it in all the classes emitted. It is there for the using.

Included into the base symbol class are bottom-up action objects which take on
the names of shift_rtn, reduce_rtn, and look_ahead_rtn. These action objects are the
dietary supplements for bottom-up behaviors used in various contexts — they are
execution points to hang compiler writer’s code.

Figure 3.1 shows the class hierarchy of the gramrﬁar symbols: the base class
with its deriving abstract middlemen classes through to the actual real symbol class
definitions. The middleman provides a layer between generality and specifics. This
line divides the run behavior from everyone acts the same to everyone having an
individual personality. Their abstract C++ class names are built from the “fsm-class”
language construct.

The id_ variable is the symbolic value used in tracing of a grammar at execution
time and in the LR(1) table lookup. Its access function has the same name. The
other variables are event driven classes described later — look_ahead. rtn, shift_rin,

and reduce_rin.

i CObject l

— cabs_ir_sym |

——{ raw characters J

——{ Terminals’'s abstract middlernan class for grammar's terminals

——i grammar’s concrete terminal classes J

——1 CAbs_rule_sme

'——{ Rules's abstract middleman class for specific grammar l

——|7grammar's concrete rules and subrules classes J

Figure 3.1: Class hierarchy of symbols

3.1.2 CAbs_lr1_sym_workers Base Class for IDOW Pattern
Support

The CAbs_lrl_sym_workers class supports the IDOW pattern having this definition:

class CAbs_lri_sym_workers: virtual public CObject{
public:

CAbs_lrl_sym_workers();

virtual “CAbs_lri_sym_workers();

virtual void general_contracting(CAbs_lri_sym=* Object);
};

The “virtual public CObject” phrase marries the dispatch part (using double dispatch

is defined in the IDOW Pattern appendix) of the IDOW pattern with the pool-of-

24

workers defined here. Multiple inheritance is the “isa” relationship joining these two

entities together. This is G++’s way of doing it.

Its general_contracting routine is the does-all facility for the IDOW pattern. The
passed object CAbs_lrlI_sym is a nondescript entity requiring no specialization. An
example of a general IDOW pattern is the disposal of characters whom are gen-
eral class objects building up specialized tokens. These general character objects
call general_contracting which just deletes itself. For specialization, each grammar’s
middlemen classes are derived from this class. Throughout the following sections,
specialization within various contexts is talked about using Figure 3.2 class hierarchy.

The IDOW appendix explains fully this pattern with all its linked parts.

| CObject]

—t CAbs_Ir1_sym_workers J

—{ grammar’s abstract middleman class for terminal workers]

—| grammar's concrete classes of terminal workers I

—t grammar’s abstract middleman class for rules's workers l

_'| grammar’s concrete classes of rule and subrule workers J

—‘I CAbs_sob_workers— IDOW support for Ir1 table objects J

Figure 3.2: IDOW'’s workers class hierarchy

N
t

3.1.3 CAbs_s_r_rtn Abstract Base Class for Shift, Reduce,

Lookahead Action Services

This abstract class provides syntax-directed services for the symbol when the parser
does a specific operation: two of the actions, shift and reduce, are activated when
the svmbol is put on or taken off the stack; the lookahead activity executes when the
terminal svmbol is the boundary symbol used by the parser’s reduce operation when
collapsing the right-hand-side of a production into its left-hand-side rule. The “s.r.”

in its name are mnemonics for the shift and reduce actions. Its definition is:

class CAbs_s_r_rtn{

public:

CString* idQ;

const char* sym_id();

virtual void op(CAbs_lrl_sym* Sym, CAbs_parser=* Parser_env)=0;

virtual “CAbs_s_r_rtn();
protected:

CAbs_s_r_rtn(const char= Id);
private:

CString=* id_;
};

CAbs_s_r_rtn has the same defining template as the CAbs_lri_sym class described
previously. A symbolic key identifies itself for tracing purposes. Its op routine receives

two parameters:

1. the symbol associated with this action class

[S)

. the parser’s run environment. The top symbol on the parse stack is the same
svmbol passed in the first parameter. It is passed as a convenience to the
compiler writer.

All real action classes derive from this base class which is shown in Figure 3.3. They

are associated with their rule or terminal class definition by inclusion.

26

r CAbs_s_r_rn J

__{ Concrete stack push classes - rules and terminals j

_{ Concrete stack pop classes —- rules and terminals I

——{ Concrete stack lookahead classes -— terminals only]

Figure 3.3: Class hierarchy of stack services

In the appendix A — The Grammar Language, these language action facilities are
fully documented under “Terminals — Individual Components” and “Rules Section”.
How useful this base class is will be judged over time. Whether the derived services
are too general within the context being run — like the lookahead service which only
sees the parsing stack before the reducing of the subrule into its rule, I felt automatic
“firing off” mechanisms for the compiler writer should be designed into the language.

This is just one such setting.

3.2 Terminals

To discuss terminals, the following grammar excerpt shows a simple terminal with all

its syntax-directed routines defined:

(sym-class Csymbol_c
,sym-look-ahead-rtn CSymbol_c_look_ahead_rtn
,stack-pushed-rtn Csymbol_c_pushed_rtn
,stack-popped-rtn Csymbol_c_popped_rtn);

V)
~l

The terminal symbol is ¢ and to its right is the packaging that relates the termi-
nal to its C++ class name and syntax-directed activity classes. The C++ class name
assignment uses a keyword identifving the relationship expressed with its C++ class
name partner. In this example, all the C++ class names start with the capital letter
“C” and are to the right of their keywords: for the c terminal, its C++ class name
is Csymbol_c supplied by the keyword sym-class. As part of each syntax-directed
keyword, the stack activity indicates when the activity will execute — for example,
stack-pushed-rtn keyword indicates this class will be executed when the c terminal is
pushed onto the parse stack. The only exception is the sym-look-ahead-rin keyword
that provides an activity when it is used as the lookahead symbol in a reduce oper-
ation. These class names are compiler writer chosen and so should provide clarity
and familiarity to the emitted code. From the example, the C++ name for the looka-
head action class is Csymbol_c_look_ahead_rtn. This name is a little overkill but
it brings home the point that what-you-want-is-what-you-get. For brevity, the G+
syntax-directed code has been omitted from this example. Appendix A “Terminals

Section: Example” fully details these language contructs.

grammar file include files

compiler / compiler

! header files

terminals
[

rules, subrules, Ir1 table class,
and compiler writer code

parallel tables

implementation files

grammar's symbols, Ir1 table class,
and compiler writer's code

parallel tables

loading of symbols, optimized reduction sets,
and Ir1 table reduce routine

ir1 table load --- possibly multiple files

Figure 3.4: Emitted source files

When the grammar is compiled, various G+ source files are produced as depicted
by Figure 3.4. The boxes with arrows leading into or out of the compiler/compiler
box are files identified by their boxed comments. None arrowed lines emanating from
the file boxes indicate the file’s contents. The following subsection is an extract from

the “Ctsuite” grammar: Appendix C “Lrl Grammar Test Suite”.

29

3.2.1 Specialization for the Terminals by Abstract Middle-
men Classes

Middlemen classes define the boundaries of specialization for the compiling grammar
and its vocabulary. They provide the segregation required in a polyglot of grammars
each requiring their own name space to prevent naming conflicts of classes. The

same comments apply to rules’ names. For the “Ctsuite” grammar example, these

middlemen are:

e CAbs_Ctsuite_terminal_objects.workers defines the specific workers for the gram-
mar

e CAbs_Ctsuite_terminal_sym defines the base terminal which uses the specific
workers

Their excerpted G-+ definitions are:

class CAbs_Ctsuite_terminal_objects_workers;
class CAbs_Ctsuite_terminal_sym: public CAbs_lrl_sym{
public:
virtual “CAbs_Ctsuite_terminal_sym();
virtual void // accept_workers rtn supporting IDOW pattern
accept_workers(CAbs_Ctsuite_terminal_objects_workers* Workers)=0;

protected:
CAbs_Ctsuite_terminal_sym
(CAbs_s_r_rtnx* Look_ahead_rtn
,CAbs_s_r_rtn=* Shift_rtn
,CAbs_s_r_rtn=* Reduce_rtn
,const char= 14);
};
class CAbs_Ctsuite_terminal_objects_workers: public CAbs_lrl_sym_workers{
public:

CAbs_Ctsuite_terminal_objects_workers();
“CAbs_Ctsuite_terminal_objects_workers();
virtual void worker_Csymbol_c(Csymbol_c* Object);
virtual void worker_bs$$_5(bs3_5* Object);
virtual void worker_Csymbol_d(Csymbol_d= Object);
virtual void worker_Csymbol_eolr(Csymbol_eolr* Object);
};

30

Again, the example shows the use of inheritance in constructing extended base
classes: CAbs_Ctsuite_terminal_sym derived from CAbs_Irl_sym the abstract symbol
class and CAbs_Ctsuite_terminal_objects_workers derived from CAbs_Irl_sym_workers
the base class supporting the IDOW pattern. The middlemen manufactured base
class names are built from individual components. For the terminals base class
name, its middleman is CAbs_Ctsuite_terminal_sym. The compound name is pre-
fixed by “CAbs.” indicating an abstract class, the grammar’s class name which in
this case is “Ctsuite”, and a suffix “_terminal sym”. For the terminal object workers,
its uses the same formula with its suffix being “_terminal objects_workers”. What is
important is CAbs_Ctsuite_terminal_sym’s accept_workers routine passed parameter
CAbs_Ctsuite_terminal_objects_workers. These are the specialized terminal workers
for this specific grammar. Use of inheritance from an abstract base, allows the rou-
tine to receive an open-ended number of real worker objects derived from this base
class. In the example above, the other workers defined are part of “Ctsuite” terminals

extracted from the lexical grammar: Appendix C “Lrl Grammar Test Suite”.

3.2.2 Concrete Terminal Classes

Once the abstract classes are defined, the concrete terminal definitions follow deriving
from their middlemen. All the concrete class names are controlled by the compiler
writer. These are his own reference points to the terminals in his code. It is his
vocabulary defining the objects. Due to forward referencing in the header file, the
action classes are defined first before the terminal class definition. The G+ code

snippet defines the terminal ¢ given above:

31

class Csymbol_c_look_ahead_rtn: public CAbs_s_r_rtn{
public:
Csymbol_c_look_ahead_rtn(const char* Id = "Csymbol_c_look_ahead_rtn");
“Csymbol_c_look_ahead_rtn();
void op(CAbs_lrl_sym* Terminal,CAbs_parser* Parser_env);

};

class Csymbol_c_pushed_rtn: public CAbs_s_r_rtn{
public:
Csymbol_c_pushed_rtn(const charx Id = “Csymbol_c_pushed_rtn");
“Csymbol_c_pushed_rtn();
void op(CAbs_lrl_sym* Terminal,CAbs_parser* Parser_env);

};

class Csymbol_c_popped_rtn: public CAbs_s_r_rtnf{
public:
Csymbol_c_popped_rtn(const charx Id = "Csymbol_c_popped_rtn");
~Csymbol_c_popped_rtn();
void op(CAbs_lri_sym* Terminal,CAbs_parser* Parser_env);

};
class Csymbol_c: public CAbs_Ctsuite_terminal_sym{
public:
“Csymbol_c();

void accept_workers(CAbs_Ctsuite_terminal_objects_workers= Worker) ;
void op(CAbs_parser* Parser_env);

Csymbol_c(const char* Id = "c");

static class Csymbol_c_look_ahead_rtn look_ahead_rtn;

static class Csymbol_c_pushed_rtn shift_rtn;

static class Csymbol_c_popped_rtn reduce_rtn;

Even though the terminal c is simple and contains no compiler writer’s injected
code, all terminals are emitted with the same mold — accept_workers to support
the IDOW pattern and op as an execution point, containment classes supporting its
services, and having the capacity to absorb the compiler writer’s own functionality as-
sociated with this terminal symbol. As described later in the rule-subrule subsection,

stack references to this terminal are strongly typed to the Csymbol_c class.

This is quite an achievement using C-=’s inheritance capability to define the gram-
mar’s svmbol:

¢ a meaningful name for the inheriting class

e encapsulation of data and functionality by the class definition

e automatic support of services carried inside the class

Is this a forced marriage for the grammar’s advantage? Yes it is, and what an off-

spring! OO certainly enriches the grammar’s terminal.

3.3 Relationships: Rules and Subrules Conventions

Continuing with OQ’s class definitions of a grammar, rules will be represented by
classes but what about their subrules? Technically, a subrule is a string of symbols
but can it be looked at as an encapsulating entity? ;Y'es with its contents being the
string of symbols represented by classes which are strongly typed. Subrules have
personalities: even though they are subordinates to the rule, they also exhibit syntax-
directed code needs. In measuring the interplay between the rule and its subrules, I
felt subrules should be class defined, their relationship to its rule should be controlled
somehow, awareness was important amongst the rules and their subrules, and their
generated class names should exhibit their ancestry. From these observations, four

control mechanisms evolved:

1. a naming convention to associate the subrules classes with their production rule

2. enumerated types to uniquely identify each subrule and rule within a grammar.
The rule’s birth, when the subrule collapses into its rule, should be an event that
is discrete with syntax directed code capabilities that distinguish its reducing
subrule.

33

3. strongly typed accessing of the run stack’s components. All items on the run
stack are class objects and they are accessed by their real class name and not
by an underlying class abstraction.

4. G++ friend usage allowing cross accessing of class parts between subrules, rules,
and action service routines

These four requirements are individually explored in the following subsections.

3.3.1 Class Naming Convention for Rules and Subrules

The rule’s symbolic key is also its class name. To easily distinguish a rule from a
terminal, the rule name must begin with a “$”: this is a liberty taken by the author.
Like any hierarchy, the subrule names should clue the reader into its relationship with
its parent: and so, using the rule’s class name, a “Rhs#_." prefix is affixed creating
the sub-rule’s class name. In the example below, “Rhsl_$E” is a subrule of SE. The
“&” in the prefix indicates the subrule’s position, relative to one, in the defining
production. This naming scheme is as bad as George Foreman’s bovs named George
Junior 1 and a two and a but it works. The following example, broken into two
pieces, shows the defining grammar’s rule $E followed by the emitted classes for the
subrules and its production.

// grammar’s rule
$E // rule’s symbolic key and class name
(sym-class Csymbol_$E // action objects class container
,1lhs
,stack-pushed-rtn Csymbol_$E_pushed_rtn
,stack-popped-rtn Csymbol_$E_popped_rtn)
{
-> %A a // subrule
-> $B b // subrule
->u $A b // subrule
->u $B a // subrule

W N -

34

$E has four subrules and stack action routines defined. The action routines act
exactly as described in the “action services” at page 26. The example is an extract
from the “Clrl_brl_rul fsm” grammar defined in “Test Suite Grammars” of Appendix

C. The derived from base class for the rule and subrule will be described later — see

“Abstract Middlemen Classes™ at page 43.

// emitted subrule classes for $E rule
class Rhsi_$E: public CAbs_Clrl_bril_rul_ fsm rule_sym{
public:
Rhsi_$E(int P1,int P2
,CAbs_parser= Parser_env
,int Sub_rule_id = Clri_brl_rul_fsm::rhsl_S$E
,const char* Id = "Rhs1_SE");
“Rhs1_$EQ);
void accept_workers(CAbs_Clrl_brl_rul_fsm_rule_objects_workers* W);
void op(CAbs_parser* Parser_env);
$A* get_p1();
Csymbol_a* get_p2();
private: friend $E;
friend Csymbol_$E_pushed_rtn;friend Csymbol_3$E_popped_rtn;
// subrule’s string of symbols: $A a
$A= pl_;
Csymbol_a* p2_;
CAbs_parser* parser_env_;
};
. subrules 2 and 3 omitted
class Rhs4_$E: public CAbs_Clri_bri_rul_fsm_rule_sym{
public:
Rhs4_$E(int P1,int P2,int P3
,CAbs_parser=* Parser_env
,int Sub_rule_id = Clri_brl_rul_fsm::rhs4_SE
,const char* Id = "Rhs4_SE");
“Rhs4_S$EQ) ;
void accept_workers(CAbs_Clr1_br1_rul_fsm_rule_objects_workers* W);
void op(CAbs_parser* Parser_env);

Csymbol_ux get_p1(); // access rtn: lst object
$B* get_p2Q); // access rtn: 2nd object
Csymbol_ax get_p3(Q); // access rtn: 3rd object

private: friend $E;

friend Csymbol_$E_pushed_rtn;friend Csymbol_$E_popped_rtn;
// subrule’s string of symbols: u $B a

Csymbol_u* pl_;

$B=* P2_;

Csymbol_a* p3_;

CAbs_parser* parser_env_;

};
// $E Rule
class $E: public CAbs_Clrl_bril_rul_fsm_rule_sym{
public:

“$EQ;
void accept_workers(CAbs_Clr1_brl_rul_fsm_rule_objects_workers* W);
void op(CAbs_parser* Parser_env);
$E(Csymbol_$E* Rule_sym_class,Rhs1_$E* Sub_rule_1

,CAbs_parser* Parser_env,const char* Id = "$E");
$E(Csymbol_$E#* Rule_sym_class,Rhs2_$E+ Sub_rule_2
,CAbs_parser* Parser_env,const char* Id = "$E") ;
$E(Csymbol_$E+ Rule_sym_class,Rhs3_S$Ex Sub_rule_3
,CAbs_parser* Parser_env,const char* Id = "$E");
$E(Csymbol_$E+* Rule_sym_class,Rhs4_$E* Sub_rule_4
,CAbs_parser* Parser_env,const char* Id = "SE");
private:

friend Csymbol_$E_pushed_rtn;friend Csymbol_$E_popped_rtn;
CAbs_parser* parser_env_;

};

From this C++ code example, not only is the naming conventions demonstrated
but so is OQ’s inheritance. It also pre-maturely shows that a subrule uses the same

middleman base class as its rule. This will be explained later.

3.3.2 Enumerated Types for Rules and Subrules

For the rule to know what subrule is recognized, two techniques are used:

1. enumeration of the grammar’s rules and their subrules in the grammar’s LR(1)
table class. The subrule’s constructor has its enumerated identity via a default
parameter value. This value can be queried by the sub_rule_id routine described

later.

[A¥]

use of contructors in the rule’s class to import the specific subrule object just
recognized

The previous example shows multiple constructor definitions for SE with its recog-

nized subrules. Each subrule has its enumerated identity defined in the enum constant

36

sub_rules. Each rule has its enumerated identity defined in the enum constant “rules”.
The rule’s constructor keeps track of the subrule’s identity in case the compiler writer
needs to dvnamically cast the abstract subrule back into its concrete self. The follow-
ing abbreviated example shows the enumerated types defined in the grammar’s fsm

class — the LR(1) parse table:

class Clri_bri_rul_fsm: public CAbs_fsm{
public:
enum sub_rules{start_of_sub_rule_list = 0
,rhs1_8$S
,rhs1_S$E,rhs2_8E,rhs3_$E,rhs4_3E
,Ths1_%$A,rhs2_SA
,rhs1_$B,rhs2_$B};
enum rules{start_of_rule_list = 0,rule_$S,rule_$E,rule_$A,rule_$B};

enum states{reduce = 0,R = reduce,no_of_states = 24};

Clril_bril_rul_f£fsm
(CMapStringTolOb** Gbl_sym_tbl=NULL

,const char= Debug="yes"

,const char= Comments="test out 1lrl compiler/compiler"
,const charx Id="1ri_bri.rul"

,const char= Version="1.0"

,const char= Date="8-oct-96") ;

“Clri_bri_rul_fsm();
void op(CAbs_parser* Parser_env);

The enum type sub_rules enumerates all the subrules using the following naming
convention:

“rhs#_<rule name>" — subrule with its position within its rule class name.
The enum tvpe “rules” enumerates all the rules within the grammar. It uses the
following naming convention:

“rule_” affixed with the rule’s class name
Normally these enum types are not needed by the syntax code, but they are open

to use. A typical use for the subrule enum is to turn its subrule’s abstractness back

37

into a concrete subrule, or to act as a filter value: for example, specific work is only
done in the rule’s op routine — the compiler writer does not want to be specific per
subrule’s syntax-directed code. The enumerated rule type is used in the bottom-up

table lookup. I have not seen any reason outside this use, but who can foretell the

future?

3.3.3 Strongly Typed Accessing of Run Stack Objects

Using the two previous examples, the subrule’s access routines to the stack objects
are defined in its class: see above Rhs4_8E class with its G-+ comments. Each rule’s
constructor receives its subrule class object. For $E’s fourth subrule, the class name
is Rhs4_$E. All the stack objects are strongly typed and class defined for each ter-
minal or rule. The stack’s objects are specifically accessed within each context. Each
subrule’s symbol object contained in its string of symbols is referenced by its relative
position taken from the left and having its own access routine with a call name for-
mat of “get_p#” where the “#” indicates the position relative to one. For an epsilon
rule there are no right-hand-side objects(empty string of symbols). For example, the
following SE rule’s contructor definition

SE (Csymbol_SE* Rule_sym_class, Rhs4 $E* Sub_rule 4

.CAbs_parser* Parser_env, const char* Id = "$E”);
accesses its subrule’s third stack object “a” by

Csymbol_a* a = Sub_rule_4—>get_p3();
Each subrule parameter is named “Sub_rule_#” with the “#” indicating its subrule
position within the rule. This specific name, “Sub_rule_4” in the constructor’s pro-

totvpe, was deliberately chosen to catch mistakes in the adding or the subtracting

38

of subrules from the rule which changes its references to the stack objects. Syntax-
directed code using these specific references are affected by the strong typing of the
stack objects. and so it requires maintenance. Errors will occur when the G-+ emitted
code is compiled. To ease the maintenance burden of modifying a grammar, place
new subrules at the end of the rule’s definition; unfortunately, removal of subrules
from a rule will cascade errors to the ensuing subrules. This is due to the subrule’s

relative position within the rule has changed which causes the problem.

3.3.4 C-+ Access Facility Using Friends

As a convenience to the compiler writer, the C++ friend access facility is used in the
subrule and rule manufactured classes. The friends of the subrule class are its rule
and the rule’s action services. For the rule, its friends are its action services. The
assigning of friends flows from the creation sequence of their objects. The subrule
is created first, then the rule who imports its subrule, followed by the rule’s action
services of the push and pop stack classes. These friends are declared in the above

emitted code examples using CG-+'s keyword “friend”.

3.4 Rules

Rules are symbols that build on the base symbol class defined previously in
“CAbs_lrl_sym Abstract Base Class: Mother Nature to All Symbols™ at page 21.
They have additional behaviours supporting their own rule-subrule relationships.

The following subsections describe these additional environments:

e an abstract base class CAbs_rule_sym for a rule

39

e stack service routines equivalent to terminals

e middlemen providing specialization for the IDOW pattern

3.4.1 CAbs_rule_sym Abstract Base Class to All Rules

All rules derive indirectly from the CAbs_rule_sym base class. It acts as a container
for rules and subrules Its contents are for specific class resurrections and action service
routines. The C++ class definition is:

class CAbs_rule_sym: public CAbs_lri_sym{
public:
CAbs_lrl_sym= rule_sym_class();
CAbs_s_r_rtn* shift_rtn();
CAbs_s_r_rtn* reduce_rtn();
CAbs_rule_sym=* sub_rule();

int sub_rule_id();

int ths_no_of_parms();

virtual “CAbs_rule_sym();
protected:

CAbs_rule_sym // rule

(CAbs_1lril_symx Rule_sym_class
,CAbs_rule_sym* Sub_rule

,const char=* I1d);
CAbs_rule_sym // sub rule
(int Rhs_no_of_parms
,int Sub_rule_id
,const charx Id);
private:

Cibs_lrl_sym* rule_sym_class_;
CAbs_rule_sym* sub_rule_;

int sub_rule_id_;

int rhs_no_of _parms_;

The two constructors support rule and subrule creations. They get run automat-
ically by the emitted code. They are access protected because this class must be
derived from. It cannot stand on its own. Each grammar produces its middleman

class deriving from CAbs_rule_sym.

40

The “rule.sym_class.” variable holds the container object for the stack action
service routines. The name comes from the keyword in the rule’s definition. The
name is a bit arcane; it should describe it as a container of stack services. At the time
of language design, the author thought this wrapper class should be explicitly defined.
Current use is considering the compiler/compiler to implicitly generate it class name.
The other variables relate the subrule used. “sub_ruleid.” is the sub_rule’s enum
value. From this value, using the dyvnamic cast operator in C++, you can recover its
concrete self. Each of these variables has an access function with the same name. As
a convenience, the shift and reduce service routines are accessed through their own
access routines shift_rtn and reduce_rtn rather than through the “CAbs_rulesym.”

variable.

3.4.2 Rule and Its Emitted Classes

To discuss rules, the following grammar excerpt shows a rule having all its syntax-

directed actions routines defined and having only one subrule:

$MM(sym-class R$MM
,1hs
,stack-pushed-rtn C$MM_pushed_rtn
,stack-popped-rtn C$MM_popped_rtn)

{
-> $S eog // subrule

};

As one can see, the rule is $MM and to its right is the packaging that relates the
rule to its G-+ code and syntax-directed activity classes as similarly and previously
described in the “Terminals” section. In the case of the exampled rule, the rule’s

symbolic key is “SMM” which is also the C++ class name in the emitted code. As

41

in the terminal definition, the G-+ class name assignment uses a keyword identifying
the relationship expressed with its C++ class name partner. In this example, all the
C++ class names start with the capital letter “C” and “R” and are to the right of
their kevwords. The only exception not having a C++ class name assignment is the (s
keyword that just provides additional G+ code to be injected into the rule’s defining
class named $MM and its implementation code. These class names are compiler
writer chosen; this acquaintance with one’s object names makes the syntax-directed
code legible (at least this is the intent). For brevity, the C++ syntax-directed code has
been omitted from this example. Appendix A “Rules Section: Example” fully details
the rule’s language contructs.

When the grammar is compiled, various C++ source files are produced. Within
the G+ definition header are appropriate abstract classes acting as middlemen.
The following subsection is an extract from the “Clrl_sp3_rul fsm” grammar whose
name becomes part of the generated abstract class’s name. For the rule, its mid-
dleman is CAbs_Clrl_sp3_rul_fsm_rule_sym prefixed by “CAbs_” indicating an ab-
stract class with its suffix “rulesym” (boy I'm long winded or is it my Germanic
thought process?). CAbs_Clrl_sp3_rul_fsm_rule_objects_workers passed parameter to
accept_workers is important. These parameters are the specialized rule workers for
this specific grammar supporting the IDOW pattern. Each grammar, in multi-pass
parsing, has its own middlemen. So far, I have not had any experience using the

rule’s IDOW pattern.

3.4.3 Abstract Middlemen Classes For Specialization of Rules

and Subrules

Usually there is a common terminal definition file with its IDOW middleman emitted
from a previous compilation of the terminal grammar. Middlemen classes define
the boundaries of specialization for the compiling grammar and its vocabulary as
described in the terminal section. They are the “dry wall”® material helping to prevent
class naming conflicts amongst grammars. One can still have a naming conflict but
this is controlled by the compiler writer. For the “Clrl_sp3.rul” grammar, these
middlemen are:

e CAbs_Clr1_sp3_rul_fsm_rule_objects_workers defines the specific workers for the
grammar

e CAbs_Clrl_sp3.rul_fsm_rule_sym defines the base rule which uses the specific
workers

Their excerpted C++ definitions are:

class CAbs_Clr1_sp3_rul_fsm_rule_objects_workers;
class CAbs_Clri_sp3_rul_fsm_rule_sym: public CAbs_rule_sym{
public:
virtual ~CAbs_Clri_sp3_rul_fsm_rule_sym();
virtual void
accept_workers(CAbs_Clrl_sp3_rul_fsm_rule_objects_workers* Workers)=0;

protected:

CAbs_Clrl_sp3_rul_fsm_rule_sym // rule
(CAbs_1lrl_symx* Rule_sym_class
,CAbs_rule_sym* Sub_rule
,const char= Id);

CAbs_Clrl_sp3_rul_fsm_rule_sym // subrule
(int Rhs_no_of_parms
,int Sub_rule_id
,const char= Id);

};
class CAbs_Clri_sp3_fsm_rule_objects_workers: public CAbs_lrl_sym_workers{

public:
CAbs_Clrl_sp3_fsm_rule_objects_workers();

43

-CAbs_Clri_sp3_fsm_rule_objects_workers();
virtual void worker_SMM($MM= Object);
virtual void worker_R$MM(RSMM= Object);
virtual void worker_Rhsi_$MM(Rhs1_$MMx Object);
virtual void worker_$S($S* Object);
virtual void worker_R$S(R$S= Object);
virtual void worker_Rhsi_$S(Rhs1i_8$S5= Object);
virtual void worker_Rhs2_$S(Rhs2_$S* Object);
virtual void worker_$A($A* Object);
virtual void worker_R$A(RSA* Object);
virtual void worker_Rhsl_$A(Rhsl_$Ax Object);
virtual void worker_Rhs2_$A(Rhs2_SAx Object);
virtual void worker_$B($B* Object);
virtual void worker_ R$B(R$B* Object);
virtual void worker_Rhsl_$B(Rhs1_$B= Object);
virtual void worker_Rhs2_$B(Rhs2_$B= Object);
}

Each worker is associated with a rule, subrule, or a stack action service. For
example, “worker_Rhs2_$B” can be read as worker for subrule 2 of rule $B — the
Rhs stands for right-hand-side meaning subrule.

These are base class middlemen that must be derived from if the IDOW pattern
is to be used. They are a shell from which the compiler writer embellishes his local
activities. Whether the compiler writer needs them or not, for the moment they are

emitted.

3.4.4 Concrete Rule Classes for Rule, Subrule, and Stack

Action Services

Once the abstract classes are defined, the concrete rule definitions follow deriving from
their middlemen. As always, the concrete class names are controlled by the compiler
writer. Due to forward referencing in the header file, the action classes are defined

first, followed by the subrules before the rule class definition. The G++ code snippet

44

defines the rule $MM given above along with its subrule Rh1_3MM, RSMM its

stack services wrapper class, and its stack service classes C$MM _pushed._rtn and

C$MM _popped_rtn:

// stack service routines
class C$MM_pushed_rtn: public CAbs_s_r_rtn{
public:
CSMM_pushed_rtn(const char* Id = “C$MM_pushed_rtn");
~C$MM_pushed_rtn();

void op(CAbs_lr1_sym* Rule,CAbs_parser* Parser_env);};
class C$MM_popped_rtn: public CAbs_s_r_rtn{
public:

C$MM_popped_rtn(const char* Id = "C$MM_popped_rtn");
~C$MM_popped_rtn();
void op(CAbs_lrl_sym= Rule,CAbs_parser=* Parser_env);};
class R$MM: public CAbs_lril_sym{
public:
R$MM(const char* Id = "$MM");
“R$MMQO) ;
void accept_workers(CAbs_Clrl_sp3_fsm_rule_objects_workers* Worker) ;
void op(CAbs_parser* Parser_env);
static class C$MM_pushed_rtn shift_rtn;
static class C$MM_popped_rtn reduce_rtn;};
// subrules for rule $MM
class Rhs1_$MM: public CAbs_Clri_sp3_fsm_rule_sym{
public:
Rhs1_$MM
(int P1, int P2
,CAbs_parser* Parser_env
,int Sub_rule_id = Clrl_sp3_fsm::rhsl_$MM
,const char* Id = "Rhs1_$MM");
“Rhs1_$MMQ);
void accept_workers(CAbs_Clrl_spS_fsm_rule_objects_workers* Worker) ;
void op(CAbs_parser* Parser_env);
$S* get_p1();
Csymbol_eog* get_p2(0);
private: friend $MM; friend C$MM_pushed_rtn; friend C$SMM_popped_rtn;
$S* pl_; Csymbol_eog* p2_; CAbs_parser* parser_env.;
};
// rule $MM
class $MM: public CAbs_Clri_sp3_fsm_rule_sym{
public:

“$MMQ) ;
void accept_workers(CAbs_Clrl_spB_fsm_rule_objects_workers* Worker) ;

void op(CAbs_parser* Parser_env);

$MM
(R$MM* Rule_sym_class

,Rhs1_$MM* Sub_rule_ 1

,CAbs_parser* Parser_env

,const char*= Id = "$MM");
private:
friend C$MM_pushed_rtn; friend C$MM_popped_rtn;
CAbs_parser* parser_env_;

};

From above, MM and its subrules classes derive from the base class
CAbs_Clr1_sp3-fsm_rule_.sym defined earlier. They have the same defining template
of support routines — op and accept_workers — and friendships as developed for

terminals.

3.5 Symbols’ Life Cycle as Class Objects

To put a better perspective on the creating, accessing, and dying of a grammar’s
symbols, Figure 3.5 with running comments shows their life’s spectrum in two parts:
life sequence and rule’s domain. Part one of the figure details the life sequence of the
parser’s stacked objects — terminals, subrules, and rules: their existence is described
with the accompanying parser’s stack action. Because the parser deals with pointers
of symbol objects, it is up to the compiler writer to control the delete sequence of
the object. To help alleviate when the object should be deleted, a delete attribute
not described but documented in the grammar’s language appendix is built into the
symbol’s class definition. It is checked by the parser at the time of object removal
from the stack as to whether it should be deleted. If the automatic delete attribute
is not turned on, then it is up to the compiler writer to explicitly delete the symbol

object.

46

1) Life sequence:

a terminal object is created
-- object’s pointer pushed onto the stack

reduce a rule:
-~ subrule object created
-- rule object created with imported subrule object pointer
~- stack reduced of subrule objects and

adjusted to contain rule’s pointer

2) Domain of a production:
rule

-~> contains pointer to subrule object

I
--> subrule
subrule’s objects are fetched from the stack
and stored as pointers inside the subrule’s object.
From this point, the stack reference is ignored.
l
--> contains strongly typed access routines to
its objects by relative position -- positiom 1,2...
starting from the left.

Figure 3.5: Creation timings and interplay between the subrule and its rule

The second part of the figure — Domain of a production — describes when and

how the rule-subrule interplay of objects work. It comments how the symbol pointers

on the stack are matched with the subrule’s string of symbols and how the rule then

accesses them.

3.6 Summary

This chapter covered all of a grammar’s symbols as implemented by OO’s components:

class packaging and inheritance using base classes. I feel this is a good union of 00

to a grammar. The evolution of the abstract base classes through to the middlemen

47

classes and final applied to the grammar’s symbols was explained. This structural
framework is just the beginning in exploring how bottom-up parsing can be played
with using class objects.

At the beginning of the chapter I asked four questions which will be assessed in

light of this chapter’s development. Here are the questions:

1. How does one intelligently certify a grammar — both in the reading of the
source definition and at run time?

[N]

How does the compiler writer relate to the emitted code?

How does the emitted LR(1) table relate to the grammar definition?

- w

How does the syntax-directed code use the defining grammar’s objects: rules
and terminals?

Firstly, the compiler writer names the grammar’s symbols which become the class
definitions of these symbols. So, G+ code inspection will find the same grammar
names for the productions as defined in the grammar. Tokens or terminals have their
svmbolic names supplied by the compiler writer. These tokens can be print dumped
using the IDOW pattern: the data dumped is the symbolic key of the terminal with
no distortion between the grammar and its C++ translation.

Secondly, the op procedure built within each symbol and action class has a ready
made tracing macro that reports its symbolic class name at runtime. Other facilities
in the “fsm” grammar language construct allow the compiler writer to turn on or
off this tracing facility. This is particularly useful in parallel parsing with multiple
grammars. It is the uniformity of the symbol’s name across the grammar and the G+
code equivalent that eases the compiler writer debugging efforts.

Regarding the access of these objects at run time, C++ enforces strong data typing

which has been incorporated into subrule classes. Each symbol in the subrule’s string

48

has its own access procedure built into the class which returns a pointer to that specific
class definition. All of this comes for free. An example of a grammar’s runtime trace
is given in the appendix. Question 3, LR(1) table relationship to the grammar, has

not been answered. This will be explored in the next chapter.

49

Chapter 4

Finite State Machine

This chapter reviews the ready-made class definitions used to build the finite state
machine of the compiled grammar. It starts with the base class development through
to the derived concrete classes. [assume the reader has an understanding of the
FSM: see [6] for the appropriate definitions. To complete its development, a grammar

example drawn from the appendix will be given in its emitted FSM form.

4.1 CAbs_fsm Abstract Base Class

The CAbs_fsm class is a holding class filled in by the grammar’s “fsm” language
construct, the generated LR(1) FSM, and various routines supporting the loading
up of the symbol table for rules and terminals. Some of the one time functions are
protected due to their local abilities. Access routines to the CAbs_fsm’s internal data
elements are there along with optimized terminal follow sets used by the parser’s
accept and reduce operations. Also, global optimization for common terminal symbol

table for multi-pass and parallel grammars is supported. Figure 4.1 shows the simple

50

class hierarchy defining the holding class for the finite state machine.

[CAbs_fsm]

__rconcrete grammar’s ir1 table class l

Figure 4.1: Fsm class hierarchy

This base class derives all emitted LR(1) tables. It is the compiler/compiler that
manufactures the concrete FSM class inheriting from CAbs_fsm. Below is CAbs_fsm
class definition:

class CAbs_fsm{

public:
virtual void op(CAbs_parser=* Parser_env)=0;
virtual CAbs_fsm* entry()=0;
virtual CAbs_fsm* exit()=0;

CString* idQ);
CString* version();
CString* date();
CString=* debug();
CString* comments () ;
void gened_date(CString* Gened_date);
CString* gened_date();
CPtrArrayx* fsm_tbl();
void fsm_tbl(CPtrArray* Fsm_tbl);
CMapStringTolb= fsm_sym_tbl();
void fsm_sym_tbl(CMapStringTolb= Fsm_sym_tbl);
CMapStringToOb* fsm_parallel_bndry_sym_tbl();
void fsm_parallel_bndry_sym_tbl
(CMapStringToOb* Fsm_parallel_bndry_sym_tbl);
int add_to_fsm_tbl(int State_no,CAbs_sob* Fsm_tbl_object);
CMapStringToOb* state_s_fsm_entry_list(int State_mno);
int state_s_fsm_entry_list

(int State_no
,CMapStringToOb* State_s_fsm_state_entry_list);
CAbs_sob= get_state_entry_for_symbol(int State_no,CAbs_lri_sym* Symbol);
CAbs_1rl_sym=* get_sym(const char* Id);
Cstate_s_boundry_set_index*
is_la_in_a_bndry_set

(Cstate_s_boundry_set_index_list* List_of_arrayed_bndry_set

,const char* Id);
void add_sym(CAbs_lrl_sym* Id);

o1

void add_parallel_bndry_sym
(int Index_to_arrayed_bndry_set
,CAbs_1rl_sym* Id);
virtual “Cabs_£fsm();
virtual CAbs_rule_sym* reduce_rhs_of_rule
(int Tos,CAbs_parser* Parser_env,int Sub_rule_no)=0;
virtual CAbs_fsm_oper* s_op()=0;// shift
virtual CAbs_fsm_oper* r_op()=0;// reduce
virtual CAbs_fsm_oper* a_op()=0;// accept
virtual CAbs_fsm_oper* e_op()=0;// error

void fsm_gbl_sym_tbl_ind(int Ind)
int fsm_gbl_sym_tbl_ind();

protected:

CAbs_fsm(CString= Id
,CStrings* Version
,CString=* Date
,CString* Debug
,CString=* Comments
,CPtrArray=* Fsm_tbl

,CMapStringToOb* Fsm_sym_tbl
,CMapStringToOb* Fsm_oper_tbl);
int C(int State_no,CAbs_sob* Fsm_state_entry_object);
CAbs_1lrl_sym* G(const char* Id);
CAbs_fsm_oper* F(const charx Id);
int add_parallel_sob_to_parallel_sob_list
(Cparallel_sobs_list* Parallel_sobs_list

,Cparallel_sob= Parallel_sob);
void init_bndry_sets_array(int No_of_indexes);
private:
CString=* id_; CString* version_; CString=* date_;
CString* debug_; CString* comments_; CString* gened_date_;
CPtrArray= fsm_tbl_; // state no to CMapStringTo0b

CMapStringToObx fsm_sym_tbl_; // symbol objects
CMapStringToOb* fsm_oper_tbl_; // operation objects
CObArray fsm_bndry_set_array_;

int fsm_gbl_sym_tbl_ind_;
};

As the components making up CAbs_fsm are large in number, their functionality
classifies accordingly:
e source from the “fsm” language construct — id, date, version, etc.

e LR(1) fsm table holder, and its support routines

32

e run support for the parser from the “fsm-operation” language construct. This is
commented-on in the next chapter and documented in the language appendix.

This exposé of CAbs_fsm should give the reader a sense of what OO gives to a FSM
environment. It is not the author’s intent to document each procedure contained
in the class: hopefully their names provide their functionality to the reader. The
following section now describes the component classes used to construct a LR(1)

FSM table.

[covject |
l___r CAbs_sob J

Cshift_sob

| Caccept_saob

I

Creduce_sob

I Cstate_s__boundry_set_index_lisi]

—isztate_s_boundry__set_index J

Figure 4.2: Lrl table’s class components hierarchy

4.2 CAbs_sob Abstract Base Class and Its Deriv-

ing Classes

CAbs_sob is the abstract base class that roots all derived LR(1) table’s components
making up the LR(1) state’s context, symbol being acted on, and the bottom-up parse
operation to be performed. The “sob” part of the namerstands for “state object” and
not what vou normally take the acronym for. Again, the accept_workers participates
in the “IDOW™ pattern for the LR1 table objects. The following is CAbs_sob class

definition:

class CAbs_sob: public CObject{
public:
~“CAbs_sob();
int self_state_no();
CAbs_lril_sym* 1ri_sym();
CAbs_fsm_oper* fsm_operation();
virtual void accept_workers(CAbs_sob_workers#* Worker)=0;
protected:
CAbs_sob(int Self_state_no
,CAbs_lrl_sym* Lrl_sym
,CAbs_fsm_oper* Fsm_operation);

private:
int self_state_no_;CAbs_lri_sym* lrl_sym_;CAbs_fsm_oper* fsm_operation_;

};

Figure 4.2 shows all the concrete classes derived from this base class. These are
the component classes that are mixed together to produce a LR(1) FSM table. Each

class is now explained with its accompanying C++ class definition:

e Cshift_sob class. Cshift_sob signals to the parser that a shift operation is to
be performed. Its contents identifies the state number it is in, the terminal sym-
bol being shifted, an enhancing shift operation detailed in the “fsm-operation”
language construct to be executed, and the go to state number for the shift

operation.

class Cshift_sob: public CAbs_sob{

public:

Cshift_sob(int Self_state_no
,CAbs_1rl_sym*= Lri_sym_to_shift
,CAbs_fsm_oper* Fsm_operation
,int Goto_state_no);

“Cshift_sob();

int goto_state_no();

void accept_workers(CAbs_sob_workers* Worker);

private: int goto_state_no_;

};

e Caccept_sob class. Caccept_sob signals to the parser that a accept operation
is to be preformed where by its contents indicate the subrule being collapsed
into its start-rule using the specific follow set. It indicates that the language
being recognized has been accepted by the grammar. The parser then signals
success to the caller of the parser.

class Caccept_sob: public CAbs_sob{

public:
Caccept_sob(int Self_state_no
,CAbs_lrl_sym* Lrl_sym
,CAbs_fsm_oper* Fsm_operation
,int Fsm_state_sym_enum) ;
“Caccept_sob();
int fsm_state_sym_enum();
void accept_workers(CAbs_sob_workers#* Worker) ;
private:int fsm_state_sym_enum_;
};

The variable fsm_state_sym_enum_ is the enumerated value of subrule being
accepted. Its value is defined by sub_rules enum constant in the concrete FSM

class.

e Creduce_sob class. Creduce_sob signals to the parser that a reduce operation
is to be preformed where by its contents indicate the subrule being collapsed
into its rule using the specific follow set.

class Creduce_scob: public CAbs_sob{
public:
Creduce_sob(int Self_state_no
,CAbs_1r1_sym* LA _1rl_sym_to_reduce_with
,CAbs_fsm_oper* Fsm_operation

o])

,int Fsm_state_sym_enunm) ;
~Creduce_sob{();
int fsm_state_sym_enum();
void accept_workers(CAibs_sob_workers* Worker);
private:int fsm_state_sym_enum_;

s

The variable fsm_state_sym_enum._ is the enumerated subrule being reduced as
defined in the enum variable sub_rules of the concrete FSM class.

e Cerror_sob class. It is built for the possibility of inserting, manually, error
objects into the LR(1) table. I have not fully explored it but here is its definition:

class Cerror_sob: public CAbs_sob{
public:
Cerror_sob(int Self_state_no
,CAbs_1lrl_sym* Lrl_sym
,CAbs_fsm_oper=* Fsm_operation);

~Cerror_sob{();
void accept_workers(CAbs_sob_workersx* Worker) ;

};

e Cstate_s_boundry_set_index_list class. It is a container of optimized follow
sets of Cstate_s_boundry_set_index objects used in the accepting and reduc-
ing operations of the subrule into its rule. It saves space in the LR(1) table by
sharing common follow sets — terminal symbols — used across all the accept
and reduce operations. Instead of one terminal per reduce or accept operation
which can produce a lot of items to be loaded into the FSM table depending
on the number of terminals in its follow set, only one entry per reducing or
accepting subrule with its follow set pointer is entered into the FSM table.

class Cstate_s_boundry_set_index_list: public CAbs_sob{

public:
Cstate_s_boundry_set_index_list
(int Self_state_no
,CObArray= State_s_boundry_set_index_list

,CAbs_1ri_sym* Lri_sym); // key Illb
Cstate_s_boundry_set_index_list

(int Self_state_no
,Cstate_s_boundry_set_index* One_only_boundry_set
,CAbs_lrl_sym* Lri_sym); // key |l|b

“Cstate_s_boundry_set_index_list();

o6

void accept_workers(CAbs_sob_workers* Worker) ;

CObArray* state_s_boundry_set_index_list();

void add_boundry_set_index_to_list
(Cstate_s_boundry_set_index* Boundry_set_index);

int no_of_boundry_set_indexes_in_list();

Cstate_s_boundry_set_index* boundry_set_index(int List_ind);

Cstate_s_boundry_set_index* one_only_boundry_set();

void one_only_boundry_set

(Cstate_s_boundry_set_index* One_only_boundry_set);

private:

CObArray= state_s_boundry_set_index_list_;
Cstate_s_boundry_set_index=* one_only_boundry_set_;
};

e Cstate_s_boundry_set_index class. It identifies a specific follow set used in
the accepting or reducing of a specific subrule into its rule. Its contents are
specific follow set index keyed to Cstate_s_boundry_set_index_list and the
follow set pointer.

class Cstate_s_boundry_set_index: public CAbs_sob{
public:
Cstate_s_boundry_set_index
(int Boundry_set_index, CAbs_lrl_sym=* Symbolic_boundry_set_id);
~Cstate_s_boundry_set_index();
int boundry_set_index();
void accept_workers(CAbs_sob_workers= Worker) ;
CAbs_lri_sym* symbolic_boundry_set_id();
private:
int boundry_set_index_;
CAbs_1rl_sym* symbolic_boundry_set_id_;
};

These are the ingredients that make up the FSM table. The next section gives 2 real

FSM class.

4.3 A Real FSM Class Definition

Here is the emitted G class for the Spector’s grammar [13] used to show the run-

time parse tracings described in Appendix C. From the example below, inheritance

a7

is used and its constructor uses the defaulted values provided by the “fsm” language
construct. It contains the enumerated constants sub_rules, rules, states that were

previously described. These are the local sign posts of the compiled grammar.

class Clri_sp3_fsm: public CAbs_fsm{
public:
enum sub_rules{start_of_sub_rule_list = 0
,ths1_$MM, rhsi_$S,rhs2_8$S, rhsi_$A,rhs2_%$A,rhs1_$B,rhs2_$B};
enum rules{start_of_rule_list = 0O,rule_$MM,rule_$S,rule_$A,rule_$B};
enum states{reduce = 0,R = reduce,no_of_states = 17};
Clri_sp3_fsm
(CMapStringTolbx** Gbl_sym_tbl=NULL

,const char= Debug="yes"
,const charx* Comments="test out 1lri"
,const char* Id="1lri_sp3.rul"
,const char= Version="1.0"
,const charx* Date="8-oct-96") ;
“Clri_sp3_fsm();
void op (CAbs_parser* Parser_env);
CAbs_fsm* entry();
CAbs_fsm* exit();
CAbs_rule_sym* reduce_rhs_of_rule
(int T
,CAbs_parser* Parser_env
,int Sub_rule_no);

CAbs_fsm_oper=* s_op();//shift operation
CAbs_fsm_oper* r_op();//reduce operation
CAbs_fsm_oper* a_op();//accept operation
CAbs_fsm_oper* e_op();//error operation

private:
void load_symbols_into_fsm_symbol_table();
void load_symbeols_into_parallel_bndry_fsm_symbol_table();
void load_states_into_fsm_state_table();

CAbs_fsm_oper* s_;// shift

CAbs_fsm_oper* r_;// reduce

CAbs_fsm_oper* a_;// accept

CAbs_fsm_oper* e_;// error

Private and public support functions are generated by the code emitter of the com-
piler/compiler:
e load_symbols_into_fsm_symbol_table

58

e load_symbols_into_parallel_bndry_fsm_symbol_table
e load_states_into_fsm_state_table

e reduce.rhs_of_rule

The names of the above functions indicate their intent: for example, the re-
duce_rhs_of-rule procedure handles the reducing of a subrule into its left-hand-side
rule. It creates the subrule object, executes its service routines, creates its corre-
sponding rule, and returns a pointer of the newly created rule object back to the
parser.

Two of the local functions contain optimizations which are global terminal symbol
table support shared across multiple grammars, and local shared follow sets for the
accept/reduce operations. The op function is as described in other contexts: it pro-
vides a code injection point that is executed after the constructor which is supplied by
the “op” language directive in “fsm” language contruct. The entry and ezit functions

are presently vestiges of the future or past thoughts: they currently are useless.

4.4 A Real FSM LR(1) Table Implementation

As the thesis deals in class definitions, the implementation code below is given to
spice up the definition process. It is the G++ LR(1) table implementation for the
Spector’s grammar [13] given in appendix with its depicted fsm. The routines C and
G — load the LR(1) component objects into the table, and find the object in the
symbol table — have shortened names because the first draft of the emitted source
files were too large for the C++ compiler used. The example demonstrates globally

defined boundary sets used in the reducing of subrules and in the accepting of the

39

grammar:

#include "stdafx.h"
#include "clril_sp3_rul.h"
void Clrl_sp3_£fsm::
load_states_into_fsm_state_table(){
Cstate_s_boundry_set_index_list* bsobl;
Cstate_s_boundry_set_index* bsob;
CObArray=* bsob_array;
CAbs_lril_sym* symbolic_boundry_set;
Sym_parallel_bndry_operator* bs_op =
(Sym_parallel_bndry_operator*)G("{[|b");
// sl closure
C(1,new Cshift_sob(1, (R$MM=*)G("$MM"),s_,1));
C(1,new Cshift_sob(1, (R$S*)G("$S"),s_,11));
C(1,new Cshift_sob(1l, (REA*)G("$A"),s_,7));
C(1,new Cshift_sob(1, (R$B*)G("$B"),s_,9));
C(1,new Cshift_sob(1l, (Csymbol_a*)G("a"),s_,2));
// s2 transitive
C(2,new Cshift_sob(2, (R8A*)G("$A"),s_,3));
C(2,new Creduce_sob(2, (bs$$_1x)G("||I11"),r_,5));
C(2,new Cshift_sob(2, (R$B*)G("$B"),s_,5));
C(2,new Creduce_sob(2, (bs$$_2#)G("|112"),r_,7));
// s2 closure
C(2,new Cshift_sob(2, (Csymbol_ax*)G("a"),s_,13));
bsob_array = new CObArray;
bsobl = new Cstate_s_boundry_set_index_list(2,bsob_array,bs_op);
C(2,bsobl);
symbolic_boundry_set = (bs$$_2+)G("||12");
bsob = new Cstate_s_boundry_set_index(2,symbolic_boundry_set);
bsob_array->Add(bsob) ;
symbolic_boundry_set = (bs$3_1#)G("[[[1");
bsob = new Cstate_s_boundry_set_index(l,symbolic_boundry_set);
bsob_array->Add(bsob) ;
// s3 transitive
C(3,new Cshift_sob(3, (Csymbol_c*)G("c"),s_,4));
// s4 transitive
C(4,new Creduce_sob(4, (bs$$_1*)G("[111"),r_,8));
symbolic_boundry_set = (bs$$_1+)G("[[I1");
bsob = new Cstate_s_boundry_set_index(1,symbolic_boundry_set);
bsobl = new Cstate_s_boundry_set_index_list(4,bsob,bs_op);
C(4,bsobl);
// s5 transitive
C(5,new Cshift_sob(5, (Csymbol_b*)G("b"),s_,6));
// s6 transitive
C(6,new Creduce_sob(6, (bs$$_2%)G("[]12"),r_,6));
symbolic_boundry_set = (bs$$_2*)G("[[12");
bsob = new Cstate_s_boundry_set_index(2,symbolic_boundry_set);
bsobl = new Cstate_s_boundry_set_index_list(6,bsob,bs_op);

60

C(6,bsobl);

// s7 transitive
C(7,new Cshift_sob(7,(Csymbol_b*)G("b"),s_,8));

// s8 transitive
C(8,new Creduce_sob(8, (bs$$_3*)G("I11[3"),r_,2));
symbolic_boundry_set = (bs$$_3%)G("I[13");

bsob = new Cstate_s_boundry_set_index(3,symbolic_boundry_set);
bsobl = new Cstate_s_boundry_set_index_list(8,bsob,bs_op);
C(8,bsobl);

// s9 transitive
C(9,new Cshift_sob(9, (Csymbol_c*)G("c"),s_,10));

// s10 transitive
C(10,new Creduce_sob(10, (bs$$_3*)G("1113"),r_,3));
symbolic_boundry_set = (bs$$_3*)G("[113");

bsob = new Cstate_s_boundry_set_index(3,symbolic_boundry_set);
bsobl = new Cstate_s_boundry_set_index_1ist(10,bsob,bs_op);
C(10,bsobl);

// sl1l1 transitive

C(11,new Cshift_sob(11, (Csymbol_eog*)G("eog"),s_,12));

// s12 transitive

C(12,new Caccept_sob(12, (bs$$_0*)G("1[10"),a_,1));
symbolic_boundry_set = (bs$$_0*)G("[][0");

bsob = new Cstate_s_boundry_set_index(0,symbolic_boundry_set);
bsobl = new Cstate_s_boundry_set_index_list(12,bsob,bs_op);
C(12,bsobl);

// s13 transitive

C(13,new Cshift_sob(13, (R$A*)G("$A"),s_,14));

C(13,new Creduce_sob(13, (bs$$_2%)G("[1[2"),r_,5));

C(13,new Cshift_sob(13, (R$B*)G("$B"),s_,16));

C(13,new Creduce_sob(13, (bs$$_1*)G("[I11"),r_,7));

// s13 closure

C(13,new Cshift_sob(13, (Csymbol_a*)G("a"),s_,13));

bsob_array = new CObArray;

bsobl = new Cstate_s_boundry_set_index_list(13,bsob_array,bs_op);
C(13,bsobl);

symbolic_boundry_set = (bs$$_1+)G("i[I11");

bsob = new Cstate_s_boundry_set_index(1,symbolic_boundry_set);
bsob_array->Add(bsob);

symbolic_boundry_set = (bs$$_2%)G("[1[2");

bsob = new Cstate_s_boundry_set_index(2,symbolic_boundry_set);
bsob_array->Add(bsob) ;

// si4 transitive

C(14,new Cshift_sob(14, (Csymbol_c*)G("c"),s_,15));

// s15 transitive

C(15,new Creduce_sob(15, (bs$$_2*)G("[112"),r_,4));
symbolic_boundry_set = (bs$$_2%)G("[]12");

bsob = new Cstate_s_boundry_set_index(2,symbolic_boundry_set);
bsobl = new Cstate_s_boundry_set_index_list(15,bsob,bs_op);

61

C(15,bsobl);
// s16 transitive
C(16,new Cshift_sob(16, (Csymbol_b*)G("b"),s_,17));

// sl17 transitive
C(17,new Creduce_sob (17, (bs3_1x)G("|[[1"),r_,6));
symbolic_boundry_set = (bs$$_1*)G("[][1");

bsob = new Cstate_s_boundry_set_index(1,symbolic_boundry_set);
bsobl = new Cstate_s_boundry_set_index_list(17,bsob,bs_op);
C(17,bsobl);
};

Except for the closure-only state 1, each state can be composed of a transitive part
and possibly a closure part. In the code above, the C++ comment identifies the state
and its section type being loaded into the LR(1) FSM table. The C++’s cast operator
is used in the parser’s operation objects Creduce sob, Cshift_sob, and Caccept_sob
which act as a visual aid to the compiler/compiler writer as to whether the emitting

code was using the right symbol. The accepting state is 12 seen using the Caccept_sob

object.

Chapter 5

Pushdown Automata

This chapter rounds out the ready-made classes defining the pushdown automata,
or PDA. The base class is developed leading into a real parser class deriving from
it. I assume the reader has an understanding of the PDA: see [6] for the appropriate
definitions. To complete the chapter, implemented C++ code of the parser’s operations
are given so the reader sees “how and when” the stack service routines get executed.
Following this, the “Winding down” section provides some experimental reflections

as drawn by my experiences with the parser.

5.1 CAbs_parser Abstract Parser Class

The abstract parser class CAbs_parser is multifold in function:

e it contains the LR(1) table

e it supplies an enum constant parse_result for parsing results used by the generic
parser. The parsing result is one of the following in the list: error, accepted,
shifted, reduced, paralleled.

63

e it forces the real parse class to supply its bottom-up operations reduce, accept,
shift, and error. This was a design decision allowing parser variations to be
experimented with.

e it maintains the parse stack of parsing

e it manages the input and output token containers. This supports multi-pass
parsing where one pass’s token output is the next pass’s token input.

e it supports a line marker object for future use in error processing. The idea is
to use invisible tokens as event markers. Such thoughts might lead to tracing
support tokens for debugging environments.

e it contains the genesis of parallel parsing for future research

The current version of the compiler/compiler emits code using Microsoft’s MFC con-
tainer classes. C++'s Templates were considered but not used due to their instability
at the time of implementation. Once templates stabilize, they will be incorporated
into the compiler/compiler for future portability. Following is the C++ definition. The

method names within the class definition are self-explanatory.

class CAbs_parser{

public:

enum parse_result{error,accepted,shifted,reduced,paralleled};
virtual “CAbs_parser();

virtual parse_result parse()=0;

virtual parse_result parallel_parse()=0;

virtual parse_result shift()=0;

virtual parse_result reduce()=0;

virtual parse_result accept()=0;

virtual parse_result start_parallel_parsing()=0;
virtual parse_result parallel_shift(CAbs_lrl_sym* Token)=0;
virtual void op();

CAbs_fsm* fsm_parse_tbl();

void fsm,parse_tbl(CAbs_fsm* Fsm_parse_tbl);
CObArrayx* parse_stack();

Token_container* token_supplier();

void token_supplier(Token_container* Token_supplier);
Token_container* token_producer();

void token_producer (Token_container* Token_producer);
CAbs_lri_sym* get_token();

64

WORD get_token_pos();
CAbs_lrl_sym= get_spec_stack_token(int Pos);
CAbs_parse_record* get_current_stack_record();
CAbs_parse_record= get_stack_record(int Pos);
CAbs_parse_record= current_parse_record();

void current_parse_record

(CAbs_parse_record* Current_parse_record);
int remove_from_stack(int No_to_remove);
int remove_current_record_from_stack();
void add_to_stack(CAbs_parse_record* Parse_record);
CAbs_sobx find_sob_for_token(CAbs_lrl_sym* Token_sym);
CAbs_sob=* current_sob();
void current_sob(CAbs_sob* Current_sob);
CAbs_lrl_sym= current_token();
void current_token(CAbs_lrl_sym=* Current_token);
WORD current_token_pos();
void current_token_pos (WORD Pos);
int current_stack_pos();
void current_stack_pos(int Pos);
void set_up_parse_stack(CAbs_parse_record* Parse_record);
void clear_parse_stack();
LMx* line_marker();
void line_marker (LM* Line_marker_token);

// parallel parsing
Cparallel_sobs_list= find_parallel_sob_from_token
(Cparallel_parsing_sym* Token_sym);
CAbs_lri_sym= get_parallel_token();
CAbs_lrl_symx get_spec_parallel_token(int Pos);
Cparallel_sobs_list* parallel_sobl();
void parallel_sobl(Cparallel_sobs_list* Parallel_sobs_list);
protected:
CAbs_parser
(CAbs_fsm=* Fsm_parse_tbl
,Token_container= Token_supplier
,Token_container= Token_producer) ;
CAbs_parser

(CAbs_fsm* Fsm_parse_tbl

,DWORD Control_monitor_thread_id
,DWORD Get_token_thread_id
,DWORD Thread_id

,Ccontrol_monitor_to_parallel_parser_thread_start_parse=
CM_pf_start_parse_parm) ;

private:

CAbs_fsm* fsm_parse_tbl_;

Token_container=* token_supplier_;// use bridge pattern
Token_container* token_producer_;

CObArray parse_stack_;

65

CAbs_parse_records* current_parse_record_;

CAbs_lrl_sym=* current_token_;

WORD current_token_pos_;

CAbs_sob= current_sob_;

int current_stack_pos_;

LM= line_marker_;
Cparallel_sobs_list* parallel_sobl_;// is ||| going on?
};

From the definition, protectionism on the class constructors forces use of CAbs_parser
by inheritance. The second contructor is under construction supporting parallel pars-

ing. Currently, it is not supported.

[CAbs_parser J

——l concrete parser J

Figure 5.1: Parser class hierarchy

5.2 A Real Parser Class

A real parser, with its parse operations, is derived from the abstract C'Abs_parser
defined above. Figure 5.1 shows the simple class hierarchy of a real parser deriving
from its base class CAbs_parser. Each basic bottom-up operation is defined and
specifically implemented for shift, reduce, and accept. All the parser's operations
work in concert with the supplemental code classes explained later. In the code
shown, there are references to parallel parsing which is currently being researched: I

apologize to the reader for their inclusion but at the time of writing this thesis, this

66

was the current state of the extracted code. These references can be skipped over;

these parallel routines normally ask a question “start_parallel parsing()?” and if the

answer is true then it calls a parallel parsing environment. The Parser class defined

below is a generic parser with built-in tracing facilities. It is a model from which

experiments in parse variations can be played with.

class Parser: public CAbs_parser{public:
virtual “Parser();

CAbs_parser::
CAbs_parser:
CAbs_parser:
CAbs_parser:
CAbs_parser:
CAbs_parser:
CAbs_parser:

Parser

(CAbs_fsm*

parse_result

:parse_result
:parse_result
:parse_result
:parse_result
:parse_result
:parse_result

parse();

parallel_parse();

shift();

reduce();

accept();

start_parallel_parsing();
parallel_shift(CAbs_lrl_sym=* Token);

Fsm_parse_tbl
,Token_container* Token_supplier
,Token_container* Token_producer

,WORD Token_supplier_key_pos=0);
Parser // currently not supported --- under research
(CAbs_fsm* Fsm_parse_tbl
,DWORD Control_monitor_thread_id
,DWORD Get_token_thread_id
,DWORD Thread_id

,Ccontrol_monitor_to_parallel _parser_thread_start_parsex*

CM_pf_

start_parse_parm);

Figure 5.2 describes each operation within its own context. Each parse operation

is labeled and framed, within it the functional steps are individually described in a
high level way: for example, trace stack configuration. Some steps are generic to the

specific operations like “add to stack™ and “remove from stack”.

67

Add to stack

Remove from stack | «

¢ Number of objects >=0
LIFO removal:

put object onto stack
execute object’'s pushed onto
stack service rn
if it has this service type object
trace stack configuration

- state, symbolic object ...

Shift operation

+ trace stack configuration

« execute supplemental shift
operation

+ add to stack object

Reduce operation

-

-

if epsilon rule (0 parms)
trace epsilon
exit
pop subrule’s objects from stack
execute object’s popped off
stack service rtn
if it has this servive type object

Accept operation

trace stack configuration
execute supplemental accept
operation

execute reduce operation

L3

>

loockahead terminal does not know what subrule is
being recognized.
It only has the stack configuration

objects removed in right to ieft order

trace "reduce” with stack depth
execute lookahead service rtn for terminal used to
recognize subrule if terminal has this service type object
execute supplemental reduce operation
reduce rhs of rule
create rhs subrule object
execute subrule's op rtn
create rule object
execute rule's op rtn
remove from stack subrule's objects
add to stack rule’s object

Figure 5.2: Parser operations

5.2.1 A Parser Implementation

The following code is the generic parser used throughout the examples:

CAbs_parser: :parse_result Parser::parse(){

op(Q);

// 1st time FIRE OFF parser’s op

Cerror_sob error_sob(0,0,fsm_parse_tbl()->e_op());

if (current_token() == NULL)

return CAbs_parser::accepted;// empty language —~ no tokens

//

// 1) lookup token in current parse state entry table

// 2) do one of the actions
//
//

68

a) shift b) reduce c) accept d) user action e) abort

current_parse_record(get_current_stack_record());
switch (do_parallel_parsing()){
case 1:{start_parallel_parsing();break;};// ||| parsing
case 0:{ // straight parsing
current_sob(find_sob_for_token(current_token()));
if (current_sob() == NULL) goto parse_error;
switch (current_sob()->fsm_operation()->op_type()){
case CAbs_fsm_oper: :reduce_op:{
if (reduce() == CAbs_parser::accepted) goto end_of_parse;
break;}
case CAbs_fsm_oper::shift_op:{shift();break;}
case CAbs_fsm_oper::accept_op:{accept();goto end_of_parse;}
default:{ // USER DEFINED
current_sob()->fsm_operation()->op() ;break;}
}
break;} // end of straight parsing
} // end of parallel or straight parsing
}
end_of _parse:
return CAbs_parser::accepted;
parse_error:
error_sob.fsm_operation()->op(this);
return CAbs_parser::error;

b

There are three things to note in the above code:

1. there is reference to parallel parsing which is currently being researched — this
is a snap shot of code currently being used in my studies. Within the above
code, the reader only needs to look at the “straight parsing” logic.

RV

user defined supplemental operations are supported but have not been tested.

3. labeled “parse_error:” in the code, the error processing capability is minimal:
it executes the Cerror_sob object defined at page 56. It is declared locally
in the body of the parser. At this point in time, I've have not concluded how
to handle errors — be it ad hoc support or canonical driven. Currently the
language research into error correction is not as vigorously researched as in the
past since errors can be corrected interactively. But if one views the work in
the throwing and catching of errors in the C++ language, I believe there is more
research to be done.

For the structured-code readers, the use of a goto statement must raise the hair on

the nape of your necks; I use it in a disciplined downward-only control flow.

69

5.2.2 Implementation of Parser Operations

The following parse operations are exposed so that the reader gets a feel of *when
and where” the firing-off mechanisms are deployed. These mechanisms are sparsely
commented-on in each parse operation. Their accompanying C-+ comments should
guide the reader.

e shift procedure. This is the parser’s shift operation. Firstly, it executes a
supplemental operation fsm_operation()->op(this). This is explained later in
the chapter. The add_to_stack procedure pushes the terminal symbol onto the
stack. Within add_to_stack, the stack service routines are executed for the
pushed symbol. Closing off the shift operation is the fetching of the next token.

CAbs_parser::parse_result Parser::shift(){
current_sob()->fsm_operation()->op(this);//FIRE OFF fsm’s action rtn
current_parse_record()->symbol(current_token());//state’s shift sym
// shift terminal into new state
add_to_stack(new CAbs_parse_record

(((Cshift_sobx*)current_sob())->goto_state_no()
,NULL
,fsm_parse_tbl()->state_s_fsm_entry_list
(((Cshift_sob=*)current_sob())->goto_state_no())));
if (control_monitor_thread_id()) current_token(get_parallel_token());
else current_token(get_token()); // get new token
return CAbs_parser::shifted;

}

void CAbs_parser::add_to_stack(CAbs_parse_record* Parse_record){
CAbs_parse_record* pr = get_current_stack_record();
parse_stack() ->Add(Parse_record);
current_stack_pos_++;
if (pr->symbol()->shift_rtn() != NULL)
pr->symbol () ->shift_rtn()
->op{pr->symbol(),this);// FIRE OFF pushed on stack rtn

Also included is the G+ code for add_to_stack procedure showing “when and
how” the push-onto-stack services get executed for the symbol. Brazenly, the
C++ comment “FIRE OFF” tags “how and when” the symbol’s shift service
routine executes. This type of comment is sprinkled throughout the other pieces
of code having the same intent.

70

e reduce procedure. The C++ code with its C++ comments describes the reduce
routine logic. The reduce_rhs_of-rule routine is the emitted code from the com-
piler/compiler that finds the appropriate subrule to collapse into its left-hand-
side rule using the lookahead terminal within its follow set, the parse stack. and
state table of the grammar. The “fire off” events are also C++ commented; these
are the service routines described previously in the thesis.

CAbs_parser: :parse_result Parser: :reduce(){
if (current_token()->look_ahead_rtn() != NULL)
current_token()->look_ahead_rtn()
->op(current_token(},this);// FIRE OFF lockahead action rtn

current_sob()~>fsm_operation()
->op(this);// FIRE OFF fsm’s action rtn
CAbs_rule_sym=* rule = // create rhs + FIRE OFF op() + and rule
fsm_parse_tbl()->
reduce_rhs_of_rule
(current_stack_pos(),this
, ((Creduce_sob*)current_sob())->fsm_state_sym_enum());
rule->op(this); // FIRE QFF lhs’s op rtn
remove_from_stack(rule->rhs_no_of_parms());
current_parse_record()->symbol(rule);//stack state’s rule shift sym
current_sob(fsm_parse_tbl()->
get_state_entry_for_symbol(current_parse_record()->state_no(),rule));

add_to_stack// shift rule into new state
(new CAbs_parse_record(((Cshift_sob*)current_sob())->goto_state_no()
,NULL
,fsm_parse_tbl()->state_s_fsm_entry_list
(((Cshift_sob*)current_sob())->goto_state_no())));
return CAbs_parser::reduced;

}

int CAbs_parser::remove_current_record_from_stack(){
CAbs_parse_record* Parse_record = get_current_stack_record();
delete Parse_record;
return TRUE;

};
int CAbs_parser::remove_from_stack(int No_to_remove){
if (current_stack_pos_ == -1) return FALSE; // underflow
if ((No_to_remove < 0) || (No_to_remove > current_stack_pos_ + 1))

return FALSE;
CAbs_parse_record* pr;
if (No_to_remove == 0) return TRUE;// epsilon rule
//
// rhs pop goes the weasel

71

//
for(;No_to_remove > 0;No_to_remove-=-){
pr = get_stack_record(current_stack_pos_);
delete pr; // state causing reduction
parse_stack()->RemoveAt (current_stack_pos_,1);
current_stack_pos_--;
current_parse_record(get_current_stack_record());
pr = get_stack_record(current_stack_pos_);// exposed symbol that
// goto’ed into
// popped state
if (pr == NULL) break; // no more stack
// £ind out if auto delete should be done before pop rtn
// cus pop rtn could delete symbol and you’re left with dangling
// non existent object to test against
bool del = pr->symbol()->auto_delete(};
if (pr->symbol()->reduce_rtn() != NULL)
pr->symbol () ~>reduce_rtn()
->op(pr->symbol(),this); // FIRE OFF popped off stack rtn
if (del) delete pr->symbol();

}
return TRUE;

}

Included is the G- code for remove_from_stack procedure showing “when and
how” the pop-from-stack services get executed for the symbol. It also shows
how the automatic delete attribute is used to delete the popping off symbol
objects.

e accept procedure. From the C-+ comments in the below code, an accept oper-
ation is really a reduce operation with “accept” supplemental code returning a
CAbs_parser::accepted result.

CAbs_parser::parse_result Parser::accept(){
// let reduce FIRE OFF this operation
// clear the stack as normal with lhs being pushed
// onto the parse stack
// the “parse will pop off the $start rule
//
reduce();
return CAbs_parser::accepted; // acceptance

};

=~
N

5.3 Supplemental Code to Parsing Operations

This group of classes was designed to support two functions:

e to supply the bottom-up operation to be performed in the real parser. This
operation is defined in operation an enumerated list within CAbs_fsm_oper the
base class. This enumerated list can be experimented with to add new func-
tionality to the real parser — parallel parsing support did just this. All the
LR(1) table’s objects have one of the following supplemental operation objects
imported into it.

e to supply an augmenting functionality to the parser’s base of operations. There
is a one-to-one definition between the real parser’s generic operations defined
previously and this group of classes.

These classes get injected into the parsing environment using the “fsm-operation”
language construct defined in Appendix A — The Grammar Language. At the present
time, default user defined operations have not been experimented with. They are
executed by default in the real parser — see implementation code of Parser with
the C+= comment of “//USER DEFINED”. The following classes are default support
to the generic parser. It is the op routine of the derived class that supplies the
supplement. Passed as a parameter is the abstract parsing environment which the op
routine would dynamically cast back into a concrete object. The CAbs_fsm_oper base
class identifies the parse operation to be performed which is supplied by the derived
class. Its G+ class definition follows:

class CAbs_fsm_oper{

public:

enum operation{reduce_op=0,shift_op,accept_op,error_op,parallel_parse_op};
CString= idQ;

int op_type();

virtual void op(CAbs_parser* Parser_environment);

virtual “CAbs_fsm_oper();
protected:

CAbs_fsm_oper(const char= Id,int Op_type) ;
private: CString=* id_; int op_type_;

73

The generic parser uses the operation enum as a verb expressing the parse object’s
functionality. The following definitions are just model code showing how a compiler
writer might write his own enhancing operations for inje_ction into the generic parser’s
operations. At present, they don’t do too much apart from firing off the parse oper-
ation, and when in debug mode the outputting of tracing information. As to being

really useful. this will be future assessed.

r CAbs_fsm_oper]

| fsm_shit |

! fsm_Reduce]

|| fsm_Accept ‘

r— fsm_gError —|

L_| fsm_Paraliel_parse]

| userclasses 7

Figure 5.3: Class hierarchy of supplemental parse operations

5.3.1 Supplemental Code Classes

Figure 5.3 shows the supplemental class hierarchy using inheritance. The various

supplemental operations with their G+ class definitions are now commented:

74

e the shift’s supplemental operation just traces its operation type. Its implemen-
tation has the built-in stack tracings when the “_DEBUG” symbol is defined.
This is the same symbol used in Microsoft’s Visual C++ compiler for program
tracings. The G+ class definition follows:

class fsm_Shift: public CAbs_fsm_oper{

public:
fsm_Shift ((const char* Id, int Op_type = CAbs_fsm_oper::shift_op);
“fsm_Shift();
void op(CAbs_parser* Parser_environment);

};

e the reduce’s supplemental operation just traces its operation type. Its im-
plementation has the built-in stack tracings when the “DEBUG” symbol is
defined. The C++ class definition follows:

class fsm_Reduce: public CAbs_fsm_oper{

public:
fsm_Reduce(const char= Id, int Op_type = CAbs_fsm_oper: :reduce_op);
“fsm_Reduce();
void op(CAbs_parser* Parser_environment);

};

e the accept’s supplemental operation just traces its operation type. Its imple-
mentation has the built in stack tracings when the “_ DEBUG” symbol is defined.
The G++ class definition follows:

class fsm_Accept:public CAbs_fsm_opery{

public:
fsm_Accept(const char* Id, int Op_type = CAbs_fsm_oper::accept_op);
“fsm_Accept();
void op(CAbs_parser* Parser_environment);

};

e the error’s supplemental operation just traces its operation type. Its implemen-
tation has built-in stack tracings when the “DEBUG” symbol is defined. It
is crude in functionality — it just prints out the stack contents and the faulty
token. It does not try to do any error recovery. The C++ class definition follows:

[

class fsm_Error: public CAbs_fsm_oper{

public:
fsm_Error(const char> Id, int Op_type = CAbs_fsm_oper::error_op);
“fsm_Error();
void op(CAbs_parser* Parser_environment);

};

5.4 Winding Down

The following diagrams ear-mark the contexts described in the thesis while experi-
menting with the parser and the compiler/compiler’s tables. I found these various run
situations required documentating for context comprehension. These legends hope-
fully will give the reader the same values. Whilst some diagrams repeat material
expressed before with variations, other diagrams provide some glimpses into their
functional use with current implementation limitations. Though the implementation
issues were not developed in the thesis like LR(1) table layout, accessing the LR(1)
table with its objects, efficiency issues at run time, my use of G-+ and whether its
can be bettered will be looked at in the future. These diagrams break out into the

following ideas:

e event driven mechanisms: from the finite state diagram of bottom-up operations
to the meta-rules: pure events supporting the compiler writer’s needs. How well
are the events integrated into the bottom-up running framework? The junction
points are currently mapped.

e multi-pass processing using meta-tokens. In the future, parallel parsing will
build on the meta-token theme.

¢ information contexts available to the event processing mechanism as currently
developed. With use, these contexts will be refined.

I feel mentioning their functional contexts gives the reader more food for thought into

the development direction being taken with this compiler/compiler project.

76

Abstract middleman class

rule / meta-rule

« all rules are classes that can house compiler writer action routines and
associated data

» rules are the carriers of the compiler writer abstract environments which get
transmitted into the compiler writer's run environment. This run environment
is housed in the imported ir1 table class.

+ rules can be meta-rules used to support compiler writer only actions.

* meta-rules are not part of the grammar recognizing the language. They
become event markers for ancillary processing. they are just action rules
used to mark events.

* meta-rules are declared as an epsilon rule encapsulating its data and
actions

* meta-rules can be placed anywhere within a rule’s right-hand-side

* meta-rules are restrained by Ir1 resolution

Figure 5.4: Grammar objects with meta-rules

Figure 5.4 contains comments about meta-rules. In general, meta-rules are used
as action services. They are epsilon type rules used in specific places to activate a
compiler writer’s actions. At this point in the development of the compiler/compiler,
these rules are governed by the LR(1) constraint.

Figure 5.5 comments on the finite state events fired off by the Parser. It identifies,
within each parser’s operational context, the various procedures executed that are
associated with the grammar’s symbol. This imported code per grammar symbol gives
the flexibility to the compiler writer in fine-tuning his own semantic requirements. The
arrows in the diagram direct the execution steps. To differentiate between generic
actions by the parser, a larger font is used: for example, “add to stack”. Shift,

reduce, accept parse actions have labeled boxes with their contents commenting on

7

their finite state actions. Flowing out of these boxes are the directing arrows leading
to other action boxes. Within some of the boxes are the various class procedures with
comments that have been discussed throughout the thesis. The language directives
built within the grammar inject the compiler writer’s code into these areas.

Lr1 table —» constructor — op
!

table imported |
into parser

(——— Parser ! I

Y ___Y___I A4
reduce shift _ accept
execute terminal’s execute shift's
lookahead action service supplement code ¢
| I
Y reduce
execute reduce’s add to stack
supplement code - push object onto stack
| - execute object’s push action service
4
create subrule — constructor > op i createrule
[
Y
rule’s op rule’s constructor
-—————— e
code general to rule code specific to rule-subrule
Y - add rule to stack
LIFO removal of rhs objects from stack - push rule onto stack
- execute pop action service of popping object - execute rules's
- remove object from stack push action service

Figure 5.5: Finite state events to parsing objects

o
ps] ps]

O} 3] @

ol o @ =

Pro) Q4 ™ g o

Lat-m n Q:C. 3

cl.a o L 2 1lrl table

ol9 1 o U =+ parse stack

Ol | —~ © O .

L3O = H =* user environment

2‘% 2| |8 2 coken container

ald | & <=0 Comments
Services........ T
push........... D« SR O for terminal, rule
POD. st eteeeae b < T S R Xeveieeeeeeweoenaao.fOor terminal, rule
lookahead...... Tl o v afe eeeeens D, for terminal onl
Subrule.........) P R A .«
constructor..... R R A . X e e et e e e et e e e et et e e
OP ettt tmeeeaann ede e e de s et X e e e e e e e et e e e e et et e e e
Rule............ X! D% K o e e e e e e e e et e e e e e e e ee e
constructor..... R TR 0% T D X.e...e.....rule-subrule code specific
OP e cconanncennn P SO T I (5% N DA DG code general to rule
Terminal........ b:< N A I N AR Kot ittt ettt eeeeaeeeeenaeaaanaenens
Supplement code.j.} b dee e denann G

Figure 5.6: Run time information contexts available to parsing objects

Figure 5.6 is a 2-dimensional table whereby its rows describe the various objects
in parsing, and the columns describe the contexts available to the row’s objects.
The last column is comments specific to the row’s object. Unless noted, “X” in the
row’s column indicates availability. The “I” in some columns indicate the contexts
available only to the Terminal's symbol object. The comment against the Rule’s
constructor indicates that the injected code is specific to its subrule-rule relationship
having the “X” mark the contexts available for use. The comment against the Rule’s

op procedure indicates that the C++ code is general to the Rule.

raw character symbols

* default symbols written
with no action services

» all 256 chars have a
symbolic definition

lexical grammar

|

e

file to parse

syntax grammar

Y
L
Parser
\
lexical symbolic tokens
terminal classes terminals defined
with in lexical grammar
action services
Y
R Parser
I
Y

more meta tokens

* multi pass grammars
* repeat the above syntax step

Figure 5.7: Run stages of multi pass grammars

Figure 5.7 gives a sketch of parsing using multiple passes. Shown in the boxes with
comments are the common steps to parsing with many grammars. At the bottom
of the diagram, references to meta-tokens are given. As explained previously in the

“Winding down” section, meta tokens are tokens that are built using other tokens.

They are the by-product of a grammar used in one of the passes.

80

Chapter 6

Future Research

Three things surfaced while writing the compiler/compiler code and using its out-

putted tables:

1.

[SV)

Grammars with object-oriented constructs provide an excellent framework of
comprehension. It neatly ties all the entities together. One can think of it as
the outgrowth from assembler to a high-level programming language with all
its proclaimed strengths.

This sounds trite but don’t take it as such: LR(1) grammars have their limita-
tions — ambiguous grammars are hard to resolve. LR(1) grammars, as I found
out, are not the be-all end-all to the grammar resolution technique. It’s still
easy to write ambiguous grammars. LR(1) is powerful but ambiguity resolu-
tion needs to be tackled differently. This is seen in the research extending the
lookahead resolution to on-demand techniques [16].

Monolithic grammars are too hard to maintain. The size of the grammar with
lots of rules produces a psychological clutter. A blurring of understanding can
take place. They are also not re-usable. Somehow grammars should be broken
into little pieces providing re-use and somehow assembled into a cohesive whole
participating together.

In tasting my own output, items 2 and 3 forced me to rethink the approach to parsing.

Let us look at item 2 — ambiguity. From a bottom-up parsing perspective, there are

81

two types of ambiguity: shift / reduce, and reduce / reduce. I will not go into the
theory behind it but I will pose the problem in a more general way: ambiguity comes
down to a choice between two or more things competing for the same resource. Looked
at this way, why not allow ambiguity to exist but have an arbitrator determine who
should win. Now, item 3 provides another dilemma. When a population becomes too
dense, one loses the autonomy of each resource. So, why not think of grammars as
individual entities unto themselves and allow them to run semi-autonomously. From
an operating system perspective, this is done with threads and guarded resources:
critical regions, semaphores, etc.

Given these two thoughts, autonomy and arbitration, my future development is
taking me into multi-threaded parallel parsing with arbitration. To do this, new

constructs are presently being added to the grammar’s language to support:

e arbitration at the grammar’s rule level with G-+ code injection support

e a regular expression to calculate lookahead boundaries at the parallel grammar
level

e meta terminals used as signals returned back from parallel parsing threads

e a new meta symbol to represent parallelism. This symbol can be placed any-
where inside a subrule’s string of symbols supplying the parallel grammar to-
be-run and the meta terminal used for signaling a result.

e nested parallel grammar support

e a dispatcher of grammar threads in the parser with extensions to the LR(1)
table supporting thread dispatch

e a communication protocol supporting the dispensing of tokens and the reporting
of results from the grammar threads

e dispatch thread optimization using the viable prefixes of the parallel threads

82

This is quite a mouthful but it does resolve items 2 and 3. It handles the subset/super
set problem: usually in a language’s documentation, a grammar defines the keywords
but the grammar employed is the superset defining a variable with post-processing
using a keyword table lookup to resolve the variable. Well, parallel parsing handles
this. And what about a literal? To properly process the literal, post-processing is
used on the escape sequences inside it. Again, multi-parallel grammars solve this at
the grammar level using nested grammars. Parallel parsing supports the modular
development of grammars and their reuse. Using quasi context parsing, ambiguity
resolution from a arbitration perspective lets the compiler writer play with his gram-
mars in defining the language designed. It could become a fun experience in solving

structural flow sequences in a non-deterministic way.

83

Chapter 7

Conclusion

The basic conclusion drawn from this study is classes represent well a grammar’s
components — rules, terminals, subrules — and various semantic actions associated
with them. All the benefits of object-oriented discipline fit well into the grammar’s
implementation — inheritance, encapsulation, polymorphism, and reader compre-
hension. Ancillary actions are also well looked after using class definitions. Not
addressed in the study is the run efficiency of symbol processing used with this com-
piler/compiler’s implementation: the symbol’s identity is used heavily in tracing and
LR(1) table lookup. The thesis’s emphasis was put on the feasibility of class use in
translated grammars within a table-driven environment.

My experience from this project concurs with Dr. Stroustrup: a compiler/compiler
is not quite powerful and flexible enough to design recognizers quickly — particularly
if the language explored is tricky to define with a deterministic grammar. My prob-
lems dealt with resolving ambiguous grammars: this really burns up the patience
of a language designer — somehow the grammar(s) must be refined enough to run

in local contexts. This frustration is leading to future investigations into why the

84

LR(1) compiler/compiler is not defeating the language dragon — only keeping it
at bay. Run-time ambiguity resolution using arbitration will be explored within a
multi-threaded multi-grammared parallel-parsing environment.

In conclusion, applyving the object-oriented discipline to a grammar’s entities pro-
vides a comprehensive, tightly bound framework to table driven processing: this is
the structural part to parsing. To paraphrase a rose: a yak is a yacc is a yac®®?
Quite possibly using an object-oriented framework with better ambiguity resolving
techniques, just maybe the language dragon might be tamed, respected but not con-

quered.

Bibliography

1]

Microsoft Visual C++ Reference Volume 1 Class Library Reference. Microsoft

Corporation, One Microsoft Way, Redmond, WA, U.S.A., 1993.

William A. Barrett, Rodney M. Bates, David A. Gustafson, and John D. Couch.
Compiler Construction Theory and Practice. Science Research Associates, Inc,

Toronto, Ont. Canada, 1986.

Frank DeRemer and Thomas Pennello. Efficient Computation of LALR(1)
Look-Ahead Sets. ACM Transactions on Programming Languages and Systems,

4(4):615-649, 1982.

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++. Addison-Wesley

Publishing Company, Reading, Massachusetts, U.S.A., 1990.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns Elements of Reusable Object-Oriented Software. Addison-Wesley Publish-

ing Company, Reading, Massachusetts, U.S.A_, 1994.

J.E. Hopcroft and J.D. Ullman. Formal Languages and Their Relation to Au-
tomata. Addison-Wesley Publishing Company, Reading, Massachusetts, U.S.A.,

1969.

86

[7]

8]

[13]

4]

[15]

[16]

S. C. Johnson. Yacc — Yet Another Compiler-Compiler. Technical Report 32,

AT&T Bell Laboratories, Murray Hill, N. J., 1975.

Donald E. Knuth. On the Translation of Languages from Left to Right. Infor-

mation and Control, 8(6):607-639. 1965.

Bent Bruun Kristensen and Ole Lehrmann Madsen. Correspondence. ACM

Sigplan Notices, 19(8), August 1984.

M. E. Lesk. Lex — A Lexical Analyvzer Generator. Technical Report 39. AT&T

Bell Laboratories, Murray Hill, N. J., 1973.

P. Naur. Revised Report on the Algorithmic Language ALGOL 60. Communi-

cations ACM, 6(1):1-17, 1963.

David Pager. A Practical General Method for Constructing LR(k) Parsers. Acta

Informatica7, 7:249-268. 1977.

David Spector. Full LR(1) Parser Generator. ACM Sigplan Notices, 16(8).

August 1981.

Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, U.S.A., 1994. Section 3.3.2 Parsing

C++ — comment on LALR(1) versus recursive descent.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publish-

ing Company, Reading, Massachusetts, U.S.A., 3 edition, 1997.

Russell W. Quong Terence J. Parr. LL and LR Translators Need k > 1 Looka-

head. ACM Sigplan Notices, 31(2). February 1996.

87

[17] Peter Trott. Programming Languages Past, Present, and Future. ACM Sig-
plan Notices, 32(1). January 1997. What do you consider the most significant

contribution to compiling?

88

Appendix A

The Grammar Language

A.1 Introduction

The language design borrows heavily from the object-oriented paradigm: class defini-
tions, inheritance, encapsulation, and constructor-destructor execution control flows.
These concepts are integrated into a modified Backus-Naur grammar form (BNF) [11].
For the syntax-directed code, the G+ language is used; its class’s birth-run-death life
cycle is designed into the grammar’s structures. The complete G-~ language can be
used along with compiler directives, preprocessing macros and any other assorted code
— remember, any code or class name for the emitted G-+ program must observe G++’s
naming conventions. The emitted files are pure C++ programs to be compiled by the
compiler writer’s C++ compiler. To help the compiler writer, other facilities are built
into the grammar’s language which are characteristic of syntax-directed bottom-up

parsing:

e automatic execution of programmer defined objects during bottom-up actions.
For example, when an object of rule or terminal is being pushed onto the stack,
being popped off the stack, and when a terminal is the look-ahead boundary in
recognizing the right-hand subrule. the associated action objects are automati-

cally executed.

e stack flow tracing to aid in the debugging of a grammar. All stacked objects
are symbolically traced relative to the stack position and its LR(1) table state.

e compiler writer supplemental operations for the parser to execute. These extra
actions enhance the shift, reduce. accept, and error operations.

When using bottom-up parsing, well defined execution boundaries exist. Delineation
happens at the parser’s shift, reduce, and accept actions. To inject the compiler

89

writer’s code into these execution points, code placement directives are used through-
out the grammar. Depending on the context within the grammar, these directives
place the code either into the definition header file or into its implementation file.

To introduce you to the language features, an informal top-down view of the
language components is presented. To begin with, the language is divided into six
major parts:

e The G-+ code sections sprinkled throughout the grammar’s structures. The
code block has one of two purposes: declaratory for class definitions or imple-
mentation for class’s code.

e The “fsm” section defining the LR(1) table class for the parser.

e The “parallel-parser” section — facilitates parallel parsing. This is for future
development.

e The “fsm-operation” section — classes used to enhance the parser’s normal
operations.

e The “terminals” section defining the terminals in the language.
g guag

e The “rules” section defining the grammar of the language. Each rule has the
accustomed BNF form extended with the annotated syntax-directed code.

Each language section is described in three stages. Stage one provides an example
with running comments. Stage two gives a skeleton view of its components. Stage
three describes the individual components.

A.2 @ — File Include Operator

The compiler/compiler has a file include operator denoted by “@”. It must be in the
first column of a line followed by the local operating system’s file name ended by a
line delimiter. The file name may be given as a string literal. The compiler/compiler
supports 16 nested levels of file includes. The facility is used in the following test
suite to include the common terminal definitions used across all the test grammars.
Here is an example of a file include statement: @“d:Ctsuite.h”.

A.3 G+ Code Sections

Because the compiler/compiler program emits plain C++ code, the compiler writer
can include any valid G+ code and preprocessor directives into the code sections.

90

These code snippets get injected into the emitted files at the spots directed by code
placement directives. Regardless where the code section is, the code’s intent is always
one of definition or implementation. To give a consistency of meaning to the directives,
keywords indicate either declaratory or implementation intent. The fixed base of
words are the norm to the directives. In special cases, compound directives are built
from these words. The base directives are:

e “declaration” — directive putting code into the G++ header file. Depending on
its context — usually compiler writer support definitions, the code might be
part of a class definition or by itself.

e “implementation” — directive putting code into the G++ implementation file.
This is the complement to the “declaration™ directive.

e “constructor’ — directive putting code into the class’s constructor C++ imple-
mentation.

e “destructor” — directive putting code into the class’s destructor G++ implemen-
tation.

e “op” — directive putting code into the class’s op method C++ implementation.
This method gets called always after the class’s constuctor is finished executing.

It is used in tracing and as a boundary point for the compiler writer to execute
code between the class’s constructor and destructor executions.

All code block sections are optional as are their individual directives inside the
code block. The syntax is the same for all code sections. The code block is defined
as follows:

e { to start the code block
e a list of code directives and their associated G-+ code. All directives use this
format:
— the directive’s keyword to introduce the code block of the directive
— the G++ code
— ¥** t0 close the directive’s code block

e }: to close the code block

There is no input order to the directives. The compiler writer uses his own style
of ordering. As one builds up G+ code, the grammar starts to take on a bloated
appearance. At present. only a file include facility is supported. In the future, a
hypertext editor will be created.

The following sub-sections catalog each of the directives removed from their con-
texts. Later within each language structure, their appropriate meanings are described.

91

A.3.1 wuser-prefix-declaration Directive

The “user-prefix-declaration” directive is used in the “fsm-class™’s code block to add
foreign code to the emitted header file. This code could be a library definition or the
compiler writer’s own support functions that are used by the grammar but are not
manufactured into the emitted grammar’s objects. The “declaration” in the directive
indicates its intent to be attached to the emitted header file. The “prefix” in the
directive indicates its placement at the start of the emitted header file.

A.3.2 user-suffix-declaration Directive

The “user-suffix-declaration” directive is used in the “fsm-class”’s code block to add
code to the emitted header file. The “declaration™ in the directive indicates its intent
to be attached to the emitted header file. The “suffix” in the directive indicates its
placement at the end of the emitted header file. The same comments apply to the
code character as the “user-prefix-declaration” directive above.

A.3.3 user-declaration Directive

The “user-declaration” directive is used to add code to a class definition. The follow-
ing grammar contructs are the contexts of use:

e fsm’s “fsm-class™ context

e a terminal definition context — “syvm-class”, “sym-look-ahead”, “stack-pushed-
rtn”, “stack-popped-rtn”

e a rule definition context — “sym-class”, “lhs®, “stack-pushed-rtn”. “stack-
popped-rtn”. The “lhs” directive is for general code insertion used through-
out the rule’s existence. Generally, the code gets run after the rule’s specific
contructor.

The subrule is not included in the above list due to the interplay between itself and

its rule: its variation is described below with its directives beginning with a “rhs-”
prefix.

A.3.4 user-implementation Directive

Implementation code for the “user-declaration” directive’s code.

92

A.3.5 constructor Directive

Code injected into all of the class constructors implementations. It is general to all
constructors in the code block context.

A.3.6 destructor Directive

Code injected into the class’s destructor implementation.

A.3.7 op Directive

Code injected into the class’s op procedure implementation.

A.3.8 rhs-user-declaration Directive

The “rhs” stands for right-hand-side indicating a directive for a subrule. The “rhs-
user-declaration” directive declares code for the subrule’s class definition. It is the
compiler writer’s code augmenting the subrule class’s functionality.

A.3.9 rhs-user-implementation Directive

Implementation code for the “rhs-user-declaration™ directive’s code.

A.3.10 rhs-constructor Directive

Code injected into the subrule’s class constructor implementation.

A.3.11 rhs-destructor Directive

Code injected into the subrule’s class destructor implementation.

A.3.12 rhs-op Directive

Code injected into the subrule’s class op procedure implementation.

A.3.13 lhs-constructor Directive

Code injected into the rule’s constructor class implementation. There is an individual
“rule constructor” for each of its subrules defined so that the code is specific to each
subrule-rule pairing reduce operartion.

93

A.4 Fsm Section

The “fsm” plays the role of a wrapper class in the emitted code. It supplies the
LR(1) table name that gets passed to the parser as a class object along with the
compiler writer’'s own run environments. All six parameters in its body are required
each having one of two purposes:

e G+~ class name for the LR(1) table.
e general information about the grammar: this is the where, when. and about

data — file name used to compile the table, version number, general comments
and the like.

The “fsm” uses a call procedure format with the parameters delimited by commas.
Each parameter has two parts:

e a keyword attribute identifving the parameter

e an associated data value. The data value is required; it is a literal string enclosed
in quotes for all the parameters except the “fsm-class” parameter which is a G+
class name.

A.4.1 Example

The example shows C++ compiler directives for the emitted code preventing multiple
definition errors. Because the emitted files are just G-+ programs, the compiler writer
can use any valid C-+ language construct or directive as seen in this example.

fsm // keyword identifying the grammar’s contruct
(fsm-id "char_literal.lex"
,fsm-class Clr_char_literal_lexer
{ // code block section

user-prefix-declaration

#ifndef __lr_char_literal_lexer_h__
#define __lr_char_literal_lexer_h__
#include "clr_passl_lexer.h"

* ke

user-suffix-declaration

#endif
% 3k X
+;
,Ism-version "1.0"
,Ism-date "8-oct-97"
,fsm-debug "no"
,fsm-comments "parallel parser of character literal"

);

94

A.4.2 Skeleton View

fsm

(fsm-id "xxx" // descriptive string

,fsm-class XXXX // C++ class name of LR(1) table
<C++ code block>
<see definition in individual components>

,fsm-version "1.0" // descriptive C++ string

,fsm-date "23-jun-97" // descriptive C++ string

, fsm-debug "no" // yes , no for tracing

,fsm-comments " xxxxxxxxx" // descriptive C++ string

);

A.4.3 Individual Components
A.4.3.1 fsm-id Attribute

| fsm-id “<value>” |

The “fsm-id”’s parameter identifies the grammar file name used to compile the table.
The string value is the local operating system’s file name. This value is included
in the class definition and the main purpose is general information about the table.
Built within the emitted LR(1) table class is its access method of the same name
without its “fsm-" prefix.

A.4.3.2 fsm-class Attribute

fsm-class <C#+ class name for Ir(1) table> <Optional G++ Code>

The “fsm-class’’s parameter is the C-+ class name for the emitted LR(1) table. Ac-
companying this is the optional code block for the “fsm” wrapper class.

{// optional code block
user-prefix-declaration // directive - code added at the
// beginning of emitted header file

// C++ code
KXk xK
//eo... xxx L, means C++ code, and *** ends code block
user-suffix-declaration // directive - code added at the
..... xxx // end of the emitted header file
user—-declaration // directive - code added to the
..... xxx // fsm class in the header file
user-implementation // directive - code added to the
..... xx // emitted implementation file
constructor // directive - code injected into

95

xxx // fsm class’s constructor implementation

destructor // directive - code injected into
..... xx // fsm class’s destructor implementation
op // directive - code injected into
..... =xn // £sm class’s op method implementation
};

The running C++ comments above provide the intent and placement in the emitted
code.

A.4.3.3 fsm-version Attribute

| fsm-version “<value>" |

The “fsm-version”’s parameter identifies the grammar’s version. The string value
is up to the language designer fancy. This value is included in the class definition
as general information about the table. Built within the emitted class is its access
method of the same name without its “fsm-" prefix.

A.4.3.4 fsm-date Attribute

| fsm-date “<value>" |

The “fsm-date™’s parameter identifies when the grammar was designed. Same com-
ments apply about it worth described above in the “fsm-version” value.

A.4.3.5 fsm-debug Attribute

fsm-debug “<value>"

The “fsm-debug”’s parameter allows the turning on and off of the dynamic tracing
ability built into the parser. Tracing depends on the default parser’s action routines
used by the compiler writer. The string value is either “yes” or “no”. This tracing
ability is only in the debug version of the parser’s action routines. This is controlled
by the symbol “ DEBUG”. The production version normally omits this conditional
code by not defining this svmbol. The emitted “fsm” class has a read method for
this variable of name debug. You turn on or off the debug facility by the parse class’s
debug parameter defined in the constructor. Its default is the value given in the
grammar definition — see the constructor in “A Real Lrl Table Class Definition”

page 37.

96

A.4.3.6 fsm-comments Attribute

]
i

H

fsm-comments “<value>" |

The “fsm-comments”’s parameter is a general description about the grammar defini-
tion. Same comments apply about it worth as described above in the “fsm-version”
value.

A.5 Parallel-parser Section

Omitted — this is for future research.

A.5.1 Example

- parallel-parser
(parallel-thread-function{

UINT PF_char_lexer (LPVOID Parm);

};

parallel-la-boundry{
eolr // regular expression of termimals and rule’s LA

};

code
$Sparallel_parser_code$$(PF_char_lexer,Clr_char_lexer)

% Ak X

);

A.5.2 Skeleton View

Omitted — this is for future research.

A.5.3 Individual Components

Omitted — this is for future research.

A.6 Fsm-Operation Section — Supplemental Op-
erations

The “fsm-operation” supplies class names of objects complementing the parser’s be-
haviors and the operation the generic parser is to perform — for example, shift, reduce,
and accept. This facility allows the compiler writer to import his own action routines;

97

it is very rudimentary. At present, I have not really used this feature — apart from
identifying the object in tracing, and I cannot comment as to its usefulness. These
action classes get automatically created in the LR(1) table class contructor and are
triggered by the generic parser’s operations. The “fsm-operation” uses a call proce-
dure format with the parameters delimited by commas. Each parameter is composed
of two parts:

e a keyword identifying the parser’s action
e the compiler writer's C++ class name for that operation

The default operations have tracing facilities built into them. If the generic parser is
not to the taste of the compiler writer. one can always write his own abstract parser
with its own operations.

A.6.1 Example

This example is usually the defaults used by the compiler writer.

fsm-operation

(fsm-operation-shift-class fsm_Shift
,fsm-operation-reduce-class fsm_Reduce
,fsm-operation-accept-class fsm_Accept
,fsm-operation-error-class fsm_Error

)

A.6.2 Skeleton View

fsm-operation // identifies the section
(fsm-operation-shift-class aaa // C++ class name
,fsm-operation-reduce-class bbb // C++ class name
,fsm-operation-accept-class ccc // C++ class name
,fsm-operation-error-class ddd // C++ class name

)i

A.6.3 Individual Components
A.6.3.1 fsm-operation-shift-class Attribute

fsm-operation-shift-class <C-= class name>

The “fsm-operation-shift-class” provides the C++ class name to enrich the parser’s

98

shift operation. A default “fsm_shift” class with its source comes with the LR(1)
system. The compiler writer can use the source code as a model in writing his own
enriching operation. The model is very rudimentary.

A.6.3.2 fsm-operation-reduce-class Attribute

fsm-operation-reduce-class <C++ class name>

The “fsm-operation-reduce-class” provides the CG++ class name to enrich the parser’s
reduce operation. A default “fsm_reduce” class with its source comes with the LR(1)
system. The compiler writer can use the source code as a model in writing his own
operations. The model is very rudimentary.

A.6.3.3 fsm-operation-accept-class Attribute

fsm-operation-accept-class <C++ class name>

The “fsm-operation-accept-class” provides the C++ class name to enrich the parser’s
accept operation. A default “fsm_accept” class with its source comes with the LR(1)
system. The compiler writer can use the source code as a model in writing his own
operations. The model is very crude.

A.6.3.4 fsm-operation-error-class Attribute

fsm-operation-error-class <C++ class name>

The “fsm-operation-error-class” provides the C++ class name to enrich the parser’s
error operation. A default “fsm_error” class with its source comes with the LR(1)
system. [t has a very limited error handling capability. It just traces out the stack
and offending look ahead token and lets the generic parser do want it wants which is
stop processing. The compiler writer can use the source code as a medel in writing
his own operations. The model is very rudimentary.

A.7 Terminals Section

This section defines the grammar’s terminal vocabulary. Each terminal definition
gets emitted as a C++ class definition. The compiler writer can add anything to its
definition and implementation. Built into its definition are keyword directives that
can be used for syntax-directed purposes.

99

To provide an integration between the lexical recognizer and the syntax parser,
the compiler/compiler emits the lexical table as a push down automata. The generic
parser is used in both phases of compiling. This is one way to chain together parsing
stages where one phase’s output tokens becomes the next phase’s input tokens. Multi-
staging terminals can be built with each pass provided by multiple grammars. Each
grammar shares the terminal vocabulary by using the file include operator; their
emitted code would also use the common emitted C++ terminal header file produced
usually by the lexical grammar.

With its class definitions and the sharing of the terminal header file amongst the
different grammars. the compiler writer has a better grasp of the grammar’s run
phases. Because the terminals are classes, the compiler writer’s code references the
token as a class object. The terminals section is defined as:

e terminals — kevword introducing the terminal vocabulary section
e { to start the terminals to be defined.
e a list of terminal definitions. The terminal definition template has the form:

— the terminal’s symbolic name
— AD optional automatic delete attribute
— (to start the terminal’s attributes section

* a list of attributes where each attribute has the form:
- keyword identifyving the attribute
- C++ class name
- an optional G-+ code section. The code block has the same format
as previously described.

—); to end the terminal’s definition

e }; to end the terminal vocabulary section

A.7.1 Example

The following example shows the flexibility that the compiler writer has at his disposal
in defining terminal objects. Default definitions, stack tracing, code directives, and
C++ code are shown.

terminals // identifies the section
{
eolr (sym-class Sym_eolr);
"I]l" (sym-class Sym_parallel_operator);

100

"} (sym-class Sym_close_brace);
"\x7f" (sym-class Sym_del) ;
a (sym-class Csymbol_a

,sym—look-ahead-rtn Csymbol_a_look_ahead_rtn
,Stack-pushed-~-rtn Csymbol_a_pushed_rtn
,stack-popped-rtn Csymbol_a_popped_rtn);

"string-literal" AD
(sym-class Sym_string_literal

};

Y5

user-declaration{
public:
// additional constructor needed by compiler writer
Sym_string_literal
(CObList=* List_conduits
,char Char_len
,const char* Id="string-literal");
Sym_string_literal(const char* Id="string-literal");
CObList* string_conduits();
char char_len();

private:
CObList* string_conduits_;
char char_len_;
};
destructor{
if (string_conduits_ != NULL) delete string_conduits_;
};

user-implementation{
Sym_string_literal::Sym_string literal
(CObList* List_conduits
,char Char_len
,const char* Id)
:CAbs_Clr_passl_lexer_terminal_sym(NULL,NULL,NULL,Id)
,string_conduits_(List_conduits)
.,char_len_(Char_len){};
Sym_string_literal::Sym_string_literal
(const charx Id)
:CAbs_Clr_passl_lexer_terminal _sym(NULL,NULL,NULL,Id)
,string_conduits_{NULL)
,char_len_(’0°){};
CObList* Sym_string_literal::
string_conduits(}{return string _conduits_;};
char Sym_string literal::char_len(){return char_len_;};

};

}; // end of "string-literal" code block

//end of "string-literal" definition
// close terminals

101

A.7.2 Skeleton View

terminals // identifies the terminal vocabulary
{// each terminal uses this definition template
<symbolic terminal name> is one of xxx or literal \Cppb string
AD optional automatic delete indicator: if turned on parser deletes terminal
(// start of terminal’s attributes section
sym—-class aaa // C++ class name of the terminal
{ // optional sym-class syntax directed code section
// syntax directed code directives
};
// Following are optional parameters
,sym-look-ahead bbb // C++ class name
// optional sym-look-ahead code section
,stack-pushed-rtn cce // C++ class name
// optional stack-pushed-rtn code section
,stack-popped-rtn ddd // C++ class name
// optional stack-popped-rtn code section
) // end of terminal definition

Repeat of above template for each additional
terminal definition

A.7.83 Terminal Definition of Individual Components
A.7.3.1 Symbolic Name of Terminal

<Symbolic Name of Terminal>

The symbolic name is the reference to the terminal within the defining grammar.
The compiler writer uses this name throughout his grammar rules. It can be a literal
string with all G++’s possible variations or a single word. Some of these variations
are shown in the above example — "\x7f”, a, "string-literal”, "{||”. Using the ter-
minal in a rule’s definition must be consistent with its symbolic name: if it is in
quotes then reference it as such. The symbolic name is also used in the tracing of
the grammar, and as the key for the parser’s LR(1) table lookup routine. In defining
the symbolic string, the compiler writer can use tricks to lookup keywords that might
conflict with the keywords of this grammar definition. For example, the symbolic key
for the “fsm” keyword could be defined as a quoted string composed of the fsm word
suffixed with a space. This technique is employed by the author in writing the self
defining grammar of this language. Remember, it is a symbolic representation; its
physical value is recognized elsewhere — during the lexical phase — and figuratively

102

referenced thereafter.

A.7.3.2 Automatic Delete Attribute

AD

This parameter is optional and has only one value — AD. It indicates whether the
parser should delete the terminal when it is popped from the parse stack. It aids
the compiler writer in the managing of memory leaks of his grammar’s symbols —
terminals and rules. This is because each grammar’s symbol comes into existence as
a pointer of a class object.

A.7.3.3 sym-class Attribute

sym-class <C#+ class name> <Optional G-+ Code>

The “sym-class” provides the emitted C++ class name for the terminal. It is re-
quired and it is the reference name used in the G++ code — compiler writer’s code
blocks. Additional constructors can be defined using the “user-declaration” directive
defined earlier. The emitted class inherits an abstract base class for all terminals.
The compiler writer is free to add any functionality to the terminal.

{// optional sym-class C++ code block
user-declaration // directive -- code added to the terminal
// class definition in the header file

// C++ code

% ¥k

//..... xxk L, L. means C++ code, and *** ends code block

user-implementation // directive -- code added to the emitted
..... k% // implementation file

constructor // directive -- code injected into terminal
..... * %k // class’s constructor implementation

destructor // directive -- code injected into termimal
..... *kx // class’s destructor implementation

op // directive -- code injected into terminal
..... xxx // class’s op method implementation

The running C++ comments above provide their intent and placement in the emitted
code.

103

A.7.3.4 sym-look-ahead-rtn Attribute

sym-look-ahead-rtn <Optional G-+ class name> <Optional G+ Code>

The “syvm-look-ahead-rtn” is an action class that automatically is executed by the
parser when this terminal is used as the look ahead symbol in the reduce operation of
the parser. It gets wedged into the terminal’s defining class as a referenced variable
with an access method of the same name. The “sym-class” provides the emitted Cr+
class name for the action service used when the terminal is the boundary symbol used
to collapse the subrule into its rule. It is optional along with the code block. The
same code block format defined in the terminal’s “sym-class™ applies.

A.7.3.5 sym-pushed-rtn Attribute

svm-pushed-rtn <Optional C++ class name> <Optional G-+ Code>

The “sym-pushed-rtn” is an action class that automatically is executed by the parser
when this terminal is pushed onto the parse stack. It gets wedged into the terminal’s
defining class as a referenced variable with an access method of the same name. The
“sym-class” provides the emitted G-+ class name for the action service used when the
terminal is pushed onto the parse stack. It is optional along with the code block. The
same code block format defined in the terminal’s “sym-class™ applies.

A.7.3.6 sym-popped-rtn Attribute

sym-popped-rtn <Optional G-+ class name> <Optional C++ Code>

The “sym-popped-rtn” is an action class that automatically is executed by the parser
when this terminal is popped from the parse stack. It gets wedged into the terminal’s
defining class as a referenced variable with an access method of the same name. The
“sym-class” provides the emitted C-+ class name for the action service used when the
terminal is popped off the parse stack. It is optional along with the code block. The
same code block format defined in the terminal’s “sym-class™ applies.

A.8 Rules Section

This section defines the grammar’s rule vocabulary. The “start rule” of the grammar
is the first rule defined in the section. Each rule definition gets emitted as a G+ class
along with each of its right-side subrules. The compiler/compiler program emits the
class definitions for each rule and their subrules, and ties together their relationships

104

inside the “fsm” class definition using enumerated types. In the normal flow of syn-
tax recognition, the rule’s right-hand-side gets recognized before its defining rule is
reduced. The same order holds for execution of the syntax-directed code. As in the
definition of a terminal, the compiler writer can add anything to the rule definition,
its subrule definitions, and all their implementations.

The rules section is defined as:

e rules — keyword introducing the start of the rules vocabulary

e { to start the rules to be defined.
e a list of rule definitions. The rule definition template has the form:

— the rule’s symbolic name. This name is used to reference it throughout
the defining grammar.

— AD optional automatic delete attribute
— (to start the rule’s attributes section

+ a list of attributes where each attribute has the form:
- keyword identifying the attribute
. C++ class name except the “lhs” attribute which uses the rule’s
symbolic name

- an optional C++ code section. The code block has the same format
as previously described.

—) to end the attributes section
— { to start the subrule definitions

+ a list of subrules where each subrule has the form:
- —> to start a subrule definition

- the subrule’s mixed sequence of terminals and rules symbolic names.
The sequence can be empty.

- an optional G-+ code block. Due to the relationship between the
the subrule and its defining rule, the code block introduces some
new directives.

— } to end the attributes section

e }; to end the rules section

105

A.8.1 Example

The following example shows the flexibility the compiler writer has in defining rule
objects. It shows just one start-rule and its subrules accepting keyword definitions
and emitting their results as new terminal objects defined by the “sym-class” in their
terminal definition.

rulesq{
$p2_keywords
(sym-class Sym_3$p2_keywords
,1hs
// C++ code block
user-declaration
public: CAbs_lrl_sym* key_word();
private: CAbs_lrl_sym=* key_word_;
* kK
user-implementation
CAbs_lri_sym= $p2_keywords::key_word(){return key_word_;};
L2 2 3
op
Parser_env->parallel_accept_conduit(key_word());
%* %k A
};
,stack-pushed-rtn
,stack-popped-rtn)
{
> 3% c++ 8
{lhs-constructor key_word_ = new Sym_c2_start_b1k;***};

-> $ c M _ s
{lhs-constructor key_word_ = new Sym_c2_stop_b1k;***};

-> u/" n/n
{lhs~constructor key_word. = new Sym_slashZ_comment_start;***};

};// end of $p2_keywords
};// end of rules vocabulary

A.8.2 Skeleton View

rules // identifies the rules vocabulary section

{ // list of rule templates with a format of:
<symbolic rule name> a valid C++ name started with a §
AD an optional automatic delete attribute

(

sym-class aaa // C++ class name
{// optiomal sym-class syntax directed code section
// syntax directed code directives

};

106

// Following are optional parameters

,1hs // NO C++ class name: the <symbolic rule name> defines it!
// optional lhs code section

,sym-look-ahead-rtn bbb // C++ class name
// optional sym-locok-ahead code section

,stack-pushed-rtn ccce // C++ class name
// optional stack-pushed-rtn code section
,stack-popped-rtn ddd // C++ class name

// optional stack-popped-rtn code section

)

{// list of subrule templates with a format of:
-> possible empty sequence of
symbolic names of rules and terminals
<optional C++ syntax directed code block>

repeat subrule template to define additional subrules

};

. repeat rule template to define additional rules

A.8.3 Rule Definition of Individual Components
A.8.3.1 Symbolic Name of Rule

<Svmbolic Name of Rule>

The symbolic name is the reference to the rule within the defining grammar. The
compiler writer uses this hame throughout his grammar rule’s right-side phrases. It
must be a valid G-+ class name. This is important because it is the emitted rule’s
class name and it is part of each subrule’s class name. To make life easy for the com-
piler/compiler writer and for the reader of a grammar, rules must start with the “$”
sign. The compiler/compiler emits the subrule’s class name with a “rhs#_" prefix
and the rule’s svmbolic name. The “#" sign in the name is the subrule’s relative
position inside the rule. If there are three subrules being defined, the “#" sign in
each subrule name would be replaced with the number one, or two, or three noting
relative position. The symbolic name is also used in the tracing of the grammar. and
as the key for the parser’'s LR(1) table lookup routine.

A.8.3.2 Automatic Delete Attribute
AD

This parameter is optional and has only one value — AD. It indicates whether the
parser should delete the rule when it is popped from the parse stack. It aids the com-
piler writer in the managing of memory leaks of his grammar’s symbols — terminals
and rules. This is because each grammar’s symbol comes into existence as a pointer
of a class object.

A.8.3.3 sym-class Attribute

svm-class < G+ class name > < Optional C++ Code Block >

The *svm-class” provides a wrapper class for the stack action routines of the rule. It
must be defined even though a wrapper class might be empty of its stack routines.
Accompanying this is the optional G+ code block for the defining rule class. The
compiler writer is free to add any other functionality to the rule.

{ // optional sym-class C++ code block
user-declaration // directive -- code added to the rule
// class definition in the header file

// C++ code
x 3%
//..... wxx L. means C++ code, and #*** ends code block
user-implementation // directive -- code added to the emitted
..... *xx // implementation file
constructor // directive -- code injected into rule
..... L // class’s constructor implementation
destructor // directive -- code injected into rule
..... *xx // class’s destructor implementation
op // directive -- code injected into rule
..... <k // class’s op method implementation

The running comments above provide their intent and placement in the emitted code.

A.8.3.4 lhs Attribute

lhs < Optional C+= syntax directed code >

“lhs” is the rule’s definition body and stands for left-hand-side. It has no G++ name
parameter because this is supplied by the symbolic name of the rule. The “lhs”
directive does one thing:

108

e it directs the code for the rule’s class being defined. The code is general to the
rule and not specific to its subrules. The specific code is defined in each subrule
code block using its “rhs” and “lhs™ prefixed directives.

The same comments apply to the code block format as described before.

{// optional lhs C++ code block
user—-declaration // directive -- code added to the rule
// class definition in the header file

// C++ code
% kK Ak
/7. L means C++ code, and *=* ends code block
user—implementation // directive -- code added to the emitted
..... ko // implementation file
constructor // directive -- code injected into rule
..... xxx // class’s constructors implementation
// this is across all its constructors
destructor // directive -- code injected into rule
..... >k // class’s destructor implementation
op // directive -- code injected into rule
..... kK // class’s op method implementation

The running comments above provide their intent and placement in the emitted code.

A.8.3.5 sym-pushed-rtn Attribute

sym-pushed-rtn < G++ class name > < Optional G++ Code Block >

The “sym-pushed-rtn” is an action class that automatically is executed by the parser
when this rule is pushed onto the parse stack. It gets wedged into the rule’s “sym-
class™ wrapper class as a reference variable with an access method of the same name.
The rule’s “sym-class” comments on the class name and optional code block apply to
“sym-pushed-rtn”’s code block.

A.8.3.6 sym-popped-rtn Attribute

sym-popped-rtn < C++ class name > < Optional C++ Code Block >

The “sym-popped-rtn” is an action class that automatically is executed by the parser
when this rule is popped from the parse stack. It gets wedged into the rule’s “sym-
class” wrapper class as a reference variable with an access method of the same name.
The rule’s “sym-class”™ comments on the class name and optional code block apply to
“sym-popped-rtn”’s code blocks.

109

A.8.3.7 Subrule Definition

—> Subrule Definition < Optional G-+ syntax directed code >

The subrule’s definition is introduced by a “—>" — consider it a subrule defini-
tion operator. The subrule is composed of a mixed sequence of terminals and rules
symbolic names. This sequence can be empty — normal usuage defines the empty
subrule first.

The < Optional C++ syntax directed code > is optional. When used, it has some
additional code directives relating the subrule to its defining rule. The subrule’s code
block takes the same form as defined above with refinements to the directives being:

e “rhs-" prefixes the directives indicating that the code is for the subrule’s class.
The mnemonic stands for right-hand-side.

e “lhs-" prefixes an extra constructor directive. This directive is for the defining
rule’s specific constructor that gets called when this subrule is being reduced.
The mnemonic stands for left-hand-side.

Because the rule and its subrules are emitted as individual classes, these directives
indicate which class to inject the code into. The format is:

{ // optional subrule’s syntax directed code block
rhs-user-declaration // directive -- code added to the subrule
// class definition in the header file

// C++ code
* K w
[/..... xxk L, means C++ code, and **x ends code block
rhs-user-implementation // directive -- code added to the emitted
..... wxx // subrule’s implementation file
rhs-constructor // directive -- code injected into subrule
..... xxx // class’s constructor implementation
rhs-destructor // directive -- code injected into subrule
..... * %% // class’s destructor implementation
rhs-op // directive -- code injected into subrule
..... wkk // class’s op method implementation
lhs-constructor // directive -- code injected into rule
..... =xx // class’s specific constructor

// implementation. Note: rule has a
// constructor per defined subrule

The running G-+ comments above provide their intent and placement in the emitted
code.

110

Appendix B

IDOW Pattern — Iterator
Dispatching Objects for Workers

From [5] the following style is used to describe patterns. In general, this idiom is used
in published documents; it is not a hard-and-fast rule but it is a reasonable starting
point of expectations towards documented patterns.

B.1 Intent

To provide a variable framework structuring code-specific procedures to be executed in
some distributed fashion against related data objects. The pattern enforces modular
programming.

B.2 Reader’s Pre-requisites
A general knowledge of Object-oriented paradigm, familiarity with [3] , and the G+

programming language.

B.3 Motivation

From my experience with some individual patterns Visitor, Iterator, and Strategy
described in [3] , the following programming idiom kept occurring:

e with any bag of data objects varving in composition, a traversal method is
required.

e the traversal is done within a specific context.

111

e upon access, the object’s associated code-procedure is executed.

e keep the local code-to-be-executed stand alone for maintenance ease and reader
comprehension.

e support general work to be done against all objects

e allow the possibility for co-operative signaling between the dispatch and the
iterator.

This pattern achieves the above points in a coherent way. In executing the pattern,
it is the iterator that co-ordinates this: all the other activities are hidden from the
programmer. The principle idea behind the pattern is iteration drives the visiting
of each object that needs work done. Iterator knows the route to take through the
objects; it is the navigator following its pre-planned route. Upon accessing the object,
the iterator calls dispatch. The dispatcher receives the object needing work; it now
co-ordinates, with its pool of workers, who is assigned to work on the accessed object.

As a memory aid, the pattern’s name is an acronym of its composing objects:

e an iterator, a dispatch-of-workers, objects of varying types, and workers.

B.4 Comments

The concrete iterator travels over the objects in a constant way — for example, a
postfix traversal of a tree. To traverse the tree in prefix order, a prefix iterator or a
parameterized iterator would be written. Once written, the iterator is re-useable for
any local processing to take place. The local processing is provided by the dispatch-
of-workers which is imported into the iterator along with the structure to traverse.
The iterator executes and calls the dispatcher giving it the object to be worked on.

The dispatcher then gives his pool-of-workers to the object; the object selects
and engages the artisan to do the commission. The control flow is the same as the
letters in the pattern name: Iterator calls Dispatch, Dispatch calls Object, Object
calls Worker. Double dispatch is between Dispatch to Object, and Object to Worker.

Each object’s worker provides the code isolation from the other data object types.
It is this division of labour that makes this pattern simple in coding out the prob-
lem. This code-localization protects the programmer from conceptual overload. It
also forces the programmer to think about the execution flow determining the code-
procedures logic.

B.5 Uses

Here are some highlights describing IDOW variations:

1. normal use:

e traverse a complete structure executing the local-code per object type.
The execution of the pattern finishes when the iterator reads all the data

objects.
2. general work:

e traverse a complete structure using one general contractor to do the work.
The default “pool of workers” is a general contractor; the same work is
applied to each object — for example, just delete the object. The execution
of the pattern finishes when the iterator reads all the data objects.

3. co-operative signaling between the dispatch-of-workers and the iterator:

e the dispatch has public methods for signaling and the specific iterator tests
the signal after each dispatch call. It usually is the worker-specific proce-
dure that sets the signal by calling the dispatch’s public method. The
signal gets raised somewhere within the data objects being traversed. The
signal can be of any object type: for example, a new object structure re-
turned for the iterator to traverse, or a simple signal as stop-your-iterating.
The iterator tests the signal and reacts accordingly. Usually when used
this way, the iterator and the worker are of one-time-only use. The itera-
tor re-use is locked to the specific dispatch-of-workers. This is due to the
iterator’s explicit knowledge of the dispatch-workers’s signaling procedures
which are not abstractly defined.

4. no iteration required:

e The iterator is eliminated and only one object is dispatched for code-
execution. The dispatch’s call dispatcher method is called directly with
the one object at hand.

B.6 Applicability

Use the IDOW pattern when many code visits are needed against the to-be-iterated
data structure: i.e. polyvmorphic code-workers. For example compilers have multiple
passes on the abstract tree; each pass comprises a code context for execution.

113

Abstract Iterator Abstract data object CObject

access(); accept_code_visitor MFC object class
(abstract_code_plan)

VAN

iterator Data Object type A
access(); accept_code_visitor
\ (abstract_code_plan) Abstract code plan
1:1 visit_<concrete data type>
(concrete data type A){}:
Abstract dispatcher)
call_dispatcher visit_<concrete data type>
(abstract_data_type) (concrete data type Z){};

AN AN

Dispatcher of code plans

call_dispatcher(abstract_data_type);
visit_<concrete data type name>(concrete data type A);

visit_<concrete data type name>(concrete data type 2},

Figure B.1: IDOW class hierarchy

Figure B.1 shows the class hierarchy with multiple inheritance being used to con-
struct the IDOW pattern. From the diagram, iterator imports the data structure
to-be-traversed and the abstract dispatcher which uses polymorphism allowing the it-
erator to receive an open-ended number of code plans. IDOW’s multiple inheritance
bridges the dispatcher with the abstract code plan. Variations on this pattern occur
when the iterator needs specific knowledge within the code plan. Due to the specifics,
the iterator and the dispatcher lose their abstractness to become close-ended.

B.7 Participants

e Abstract Data Type

— declares an accept_workers method taking an abstract_workers as an argu-

114

ment.
e Concrete Data Type

— implements an accept_workers method of its base class Abstract Data type.
The passed parameter is the concrete pool of workers to select from.

e Abstract iterator
— declares an access method.
e Concrete Iterator

— implements the access method that traverses the concrete data objects.
The “starting point within the data objects to-be-traversed” and the “dis-
patch of workers”™ are the arguments to the iterator’s constructor. The
access method initiates the IDOW pattern execution. Inside the access
method is the call to the dispatch-of-workers’s call_dispatcher method.

e Abstract Dispatch

— defines the call_dispatcher method taking the abstract accessed element of
the iterator as an argument.

e Abstract pool-of-Workers

— defines and implements the specific default “worker code” procedures for
each concrete data object. Normally the default action is do-nothing.

e Concrete Dispatch of Workers — Combined Dispatch and Pool of Workers

— implements, using multiple inheritance, the call_.dispatcher method and
the individual worker method for each concrete data type. If a specific
data element does nothing, that appropriate worker method is omitted
defaulting to the base class implementation.

B.8 G-+ Implementation

This pattern is made from four abstract ingredients. The real classes are derived from
these base classes. The base ingredients are as follows:

e the abstract data-object class: Define the abstract data object class having an
abstract accept_code_worker method. This method receives, via a parameter,
the abstract dispatch-of-workers class defined below. Real data classes are then
derived from this class.

115

// 1) An example of an Abstract Data-object Class
class Cabstract_state: public CObject{
public:
virtual “CAbstract_state(){};
virtual void accept_workers
(CAbstract_state_dispatcher_workers* Workers)=0;
protected:
CAbstract_state(){};
};

the abstract iterator: Define an abstract iterator class with its abstract access
method; this access method provides a constant name to all the iterators ini-
tiating the IDOW pattern — it is not mandatory but forces a consistency in
use. Real iterators are derived from this base class and implement the access
method that traverses the data objects.

// 2) An example of an Abstract Iterator
class Cabstract_iterator: public CObject{
public:
virtual “CAbstract_iterator(){};
virtual void access()=0;
protected:
CAbstract_iterator(){};
};

the abstract pool-of-workers class: This base class contains the code-procedures
for each concrete data object defined with its parameter being that of the real
data object. The local procedure name is composed of a prefix “worker.” and
the real data type name; suppose the concrete data type is client record, the
local procedure name would be named ”worker_client_record”. As a default
action, these worker-code procedures are implemented with no action; this frees
up the programmer to code only the subset of workers needed.

For objects that are general in activity and do not have a specific worker, a
general contracting routine is available in the pool-of-workers.

// 3) An example of an Abstract pool of workers
// shows 3 real data objects in use
class Cabstract_state_workers:
virtual public CObjectq{
// virtual due to multiple inheritance
// on CObject

116

// when concretely combined with the
// abstract dispatcher class
public:
Cabstract_state_workers(){};
virtual ~Cabstract_state_workers(){};
virtual void worker_state(Cstatex Object_state){};
virtual void worker_state_sub_rule_vector_list
(Cstate_sub_rule_vector_list* Object_state){};
virtual void worker_state_sub_rule_vector
(Cstate_sub_rule_vector* OUbject_state){};

};

e the abstract dispatch-of-workers class: For each abstract data type, an abstract
dispatch class is defined.

// 4) An example of an Abstract Dispatch
class CAbs_dispatch_of_state:
virtual public CObject{
// virtual due to multiple inheritance
// on CObject
// when concretely combined with the
// abstract code-workers class

public:

virtual ~CAbs_dispatch_of_state(){};

virtual

void call_dispatcher (CAbstract_state*x Object_state)=0;
protected:

CAbs_dispatch_of_state(){};
};

Now the concrete classes are derived and assembled from these base classes cre-
ating the IDOW pattern. The only tricky part is using multiple inheritance on the
“abstract pool of workers” class and the “abstract dispatch” class producing a com-
bined Dispatch-Workers real class. This is the DW part of the pattern name. The
call_dispatcher method and all the local worker code methods are implemented. Nor-
mally. one iterator (I) is defined driving many DW classes. The DW part is the
local code context that needs executing. From my experience in writing the Irl com-
piler/compiler program, nearly one hundred DW definitions were created.

// An example of Concrete Class Definitions
// which builds on the abstract definitions defined above

//
// 1) Real data objects derived from Cabstract_state

117

//

class Cstate_sub_rule_vector:public CAbstract_state{public:
Cstate_sub_rule_vector();
Cstate_sub_rule_vector

(Celement* sbr_elem
,Cstatex closure_state
,CMapPtrToPtr* la_list = NULL);

~“Cstate_sub_rule_vector();

void accept_workers(CAbstract_state_workers= Workers) ;

private:
Celement=* sbr_elem_;
CMapPtrToPtr=* birthing list_;

};

class Cstate_sub_rule_vector_list: public CAbstract_state{
public:
Cstate_sub_rule_vector_list(Crule* name);
“Cstate_sub_rule_vector_list();
Cstate_sub_rule_vector& operator []
(Cstate_sub_rule_vector* a);

int no_of_vectors();
Cstate_sub_rule_vector* get_spec_vector(int id);
void closure_rule(Crulex a);
Crulex closure_rule();

void accept_workers(CAbstract_state_workers* Workers);

friend ostream& operator <<
(ostream& os,Cstate_sub_rule_vector_listk e);

private:
Crulex closure_rule_;
CObArray state_sub_rule_vector_list_;

};

class Cstate:public CAbstract_state{public:
Cstate(Cgrammar_vocabulary* vector,Cgrammar* Grammar) ;
“Cstate();

void accept_workers(CAbstract_state_workers* Workers);

friend ostream& operator <<(ostream& os,Cstate& e);
private:

int state_no_;

unsigned long state_signature_;

CMapPtrToPtr* shift_la_set_;
CObListx* eosr_list_;

118

//

// The real object implementations are omitted except

// their accept_workers routine. They do not add any value

// in demonstrating the IDOW pattern. The accept_workers

// shows which specific worker engaged by the object.

/7

void Cstate_sub_rule_vector::

accept_workers (CAbstract_state_workers* Worker){
Worker->worker_state_sub_rule_vector(this);

)y

void Cstate_sub_rule_vector_list::
accept_workers (CAbstract_state_workers* Worker){
Worker->worker_state_sub_rule_vector_list(this);

¥

void Cstate::
accept_workers(CAbstract_state_workers* Worker){
Worker->worker_state(this);

}

// 2) Concrete Iterator
class Cstate_iterator:public CAbstract_iterator{public:
enum state_part {closure_part,transitive_part};
Cstate_iterator
(state_part State_part
,Cstatex Root
,CAbs_dispatcher_of_state* Plan);
virtual “Cstate_iterator();
void access();
private:
state_part access_what_;Cstate* root_;CAbs_dispatcher_of_state* plan_;

};

//

// state Iterator Implementation

//

Cstate_iterator::Cstate_iterator
(Cstate_iterator::state_part State_part
,Cstate=* Root

,CAbs_dispatcher_of_state_workers* Plan)
:access_what_(State_part) ,root_(Root),plan_(Plan){};

Cstate_iterator:: “Cstate_iterator(){};
void Cstate_iterator::access(){

plan_->call_dispatcher(root_); // state data object
int i,y;

119

Cstate_sub_rule_vector_list=* ssrvl;
Cstate_sub_rule_vector* ssrv;
// always check dynamically against no of rules
// because they can be iterated while being built
// hence the result per test is not CONSTANT!!
for (i=1;;i++){
if (access_what_ == closure_part){
if (i > root_->no_of_closure_rules()) break;
Yelse{ if (i > root_->no_of_transitive_rules()) break;}
if (access_what_ == closure_part)
ssrvl = root_->get_spec_closure_rule_list(i);
else ssrvl = root_=->get_spec_transitive_rule_list(i);
plan_->call_dispatcher(ssrvl);// sub rule vector list
for (y=1,ssrv = ssrvl->get_spec_vector(y);
ssrv!=NULL;y++,ssrv = ssrvl->get_spec_vector(y)){
plan_->call_dispatcher(ssrv);// sub rule vector
}
}
return;

¥

// 3) Dispatch-Workers (DW) Definition

// This example only defines 2 of the three worker-code

// procedures. It shows the flexibility of the IDOW pattern
// where not all the code-workers have to be defined.

// The default code for the worker_state_sub_rule_vector_list
// 1is the base class implementation which does nothing.

class Cstate_dump_dw:
public Cabs_dispatch_of_state,Cabstract_state_workers{public:
Cstate_dump_dv(ostreamg& DC);
“Cstate_dump_dv();
void call_dispatcher(CAbstract_state* Object_state);
void worker_state(Cstatex Object_state);
void worker_state_sub_rule_vector
(Cstate_sub_rule_vector* Object_sub_rule_vector);
private: ostream& dc_;

}

//

// implementation

//
Cstate_dump_dw: :Cstate_dump_dw(ostream& DC):dc_(DC){};

void Cstate_dump_dw::call_dispatcher(CAbstract_state* Object_state){
Object_state->accept_code_worker(this);

}

void Cstate_dump_dw: :worker_state(Cstate* Object_state){

120

dc_ << "--->state no: "
<< Object_state->state_no() << " state label:: " << endl;

. // balance of details irrelevant

}

void Cstate_dump_dw: :worker_state_sub_rule_vector
(Cstate_sub_rule_vector* Object_sub_rule_vector){
Celement* e = Object_sub_rule_vector->sbr_elem();
. // dump this record’s data
. // balance of details irrelevant

}

//

// 4) Example of IDOW pattern being used to dump a state

//

Cstate_dump_dw state_dump(clog); // DW part

Cstate_iterator state_iterator
(Cstate_iterator::closure_part

,A_state_ptr // structure to iterate
,&state_dump) ;
state_iterator.access(); // execution of the IDOW Pattern

B.9 Consequences

The major benefit is code-isolation within the pool-of-workers’s class. It is the co-
operation between the Iterator, Dispatcher, and Workers that makes the pattern easy
to use.

The downside to a normal IDOW pattern is all elements are visited by the iterator
and their worker-code procedures are executed; no discrimination is done on the data
element types being traversed. It is this abstractness on the elements traversed that
make this pattern so attractive in use — yvou just go ahead and execute the iterator:
it handles all the other details. Unless the code is time critical, the minor overhead
in executing default worker-procedures — usually inlined — is more than off-set by
the code simplicity. By tailoring the iterator and DW parts, variations three and four
described above, allow the programmer to over come these overheads.

Appendix C

Lrl Grammar Test Suite

In this section, I give some grammars used to test the concepts developed in the
thesis.

C.1 Common Terminals — Irl_test_terminals.h

This is the grammar’s terminals header file used by the test suite grammars. It
defines each terminal with some terminals having stack action routines. All the test
suite grammars defined later include this file into their definition header. Defined
later, the grammar demonstrating the parse tracing capability shows its inclusion by
“@Ilrl_test_terminals.h” (without the quotes).

//

// file: 1rl_test_terminals.h

// purpose: common terminals for test suite grammars:
//

fsm-operation
(fsm-operation-shift-class fsm_Shift
,fsm-operation-reduce-class fsm_Reduce
,fsm-operation-accept-class fsm_Accept
,fsm-operation-error-class fsm_Error);

terminals

{
a (sym-class Csymbol_a); b (sym-class Csymbol_b);
c (sym-class Csymbol_c

,sym-look-ahead-rtn Csymbol_c_look_ahead rtn
,stack-pushed-rtn Csymbol_c_pushed_rtn
,stack-popped-rtn Csymbol_c_popped_rtn);
(sym-class Csymbol_d); e (sym-class Csymbol_e);
(sym-class Csymbol_f); g (sym-class Csymbol_g);
q (sym-class Csymbol_g); t (sym-class Csymbol_t);

H

122

u (sym-class Csymbol_u); v (sym-class Csymbol_v);
w (sym-class Csymbol_w); x (sym-class Csymbol_x);
v (sym-class Csymbol_y); z (sym-class Csymbol_z);
eog(sym-class Csymbol_eog
,sym—look-ahead-rtn Csymbol_eog_look_ahead_rtn
,Stack-pushed-rtn Csymbol_eog_pushed_rtn
,stack~popped-rtn Csymbol_eog_popped_rtn);

eolr(sym-class Sym_eolr);

"111" (sym-class Sym_parallel_operator);
"[lr"(sym-class Sym_parallel_reduce_operator);
"I [Ib" (sym-class Sym_parallel_bndry_operator) ;
“{110"(sym-class bs$$_0); "[l]1"(sym—class bs$$_1);
"f| 12" (sym-class bs$$_2); "||]3"(sym-class bs$$_3);
"| | [4" (sym-class bs$$_4); "I|15" (sym-class bs$$_5);

};

The “eog” terminal is a special terminal for “end of grammar reached” condition. It
is automatically generated by the “end of file” condition when the raw characters are
being read. For continuity or the compiler writer’s propensity, multi pass grammars
can append this special terminal to their containers — two “eog”es are appended if
the start rule’s right-hand-side contains the “eog” terminal; this allows the start rule
to be reduced along with the execution of its action services. The terminals following
“eog” are used internally by the compiler/compiler.

123

CAbs_Ir1_sym

Base class for all symbols
terminals and rules

concrete objects
general IDOW

Chr_sym_c

Raw characters

abstract middleman layer

CAbs_Cilsuite_terminal_sym

for SpeleIC grammar specific grammar’s abstract middieman

Ctsuite

for common lexicon

concrete layer for real terminals

lexicon
terminal classes

produced from Csymbol_c
"terminals" in grammar

Csymbol_z

Figure C.1: Terminal class hierarchy for Ctsuite

Figure C.1 graphically describes the class hierarchies emitted for the terminals.
From the diagram, the general base class CAbs_lrl_sym derives the specific mid-
dleman terminal class CAbs_Ctsuite_terminal_sym, a manufactured name from the
compiler/compiler which derives the real terminal symbols of Ctsuite grammar. In

a multi-pass environment, these class definitions are shared.

C.2 Test Suite’s Lexical Grammar

The following grammar produces tokens for the test suite. One of its emitted files
— Ctsuite.h — is the C++ terminal classes’ header file which is included in every test
suite grammar file using the “@” file include operator; this included file gets passed

through to the C++ emitted files of each grammar.

124

/= FILE: 1lri_test_terminals.lex
Common lexer for suite of lrl test grammars */
fsm (fsm-id "l1rl_test_terminals.lex"
,fsm-class Ctsuite
,fsm-version "1.0",fsm-date "8-nov-97",fsm-debug "yes"
,fsm-comments "lexer for 1lrl test suite");
Qlrl_test_terminals.h
rulesy{
$ts_lexer
(sym-class Sym_$ts_lexer
,1hs{
op
Parser_env->token_producer ()->add_token(new Csymbol_eog) ;
Parser_env->token_producer()->add_token(new Csymbol_eog);
x kK
};
Y{-> $ts_toks eog };
$ts_toks(sym-class Sym_3$ts_toks){
-> $ts_tok
-> $ts_toks $ts_tok
1
$ts_tok
(sym-class Sym_$ts_tok
,1hs
{ user-declaration
public: CAbs_lri_sym=* tok();private: CAbs_lrl_sym* tok_;*xx*
user-implementation
CAbs_lri_sym* $ts_tok::tok(){return tok_;};*=*=*
op Parser_env->token_producer()->add_token(tok()) ;**=

};

){-> a{lhs-constructor tok. = new Csymbol_a;=**};
-> b{lhs-constructor tok_ = new Csymbol_b;*#*x};
-> c{lhs-constructor tok_ = new Csymbol_c;**=*};
~> d{lhs-constructor tok_ = new Csymbol_d;=**x*};
-> e{lhs-constructor tok_ = new Csymbol_e;*=xx*};
-> f{lhs-constructor tok_ = new Csymbol_f;**x*};
-> g{lhs-constructor tok_ = new Csymbol_g;***};
-> gq{lhs-constructor tok_ = new Csymbol_q;***};
-> t{lhs-constructor tok_ = new Csymbol_t;=**x};
-> u{lhs-constructor tok_ = new Csymbol_u;**x};
-> v{lhs-constructor tok_ = new Csymbol_v;x*=*x};
-> w{lhs-constructor tok_ = new Csymbol_w;***};
-> x{lhs-constructor tok_ = new Csymbol_x;*#*x*};
-> y{lhs-constructor tok_ = new Csymbol_y;**x};
-> z{lhs-constructor tok_ = new Csymbol_z;**x};

+;
}; // end of grammar

C.3 Common G+ Terminals — Ctsuite.h

This is the C++ header file used by the grammars of the test suite. It is generated
from the lexical grammar and used by all the other grammars: there is an option
in the compiler/compiler whether to generate the terminals C++ code. The three
include files are automatically added to the emitted files by the compiler/compiler
to use: Microsoft’s “MFC” class environment, the “IDOW?” pattern, raw character
processing for the lexical grammar, and parallel grammar processing which is being
experimented with. To conserve space, the emitted file has been edited.

#include "stdafx.h"

#include "emit_idow.h"

#include "parallel_idow.h"

#define new DEBUG_NEW

class CAbs_Ctsuite_terminal_objects_workers;

// Definition: terminals middleman

class CAbs_Ctsuite_terminal_sym:public CAbs_lri_sym{public:
virtual “CAbs_Ctsuite_terminal_sym();
virtual void
accept_workers(CAbs_Ctsuite_terminal_objects_workers* Workers)=0;

protected:

CAbs_Ctsuite_terminal_sym
(CAbs_s_r_rtn* Look_ahead_rtn
,CAbs_s_r_rtnx Shift_rtn
,CAbs_s_r_rtnx* Reduce_rtn
,const charx Id);

};
// Definition: terminals idow middleman
class CAbs_Ctsuite_terminal_dw:virtual public CObject{public:
virtual ~CAbs_Ctsuite_terminal dw(){};
virtual void
call_dispatcher(CAbs_Ctsuite_terminal_sym* Object_terminal)=0;
protected:
CAbs_Ctsuite_terminal _dw(){};
};
class CAbs_Ctsuite_rule_objects_workers;
// Definition: rules middleman
class CAbs_Ctsuite_rule_sym:public CAbs_rule_sym{public:
virtual “CAbs_Ctsuite_rule_sym();
virtual void
accept_workers(CAbs_Ctsuite_rule_objects_workers* Workers)=0;

protected:

CAbs_Ctsuite_rule_sym // rule
(CAbs_1rl_sym=* Rule_sym_class
,CAbs_rule_sym* Sub_rule
,const charx Id);

CAbs_Ctsuite_rule_sym // subrule

126

(int Rhs_no_of_parms
,int Sub_rule_id
,const char= Id);
};
// Definition: idow middleman for rules
class CAbs_Ctsuite_rule_dw:virtual public CObject{public:
virtual “CAbs_Ctsuite_rule_dw(){};
virtual void call_dispatcher(CAbs_Ctsuite_rule_sym=* Object_rule)=0;
protected:CAbs_Ctsuite_rule_dw(){};
};
// Terminals classes with their action services classes
class Csymbol_w:public CAbs_Ctsuite_terminal_sym{public:

“Csymbol_w();
void accept_workers(CAbs_Ctsuite_terminal_objects_workers* Worker);
void op(CAbs_parser* Parser_env) ;Csymbol_w(const char* Id = "w");

}

class Csymbol_eog_look_ahead_rtn:public CAbs_s_r_rtn{public:
Csymbol_eog_look_ahead_rtn(const char* Id = "Csymbol_eog_look_ahead_rtn");
~Csymbol_eog_look_ahead_rtn();
void op(CAbs_lri_sym* Terminal,CAbs_parser= Parser_env) ;

};

class Csymbol_eog_pushed_rtn:public CAbs_s_r_rtn{public:
Csymbol_eog_pushed_rtn(const char* Id = "Csymbol_eog_pushed_rta");
“Csymbol_eog_pushed_rtn();
void op(CAbs_lrl_sym= Terminal,CAbs_parser= Parser_env) ;

};

class Csymbol_eog_popped_rtn:public CAbs_s_r_rtn{public:
Csymbol_eog_popped_rtn(const char* Id = "Csymbol_eog_popped_rtn");
~“Csymbol_eog_popped_rtn();
void op(CAbs_lri_sym* Terminal,CAbs_parser= Parser_env);

};

class Csymbol_eog:public CAbs_Ctsuite_terminal_sym{public:
~Csymbol_eog();
void accept_workers(CAbs_Ctsuite_terminal_objects_workers= Worker) ;
void op(CAbs_parser* Parser_env) ;Csymbol_eog{const char* Id = "eog");
static class Csymbol_eog_look_ahead_rtn look_ahead_rtn;
static class Csymbol_eog_pushed_rtn shift _rtn;
static class Csymbol_eog_popped_rtn reduce_rtn;

};

// The following terminals have been edited out for space reasons

// They follow the same emit pattern as exampled terminals above

// ftxgyz Il Il (e (110 (e (112 1113 [[14 1115 t cud eolr v e

//

// Ctsuite FSM class definition

class Ctsuite: public CAbs_fsm{public:

enum sub_rules{start_of_sub_rule_list = 0
,rhsl_$ts_lexer

127

,rhs1l_$ts_toks,rhs2_S$ts_toks
,rhsl_$ts_tok,rhs2_$ts_tok,rhs3_8$ts_tok,rhs4_$ts_tok
,rhs5_8$ts_tok,rhs6_8ts_tok,rhs7_$ts_tok,rhs8_$ts_tok
,rhs9_$ts_tok,rhsi0_$ts_tok,rhsll_$ts_tok,rhsl2_$ts_tok
,rhs13_$ts_tok,rhs14_$ts_tok,rhs15_S$ts_tok};
enum rules{start_of_rule_list = O,rule_$ts_lexer
,rule_3$ts_toks,rule_$ts_tok};
enum states{reduce = 0,R = reduce,no_of_states = 20};

Ctsuite
(CMapStringTolbx* Gbl_sym_tbl=NULL
,const char= Debug="yes"
,const char= Comments="common lexer for lrl test suite grammars"”
,const char= Id="1r1_test_terminals.lex"
,const char= Version="1.0"
,const char= Date="8-nov-97");
“Ctsuite();
void op(CAbs_parser= Parser_env) ;
CAbs_fsm* entry(Q);
CAbs_fsm* exit();
CAbs_rule_sym* reduce_rhs_of_rule
(int T // top of stack
,CAbs_parser* Parser_env
,int Sub_rule_no);

CAbs_fsm_oper* s_op();//shift operation
CAbs_fsm_oper* r_op();//reduce operation
CAbs_fsm_oper* a_op();//accept operation
CAbs_fsm_oper* e_op();//error operation

private:
void load_symbols_into_fsm_symbol_table();
void load_symbols_into_parallel_bndry_fsm_symbol_table();
void load_states_into_fsm_state_table();

private:

CAbs_fsm_oper* s_;// shift

CAbs_fsm_oper* r_;// reduce

CAbs_fsm_oper=* a_;// accept

CAbs_fsm_oper* e_;// error

};

class $ts_lexer;
class $ts_toks;
class $ts_tok;
// Rules Classes with action services classes
class Sym_S$ts_lexer:public CAbs_lri_sym{public:
Sym_$ts_lexer(const char* Id = "$ts_lexer");
“Sym_%$ts_lexer();
void accept_workers(CAbs_Ctsuite_rule_objects_workers* Worker) ;
void op(CAbs_parser* Parser_env);

128

class Rhsl_$ts_lexer:public CAbs_Ctsuite_rule_sym{public:
Rhsi_$ts_lexer(int P1,int P2,CAbs_parser* Parser_env
,int Sub_rule_id = Ctsuite::rhsl_$ts_lexer
,const char* Id = "Rhsi_$ts_lexer");
“Rhsi_$ts_lexer();
void accept_workers(CAbs_Ctsuite_rule_objects_workers* Worker);
void op(CAbs_parser> Parser_env);
$ts_toks* get_pl();Csymbol_eog* get_p2();
private:friend $ts_lexer;
$ts_toksx pl_;Csymbol_eog* p2_;
CAbs_parser* parser_env_;
3
class $ts_lexer:public CAbs_Ctsuite_rule_sym{public:
“$ts_lexer();
void accept_workers(CAbs_Ctsuite_rule_cbjects_workers= Worker) ;
void op(CAbs_parser* Parser_env);
$ts_lexer (Sym_$ts_lexer* Rule_sym_class,Rhsl_$ts_lexer* Sub_rule_1
,CAbs_parser* Parser_env,const charx Id = "$ts_lexer");
private:CAbs_parser* parser_env_;
}
class Sym_$ts_toks:public CAbs_lrl_sym{public:
Sym_$ts_toks(const char* Id = "$ts_toks");
“Sym_$ts_toks();
void accept_workers(CAbs_Ctsuite_rule_objects_workers* Worker);
void op(CAbs_parser* Parser_env);
};
class Rhsi_$ts_toks:public CAbs_Ctsuite_rule_sym{public:
Rhsi_$ts_toks(int P1,CAbs_parser* Parser_env
,int Sub_rule_id = Ctsuite::rhsl_$ts_toks
,const char* Id = "Rhsl_$ts_toks");
“Rhs1_$ts_toks();
void accept_workers(CAbs_Ctsuite_rule_objects_workersx Worker) ;
void op(CAbs_parser* Parser_env);$ts_tok* get_pl();
private:friend 3ts_toks;
$ts_tok* pl_;CAbs_parser* parser_env_;
1
class Rhs2_$ts_toks:public CAbs_Ctsuite_rule_sym{public:
Rhs2_$ts_toks(int P1l,int P2,CAbs_parser* Parser_env
,int Sub_rule_id = Ctsuite::rhs2_$ts_toks
,const char* Id = "Rhs2_$ts_toks");
“Rhs2_8$ts_toks();
void accept_workers(CAbs_Ctsuite_rule_objects_workers* Worker) ;
void op(CAbs_parser* Parser_env);$ts_toks* get_pl1();$ts_tok* get_p2();
private:friend $ts_toks;
$ts_toks=* pl_;$ts_tok* p2_;CAbs_parser* parser_env_;
}
class $ts_toks:public CAbs_Ctsuite_rule_sym{public:
“$ts_toks();

void accept_workers(CAbs_Ctsuite_rule_objects_workers* Worker);
void op(CAbs_parser* Parser_env);
$ts_toks(Sym_$ts_toks* Rule_sym_class,Rhsl_$ts_toks* Sub_rule_1

,CAbs_parser* Parser_env,const char* Id = "$ts_toks");
$ts_toks(Sym_$ts_toks* Rule_sym_class,Rhs2_$ts_toks* Sub_rule_2
,CAbs_parser* Parser_env,const char* Id = "$ts_toks");
private:CAbs_parser* parser_env_;

};

class Sym_$ts_tok:public CAbs_lril_sym{public:
Sym_$ts_tok(const char= Id = "$ts_tok");
“Sym_$ts_tok();
void accept_workers(CAbs_Ctsuite_rule_objects_workers= Worker);
void op(CAbs_parserx Parser_env);
};
class Rhsl1_$ts_tok:public CAbs_Ctsuite_rule_sym{public:
Rhs1_$ts_tok(int P1,CAbs_parser* Parser_env
,int Sub_rule_id = Ctsuite::rhsl_$ts_tok
,const char* Id = "Rhsl_$ts_tok");
“Rhsi_$ts_tok();
void accept_workers(CAbs_Ctsuite_rule_objects_workers* Worker);
void op(CAbs_parser* Parser_env);Csymbol_a=* get_pli(};
private:friend $ts_tok;Csymbol_a* pl_;CAbs_parser* parser_env_;
};
class Rhs2_$ts_tok:public CAbs_Ctsuite_rule_sym{public:
Rhs2_$ts_tok(int P1,CAbs_parser* Parser_env
,int Sub_rule_id = Ctsuite::rhs2_$ts_tok
,const char* Id = "Rhs2_$ts_tok");
“Rhs2_$ts_tok();
void accept_workers(CAbs_Ctsuite_rule_objects_workers= Worker);
void op(CAbs_parser* Parser_env);Csymbol_b=* get_p1();
private:friend $ts_tok;Csymbol_b* pl_;CAbs_parser* parser_env_;
};
//
// The balance of subrule classes edited out for space reasons
// along with the corresponding rule’s constructors.
// They follow the same emit pattern.
// Rhs3_$ts_tok to Rhsl5_$ts_tok
//
class $ts_tok:public CAbs_Ctsuite_rule_sym{public:
“$ts_tok();
void accept_workers(CAbs_Ctsuite_rule_objects_workers= Worker);
void op(CAbs_parser* Parser_env);
$ts_tok(Sym_$ts_tok* Rule_sym_class,Rhsl_S$ts_tok* Sub_rule_ 1

,CAbs_parser* Parser_env,const char= Id = "$ts_tok");
$ts_tok(Sym_$ts_tok* Rule_sym_class,Rhs2_S$ts_tok* Sub_rule_ 2
,CAbs_parserx Parser_env,const charx Id = "$ts_tok");

constructors for Rhs3_$ts_tok - Rhs15_$ts_tok omitted

130

private:
CAbs_parser* parser_env_;
public: CAbs_lri_sym* tok();
private: CAbs_lrl_sym* tok_;
};

// rules idow worker middleman class

class CAbs_Ctsuite_rule_objects_workers:public CAbs_lrl_sym_workers{public:
CAbs_Ctsuite_rule_objects_workers();
~“CAbs_Ctsuite_rule_objects_workers();

// visitor functions

virtual void worker_$ts_lexer($ts_lexer* Object);

virtual void worker_Sym_$ts_lexer(Sym_$ts_lexerx Object);

virtual void worker_Rhsl_$ts_lexer (Rhsi_$ts_lexer* Object);

virtual void worker_$ts_toks($ts_toks* Object);

virtual void worker_Sym_$ts_toks(Sym_$ts_toks* Object);

virtual void worker_Rhsl_$ts_toks(Rhsl_$ts_toks=* Object);

virtual void worker_Rhs2_$ts_toks(Rhs2_$ts_toks* Ubject);

virtual void worker_$ts_tok($ts_tok* Object);

virtual void worker_Sym_$ts_tok(Sym_$ts_tok* Object);

virtual void worker_Rhsl_$ts_tok(Rhsl_$ts_tok* Object);

virtual void worker_Rhs2_$ts_tok(Rhs2_$ts_tok* Object);

..... worker_Rhs3_$ts_tok to worker_Rhsi5_$ts_tok omitted

// terminals idow worker middleman class
class CAbs_Ctsuite_terminal_objects_workers:public CAbs_lrl_sym_workers{
public:
CAbs_Ctsuite_terminal_objects_workers();
“CAbs_Ctsuite_terminal_objects_workers();
// visitor functions
virtual void worker_Csymbol_w(Csymbol_w* 0Obj);
virtual void worker_Csymbol_f(Csymbol_£f* 0Obj);
virtual void worker_Csymbol_x{(Csymbol_x* 0bj);
virtual void worker_Csymbol_g(Csymbol_g* 0bj);
virtual void worker_Csymbol_y(Csymbol_y* 0Obj);
virtual void worker_Csymbol_z(Csymbol_z* 0Obj);
virtual void worker_Sym_parallel_operator(Sym_parallel_operator* 0bj);
virtual void worker_Sym_parallel_reduce_operator
(Sym_parallel_reduce_operator* 0bj);
virtual void worker_Sym_parallel_bndry_operator
(Sym_parallel_bndry_operator* 0bj);
..... terminals a,b,c,d,e,q,t,u,v,eog,eolr, |10 - [[|5 omitted

131

C.4 Test Suite of Grammars

To test the LR1 capability, a collection of grammars supplied by various authors
between the vears of 1977 to 1988 is used. Each grammar is presented in a stylized
way with the class names omitted to conserve page space. The compiler/compiler’s
output is also compressed — it graphically shows the state, its rules and the parse
position per subrule, the goto vector, and the lookahead set if the subrule is consumed.
An asterisk beside the state denotes the state was not merged due to “Irness” conflict.
For their “Irness” discussions, the reader should read the original papers referenced.
Also shown for one of the grammars is its tracings by the parser.

C.4.1 Deremer and Pennello Grammars
C.4.1.1 LALR(1) Grammar: Page 632 of 3]

The grammar tests out LALR resolution on states 14 and 15.

Rules
$S §51 SA §B
—+8Sleog | 2aSAc |2 8B| =g
—agd
—bsAd
—=+bgec
1] $5—.SS1eog | 12 7 §S1— b.SA d 8
§S1—.aSAc 2 8S1— bgec 10
§S1—.agd 2 SA—.SB 135
§S1-b 3A d 7 SB—.g 10
8Sl1sbgec 7
8 §S1— b SA.d 9
2 8S1—-afAc 3
8S1—agd 3 9 §S1— b SA d. eog
$A— 8B 14
§B—.g 3 10 | SS1—+bgec 11
$SB— g. d
3| 851—+as8Ac 4
11 [SSl—=bgec. eog
4(SSl1salSAc eog
12 | 85— $Sl.eocg | 13
5| 8S1l—agd 6
$B— g. c 13 | §S5— $S1 eog. accept
6| SS1—agd. eog 14* | SA— $B. c
15* | SA— $B. d

Graphic output of Ir parse table.

C.4.1.2 LR(0) Grammar: Page 633 of [3]

The grammar has no state conflicts.
Rules
§S §51 $B §C | $D | SE
—8Sleog | - cd —-8DSE | »c| = | —
—+a$Bd
—+SCS$B g
1| §5—.551 eog 10 6 | $S1— a $B d. eog
$S1—.cd 2
$§S1—+.a $B d 4 7 | 851+ 8C8Bg 8
§S1—+.8C8Bg | 7 $B—.$D SE 12
§C—.c 2 $D—. g
2| 8C—c. g 8 | §S1— SC $B.g 9
§51— cd 3 9 | $S1—- SCSB g. eog
3|81=>cd eog 10 | $S— $Sl.eog 11
4| 8S1— a8Bd 5 11 | $S— $S1 eog. accept
$B—.8D SE 12
SD—. dg 12 | $B— SD.SE 13
SE—. dg
5| 8S1— a $B.d 6
13 | $B— 8D SE. dg

Graphic output of Ir parse table.

133

C.4.2 Kristensen and Madsen Grammar
C.4.2.1 LALR(1) Grammar from [9]

The

grammar tests LALR resolution on states 7 and 24.
Rules
§S SE SA $B
—+SEeog| —+%Aa —+xvzSA | —->xyz$B
—+$8Bb —xq -+ xq
—u$Ab
—+udBa
1 | $S—.SE eog 17 12 | SE—+ u$A b 13
SE—.5A a 8 SE— u$Ba 15
$SE—.8Bb 10 SA—s>xyz$A | 19
SE—5.u8Ab 12 SA—xq 19
SE—.usSBa 12 SB—+xyz$SB |19
$A—xyz5A 2 $B—oxq 19
SA—xq 2
$B—.xyz$B 2 13 | SE—+uS$Ab 14
§B—.xq 2 14 | SE5 usSAb. eog
2 | 5A— xyz$SA 3
$A— xq 7 15 | SE— u $B.a 16
$B— x.y z $B 3
SB— x.q 7 16 | SE-+ uSBa. eog
3 | SA- xyvz§A 4 17 | §S5— SE.eog 18
$SB— x vz $B 1 18 | $S— SE eog. accept
4 | SA—sxyzSA 5 19 | SA— xyzSA |20
$B— x v z.SB 6 SA—= x.q 24
$A—-xyzS5SA 2 $SB— xyz$8B | 20
$A—.xq 2 $B— x.q 24
$B—sxyz$§B 2
§B—.xq 2 20 | SA—+xyz8A |21
SB— xyz$B | 21
5 | SA— xyz8A. a 21 { SA— xyz.8A | 22
6 | SB— xyz$B. b $SB— xyz8B | 23
SA—xyzS8A [19
™| SA— xq. a SA-xq 19
$B— x q. b SB—oxyz§8B | 19
SB—.xq 19
8 | SE—SAa 9 22 | SA— xy z SA. b
9 | SE— SA a. eog 23 | §SB— xy z $B. a
10 | SE— SB.b 11 24* | SA— xq. b
11 | SE— SB b. eog SB— x q. a

Graphic output of Ir parse table.

134

C.4.3 Spector Grammars

C.4.3.1 LR(1) G3 Grammar with Example of a Parsing Trace: Page 64
of [13]

The grammar tests LR(1) resolution between states 4 and 15, and between states 6
and 17. The automatic tracing capabilities of the compiler/compiler is also illustrated.

Rules
SMM §S SA $B
—+3%Se0g| -5Ab| +aSAc| —=asdBb
—=+8%Bc|—a —a
1 | $MM—.$Seog | 11 7 $S— $SAb 8
$§S—.5A b 7
$§5—.$B ¢ 9 8 $S— SA b. eog
SA—.a8Ac 2
SA—.a 2 9 $S— S$B.c 10
$B—.a$Bb 2
$B—.a 2 10 | 8S— $Bec. eog
2 | $A—>afAc 3 11 | SMM— $S.eog | 12
$A— a. b
$B— a.$5B b 3 12 | SMM— 8S eog. accept
$B— a. c
$A—.afAc 13 13 SA—aSAc 14
SA—.a 13 SA— a. c
$B—.a$Bb 13 $B—+ a.$B b 16
$B—.a 13 $B— a. b
$SA—.a8A ¢ 13
3 $A— a $Ac 4 SA—.a 13
$SB—.2a 8B b 13
4* | A~ a $A c. b SB—.a 13
5 $B— a $B.b 6 14 | $A— a SA.c 15
6* | SB— a $B b. c 15* | SA— aSA c. c
16 | $B— a $B.b 17
17* | $B— a §B b. b

Graphic output of Ir parse table.

The grammar is presented with comments referenced in the annotated trace. The
trace shows LR(1) resolution between states 4 and state 15. It also shows action ser-
vice routines (syntax-directed) being exercised for some terminals and the start rule’s
syntax-directed code being executed. These services highlight the extra execution
points that the compiler writer can inject code into the emitted program.

CAbs_Ir1_sym

Base class for all
symbols

CAbs_rule_sym

Base class for all rules

abstract middlemen layers
family of middlemen per
grammar

CAbs_Citsuite_rule_sym
test suite’s lexicon
grammar

CAbs_ClIr1_sp3_rul_fsm_rule_sym

T
Ctsuite middieman Clr1_sp3_rul_fsm middleman

concrete rules per grammar

SMM ; subrules and rules of sB
; Clr1_sp3_rul_fsm grammar

Figure C.2: Rule and Subrule class hierarchy for Clrl_sp3_rule_fsm using Ctsuite

Figure C.2 outlines the class hierarchies emitted for the rules and their subrules.
It identifies the base classes, middlemen classes deriving from the base classes, and
finally the symbol classes of Clrl_sp3_fsm grammar. The middlemen class names
are manufactured as described in the thesis.

On the next page, the source grammar Clrl_sp3_fsm is given which this subsub-
section’s lead-in graphic depicts.

136

/= FILE: LR1_SP3.RUL
A LR1 GRAMMAR FROM DAVID SPECTOR
SIGPLAN VOL 23 NO 12 DEC/88 =/

fsm (fsm-id "lrl_sp3.rul"
,Ism-class Clri_sp3_£fsm
{

user-prefix-declaration
#include "Ctsuite.h"
#define new DEBUG_NEW
x KX
constructor clog << "Start of lrl_sp3\n";=x=x //ref::1
destructor clog << "Stop of lri_sp3\n";=xx //ref::2
};
,Ism-version "1.0",fsm-date "8-oct-96"
,fsm-debug ‘“yes",fsm-comments "test out iri");
@lri_test_terminals.h
rules
{
$MM(sym-class R$MM
,1hs
,stack-pushed-rtn C$MM_pushed_rtn //ref::6
,stack-popped-rtn C$MM_popped_rtn){ //ref::7
-> 8S eog
};
$S (sym-class R$S){
-> %A Db
-> 8B ¢ };
SA(sym-class RSA
,lhs{destructor
clog << "destructor -- $A" << endl; //ref::3
xAkKX
+
DRI
->a %A c
{lhs-constructor //ref::4
clog << "constructor $A -- subrule 1" << endl;
* Xk
}
-> a
{lhs-constructor //ref::5
clog << "constructor $A -- subrule 2" << endl;
x kXK
b
};
$B(sym~-class R$B){
->a$Bb
-> a};
}; // end of grammar

137

Shown below is the traced output run on Microsoft’s NT Operating System. The
“63” prefixing each output line is the thread’s id being executed at the time of the
trace. Stacked operations are prefaced by the number of “.” indicating its position
on the stack. The current parse stack configuration is symbolically displayed as
linked arrows composed of the current state number, shifted symbol, and the goto
state number. This is repeated for the number of items on the stack in a “bottom
to top” stack order. Sprinkled within the trace are the parse objects — terminals,
rules, subrules, stack action routines, and some simple Cr+ syntax-directed code —
that express their tracing facilities. Optionally to the right of the trace lines are
running comments. Some comments reference the labels within the grammar above;
these reference tags are identified by the label “ref::#” with the “#” being a unique

number.
“aaaccb” is the data to parse: “Irlness” is tested between states 4 and 15.

tart of 1lril_sp3 // C++ syntax code ref::1
.63::shift_op token: 0x005248A0 a pos: 1 // parse operation
63::1-~a-> 2 // symbolic stack trace

// state 1 with ’a’ goes to state 2
..63::shift_op token: 0x00524E20 a pos: 2
63::1--a-> 2--a-> 13
...63::shift_op token: 0x00524B60 a pos: 3
63::1--a-> 2--a-> 13--a-> 13
....63::reduce_op
....63::Csymbol_c_look_ahead_rtn::op()// action service
// defined in terminal

....63::Rhs2_8$A::0pQ) // subrule op always executed
constructor $A -- subrule 2 // c++ injected code ref::5
....63::8A::0p() // rule’s op always executed

....63::popped state:: 13
...63::exposed sym:: a
63::1--a-> 2--a-> 13--$A-> 14 // result of reduce
....63::shift_op token: 0x00524720 c pos: 4
..... 63: :Csymbol_c_pushed_rtn::op()
63::1--a=-> 2--a-> 13--8A-> 14--c-> 15
..... 63: :reduce_op // state 15 lriness resolution
..... 63: :Csymbol_c_look_ahead_rtn::op()
..... 63::Rhs1_$A::0p()
constructor $A -- subrule 1 // c++ injected code ref::4
..... 63::8A::0p()
..... 63::popped state:: 15
...63::exposed sym:: ¢
..63::Csymbol_c_popped_rtn::op()// action service
// defined in terminal
..63::popped state:: 14

138

..63::exposed sym:: $A

..63::popped state:: 13
destructor -- $A // c++ injected code ref::3
..63::exposed sym:: a
63::1--a-> 2--3A-> 3

...63::shift_op token: Ox00524EDO c pos: 5
....63::Csymbol_c_pushed_rtn::op()// action service
63::1--a-> 2--8A-> 3--c-> &

....63::reduce_op // state 4 lriness resolution
....63::Rhs1_$A::0p()

constructor 3A -- subrule 1

....63::8A::0p()

....63::popped state:: 4
...63::exposed sym:: ¢
...63::Csymbol_c_popped_rtn::op() // action service
// defined in terminal
...63::popped state:: 3
..63::exposed sym:: $A
..63::popped state:: 2
destructor -- $A
.63::exposed sym:: a
63::1--3A-> 7
..63::shift_op token: 0x005253E0 b pos: 6
63::1--84-> 7--b-> 8
...63::reduce_op
...63::Csymbol_eog_look_ahead_rtn::op()// action service
...63::Rhs1_%$S::0p()
..63::8S::0p0)
...63::popped state:: 8
..63::exposed sym:: b
..63::popped state:: 7
.63::exposed sym:: $A
destructor -- $A
63::1--85-> 11
..63::shift_op token: 0x00525870 eog pos: 7
...63::Csymbol_eog_pushed_rtn::op()
63::1--85-> 11--eog-> 12 // accepted with action services
...63::accept_op
...63::reduce_op
...63::Csymbol_eog_look_ahead_rtn::op()
...63::Rhs1_8$MM::0p() // start rule’s rhs
...63::8MM::0p() // start rule
...63::popped state:: 12
..63::exposed sym:: eog
..63::Csymbol_eog_popped_rtn::op()// even eog action service
..63::popped state:: 11
.63::exposed sym:: $3
..63::C$MM_pushed_rtn: :op() // even the start rule

139

// can have action services

// ref::6
63::1--$MM-> 1 // finally finished
..63::popped state:: 1
.63::exposed sym:: $MM
.63::C3MM_popped_rtn: :op() // action service ref::7
.63::popped state:: 1
Stop of lril_sp3 // C++ syntax code ref::2

Well this is what its all about: flexibility to execute code in a bottom-up fashion with
lots of do-dads for the compiler writer to hang code onto.

C.4.3.2 LR(1) G1 Grammar: Page 61 of [13]

The grammar tests LR1 resolution on states 14 and 15.

Rules
$G §S $A | 8B
—~+S%Secg| 2a8Ac | 2] =f
—a$Bd
—b%Ad
- b8Bc
1} $G—.55eog | 12 7 $S— b.JA d 8
$§S—.a %A c 2 $§S— b.$Bc¢c | 10
§S—~.a$B d 2 SA—f 15
SS—b A d 7 $B—.f 15
8S—.b 8B c 7
8 §S— b A .d 9
2| 8S— alAc 3
$S— a.$B d 3 9 85— b SA d. eog
SAf 14
$B—.f 14 10 | 8S—=b8B.c |11
3]188—al8Ac 4 11 | $S—=béBec. eog
4 8S—~afAc eog 12 | $G— $S.e0g | 13
5| $S—~ a $B.d 6 13 | $G— $S eog. accept
6 | 8S— a $B d. eog 14* | SA— f. c
$B— f. d
15* | SA— f. d
$B— f. c

Graphic output of Ir parse table.

140

Index

—> start of a subrule definition, 110
C++ Code Sections, 90

Automatice Delete Attribute, 103, 107

call_dispatcher method, 113

co-operative signaling, 112

code-isolation, 121

code-localization, 112

code-procedure, 112

code-specific procedures, 111

code-to-be-executed, 112

constructor Directive, 93. 96, 103, 108,
109

defining a subrule using —>, 110
destructor - Directive, 93
destructor Directive, 96, 103, 108, 109

Directive - constructor . 93, 96, 103,
108, 109

Directive - destructor . 96, 103, 108,
109

Directive - lhs-constructor , 93, 110
Directive - op , 93, 96, 103, 108, 109
Directive - rhs-constructor . 93, 110
Directive - rhs-destructor , 93, 110
Directive - rhs-op , 93, 110

Directive - rhs-user-declaration , 93, 110

Directive - rhs-user-implementation , 93,

110

Directive - user-declaration , 92, 96, 103,

108. 109
Directive - user-implementation ,
96, 103, 108, 109

92,

141

Directive - user-prefix-declaration , 92,
96

Directive - user-suffix-declaration , 92,
96

Directive destructor , 93
dispatch, 112, 113
Dispatcher, 121
dispatcher, 112

division of labour, 112

Fsm Section, 94

fsm-class, 95

fsm-comments Attribute, 97

fsm-date Attribute, 96

fsm-debug Attribute, 96

fsm-id Attribute, 95

Fsm-Operation Section — Supplemen-
tal Operations, 97

fsm-operation-accept-class Attribute, 99

fsm-operation-error-class Attribute, 99

fsm-operation-reduce-class Attribute, 99

fsm-operation-shift-class Attribute, 98

fsm-version Attribute, 96

IDOW Pattern, 111
iteration, 112

iterator, 112, 113, 115, 121
[terator pattern, 111

lhs Attribute, 108
lhs-constructor Directive, 93, 110

modular programming, 111

op Directive, 93, 96, 103, 108, 109

polymorphic code-workers, 113
pool-of-workers, 121

rhs-constructor Directive, 93, 110

rhs-destructor Directive, 93, 110

rhs-op Directive, 93, 110

rhs-user-declaration Directive, 93, 110

rhs-user-implementation Directive, 93,
110

specific dispatch-of-workers, 113
Strategy pattern, 111

Subrule Definition, 110

sym-class Attribute, 103, 108
sym-look-ahead-rtn Attribute, 104
sym-popped-rtn Attribute, 104, 109
sym-pushed-rtn Attribute, 104, 109
Symbolic Name of Rule, 107
Symbolic Name of Terminal, 102

traversal method, 111

user-declaration Directive, 92, 96, 103,
108, 109

user-implementation Directive, 92, 96,
103, 108, 109

user-prefix-declaration Directive, 92, 96

user-suffix-declaration Directive, 92, 96

Visitor pattern, 111

worker, 113
worker-specific procedure, 113
Workers, 121

