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Abstract 

Recognition of Nonideal Iris Images Using Shape                           

Guided Approach and Game Theory 

 

Kaushik Roy, Ph.D. 

Concordia University, 2011 

 

 

Most state-of-the-art iris recognition algorithms claim to perform with a very high 

recognition accuracy in a strictly controlled environment. However, their 

recognition accuracies significantly decrease when the acquired images are affected 

by different noise factors including motion blur, camera diffusion, head movement, 

gaze direction, camera angle, reflections, contrast, luminosity, eyelid and eyelash 

occlusions, and problems due to contraction and dilation. The main objective of this 

thesis is to develop a nonideal iris recognition system by using active contour 

methods, Genetic Algorithms (GAs), shape guided model, Adaptive Asymmetrical 

Support Vector Machines (AASVMs) and Game Theory (GT). In this thesis, the 

proposed iris recognition method is divided into two phases: (1) cooperative iris 

recognition, and (2) noncooperative iris recognition.  

    While most state-of-the-art iris recognition algorithms have focused on the 

preprocessing of iris images, recently, important new directions have been 

identified in iris biometrics research. These include optimal feature selection and 

iris pattern classification. In the first phase, we propose an iris recognition scheme 

based on GAs and asymmetrical SVMs. Instead of using the whole iris region, we 
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elicit the iris information between the collarette and the pupil boundary to suppress 

the effects of eyelid and eyelash occlusions and to minimize the matching error.  

    In the second phase, we process the nonideal iris images that are captured in 

unconstrained situations and those affected by several nonideal factors. The 

proposed noncooperative iris recognition method is further divided into three 

approaches.   

    In the first approach of the second phase, we apply active contour-based curve 

evolution approaches to segment the inner/outer boundaries accurately from the 

nonideal iris images. The proposed active contour-based approaches show a 

reasonable performance when the iris/sclera boundary is separated by a blurred 

boundary. In the second approach, we describe a new iris segmentation scheme 

using GT to elicit iris/pupil boundary from a nonideal iris image. We apply a parallel 

game-theoretic decision making procedure by modifying Chakraborty and Duncan's 

algorithm to form a unified approach, which is robust to noise and poor localization 

and less affected by weak iris/sclera boundary. Finally, to further improve the 

segmentation performance, we propose a variational model to localize the iris 

region belonging to the given shape space using active contour method, a geometric 

shape prior and the Mumford-Shah functional.  

    The verification and identification performance of the proposed scheme is 

validated using four challenging nonideal iris datasets, namely, the ICE 2005, the 

UBIRIS Version 1, the CASIA Version 3 Interval, and the WVU Nonideal, plus the non-

homogeneous combined dataset. We have conducted several sets of experiments 
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and finally, the proposed approach has achieved a Genuine Accept Rate (GAR) of 

97.34% on the combined dataset at the fixed False Accept Rate (FAR) of 0.001% 

with an Equal Error Rate (EER) of 0.81%. The highest Correct Recognition Rate 

(CRR) obtained by the proposed iris recognition system is 97.39%.     
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Chapter 1 

 

--------------------------------------------------------- 

Introduction 

--------------------------------------------------------- 
 

In this introductory chapter, the research topic, namely, “Recognition of Nonideal 

Iris Images Using Shape Guided Approach and Game Theory”, is presented. We 

begin with a description of the motivations (Section 1.1) behind this research 

endeavor. The proposed methods are then briefly introduced (Section 1.2) and the 

main contributions of this thesis are listed in Section 1.3. Finally, we conclude with 

an outline of this thesis in Section 1.4. 

1.1 Motivations 

With the increasing demands of automated personal identification, biometric-based 

authentication has been receiving extensive attention over the last decade. The main 

purpose of biometrics is to identify an individual based on physiological and 

behavioral attributes such as palmprints, fingerprints, irises, retina, hand geometry, 

faces, vein patterns, ears, key stroke patterns, gait, etc. [1-3]. Biometric-based 

identification systems have many advantages over the traditional authentication 

techniques that are based on what you know or what you possess [4-6]. Among all 

the biometric techniques, iris recognition has been considered as the most reliable 
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and accurate method for identity authentication. Iris recognition has become an 

active research topic in the area of pattern recognition because of its promising 

application values in personal identification [2]. Iris recognition has been deployed 

in various critical application areas, including homeland security, border control, 

web-based services, national ID cards, rapid processing of passengers, restricted 

access to privileged information, missing child identification, and welfare 

distribution [2]. The iris of a human eye is the annular part that is located between 

the black pupil and the white sclera and it contains many discriminative minute 

parts (e.g., furrows, rings, crypts, freckles, coronas, etc.). These rich details of the 

iris, denoted as textures, are unique to each person and to each eye and remain 

stable over a lifetime, which make the iris particularly useful for person 

authentication [1]. Furthermore, an iris image is typically acquired in a noncontact 

imagery setup, which is of great importance in real-time applications [3]. Therefore, 

from the above discussion, it is clear that the iris-based recognition, which is the 

main focus of this dissertation, provides an extremely reliable and accurate solution 

for personal identification.   

    Although most state-of-the-art iris recognition algorithms are focused on the 

preprocessing of iris images, recently, there have been important new directions 

identified in iris biometrics research [3]. These include optimal feature selection 

and iris pattern classification. In the first phase of the research work, we focus on 

improving the iris recognition performance based on the best iris feature subset 

selection using Genetic Algorithms (GAs) and the accurate classification of iris 

patterns using asymmetrical Support Vector Machines (SVMs). Most current iris 
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recognition algorithms claim to perform with a very high recognition accuracy in a 

strictly constrained situation, where the iris images are acquired in a sophisticated 

imagery setup. Under inflexible image acquiring constraints, it is possible to capture 

high quality images and attain an impressive accuracy with very low error rates. 

However, most state-of-the-art iris recognition algorithms fail to perform in a 

noncooperative environment, where the probability of acquiring nonideal iris 

images is very high. In an uncontrolled environment, images are captured in a 

flexible imagery setup and are affected from motion blur, camera diffusion, head 

rotation, gaze direction, camera angles, reflections, poor contrast, luminosity, 

occlusions, and pupil dilation. The nonidealities contained in iris images affect the 

iris segmentation performance considerably, and consequently degrade the overall 

recognition accuracy. Moreover, researchers often found that, the iris and pupil 

boundaries are of arbitrary shapes, and therefore, can lead to segmentation errors, 

if fitted with some presumed simple shapes. Therefore, it is important to 

compensate for such nonideal factors to augment the iris recognition accuracy. 

However, it still remains a challenging issue to deal with the nonideal iris images 

that are affected severely by several noise factors. Addressing the above problems, 

in the second phase of our research work, we propose iris recognition methods that 

can process the nonideal iris images by using active contours, GAs, Game Theory 

(GT), Shape Guided Approaches (SGAs) and Adaptive Asymmetrical SVMs 

(AASVMs). In the following section, we discuss the main steps of the proposed 

approaches.  
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1.2 Proposed Approaches: The Main Steps 

We illustrate our proposed iris recognition method into two phases. In the first 

phase, we propose a cooperative iris recognition method based on GAs and 

asymmetrical SVMs. This method is not specially designed for the degraded iris 

images that are captured in a noncooperative environment. However, in the second 

phase, we process and recognize the nonideal iris images that have been acquired in 

an unconstrained situation and are affected severely by different noise factors.     

    In the first phase, we mainly focus on improving the iris recognition performance 

based on iris feature selection and pattern classification. We apply the 

morphological operations, Canny edge detection and circular Hough transform to 

detect the iris and pupil boundaries. To alleviate the effects of eyelid and eyelash 

occlusions, we extract the iris information from the pupillary region. Eyelids are 

detected using parabolic curves and eyelashes are isolated using 1D log Gabor filters 

and variance of intensity. A local intensity-based histogram equalization technique 

is deployed to enhance the contrast of the normalized image. The log Gabor filters 

are used to extract the distinctive iris features, and a GA-based scheme with a new 

fitness function is applied to select the most important iris features without losing 

recognition accuracy.  The traditional SVMs are modified into asymmetrical SVMs to 

handle [7]: (1) the highly unbalanced sample proportion between two classes, and 

2) the different types of misclassification error that lead to different 

misclassification losses. Furthermore, the parameter values of SVMs are optimized 
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in order to improve the generalization performance. A block diagram of the 

proposed scheme is shown in Fig. 1.1. 

 

 

 

 

Fig. 1.1 Block diagram of the proposed iris recognition system (first phase). 

    In the second phase, we improve the iris recognition performance based on 

accurate segmentation, feature selection and matching. The iris recognition 

algorithm applied in the first phase may not perform well in an unconstrained 

situation where the possibility of capturing degraded iris images is very high due to 

gaze deviation, reflections, poor focus, blurring and occlusions by eyelashes, eyelids, 

glasses, and hair. In the second phase, we propose three iris recognition approaches 

that are effective for processing the nonideal iris images: 1) active contour-based 

methods, 2) GT-based method, and 3) SGA. In the first approach of the second phase, 

an elliptical fitting technique is used first to approximate the iris/pupil boundary. 

Then, we apply three active contour-based adaptive localization methods that aim at 

compensating various nonideal factors contained in the iris images. To get the 

optimal estimation of the inner boundary from a nonideal iris image, we first apply a 

Level Set (LS)-based active contour scheme with the edge stopping function [8]. The 
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active contour-based curve evolution scheme is employed again using the 

regularized Mumford-Shah segmentation model with an energy minimization 

algorithm to detect the outer boundary [8-10]. While the proposed iris 

segmentation scheme based on active contours exhibits an encouraging 

performance in detecting the inner/outer boundary, it requires a huge 

computational time due to the expensive curve evolution approach. Therefore, a 

Variational Level Set (VLS)-based curve evolution scheme is deployed, which uses a 

significantly longer time step to numerically and accurately solve the evolution 

Partial Differential Equation (PDF) for the segmentation of a nonideal iris image 

[11]. The applied LS method in the variational formulation speeds up the curve 

evolution process drastically. However, the proposed VLS method may not detect 

the outer boundary accurately when the iris/sclera region is separated by a 

relatively blurred boundary. Furthermore, the intensity inhomogeneity is another 

source of noise that can be found in most of the nonideal iris images due to 

reflections, motion blur, luminosity, etc. Thus, finally, a Region-based Active Contour 

(RAC) model is deployed to segment the nonideal iris images with intensity 

inhomogeneity [12]. Then, we apply the Daubechies Wavelet Transform (DBWT) to 

extract the textural features from the normalized iris images. GAs are deployed 

again to select the subset of informative texture features by combining the valuable 

outcomes from the multiple feature selection criteria without compromising the 

recognition accuracy. To speed up the matching process and to control the 

misclassification errors, we apply a combined approach called the ‘AASVMs’ [7, 13]. 

Fig. 1.2 demonstrates this approach.  
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Fig. 1.2 Block diagram of the proposed iris recognition system (second phase-1st 

approach). 

    The region-based segmentation methods perform better against different noise 

factors and are less affected by the blurred boundaries. However, these schemes 

suffer from poor localization and over-segmentation. The boundary-based 

segmentation approaches, on the other hand, exhibit a better localization 

performance and demonstrate better results against the shape variations. However, 

the boundary finding methods are highly sensitive to noise since they depend on 

gradient values regarding boundary points. Therefore, in the second approach of the 

second phase, we apply a parallel game-theoretic decision making procedure by 

modifying Chakraborty and Duncan’s algorithm [14, 15], which integrates: (1) the 

region-based segmentation and gradient-based boundary finding methods, and (2) 

fuses the complementary strengths of each of these individual methods. In this 

approach, we deploy the elliptical fitting technique again to approximate the pupil 

boundary and centre values, prior to applying the GT-based method. Moreover, in 

order to improve the quality of the iris image, we apply a two-step image 

enhancement technique based on the local intensity-based histogram equalization 
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and 2D Wiener filter. A simple Hausdorff Distance (HDD) is used for iris template 

matching. Fig. 1.3 demonstrates this approach.  

     

 

 

 

 

 

 

 

 

 

 

Fig. 1.3 Block diagram of the proposed iris recognition system (second phase-2nd 

approach). 

    The game-theoretic method proposed above may not handle the eyelid occlusion 

problems properly and fail to detect the limbic boundary in the presence of severe 

noise. Therefore, in the third approach of second phase, for outer boundary 

detection, we integrate the shape prior information of the iris region to be 

segmented with the gradient-based and region-based data. In this approach, a 

variational model is applied to localize the iris region belonging to a given shape 

space by using the active contour method, a geometric shape prior and the 

Mumford–Shah functional [16]. This variational model is robust against noise, poor 

localization, shape variation and weak iris/sclera boundaries. The inner boundary is 

estimated by using the elliptical fitting method. The extracted iris boundaries are 

not exactly circular and may be in any kind of shapes. Therefore, to solve this size 

irregularity, a simple boundary point connection method is deployed. Furthermore, 
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ranking based on the Multi-Perturbation Shapley Analysis (MSA), a framework 

which relies on game theory to estimate the effectiveness of the features iteratively 

and select them accordingly, using either forward selection or backward elimination 

schemes [17]. Fig. 1.4 shows the block diagram of this approach. 

 

 

 

 

 

 

Fig. 1.4 Block diagram of the proposed iris recognition system (second phase-3rd 

approach). 
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iris image, and employ the curve evolution approach using the regularized 

Mumford-Shah segmentation model with an energy minimization algorithm to 

detect the outer boundary. Second, to speed up the active contour-based curve 

propagation process, we employ a VLS-method, which utilizes a significantly 

larger time step to numerically solve the evolution PDF. Finally, we deployed a 

RAC model in variational formulation to segment the nonideal iris images with 

intensity inhomogeneity. 

2. GAs have been deployed to select the important texture features by combining 

the valuable outcomes from the multiple feature selection criteria without 

compromising the recognition accuracy. Here, a new fitness function has been 

deployed to reduce the False Accept Rate (FAR) and False Reject Rate (FRR) 

along with the feature dimension and matching error. 

3.   To speed up the iris matching process and to handle different misclassification 

errors, we have applied a combined classification scheme denoted as AASVMs. 

4. A GT-based segmentation scheme is proposed, to localize the inner and outer 

boundaries from nonideal iris images. A parallel game-theoretic decision making 

procedure has been applied by modifying Chakraborty and Duncan’s algorithm, 

which integrates the region-based segmentation and gradient-based boundary 

finding methods, and combines the complementary strengths of each of these 

individual methods. This unified approach is robust to different noise factors 

and poor localization, and is less affected by weak iris/sclera boundaries. 

5. To further improve the localization performance, a variational model has been 

applied to localize the iris region belonging to given shape space using the active 
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contour method, a geometric shape prior and the Mumford–Shah functional. 

This variational model is robust against severe eyelid occlusions.  

6. An iris feature ranking method based on GT has been deployed to estimate the 

effectiveness of the features iteratively and select them accordingly, using either 

forward selection or backward elimination approaches. This iris feature ranking 

method further enhances the iris recognition performance.  

In subsequent chapters, we will describe each of these contributions in a greater 

detail. 

1.4 Thesis Outline 

This thesis is organized as follows:  

    In Chapter 2, we introduce the fundamental concepts of biometrics.  Then, we 

provide an overview of the iris recognition methods. We also discuss the 

noncooperative iris recognition methods and different nonideal factors that affect 

the overall recognition performance.  

    In Chapter 3, we focus on the optimal feature selection and iris pattern 

classification methods. We describe a segmentation scheme based on the 

morphological operation, the Canny edge detection and the Hough transform along 

with the eyelash/eyelid detection methods. We describe the normalization scheme 

and illustrate a feature extraction method using 1D log-Gabor filters.  The GA-based 

feature ranking method is then introduced and an iris pattern matching technique 

using asymmetrical SVMs is presented. This chapter also demonstrates the 

experimental validation of the proposed method.     
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    Chapter 4 describes the three active contour-based segmentation schemes that 

can deal with the nonideal iris images. A hybrid feature ranking method based on 

GA is discussed and an iris pattern classification process using AASVMs is also 

described. We also provide the experimental results to show the effectiveness of our 

proposed system. 

    In Chapter 5, we describe an iris segmentation scheme, which fuses the region and 

gradient data using GT, for improving the performance of localization routine. The 

performance of the proposed segmentation scheme is also evaluated. 

    Chapter 6 mainly focuses on iris segmentation and feature ranking methods. A 

shape guided model is presented and applied to further improve the localization 

performance. A new normalization approach is also described. An iris feature 

ranking method based on GT is also introduced. We provide the experimental 

results to demonstrate the performance of the proposed method. 

    Finally, Chapter 7 concludes this thesis.      
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Chapter 2 

 

--------------------------------------------------------- 

The Iris as a Biometric  

--------------------------------------------------------- 
 

This chapter introduces the fundamental concepts of biometrics and the practical 

considerations for the utilization of the iris as a biometric.  First, we briefly discuss 

the basics of biometrics in Section 2.1. Then, we provide a general idea on iris 

recognition in Section 2.2. We describe the unique structure of an iris pattern, 

discuss the strengths and weaknesses of the iris as a biometric, discuss the iris 

recognition system errors and various application areas of iris recognition, and 

provide an overview of a typical iris recognition system. Finally, we discuss the 

nonideal iris recognition, which is the main focus of this research, and different 

noise factors that can degrade the iris recognition accuracy in Section 2.3.  

2.1 Biometrics: A Brief Introduction 

Nowadays, reliable and accurate identity authentication has become necessary for 

many security-related applications, such as accessing privileged information, border 

control, national ID cards, rapid processing of passengers in airports, homeless 

person tracking, missing person identification, etc. The increasing needs of web-

based services, such as online banking and the decentralized customer services have 
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resulted in the rapid development of consistent identity management systems that 

can accommodate a large number of individuals [18].  Recognizing an individual has 

been a primary interest at the core of our society for many activities where ensuring 

the identity and authenticity of an individual is a prerequisite. Biometric-based 

authentication has been receiving extensive attention over the last decade with the 

proliferating need for automated personal identification [3]. The term biometrics 

authentication or simply biometrics indicates the identification of an individual 

based on his or her distinctive attributes. More specifically, biometrics can be 

defined as the science of identifying or verifying the identity of an individual based 

on the physiological, chemical or behavioral characteristics of the person [4, 18].   

   The main task of an authentication system is to determine or verify the 

individual’s identity. The identity authentication may be required for many other 

reasons. However, the major purpose, in most applications, is to prevent imposters 

from accessing the restricted information. The conventional methods of 

identification mechanisms, such as knowledge-based (e. g., passwords) and token-

based (e. g., ID cards) may be lost, forged, misplaced, forgotten or compromised. 

Biometrics authentication provides an accurate and reliable solution to identify or 

verify an individual by utilizing fully automated or semi-automated techniques 

based on biological attributes [18, 19]. Biometric-based authentication systems are 

expected to perform better than the conventional identification methods because 

they depend on who you are rather than on what you possess, such as an ID card, or 

what you remember, such as a password. Therefore, many traditional identification 

schemes based on passwords and ID cards may be replaced by the biometric-based 
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methods, thereby strengthening the security levels. An effective authentication 

should be robust enough to various malicious attacks including client, host and 

Trojan horse attacks, eavesdropping, repudiation, denial of service, etc., which are 

currently very common to the various password and token-based authentication 

schemes [18]. A reliable and accurate authentication against such security threats is 

possible by incorporating appropriate biometric traits related to a particular 

application. Biometric-based schemes also exhibit several advantages including 

negative recognition and non-repudiation over the traditional password or token-

based approaches [18]. Negative recognition is the process that ensures that a 

specific individual is certainly enrolled in the system although the individual might 

refuse it. This is particularly very important in welfare distribution where multiple 

benefits might be claimed by an imposter under different names. Non-repudiation is 

an approach in which the system ensures that a certain facility that is accessed by an 

individual cannot be denied when using it in future. This is also important when a 

person using a certain computer resource claims later on that an imposter must 

have accessed it under a fallacious identification.                    

   In a typical biometric identification (or verification) system, first, the biometrics 

data is acquired, distinctive features are extracted, a template is formed based on 

those extracted features, and then, a comparison of this template is made with a 

database of such templates associated with various identities. In the ‘verification’ 

approach, the claimed identity of an individual is compared between the extracted 

biometric measurements of that individual and the stored template linked with an 

identity to determine whether the claim is true or false. The ‘identification’ 
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approach, on the other hand, is based only on extracted biometric measurements. 

The system compares such extracted measurements of an individual to the entire 

database of enrolled individuals instead of just comparing a single record associated 

with some identifier [4]. Biometric-based authentication systems utilize various 

kinds of physiological and behavioral attributes (see Fig. 2.1) including the iris, face, 

retina, hand geometry, fingerprint, palmprint, signature, gait, keystroke pattern, 

mouse movement behavior, voice pattern, ear, hand vein, odor or the DNA 

information to identify an individual [18]. Among all the biometric traits, the iris has 

been regarded as one of the most reliable and accurate biometric modalities due its  
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(b) 

 

Fig. 2.1 Examples of different biometric traits: (a) physical traits, and (b) behavioral 

traits. 

inherent properties, i.e., stability in a lifetime, selectivity and reliability. The richness 

of texture details in iris images, such as freckles, coronas, crypts, furrows, etc., and 

the stability of an iris pattern throughout a person’s lifetime make it the most 

consistent biometric trait for person authentication. In the next section, we will 

discuss the iris biometrics in detail, which has been exploited as a research topic 

with recognition in this research endeavor.        

2.2 Iris Recognition: An Overview 

Iris recognition is, perhaps, the most robust biometrics method for person 

authentication. It has been deployed successfully in many large-scale biometric-

based identity management systems where the accurate authentication of a person’s 

identity is a critical issue. Examples of such large-scale systems include: border 

management systems, accessing the networked computer resources, boarding a 

commercial flight, accessing the home appliances remotely, gaining access to 

nuclear facilities, performing a bank transaction, etc [20, 21]. Several crucial factors 

Gait Keystroke pattern Signature 
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of iris biometrics include rich and unique textures, noninvasiveness, stability of iris 

pattern throughout the person‘s lifetime, public acceptance, availability of user 

friendly capturing devices. These factors have attracted the researchers to work in 

this evolving field over the past decade. The human iris, an annular part between the 

pupil   and   the   white  sclera  (see Fig. 2.2),  has  an  extraordinary  structure  and  

 

 

 

 

 

 

Fig. 2.2 Samples of iris images. 
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provides many interlacing minute characteristics such as freckles, coronas, stripes, 

and the pupillary area, which are unique to each subject [22]. The iris is an internal 

organ of the body that is readily visible from the outside and it controls the amount 

of light that enters the eye through the pupil, by using the dilator and sphincter 

muscles to control the pupil size [19, 20]. An elastic fibrous tissue that makes up the 

iris structure gives it a very complex and unique texture pattern. This texture 

pattern is independent of the genetic structure of an individual and is generated by 

chaotic processes [20]. The human iris begins to form in the third month of 

gestation and the structure is completed by the eighth month, even though the color 

and pigmentation continue to build throughout the first year of birth [19, 20]. After 

that, the structure of the iris remains stable throughout a person’s life, except for 

direct physical damage or changes caused by eye surgery [20]. This makes the usage 

of an iris pattern to be as unique as the fingerprint, however, a further advantage is 

that it is an internal organ and is less susceptible to damages over a person’s 

lifetime. In Fig. 2.3, we can see the anatomy of a human eye, and Fig. 2.4 shows the 

iris anatomy. The iris anatomy is more relevant to the proposed iris recognition 

methodologies. Thus, we briefly discuss the key visible features, as annoted in Fig. 

2.4 [21], below.    

Medial canthus: The angle between the upper and lower eyelids near the centre of 

the face. 

Sclera: The white region of an eye image. 

Pupil: The darkest part of an eye image.  
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 Fig. 2.3 Eye anatomy (adapted from [23, 24]).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Iris anatomy (adapted partially from [21]). 
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Pupillary Area: The inner part of the iris whose edges form the contour of the 

pupil. This is the region of sphincter muscles that close the pupil residing in this 

zone. 

Ciliary Area: The iris region from the pupillary area to the ciliary body. This is the 

region of dilator muscles that open the pupil residing in this zone.  

Stroma Fibers: The pigmented fibro vascular tissue that constructs most of the 

visible iris region.  

Crypts and Furrows: The two types of inconsistencies that are usually found in the 

distribution of stroma fibers. 

Collarette: The region that divides the pupillary area from the ciliary area. 

Next, we discuss the typical iris recognition system (Section 2.2.1), iris recognition 

system errors (Section 2.2.2), strengths and weaknesses of the iris as a biometric 

(Section 2.2.3), and also describe the various application areas of iris biometrics 

(Section 2.2.4). 

2.2.1 A Typical Iris Recognition System 

Fig 2.5a shows a diagram of a typical iris recognition system. It has three major 

building blocks [20]:  

• Iris Image Acquisition: Image acquisition is considered as the most critical step 

for the development of an iris recognition system since all the subsequent stages 

depend highly on the image quality. A specifically designed sensor is used to 

capture the sequence of iris images. An iris image capturing device considers the 
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following three key factors [19]: 1) the lighting of the system, 2) the position of 

the system, and 3) the physical capture system. 

• Iris Liveness Detection:  In order to avoid the forgery and the illegal usage of iris 

biometric features, the detection of iris liveness ensures that the captured input 

image sequence  comes  from  a  live subject instead of  an  iris  picture,  a  video  
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(b) 

Fig. 2.5 Iris Recognition: (a) stages of a typical iris recognition system, and (b) 

recognition stage in greater detail. 
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sequence, a  glass eye, and other artifacts. The utilization of the optical and 

physiological characteristics of the live eye is considered as the most important 

aspects for the assurance of the liveness of the input iris image sequence. 

• Recognition: The accuracy of the iris recognition system depends on this module. 

This module can be further subdivided into four main phases: segmentation, 

normalization or unwrapping, feature Extraction, and matching. In the first phase, 

the iris region is segmented from the captured eye image. Secondly, the segmented 

iris region is unwrapped in order to avoid the size inconsistencies. Thirdly, the most 

discriminating features are extracted from the unwrapped image and finally, the 

extracted features are used for matching with the iris templates already stored in 

the database.         

2.2.2 Iris Recognition System Errors 

The following terminologies are vastly used to estimate the errors of an iris 

recognition system [20]: 

• False Accept (FA): Accepting an imposter as an authorized subject. The 

probability at which the false accept errors occur is called the False 

Accept Rate (FAR). 

• False Reject (FR): Rejecting an authorized subject incorrectly. The 

probability at which the false reject errors occur is denoted as the False 

Reject Rate (FRR). 
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• Equal Error (EE): When the FA and FR are equal, the error is referred to 

as Equal Error (ER) and the probability at which FAR=FRR, is called the 

Equal Error Rate (EER). 

     

Generally, the verification performance of an iris recognition system can be 

demonstrated by using the Receiver Operator Characteristics (ROC) curve. If the 

functions FAR (t) and FRR (t) provide the error rates when the recognition decision 

is made at a threshold t, then the ROC curve is used to plot the error rates against 

each other [20], where: 

                                                 ( ) ( ) ( )( )tFRRtFARtROC ,=                                             (2.1) 

The FAR and FRR are mapped as a function of t: 

                                        ( ) ( ) ( )( )
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,            (2.2) 

which implies that if the t is high, then the FRR is high and the FAR is low and 

conversely when t is low, the FAR is high and the FRR is low. 

2.2.3   Strengths and Weaknesses of the Iris as a Biometric  

Among all of the biometric traits, the iris has been considered as the most accurate 

and reliable. However, it has some intrinsic pitfalls that cannot be ignored. The 

major strengths and weaknesses of the iris as a biometric are discussed respectively 

in Sections 2.2.3.1 and 2.2.3.2 [20]. 

2.2.3.1 Strengths of Iris Biometrics  
 

• The iris patterns have small intra-class variability.   

• The iris is well protected and an internal organ of the eye. It contains a high 

degree of randomness [25]. 
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• The iris is externally visible and the iris image acquisition is possible from a 

distance [25]. 

• The iris pattern remains stable throughout the lifetime of a person and it is 

assumed that each individual has a unique iris pattern [19]. 

• It is possible to encode the iris pattern and the recognition system’s 

decidability is tractable. 

• No evidence of genetic influence has been found in the structure of the iris. 

Therefore, the iris structures in both eyes of the same person are different and 

those of identical twins are also different [19]. 

• Iris recognition systems incur extremely low maintenance costs and offer 

seamless interoperability between different hardware vendors, and this 

technology also has the ability to work well with other applications.              

2.2.3.2 Weaknesses of Iris Biometrics 
 

• It is difficult to capture the iris image since the size of the iris is very small (its 

approximate diameter is 1 cm). A specialized camera with an extensive 

apparatus setup is needed to acquire the iris images. 

• The iris could be partially occluded by lower and upper eyelids, and obscured 

by eyelashes, reflections, and lenses [19, 25).   

• As the size of the pupil changes, non-elastic deformation is another drawback 

[19, 25]. 
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2.2.4 Applications of Iris Recognition 

Fig. 2.6 shows various applications where iris recognition systems have been 

deployed. We can categorize these application areas into three main groups [18]:  

� Commercial applications including accessing secured information on the 

internet, credit card authentication, performing online transactions, e-

commerce, mobile and wireless-based devices, controlling the physical access to 

a secured location, distance learning, and managing medical records. 

� Forensic applications including criminal investigations, corpse identification, 

and parenthood determination [18]. 

� Government applications that include a driver’s license, homeland security, 

welfare distribution, border management, e-passports, social security, and 

national ID card.         

2.3 Nonideal Iris Recognition: A New Challenge 

Most current iris recognition algorithms are very effective in a cooperative 

environment, with an inflexible image capturing setup and they exhibit a very high 

recognition accuracy. However, their performance is greatly affected when the iris 

images are captured in an unconstrained situation and are partially occluded by 

eyelids, eyelashes, and shadows. The iris image can also be affected by specular 

reflections when an individual wears glasses. Moreover, the inner and outer 

boundaries of the iris may not maintain any particular shapes and therefore, the 

segmentation performance will be decreased if those boundaries are not accurately 

detected and modeled using a more flexible and generalized segmentation method. 



27 

 

 

 

                         

 

                         

Fig. 2.6 Iris recognition systems have been deployed in various applications [25] 

(images were extracted from the home page of Dr. John Daugman who is a Professor 

of Computer Vision and Pattern Recognition, University of Cambridge, UK: 

http://www.cl.cam.ac.uk/~jgd1000/): (a) Iris Recognition Immigration System 

("IRIS") at several UK airport terminals, (b) controlling access to the premises, (c) 

child project, (d) enrolment of frequent flyers at Schiphol Airport, Netherlands, (e) 

the check-in procedure for passengers at Narita Airport, Japan, and (f) the United 

Nations High Commission for refugees is administrating cash grants to refugees 

returning into Afghanistan from surrounding countries at the Pakistan-Afghanistan 

border.  

(a)      (b)      (c)      

(d)      (e)      (f)      
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Other challenges include defocusing, motion blur, poor contrast, lighting reflections, 

oversaturation, camera diffusion, head rotation, gaze direction, camera angle, pupil 

dilation, etc. Thus, the nonideal conditions contained in iris images can affect the iris 

segmentation performance considerably, and may consequently influence the 

overall recognition accuracy. Therefore, it is desirable to design an accurate and 

robust iris recognition method that can cope with such noise factors and thereby 

increase the iris recognition accuracy. Several nonideal factors are described in the 

following subsection. 

2.3.1 Nonideal Factors That Degrade the Iris Recognition Performance 

In this subsection, we detect and discuss several nonideal factors that can 

substantially degrade the overall iris recognition performance. The most common 

noise factors usually arise in a less constrained imaging environment, where the 

images are acquired at a distance, or on the move, or under varying lighting 

conditions or under less user cooperation. The nonideal factors that may affect the 

matching accuracy include eyelid and eyelash occlusions, motion blur, specular 

reflections, lighting reflections, off angle gazes, poor focus, low image contrast, 

partially captured iris images, fully and partially closed eyes, arbitrary shaped 

iris/pupil boundary, etc. Nine common noise factors are discussed below in greater 

detail. 

(1) Eyelid Occlusions:  The upper eyelid and lower eyelid may occlude the 

significant portion of the iris, especially in its extreme vertical position (See Fig. 2.7).  
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Fig. 2.7 Iris region is occluded by upper and lower eyelids. 

The eyelid occlusion can also occur in the lower portions of the normalized iris 

images.  

(2) Eyelash Occlusions: Eyelashes   are   divided    into   two   types,    namely:   The 

separable eyelashes and the multiple eyelashes [26]. Separable eyelashes are 

isolated in the eye image (See Fig. 2.8), and multiple eyelashes are bunched together 

and overlapping in the eye image (See Fig. 2.9). 

(3) Specular Reflections: This type of reflection may occur within the iris region 

and may corrupt the significant portion of the iris pattern, the pupil and the cornea.  

The specular reflections are usually caused by imaging under natural light (See Fig. 

2.10). Since a large portion of the population wears spectacles, this may cause too 

much specular reflection which results in the failure of automatic segmentation 

and/or recognition.  

(4) Lighting Reflections: This type of reflection may occur due to artificial light 

sources that are close to the subject, and also under natural lighting conditions. 

These  reflections  are  highly  heterogeneous  in  nature  as  they can appear with  a  
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Fig. 2.8 Iris region is occluded by separable eyelashes. 

 

 

Fig. 2.9 Iris region is occluded by multiple eyelashes. 

 

 

Fig. 2.10 Iris and pupil regions are occluded by specular reflections.  
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broad range of dimensions and can be located in different regions of the iris [24] 

(See Fig. 2.11). The occluded areas of the iris can typically have relatively higher 

intensity values than the areas affected by specular reflections.   

(5) Poor Focus: The poor focus has been a critical issue for accurate iris 

segmentation. This may occur due  to  moving  objects  that  may  interact   with  the  

camera in the less constrained capturing setup and to the limited depth-of-field of 

any imaging system [24]. A small deviation in the distance between the eye and the 

camera position may create severe focus problems and this subsequently increases 

the FRR. Fig. 2.12 shows the defocused images.   

(6) Completely Closed and Partially Opened Eyes: The completely closed eye is a 

severe noise   factor that   prevents any kind of  recognition (See Fig. 2.13).  If   the 

eyes are partially opened, signification portions of the iris cannot be extracted due 

to occlusion, which further affects the segmentation performance (See Fig. 2.14).    

 

 

 

Fig. 2.11 Iris and pupil regions are occluded by lighting reflections.  
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Fig. 2.12 Iris images are affected by poor focus. 

 

Fig. 2.13 Completely closed eye. 

  

Fig. 2.14 Partially opened eyes.  

(7) Off Angle Gaze: This type of noise usually occurs when the subject’s optical 

axis is not aligned with camera’s optical axis. The iris images with deviated gazes 
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may be of elliptical shapes. The projection techniques or flexible contour fitting 

methods can be used to deal with the off angle iris images. Fig. 2.15 shows two 

samples of off angle iris images. 

(8) Motion Blur: The iris images captured in a noncooperative imagery setup, 

where the subject or camera is moving, may be affected by motion blurs.  The eyelid 

movement is another source which significantly contributes to this type of noise 

[24](See Fig. 2.16).    

 

Fig. 2.15 Off angle iris images. 

 

Fig. 2.16 Iris image is affected with motion blur. 
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(9) Nonelliptical/Noncircular Shapes of the Iris/Pupil: The pupil and limbic 

boundaries often have arbitrary shapes. Therefore, if these boundaries are fitted 

with some simple shape assumptions, then this can lead to inaccurate segmentation 

results.     

2.4 Conclusion 

In this chapter, first, we present the basic concept of the biometrics. Then, an 

overview of iris recognition is provided. We briefly discuss the iris anatomy, the 

different stages of a typical iris recognition system, the common system errors 

related to iris recognition, the advantages and disadvantages of the iris as a 

biometric, and we also highlight various application areas. Finally, we describe the 

nonideal iris recognition, which is the main focus of this thesis, and discuss the 

different noise factors that can degrade the iris recognition performance drastically.  
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Chapter 3 

 

--------------------------------------------------------- 

Optimal Feature Selection and 
Classification for Iris Recognition  

--------------------------------------------------------- 
 

In this chapter, we present our first method for iris recognition, which mainly 

focuses on iris feature selection and pattern classification. In Section 3.1, we briefly 

introduce the background of the problem. Then, in Section 3.2, we present related 

work around this problem. After that, in Section 3.3, we describe the preprocessing 

methodology, which isolates the iris/pupil boundary from the eye image. The 

feature extraction process is discussed in Section 3.4, and in Section 3.5, a feature 

selection strategy, based on GAs, is presented. Section 3.6 first introduces the iris 

pattern matching technique using asymmetrical SVMs. Then, the SVM parameter 

selection process is discussed. The experimental results are provided in Section 3.7. 

Finally, Section 3.8 summarizes the key points of this chapter. 

3.1 Introduction 

With the increasing demand for enhanced security, iris biometrics-based personal 

identification has become an interesting research topic in the field of pattern 

recognition [27-46]. While most state-of-the-art iris recognition algorithms have 
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focused on the preprocessing of iris images, recently, important new directions have 

been identified in iris biometrics research. These include optimal feature selection 

and iris pattern classification. In this chapter, we propose an iris recognition scheme 

based on GAs and asymmetrical SVMs. Instead of using the whole iris region, we 

elicit the iris information between the collarette and the pupil boundary to suppress 

the effects of eyelid and eyelash occlusions and to minimize the matching error.  

    The selection of the most representative feature subset from the original feature 

set, with a relatively high dimension, is an important issue in the field of iris 

recognition [43]. The iris data usually contains a huge number of textural features 

and comparatively a small number of samples per subject, and this makes accurate 

and reliable iris pattern classifications difficult [44-46]. In general, the feature 

selection scheme is used to select the most important features from the extracted 

feature sequence of a higher dimension. The traditional feature selection schemes 

(like the Principal Component Analysis (PCA), Independent Component Analysis (ICA), 

Singular Value Decomposition (SVD), etc.) require a sufficient number of samples per 

subject to select the salient feature sequence. However, it is not always realistic to 

accumulate a large number of samples due to some security issues. Also, the feature 

subset selection presents a multi-criterion optimization problem, e.g. in selecting 

the number of optimal features and in achieving a reasonable classification accuracy 

in the context of practical applications such as iris recognition. The GAs suggest a 

particularly attractive approach in solving this kind of problem since they are 

generally quite effective in a rapid global search of large, non-linear and poorly 

understood spaces [47, 48]. Therefore, we have applied GAs to select the optimal 
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feature subset from the extracted feature sequence. Our experimental results have 

exhibited that the proposed technique of feature selection using GAs performs 

reasonably well, even when the sample proportion between two classes is poorly 

balanced. Moreover, the proposed GA-based scheme shows an outstanding 

performance in the case when the iris dataset contains a high-dimensional feature 

set with a relatively smaller sample size.  

    SVMs have been used successfully in a number of classification studies due to 

their outstanding geometrical interpretation in discriminating one class from the 

other by a separating hyperplane with the maximum margin for the binary cases 

[49]. With SVMs, the classification accuracy can be estimated by their expected 

misclassification rate on the target dataset. Therefore, it is assumed that the costs 

for different types of misclassification error are the same. However, this assumption 

is not always the case in many real world situations [7]. The two cases in which the 

above-mentioned assumptions are not valid are described as follows: The first case 

is the sample ratio bias. Under some conditions, especially in the one-versus-rest 

condition, the sample proportion between two classes is highly unbalanced. The 

second case is such that the different types of misclassification error may have 

different costs, which can lead to different misclassification losses [7, 46, 50]. Most 

of the iris datasets suffer from the unavailability of sufficient iris samples per 

subject. Therefore, we have adopted the asymmetrical approach of SVMs by taking 

into account the above-mentioned issues. The proposed classification scheme with 

asymmetrical SVMs is well suited for different datasets (like the ICE 2005 [189] and 

the WVU Nonideal [192] datasets), where the number of samples  per  subject is  not 
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Fig. 3.1 (a) Pupillary or inner iris region is indicated on a sample iris image, (b) 

pupillary area is occluded by eyelashes, and (c) upper eyelid occludes the pupillary 

region. 

 

fixed. See Appendix A for the details about the datasets. In this chapter, we also 

present an iris segmentation approach based on the pupillary area, a region 

between the pupil and collarette boundaries (See Fig. 3.1), along with eyelid, 

eyelash, and noise detection techniques. We have conducted our experiments on 

two iris datasets, namely, the WVU Nonideal [192] and the ICE 2005 [189]. 

Pupillary area or 

inner iris area  

Pupillary area is occluded 

by eyelashes 

Collarette 

boundary 

Upper eyelid occludes 

the pupillary region 

(a) 

                              (b)                                                                                   (c) 

Ciliary area or 

outer iris area  

Pupil  

Sclera  
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3.2 Related Work 

The usage of iris patterns for personal identification began in the late 19th century; 

however, major investigations on iris recognition started in the last decade. 

Daugman [27-30] used the integrodifferential operator to segment the iris.  The 2D 

Gabor wavelets were used for feature extraction and the Hamming Distance (HD) 

was used for matching. In [22], the quality of each image of an input sequence was 

assessed and a clear image was selected from such a sequence for further 

recognition. The local characteristics of the iris were captured to produce the 

discriminating textural features, using a bank of spatial filters whose kernels were 

suitable for iris recognition. Fisher’s linear discriminant was used to reduce the 

dimensionality of the feature vector. Then, the nearest centre classifier was adopted 

for classification. In [31], an iris recognition approach based on characterizing key 

local intensity variations was proposed. The basic idea was to use the local sharp 

variation points to represent characteristics of the iris. Feature extraction was 

performed by constructing a set of 1D intensity signals to isolate the most important 

information from the original 2D image. A position sequence of local sharp variation 

points in such signals were captured as features, using a particular class of wavelets. 

A matching scheme based on the excusive OR operation was then adopted to 

measure the similarity between a pair of position sequences. Boles and Boashash 

[32] segmented and normalized the iris by using the edge detection and other image 

processing techniques. Wildes [33] localized the iris boundaries via edge detection 

followed by Hough transforms. In [34], the multichannel Gabor filter-based iris 

recognition scheme was proposed, and in [35], the circular symmetry filters were 
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used for iris recognition. In [37], the Discrete Cosine Transform (DCT) was used for 

iris feature extraction. In [38], the binary edge maps of irises were compared using 

the Hausdorff Distance (HDD). Sanchez-Avila and Sanchez-Reillo [39] developed an 

iris recognition scheme using Gabor filters and HD. In addition, they also worked in 

zero-crossing representation of the dyadic wavelet transform applied to two 

different iris signatures: one based on a single virtual circle of the iris and the other 

one based on an annular region. In [51], a modification to the Hough transform was 

made to improve the iris segmentation, and an eyelid detection technique was used, 

where each eyelid was modeled as two straight lines. A new matching method was 

implemented in [52], and its performance was evaluated on a large dataset. In [53], 

Masek applied circular Hough transform to detect the iris/pupil boundaries. The 1D 

log-Gabor filters were employed to extract the iris features and the HD was used for 

template matching.    

    While most of the existing iris literature is focused on the preprocessing of iris 

images [36], recently, there have been important new directions identified in iris 

biometric research. These include feature ranking and iris pattern classification. In 

[40], the matching accuracies of several iris pattern classifiers were combined by 

using the max and min rules. Also, most state-of-the-art iris recognition schemes 

exploit the complete information of the iris region. However, the iris area might be 

affected by pupil dilation, and occluded severely by eyelids and eyelashes. In [41], 

an iris segmentation method was proposed, where authors used the iris information 

between the collarette and the pupil boundaries. In [42], authors proposed a 

method for localizing the iris area between the inner boundary and the collarette 
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boundary. For finding the collarette boundary, histogram equalization and a high 

pass filter were applied to the image, after using a 1D Discrete Fourier Transform 

(DFT). The recognition rate was evaluated by using the SVMs. However, no eyelid 

detection scheme was deployed in [41, 42]. Thus, the schemes reported in [41, 42] 

seem to be vulnerable to the effect of severe eyelid occlusions. In our previous work 

[20], we also utilized the pupillary information instead of using the complete iris 

information. The inner boundary was detected using the simple chain code method. 

However, the chain code-based method fails to perform well on the underlying 

nonideal iris datasets. 

    Very few research studies have been conducted by using the SVMs and the GAs in 

the area of iris recognition. In [43], the basis of GAs was applied to develop a 

technique for the improvement of the performance of an iris recognition system. 

However, in [43], GAs were deployed for segmentation purposes. In [54], Gu et al. 

deployed the GAs to select the optimal features with respect to the objectives, 

namely, the coupling (the distance between iris samples of different classes) and the 

cohesion (the distance between iris samples in the same class) of iris classes. An iris 

recognition scheme was proposed in [55] based on the 2D wavelet transform for 

feature extraction, the direct-discriminant-linear analysis for feature reduction and 

the traditional SVMs for iris pattern classification. In [56], we developed an iris 

recognition method based on the SVMs where we used the information about the 

whole iris region for recognition and used the traditional SVMs for iris pattern 

classification. In [55, 56], the traditional SVMs, which may have failed to control the 

unbalanced nature of a class with respect to the other classes, were used for 
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classification. In [20], the asymmetrical SVMs were deployed to separate the cases of 

FA and FR. However, the SVMs applied in [20] failed to exhibit an acceptable 

performance in a poorly balanced sample space.         

    Addressing the above problems, we introduce a new iris-subject model based on 

the GAs and the asymmetrical SVMs. Furthermore, we use the information between 

the pupil and the collarette boundaries since the pupillary area is less affected by 

the eyelid and eyelash occlusions. We also employ the eyelid and eyelash detection 

techniques along with other noise reduction approaches for the improvement of the 

segmentation performance. A detailed survey of the different iris recognition 

algorithms can be found in [36]. Table 1 shows the comparison of several existing 

iris recognition schemes in strictly constrained situations. 

3.3 Iris Image Preprocessing 

First, we outline our preprocessing approach and then, we describe further details 

in the following subsections. The iris is surrounded by various non-relevant regions 

such  as  the pupil, the sclera, the eyelids, and also noise caused by the eyelashes, the 

eyebrows, the reflections, and the surrounding skin [22, 28, 31].  We need to remove 

this noise from the iris image to improve the iris recognition accuracy. To do this, 

we initially localize the pupil and iris regions in the eye image. Then, the inner iris 

area is isolated using the parameters obtained from the localized pupil. We also   

apply the eyelash, the eyelid and the noise reduction methods to the localized 

pupillary area. Finally, the deformation of the pupil variation is reduced by 

unwrapping the pupillary area to form a rectangular block of a fixed dimension [27]. 
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Table 3.1: Comparison of the state-of-the-art ideal iris recognition algorithms. 

 
 
Iris recognition 

approaches 

Iris 

segmentation 

Nature of features Matching 

process 

Quality evaluation 

Daugman [27-

29] 

Integro-

differential 

operator 

Binary feature 

vector using 2D 

Gabor filters 

HD Good recognition rate and 

provides a faster  

iris/pupil detection 
process on ideal iris 

images 

Wildes et al. 

[33] 

Image 

intensity 

gradient and 

Hough 

transform 

Laplacian pyramid 

to represent the 

spatial 

characteristics of 

the iris image 

Normalized 

correlation 

Matching process is time 

consuming, it may be 

suitable for identification 

phase, not for recognition 

Boles and 

Boashash[32] 

 

-- 1D signature Two 

dissimilarity 

functions: the 

learning and 

the 

classification 

Relatively low recognition 

rate, high EER, faster 

matching process, simple 

1D feature vector 

Ma et al. [22] Gray level 

information, 
Canny edge 

detection and 

Hough 

transform 

1D real-valued 

feature vector 
using multichannel 

spatial filters with 

the length of 384 

Nearest 

feature line 

Relatively slow feature 

extraction process 

Ma et al. [31] Gray level 

information, 

Canny edge 
detection and 

Hough 

transform 

1D real-valued 

feature vector 

using Dyadic 
wavelet with the 

length of 160 

Weighted 

Euclidean 

distance 

Local features are used for 

recognition 

Monro et al. 

[37] 

-- Zero crossings of 

1D DCT 

HD Faster feature extraction 

process, higher 

recognition rates and 

lower EER 

Masek [53] Canny edge 

detection and 

Hough 

transform 

1D log-Gabor 

filters 

HD Relatively lower 

recognition performance 

Sudha et al. 

[38] 

Canny edge 

detection and 

Hough 

transform 

Binary edge maps 

of irises 

Local partial 

HDD 

Relatively higher 

recognition rate, faster 

matching scheme 

Sanchez-Avila, 

and Sanchez-

Reillo [39] 

Integro-

differential 

operator 

Gabor filters and 

multiscale zero-

crossing 

representation 

Dissimilarity 

function 

related to 

zero-crossing 

representation 

of 1D signals 

Good recognition rate on 

ideal iris dataset 
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Iris recognition 

approaches 

Iris 

segmentation 

Nature of 

features 

Matching 

process 

Quality evaluation 

Liu et al. [51]  Modified 

Hough 

transform 

2D Gabor 

wavelets 

HD Relatively higher 

recognition rate on 

complicated dataset, 
medium EER  

Liu et al. [52] Liner Hough 

transform 

2D Gabor 

wavelets 

HD Relatively lower 

recognition rate 

Feng et. al. [40] -- -- Matching 

accuracies are 

combined 

using min and 

max rule  

The classifier combination 

approach improves the 

overall performance 

Proposed 
approach 

Canny edge 
detection and 

circular Hough 

transform, 

pupillary 

region is 

considered for 
recognition 

1D log Gabor 
filters 

Asymmetrical 
SVMs 

Relatively higher 
recognition rate  with 

respect to nonideal iris 

datasets like ICE 2005 and 

WVU Nonideal, extra cost  

for feature selection 

 

 

3.3.1 Iris/Pupil Localization  

The iris is an annular portion of the eye that is situated between the pupil (inner 

boundary) and the sclera (outer boundary). In this chapter, both the inner boundary 

and the outer boundary of a typical iris are considered as approximate circles. 

However, the two   circles   are   usually   not    concentric [22, 57]. We use the 

following approach to isolate the iris and pupil boundaries from a digital eye image: 

 

1. First, we apply a morphological operation, namely, the opening to an input 

image to remove the noise.   

2. The iris image is projected in the vertical and horizontal directions to 

approximately estimate the centre coordinates of the pupil. Generally, the pupil 

is darker than its surroundings; therefore, the coordinates corresponding  to  the  
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minima of the two projection profiles are considered as the centre coordinate 

values of the pupil: 

                     �� = �����	
 �∑ 
�
, ��� � and  �� = �����	� �∑ 
�
, ��� �                      (3.1) 

 where, I(x, y) is the input image and (Xp, Yp) denotes the centre coordinates of 

the   pupil.  

3. In order to compute a more accurate estimate of the centre coordinate of the 

pupil, we use a simple intensity thresholding technique to binarize the iris 

region centred at (Xp,Yp). The centroid of the resulting binary region is 

considered as a more accurate estimate of the pupil coordinates. We can also 

roughly compute the radius, rp, of the pupil from this binarized region. 

4. The Canny edge detection technique is applied to a circular region centred at 

(Xp,Yp) and with rp + 25 [57]. Then, we deploy the circular Hough transform to 

detect the pupil/iris boundary. 

5. In order to detect the iris/sclera boundary, we repeat step 4 with the 

neighborhood region replaced by an annulus band of a width, R, outside the 

pupil/iris boundary. The edge detector is adjusted to the vertical direction to 

minimize the influence of eyelids.  

6. The specular highlight that typically appears in the pupil region is one source of 

edge pixels. These can be generally eliminated by removing the Canny edges at 

the pixels that have a high intensity value (For the ICE 2005 and WVU Nonideal 

datasets, these predefined values are 245 and 240, respectively). Edge pixels 

inside the iris region can also contribute to pushing the Hough transform result 

further away from the correct result. Therefore, this problem can generally be 
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eliminated by removing the edges of the pixels that have an intensity below 

some predetermined value like 32 and 36 for the ICE and WVU datasets, 

respectively. Figs. 3.2 (d, e, f) and 3.3 (d, e, f) show the localized pupils that have 

been segmented from the input iris images.   

3.3.2 Isolation of Pupillary Area 

The complex pattern of an iris provides many distinguishing characteristics such as 

arching ligaments, furrows, ridges, crypts, rings, freckles, coronas, stripes, and the 

pupillary area as discussed in the previous chapter [22, 31, 41, 42]. The pupillary 

area is one of the most important parts of the iris structure (See Fig. 3.1). This area 

is usually less affected by eyelids and eyelashes unless the iris is partly occluded [41, 

42]. From the empirical study, it is found that the pupillary area is generally 

concentric with the pupil, and the radius of this area is restricted to a certain range 

[41]. In the cases of both the ICE and WVU iris datasets, the inner iris area is 

detected using the previously obtained centre and radius values of the pupil, as 

shown in Figs. 3.2 (g, h, i) and 3.3 (g, h, i). An experimental validation is provided in 

Section 3.7.1.    

3.3.3 Detection of Eyelids and Eyelashes  

Though the pupillary area is less affected by the eyelids and eyelashes, there might 

be a few cases where this region is partially occluded since it is close to the pupil. 

Thus, we deploy the noise reduction algorithms to suppress the effects of eyelids 

and eyelashes [26, 58]. The proposed eyelid and eyelash detection techniques can 

be summarized as follows:  
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Fig. 3.2 Image preprocessing where: (a), (b), and (c) are the original iris images 

from the ICE 2005 dataset; (d), (e) and (f) show the corresponding localized pupil; 

(g), (h) and (i) represent the isolated pupillary region; (j), (k) and (l) present the 

localized pupillary region with the detected iris region; (m), (n), (o) reveal eyelid 

detection; and (p),(q), (r) show segmented images after eyelid, eyelash and 

reflection  detection. 

       

                           

       

                       (m)                                               (n)                                              (o) 

                     (p)                                               (q)                                               (r) 

                      (a)                                                 (b)                                                 (c) 

                    (d)                                                (e)                                                (f) 
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Fig. 3.3 Image preprocessing where: (a), (b), and (c) are the original iris images 

from the WVU Nonideal dataset; (d), (e) and (f) show the corresponding localized 

pupil; (g), (h) and (i) represent the isolated pupillary region; (j), (k) and (l) present 

the localized pupillary region with the detected iris region; (m), (n), (o) reveal eyelid 

detection; and (p), (q), (r) show segmented images after eyelid, eyelash and 

reflection  detection. 

 

                        (g)                                            (h)                                                  (i) 

                         (j)                                             (k)                                                 (l) 

                    (m)                                           (n)                                               (o) 

                   (p)                                            (q)                                                (r) 
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1. Eyelids can be approximated as parabolic curves. Therefore, we use 

parabolic curves to detect the upper and the lower eyelids. Generally, the 

eyelids occur in the top and the lower portions of the pupil’s centre. Thus, we 

restrict our search to those areas only. The parametric definition of a 

parabola is applied to construct the parabolas of different sizes and shapes. 

Any abrupt change in the summation of gray scale values over the shape of a 

parabola is estimated for various shapes and sizes of parabolas. This results 

in the detection of upper and lower eyelid boundaries. Figs. 3.2 (m, n, o) and 

3.3 (m, n, o) show the detected eyelids. 

2. There are two types of eyelashes: separable and multiple eyelashes [26]. We 

apply the 1D Gabor filter to detect the separable eyelashes, and the 

convolution of a separable eyelash with the Gaussian smoothing function 

results in a low output value. Thus, if a resultant point is smaller than a 

predefined threshold, this point belongs to an eyelash [26, 53]. Multiple 

eyelashes are detected by using the variance of intensity. If the values in a 

small window are lower than a threshold, then the centre of the window is 

considered as a point in an eyelash as shown in Figs. 3.2 (p, q, r) and 3.3 (p, q, 

r).  

3.3.4 Normalization and Iris Image Enhancement 

We use the rubber sheet model [27-29] to normalize or unwrap the isolated 

pupillary area. The centre value of the pupil is considered as the reference point. 

The radial vectors pass through the pupillary region [53]. We select a number of 

data points along each radial line that are defined as the radial resolution. The 
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number of radial lines passing around the region is considered as the angular 

resolution. A constant number of points are chosen along each radial line in order to 

take a constant number of radial data points, irrespective of how narrow or wide the 

radius is at a particular angle. The normalization approach produces a 2D array with 

the horizontal dimensions of the angular resolution, and the vertical dimensions of 

the radial resolution form the circular shaped pupillary area. In order to prevent the 

non-iris region data from corrupting the normalized representation, data points that 

occur along the pupil border or the inner iris border are discarded. Fig. 3.4 shows 

the unwrapping procedure. Figs. 3.4, 3.5 (a, b), and 3.6 (a, b) show the normalized 

images after isolation of the pupillary area from the iris images that were taken 

from the ICE and WVU datasets, respectively. Since the normalized iris image has a 

relatively low contrast and may have non-uniform intensity values due to the 

position of light sources, a local intensity-based histogram equalization technique is 

applied. This technique enhances the contrast that affects the quality of the 

normalized iris image, thereby increasing the subsequent recognition accuracy.  

Figs. 3.4, 3.5 (c, d), and 3.6 (c, d) show the effects of enhancement on the normalized 

iris images for the two datasets.  

3.4 Extraction of Distinctive Feature Set From the Pupillary Area  

In this section, we propose to apply the log polar form of 1D Gabor wavelet to elicit 

the textural features of iris [27, 53, 56, 59, 60]. In contrast to Gabor wavelets that 

are symmetric with respect to their principal axis, the 1D log polar Gabor filters 

show a translation of the maximum from the centre of gravity in the direction of a 

lower frequency and a  flattening  of  the  high  frequency  part. The  most  important   
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Fig. 3.4 (a) Unwrapping of the iris image from the ICE 2005 dataset; (b) noise areas 

are marked for the corresponding unwrapped iris image; (c) unwrapping of the iris 

image from WVU Nonideal dataset; and (d) noise areas are marked for the 

corresponding unwrapped iris image.    
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Fig. 3.5 (a, b) show the unwrapped pupillary region before the enhancement taken 

from the ICE 2005 dataset, and (c, d) reveal the corresponding pupillary region after 

enhancement. 

 

    
 

 

    
 

 

Fig. 3.6 (a, b) show the unwrapped pupillary region before the enhancement taken 

from the WVU Nonideal dataset, and (c, d) reveal the corresponding pupillary region 

after enhancement. 

 

feature of the applied filter is that it is rotation and scale invariant. Also, the 1D log 

polar Gabor functions, having  extended  tails,  should  be  able  to  encode  natural  

images more efficiently than regular Gabor functions. They are more efficient  

because the regular Gabor functions would over-represent the low frequency 

components and under-represent the high frequency components in the encoding   

process.  With the log-Gabor functions, more filters are obtained by multiplying the 

radial and the angular components, such that each even and odd symmetric pair of 

log-Gabor filters comprises a complex log-Gabor filter at one scale. The frequency 

response of a log-Gabor filter is given as:               

                            (a)                                                                               (b) 

                            (c)                                                                               (d) 

                            (a)                                                                              (b) 

                               (c)                                                                            (d) 
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                                   ���� = �
� �− ���� �   !"#$ 2 �log � ) !""$* +                                (3.2) 

where f0  is the centre frequency, and σ provides  the bandwidth of the filter. In order 

to extract the discriminating features from the pupillary area, the normalized 

pattern is convolved with 1D log-Gabor filters [27, 53]. First, the 2D normalized 

pattern is isolated into a number of 1D signals. Then, these 1D signals are convolved 

with 1D log-Gabor filters. We consider the rows of the 2D normalized pattern as the 

1D signal. Each row denotes a circular ring of the pupillary area. We use an angular 

direction that corresponds to the columns of the normalized pattern instead of 

choosing the radial one, since the maximum independence occurs in the angular 

direction. It is preferable to set the intensity values of the known noise areas in the 

normalized pattern to the average intensity level of the neighboring pixels. Thus, we 

can prevent the influence of noise in the output of the filtering. 

3.5 Feature Selection Using Genetic Algorithms (GAs) 

The iris data contains a huge number of features and a comparatively small number 

of samples per class, and this makes accurate and reliable classification or 

recognition difficult [61]. In this research effort, we propose GAs to select the 

prominent features based on the matching performance of asymmetrical SVMs [62]. 

Generally, the feature selection algorithms based on GA can be divided into two 

categories: the filter approach and the wrapper approach. These categories are 

based on whether or not the feature selection process is performed independently 

of the learning algorithm that is used to evaluate the feature subset. If the feature 

selection is accomplished independently of the learning algorithm in the feature 



55 
 

evaluation stage, the technique is denoted as the filter approach. The filter approach 

is generally computationally more effective than the wrapper approach. However, 

its major disadvantage is that the selected feature subset does not represent the 

optimal features for classification. On the other hand, the wrapper approach 

depends on the performance of the learning algorithm as the feature evaluation 

function. The wrapper approach involves substantial computational cost. However, 

this approach selects the optimal feature subset for classification. In this section, we 

have chosen to adopt the wrapper approach, since the deployed multi-class SVMs 

guide the GAs properly to improve the feature subset selection criteria. The GAs can 

search a pool of hypotheses (called population), which contain complex interacting 

parts. Each hypothesis (individual) of the current population is evaluated according 

to a specified fitness function. A new population is generated by applying genetic 

operations like selection, mutation and crossover. In GA-based feature selection, 

each individual represents a feature subset. In the genetic process, we present the 

choice of a representation for encoding the candidate solutions that are to be 

manipulated by the genetic algorithms, and each individual in the population 

represents a candidate solution to the feature subset selection problem. The feature 

pool is formed by the original features that are extracted by using the 1D log-Gabor 

filters. If n denotes the total number of features (available to represent the patterns 

to be classified), then the individual (chromosome) is represented by a binary 

vector of dimension, n. If a bit is a 1, it means that the corresponding feature is 

selected; otherwise the feature is not selected. This is the simplest and most 

straightforward representation scheme (See Fig. 3.7). A   detailed  description  of  GA  
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Fig. 3.7 A binary feature vector for l-dimension. 

 

can be found in [62]. 

    The proposed   GAs   are   designed   to   optimize   two   objectives:   maximize the 

recognition accuracy and minimize the size of the feature subset.  In order to do so, 

we propose the following fitness function: 

                                                        , = w*RA(x) +(1-w)*(1/FSS(x))                                      (3.3) 

where, x denotes the feature vector representing a selected feature subset and w is 

the weighting parameter between 0 and 1. The proposed fitness function contains 

two parts. The first part is the weighted recognition accuracy, RA(x), and the second 

part is the weighted feature subset size, FSS (x), of the selected feature subset 

represented by x. The fitness of an individual x is increased if the recognition 

accuracy of the x increases, and is decreased if the size of the x increases for a given 

w. If the value of w is reduced, it provides more penalties on the size of x. We can 

achieve a tradeoff between the accuracy and size of the selected feature subset by 

adjusting the value of w. In this effort, we use the asymmetrical SVM as an induction 

algorithm. We use the roulette wheel selection to probabilistically select individuals 

1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 ……………………………………….0 0 0 1 1 1 1 0 0  

Length of chromosome, l = feature dimension 

The 1st feature is 

selected for SVM 

classifier 

The 15th feature is 
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from a population for latter breeding. The probability of selecting an individual, �	./ 
is estimated as:  

                                               0��	./� =  ,��	./� ∑ ,��	./��/12⁄                                            (3.4) 

where, p denotes the number of individuals in the population. The probability that 

an individual will be selected is proportional to its own fitness and is inversely 

proportional to the fitness of the other competing hypotheses in the current 

population. Here, we use single point crossover, and each individual has a 

probability, 04, to mutate. The number of n bits is randomly selected, to be flipped in 

every mutation stage. The overall feature subset selection process is shown in Fig. 

3.8.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Feature subset selection procedure with GAs. 
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3.6 Asymmetrical SVMs as Iris Pattern Classifiers 

In this chapter, we use multi-class SVMs for iris pattern classification due to their 

outstanding generalization performance [49, 63, 64]. We apply the asymmetrical 

SVMs, to handle the issue of poorly balanced sample proportions between classes, 

and we briefly summarize these steps below.  

1. Let us consider N sets of labeled input/output pairs 567, �/ ; � = 1, … , ;< ∈ � ×
 5+1, −1<, where X is the set of input data in ℜAand yi represents  the labels. The 

SVM-based approach aims to obtain the largest possible margin of  separation.  

        The decision hyperplane can be expressed as: 

 

                                                                    6. C + D = 0                                                         (3.5) 

2. If all the training data satisfy the constraints, then: 

                                          67. C + D ≥  +1    ��� �/ = +1, ∀� = 1, … , ;                        (3.6) 

                                         67. C + D ≤ −1    ��� �/ = −1, ∀� = 1, … , ;                          (3.7) 

and the distance between the two hyperplanes is expressed as:  

                                                                       2. = 2/‖C‖                                                      (3.8) 

where, the distance, d, is considered as the safety margin of the classifier.  

3. Now, by combining (3.6) and (3.7) into a single constraint, we get: 

                                                    �/ �67. C + D � ≥ 1      ∀� = 1, … , ;                                 (3.9) 

In the training phase, the main goal is to find the Support Vectors (SVs) that 

maximize the margin of separation, d. Alternatively, a similar objective can be 

achieved if we minimize ‖C‖$. Thus, the goal is to minimize ‖C‖$ subject to the 

constraint in (3.9). We can solve it by introducing the Lagrange multipliers 

K/ ≥ 0 and a Lagrangian:  
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                                     L�C, D, K� = 2$  ‖M‖$ −  ∑ K/��/�67. C + D� −  1�N/12               (3.10) 

where, L�C, D, K�  is simultaneously minimized with respect to w and b, and is 

maximized with respect to K/ .  

Finally, the decision boundary can be derived as follows: 

                                          ��6� = C. 6 + D = ∑ �/K/�6. 67� + D = 0N/12                        (3.11) 

4. If the data points are not separable by a linear separating hyperplane, a set of 

slack or relaxation variables 5O =  O2, … , ON< is introduced with O/ ≥ 0 such that 

(3.9) becomes: 

                                              �/ �67. C + D � ≥ 1 − O/             ∀ � = 1, … , ;                     (3.12) 

The slack variables measure the deviation of the data points from the marginal 

hyperplane. The new objective function to be minimized becomes: 

12 ‖C‖$ +  P Q O/ ,/  

                                             Subject to �/ �67. C + D � ≥ 1 − O/                                       (3.13) 

where, ∑ O//    denotes the number of misclassifications on the training set and 

thus measures the empirical risk, and P is the user-defined penalty parameter 

that penalizes any violation of the safety margin for all the training data. 

Therefore, P can be used to control the tradeoff between the empirical risk and 

the complexity of learning.  

5. In order to control the misclassification error between the positive and negative 

classes, we separate the empirical risk, ∑ O// , into two parts and assign the 

different penalty parameters, PR and PS, corresponding to the empirical risk of 

positive and negative classes, respectively [7, 46]. Therefore, (3.13) becomes:  
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2$  ‖C‖$ + ∑ P�T/��O/�,/                                            (3.14) 

where, P�T/� = PR, if sample � is from positive class, and P�T/� = PS if sample � is 

from negative class. The statistically under-presented data of a class with respect 

to other classes can be controlled with the variation in the value of the penalty 

parameter, C. Therefore, it can be inferred that the higher the P�T/�, the more 

penalty will be required to reduce the misclassification error. Here, we consider 

the cost and asymmetry of samples.  

6. In order to obtain a nonlinear decision boundary, we replace the inner product 

�6. 67� of (3.10), with a nonlinear kernel U�6. 67� and obtain              

                                                  ��6� = ∑ �/K/V�6. 67� + DN/12                                          (3.15) 

Now, in the next subsection, we discuss the SVM parameter selection process that 

improves the generalization performance.  

3.6.1 Tuning of SVM Parameters  

The optimal value of penalty parameter ratio (i. e., the ratio between PR  and PS� for 

the error term should be selected by adjusting the kernel parameters to improve the 

generalization performance. A careful selection of a training subset and of a 

validation set with a small number of classes is required. The purpose is to avoid 

training the SVMs with all the classes and to evaluate the performance of SVMs on 

the validation set due to their high computational cost when the number of classes 

is higher. In this section, the optimum parameter values are selected to tune the 

SVMs. A modified approach proposed in [65] is applied to reduce the cost of the 

selection procedure, as well as to adjust the parameters of the SVMs. After assigning 

the class labels to the training data, we divide 70% of the training data of each class 
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depending on the dataset used for training, and the rest of the training data is used 

for validation. Here, the Fisher’s least square linear classifier is used with a low 

computational cost for each class [66]. The performance of this linear classifier is 

evaluated on the validation set, and the confusion matrix, CM, is defined as follows:  

                                                     CM=W�22 �2$ … �24�$2 �$$ … �$4⋮ ⋮ ⋱ ⋮�42 �4$ … �44
Z                                     (3.16) 

where, each row � corresponds to the class M/ , and each column [ represents the 

number of classes classified to M\ . The number of misclassified iris patterns is 

estimated for each class as follows: 

                                                           ���/ = ∑ �/\4\12,\]/                                                     (3.17) 

and then, we sort the misclassified patterns, ���/, � = 1,2, … , 	 calculated from (3.16) 

in decreasing order, and the subscripts �2, �$, … , �^  are assigned to the top I choices 

assuming that 
 ≪ ;. Next, we determine the number of classes whose patterns can 

be classified to the class set `M/a , M/b , … , M/cd  based on the following confusion 

matrix: 

                                                           e =  f `M\g�/,\  ≠ 0dî12                                          (3.18) 

From the class set V, we select the training and the cross validation set to tune the 

ratio between the penalty parameter and the kernel parameters for the SVMs. After 

a careful selection of the ratio between PR  and PS and the kernel parameters, the 

whole training set with all the classes are trained.  

3.7 Experimental Results, Analysis and Discussions 

As mentioned earlier in Section 3.1, we have conducted the experiments on two iris 
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datasets, namely, the ICE 2005 [189] and WVU Nonideal [192]. The details of the 

datasets are given in Appendix A. Our experiments have been conducted in two 

stages. First, the performance of the proposed approach has been evaluated (Section 

3.7.1). Second, our proposed method has been compared with three most promising 

ideal iris recognition algorithms and also, a comparative analysis of our method 

with state-of-the-art iris recognition approaches has been provided (Section 3.7.2).  

    In the first stage, we focus on the performance evaluation of the current 

approach based on the matching accuracy. We show the performance of the 

proposed genetic process for the selection of the optimum features and also for an 

augmentation of the overall system accuracy. The verification performance of the 

proposed approach is demonstrated using an ROC curve and EER. As mentioned in 

Chapter 2, the EER is the point where the FAR and the FRR are equal in value. In 

general, the lower the EER value, the higher the accuracy of the iris recognition 

system [31]. During the second stage, we carry out a series of experiments to 

provide a comparative analysis of our method with the existing methods with 

respect to recognition accuracy. We also show the average time consumption 

pertaining to the different parts of the proposed iris recognition system.  

3.7.1 Performance Evaluation of the Proposed Method 

We evaluated the success rate for the proposed method by detecting the pupil 

boundary. The obtained success rates were 98.60% and 97.40% for the ICE and 

WVU datasets, respectively. We found that a reasonable recognition accuracy was 

achieved when the pupillary area was isolated, by increasing the previously 

detected radius value of the pupil up to a certain number of pixels. A rapid drop of 
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matching error from 3.61% to 2.48% was observed as shown in Fig. 3.9(a), when 

the number of pixels was increased from 20 to 21. Therefore, we chose to increase 

the pupil radius up to 23 pixels because a stable matching accuracy of 97.54% was 

achieved in this case. In order to find an optimal value for the pupillary radius, SVMs 

were used for matching; however, GAs were not applied in this case. From Fig. 

3.9(b), we found that if we increased the pixel values up to 26, then we obtained the 

highest matching accuracy of 95.39%. The experimental results show that our 

proposed approach fails to detect the iris/sclera boundary for a few cases; however, 

our method successfully isolates the iris/pupil boundary for those cases, which in 

turn, localizes the pupillary area correctly as demonstrated in Fig. 3.10. Fig. 3.11 

shows the comparison of the feature dimension versus the recognition accuracy of 

SVMs compared to other matching approaches such as the HD, Feed-Forward neural 

network by using the Backpropagation (FFBP) rule, the Feed-Forward neural 

network by using the Levenberg-Marquardt rule (FFLM), the k-Nearest Neighbor (k-

NN) rule. In this case, only the Radian Basis Function (RBF) kernel is considered due 

to its reasonable classification accuracy for the SVMs. From Fig. 3.11, we can see that 

with an increasing dimensionality of the feature sequence, the recognition rate also 

increases rapidly for all similarity measures. However, when the dimensionality of 

the feature sequence is increased up to 600 or higher, the recognition rate starts to 

level off at an encouraging rate of about 97.31% and 95.30% for the ICE and WVU 

datasets, respectively. Therefore, we input 600 features to the feature pool of GA for 

further feature selection. 

In order to reduce the computational cost and to speed up the classification 



64 
 

process, the   Fisher’s least square linear classifier was used as a low-cost pre- 

classifier. With this classifier, a  reasonable cumulative recognition accuracy   can  be     

 

(a) 

 

(b) 

Fig. 3.9 Matching error vs. number of pixels increased on (a) ICE 2005, and (b) WVU 

Nonideal datasets. 
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Fig. 3.10 On the WVU Nonideal dataset: (a), (b) show successful detection of 

iris/pupil boundary; (c), (d) provide correct localization of pupillary area; and (e), 

(f) show the failure of proper detection of iris/ sclera boundary.   

 

achieved and a true class label can be given for a small number of selected 

candidates.  For the ICE dataset, we applied the Fisher’s least square linear classifier 

to choose ten candidates [66]. The cumulative recognition accuracy at  rank  10  was 

98.14%. The selected cardinal number of sets was 32 from the experimentation.  

This number was found by using the tuning algorithm for the SVM parameter 

selection (refer to Section 3.6.1). As a result, the sizes of the training and validation 

                                (a)                                              (b) 

                         (c)                                             (d) 

               (e)                                           (f) 
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sets when selecting the optimal values of the ratios between PR and PS,  and j$, 

were 112 (=32*5*0.7) and 48 (=32*5*0.3), respectively. When the parameter j$ 

was set at 0.6, and the ratio between  PR  and PS was set at 18, the highest accuracy 

on the validation set was achieved with the RBF kernels for the ICE iris dataset. In 

this experiment, we considered only those classes of the ICE database that had at 

least five probe images for the purpose of selecting the optimal parameter values. 

The SVM parameters were also tuned for the WVU dataset. Here, twenty candidates 

were selected by using the Fisher’s least square linear classifier. The cumulative 

recognition accuracy at rank 20 was 97.20%. The cardinal number of sets obtained 

for this dataset was 60. Therefore, the sizes   of    the   training   and   validation   sets   
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(b) 
 

Fig. 3.11 Comparison of SVM recognition accuracy with the accuracies of FFBP, 

FFLM, k-NN, and HD for different feature dimensions on (a) ICE 2005, and (b) WVU 

Nonideal datasets. 

 

when  selecting  the  optimal values of the ratio between penalty parameter and 

j$ were 168 (=60*4*0.7) and 72 (=60*4*0.3), respectively. Finally, the ratio 

between PR and PS was set at 21, and the optimal value of j$ remained the same as 

that for the ICE dataset. Table 3.2 shows the performance of different kernel 

functions when selecting the optimum values of SVM parameters. Since the   highest 

classification accuracy was obtained by using the RBF kernel, this   kernel  was  used 

Table 3.2: Efficiency of the various kernel functions. 

Kernel type Classification accuracy (%) in 

ICE 2005 dataset 

Classification accuracy (%) in 

WVU Nonideal dataset 

Polynomial 91.1 89.2 

RBF 94.3 92.4 

Sigmoid 91.2 90.6 
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in our system for SVM-based classification. In order to evaluate the matching 

accuracy, we utilized the pupillary area only. For each person in the ICE database, 

one iris sample was used to build the template. The remaining irises from the probe 

image set were used for testing. From the WVU dataset, we used two iris samples for 

training. The remaining samples of each class were used for testing. In order to 

select the optimum features for the improvement of the matching accuracy, GAs 

were applied. GAs involved running the genetic process for several generations, as 

shown in Fig. 3.12, with different values of the weighting parameter, w, in the fitness 

function. In this figure, the highest matching accuracy of 97.73% was achieved at 

generation 200 on the ICE dataset when w = 0.90. For w = 0.95, an accuracy of 

95.63% was achieved at generation 250 when the WVU dataset was used. Based on 

these experiments, we found   that    the   weighting    parameter,  w,    influences  the  
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(b) 

Fig. 3.12 Variation of recognition rates with several GA generations on: (a) ICE 

2005, and (b) WVU Nonideal datasets, for different values of weighting parameters 

in the fitness function. 

 

recognition accuracy as well as the feature subset size. As we can see in the Tables 

3.3 and 3.4, and Fig. 3.12, increasing w affects the recognition accuracy. In general, 

we find that increasing the value of  w  also   increases   the   recognition accuracy. 

On the other hand, reducing w also influences the size of the feature subsets. Smaller 

values of w  impose  more  penalties  on  the  size  of  the subsets being selected. 

Therefore, using smaller values of w leads to the selection of smaller subsets, and 

reducing w reduces the accuracy as well. However, there are a few exceptions, as 

shown in Tables 3.3 and 3.4. For example, in Table 3.3, GAs chose a subset of 511 

features reaching the 94.10% recognition accuracy when w = 0.75. The recognition 
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accuracy of this subset is larger than the one of size 512. In Table 3.3, the highest 

accuracy of 97.73% is obtained when w= 0.90 and the feature subset size = 540. On 

the other hand, a lower recognition accuracy is achieved with a reduced feature 

subset of 512 when w = 0.70. Therefore, we chose a tradeoff between the accuracy 

and the size. Finally, since the accuracy was our major concern, we considered the 

case where GAs selected a subset size of 530 features and achieved a reasonable 

accuracy of 97.60% when w = 0.90 for the ICE dataset. Similarly, for the WVU 

dataset, GAs selected a subset size of 487 features with a reasonable accuracy of 

95.55%, in spite of the higher accuracy of 95.63% that could be achieved for a 

relatively higher subset size of 510 for w = 0.95. After conducting several 

experiments, the arguments of GAs were set, as shown in Table 3.5.   

    The recognition accuracy of the proposed method, using the pupillary area is 

compared with that of the traditional approach, denoted as the “previous approach” 

[56] (where complete iris information between the pupil and the sclera boundary 

are considered for recognition). Fig. 3.13 shows the efficiency of the current 

approach with and without GAs in comparison with that of the previous approach. 

In order to show a comparative analysis, we provide the   original    feature   set,    

extracted   from   the pupillary area of different dimensions in the feature pool of 

GAs.  The proposed method performs relatively better with an accuracy of 97.67% 

on the ICE, and 95.58% on the WVU datasets. Therefore, the performance of our    

approach increased when the GAs were used for feature selection. The proposed 

approach leads to a reasonable recognition accuracy in the cases where the 

eyelashes and the eyelids occlude the iris so badly that the  pupil  is  partly  invisible.   
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Table 3.3: Recognition accuracies and their corresponding feature subset sizes for 

different values of the weighting parameter, w, experimented on the ICE 2005 

dataset. 

Weighting 

parameter, w 

Selected feature subset 

size 

Recognition 

accuracy (%) 

  

0.70 

512 93.60 

511 93.45 

504 93.10 

        

0.75 

517 94.70 

516 94.20 

511 94.10 

       

0.80 

523 96.20 

522 96.18 

520 95.90 

 

0.85 

529 97.30 

528 97.25 

526 97.10 

 

0.90 

540 97.73 

539 97.70 

530 97.60 

For a given value of a weighting parameter, the best three accuracies and their corresponding feature 

sizes are shown. 

 

 

Table 3.4: Recognition accuracies and their corresponding feature subset sizes for 

different values of the weighting parameter, w, experimented on the WVU Nonideal 

dataset.  

 

For a given value of a weighting parameter, the best three accuracies and their corresponding feature 

sizes are presented. 

 

Weighting 

parameter, w 

Selected feature subset 

size 

Recognition 

accuracy (%) 

 

0.70 

469 86.90 

465 86.75 

465 86.50 

 

0.75 

468 90.10 

473 90.00 

475 89.70 

 
0.80 

484 92.90 

484 92.75 

483 92.60 

 

0.85 

492 94.30 

486 94.25 

483 94.10 

 

0.90 

487 95.55 

488 95.40 

486 95.30 

 

0.95 

510 95.63 

506 95.61 

505 95.60 
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Table 3.5: The selected values for the arguments of GA, for ICE 2005 and WVU 

Nonideal datasets. 

 
Parameters ICE dataset WVU dataset 

Population size 244 (the scale of iris 
sample) 

200 (the scale of iris 
sample) 

Length of chromosome code 600 (selected 

dimensionality of feature 

sequence) 

600 (selected 

dimensionality of feature 

sequence) 

Crossover probability 0.61 0.65 

Mutation probability 0.005 0.002 

Number of generation 260 300 

 

 

    The performance of a verification system has been evaluated by using an ROC 

curve. See Fig. 3.14, which demonstrates how the Genuine Accept Rate (GAR) 

changes with a variation in the FAR in our previous and proposed approaches. The 

proposed approach achieved GARs of 97.62% and 95.53% on the ICE and WVU 

datasets, respectively. Based on the experiments, our approach reduces the EERs 

from 2.10% to 0.73% for the ICE dataset, and from 3.92% to 2.15% for the WVU 

dataset, both of which represent a good improvement for the proposed scheme. In 

Fig. 3.15(a), one can observe that when the ratio is below 18, with the increase of 

the ratio, the error rate is decreased, which indicates that the ill effect of sample bias 

is improved. When the ratio is around 18, the best performance for ICE is achieved. 

However, the over-tuning may reduce the accuracy. Similarly, from Fig. 3.15(b), we 

find that the best classification accuracy for WVU is achieved when the ratio is 

around 21. In reality, it is evident that the exact value of penalty parameters also 

affects the classifier’s performance. Fig. 3.16 shows the comparison of the 

performance between the traditional SVMs and asymmetrical SVMs, with the exact 

value of the penalty parameters displayed while the ratio between PR  and PS 
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remains fixed, as previously shown in Fig. 3.15 for both of the datasets. From Figure 

3.16, with the ratio between PR  and PS, the performance is low except in the cases 

when the C is small, which indicates that it is the ratio and not the exact value that 

influences the classifier. Therefore, asymmetrical SVMs perform relatively well 

when compared to the traditional SVMs. In the above experiments, we observed that 

decreasing the error rate by counteracting the sample bias gives a higher 

performance than increasing the error rate by the inherent cost-relative property of 

asymmetrical SVMs. Moreover, the application of asymmetrical SVMs make the 

authentication system more configurable, which means that the proper selection of 

the ratio between PR  and PS can influence the tradeoff between the cases of FA and 

FR.   
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(b) 

Fig. 3.13 Comparison of recognition accuracy between previous approach [56] and 

proposed approach, with and without using GAs on (a) ICE 2005 and (b) WVU 

Nonideal datasets.  
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(b) 

Fig. 3.14 ROC curve shows the comparison between GAR and FAR for our previous 

approach [56] and proposed approach on (a) ICE 2005, and (b) WVU Nonideal 

datasets.  
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(b) 

Fig. 3.15 Classifier performance vs. ratio between C+ and C – on (a) ICE 2005, and 

(b) WVU Nonideal datasets. 
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(b) 

Fig. 3.16 The comparison of the performance between SVMs and asymmetrical  

SVMs (ASVMs) on (a) ICE 2005, and (b) WVU Nonideal datasets. The C axis denotes 

C−, and C+ is 18 times that of C– for the ICE 2005 dataset and 21 times that of C– for 

the WVU Nonideal dataset. 

 

3.7.2 Comparison with State-Of-The-Art Methods 

We compared the performance of the proposed algorithm with the other existing 

iris recognition algorithms. We implemented the well-known iris recognition 

algorithms proposed by Daugman [27-29] and Ma et al. [22, 31], and compared our 

approach with those methods on the ICE and WVU datasets. Fig. 3.17 exhibits the 

ROC curves that demonstrate the performance of the proposed algorithms. The ROC 

curves of the approaches demonstrated in [22, 27-29, 31] are also plotted for 

comparison, and this figure shows that the proposed algorithm achieves a higher 

GAR than the methods of [22, 31]. The proposed method also achieves low EERs of 
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0.73% on the ICE dataset. However, the approach proposed in [27-29] shows a 

better GAR than our algorithm on the same dataset. For the WVU dataset, the 

proposed algorithm achieves a better GAR than the approaches reported in [22, 27-

29, 31]. The proposed method also has an EER of 2.15% on WVU dataset. The major 

reason for achieving a reasonable performance on the ICE and WVU datasets is that 

both of the datasets contain the iris images of less than ideal quality, and these 

images are affected by eyelid and eyelash occlusions.  Thus, the effect of noise in 

most of the cases can be avoided, since the pupillary region is less affected by the 

eyelids and eyelashes. The pupillary area is detected using the centre values of the 

pupil, which is the darkest region of the iris and is relatively easy to isolate. It means 

that the proposed algorithm achieves higher discriminating capabilities than the 

most of the well-known state-of-the-art approaches. We provide the Correct 

Recognition Rates (CRRs) and time consumption of the proposed iris recognition 

scheme for both of the datasets. The CRR measure is defined as follows: 

                                           Pnn = opqqrstu� qrspv4/wrx yzrq 4y{|rq}pt~u 4y{|rq p  yzrqz r4qpuurx × 100                         (3.19) 

Table 3.6 shows that the method reported in [27-29] results in a reasonably better 

recognition rate than the performance of the proposed scheme on the ICE data set. 

However, the accuracy obtained by the proposed scheme is better than the other 

two well-known methods reported in [22, 31] and our previous method of [56].  The 

recognition rate on the WVU iris dataset is greater in our proposed schemes 

compared to that of the methods reported in [22, 27-29, 31, 56]. Table 3.6 also 

demonstrates a comparison of  the  EERs  for  different  existing  methods. This table  
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(a) 

 
(b) 

 

Fig. 3.17 Comparison of our proposed method with existing iris recognition 

schemes on the (a) ICE 2005, and (b) WVU Nonideal dataset. 
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Table 3.6: Comparison of CRR and EER. 

Algorithm  Correct Recognition Rate (CRR) (%) Equal Error Rate (EER) (%) 

    ICE              WVU ICE         WVU 

Daugman [27-29]      98.13                  83.14 0.49 8.45 

Ma et al. [31]      95.79                  78.33 1.72 10.50 

Ma et al. [22]      95.64                  77.24 1.80 11.43 

Roy et. al. [56]  94.80              90.13 2.10 3.92 

Proposed* 97.70             95.60 0.73 2.15 

*Two samples per class to train the Asymmetrical SVMs and the rest of the samples of each class are 

used for testing on all the datasets.   

 

shows that the proposed scheme has a lower EER on the ICE dataset than the 

methods of [22, 31, 56] and a higher EER than the method proposed by Daugman in 

[27-29].  For the  WVU  dataset,  our  algorithm  achieves  a lower EER than the other  

four  methods  [27-29, 22, 31, 56],   and  therefore,  the    proposed algorithm shows 

a better performance. We conducted the above experiments on a 3.00 GHz Pentium 

IV PC with 2.5 GB RAM. We implemented our code in MATLAB 7.2. In order to 

achieve a higher recognition accuracy, the feature dimension should be small 

enough. In our proposed scheme, a subset of 600 original features were used for the 

feature pool of GAs, and the reduced dimensions of 530 and 487 features were 

obtained on the ICE and WVU datasets, respectively, after reasonable improvement 

of recognition rates. These rates were smaller than the number of features used in 

[27-29] and [31], where the numbers of components were 2048 and 660, 

respectively. However, only 200 reduced features were used in [22], a number 

which was much smaller than that used in the proposed method. In our proposed 

method, we used log-Gabor filters to capture local variations of the isolated 

pupillary area by comparing and quantizing the similarity between log-Gabor filters 

and local regions, as in the methods proposed in [22, 31]. In [22], a problem seems 
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to be that the use of spatial filters may fail in capturing the fine spatial changes of 

the iris. We overcome this possible drawback by capturing the local variations with 

use of log-Gabor filters, and then we use GAs to select the most discriminating 

feature sequence. In [41], the pupillary area was used with an eyelash detection 

technique for iris recognition. However, in our proposed scheme, we successfully 

isolated the pupillary area along with eyelash, eyelid and noise detection methods. 

We obtained a substantial improvement in the recognition rate and consequently 

overcame the problem when the pupil was badly occluded by eyelids and eyelashes. 

In [42], the pupillary area was utilized for iris recognition. However, no eyelash and 

eyelid detection methods were reported in [42]. In our proposed scheme, we 

deployed the eyelid and the eyelash detection methods to overcome the situation 

when the pupillary region is affected severely by the eyelids and the eyelashes.  In 

[43], a basic GA was used to find a distribution of points over the iris region, leading 

the system to a reasonable accuracy of 99.70%, which was much higher than the 

accuracy of our method. However, this approach experimented on an ideal iris data 

set. In this chapter, we propose GAs where the main concerns are to minimize the 

recognition error based on the SVMs’ performance on a validation dataset and to 

reduce the feature subset sizes. In [55], authors achieved a matching accuracy of 

98.24% by using the traditional SVMs. However, their method may fail to control the 

unbalanced nature of sample proportions between classes and also suffer from 

misclassification errors. The usage of the asymmetrical SVMs proposed in this 

chapter can handle those issues carefully. The properly selected ratio between 

penalty parameters influences the trade-off between the cases of FA and FR to meet 



82 
 

several security requirements, depending on the various application areas, with 

reasonable CRRs of 97.70% and 95.60% for ICE and WVU datasets, respectively. 

However, a feature reduction approach based on direct discriminant analysis, other 

than the method proposed in this chapter with GAs, was used in [55]. Table 3.7 

shows the time consumption of different parts of our proposed scheme, 

experimented on the ICE and WVU datasets. It shows that the iris segmentation part 

incurs a higher time consumption than the other parts because of the brute search 

strategy of the Hough transform.  

Table 3.7: Comparison of average time consumption pertaining to the different 

parts of iris recognition system. 

 

3.8 Conclusion  

In this chapter, an iris recognition method is proposed using an efficient iris 

segmentation approach based on the pupillary area localization, with the 

incorporation of eyelash and eyelid detection schemes. The log-Gabor filters are 

used to extract the discriminating features, and GAs are applied for feature subset 

selection. In order to increase the feasibility of the SVMs in biometric applications, 

the SVMs are modified into asymmetrical SVMs. The proposed iris recognition 

scheme using asymmetrical SVMs, GAs and pupillary area localization can be applied 

Methods Iris 

segmentation 

(ms) 

 

Normaliza- 

tion 

(ms) 

Feature 

extraction 

(ms) 

Matching 

(ms) 

Total 

(ms) 

Proposed 

approach 

(ICE dataset) 

 

23436.0 

 

 

42.6 

 

 

27.8 

 

157.7 

 

23664.1 

 

Proposed  
approach 

(WVU 

dataset) 

 
28224.0 

 

 
52.1 

 

 
36.5 

 
     169.7 

 
28482.3 
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to a wide range of security-related application fields. The experimental results 

exhibit an encouraging performance in both the accuracy and the speed in a 

constrained situation. In particular, a comparative study of existing methods for iris 

recognition is discussed. The performance evaluation and comparisons with other 

methods indicate that the proposed method is a viable and very efficient method for 

iris recognition.  
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Chapter 4 

 

--------------------------------------------------------- 
Towards Nonideal Iris Recognition Based 
on Active Contours, Genetic Algorithms 
and Adaptive Asymmetrical SVMs 
--------------------------------------------------------- 
 
 

The iris recognition algorithm discussed in the previous chapter may fail to perform 

well in a noncooperative environment, where the probability of acquiring nonideal 

iris images is very high due to gaze deviation, noise, blurring and occlusion by 

eyelashes, eyelids, glasses, and hair. In this thesis, the term ‘nonideal’ is used to 

account for the iris images with deviated gazes, specular reflections, blurs, 

variations of light, and occlusions.   

    In this chapter, we present iris recognition methodologies that can cope with the 

nonideal iris images. Section 4.1 introduces the background of the current problem. 

In Section 4.2, we first present a reflection detection scheme. Then, the iris/pupil 

localization algorithms, based on active contour models, are discussed. We also 

describe an unwrapping process that deals with the size inconsistencies in the 

localized iris regions. The distinctive feature extraction process is presented in 

Section 4.3. A feature selection scheme, based on GA, is proposed in Section 4.4. 
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Section 4.5 introduces the iris pattern matching technique using AASVMs. The 

performance of the proposed method is evaluated in Section 4.6 through extensive 

experiments. Finally, in Section 4.7, the most important findings of this investigation 

are summarized.     

4.1 Introduction 

Most current iris recognition algorithms claim to perform with a very high 

recognition accuracy in a strictly constrained situation, where the iris images are 

acquired in a sophisticated imagery setup to ensure the higher performance. Under 

inflexible image acquiring constraints, it is possible to capture high quality images 

and attain an impressive accuracy with a very low error rate. However, recognition 

accuracies substantially decrease when the captured images do not have enough 

quality, either due to focus, contrast, or brightness problems and iris obstructions or 

reflections [67-70]. In a strict capturing environment, individuals need to stop and 

look into the iris camera from a predetermined distance, and then, the images are 

captured. However, the iris images acquired in an unconstrained situation produce 

nonideal iris images with a varying image quality. If the iris regions are severely 

occluded by eyelids and eyelashes and the eyes are not properly opened, certain 

portions of the iris cannot be processed due to occlusion, which further affects the 

segmentation performance, and consequently, the overall recognition accuracy. Iris 

images may also be affected from motion blur, camera diffusion, head rotation, gaze 

direction, camera angles, reflections, contrast, luminosity, and problems due to 

contraction and dilation [67]. Daugman [27-29], Ma et el. [22, 31], Boles and 
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Boashash [32], Wildes et al. [33, 71] and several other researchers proposed 

different iris recognition methods [72-153]. While most of the literature is focused 

on the processing of ideal iris images, recently, there have been important new 

directions identified in iris biometric research. These include the processing and 

recognition of ‘nonideal irises’ and ‘iris at a distance and on the move’ [74]. In this 

chapter, we deploy the methodologies to compensate for the various nonidealities 

found in the iris images and to design a nonideal iris recognition scheme. We mainly 

focus on improving the iris recognition performance by the accurate localization of 

iris images, captured in a flexible imagery setup, with textural feature extraction, 

optimal feature subset selection and classification of iris patterns.  Fig. 4.1 shows the 

samples of nonideal iris images. 

    Most state-of-the-art literature on iris biometrics is focused on the preprocessing 

of a frontal view iris image of an eye, which  is achieved   through  a   stop   and  stare 

 

 

 

                                       (a)                                   (b)                                  (c) 

Fig. 4.1 Sample of nonideal iris images: (a) ICE 2005, (b) WVU Nonideal, and (c) 

UBIRIS Version 1. 
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interface, in which a user must align his/her optical axis with the camera’s optical 

axis [67]. It is not practical to assume that a user always aligns his/her optical axis 

with the camera’s optical axis due to the increasing security issues. For iris 

segmentation, most of the researchers assume that the iris is circular or elliptical. 

However, in the case of nonideal iris images, which are captured in an uncontrolled 

environment, iris may appear as noncircular or nonelliptical [67, 74]. Also, in the 

images where the eyes are not properly opened, highly occluded regions cannot be 

extracted, and thus, the segmentation performance is deteriorated [67]. As 

mentioned earlier, the iris images may also be affected by the following situations: 

the deviated gaze, non-linear deformations, pupil dilation, head rotation, motion 

blur, reflections, non-uniform intensity, low image contrast, camera angles and 

diffusion, and the presence of eyelids and eyelashes. Therefore, these factors 

hamper the recognition accuracy substantially. In this chapter, we propose a three-

stage iris segmentation algorithm, in which, we first detect the specular reflections 

that usually occur inside the pupil region. In the second stage, we deploy the Direct 

Least Square (DLS) elliptical fitting method to approximate the pupil and iris 

boundaries. In the final stage, we apply the geometric active contours, i.e., the active 

contours implemented via the LS to localize the inner/outer boundary based on the 

approximation of an iris contour. The DBWT is applied to elicit the textural features 

from the unwrapped image, and this approach is appropriate for analyzing the 

signals in a multi-resolution mode.     

    In the field of iris biometric recognition, the iris data obtained from experiments is 

often high-dimensional with Small-Sample-Sizes (SSS), which results in a number of 
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computational and representational problems. In a secured and sophisticated 

biometric identification system, where the user interaction with the capturing 

device is kept to the minimum, the authentication system is expected to 

demonstrate a high level of accuracy with that limited amount of data. Therefore, 

the iris data obtained in a nonideal situation contains a huge number of textural 

features with SSS. Selecting the best features from the higher-dimensional feature 

space has several potential benefits, including defying the curse of dimensionality to 

enhance the prediction performance, reducing the measurement and storage 

requirements and decreasing the training and prediction times [48, 61, 62]. In this 

chapter, we focus on the utilization of useful information obtained from the different 

feature selection methods. This information is used to choose the most prominent 

feature subset and also to improve the matching accuracy [154]. Therefore, we 

propose to apply GAs to select the significant feature subset by combining the 

valuable outcomes from the multiple feature selection criteria. The proposed 

approach provides a convenient way of selecting a better feature subset based on 

the performance of the different feature selection schemes [154]. To evaluate the 

proposed scheme, the following methods are used: SVM-Recursive Feature 

Elimination (RFE), k-Nearest Neighbour (k-NN), T-statistics, and entropy-based 

methods. These methods provide the candidate features for selection of the optimal 

feature subset using GAs. Our experimental results exhibit an encouraging 

performance in a noncooperative environment, where the probability of acquiring 

large number of samples per iris class is very low.    
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    The asymmetrical SVMs, discussed in chapter 3, are used to improve the 

performance when the sample proportion between two classes is poorly balanced 

and to handle the misclassification error [46, 155]. The asymmetrical SVMs also 

have a significant influence on the cases of FA and FR [45, 49]. Unfortunately, the 

asymmetrical SVMs are considerably slower in test phase, caused by the number of 

Support Vectors (SVs). This slowness has been a serious limitation for some real 

time applications like iris recognition [13, 136]. To overcome this problem, we also 

deploy an adaptive algorithm to select the Feature Vector (FV) from the SV 

solutions, according to the vector correlation principle and the greedy method [13, 

136]. This scheme successfully overcomes the problem of the huge computation cost 

incurred by the large number of SVs, thereby speeding up the matching process 

drastically. Therefore, we combine the asymmetrical approach with the adaptive 

simplification of the solution for SVMs, and denote this combined approach as 

‘Adaptive Asymmetrical SVMs’ (AASVMs). This approach is well-suited for the iris 

datasets such as ICE 2005, WVU Nonideal, CASIA Version 3 Interval and UBIRIS 

Version 1, in which the number of samples per subject is small and not fixed.  

4.2 Iris/Pupil Localization Algorithm  

The segmentation of the nonideal iris image is a challenging task because of the 

noncircular/nonelliptical shapes of the pupil and iris [85, 86]. Several researchers 

have proposed different techniques for segmentation [27-35, 38, 41, 42, 45, 46, 51, 

52, 53, 57, 67-72, 74-78, 80-88, 91-96, 101-103, 137, 138, 140-142, 145, 146, 148-

151]. As mentioned in the Chapter 3, Daugman [27-29] used the integrodifferential 
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operator to localize the iris/pupil boundaries. Boles and Boashash [32] applied the 

edge detection method and other image processing techniques to localize the iris 

region. Wildes et al. [33, 71] employed the binary edge map and the Hough 

transform to detect the iris and pupil boundaries. Ma et al. [22, 31] used the Hough 

transform to detect the inner and outer boundaries of the iris. In [3], Miyazawa et al. 

deployed a deformable iris model to detect the iris boundary. In [38, 152], authors 

employed the Canny edge detection and circular Hough transform to localize the iris 

boundaries of the noisy iris images, and the local Partial Hausdorff Distance (PHDD) 

was employed for comparing the binary edge maps.  

    Most of the current iris recognition schemes have processed the iris images that 

are captured on-axis. Recently, researchers have focused on the processing of 

nonideal iris images, which are defined as accounting for the off angle, occluded, 

blurred and noisy images. Previous techniques on nonideal iris recognition were not 

adjusted and designed specifically for the nonideal situations [68-70]. For iris 

segmentation, most of the researchers have assumed that the iris is circular or 

elliptical. However, in the case of nonideal iris images, an iris may appear as 

noncircular or nonelliptical. Because the inner boundary may be partially occluded 

by the reflections, and the outer boundary may be partially occluded by the eyelids, 

it is important to fit the flexible contour that can stand for such disturbances.  

    Several researchers have proposed different nonideal iris segmentation methods 

[1, 67, 74-86, 88, 91, 92, 94, 101, 102, 137, 140-149, 151]. Two approaches were 

proposed in [74], where the first approach compensated for the off-angle gaze 

direction, and the second approach used an angular deformation calibration model. 
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Proença [76] presented a segmentation method that could cope with the nonideal 

iris images. Proença [76] considered the sclera as the most easily distinguishable 

part of the eye in degraded images, and proposed a new type of feature that 

measures the proportion of the sclera in every direction. This entire process was 

executed in a deterministically linear time in respect to the size of the image. Thus, 

the segmentation procedure became suitable for real-time applications. In [77], 

Zhang et al. proposed a new localization algorithm based on the radial symmetry 

transform, in which the radial symmetry characteristic of the pupil was utilized to 

locate the iris. Proença and Alexandre [1] proposed an iris classification method that 

divided the segmented and normalized iris image into six regions. These authors [1] 

then compared the extracted features of each region, and combined each of the 

dissimilarity values through a classification rule. A nonideal iris image segmentation 

approach based on graph cuts was presented in [78], where both the appearance 

and eye geometry information were used for accurate localization. To improve the 

segmentation performance, the quality of iris images were enhanced using the 

wavelet domain with in-band de-noising method in [79]. The approach in [80] 

presented a fast iris segmentation method that relies on the closed nested 

structures of the iris anatomy and on its polar symmetry. This segmentation method 

was applied using the mathematical morphology for polar/radial-invariant image 

filtering and for circular segmentation. The morphology used shortest paths from 

the generalized grey-level distances. Tan et al. [138] proposed a clustering based 

coarse iris localization scheme to extract a rough position of the iris, as well as to 

identify non-iris regions such as eyelashes and eyebrows. A modified 
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integrodifferential constellation was then developed for the localization of pupillary 

and limbic boundaries. After that, a curvature model and a prediction model were 

learned to deal with eyelids and eyelashes, respectively. 

    In [142], a segmentation method that uses a coarse to fine approach to extract the 

iris region was deployed. In [140], authors proposed a video-based image 

processing approach that can help the traditional iris recognition systems to work in 

the nonideal situations. This scheme identified and eliminated the bad quality 

images from iris videos for further processing. The segmentation evaluation scheme 

was designed to assess the segmentation performance. The distance-based quality 

measure was applied to evaluate if the image has a good enough quality for 

recognition. Then, the segmentation evaluation score and quality score were 

combined to predict the recognition performance. Puhan et al. [141] proposed a 

segmentation scheme to localize the limbic and pupil boundaries from the noisy 

frontal view of iris images using the Fourier spectral density. In [143], a wavefront-

coding system was applied to achieve an extended depth of field when the user 

cooperation is not sufficient to acquire iris images that are in focus. Hollingsworth et 

al. [144] observed the effect of pupil dilation on the accuracy of iris biometrics. 

Their experiments revealed the fact that when the degree of dilation is similar at 

enrollment and recognition, comparisons involving highly dilated pupils result in a 

worse recognition performance than comparisons involving constricted pupils. 

Tajbakhsh et al. [145] proposed an approach to verify the noisy irises using the 

modified local intensity variation method. In [146], authors applied the elliptical 

fitting technique to localize the iris/pupil regions along with other image processing 
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techniques for reflection detection, contrast enhancement, occlusion estimation and 

off-angle compensation. Belcher and Du [147] applied the region-based Scale 

Invariant Feature Transform (SIFT) to elicit the iris structure. In [148], an eyeball 

segmentation approach based on the Fourier spectral density was employed for the 

degraded iris images. Proenca and Alexandre [149] applied a clustering algorithm 

along with canny edge detector and circular Hough transform to separate the iris 

region from a nonideal iris image. In [76], the author initially detected the sclera and 

the iris regions. The mandatory adjacency of the sclera and the iris was then 

exploited to detect the noise-free iris regions. Finally, the detected iris was 

parameterized using the polynomial regression. 

    Recently, Al-Daoud [81] introduced an iris localization method based on the 

competitive chords. The basic idea was to create a set of chords from the left edges 

and the right edges of the pupil (or iris), and then find the winner chords with 

aligned centres. The winner chords were used to compute the correct pupil’s (or 

iris’s) centre and radius. In [82], Jeong et al. applied the AdaBoost eye detection 

method to compensate for the iris detection error caused by the two circular edge 

detection operations, and then, used a color segmentation technique for detecting 

obstructions by the ghosting effects of visible light. Proença and Alexandre [83, 137] 

analyzed the relationships between the accuracy of the iris segmentation process 

and the error rates of three typical iris recognition methods.  

    Another important consideration for accurate localization is that the inner and 

outer boundary models must form a closed curve [67, 75]. In this light, several 

researchers have proposed active contour-based iris segmentation schemes. In [75], 
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inner and outer boundaries were detected in terms of active contours, based on the 

discrete Fourier series expansions of the contour data. In [67], a curve evolution 

approach was proposed based on the modified Mumford-Shah segmentation model. 

In [84], a segmentation scheme was proposed, using a traditional active contour 

model and the Hough transform. The Geodesic Active Contours (GAC) were applied 

to segment the nonideal iris images in [85, 86]. The segmentation approaches 

proposed in [75, 84-86] took a long computational time as the curve evolved from 

the previously obtained pupil boundary to the outer boundary. Also, the parametric 

active contour-based iris segmentation scheme may terminate at a certain local 

minima such as the specular reflections, the thick radial fibres in the iris or the 

crypts in the ciliary region. The active contours with an edge stopping function as a 

halting criteria proposed in [67, 84-86] may fail to detect the outer boundary 

accurately, since the iris is separated from the sclera region by a relatively smooth 

boundary. In addressing the above problems, we propose a three-stage iris/pupil 

segmentation algorithm in which we first detect the specular reflections that occur 

inside the pupil boundary. In the second stage, we approximate the iris/pupil 

boundary so that the curve evolution process can start from that estimated region 

and can avoid any unnecessary delays during the propagation process. In the third 

stage, we apply three active contour-based localization schemes: LS method, VLS 

method, and RAC model. We first apply the LS-based curve evolution approach 

using the edge stopping function to detect the inner boundary [8-10, 156]. We 

evolve the curve (based on the LS method) again towards the outer boundary, using 

the energy minimization algorithm in order to detect the iris boundary [8-10, 156-
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159]. Most of the current nonideal iris segmentation schemes, based on active 

contour model including the LS-based method proposed above, require a huge 

computational time due to the expensive curve evolution approach [67, 75, 84-86]. 

This time requirement impedes the traditional LS-based iris recognition systems, to 

be deployed in real-time situations. Therefore, we demonstrate the application of 

the VLS-based curve evolution approach to find the pupil and iris boundaries 

accurately [11]. The proposed segmentation scheme with the VLS approach uses a 

larger time step to numerically solve the evolution PDE, and thereby, this approach 

speeds up the curve evolution process drastically [11]. However, this method may 

fail to detect the outer boundary when the iris/sclera region is separated by a 

relatively blurred boundary. Furthermore, the intensity inhomogeneity often occurs 

in the nonideal iris images due to reflections, motion blur, luminosity, etc. The 

nonideal iris segmentation schemes based on active contour models proposed in 

[67, 75, 84-86] tend to rely on the intensity homogeneity in each of the regions to be 

segmented. Therefore, we finally apply a modified Chan-Vese [12] curve evolution 

scheme, which extracts the intensity information in local regions at a controllable 

scale. This RAC model finds the pupil and iris boundaries accurately [9, 10, 12, 156-

159]. A data fitting energy is defined in terms of a contour and two fitting functions 

that locally approximate the image intensities on the two sides of the contour. This 

energy is then incorporated into a VLS formulation with a regularization term. Due 

to the kernel function used in the energy functional, the extracted intensity 

information of the local regions is deployed to guide the motion of the contour. This 

extracted information assists the curve evolution scheme to cope with the intensity 
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inhomogeneity that occurs in the same region [12]. In addition, the LS regularization 

term is used to ensure the accurate computation and to avoid the expensive 

reinitialization of the evolving curve. In the following paragraphs, we describe the 

three-stage iris/pupil segmentation process in detail. 

   According to Kong and Zhang [26], in the first stage of segmentation, we detect the 

strong reflection area by deploying a simple thresholding approach. A pixel, which 

has an intensity value higher than a certain threshold, belongs to the strong 

reflection area. The reflection is detected by the following inequality [26]: 

                                                                       ���, �� > �	                                                            (4.1) 

where ���, �� denotes the intensity of an image at the point ��, ��, and �	 is the 

required threshold value. A weak reflection, on the other hand, is defined as a 

transition from a strong reflection to the iris [26]. The following statistical 

inequality is deployed to detect the weak reflection points [26]: 

                                                                
 + �
 < ���, ��                                                         (4.2) 

where 
 and 
 are the mean and standard deviation for the distribution of the 

intensity in the iris image ���, ��, respectively, and � is a control parameter. Any 

point that is around the strong reflection area and that satisfies the equation (4.2) 

belongs to weak reflection. A detailed description of this method can be found in 

[26]. Fig. 4.2 exhibits the reflection detection results. In the second stage, prior to 

applying the curve evolution approach, we first deploy DLS-based elliptical fitting to 

approximate  the   pupil   boundary. The   DLS-based   elliptical  fitting   returns    five  
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(a) 
 

                                     

(b) 

Fig. 4.2 Reflection detection on (a) a sample image of the WVU Nonideal dataset, 

and (b) a sample image of the UBIRIS Version 1 dataset. 

 

parameters (p1, p2, r1, r2, φ1): the  horizontal  and  vertical  coordinates  of  the  pupil 

centre (p1, p2); the length of the major and minor axes (r1, r2); and the orientation of 

the ellipse φ1. To approximate the outer boundary, we apply the DLS-based elliptical 

fitting again, and obtain five parameters (I1, I2, R1, R2, φ2): the horizontal and vertical 

coordinates of the iris center (I1, I2); the length of the major and minor axes (R1, R2); 

and the orientation of the ellipse φ2. This method, thus, provides the rough 

estimation of iris and pupil boundaries. Fig. 4.3 shows the approximated iris/pupil 

boundary. Finally, in the following subsections, we segment the iris and pupil 

boundaries from the eye image using three active contour models (Sections 4.2.1, 

4.2.2 and 4.2.3), and then, we detect the eyelash and unwrap the localized iris region 

into a rectangular block of a fixed dimension (Section 4.2.4).  

Reflection 
inside the pupil  

Reflection is 
removed 

Reflection 

inside the pupil  
Reflection is 

removed 
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Fig. 4.3 Approximation of iris and pupil boundaries using the DLS-based elliptical 

fitting. 

 

4.2.1 Localization using Level Set (LS) Method 

As mentioned in the previous section, we apply the active contour models to isolate 

the inner and outer boundaries. A detailed description of the proposed iris/pupil 

segmentation algorithm, using the LS method, is given below.    

4.2.1.1 Pupil Segmentation Using LS Method  

In order to obtain the optimal estimate of the inner (pupil) boundary, we apply the 

geometric active contours. This method is based on the edge stopping function in a 

narrow band over the estimated inner boundary, since the pupil region is the 

darkest part of the eye and is separated by a relatively strong gradient from the iris 

region [67]. A brief discussion of the LS-based curve evolution approach is given as 

follows [8, 68]: 

   Let Ω be the image domain, and I be the 2D iris image.  Let us consider the evolving 

curve C in Ω, as the boundary of an open subset ω of Ω.  The main idea is to embed 

this evolving curve as the zero-LS of a higher dimensional function.  We can define 

the following function: 
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                                                                ���, �, � = 0� = ±�                                                (4.3) 

where d denotes the distance from ��, �� to C at time t=0. The plus (or minus) sign is 

selected if the point ��, �� is outside (or inside) the curve C. Therefore, in the curve 

evolution approach for pupil segmentation, we need to solve the PDE of the 

following form [159]: 

                                     
���� = ��������∇�� + ���∇���, ���, �, 0� = � ��, ��                  (4.4) 

where �� is a constant advection term that forces the curve to expand or contract 

uniformly based on the its sign, while �� depends on the curve geometry and is used 

to smooth out the high curvature region. The set {��, ��, �  ��, �� =  0� defines the 

initial contour, and ���� is an edge stopping function that is used to halt the 

evolution of the curve at the inner boundary. The  ���� can be defined as:   

                                                         ���� = ��#|∇%&�',(�∗*�',(�|+  , , ≥ 1                                (4.5) 

where /0��, �� ∗ ���, �� is the convolution of I with the Gaussian /0��, �� =

1�/�31�'4#(4�/50 . Now to discretize �, we apply the finite differences scheme 

proposed in [157]. To evolve the curve, we perform the discretization and 

linearization of (4.4) [156, 157]: 

                                       ∅7,89#� = ∅7,89 − ∆�<�=����>̂��∇�� + >̂��∇���@                                 (4.6) 

where ∆� is the time step, (�7, �8,) are the grid points for 1 ≤ B, C ≤ D, and 

�7,89 = � ��7, �8,EF�� approximates ���, �, �� with E ≥ 0, � = � . In [157], an 

upwind scheme is used to estimate >��∇�� of (4.6): 
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   >�|∇∅| =
   Gmax�∆1' �7,89 , 0�� + min�∆#' �7,89 , 0�� + max�∆1( �7,89 , 0�� + min�∆#(�7,89 , 0��M�/�

     (4.7)   

and the term >�|∇∅| depends on curvature K (N = �BO � ∇P�∇P��) and can be estimated 

as: 

                    >��∇�� = −QN[��7#�,89 − �71�,89 2T �� + ��7,8#�9 − �7,81�9 2T ��]                        (4.8) 

where Q is a constant. Next, the active contour �  is initialized to the approximated 

pupil boundary, and the optimal estimate of the inner boundary is measured by 

evolving the initial contour in a narrow band of ±10 pixels. Fig. 4.4(b) shows 

segmentation of a pupil based on the algorithm mentioned above.       

4.2.1.2 Iris Segmentation Using LS Method 

In order to evolve the curve towards the outer boundary, we apply the Mumford-

Shah segmentation model with the regularization terms [8-10]. Therefore, the main 

objective is to minimize the length of the curve and the area of the region inside the 

curve. We introduce the following energy function, E [8]:        

 V�W, X�, X�� =
 
 Y F����, ����∇���, ������� + O Y Z����, ������� + [� Y |���, �� −

ΩΩΩ

 X�|�Z����, ������� + [� Y |���, �� − X�|� \1 − Z����, ���] ����
Ω

                         (4.9)  

where 
 ≥ 0, O ≥ 0, [� > 0, [� > 0 are the positive constants, C is the evolving curve, 

c1, c2 are the averages of iris image I inside and outside of C, respectively, �  denotes 

the zero LS of the Signed Distance Function (SDF) representing C as in (4.3), H is the 
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Heaviside function, and F is the Dirac measure. The first and the second terms on 

the right-hand side of (4.9) denote the area and length at � = 0, respectively. 

Therefore, the main goal is to estimate the values of W, X�, X� such that V�W, X�, X�� is 

minimized. We parameterize the descent direction by � ≥ 0, and deduce the Euler-

Lagrange PDE from (4.9), which leads to the following active contour model: 

                   ��̂ = F��� _
 �BO `∇� �∇��a b − O − [��� − X��� + [��� − X���c = 0   (4.10) 

Next, we regularize the Heaviside function H, and the Dirac measure F as in [9]: 

                                          Zd����, ��� = �� + �e arctan ���',(�d �                                           (4.11) 

and thus,                 

                                                     F����, ��� = �e . dd4#���',(��4                                               (4.12) 

 

 

   

 

Fig. 4.4 (a) Original image from the WVU Nonideal dataset, (b) pupil detection using 

the LS Method, (c) iris detection using the LS Method, (d) normalized image, and (e) 

enhanced image. 

(a) (b) (c) 

(d) (e) 
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From (4.12), we can observe that the evolution scheme has the tendency to measure 

the global minimizer with the applied regularizations. By discretizing and 

linearizing (4.10), we obtain: 

           
�j,klmn1�j,kl

Δ� = Fd��7,89 �[
N − O − [� \�7,8 − X���9�]� + [� \�7,8 − X���9�]�]    (4.13) 

Here, we use the rough estimation of the iris boundary as the initial contour �, and 

the curve is evolved in the narrow band of ±15 pixels to detect the exact outer 

boundary. Fig. 4.4 (c) shows the iris segmentation result.    

4.2.2 Localization Using Variational Level Set (VLS) Method 

Based on the approximation of the inner and outer boundaries using the elliptical 

fitting process, the curve is evolved by using the VLS method for accurate 

segmentation of the pupil and the iris regions [9, 11, 69]. In the following 

paragraphs, we briefly discuss this segmentation process by using VLS method.  

   In the LS formulation, the active contours, denoted by C, can be represented by the 

zero LS W��� = {��, ��|���, �, �� = 0} of a LS function ���, �, ��. To evolve the curve 

towards the inner and outer boundaries, we define the following total energy 

functional according to [11]:    

                                                 q��� = 
,��� + qr,s,t���                                                 (4.14) 

where qr,s,t��� denotes the external energy, which depends on the image data and 

drives the zero LS towards the iris boundaries, and  
,��� (
 > 0) denotes the 

internal energy, which penalizes the deviation of � from the SDF during the 

evolution and is defined as: 
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                                          ,��� = Y �� �|∇�| − 1������
Ω

                                                (4.15) 

where Ω is the image domain. In (4.14), g denotes the edge detector function and is 

defined by: 

                                                               � = ��#|u%& ∗ *|4                                                         (4.16) 

where /0 is the Gaussian kernel with a standard deviation denoted as 
, and I 

denotes an iris image. We can further define the external energy term qr,s,t��� of 

(4.14) as: 

                                                qr,s,t��� = [vr��� + Owr���                                           (4.17) 

where [ > 0 and O are constants, and the terms vr��� and wr��� in (4.17) are 

respectively defined by [11]: 

                                                           vr��� = Y �F���|∇�|����
Ω

                                     (4.18) 

and                                                  wr��� = Y �Z�−������x                                            (4.19) 

where F is the univariate Dirac function, and H is the Heaviside function. The energy 

functional vr��� measures the length of the zero LS curve of �, and wr��� is used to 

speed up the curve evolution. From the calculus of variations, the Gateaux derivative 

of the functional q  in (4.14) can be written as: 

                      
 �y    �� = −
 G∆� − �BO \ ∇�|∇�|]M  − [F����BO \� ∇�|∇�|] −    O�F���        (4.20) 

where ∆ is the Laplacian operator. The function � that minimizes this functional 

satisfies the Euler-Lagrange equation 
�y�� = 0. Next, the desired evolution equation of 

the LS function is defined as: 

                        
 ��   �� = 
 G∆� − �BO \ ∇�|∇�|]M + [F����BO \� ∇�|∇�|]  +   O�F���            (4.21) 
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The second and third terms on the right-hand side of (4.21) represent the gradient 

flows of the energy functional and are responsible for driving the zero level-curve 

towards the inner/outer boundaries of the iris. The Dirac function  F��� in (4.21) is 

defined by:        

                                              Fd��� = z   0,  ��d G1 + cos \e'd ]M , } |'|~d
|'|�d                                (4.22) 

In order to estimate the exact boundary of the pupil, we initialize the active contour 

� to the approximated pupil boundary, and evolve the curve in the narrow band of 

±10 pixels. We evolve the curve from inside the approximated inner boundary to 

avoid the effect of reflections that may occur just outside the pupil. Similarly, for 

computing the outer boundary, the active contour � is initialized to the estimated 

iris boundary, and the optimal estimation of the iris boundary is computed by 

evolving the curve in a narrow band of ±20 pixels. In this case, the curve is evolved 

again from inside the approximated iris boundary to reduce the effects of the eyelids 

and the eyelashes. Fig. 4.5 shows the iris/pupil segmentation results using the VLS 

method.  

4.2.3 Localization Using Region-Based Active Contour (RAC) Model 

In this phase of the segmentation, the curve is evolved using the modified Chan-Vese 

functional [9, 12, 160] for accurate segmentation of the pupil and iris regions. In the 

following paragraphs, we briefly discuss  the  segmentation  process  based  on   the  
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Fig. 4.5 (a) Original image from the WVU Nonideal dataset, (b) pupil detection using 

the VLS method, (c) iris detection using the VLS method, (d) normalized image, and 

(e) enhanced image. 

 

RAC approach [9, 12]. In our proposed curve evolution method, the following energy 

functional is deployed: 

                                                   � ��, ��,��� = V��, ��,��� +  
����                                  (4.23) 

The term V��, ��,��� in (4.23) can be defined as [12]: 

            V��, ��,��� =  ∑ λ����� Y�Y /0�� − ��|���� −  �7���|� �7������ ��� �� +
                                       � Y�∇Z������� ��                                                                             (4.24) 

where, the LS function � represents the closed contour W in the image domain Ω, 

and this closed contour separates � into two regions: �� = ���>B�3 �W� and 

�� = BE>B�3 �W�. The λ� are positive constants, and the functions �7��� are the values 

that approximate the image intensities outside and inside of the closed contour W. In 

this research effort, the LS function � takes the positive and negative values outside 

and inside W, respectively. In (4.24), Z is the Heaviside function and ����� = Z���, 

(a) (b) (c) 

(d) (e) 
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����� = 1 − Z���. The intensities ���� are effectively involved in the above energy 

term, and are in a local region centred at the point �. The size of ���� can be 

controlled by the Gaussian kernel function, /0 = ���e�l 4T 0l 31|�|4/�04
 with a scale 

parameter 
 > 0. The last term Y�∇Z������� �� on the right-hand side of (4.24) 

computes the length of the zero-level contour of �. The length of the zero-level 

contour can be equivalently defined by the integral Y F���|∇�|�� with the Dirac 

delta function, F. The Heaviside function Z can be approximated as follows:                                     

                                                  Zd��� = ��  G1 + �e arctan \'d]M                                              (4.25)                                       

The derivative of Zdis Fd��� = Zd̂��� = �e dd4#'4. If we replace Z in (4.24) with Zd , the 

energy functional V in (4.24) can be approximated by [12, 70]: 

                     Vd��, ��,��� =  ∑ λ����� Y�Y /0�� − ��|���� −  �7���|� �7d������ ��� �� +
                                                 � Y�∇H�������� ��                                                                  (4.26)        

where �7d��� = Zd��� and �7d��� = 1 − Zd���.  

The LS regularized term 
����, (
 > 0) in (4.23), which is used for accurate 

computation and stable LS evolution, can be defined as ���� = Y �� �|∇����| −
1����. This regularized term measures the deviation of the function � from an SDF. 

Next, we minimize the energy functional � ��, ��,��� with respect to �, using the 

standard gradient descent method by solving the gradient flow equation as follows: 

             
���� = −Fd����[�3� − [�3�� + �Fd����BO \ ∇�|∇�|] + 
 \∇�� − �BO � ∇�|∇�|�]    (4.27) 

where 3�and 3� are functions which can be expressed as: 
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                                    37��� = Y /0�� − ��|���� − �7 ���|��� ,       B = 1, 2                    (4.28)       

The above (4.27) is the required active contour model. The term −Fd����[�3� −
[�3��  is responsible for driving the active contour toward the iris/pupil boundaries. 

The second term �Fd����BO \ ∇�|∇�|] has a length shortening or smoothing impact on 

the zero-level contour, which is useful in maintaining the regularity of the contour. 

The third term 
 \∇�� − �BO � ∇�|∇�|�]  is denoted as a LS regularization term, which is 

used to maintain the regularity of the LS function. In order to estimate the exact 

boundary of the pupil, we initialize the active contour � to the approximated pupil 

boundary, and evolve the curve in the narrow band of ±10 pixels. We evolve the 

curve from inside the approximated inner boundary to avoid the effect of reflections 

that may appear just outside the pupil region. Similarly, for computing the outer 

boundary, the active contour � is initialized to the estimated iris boundary, and the 

optimal estimation of the iris boundary is computed by evolving the curve in a 

narrow band of ±20 pixels. In this case, we evolve the curve again from inside the 

approximated iris boundary to reduce the effects of the eyelid and eyelash 

occlusions. Fig. 4.6 (b, c) shows the segmentation results.     

 

 (a) (b) (c) 
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Fig. 4.6 (a) Original image from the UBIRIS Version 1 dataset, (b) pupil detection 

using the RAC model, (c) iris detection using the RAC model, (d) normalized image, 

and (e) enhanced image. 

 

4.2.4 Eyelash Detection and Unwrapping 

The eyelashes may occlude the iris region and decrease the iris recognition 

performance. We apply eyelash detection methods described in Chapter 3. We 

create a binary mask based on the extracted iris contour and detected eyelashes. 

Since the elicited iris regions are not exactly circular and elliptical and may be of 

arbitrary shapes, a circle fitting strategy proposed by Shah and Ross [85] has been 

deployed to compensate for the size irregularities. To convert the detected iris 

region to a rectangular form, the radius and the corresponding centre coordinates of 

the iris are required to be estimated. Shah and Ross [85] considered only those 

points on the contour lying on the iris/sclera boundary, since the circle that fits all 

the points of the extracted contour may lie inside the actual iris boundary if a 

significant portion of the iris is occluded by eyelids. In order to approximate the 

radius R, six points at the angles of [-30°, 30°, 0°, 150°, 180°, 210°] with respect to 

the horizontal axis are selected from the extracted iris contour, and their average 

distance from the centre of the pupil is calculated. A circle fitting strategy is then 

adopted so that all the points on the contour are within a distance of R±15 pixels 

from the centre of the pupil. Similarly, we can obtain the approximated pupil 

boundary. The centre values obtained through the elliptical fitting process and the 

(d) (e) 
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approximated radius of such a circle are used for the unwrapping process. Refer to 

[85] for a detailed description. Fig. 4.7 shows the approximated iris/pupil contours. 

Fig. 4.8 shows the segmented iris images after iris/pupil localization, eyelash 

detection and iris/pupil boundary approximation. To compensate for the elastic 

deformation in the iris texture, we unwrap the extracted (and localized) iris region 

into a normalized rectangular block of a fixed size 64× 512, by converting from the 

Cartesian coordinates to the polar ones [27-29]. If ���, �� is the localized image, then 

the polar representation of the form ���, �� can be obtained as follows: 

                                          � = ��� − �7�� + �� − �7��,                0 ≤ � ≤ ���'               (4.29) 

                                                         � = ��E1��(1(j'1'j�                                                               (4.30) 

where � and � are defined with respect to centre coordinates  ��7, �7 �. The centre 

coordinate values obtained during the elliptical fitting are used as the centre points 

for the unwrapping procedure. Figs. 4.4 (d), 4.5 (d) and 4.6 (d) show the normalized 

images. Since the normalized iris image has a relatively low contrast and may have 

non-uniform intensity values due to the position of the light sources, a local 

intensity-based histogram equalization technique is applied to enhance the quality 

of the normalized iris image as described in the Chapter 3. In this chapter, a local 

cumulative histogram is applied to the image sub-block of size 10× 10 centred at the 

pixel to be converted. Figs. 4.4 (e), 4.5 (e), 4.6 (e), and 4.9 show the effect of 

enhancement on the normalized iris images. In the following section, we discuss the 

feature extraction process, which elicits the distinctive feature values from the 

normalized images.  
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Fig. 4.7 Approximation of iris and pupil boundaries using the circle fitting strategy.  

 

 

(a) 

 

(b) 

Fig. 4.8 Several samples of segmented iris images after iris/pupil localization, 

eyelash detection and iris/pupil boundary approximation: (a) samples of WVU 

Nonideal dataset; and (b) samples of UBIRIS Version 1 dataset.  

 

4.3 Distinctive Feature Set Extraction  

Different feature extraction algorithms have been proposed by several researchers 

to extract the most distinctive iris feature set from the iris images, including those 

irises that are captured in nonideal imagery setups [3, 37, 42, 100-112]. In [100], a 

feature extraction method based on the application of 2D-wavelet transform on the 

overlapped blocks of the  iris  texture  was  proposed   to  cope  with   degraded  iris  
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Fig. 4.9 Contrast Enhancement using local cumulative histogram equalization 

technique. 

 

images. In [101, 102], a bi-orthogonal wavelet network was proposed to represent 

the iris features extracted from the off angle iris images. Dorairaj et al. [103] 

proposed an encoding technique based on the application of the global ICA to the 

masked iris images. In [104], an iris feature extraction scheme, based on wavelet 

maxima components and moment invariants, was employed. An extension of the 

traditional Gabor wavelet-based algorithm, which utilizes the local ordinal 

information extracted from original unfiltered images, was proposed in [105]. The 

modified log-Gabor filters were deployed in [106] to extract the iris phase features 

regardless of the background brightness. In [107], Cai et al. introduced an Optical 

Wavelet Packet Transform (OWPT) technique for the extraction of the iris features. 

In [108], authors embedded 2D-PCA into the 2D-Linear Discriminant Analysis (LDA) 

to elicit the characteristic iris features. A method for iris matching using zero 

crossings of 1D DCT as a means of feature extraction was proposed by Monro et al. 

[37]. In [109], Han et al. extracted the multi-direction and multi-scale information 

features from a normalized iris image by using a contourlet transform.  

Enhancement using local 

histogram equalization 
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    Sung et al. [42] applied the DBWT to the unwrapped images for textural feature 

extraction. Zhou and Kumar [110] exploited the orientation information of the local 

iris textural features using the finite Radon transform. Miyazawa et al. [3] used the 

phase components of 2D DFT of the given images and introduced the 2D Fourier 

Phase Code (FPC) to represent the iris information. Vijaya Kumar et al. [111] applied 

the correlation filters for feature extraction. In their method, normal variations in an 

iris image could be accommodated by designing a frequency-domain array that 

captures the consistent part of iris images while deemphasizing the varying parts. In 

[112], authors extracted the iris features using the oriented separable wavelet 

transforms (directionlets). In [161], a new iris representation method based on 

regional ordinal measure encoding was proposed, which provided an over-complete 

iris feature set for learning. Recently, Vatsa et al. [67] and several other researchers 

proposed different feature fusion schemes to improve the feature extraction 

performance [13, 113-115]. Vatsa et al. [67] applied 1D log-Gabor filters to extract 

the textural features and an Euler number to elicit the topological features. An SVM-

based fusion strategy was then deployed to combine the textural and the topological 

features.  

    In this chapter, the DBWT is used to extract the characteristic values from the 

normalized (and enhanced) image block of size 64 ×512 pixels, and this technique is 

well-suited for analyzing the signals in a multi-resolution mode [162, 163]. We first 

divide the normalized image block into sixteen sub-images of size 32 × 64  and then 

apply the Daubechies four coefficients wavelet transform to each sub-image, as 

shown in Fig. 4.10. We also conducted our experiments using the Daubechies 
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wavelet function with eight and more coefficients. However, we did not achieve any 

higher performances than the wavelet function with four coefficients. Moreover, the 

feature extraction process using DBWT with more coefficients increases the 

computational cost. Fig. 4.11 shows the four-level decomposition using DBWT, and 

in this figure, ‘L’ and ‘H’ denote the low and high frequency components, 

respectively. We transform each image sub-block using the Daubechies wavelet in 

horizontal and vertical directions, and after applying the DBWT, divide the image 

into four regions: LL, HL, LH, and HH. We deploy the DBWT on the LL region again, 

since this portion represents the most significant iris information. After applying the 

DBWT repeatedly, the distinctive feature values of the further-reduced regions, such 

as HH2, HH3, and HH4 are obtained. The values of HH4 in each sub-block are 

considered as the components of the distinctive feature vector, and the region HH4 

contains the information of 2 × 4 = 8 data. The iris information  on  HH1,  HH2,   and  

HH3   is   also   obtained  by calculating the mean value of each of such regions and 

assigning  those   values  to  one   dimension. This   procedure   is   applied   to   each  

 

 

Fig. 4.10 Normalized image is divided into sixteen sub-images. 
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Fig. 4.11 Four-level decomposition using DBWT. 

 

image sub-block. Therefore, the normalized image is represented by a distinctive 

feature set of (2 × 4 + 3� × 16 = 176 components. A hybrid feature selection 

scheme, discussed in the next section, is then deployed to select the most important 

features from the extracted feature sequence.  

4.4 Feature Selection Using Genetic Algorithms (GAs) 

The iris data contains a large number of textural features and a comparatively small 

number of samples per class, and this makes accurate and reliable classification 

challenging. A few research solutions have been accomplished in the area of iris 

feature subset selection. In [117], a sequential forward floating search was adopted 

to select a suitable subset of textural features. Chen et al. [118] proposed a method 

for selecting edge-type features for iris recognition, and the AdaBoost algorithm was 

then used to select a filter bank from a pile of filter candidates. The authors in [119] 
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applied a feature correlation evaluation approach for iris image quality measure. 

This approach could discriminate the artificial patterns from the natural iris 

patterns and could also measure the iris image quality for uncompressed images. In 

the proposed approach of [120], the portions of the iris with the most 

distinguishable changing patterns were chosen and used to measure the feature 

information. The combination of occlusion and dilation was used to determine the 

amount of iris region available, and this information was considered for the iris 

quality measure. Proenca and Alexandre [121] proposed a method to measure the 

quality of each feature in the extracted feature sequence and separated them into 

two sets: the noisy features and noise-free features. The similarity between these 

two feature sets was then measured and used to discover the identity of a specific 

subject.  In [122, 123], authors reported that some iris bits were more consistent 

than others. They compared different regions of the iris to evaluate their relative 

consistency, and found that the middle bands of the iris were more consistent than 

the inner bands. Kong et al. [124] provided an analysis of IrisCode by extending the 

coarse phase representation to a precise phase representation and uncovering the 

relationship between the IrisCode and other coding methods.  

    While most of the traditional feature selection schemes like PCA, ICA, SVD, etc., 

require a sufficient number of iris samples per class, the GA-based feature reduction 

algorithm performs reasonably well despite the unavailability of a sufficient number 

of iris samples per individual. It has also been found that feature selection through 

GA is a very powerful tool that could be used to find a set of good classifiers [154]. 

Besides, it can overcome problems such as scaling and sensitivity towards the 
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weights. In this light, we are applying a new scheme for selecting the optimal 

features based on GA. Moreover, several feature selection schemes produce 

different results on the same data set because of the feature redundancy, 

interactions and correlations between features, and the biases in the selection or 

ranking criteria. In Chapter 3, we applied a GA-based feature selection scheme 

where the extracted feature sequence was directly input to GA for best feature 

selection.  However, in this chapter, we propose GAs to select the prominent 

features based on the valuable outcomes of the four feature selection algorithms, 

namely, the Entropy-based approach, the k-NN-based method, T-statistics and the 

SVM-RFE approach. In order to obtain the most significant feature subset from the 

different feature selection algorithms, we propose a hybrid approach, as shown in 

Fig. 4.12. In this feature selection scheme, we adopt a GA that combines multiple 

feature selection criteria and finds the optimal subset of informative features. In this 

effort, we provide the top-ranked features, obtained from the multiple feature 

selection algorithms, to GA instead of using all the features from the original iris 

feature set. The top-ranked features form the collection of candidate features called 

feature pool. The selection of the feature subset from these algorithms can be 

subjective to their performance. In order to choose the sets of top-ranked features, 

we deploy four existing feature selection algorithms, two filter approaches 

(entropy-based, T-statistics) and two wrapper approaches (SVM-RFE, k-NN) to form 

the feature pool. We apply each algorithm to the extracted feature sequence and 

generate a ranking of those features. Given a ranking of features, we pick a number 

of top-ranked features from each algorithm and provide these features for the 
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feature pool of GA. Below, we briefly describe each of the four feature selection 

algorithms.      

   In the entropy-based method [154], the entropy is lower for orderly 

configurations and higher for disorderly configurations. Therefore, when an 

irrelevant feature is eliminated, the entropy is reduced more than that for a relevant 

feature. This algorithm ranks the features in descending order of the entropies after 

removing each feature one at a time. We can estimate the entropy measure of a data 

set for N instances as follows: 

                            V = − ∑ ∑ \�78 × ����78 + �1 − �78� × ����1 − �78�]�8���7��            (4.31) 

where, �78 = 3��1�× ¡jk  and ¢ =  −�E 0.5 w£¤¤¤¤T  

Here, �78  denotes the similarity between two instances, �7 and �8, where V£78  is the 

Euclidean distance between the two, and  w£¤¤¤¤ is the average distance among the 

instances. This approach is used for unsupervised data since no class information is 

required. 

    In [154], the SVM-RFE has been used for selecting the genes that are relevant for a 

cancer classification problem. We have adopted this approach to find the top-ranked 

iris features from the extracted features sequence. The idea is to eliminate one 

worst feature (i.e., the one that modifies the objective function Obj the least after 

being eliminated) at one time. This method is based on the backward sequential 

selection:   

                                                                      ¥¦C = §¨§� 2T                                                      (4.32) 
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                                                         ¨ = ∑ ¢7�7 �7�©7��                                                                (4.33) 

where, �	 denotes the number of SVs that are defined to be the training samples 

with 0 < ¢7 ≤ W; C is the penalty parameter for the error term; and �7 and �8 are the 

data instance and its class label, respectively. The modification of Obj is 

approximated by the Optimal Brain Damage (OBD) algorithm so that: 

                                                                           ∆ ¥¦C �B� = �∆ 7̈��                                        (4.34) 

where, 7̈� is considered as the ranking criteria. The iterative procedure of RFE is 

given as follows: 

• The SVM is trained with training data. 

• The ranking criterion is measured for all features. 

• Then, the feature with smallest ranking criterion is eliminated. 

 
 

Fig. 4.12 Feature selection procedure using GAs (Hybrid approach). 
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• The procedure is stopped when all the features are ranked. 

   In the T-statistics-based feature selection approach, each sample is labeled with 

{1, −1}.  The mean, 
7� (
71��, and the standard deviation, F7� (F71�), are calculated for 

the samples labeled as 1 (-1) or for each feature �7 .  Then a score ���7 � is obtained as 

follows: 

                                                  ���7 � = �
7� − 
71��
«�¬jn�4

9n + �¬j­n�4
9­n

®                                      (4.35) 

where, E� (E1� ) denotes the number of samples labelled as 1 (-1). In order to make 

a decision, the features with the highest scores are considered as the most 

distinctive features.   

    In k-NN-based feature selection, a direct method based on nonparametric feature-

subset-selection evaluation is applied. The evaluation technique denoted as ‘Leave-

One-Out (LOO)’ method is used. The main idea of the LOO method is given as 

follows:  

• Design the decision rule using N-1 samples of the total N samples.  

• Apply this decision rule to the one remaining sample.  

• This process is repeated for all partitions of size N-1 for the design 

sample set and of size one for the test set.  

• Estimate the probability of error by the ratio of the test samples that 

have been incorrectly classified to the total number of samples 

classified. 

    In the previous chapter, GAs were applied to optimize the matching accuracy and 

to optimize the selected feature dimension. However, in the iris biometrics 



120 

 

recognition systems, the number of FAs and FRs plays an important role for fighting 

against ongoing security threats. Most of the current iris recognition algorithms 

have relatively lower FARs. However, the reduction of FRRs of an iris biometrics 

system still remains a major challenge in further strengthening of the security. 

Therefore, the proposed GAs are designed to optimize four objectives:  minimization 

of the (a) recognition error, (b) FAR, and (c) FRR, and (d) size of the selected feature 

subset. In order to smooth out the fitness function so that a small improvement in 

Genetic Program (GP) could be reflected, we propose the following fitness function 

based on the nature of the underlying problem: 

FB�E3>> = �̄ . �1 − °°� + �̄. �w° + ±̄. �°°+ 5̄ . � ²³���´³µ7¶³·¸��¹ ���º³´ ¸» ²³���´³	�      (4.36) 

where,  �̄ , �̄ , ±̄  and 5̄ are constant weighting parameters which reflect the 

relative importance between the Recognition Rate (RR), the FAR, the FRR and the 

Feature Size. We expect that this fitness function will increase both the efficiency 

and the effectiveness of the evolutionary search. It will also have a tendency to 

reduce the redundancy, making the programs more comprehensible. We will 

employ the asymmetrical SVM as an induction algorithm in the experiments to 

separate the cases of FA and FR [46]. As applied in Chapter 3, we will use the 

Roulette wheel selection method to probabilistically select the individuals from a 

population. In this chapter, we use the single point crossover, and each individual 

has a mutation probability, �9,. We randomly select the number of n bits that are to 

be flipped in every mutation stage. Therefore, we can summarize the GA-based 

hybrid feature selection process as follows (See Fig. 4.12): 
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Step1: Input the extracted feature set obtained by DBWT to four feature selection 

algorithms. 

Step 2: Apply each algorithm to the extracted feature set, and generate a ranking of 

those features. 

Step 3: Given a ranking of features, pick a number of top-ranked features from each 

algorithm and provide these features for the feature pool of GA. 

Step 4: Select the best-ranked features using the genetic process based on the 

proposed fitness function.   

Next, the selected iris feature subset will be used for pattern matching by using 

adaptive asymmetrical SVMs, which are described in the following section.  

4.5 Iris Pattern Matching Using Adaptive Asymmetrical SVMs   

Most of the researchers have applied the HD for iris pattern matching [36]. 

However, recently, several researchers have proposed different iris matching 

techniques that can cope with the degraded iris images [125-129]. In [38, 125, 152], 

the modified HDD was used to compare the binary edge maps of irises. Krichen et al. 

[126] presented a phase-correlation-based iris matching approach in order to deal 

with the noisy irises. This matching system is a fusion of global and local Gabor 

phase-correlation schemes. In [127], authors employed the Du measure as a 

matching mechanism and generated a set of the most probable matches (ranks) 

instead of only the best match. Such authors claimed that the system works with 

eyes that are tilted, since this method generates 1D signatures that are rotation-

invariant. In [128], authors derived a Maximum Posteriori Probability (MAP) 
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estimate of the parameters of the relative deformation between a pair of iris images. 

This estimation process can perform two things simultaneously: 1) it normalizes the 

iris for pattern warping, and 2) it returns a distortion-tolerant similarity metric that 

can be used for matching two nonlinearly deformed image patterns. To deal with 

the noisy iris images and to enable iris recognition on less-than-ideal images, 

Ziauddin et al. [129] introduced a weighted majority voting technique. This 

technique was applicable to any biometric authentication system using bitwise 

comparison of enrollment-time and verification-time biometric templates. Sung et 

al. [42] and Son et al. [133] employed the traditional SVMs for pattern matching. Gu 

et al. [54] used the non-symmetrical SVMs to separate the cases of FA and FR. In 

Chapter 3, we used the asymmetrical SVMs in order to control the misclassification 

errors. However, the asymmetrical SVMs involve huge computation time for pattern 

matching despite their good performance in poorly balanced sample space. In this 

chapter, we propose the Adaptive Asymmetrical SVMs (AASVMs) to control the 

poorly balanced sample proportion between classes and also to reduce the matching 

time of a test sample. First, we apply a new scheme to adaptively select the FV from 

the SV solutions [13]. Since the number of FVs is often less than that of SVs, the 

substitution of FV for SV greatly improves the sparsity of the solution and speeds up 

the matching time when testing a new sample [70]. Then, we apply the 

asymmetrical SVMs to satisfy several security demands and also to control the 

statistically under-presented data of a class with respect to other classes. Therefore, 

we combine the asymmetrical approach with the adaptive simplification of the 
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solution for SV and denote this combined approach as ‘AASVMs’. We briefly state 

our proposed scheme below [70]. 

1. In order to reduce the decision time for a new sample, FV is selected adaptively 

according to the vector correlation principle and the greedy algorithm [13]. Let 

�½¾, �7 ���7�¹�½¾ ∈ °� , � ∈ °� be the SV and À be the nonlinear mapping function. 

If À maps the input space of the SV into a feature Hilbert space HS, we get: 

                                                                           Á: °� → Z�,                             

                                                                             ½ → À�½�                                                      (4.37) 

Therefore, mapping the SV set in a feature space is �À�½¾�, �7���7�¹�À�½¾� ∈ Z�, � ∈
°�, which lies in the subspace Z�	  of the Z� with the dimension up to �. The 

dimension of this subspace is far lower than � and equal to the number of its base 

vector. If FV approximates the SV accurately, testing on the original SV will be equal 

to the test on the FV. To simplify the notation, the mapping of ½¾, À�½¾� is denoted as 

À7  and the selected FVs are noted by ½²k  and À \½²k] = À²k for 1 ≤ C ≤ � (P is the 

number of FVs). Let us consider the FV set Ä² = {�²n, �²4 , … … . , �²Æ}, and the 

mapping of any vector ½7  can be expressed by a linear combination of the Ä²  with 

the following form: 

                                                                      ÀÇ7 = È7·Á²                                                           (4.38) 

where Á² = �À²n , À²4 , … … … . . , À²Æ �·  is the matrix of the mapping FV and 

È7 = �¢7�, ¢7�, … … . . , ¢7É�·  is the corresponding coefficient vector. For the 

given �½¾, �7 ���7�¹, the main objective is to find the FV, Ä² = {�²n, �²4, … … . , �²Æ } such 
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that the estimated mapping  ÀÇ7  becomes as close as possible to the original 

mapping À7: 

                                                q = ∑ q7½j∈Ê = ∑ \ËÀ7 − ÀÇ7Ë�]½j∈Ê                                     (4.39) 

The q denotes the approximation error between the FV set and the original SV set. In 

order to select the FV, we need to minimize q:   

                                                                     = �∑ q7½j∈Ê �ÊÌ
�79ÊÌ�79 �y�

                                        (4.40) 

The feature set fitness, q² , and the fitness of each vector, q²j , corresponding to the 

given FV set, Ä² , can be defined as follows: 

                                                                      q² = �¹  ∑ q²7'j∈Í ,                                                  (4.41) 

where                                                     q²j = ÎjÏÎj�ÐÌÏÎj�ÏÐÌÏÎjÐÌÏÐÌ                                              (4.42)  

Now, minimization of (4.40) is equivalent to minimizing the following form: 

                                                                                 ÊÌÑ�Ò �yÌ�
                                                         (4.43) 

A greedy iterative algorithm is used to select the FV. For selecting the first FV, we 

pick the samples that provide the minimum q² . In each iteration, we use (4.41) to 

estimate the performance of the current feature set and (4.42) is used to select the 

next best feature vector candidate. When we obtain the maximal fitness q² for the 

current feature set, we select it as the next feature vector. When the current fitness 

of feature set reaches the predefined fitness threshold, the algorithm stops. 

Therefore, the number of FVs can be controlled adaptively as long as the different 

approximation errors, q² , are set.        
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2. Next, we separate the empirical risk into two parts and assign the different 

penalty parameters corresponding to the empirical risk of positive and negative 

classes, as mentioned in the Chapter 3 (Section 3.6). The separation of empirical 

risk controls the misclassification error between the positive and negative 

classes.  

4.6 Experimental Results and Analysis  

In this section, we have conducted a set of experiments to evaluate the performance 

of the proposed scheme and summarized the results. The extensive experimentation 

has been conducted on four datasets, namely, ICE 2005 [189], CASIA Version 3 

Interval [190], UBIRIS Version 1 [191], and WVU Nonideal [192]. We also conducted 

our experiments on the heterogeneous combined dataset. The details about the 

datasets are given in Appendix A. We have conducted our experiments in two 

stages: first, we evaluated the performance of our proposed algorithms with respect 

to segmentation, feature selection, and pattern matching (Section 4.6.1), and second, 

we compared the performance of our method with other state-of-the-art algorithms 

to show its effectiveness (Section 4.6.2). Extensive experiments on different 

nonideal iris image datasets were conducted to evaluate the performance in two 

modes: verification (one-to-one) and identification (one-to-many). In the 

verification mode, we measured the performance in terms of GAR, FAR, and EER 

with the assumption that a test sample would be from a specific subject. In the 

identification mode, we made a one-to-many search in the entire dataset for a given 
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test sample in order to find the highest matched template with that test sample [18]. 

Thus, in identification, we used the CRR measure, as defined in the Chapter 3.                                        

4.6.1 Performance Evaluation of the Proposed Scheme  

To validate the performance of the proposed algorithms, we used the four datasets 

mentioned above. In order to detect the strong specular reflections, we set the 

predetermined threshold values. For the ICE 2005, WVU Nonideal, CASIA Version 3 

Interval and UBIRIS Version 1 datasets, these predefined values were set at 245, 

247, 240 and 237, respectively. We selected a common set of curve evolution 

parameter values for the LS approaches. These selected values were applied to 

segment the nonideal iris images accurately. To detect the inner boundary, based on 

LS with the edge stopping function, the selected parameter values were set at 

∆� = 0.05 and Q = 0.015. The selected parameter values that were used to find the 

outer boundary, using LS with the energy minimization algorithm, were set at 


 = 0.00001, O = 0.02,  [� =  [� = 1, ∆� = 0.1 and Q = 1. Fig 4.13 shows the 

segmentation results on the four datasets. This figure shows that our segmentation 

scheme performs well, despite the fact that the iris and the sclera regions are 

separated by a blurred boundary, especially in the WVU and UBIRIS datasets.  

    For the VLS-based segmentation scheme, we also selected a common set of curve 

evolution parameters to segment the nonideal iris images accurately. The selected 

parametric values that were applied to find the inner and outer boundaries, using 

the VLS algorithm were set at 
 = 0.001, O = 2.0, [ =  5.0 and time step Ó = 4.0. 
This time step was significantly larger than the one used for traditional LS methods. 
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Fig. 4.14 demonstrates the segmentation performance on the four underlying 

nonideal datasets. Our segmentation scheme performs reasonably well when the iris 

and the sclera regions are separated by a weak boundary. The selected parameter 

values to find the inner and outer boundaries, using RAC algorithm were set at 


 = 2.0, [� = 0.5, [� = 1.0, 
 = 1, O = 200.0,  and time step Δ� = 0.4. Fig. 4.15 shows 

the segmentation results on the four datasets. This figure shows that our 

segmentation scheme performs well, even if the intensity inhomogeneity occurs in 

the iris region. 

    Our proposed segmentation scheme is also robust in noisy situations. A sudden 

variation in the intensity level may occur in the iris image due to a  noisy   pixel  and  
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Fig. 4.13 LS-based segmentation results from the following datasets: (a) ICE 2005, 

(b) UBIRIS Version 1, (c) WVU Nonideal, and (d) CASIA Version 3 Interval datasets. 

 
 

(a) 

 

 
 

(b) 



129 

 

 
 

(c) 

  

(d) 

Fig. 4.14 VLS-based segmentation results from the following datasets: (a) ICE 2005, 

(b) UBIRIS Version 1, (c) WVU Nonideal, and (d) CASIA Version 3 Interval datasets. 
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Fig. 4.15 RAC model segmentation results from the following datasets: (a) ICE 2005, 

(b) UBIRIS Version 1, (c) WVU Nonideal, and (d) CASIA Version 3 Interval datasets. 

thus, the moving front of boundary points may stop. However, in our case, the other 

boundary points continue to move and, hence, the curve evolution processes, based 

on   VLS and RAC, keep propagating towards the inner and the outer boundaries. Fig. 

4.16 (b, c) shows the outputs of applying our proposed VLS scheme to an iris image 

with a Gaussian white noise. Fig. 4.16 (d, e, f) shows the results of applying our VLS 

approach to an iris image with the Poisson noise, the salt and pepper noise, and the 

speckle noise, respectively. One major advantage of our algorithm as compared to 

the methods proposed in [75, 85, 86] is that the topology preserving technique is 

used instead of the standard active contour-based method. Therefore, even in the 

noisy situations, our proposed approach can localize the inner and outer boundaries 
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accurately. Similarly, Fig. 4.17 shows that the localization method, based on RAC, 

also performs well in noisy situations. However, the proposed LS-based 

segmentation scheme is unable to exhibit the expected level of performance in the 

noisy environment, as shown in Fig. 4.18.  

    In order to exhibit the effectiveness of our segmentation approaches, we 

compared our LS, VLS and RAC schemes on all the datasets with the following 

approaches: Integro-Differential Operator (IDO) proposed by Daugman [27-29], the 

Canny edge detection and Hough Transform (CHT) based approaches applied in the 

Chapter 3 [46, 135, 136], and the active contour-based localization approaches 

demonstrated in [67] and [85, 86]. For comparison purposes, we only implemented 

the segmentation approaches proposed in [27-29, 67, 85, 86], and for feature 

extraction and matching, we applied our proposed algorithms to each of those 

schemes. However, we did not use the feature reduction algorithm for this purpose. 

The ROC curves in Fig. 4.19 show that the matching performance is improved when 

the geometric active contours are used for segmentation with the edge stopping 

function and the energy minimization algorithm. The proposed segmentation 

scheme  shows   a   better   performance   than  the  active   contour-based  methods  

 

                          (a) (b) (c) 
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Fig. 4.16 Performance of our VLS algorithm in noisy situations: (a) original image 

after filling the white spots from the ICE 2005 dataset, (b) Gaussian white noise 

(mean=0 and variance = 0.005), (c) Gaussian white noise (mean=0 and variance = 

0.007), (d) iris image with Poisson noise, (e)  iris image with salt and pepper noise 

(noise density = 0.06), and (f) iris image with speckle noise which adds the 

multiplicative noise (mean=0 and variance = 0.07).    

 

     
 

      

 

Fig. 4.17 Performance of our RAC algorithm in noisy situations: (a) original image 

after filling the white spots from WVU Nonideal dataset, (b) Gaussian white noise 

(mean=0 and variance = 0.005), (c) Gaussian white noise (mean=0 and variance = 

0.007), (d) iris image with Poisson noise, (e) iris image with salt and pepper noise 

(noise density = 0.06), and (f) iris image with speckle noise which adds the 

multiplicative noise (mean=0 and variance = 0.07).    

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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Fig. 4.18 LS algorithm failed to perform well in noisy situations: (a) original image 

after filling the white spots from WVU Nonideal dataset, (b) Gaussian white noise 

(mean=0 and variance = 0.005), (c) Gaussian white noise (mean=0 and variance = 

0.007), (d) iris image with Poisson noise, (e)  iris image with salt and pepper noise 

(noise density = 0.06), and (f) iris image with speckle noise which adds the 

multiplicative noise (mean=0 and variance = 0.07).    

 

reported in [67, 85, 86], since our LS-based segmentation approach uses an energy 

minimization algorithm for the outer boundary detection. The energy minimization 

approach is suitable for the underlying iris datasets, where a large number of iris 

images suffer from a weak iris/sclera boundary.  

    The proposed segmentation scheme, using VLS, also shows a better performance 

than the active contour-based methods reported in [67, 85] due to the advantageous 

properties of variational formulation over the traditional LS methods. The external 

energy of the total energy functional drives the zero LS toward the iris/pupil 

boundaries, and on the other hand, the internal energy term penalizes the deviation 

(a) (b) (c) 

(d) (e) (f) 
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of the LS curve from the SDF during the evolution process. Another advantage of the 

proposed segmentation algorithm is that this technique performs well, even when 

the iris/sclera boundary is separated by a quite blurred boundary. Also, the 

proposed VLS-based algorithm speeds up the curve evolution process considerably. 

Fig. 4.19 also demonstrates that the matching performance is improved when the 

RAC model is used for segmentation with VLS formulation. Our proposed scheme 

with RAC shows a better performance than the traditional active contour-based 

methods reported by Vatsa et al. [67] and Shah and Ross [85, 86] due to the benefit 

of taking into account the image inhomogeneity, which often occurs in the iris 

region. Also, the proposed RAC algorithm speeds up the curve evolution process to a 

great extent, since the applied regularization term avoids the costly reinitialization 

process. Again, the proposed segmentation algorithm, using RAC, shows a 

reasonable performance when the iris/sclera boundary is separated by a weak 

boundary. Furthermore, the proposed LS curves are evolved over a narrowband and 

thus, this process reduces the overall segmentation time in all cases of the above-

mentioned iris/pupil detection schemes.  

    With the LS method, the GAR at a fixed FAR of 0.001% was (a) 98.03% in ICE 

2005, (b) 96.10% in WVU Nonideal, (c) 97.08% in UBIRIS Version 1, and (c) 97.00% 

in CASIA Version 1 Interval datasets. The GAR obtained for the LS method on the 

combined dataset, at the fixed FAR of 0.001% was 96.82%.  After deploying the VLS 

method, the GAR at a fixed FAR of 0.001% was (a) 98.10% in ICE 2005, (b) 96.23% 

in WVU Nonideal, (c) 97.10% in UBIRIS Version 1, and (c) 97.08% in CASIA Version 

1 Interval datasets. The GAR for the VLS method on the combined dataset at the 
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fixed FAR of 0.001% was 97.00%. When we employed the RAC model for iris/pupil 

detection, we found that the GAR at a fixed FAR of 0.001% was (a) 98.20% in ICE 

2005, (b) 96.31% in WVU Nonideal, (c) 97.20% in UBIRIS Version 1, and (c) 97.14% 

in CASIA Version 1 Interval datasets. The GAR for the RAC method on the combined 

dataset at the fixed FAR of 0.001% was 97.12%. From the experimental results, we 

found that the RAC model exhibited a better performance than the LS-based and 

VLS-based methods, since the RAC model includes the intensity information for the 

localization purpose. However, the VLS method evolves quickly towards the 

inner/outer boundary as compared to the LS and RAC methods. Furthermore, Fig. 

4.19 shows that the localization algorithm, using RAC, results in a drastic 

improvement of the segmentation performance on the WVU Nonideal dataset, which 

contains off-angle iris images. However, the proposed active contour-based 

segmentation algorithms (LS, VLS, and RAC) failed to perform on some images of the 

UBIRIS dataset due to the huge occlusion, as shown in Fig. 4.20. Fig. 4.21 also shows 

that the elliptical fitting strategy fails to detect the outer boundary accurately; 

however, this strategy provides an initial estimate of the inner and outer boundaries 

for the final segmentation when using LS approaches. Fig. 4.21 shows that the VLS-

based localization process isolates the iris and pupil boundaries accurately in those 

corresponding cases. Therefore, we observed that the elliptical fitting process alone 

could not provide an optimal   estimation of the iris boundary. However, the results 

show that the elliptical fitting technique performs reasonably well for pupil 

detection since the pupil is the darkest region of the iris and is easier to isolate. In 

Fig. 4.22, when applying the LS method, we can also see that the segmentation error 
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occurs on several iris images due to the poor quality of the images, the huge 

occlusions and the deviated gazes.   

    In this chapter, we use AASVMs for iris pattern classification. Table 4.1 shows the 

performance of different kernel functions on the combined dataset.  This table 

demonstrate that the highest accuracy is obtained by using the RBF kernel, and thus, 

this kernel is used in our system for pattern matching with AASVMs. We also tune 

the parameter values of AASVMs to improve the generalization performance, as 

described in Chapter 3. In order to reduce the computational cost and to speed up 

the classification process, the Fisher’s least square linear classifier is used again as a 

low-cost pre-classifier. The Fisher’s least square linear classifier allows a reasonable 

cumulative recognition accuracy to be achieved and includes a true class label for a 

small number of selected candidates. The selected values for tuning the SVM 

parameters are given for the combined dataset in Table 4.2. The deployment  of 

AASVMs also reduces the matching time of a test sample considerably. Table 4.3 

summarizes the recognition results, and this table shows that a drastic reduction in 

the decision time can be achieved when the number of SVs is lower. However, the 

selection of the matching accuracy/testing time is a security requirement trade-off. 

The selected accuracy with the decision time, the simplification rate and the number 

of FVs are shown in the bold form in Table 4.3 for the combined dataset. 

    The proposed GA-based feature selection approach is used to reduce the feature 

dimension without compromising the recognition rate and is based on  the  multiple  
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(e) 

 

Fig. 4.19 ROC curves show the comparison of existing segmentation techniques on 

(a) ICE 2005, (b) WVU Nonideal, (c) CASIA Version 3 Interval, (d) UBIRIS Version 1, 

and (e) Combined datasets.   

 

 
 

Fig. 4.20 Samples of iris images from UBIRIS Version 1 dataset, on which the 

proposed segmentation schemes using LS, VLS, RAC, GT and SGA fail to detect the 

iris/pupil boundary. 
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Fig. 4.21 Samples of iris images on which the DLS-based elliptical fitting approach 

fails to detect the outer boundary accurately (Upper row). However, our proposed 

VLS-based segmentation approach successfully isolates the inner and outer 

boundaries for the corresponding images (Lower row).  
 

 

                               (a)                                         (b)                                       (c) 
 

Fig. 4.22 Segmentation errors found on several images of (a) WVU Nonideal, (b) 

UBIRIS Version 1, and (c) ICE 2005 datasets, using VLS-based approach.  

 Table 4.1: Performance of different kernel functions on the Combined dataset. 

(a) LS Method 

Kernel type Classification accuracy (%) on Combined dataset 

Polynomial 92.14 

RBF 94.45 

Sigmoid 91.67 

(b) VLS Method 

Kernel type Classification accuracy (%) on Combined dataset 

Polynomial 93.45 

RBF 94.81 

Sigmoid 91.84 
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(c) RAC Method 

Kernel type Classification accuracy (%) on Combined dataset 

Polynomial 93.90 

RBF 95.12 

Sigmoid 92.10 

 

 

Table 4.2: Selected values for tuning SVM parameters on the Combined dataset. 

Datasets Cumulative 

recognition 

accuracy 

Rank Number of 

cardinal 

sets 

Training 

size 

Validation 

size 

Ratio 

between              W# and W1 


� 

Combined 

(LS) 

98.10%. 70 180 378 162 20 0.65 

Combined 

(VLS) 

98.33%. 80 200 420 180 25 0.80 

Combined 

(RAC) 

98.25% 85 210 441 189 22 0.65 

Table 4.3:  Test results on the Combined dataset. 

(a) LS Method 

Algorithm 

 

#fv/#sv Simplification rate 

(%) 

Testing time 

(ms) 

Recognition 

rate (%) 

SVMAdaptive 90/95 5.26 150.12 96.88 

 70/95 26.31 123.40 96.80 

 60/95 36.84 100.10 96.76 

 40/95 57.90 97.00 96.31 

SVM 95/95 0 160.70 96.90 

* Kernel-RBF, 
�=0.65, Ratio between penalty parameter=20 

 

 

(b) VLS Method 

Algorithm 

 

#fv/#sv Simplification rate 

(%) 

Testing time 

(ms) 

Recognition 

rate (%) 

SVMAdaptive 90/95 5.26 155.20 97.04 

 70/95 26.31 128.70 97.00 

 55/95 42.10 110.00 96.90 

 40/95 57.90 98.90 96.60 

SVM 95/95 0 167.10 97.05 

* Kernel-RBF, 
�=0.80, Ratio between penalty parameter=25 
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(c) RAC Method 

Algorithm 

 

#fv/#sv Simplification rate 

(%) 

Testing time 

(ms) 

Recognition 

rate (%) 

SVMAdaptive 90/95 5.26 152.10 97.10 

 70/95 26.31 122.00 97.06 

 50/95 47.36 105.10 97.05 

 40/95 57.90 93.00 96.80 

SVM 95/95 0 162.90 97.13 

* Kernel-RBF, 
�=0.65, Ratio between penalty parameter=22 
 

outputs from four feature selection algorithms. Since the number of samples from 

most iris datasets is limited, the cross-validation procedure is commonly used to 

evaluate the performance of a classifier. In k-fold cross validation, the data is divided 

into k subsets of (approximately) equal sizes. We train the classifier k times, each 

time leaving out one of the training subsets, but using only the omitted subset to 

compute the classification accuracy. The Leave-One-Out Cross-Validation (LOOCV) 

is a special case of k-fold cross-validation where k equals the sample size. LOOCV 

was used for ICE dataset, and for WVU, CASIA and UBIRIS datasets, we used 2-fold 

cross validation to obtain the training accuracy for GAs. Fig. 4.23 shows the accuracy 

of the selected feature subsets, with a different number of top-ranked features from 

the four feature selection algorithms on four data sets. We select the first 150 top-

ranked features from each algorithm for the feature pool of GAs, since most of the 

curves start to level-off at 150. Fig. 4.23 shows that SVM-RFE achieves a better 

accuracy than the other feature selection methods, using all the segmentation 

schemes discussed earlier. Therefore, after obtaining 150 top-ranked features from 

different feature reduction algorithms, we input them to the feature pool used by 

the GAs, as demonstrated previously in Fig. 4.12.  
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    In order to select the optimal features for the improvement of the matching 

accuracy, GAs involve running the genetic process for several generations with 

different values of weighting parameters in the proposed fitness function, as shown 

in Fig. 4.24. We conducted several experiments, and selected a common set of 

arguments for the GAs, as reported in Table 4.4. However, the performance 

degraded slightly on the combined dataset for the common set of parameter values, 

due to the variations in image contrast, the capturing devices and also due to the 

differences in sample populations. The parametric values were obtained by using 

the existing heuristics in the genetic process plus some minor efforts in empirical 

searching via experiments. We ran the learning/evolutionary process for a fixed 

number (max-generations) of 60 generations, unless the GA finds a program that 

solves the problem perfectly (e. g., with a 100% detection rate), or if there is no 

increase in the fitness for 10 generations, then the evolution is terminated early. 

From the experiments, we found that the proposed GA-based scheme achieved the 

highest accuracy of: (a) 96.85% at the 40th generation, with a reduced feature subset 

of 123 for the combined dataset using LS; (b) 97.03% at the 30th generation, with a 

reduced feature subset of 130 for the combined dataset using VLS; and (c) 97.10% 

at the 15th generation, with a reduced feature subset of 110 for the combined 

dataset using RAC. We conducted the above experiments on a 3.00 GHz Pentium IV 

PC with 2.5 GB RAM in a MATLAB 7.2 environment. The average time consumed in 

matching an iris image was: (a) 17760 ms using LS; (b) 7628 ms using VLS; and (c) 

8515 ms using RAC, as exhibited in Table 4.5. The Table 4.5 shows that the LS 
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method involves a higher computation time than the other two segmentation 

approaches. 
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(c) 

Fig. 4.23 Cross-validation accuracy vs. top-ranked features on the Combined dataset 

for: (a) LS, (b) VLS, and (c) RAC methods.  

  

Fig. 4.24 Comparison between generation and recognition error on the Combined 

dataset for LS, VLS and RAC methods.  
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Table 4.4: Common set of arguments for GA on the Combined dataset for LS, VLS 

and RAC methods.  

Parameters Combined Dataset 

Population Size 1081 (the scale of iris sample) 

Length of Chromosome 

code 

150 (input dimensionality of feature 

sequence obtained from multiple 

feature selection algorithms) 

Crossover probability 0.60 

Mutation probability 0.008 

Number of generation 60 (Selected dimension of 123, 130 
and 110 elements for LS, VLS and 

RAC methods, respectively)  

Weighting Parameters W1= 2000, W2 =150 

W3= 10,W4 =1000 

 

Table 4.5: Average time consumption of different parts of the proposed iris 

recognition system in LS, VLS and RAC methods. 

 

(a) LS Method 

Algorithm Time (ms) 

Iris Segmentation 17500 

Unwrapping 95 

Feature Extraction 65 

Matching 100 

Average Execution Time* 17760 

*Extra cost for feature subset reduction   

 

(b) VLS Method 

Algorithm Time (ms) 

Iris Segmentation 7340 

Unwrapping 95 

Feature Extraction 65 

Matching 128 

Average Execution Time* 7628 

*Extra cost for feature subset reduction   

(c) RAC Method 

Algorithm Time (ms) 

Iris Segmentation 8250 

Unwrapping 95 

Feature Extraction 65 

Matching 105 

Average Execution Time* 8515 

*Extra cost for feature subset reduction   
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4.6.2 Comparison of the Proposed Methods with the State-of-the-Art 

Algorithms 

We compared the performance of the proposed algorithm with other existing iris 

recognition algorithms. We implemented the well-known iris recognition algorithms  

proposed in [27-29] and [22, 31], and compared our approach with those methods 

on the combined dataset. Fig. 4.25 exhibits the ROC curves of the proposed 

algorithms with the curve evolution approaches on the non-homogeneous combined 

dataset. The ROC curves of the approaches demonstrated in [27-29, 22, 31] are also 

plotted for comparison, and this figure shows that the proposed algorithm achieves 

higher GARs as compared to the other methods for the combined dataset. This 

means that the proposed algorithms based on LS, VLS and RAC achieve higher 

discriminating capabilities than the approaches proposed in [27-29, 22, 31]. 

Moreover, the approaches proposed in [27-29, 22, 31] were not designed 

specifically for the noncooperative environments. The proposed approach, based on 

the LS curve evolution with an edge stopping function and an energy minimization 

algorithm, obtains a higher GAR of 96.86% at the fixed FAR of 0.001% on the 

combined dataset. This dataset contains the iris images with irregularities due to 

motion blur, off-angle gaze, diffusion, and other real-world problems. Similarly, VLS 

and RAC-based methods achieve GARs of 97.02% and 97.14% at the fixed FAR of 

0.001% on the combined dataset, respectively. Therefore, the ROC curves in Fig 4.25 

reveal the effectiveness of the proposed   scheme   in a   nonideal   situation. The 

major difficulty, which is common to any dataset, is the segmentation error. The 

localization approach, described in Section 4.2, works well for most of the cases and 

even for the iris images of deviated gazes. The DLS-based elliptical fitting provides 
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an initial estimate of the inner boundary, and the active contours localize the iris 

and pupil regions accurately. In Table 4.6 (a, b), the proposed schemes exhibited the 

highest CRRs for ICE, CASIA, WVU and UBIRIS datasets. For the combined dataset, 

we found the CRR of 96.91% using the LS method, revealing a top class   

performance with respect to the nonideal datasets under consideration. The EER of 

the proposed approach, using LS on the combined  dataset  was  1.20%,  which  was 

Table 4.6: Comparison of CRR, EER and length of feature vectors. 

(a)   Comparison of CRR. 

Algorithm Correct Recognition Rate (CRR) (%) 

 

ICE CASIA  UBIRIS WVU Combined 

Daugman [27-29] 98.13  95.70 97.28 83.14 93.43 

Ma et al. [31] 95.79 95.54 95.45 78.33 92.56 

Ma et al. [22] 95.64 94.90 95.78 77.24 91.23 

Proposed LS* 98.15 97.10 97.21 96.12 96.91 

Proposed VLS* 98.20 97.13 97.27 96.25 97.03 

Proposed RAC* 98.25 97.18 97.40 96.42 97.15 

*Two samples per class were used to train the AASVM and the rest of the samples of each class were 

used for testing for all the datasets. 

  

(b)  Comparison of EER 

Algorithm Equal Error Rate (EER) (%) 

ICE CASIA UBIRIS WVU Combined 

Daugman [27-29] 0.49 1.80 0.96 8.45 6.38 

Ma et al. [31] 1.72 2.07 1.21 10.50 6.40 

Ma et al. [22] 1.80 2.62 1.13 11.43 8.72 

Proposed LS 0.48 1.10 0.75 1.93 1.20 

Proposed VLS 0.43 0.96 0.70 1.80 1.14 

Proposed RAC 0.40 0.90 0.60 1.72 0.93 
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(c)  Comparison of feature vector length 

Algorithm Length of feature vectors 

Daugman [27-29] 2048 bits 

Ma et al. [31] 160 elements 

Ma et al. [22] 384 elements 

Proposed LS 123 elements 

Proposed VLS 130 elements 

Proposed RAC 110 elements 

 
 

 

Fig. 4.25 Comparison of our proposed methods with existing iris recognition 

schemes on the Combined dataset.  

also encouraging. We further improved the identification performance using the VLS 

and RAC approaches. The VLS method achieved CRR  of  97.03% with the EER of 
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1.14%. The segmentation scheme, using RAC, reached the CRR of 97.15% with a 

very low EER of 0.93%. Moreover, the lengths of the feature vectors were 123, 130 

and 110 using LS, VLS and RAC methods, respectively. Thus, the obtained feature 

lengths were much smaller than the feature vector lengths reported in literature 

pertaining to the other existing iris recognition algorithms. Therefore, the 

computational complexities were reduced without compromising the recognition 

rate.      

4.7 Conclusion 

In this chapter, we focused on three performance issues: First, the accurate 

localization of the iris regions from degraded eye images that may be affected by the 

following problems: gaze deviation, diffusion, non-linear deformation, low intensity, 

poor acquisition process, eyelid and eyelash occlusions and small opening of the 

eye. We presented a nonideal iris segmentation scheme using the LS-based curve 

evolution approaches with the edge stopping function and energy minimization 

method. Since most state-of-the-art active contour-based iris segmentation schemes 

require a substantial computational time, the proposed VLS method uses a 

significantly larger time step to solve the PDE evolution equation, and therefore, this 

speeds up the curve evolution process considerably. The intensity inhomogeneity 

often occurs in iris images and may cause considerable difficulties in iris/pupil 

segmentation. The proposed RAC algorithm provides a better performance than the 

existing nonideal iris recognition algorithms, when the iris images suffer from 

intensity inhomogeneity. 
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   Second, GAs are used to find the subset of informative texture features. The 

proposed GA incorporates four feature selection criterions, namely, the SVM-RFE, 

the k-NN, the T-statistics, and the entropy-based methods to find the subset of 

informative texture features that can improve the analysis of iris data. The 

experimental results show that the proposed method is capable of finding feature 

subsets with better classification accuracies and/or smaller sizes than each single 

individual feature selection algorithm.  

    Third, in order to increase the feasibility of SVMs in biometric applications, the 

SVMs are modified to AASVMs. The adopted simplification scheme of solutions for 

the SV captures the structure of the feature space by approximating a basis of the SV 

solutions. Therefore, the statistical information of the solutions for the SV is 

preserved. Furthermore, the number of FVs is selected adaptively according to the 

task’s need to control the generalization/complexity trade-off directly. We validated 

the proposed iris recognition scheme on the ICE 2005, the WVU Nonideal, the 

UBIRIS Version 1, CASIA Version 3 Interval datasets and the nonhomogeneous 

combined datasets, all of which resulted in encouraging performances.  
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Chapter 5 

 

--------------------------------------------------------- 

Enhancement of Iris Segmentation 
Performance Using Game Theory 

--------------------------------------------------------- 
 

This chapter presents a new iris segmentation technique that is based on Game 

Theory (GT). Section 5.1 discusses the motivation behind this research effort. In 

Section 5.2, the proposed iris segmentation method is discussed. In this section, 

first, we present the game theoretic localization scheme, and then, describe the 

unwrapping and enhancement techniques. A simple matching strategy, based on 

Hausdorff distance (HDD), is also introduced in this section. The experimental 

results on different nonideal datasets are presented in Section 5.3. Finally, in Section 

5.4, some features of the proposed method are summarized with some concluding 

remarks.       

5.1 Introduction 

The exact segmentation of the iris plays perhaps the most important role in iris 

recognition. The main task of the segmentation routine is to localize the inner/outer 

boundary from the iris. Apart from the proper localization of the iris structure, the 
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segmentation scheme should also identify the eyelid and eyelash occlusions and 

detect the other noisy regions such as reflections. The localization error may result 

in lower recognition performance due to incorrect encoding of the textural content 

of the iris.   

    Most existing iris segmentation methods use the gradient information to locate 

the inner and outer boundaries of the iris [2, 3, 22, 27-33, 37, 38, 42, 45, 46, 51, 52, 

55, 68, 69, 71, 74, 75, 77, 79-81, 85, 86, 124, 140, 141, 145, 146, 148, 149, 165-168]. 

However, the low-level boundary methods, like edge detection, are not suitable for 

extracting whole edges as they suffer from false and broken edges. Several 

researchers have applied the deformable whole boundary methods that rely on the 

gradient features at a subset of the spatial positions of the image [3, 68, 69, 74, 75, 

85, 86]. This approach handles the discontinuities in the data effectively by 

imposing the global shape information and is more adaptable to changes in the 

topology of the object under consideration [9, 10, 156, 157, 159]. However, such a 

method relies on the value of the gradient regarding the boundary points and thus, 

suffers from noise sensitivity.  

    Another well known approach for segmentation is the region-based method that 

depends on the homogeneity of spatially localized features and other pixel statistics 

[67, 70, 147]. The main advantage of these schemes is that they depend directly on 

the gray-level image and thus, are less susceptible to noise than the other methods 

that use the derivative information. However, such a region-based scheme suffers 

from poor localization and over-segmentation. Therefore, the region-based schemes 

have better noise properties and are less affected by the blurred boundaries. The 
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boundary-based approaches, on the contrary, have a superior localization 

performance and perform better against the shape variation [14, 15].  

    From the above discussion, it is clear that a better segmentation performance can 

be achieved if we integrate both segmentation methods and fuse the complementary 

strengths of these individual schemes. Most state-of-the-art research on iris-based 

biometrics is focused on the preprocessing of the frontal view image of an eye’s iris. 

In an ideal imagery setup, the iris image is captured through a stop-and-stare 

interface [75]. However, in many occasions, the irises are imaged in an environment 

where the user interaction with the capturing devices is required to be kept at a 

minimum due to some ongoing security issues. For iris segmentation, most 

researchers assume that the iris regions always maintain circular or elliptical 

shapes. However, in the case of nonideal iris images, which are captured in an 

uncontrolled environment, the iris may not maintain a particular shape [67, 74, 75, 

165]. Also, in the images where the eyes are partially opened, the severely covered 

regions cannot be extracted, and hence, the segmentation performance is hampered. 

The iris images may also be affected rigorously by the following nonideal factors, as 

discussed in Chapter 2: deviated gazes, non-linear deformations, pupil dilations, 

head rotations, motion blurs, reflections, non-uniform intensities, low image 

contrast, camera angles and diffusion, and presence of eyelids and eyelashes. In this 

chapter, we use the methodologies to account for such disturbances and develop a 

robust nonideal iris segmentation scheme using GT, which integrates the 

complementary strengths of the region-based and gradient-based boundary finding 

methods.  
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5. 2 Iris Segmentation using Game Theory (GT) 

Most of the state-of-the-art iris localization schemes use only the gradient or the 

region data for segmentation purposes [36]. Table 1 shows the comparison of 

existing nonideal iris segmentation algorithms. The segmentation approaches 

reported in [3, 67-69, 75, 84-86, 94, 142, 146] are based on the deformable 

boundary. These approaches produce a good fit and handle the discontinuities in 

contour data. However, the performance of such approaches may be deteriorated by 

the effects of a weak iris/sclera boundary, non-uniform intensity and low image 

contrast since each of these schemes uses only the boundary-based information for 

iris localization. The nonideal iris segmentation approaches reported in [76, 77, 79-

81, 140, 141, 145-149, 167, 168] solely depend on the gradient-based information 

for iris/pupil detection. Furthermore, the parametric active contour-based iris 

segmentation scheme proposed in [75, 141] may terminate at a certain local minima 

such as terminating at the specular reflections, the thick radial fibers in the iris or 

the crypts in the ciliary region. Also, the technique reported in [75] depends on the 

order of the Fourier series to approximate the inner and outer boundaries of the 

iris. However, the order of the two boundaries may be different. Thus, selecting the 

order of the Fourier series is a difficult task [86]. The curve evolution approaches 

deployed in [68, 69, 85, 86, 169] depend on the value of the gradient for the 

boundary points and thus, may suffer from the noise sensitivity. Also, the region-

based approaches proposed in [67, 70, 147, 170, 171] may be affected by poor 

localization and over   segmentation. Addressing   the    above    problems,   a    GT- 

based   fusion    scheme   is    deployed   to    accurately     extract    the   iris   from  the  
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Table 5.1 Comparison of different nonideal iris segmentation algorithms. 

 

Authors Iris segmentation algorithms 

Daugman [75] Active contours and generalized coordinates, excluding 
eyelashes using statistical inference 

Proenca and Alexandre [164] Integro-differential operator  

Vatsa et al. [67] Modified  Mumford-Shah functional 

Miyazawa et al. [3]  Deformable iris model with 10 parameters  

He et al. [166] Pulling and pushing elastic approach to obtain the centre 

and radius of iris boundary, a spline-based fitting scheme to 

approximate noncircular iris/pupil boundary, a curve fitting 

strategy for eyelid detection, and a learned prediction model 

to detect eyelashes and shadows     

Schuckers et. al. [74] 

 

Integro-differential operator and angular deformation 

model 

Shah and Ross [85, 86] Geodesic Active Contours (GACs) 

Puhan et al. [141, 148] Fourier spectral density 

Roy et al. [68] LS-based method 

Roy et al. [69 ] VLS- based method 

Roy et al. [70] RAC model 

Zhang et al. [77] Radial symmetry transform 

Abhyankar and Schuckers [79] The wavelet domain in-band de-noising method to enhance 

the quality of iris images 

Luengo-Oroz et al. [80] Mathematical morphology 

Al-Daoud et al. [81] Competitive chords to detect the pupil/iris and the 

iris/sclera boundaries 

Tajbakhsh et al. [145] Local intensity variation method 

Koh et al. [84] Traditional active contour model and circular Hough 
transform 

Jeong et al. [82] Circular edge detection and AdaBoost eye detection 

Pundlik et al. [168] Graph cut-based energy minimization algorithm 

Proenca [76] Iris parameterization using polynomial regression 

Zhou et al. [140] video-based image-processing techniques to identify and 

eliminate the bad quality images, iris image quality 

assessment 

Zuo and Schmid [146]  Elliptical fitting technique along with reflection detection, 

contrast enhancement, occlusion estimation and off-angle 
compensation methods 

Du et al. [142] The quality filter to remove images without an eye, a coarse-

to-fine segmentation scheme to improve the overall 

efficiency, a DLS elliptical fitting method to model the 

deformed pupil and limbic boundaries, and a window 

gradient-based method to remove noise in the iris region 

Belcher and Du [147] Region-based SIFT approach to elicit the iris structure 

Proposed approach Game-theoretic fusion strategy that combines the 

complementary strengths of region-based and boundary-
based methods 
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surrounding structures in an iterative fashion. Game theoretic methods have been 

used in the field of medical image analysis to segment MRI images of the heart and 

brain, and also to rank the best features from the extracted feature sequence of a 

relatively higher dimension [172]. Furthermore, GT has been used extensively in 

wireless network research to help researchers develop an understanding of stable 

operation points for networks [173]. In this chapter, the significance of GT in the 

context of nonideal iris segmentation is demonstrated.  

    We propose a three-stage iris segmentation algorithm, in which, we first apply a 

noise-removal scheme to reduce the effects of specular reflections. In the second 

stage, we estimate an initial approximation of the centre point of the pupil by using 

the DLS [52]-based elliptical fitting. In the third stage, we apply a parallel game-

theoretic decision making procedure by modifying the algorithm designed by 

Chakraborty and Duncan’s [14, 15]. This algorithm combines the region-based 

segmentation and the boundary finding methods for the optimal estimation of the 

inner and the outer boundaries. Furthermore, to improve the quality of the iris 

image, we apply a local histogram equalization technique, and to suppress the effect 

of noise, we deploy the 2D Wiener filter to the equalized images [174].   

    In the first stage of segmentation, we remove the specular reflection spots that are 

found inside the pupillary region (see Figs. 5.1(a) and 5.2(a)), as these white spots 

may cause a false inner boundary detection and may also halt the region-growing 

process prematurely. To remove these spots, first we complement the input iris 

image by taking the absolute subtraction of each pixel’s intensity level from 255, and 

then, we fill the dark holes found in the pupillary region in the complemented iris 
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image. A “hole” is the set of dark pixels surrounded by light pixels that cannot be 

reached from the edge of the image. We adopt the connectivity of 4-pixels on the 

background pixels. Finally, we complement the processed image again and apply the 

Gaussian filter to smoothen the resulting sharp image. This process is illustrated in 

Figs. 5.1 and 5.2. In the second stage, we deploy a DLS-based elliptical fitting to 

approximate the pupil boundary as discussed in Chapter 4. The DLS-based elliptical 

fitting returns five parameters (p1, p2, r1, r2, φ1): the horizontal and vertical 

coordinates of the pupil center (p1, p2), the length of the major and minor axes (r1, 

r2), and the orientation of the ellipse (φ1). This method, thus, provides a rough 

estimation of the pupil boundary and the centre of the pupil.  

 

     

   

  
 

 

 

Fig. 5.1 Image preprocessing on CASIA Version 3 Interval dataset: (a) Original 

image; (b) complement of the image (a); (c) filling the holes; (d) complement of 

image (c); and (e) image after Gaussian smoothing. 
 

(a) (b) (c) 

(d) (e) 
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Fig. 5.2 Image preprocessing on WVU Nonideal dataset: (a) Original image; (b) 

complement of the image (a); (c) filling the holes; (d) complement of image (c); and 

(e) image after Gaussian smoothing. 

    In the third stage, we apply a parallel game-theoretic decision making approach 

that is based on a modification of Chakraborty and Duncan’s method for the exact 

estimation of the iris/pupil boundary [14, 15]. In this effort, a fully bidirectional 

framework is developed for integrating the boundary finding scheme and the 

region-based segmentation scheme. This framework leads to a system where the 

two schemes can operate in parallel, such that at each step, the output of each 

scheme gets updated using the information from outputs of both the schemes from 

the previous iteration and the data itself. Thus, as the game progresses, both the 

schemes improve their positions through a mutual information sharing (See Fig. 

5.3). It was found that the boundary-finding and the region-based segmentation by 

themselves were unable to provide us with all the necessary information for an 

(a) (b) (c) 

(d) (e) 
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accurate segmentation; this is because, while the region-based segmentation is not 

likely to give us precise information regarding the iris shape and location, the 

boundary-finding method may not be feasible if some of the structures are not well 

located. Therefore, we can expect that a game-theoretic fusion of the two methods 

will perform better than either of the methods alone, by integrating the 

complementary strengths of these individual schemes.  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Flow diagram of the proposed iris segmentation scheme. Game-theoretic 

segmentation module integrates the region-based segmentation and boundary 

finding methods.  

 

    The game is played out by a set of decision makers (or “players”), which in our 

case, corresponds to the two segmentation schemes, namely, the region-based and 

the gradient-based boundary finding methods [175, 176]. The iris segmentation 

problem can be formulated as a two-player game. If �� is the set of strategies of the 

Player 1, and �� is the set of strategies of the Player 2, then each player tries to 
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minimize the payoff function, ��(��, ��). The main objective is to find the Nash 

Equilibrium (NE) of the system (�
�, �
�), such that: 

                                   ��(�
�, �
�) ≤ ��(��, �
�), ��(�
�, �
�) ≤ ��(�
�, ��)                      (5.1) 

 If we move toward the NE iteratively by taking t as the time index, we can formulate 

the game as:  

                           ��
�� = ��(��, ���); ��
�� = ��(���, ��)��∈����������∈����� ���
                   (5.2) 

Chakraborty and Duncan [14] proved that there is always existing NE solution if �� 

and �� are of the following form: 

                                                   ��(��, ��) = ��(��) + ����(��, ��)                                (5.3) 

                                                    ��(��, ��) = ��(��) +  ���(��, ��)                               (5.4)  

where � and   are scaling constants, �� is bounded in  �� ∈ !� , �� is continuously 

second-order differentiable in �� ∈ !� , and  there is an existing closed neighborhood 

of "� ⊆ ��  such that �� is strongly convex in "� . Based on the above assumptions, 

Chakraborty and Duncan [14] provided the following theorem: 

For the payoff functions ��(��, ��) and ��(��, ��), there exists a locally stable NE 

solution. For any �� ∈  $� ⊆ !� and  �� ∈  $� ⊆ !�, the sequence of rational choices 

generated by the parallel decision making process converges, and the limit point is 

the NE solution if � and   satisfy the following condition [14]:   

 

             %&'�(� )�
)��)�� ��(��) + )�

)��)�� ���(��, ��)*(� ' )�
)��)�� ���(��, ��)*+ ∗

             &' (� )�
)��)�� ��(��)  + )�

)��)�� ���(��, ��)*(� ' )�
)��)�� ���(��, ��)*+% < 1     (5.5) 
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    In the region-based method, the iris image is partitioned into connected regions 

by grouping the neighbouring pixels of similar intensity levels. The adjacent regions 

are then merged under some criteria involving the homogeneity or sharpness of the 

region boundaries. Now, if /�,0  is the intensity of a pixel at (1, 2) of the original image 

and 3�,0  is the intensity of a pixel at (1, 2) of the segmented image, then, a common 

approach is to minimize an objective function of the form: 

                                        4 = ∑ (/�,0 − 3�,0)��,0 + 7�(∑ ∑ (3�,0 − 3�8,08)��8 ,08�,0 )                  (5.6) 

where, 19 and 29 are indices in the neighborhood of pixel 3�,0, and 7 is a constant. In 

the above equation, the first term on the right-hand side is a data fidelity term, and 

the second term on the right-hand side enforces the smoothness. Therefore, the first 

term tries to minimize the differences between the classification and the pixel 

intensity. The second term minimizes the difference between the classifications of 

the neighbouring pixels, essentially to minimize the region boundary. To detect the 

inner/outer boundary of the iris, the objective functions are described as follows: 

For the region-based module (Player 1) [176]: 

            ��(��, ��) =   [∑ ;/�,0 − 3�,0<��,0 + 7�=��� >∑ ;3�,0 − 3�(�,0<�,0 � + ∑ ;3�,0 −�,0

                                  3�,0(�)�<] + �[∑ ;3�,0 − "<�,0∈@ABBC
� + ∑ ;3�,0 − D<�,0∈@
ABBC

�]                   (5.7) 

where, /�,0  is the intensity of the original image, 3�,0 is the intensity of the segmented 

image given by �� as mentioned earlier, " is the intensity inside the contour given 

by ��, and D is the intensity outside the contour given by ��. E�C corresponds to the 

points that lie inside the contour, and E
�C represents those points that lie outside the 
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contour. The first term on the right-hand side of (5.7) minimizes the difference 

between the pixel intensity values and the obtained region, as well as enforces 

continuity. The second term tries to match the region and the contour. In the region 

growing approach, we select an initial seed that is a single pixel within the region of 

interest for the inner boundary detection. At each iteration, the neighbouring pixels 

are observed and the value of E is measured from (5.6). The pixels, for which the 

value of E is less than a predefined threshold, are accepted into the region.  

    The objective function of the Player 2 (i.e., the boundary finding module) is as 

follows [14]:  

                            ��(��, ��) =  [FGHIJ�K��;LG, �C< +  FHKG�M�(LH , �C)�CIHG�I= ]              (5.8) 

where, �C denotes the parameterization of the contour given by ��, LG is the gradient 

image, LH  is the region segmented image, and   is a constant. In [14], the Fourier 

parameterization was used to represent the evolving contour. However, the 

parametric active contour-based curve evolution may terminate at a certain local 

minima such as at the specular reflections, the thick radial fibers in the iris or the 

crypts in the ciliary region, and thus, is not suitable for nonideal iris boundary 

detection. Therefore, we apply a VLS-based active contour model to represent the 

contour data during the game-theoretic propagation [68] as described in Chapter 4.  

The proposed segmentation scheme with the VLS approach uses a larger time step 

to numerically solve the evolution PDE, and thereby, the curve evolution process 

speeds up considerably [68]. The applied VLS evolution could be developed using a 

simple finite difference scheme, and the LS function could be initialized as a more 

efficient function than the traditional SDF [11]. Also, the contours represented by 
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the LS may break and merge naturally during evolution, and thus, the topological 

changes are handled automatically [10, 157-159].  

    To estimate the exact boundary of the pupil, we deploy the game-theoretic 

segmentation algorithm mentioned above and use the centre of the pupil obtained 

through the DLS-based elliptical fitting process as the seed point. This pupil 

segmentation result is shown in Figs. 5.4 and 5.5. Similarly, for computing the exact 

estimate of the outer boundary, we again apply the segmentation scheme based on 

the GT. We select a circular region of radius r, which was found in the previous step, 

and select it just beyond the pupillary boundary so that the game-theoretic 

localization scheme moves towards the outer boundary from this region. This 

process is shown in Figs. 5.6 and 5.7.  

 

                          

 

 
 

 

Fig. 5.4 Pupil segmentation using game-theoretic integration approach on CASIA 

Version 3 Interval dataset: (a) preprocessed image, (b) seed image, (c, d) game-

theoretic region growing process and boundary finding method, and (e) final 

contour of pupil.   

(a) (b) 

(c) 

(c) 

(e) (d) 
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Fig. 5.5 Pupil segmentation using game-theoretic integration approach on WVU 

Nonideal dataset: (a) preprocessed image, (b) seed image, (c, d) game-theoretic 

region growing process and boundary finding method, and (e) final contour of pupil.   

 

 

 
 

 

     
 

 

Fig. 5.6 Iris segmentation using game-theoretic integration approach on WVU 

Nonideal dataset: (a) iris segmentation starts just beyond the previously obtained 

pupil boundary, (b) game-theoretic region growing process, (c) final contour of the 

iris, and (d) final contours of iris and pupil.  

 

(a) 

(a)   (b) 

   (c) (d) 

(b) (c) 

(d) (e) 
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Fig. 5.7 Iris segmentation using game-theoretic integration approach on CASIA 

Version 3 Interval dataset: (a) iris segmentation starts just beyond the previously 

obtained pupil boundary, (b) game-theoretic region growing process, (c) final 

contour of the iris, and (d) final contours of iris and pupil.     

5.2.1 Noise detection, Unwrapping and Enhancement 

We deploy the eyelash detection technique as used in previous chapter [68, 70]. We 

use a mask based on the extracted eyelashes and iris contours. This mask is used to 

detect the iris region without noise. In order to compensate for the elastic 

deformation in the iris texture, we unwrap the extracted (and localized) iris region 

into a normalized rectangular block with a fixed size of 64N 512, by converting  

from the Cartesian coordinates to the polar coordinates and using the circle fitting 

strategy as discussed in chapter 4. Fig. 5.8(a) indicates the estimated iris/pupil 

boundary, and Fig. 5.8(b) shows the unwrapped image. In order to improve the 

quality of the iris image, we have applied a two-step image enhancement technique 

[176]: 

(a) (b) 

(c) (d) 
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Step1: Since the normalized iris image has a relatively low contrast and may have 

non-uniform intensity values due to the position of the light sources, a local 

intensity-based histogram equalization technique is applied. This technique 

enhances the quality of the contrast in the normalized iris image, thereby increasing 

the subsequent recognition accuracy. In our method, a local cumulative histogram is 

applied to the image sub-block of size 10N 10, centred at the pixel to be converted.  

Step 2: To reduce the effect of noise, we apply a pixel-wise adaptive 2D Wiener filter 

[174]. The 2D Wiener filter is a low-pass filter that is used to remove the high 

frequency noise. This filter emphasizes the local statistics that are estimated from a 

local neighborhood,  R of size 3 N 3 for each pixel, and is defined by: 

 

                                           T� (U�, U�) =  V + (W�(X�)
W� ∗ (L(U�, U�) − V)                       (5.9)  

where, D�  denotes the noise variance, V and Y� are the local mean and variance, and 

L is the gray level intensity in U�, U�  ∈  R. If the noise variance is not provided, the 

filter uses the average of all the local estimated variances. Figs. 5.8(c) and 5.9 also 

show the effects of enhancement on the normalized iris images.  

 

 
 

 
(a) 
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Fig. 5.8 Unwrapping and Enhancement: (a) estimated iris/pupil boundary using the 

circle fitting strategy, (b) unwrapped iris image (c) enhanced iris image. 

 

 

 

Fig. 5.9 Contrast Enhancement using local cumulative histogram equalization 

technique and noise reduction with 2D Wiener filter. 

5.2.2 Feature Encoding and Matching 

 In this chapter, the DBWT has been applied to extract the characteristic values from 

the normalized (and enhanced) image block with a size of 64 N512 pixels [177]. We 

use the simple HDD for iris template matching. The HDD is used to measure the 

dissimilarity between two sets of feature points. If E = {[�, [�, [\, … . . , [�} and 

` = {a�, a�, a\, … . . , a�}  are two sets of iris features, then the HDD between A and B 

(b)   (c) 



169 
 

are given by [69, 176]:         

                                                    b (E, `) = c[3(ℎ(E, `), ℎ(`, E))                                   (5.10) 

where, ℎ is the directed Hausdorff defined by ℎ (E, `) = e[� − a�eIf∈@,gf∈h�I=���   and e∙e is 

the norm of the vector.  

5.3 Results and Analysis  

In this section, we evaluate the performance of the proposed scheme and report the 

results of a set of experiments. Our experimentation setup remains the same as that 

described in Chapter 4. To validate the performance of the proposed algorithms, we 

carried out the experiments on several datasets, namely, the ICE 2005, the UBIRIS 

Version 1, WVU Nonideal, the CASIA Version 3 Interval and the Combined non-

homogeneous datasets (See Appendix A for the details about the datasets). We will 

describe the experiments in two stages: first, we will evaluate the performance of 

our proposed algorithms with respect to the game-theoretic segmentation scheme. 

Secondly, we will compare the performance of our approach with performances of 

the other state-of-the-art algorithms to show the effectiveness of the proposed 

scheme.  

5.3.1 Performance Evaluation of the Proposed Scheme 

For the iris segmentation, we have applied the game-theoretic integration approach, 

and the segmentation results are shown in Figs. 5.10 and 5.11. These figures show 

that our segmentation scheme performs well, despite the fact that the iris and the 

sclera regions are separated by a blurred boundary especially, in the UBIRIS and 

WVU datasets. An extensive set of experiments was conducted on all the datasets, 
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and the coupling coefficients, α and β were set to 0.27 when the game-theoretic 

integration module was used. To obtain the contour data of the inner/outer 

boundary during game-theoretic evolution, the selected parameter values using the 

VLS  algorithm were set to V = 0.001, D = 2.0,  7 = 5.0  and time step j = 3.0. 

Comparisons were first made between the outputs generated using the game-

theoretic fusion and the corresponding outputs obtained without using the 

information integration. Equations (5.7) and (5.8) jointly represent the outputs of 

the game-theoretic fusion, where (5.7) provides the region output and (5.8) gives 

the boundary output under the integrated framework. For the stand-alone modules, 

the coupling coefficients, α and β were set to 0. It is clear that the final contour 

output as shown in Fig. 5.12(d), with the information fusion, is much better than the 

outputs of the stand-alone modules as shown in Fig. 5.12(b, c), where no 

information fusion is deployed.  

    Our proposed segmentation scheme is also robust in noisy situations. A sudden 

variation in the intensity level may occur in the iris image due to a noisy pixel and 

thus, the moving front may stop. However, in our case, the other boundary points 

continue to move and, hence, the curve evolution process based on game-theoretic 

fusion keeps propagating towards the inner and the outer boundaries. Fig. 5.13(b, c) 

shows the outputs of applying our proposed game-theoretic scheme to an iris image 

with Gaussian white noise. Fig. 5.13 (d, e, f) shows the results of applying our 

approach to an iris image with the Poisson noise, the salt and pepper noise, and the 

speckle noise, respectively. One major advantage of our algorithm as compared to 

the methods proposed in [85, 86] is that our algorithm uses the topology  preserving  
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Fig. 5.10 Segmentation results on datasets: (a) ICE 2005, and (b) UBIRIS Version 1.  

 

 

  
                                 
 

 

Fig. 5.11 Segmentation results on datasets: (a) CASIA Version 3 Interval, and (b) 

WVU Nonideal. 

 

technique instead of the standard GACs. Therefore, even in the noisy situations, our 

proposed approach can localize the inner and outer boundaries accurately. In order 

to exhibit the effectiveness of  our  segmentation  approach,  we  compared  our  GT- 

   (a)    (b) 

   (a)    (b) 
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Fig. 5.12 Effectiveness of our proposed segmentation scheme based on game-

theoretic fusion on a sample iris image from CASIA Version 3 dataset: (a) original 

image; (b) output of the region-based approach without game-theoretic approach 

(only final contours are shown); (c) output of the boundary-finding approach 

without game-theoretic approach. The white contour denotes the final output for 

inner and outer boundaries; and (d) output with proposed game-theoretic 

integration.     

 

 

 
 

 

 

 

Fig. 5.13 Performance of our game-theoretic algorithm in noisy situations: (a) 

original image after filling the white spots from CASIA Version 3 Interval dataset, (b) 

image (a) with Gaussian white noise (mean=0 and variance = 0.005); (c) image (a) 

with Gaussian white noise (mean=0 and variance = 0.007); (d) iris image (a) with 

Poisson noise; (e)  iris image (a) with salt and pepper noise (noise density = 0.06 ); 

and (f)  iris image (a) with speckle noise which includes the multiplicative noise 

(mean=0 and variance = 0.07).    

   (a)    (b)    (c)    (d) 

   (a)    (b)    (c) 

   (d)    (e)    (f) 
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based approach with: the IDO  proposed  by  Daugman  [27-29];  the CHT-based 

approach applied in Chapter 3 [46, 136]; and the active contour-based localization 

approaches proposed by Vatsa et al. [67]  and  Shah  and  Ross [85, 86]  for  all  the 

datasets. For comparison purposes, we only implemented the segmentation 

approaches proposed in [27-29, 67, 85, 86]. The ROC curves in Fig. 5.14 show that 

the matching performance improves when the game theoretic integration is used for 

segmentation. The proposed segmentation scheme shows a better performance 

than the active contour-based methods reported by Vatsa et al. [67] and Shah and 

Ross [85, 86], and the reason is that our proposed scheme uses the region-based 

information as well as the gradient data with the game-theoretic fusion method. 

Moreover, the eyelash separation and the white spot detection techniques are 

applied to an input image to restrain the interference from reflections, occurring 

inside the pupil. The DLS fitting approach provides a reasonable approximation of 

the inner boundary.  The GAR at a fixed FAR of 0.001% is: (a) 98.21% in ICE; (b) 

97.17% in CASIA; (c) 97.24% in UBIRIS; and (d) 96.40% in WVU datasets. In order 

to show the robustness of the game-theoretic approach, we also compare the 

proposed segmentation algorithm with the RAC model [70], VLS method [69] and 

LS-based [68] methods, as proposed in Chapter 4. Fig. 5.15 shows that our algorithm 

achieves the highest GAR of 97.20% on the combined dataset at the fixed FAR of 

0.001%.  Furthermore, we also provide the EERs of each scheme in Fig. 5.15, and 

our proposed segmentation scheme effectively increases the performance with the 

EER of 0.86%. The reason seems to be the inclusion of both the region-based and 

boundary-based information for segmentation whereas the schemes reported in 
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[27-29, 85, 86, 68] used only the gradient information, and the segmentation 

algorithm depicted in [67, 70, 147, 170, 171] used only the region data. Therefore, 

the localization algorithms of [27-29, 68, 69, 75, 85, 86] may suffer from noise 

sensitivity and blurred iris/sclera boundary, but on the contrary, the approaches in 

[67, 70, 147, 170, 171] seem to experience poor localization and over-segmentation.  

    The proposed GT-based segmentation algorithm failed to perform on some 

images of the UBIRIS dataset due to a huge occlusion as shown in Fig. 4.20. For 

experimental purposes, we also applied the DLS-based elliptical fitting approach to 

detect the outer boundary as well as the inner boundary. Fig. 5.16 exhibits that the 

DLS elliptical fitting strategy failed to detect the outer boundary accurately; 

however, the game-theoretic localization process isolated the iris and pupil 

boundaries accurately in those corresponding cases. Therefore, our experiments 

show that the elliptical fitting process alone cannot provide an optimal estimation of 

the iris boundary. In Fig. 5.17, we also found that segmentation errors occurred on 

several iris images due to a poor quality of the images, huge occlusions and the 

deviated gazes. We conducted the above experiments on a 3.00 GHz Pentium IV PC 

with 2.5 GB RAM in a MATLAB 7.2 environment. The average time consumption of 

matching an iris image was 11593 ms as exhibited in Table 5.2.     

5.3.2 Comparison with the Other State-of-the-Art Algorithms 

We compared the performance of the proposed algorithm with three well-known 

iris recognition algorithms proposed  by Daugman [27-29]  and  Ma et al. [22, 31] on  
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(c)              

 

(d) 

Fig. 5.14 ROC curves show the comparison of our algorithm with existing 

segmentation techniques on: (a) ICE 2005, (b) WVU Nonideal, (c) CASIA Version 3 

Interval, and (d) UBIRIS Version 1 datasets.  
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Fig. 5.15 ROC curves show the comparison of our algorithm with the existing 

segmentation techniques on the Combined dataset.   

 
   

 

Fig. 5.16 Samples of iris images from CASIA Version 3 Interval dataset, on which the 

DLS elliptical fitting approach fails to detect the outer boundary accurately (Upper 

row). However, our proposed game-theoretic segmentation approach successfully 

isolates the inner and boundaries for the corresponding images (Lower row).  
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Fig. 5.17 Game-theoretic segmentation errors found on several images in: (a) WVU 

nonideal; (b) UBIRIS Version 1; and (c) CASIA Version 3 Interval datasets.  

 

Table 5.2: Average time consumption of different parts of the proposed iris 

recognition system. 

Algorithm Time (ms) 

Iris Segmentation 11400 

Unwrapping 83 

Feature Extraction 72 

Matching 38 

Average Execution Time 11593 

 

the combined dataset. Fig. 5.18 exhibits the ROC curves of the proposed algorithms 

with the curve evolution approach based on game-theoretic fusion for the 

heterogeneous combined dataset. The ROC curves of the approaches demonstrated 

in [22, 27-29, 31] are also plotted for comparison, and this figure shows that the 

proposed algorithm achieves a higher GAR with a very low EER of 0.86% for the 

combined dataset. It means that the proposed algorithm achieves higher 

discriminating capabilities than the approaches proposed in [22, 27-29, 31]. 

Moreover, the approaches proposed in [22, 27-29, 31] were not adjusted specifically 

for the noncooperative situations. The proposed segmentation algorithm that is 

based on the noncooperative game-theoretic fusion obtains a higher GAR of 97.20% 

at the fixed FAR of 0.001% on the combined dataset, which contains the  iris  images  

with the irregularities due to motion blur,  off angle gaze,  diffusion,  and  other real- 

   (a)    (b)    (c) 
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Fig. 5.18 Comparison of our method with existing iris recognition schemes on the 

combined dataset. 

 

world problems. Therefore, the ROC curves in Fig. 5.18 reveal the effectiveness of 

the proposed scheme in a nonideal situation.   

The major difficulty, which is common to any dataset, is the segmentation error. The 

localization approach described in Section 5.2 works well for most of the cases, even 

with the iris images of deviated gazes. The DLS-based elliptical fitting provides an 

initial estimate of the inner boundary, and the game-theoretic fusion approach 

localizes the iris and pupil regions accurately. In Table 5.3 (a, b), the proposed 

scheme exhibits the highest CRR for ICE, CASIA, WVU and UBIRIS datasets. For the 

combined dataset, we found a CRR of 97.30% revealing a top class performance 

with respect to the nonideal datasets under consideration. The EER of the proposed 

approach on the combined dataset was 0.86% and that was encouraging.  

0 10 20 30 40 50 60 70 80 90 100
85

90

95

100

False Accept Rate (%)

G
e

n
u
in

e
 A

c
c
e

p
t 

R
a
te

 (
%

)

 

 

Ma et al. [22]=8.72%

Ma et al. [31]=6.40%

Daugman [27-29]=6.38%

Proposed approach with GT= 0.86% 

EER



180 
 

Table 5.3:  Comparison of CRR and EER. 

(a)   Comparison of CRR. 

 
Algorithm Correct Recognition Rate (CRR) (%) 

 ICE CASIA  UBIRIS WVU Combined 

Daugman [27-29] 98.13  95.70 97.28 83.14 93.43 

Ma et al. [31] 95.79 95.54 95.45 78.33 92.56 

Ma et al. [22] 95.64 94.90 95.78 77.24 91.23 

Proposed scheme 

using GT 
98.29 97.25 97.57 96.50 97.30 

 

(b)  Comparison of EER 

 
Algorithm Equal Error Rate (EER) (%) 

 ICE CASIA UBIRIS WVU Combined 

Daugman [27-29] 0.49 1.80 0.96 8.45 6.38 

Ma et al. [31] 1.72 2.07 1.21 10.50 6.40 

Ma et al. [22] 1.80 2.62 1.13 11.43 8.72 

Proposed scheme 

using GT 
0.38 0.74 0.50 1.70 0.86 

5.4 Conclusion 

The accurate segmentation of the iris plays an important role in iris recognition. The 

proposed iris segmentation algorithm has achieved four performance goals. First, 

the game-theoretic integration algorithm brings together the region-based and 

boundary-based methods and operates different probability spaces into a common 

information-sharing framework. Second, the accurate localization of the iris regions 

from degraded eye images has been achieved. Third, the proposed localization 

scheme based on GT avoids the over-segmentation and performs well for the 

blurred images of iris/sclera boundary. Fourth, the image enhancement algorithm 

increases the quality of the iris image and reduces the effect of noise. We validated 
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the proposed iris recognition scheme on the ICE 2005, the CASIA Version 3, the 

UBIRIS Version 1, WVU Nonideal datasets and also on the nonhomogeneous 

combined dataset, and the proposed scheme showed encouraging performances on 

all the underlying datasets.   
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Chapter 6   

 

--------------------------------------------------------- 

Improving Iris Recognition Performance 
Using Shape Guided Approach and     
Game Theory  

--------------------------------------------------------- 
 

In this chapter, we present algorithms for iris segmentation and feature ranking in 

order to improve the accuracy of iris recognition scheme. Section 6.1 discusses the 

motivation behind this research effort. In Section 6.2, we present the proposed iris 

segmentation algorithm based on shape guided model. In this section, we also 

discuss an improved unwrapping scheme that can deal with the shape irregularities 

contained in the localized iris regions. We describe the iris feature ranking scheme 

based on GT in Section 6.3. The verification and identification performance of the 

proposed scheme is demonstrated in Section 6.4, and finally, Section 6.5 

summarizes the important findings of this investigation.   

6.1 Introduction 

The accuracy of iris recognition heavily depends on the segmentation routine, which 

should elicit the effective iris region from an iris image. A robust localization 
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algorithm, on the one hand, should deal with the different noise factors, i.e., specular 

reflections, obstructions due to eyelashes, eyelids, glasses, etc., and on the other 

hand, the algorithm should be defined by a reduced number of parameters [80]. In 

the Chapter 4, we have discussed different iris segmentation algorithms that can 

deal with the iris images in unconstrained situations. From the previous discussions, 

we found that most of the current iris segmentation methods use the gradient 

information or the region data to localize the iris region. The LS and VLS-based 

methods proposed in Chapter 4 mainly rely on the image gradients and thus, are 

highly sensitive to the presence of noise and poor image contrast, which can lead to 

inaccurate segmentation results. To overcome this drawback, we have applied the 

RAC model that can deal with the nonideal iris images with intensity inhomogeneity 

[70, 171]. The main advantage of this scheme is that it depends directly on the gray-

level image and thus, it is less affected by the different noise factors. However, such 

a region-based scheme suffers from poor localization and over-segmentation 

problems [9, 160, 178]. Therefore, the region-based schemes perform better against 

noise and are less affected by the weak iris/sclera boundary, and the gradient-based 

approaches, on the contrary, show better localization performances and work well 

against the shape irregularities. Addressing the above problems, in Chapter 5, we 

have proposed a GT-based iris localization algorithm, which integrates both 

segmentation methods and incorporates the complementary strengths of these 

individual schemes [36]. However, this integrated scheme is not able to handle the 

eyelid occlusion problems properly and may fail to localize the blurred outer 

boundary in the presence of severe noise. Also, in the images where the eyes are not 
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properly opened, the highly occluded regions cannot be extracted using the GT-

based method proposed in Chapter 5 [175, 176], and hence, the segmentation 

performance deteriorates. Therefore, if we integrate the shape prior information of 

the iris region to be segmented into the gradient and region-based methods, then 

the occlusion problem can be mitigated. In this chapter, we propose to apply a 

variational approach to segment the iris region belonging to a given shape space 

using the active contour method, a geometric shape prior and the Mumford-Shah 

functional [16, 179]. Shape Guided Approaches (SGAs) have been extensively used 

in the field of medical image analysis to segment various images [9, 16, 180]. They 

have also been used in machine vision [85]. In this research effort, their significance 

in the context of nonideal iris segmentation is demonstrated.  

    In the field of iris biometrics recognition, the real-world iris data obtained from 

experiments are often highly dimensional with SSS, which results in a number of 

computational and representational problems [17, 54, 68, 70, 171, 181]. In Chapters 

3 and 4, we have applied GA-based feature selection criteria to rank and select the 

best iris texture features from a higher dimensional feature sequence. The feature 

selection scheme using GA has demonstrated an improved performance, however, 

this approach tends to converge early and involves a huge computational cost. To 

overcome this problem, we propose a feature ranking scheme in the context of GT 

[17]. An iterative algorithm for feature ranking, called the Contribution-Selection 

Algorithm (CSA) [17], is modified and used to select the optimal feature subset. This 

algorithm depends on the Multi-Perturbation Shapley Analysis (MSA), a framework 

that is based on the cooperative game theory, to estimate the usefulness of features 
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and rank them accordingly. The DBWT is used to elicit the textural features, and a 

simple HDD is used for iris template matching. Fig. 6.1 shows the block diagram of 

the proposed iris recognition system.  In this chapter, we focus mainly on improving 

the performance of the iris recognition scheme by applying more accurate iris 

segmentation and feature ranking algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1 Block diagram of the proposed iris recognition system. 

 

 

 

 

Enrolment 

Authentication  

Input iris 

image 

 

Segmentation 

using SGA,  

normalization 
and 

enhancement 

 

Feature 

extraction 

using 

DBWT  

 

Best 

feature 

ranking 

using GT 

Decision 

Enrolled iris 

image database 

Matching 
using 

HDD 

Test iris 
image 

 
Segmentation 

using SGA, 

normalization 

and 

enhancement 

 

Feature 

extraction 

using 

DBWT  

 

Best 

feature 

ranking 

using GT 



186 
 

Table 6.1: Comparison of the state-of-the-art nonideal iris recognition algorithms. 

 

Iris recognition 

approaches 

Iris segmentation Nature of 

features 

Matching 

process 

Quality evaluation 

Daugman [75] Active contours 
and generalized 

coordinates, 

excluding 

eyelashes using 

statistical 

inference 

Iris Code HD Gaze deviation has 
been estimated, low 

time complexity 

Miyazawa et al. 
[3] 

Deformable iris 
model with 10 

parameters  

2D FPC  Band Limited 
Phase Only 

Correlation 

(BLPOC) 

function  

Faster feature 
extraction process, 

lower EER  

Vatsa et al. 

[67] 

Nonideal  iris 

segmentation 

using  modified 

Mumford-Shah 
functional 

1D log-Gabor 

filters to extract 

the textural 

features, and 
Euler number for 

extraction of the 

topological 

features 

Iris indexing 

algorithm 

Reasonable 

identification rate on 

nonideal iris datasets, 

2v-SVM-based fusion 
strategy to combine 

match scores obtained 

by matching textural 

and topological 

features 

Proenca and 

Alexandre 
[164] 

 

Normalized iris is 

divided into six 
regions 

2D Gabor filters Iris 

classification 
using a 

fusion rule 

Experiments show a 

decrease of the FRR in 
the recognition of 

noisy iris images 

Belcher and  

Du [147] 

-- Region-based  

SIFT 

Euclidean 

distance 

The proposed scheme 

does not require polar 
transformation, or 

affine transformation, 

reasonable 

segmentation 

performance on 

nonideal iris datasets 

Schuckers et al. 
[74] 

IDO and angular 
deformation 

model 

ICA and Bi-
orthogonal 

wavelets 

HD Improved recognition 
performance on 

nonideal datasets 

Abhyankar and 

Schuckers 

[182] 

Non-linear Active 

Shape Model 

(ASM) 

Bi-orthogonal 

wavelets 

HD Reasonable 

segmentation 

performance on 

nonideal iris images 

He et al. [166] Pulling and 

pushing elastic 
approach 

Regional ordinal 

measure 

Advanced 

correlation 
filter 

Improved 

performance with 
respect to speed and 

accuracy on three 

nonideal iris datasets 
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Iris recognition 

approaches 

Iris segmentation Nature of 

features 

Matching 

process 

Quality evaluation 

Boddeti and   

Kumar [143] 

Active contour 

method 

Gabor filters 

 

Normalized 

HD and 

correlation 
filter 

Experimental results 

show that wavefront 

coding can increase 
the depth of field of an 

iris recognition 

system by a factor of 

four 

Krichen et al. 

[126] 

Hough transform Global and local 

Gabor phase 

correlation 
schemes 

Normalized 

cross-

correlation 

Effectively deals with 

illumination 

variations 

Proposed 
approaches 

using LS 

method, VLS 

method, RAC 

model   

LS, VLS and RAC 
methods 

DBWT  AASVMs  Good recognition rate, 
effectively deals with 

degraded iris images, 

extra cost for feature 

selection 

Proposed 

approach using 
GT 

Game-theoretic 

fusion strategy 
that combines the 

complementary 

strengths of 

region-based and 

boundary-based 

methods 

DBWT  HDD  Higher segmentation 

performance on 
nonideal iris datasets 

Proposed 

approach using 

SGA 

variational model 

to localize the iris 

region belonging 

to a given shape 
space using active 

contour method, 

a geometric shape 

prior and the 

Mumford–Shah 

functional 

DBWT  HDD Relatively higher 

recognition rate, 

lower EER with 

respect to the 
underlying nonideal 

datasets, extra cost for 

feature ranking 

 

6.2 Iris Segmentation using Shape Guided Approach (SGA) 

In this chapter, we propose a three stage iris segmentation scheme, in which we first 

detect the specular reflections, and in the second stage, we apply the elliptical fitting 

process to detect the pupil boundary. In the third stage, we propose to apply the 

SGA to segment the outer boundary based on a given shape space using the active 
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contour method, the geometric shape prior information and the Mumford-Shah 

functional [16, 178, 180]. In [182], Abhyankar and Schuckers applied a similar 

approach based on the Active Shape Models (ASMs) [183] to learn non-linear shape 

distributions for the isolation of iris information using a set of training iris images. 

This shape model is based on the PCA that captures the main variations of a training 

set while removing the irrelevant information. In [182], authors used the ASM on 

the parametric contours to localize the iris regions. In this research effort, we apply 

the PCA on the SDFs of the active contours, which are inherent and parameter-free 

representations [178, 183].  The application of PCA on the SDFs shows a higher 

tolerance than the parametric curves due to the slight misalignment occurring 

during the time of alignment of the training images. Also, the inherent shape 

representation shows an improved curve registration process with respect to 

robustness, correctness, and speed. In the following paragraphs, we discuss the 

proposed segmentation scheme.  

    In the first stage, we remove the specular reflection spots that are found inside the 

pupillary region (see Figs.  6.2(a), 6.3(a) and 6.4(a)), as discussed in the chapter 5. In 

the second stage, we deploy a DLS-based elliptical fitting to estimate the pupil 

boundary [68-70, 184]. Therefore, the inner boundary can be detected as an ellipse 

on the iris image for which there will be a sudden change in luminance summed 

around its circumference. This method, thus, provides a reasonable estimation of 

the pupil boundary. Figs. 6.2(f), 6.3(f) and 6.4 (f) show the detected pupils. In the 

third stage, we apply the following energy functional to segment the outer 

boundary, using a geometric shape prior with local and global information [16]: 
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Fig. 6.2 Image preprocessing on CASIA Version 3 Interval dataset: (a) original 

image; (b) complement of the image (a); (c) filling the holes; (d) complement of 

image (c); (e) image after Gaussian smoothing; and (f) pupil segmentation. 
 

 

 

 
 

 
 

 

Fig. 6.3 Image preprocessing on UBIRIS Version 1 dataset: (a) original image; (b) 

complement of the image (a); (c) filling the holes; (d) complement of image (c); (e) 

image after Gaussian smoothing; and (f) pupil segmentation. 
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Fig. 6.4 Image preprocessing on ICE 2005 dataset: (a) original image; (b) 

complement of the image (a); (c) filling the holes; (d) complement of image (c); (e) 

image after Gaussian smoothing; and (f) pupil segmentation. 
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where, �� , ��and ��  are the shape, boundary and region terms, respectively, � 

represents an active contour, � denotes a shape function of the iris region provided 

by the PCA, 
��
 is the vector of PCA eigencoefficients, !
��  is an element of a group 

(a) (b) (c) 

(d) 

(e) 

(e) (f) 



191 
 

of geometric transformations parameterized by 
�� (parameter vector), ( is the 

edge detecting function, Ω34 and Ω567 represent the inside and outside regions of the 

zero LS of �, respectively, ��� and ���� are smooth approximations of the original 

image * in  Ω34 and Ω567, and  �� , �� ��  are the positive constants that reflect the 

relative importance among boundary, shape and region terms. The shape term, 

�� depends on the active contour �, the vector 
��
of the PCA eigencoefficients and 

the vector 
�� of the geometric transformations. This energy functional estimates 

the difference between the contour � and the zero LS �8  of the shape function � 

given by the PCA. The LS representation of the shape functional can be formulated 

as [178, 180]: 

                                        �� � + ��
Ω

 
��
, !
���9�# |):|;�:�&Ω                                     (6.5) 

where, : is the LS function embedding the active contour �, ;�. � is the Dirac 

function and  ;�:� estimates the contour on =: � 0?. This energy functional forces 

the active contour to obtain a particular shape. The energy term ��  is used to drive 

the shape model towards the homogeneous intensity region with the shape of 

interest. The modified Mumford-Shah functional presented in [160] is applied here 

to segment the iris region whose shape is described by the PCA model: 
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where �8  is the zero LS representation of the shape function �, obtained using the 
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PCA. The function � indicates an image I portioned into two regions, Ω34 and Ω567, 

respectively representing the iris and sclera regions that are separated by the 

boundary �8  : 

  Ω34 �
��
, 
��� � Ey ∈ ΩH� �9, 
��
, 
��� > 0J, 
                                    Ω567 �
��
, 
��� � Ey ∈ ΩH� �9, 
��
, 
��� < 0J,                        (6.7) 

                                           �8�
��
, 
��� � Ey ∈ ΩH� �9, 
��
, 
��� � 0J  

After the minimization of the energy functional �� , we obtain the shape parameters 


��
 and the parameters  
�� of the rigid or affine transformation of the contour �8 . 

The contour �8  captures the shape of the iris region. Since the shapes generated by 

the PCA are smooth enough, the smoothing term � &ABC �
��
,
���  is not considered 

here. Therefore, the functional ��  of (6.6) can be rewritten as follows:                             

                                      �� �
��
, 
��, ��� , ����� �  + Φ��L���
��
, 
����
Ω

&Ω �

                                                             + Φ���L�,��
��
, 
����
Ω

&Ω                                    (6.8) 

where, L �. � is the Heaviside function, with Φ�� �  �|* , ���|� � -|)���|�� and 

Φ��� �  �|* , ����|� � -|)����|��. The energy functional of (6.8) captures the global 

shape variations provided by the PCA. However, this functional cannot acquire the 

local edge variations. In order to capture the local variations around the global 

shape, we apply the classic Geodesic Active Contour (GAC) given by ��  [185]. The 

functional �� provides the similarity between the active contour shape and the iris 

shape prior being localized. The term ��  forces the shape prior globally to move 

towards a homogeneous intensity region. Next, we combine these two energy 

functionals with the gradient-based boundary finding functional ��, which finds the 
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boundary information between the iris and sclera regions. Therefore, we obtain a 

functional � for the localization of the limbic boundary with a shape model that 

uses both global and local information: 

                                                     � � � M�9, 
��
, 
���
Ω

|):|;�:�&Ω 

                                       � �� + �Φ��L  ��
��
, 
���# �
Ω

 Φ���L�,���&Ω                   (6.9) 

where: 

                             M�9, 
��
, 
��� �  ��� �
��
, !
���9�� � ��(�|)*�9�|�                   (6.10)   

Therefore, the combined energy functional of (6.9) is robust against shape variation 

and noise, and is not affected by the oversegmentation. Now, to segment the iris 

region, we minimize � using the calculus of variations and the gradient descent 

method. The evolution equations that minimize � are depicted as follows. First, the 

evolution equation that minimizes E w.r.t. LS curve : [16] is: 

                                                    N�:�O, 9� �  MP , Q)M, )R
|)R|S# ;�:�  Tin W 0, ∞X× Ω,T  

                                                              :�0, 9� � :'�9� in Ω ,                                              (6.11) 

                                                                Z�R�
|)�R�| N[: � 0 on NΩ   

The evolution equation that minimizes � w.r.t.  the vector of eigencoefficients 
��
 is 

[16]:  

                                       &� 
��
�O� � , + )
��
Ω
� �2�� �|):|;�:� � ���Φ�� ,

                                                              Φ���� ;����&Ω  in  W 0, ∞^× Ω_`a ,T                         (6.12) 

                 
��
�O � 0� �  
��
bin  Ω_`a 
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The evolution equation that minimizes � w.r.t. the vector of geometric 

transformations 
�� is: 

&c
���O� � , D Q)�, )
��!
��S   �2�� �|):|;�:� � 

                                             ���Φ�� , Φ���� ;����&Ω  in  W 0, ∞X× Ωde ,T                         (6.13) 


���O � 0� �  
��bin  Ωde , 

 Next, we solve the Euler-Lagrange equations for ��� and ����: 

          N�����O, 9� �  ��� , * ,  -∆��� Tin W 0, ∞X× =� > 0?,T 

                                                                   ����0, 9� � * in =� > 0?,                                      (6.14) 

          N������O, 9� � ���� , * ,  -∆���� Tin W 0, ∞X× =� < 0?,T 

�����0, 9� � * in =� < 0?,  

The first stage of the PCA is to rigidly align the training curves that represent the iris 

shape information. This is estimated using the shape similarity measure proposed in 

[180]. In the second stage of PCA, SVD is performed on the SDFs of the aligned 

training curves to extract the n eigenvalues and eigenvectors [16, 179]. Finally, the 

evolution equations (6.11) to (6.14) are numerically solved iteratively until 

convergence is reached for the optimal estimation of the iris region. Figs. 6.5, 6.6 

and 6.7 show the iris segmentation process using the shape guided model. 

    We deployed the eyelash detection techniques, as used in the chapter 3 [26, 186]. 

Fig. 6.8 shows the segmented iris images after iris/pupil localization and eyelash 

detection. In order to compensate for the elastic deformation in the iris  texture,  we  
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Fig 6.5 Iris segmentation on a sample in the WVU nonideal dataset: (a) initial 

contour; (b) evolution of the active contour model with shape prior; and (c) 

segmented iris.     

 

 

 
 

 

 

Fig 6.6 Iris segmentation on a sample in the UBIRIS Version 1 dataset: (a) initial 

contour; (b) evolution of the active contour model with shape prior; and (c) 

segmented iris.     

 

 

 

 
 

 

 

Fig 6.7 Iris segmentation on a sample in the ICE 2005 dataset: (a) initial contour; (b) 

evolution of the active contour model with shape prior; and (c) segmented iris.     

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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(a) 

   

(b) 

    

(c) 

    

(d) 

Fig 6.8 Three samples of segmented iris images after iris/pupil detection and 

eyelash detection from: (a) ICE 2005 dataset; (b) WVU Nonideal dataset; (c) UBIRIS 

Version 1 dataset; and (d) CASIA Version 3 Interval dataset.  
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needed to unwrap the extracted   (and localized)   iris region  into  a   normalized   

rectangular  block, by converting from the Cartesian coordinates to the polar 

coordinates as proposed by Daugman [27-29]. However, the extracted iris 

boundaries are not exactly circular and may be in the shape of any kind of curve. 

Therefore, to solve this size inconsistency, we first select a starting point in the 

inner boundary, based on the estimated centre point obtained by the DLS-based 

elliptical fitting [94]. Then, we connect this point to the corresponding point in the 

outer boundary, as shown in Fig. 6.9(a). In the next stage, an equal number of points 

is selected clockwise in the inner boundary, and these points are connected to the 

corresponding points in the outer boundary (see Fig. 6.9(b)). Finally, the selected 

coordinates of iris and pupil boundaries are mapped into a dimensionless polar 

space, using Daugman’s method [27-29]. In this way, the localized iris region is 

unwrapped into a rectangular block with a fixed size of 64× 512, as demonstrated in 

Fig. 6.9(c). In order to improve the quality of the iris image, we have applied a two-

step image enhancement technique, described in Section 5.2.1. In this chapter, the 

DBWT   is    applied  to  extract    the    characteristic    values   from   the   normalized 

 

 

 
 

 
(a)   (b) 
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Fig. 6.9 Unwrapping process: (a) selection of the starting points in the inner and 

outer boundaries; (b) selection of equal number of points in the inner boundary and 

corresponding points in the outer boundary; and (c) unwrapped image. 

 (and enhanced) image block of size 64 ×512 pixels, as described in Chapter 4, 

where the normalized image is represented by a distinctive feature set of 176 

components.   

6.3 Feature Ranking using Game Theory (GT) 

In this section, we apply a feature ranking scheme in the context of cooperative or 

coalitional games, a notion from game theory [17]. The algorithm is based on the 

MSA, a framework which relies on game theory to estimate the effectiveness of 

features [17, 171, 179]. This algorithm iteratively computes the usefulness of 

features and selects them accordingly using either forward selection or backward 

elimination processes.  

    Let us consider the three disjoint sets, Train, Valid, and Test, representing the 

training set, validation set, and test set, respectively. These sets independently and 

identically contain the distributed sample instances of the form jk, 9l , where 

ml ∈  no indicates the j-th instance and  9l is the target class value associated with it. 

Given an induction algorithm and a set of features such that p ⊆ =1, 2, … … , s?, 

�tpu�m� represents a classifier constructed from the training set using the induction 

  (c) 
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algorithm, after its input features have been narrowed down to the ones in F. 

Therefore, �tpu�m� labels each instance of the form  mvw, … … . . , mv|x|# , y� ∈ p, 1 ≤
{ ≤ |p| with an appropriate class value. The main objective of the feature selection 

scheme is to choose a subset F of the extracted iris feature sequence that maximizes 

the performance of the classifier on the test set. In [17], authors only focused on 

optimizing the accuracy of classifier. However, in this chapter, we focus on 

minimizing four performance measures: the Recognition Error (RE), FAR and FRR of 

the classifier, and FSS using forward selection and backward elimination 

approaches.   

   A modified iterative algorithm for the feature selection, called the Modified 

Contribution-Selection Algorithm (MCSA), is used to optimize the performance of 

the classifier on unseen data. The MCSA algorithm combines both the filter and 

wrapper approaches. However, unlike the filter methods, the features are ranked at 

each step by using the classifier as a black box. The ranking is based on the Shapley 

value [17], a well-known concept from game theory, to estimate the importance of 

each feature for the task at hand by taking into account the interactions between the 

features. In the coalitional game theory, a set of players is associated with a “payoff”, 

a real function that denotes the benefit achieved by different sub-coalitions in a 

game. Formally, we can define the coalitional game theory by the pair (N, u), where 

| � =1, 2, … … . , s?  is the set of all players and }�p�, for every  p ⊆ |, denotes a real 

number associating a value with the coalition F. Game theory represents the 

contribution of each player to the game by constructing a certain value function. 

This function assigns a real-value to each player and the values correspond to the 
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contribution of the players in achieving an optimal payoff. The calculation of the 

contribution value is based on the Shapley value [179]. We briefly discuss the 

Shapley value in the following paragraph.   

    The marginal importance of a player i to a coalition F, with { ∉ p is given by:      

                                                    ∆� �p� �  }�p ⋃ ={?� ,  }�p�                                          (6.15) 

Then, the Shapley value using the payoff is defined as follows: 

                                                    ���}� �  1 s! � ∑ ��∊�  ��p�����                                        (6.16) 

where � denotes the set of all permutations over N, and p���� is the set of players 

appearing before the i-th player in the permutation �. Essentially, the Shapley value 

of a player is a weighted mean of its marginal value, averaged over all the possible 

subsets of players. If we transform the concept of game theory into the arena of iris 

feature subset selection, in which the contribution of each feature is estimated to 

generate a classifier, then the players N are mapped to the features of a dataset and 

the payoff is denoted by a real valued function u(F). This function estimates the 

performance of four measures RE, FAR, FRR and FSS that are generated by the set of 

F features. The estimation of Shapley values requires the summing of all the possible 

subsets of the players, and thus, it is not suitable for the case of iris feature selection 

due to its computational load. So, in our feature selection algorithm, we use the 

Shapley value heuristically to estimate the contribution value of a feature. We can 

calculate the contribution values from the sampled permutations of the whole set of 

players, with d being the bound on the permutation-size: 

                                                              ���}� �  �
|Π�| ∑ ��∊Π�  ��p�����                               (6.17) 
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where, Π�  denotes the set of sampled permutations on the subsets of size d.  

    The MCSA is iterative in nature, and can either adopt a forward selection or 

backward elimination approach. Based on the contribution value, MCSA ranks each 

feature and then selects features with the lowest contribution values with forward 

selection, or eliminates features with the highest contribution values with backward 

elimination. The algorithm continues to calculate the contribution values of the 

remaining features, given those that have already been selected (or eliminated), and 

selects (or eliminates) the new features, until the contribution values of all the 

candidate features fall below a contribution threshold with the forward selection (or 

exceed a contribution threshold with the backward elimination). The algorithm can 

be regarded as a generalization of filter methods. However, the main idea of the 

algorithm is that the contribution value is calculated for each feature according to its 

assistance in improving the classifier’s performance, which is generated using a 

specific induction algorithm, and in conjunction with other features. Based on the 

nature of our problem, we propose the following payoff function that optimizes the 

four performance issues mentioned above: 

             }�p� �  �� . �� � ��. p�� � ��. p�� �  ��.  u��
e��aP ������ �� u�a�����#    (6.18) 

where, ��, ��, ��, and �� are constant weighting parameters which reflect the 

relative importance between RE, FAR, FRR, and FSS. The MCSA algorithm in its 

forward selection version is depicted as follows: 

��&{M{!& ��sO�{�}O{�s t!�!�O{�s ��(��{Oℎ� ��, �� , &, M �: P is the set of input iris 

features, �� denotes the contribution threshold, & is the maximal permutation size for 

estimating contribution values, and f is the selected feature subset size in each phase. 
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This algorithm calculates the contribution value of the p feature, using the payoff 

function, }�p�, described above, and selects at most M features with the lowest 

contribution values that fall below  ��. In the backward elimination version, the 

selection routine is replaced with an elimination routine which eliminates features in 

each phase and the halting criterion is changed accordingly. 

The forward selection version of the MCSA is given as follows:  

1. t!�!�O!&p! O}�!A ∶� ¢ 

2. For each   £ ∈ � \t!�!�O!&p! O}�!A 

i) ��|�_ � ��sO�{�}O{�sA �£, t!�!�O!&p! O}�!A, &� 

3. {M �{s  ��|�_ <  �� 

i) t!�!�O!&p! O}�!A ∶� t!�!�O!&p! O}�!A ∪ t!�!�O{�s �=��|�_J; M, ���   
ii) §�O� tO!£ 2 

else 

iii) �!O}�s t!�!�O!&p! O}�!A 

 

The case t!�!�O!&p! O}�!A ∶� ¢ is handled by returning the fraction of majority 

class instances. The maximum permutation size, d, plays an important role in 

deciding the contribution values of the different features. The d should be selected 

in a way that ensures that the different combinations of features interacting 

together will be inspected. Each feature is ranked according to its contribution, 

based on the Shapley value as discussed before, and the features with the lowest 

contribution values are selected with the forward selection approach, or the 

features with the highest contribution values are eliminated by using the backward 

elimination approach. The decision tree is used for the feature selection. The 

AASVMs, proposed in Chapter 4 [70, 136], are deployed to perform the actual 
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prediction on the selected features based on the performance of the classifier along 

with FAR and FRR.  

   In this chapter, we use HDD for iris template matching. The HDD is used to 

measure the dissimilarity between two sets of feature points, as mentioned in 

Chapter 5.  

6.4 Results and Analysis   

In this section, we report the results of a set of experiments and evaluate the 

performance of the proposed scheme. The extensive experiments were conducted 

again on four datasets: the ICE 2005 [189], the CASIA Version 3 Interval [190], the 

UBIRIS Version 1 [191], and the WVU Nonideal [192]. The details about the datasets 

are given in Appendix A. The Performance of the proposed scheme was also 

evaluated on the combined dataset. Our experiments will be described in two 

stages: first, we will describe the performance of our proposed algorithms with 

respect to segmentation and feature ranking, and second, we will compare the 

performance of our method with those of the other state-of-the-art algorithms. We 

have conducted the extensive experiments in two modes: the verification mode and 

the identification mode.  

6.4.1 Performance Evaluation of the Proposed Scheme 

In our experiment, 100 iris images from each iris dataset were used for training by 

using PCA. For the combined dataset, we applied PCA on the training set of 500 

images (i. e., 125 irises from each dataset). The alignment process, which performs 

the registration of shapes, was conducted by genetic programming, and this 
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approach took around 2 minutes per training of each iris. The alignment step was 

not fast enough as it was based on genetic optimization. However, the alignment 

process was performed once for all the experiments. The decomposition into 

principal components, which was also performed only once for all the experiments, 

took a few seconds. A new shape was computed by the following equation, based on 

the training set =�?: 
                                                                     � � �̈ � ©_
_`a                                                  (6.19) 

where, the principal components, £, are stored in the matrix ©_. The spatial 

transformations done with the B-splines interpolation method also took a few 

seconds [16]. Based on the extensive experiments, we selected the values of 

��, �� , ��, - and ∆O. Here, - selected the size of the neighborhood in which the gray 

level information was averaged with the help of diffusion (see equation 6.14). �� 

permitted the active contour to move around the shape prior to acquiring the local 

boundary information. The value of ��  was always kept at 1, and �� allowed the 

shape prior to move towards the iris region to be segmented. For the iris 

segmentation, we applied the SGA, and the segmentation results are shown in Figs. 

6.10-6.13. These figures show that our segmentation scheme gives an encouraging 

performance, even when the iris and the sclera regions are separated by a blurred 

boundary, especially in the CASIA and WVU datasets. The selected values for 

��,�� ,��, - and ∆O were set at 0.4, 1.0, 15, 100 and 0.1, respectively. In Fig. 6.14, 

comparisons were first made between the outputs generated using GAC, with and 

without shape prior information, and using the proposed SGA. The final contour 

output, as shown in Fig. 6.14 (c) with shape prior information, is much better than 
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the outputs generated by using classic GAC as shown in Fig. 6.14 (b, c),  where only 

the boundary-based information is used for segmentation. Similarly, Fig 6.15 shows 

that SGA performs better than the region-based active contour model proposed in 

[160]. Therefore, the localization performance improves when we use the shape 

information. Furthermore, the proposed SGA utilizes both the gradient data and the 

region information to localize the iris region, and this enhances the segmentation 

accuracy. Our proposed segmentation scheme also performs reasonably well in 

noisy situations. The sudden variation in the intensity level may halt the ongoing 

propagation of the traditional active contour. However, in our case, the other 

boundary points continue to move and, hence, the curve evolution process based on 

the shape guided model keeps propagating towards the outer iris boundary. We can  

see   the   outputs  of    applying   our   proposed   shape-guided   scheme   to   an   iris  

 

 

Fig. 6.10 Segmentation results for two samples on ICE 2005 dataset. 

 

 

 

Fig. 6.11 Segmentation results for two samples on WVU Nonideal dataset.  
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Fig. 6.12 Segmentation results for two samples on UBIRIS Version 1 dataset. 

 

Fig. 6.13 Segmentation results for two samples on CASIA Version 3 Interval dataset. 

 

image with Gaussian white noise in Fig. 6.16 (b, c). Fig. 6.16 (d, e, f) shows the 

outcomes of deploying our approach to an iris image with the Poisson noise, the salt 

and pepper noise, and the speckle noise, respectively. Therefore, Fig. 6.16 shows 

that the iris segmentation using SGA is well-suited for the iris images that are 

captured in an unconstrained situation. However, the proposed SGA-based 

segmentation algorithm fails to perform on some images of the UBIRIS dataset due 

to a huge occlusion, as shown in Fig. 4.20. Also, Fig. 6.17 reveals that segmentation 

errors may occur on several iris images due to the poor quality of the images, huge 

occlusions and the deviated gazes. For experimental purposes, we also applied the 

Masek’s segmentation algorithm [53, 187], which utilizes the Hough transform to 

detect the outer boundary. Fig. 6.18 exhibits that Masek’s segmentation scheme fails 

to detect the outer boundary accurately in several cases. However, the SGA-based 

localization process isolates the iris boundary accurately in those corresponding 
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cases. Therefore, our experiments demonstrate that the traditional Hough 

transform-based segmentation scheme cannot handle the nonideal nature of the iris 

images. The above experiments were conducted on a 3.00 GHz Pentium IV PC with 

2.5 GB RAM in a MATLAB 7.2 environment. The average time consumption of 

matching an iris image was 9541ms, as exhibited in Table 6.2. Therefore, the SGA-

based scheme consumed a smaller amount of time than the GT-based and LS–based 

segmentation approaches as discussed in previous chapters.    

 

 

 

Fig. 6.14 Curve evolution on WVU Nonideal dataset: (a) using GAC without shape 

prior; (b) using GAC with shape prior; and (c) using SGA.   

 

 

 
   

 

Fig. 6.15 Curve evolution on UBIRIS Version 1 dataset: (a) using region-based active 

contour of Vese and Chan  [160] without shape prior; (b) using region-based active 

contour of Vese and Chan [160] with shape prior; and (c) using SGA. 

 

(a) (b) 
 

(c) 

(a) (b) 
 

(c) 
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Fig. 6.16 Performance of SGA in noisy situations: (a) original image after filling the 

white spots from CASIA Version 3 Interval dataset; (b) image (a) with Gaussian 

white noise (mean=0 and variance = 0.005); (c) image (a) with Gaussian white noise 

(mean=0 and variance = 0.007); (d) iris image (a) with Poisson noise; (e)  iris image 

(a) with salt and pepper noise (noise density = 0.06 ); and (f)  iris image (a) with 

speckle noise which adds the multiplicative noise (mean=0 and variance = 0.07).    
 

 

Fig. 6.17 Segmentation errors found on several images of: (a) WVU Nonideal, (b) 

UBIRIS Version 1, and (c) CASIA Version 3 Interval datasets, using SGA.  
 

    The proposed cooperative GT-based feature selection approach has been used to 

reduce the feature dimension without compromising the recognition accuracy. The 

MCSA is prone to overfitting on the validation set. The “curse of dimensionality” 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 
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appears, and the irrelevant features are selected if the classifier’s performance is 

evaluated on a small validation set. Since the number of samples from most iris 

research is limited, we used the cross-validation procedure to evaluate the 

performance of a classifier. In this research effort, the LOOCV was used for the ICE 

and WVU datasets. For  the  CASIA,  and  UBIRIS  datasets,   we   used  a   2-fold  cross  

 
 

Fig. 6.18 Images in the first row show the segmentation errors found on several 

images using Masek’s algorithm [53]. Corresponding images in the second row were 

correctly segmented using SGA.    

 

validation to obtain the validation accuracy. The AASVMs [70, 136] were used to 

acquire the validation accuracy for the MCSA algorithm. Fig. 6.19 shows the cross-

validation accuracy of the selected feature subsets for the forward selection and the 

backward elimination approaches on the four data sets. Fig. 6.19(a) shows that a 

reasonable accuracy is obtained with the forward feature selection scheme, when 

the number of features is selected as follows: (a) 98 in ICE; (b) 111 in CASIA; (c) 105 

in UBIRIS; and (d) 101 in WVU datasets, and the 102 best features are ranked for the 

combined dataset when the highest accuracy is achieved. Fig. 6.19 (b) demonstrates 

the performance of the backward feature elimination approach. Fig. 6.19(b) shows 
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that a reasonable accuracy is obtained with the backward feature elimination when 

the number of features is eliminated as follows: (a) 71 in ICE; (b) 72 in CASIA; (c) 61 

in UBIRIS; and (d) 74 in WVU datasets; and 77 features are eliminated from the 

combined dataset when the highest accuracy is achieved. Therefore, in Fig. 6.19, it is 

clear that the MCSA-based feature selection with the backward feature elimination 

exhibits a better performance than the feature selection scheme with the forward 

feature selection. The reason is that a feature that contributes in prediction merely 

by coincidence may be selected on account of other truly informative features due to 

the higher dimensionality of the feature set. The forward selection scheme is 

affected severely in such cases where some features are not selected among the few 

significant ones. However, the backward elimination always keeps the most 

prominent features, which truly enhances the SVM’s generalization performance as 

these features are not removed in the noneliminated set. This elimination process 

results in more stable generalization behavior for the backward elimination 

approach on the test set through the MCSA-based feature selection. Therefore, the 

backward elimination process selects only 99 features, whereas the forward 

selection process selects 102 features for the combined dataset. Thus, for our 

experiments, we adopted the backward elimination for the feature selection due to 

its higher performance. In order to achieve a higher performance, we ran the MCSA 

algorithm on the combined datasets with different values of the subset-size, d. Fig. 

6.20 implies that there are optimal values of d to reach the highest performance. For 

small values of d, a few interactions occur between the different features. With the 

increase of d, the   performance  on  the  dataset  increases  until  it  reaches a critical  
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Fig. 6.19 Game-theoretic feature selection process with: (a) forward feature 

selection, and (b) backward feature elimination.  
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Table 6.2: Average time consumption of different parts of the proposed iris 

recognition system. 

 

Algorithm Time (ms) 

Segmentation 9350 

Unwrapping 87 

Feature Extraction 71 

Matching 33 

Average Execution Time 9541 

 

value. The performance remains stable around the critical value’s performance as 

the d exceeds the critical value. The optimal subset size, d for the forward selection 

and backward elimination on the combined datasets are 8 and 10, respectively. 

After conducting several experiments, we set the values of four weighting 

parameters W1, W2 , W3, and W4 to 2000, 150, 10 and 1000, respectively, for the all 

of the datasets. 

 

Fig. 6.20 Selection of subset size, d, on the combined dataset. 
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6.4.2 Comparison of the Proposed Method with the State-of-the-Art 
Algorithms 

To exhibit the effectiveness of our segmentation approach, we compared our SGA 

with the IDO proposed by Daugman [27-29], Canny edge detection and Hough 

transform-based approach   proposed   by Masek [53, 187], the active contour-based 

localization approaches proposed by Vatsa et al. [67] and Shah-Ross [85, 86] and 

also with the ASM introduced by Cootes et al. [183, 188], for all the datasets. For 

comparison purposes, we only implemented the segmentation approaches proposed 

in [27-29, 67, 85, 86, 53, 183]. The ROC curves in Figs. 6.21-6.23 show that the 

matching performance improves when the combined approach, based on the shape 

prior information, is used for segmentation. The proposed segmentation scheme 

shows a better performance than  the  active  contour-based   methods,   reported  in  
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(b) 

 

Fig. 6.21 ROC curves show the comparison of different segmentation techniques on: 

(a) ICE 2005, (b) WVU Nonideal datasets. 
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(b) 

Fig. 6.22 ROC curves show the comparison of different segmentation techniques on: 

(a) CASIA Version 3 Interval, (b) UBIRIS Version 1 datasets. 
 

 
 

Fig. 6.23 ROC curves show the comparison of different segmentation techniques on 

nonhomogeneous Combined dataset.  
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[67, 85, 86], and the reason seems to be the utilization of both the region-based 

information and the gradient data along with the shape prior information. 

Moreover, we deployed a white spot detection technique to an input image to 

suppress    the    effect    of    the   specular   reflections. Furthermore, we proposed a 

new normalization technique to deal with the off angle occlusion problem. The GAR 

at a fixed FAR of 0.001% was: (a) 98.38% in ICE; (b) 97.66% in CASIA; (c) 97.43% in 

UBIRIS; and (d) 96.41% in WVU datasets. Fig. 6.23 shows that our algorithm 

achieved the highest GAR of 97.31% on the combined dataset at the fixed FAR of 

0.001%. We also provide the EERs of each of these schemes in Fig 6.23, and our 

proposed segmentation scheme effectively increases the performance with the 

lowest EER of 0.84%.  The inclusion of both the region-based and boundary-based 

information for segmentation along with the shape data, obtained from the trained 

iris images using PCA, assists in decreasing the EER. We also compared the 

proposed shape-guided model with five of our previous proposed methods, namely, 

the LS method (Section 4.2.1), the VLS method (Section 4.2.2), the RAC model 

(Section 4.2.3), the GT-based scheme (Section 5.2) and the CHT-based approaches 

(Section 3.3). The ROC curves in Fig. 6.24 clearly demonstrate that the proposed 

approach outperforms our previous methods with an EER of 0.81%, since the 

proposed curve evolution scheme takes into account the iris shape prior 

information. Furthermore, we compared the performance of the proposed algorithm 

with the methods reported in [27-29, 22, 31]. Fig. 6.25 exhibits the ROC curve of the 

proposed algorithm that is based on the shape guided curve evolution method on 

the non-homogeneous combined dataset. This figure shows that the proposed 



217 
 

algorithm achieves a higher GAR with a very low EER of 0.81% for the combined 

dataset. This result indicates that the proposed algorithm has higher distinguishing 

capabilities than the approaches reported in [27-29, 22, 31]. Moreover, the 

approaches proposed in [27-29, 22, 31] were not adjusted specifically for the 

degraded iris images. The proposed approach, based on the SGA, obtains a higher 

GAR of 97.34% at the fixed FAR of 0.001% on the Combined dataset. Therefore, the 

ROC curves in Fig. 6.25 reveal the effectiveness of the proposed scheme in a 

nonideal situation. In Figs 6.21-6.23, we did not apply the feature ranking scheme. 

However, in Figs. 6.24 and 6.25, we deployed the proposed feature ranking criteria 

based on MCSA. In Fig. 6.26, a comparison of the feature selection method  using  the  

 

 

 

Fig. 6.24 ROC curves show the comparison of the proposed scheme with our 

previous techniques on the Combined dataset.    
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Fig. 6.25 Comparison of our method with existing iris recognition schemes on the 

combined dataset.  

 

 

proposed GT scheme has been made with the GA-based approach, which was 

applied in the  Chapter 4  (see Section 4.4). The ROC curves in Fig. 6.26 clearly 

demonstrate that the feature selection criteria using GT performs better than the 

GA-based approach. In Table 6.3, the proposed scheme exhibits the highest CRR for 

CASIA, ICE, WVU and UBIRIS datasets. For the combined dataset, we found a CRR of 

97.39%, which reveals a top class performance with respect to the nonideal iris 

images under consideration. The EER of the proposed approach was 0.81% on the 

combined dataset, which was also encouraging. Moreover, the length of the feature 

vector was only 99, which was much less than the feature vector lengths reported in 

the other existing iris recognition algorithms, thereby, reducing the computational 

complexities without compromising the recognition rate. 
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Fig. 6.26 ROC curves showing that GT-based feature selection with backward 

feature elimination performs better than the GA-based method on combined 

dataset.  

 

Table 6.3: Comparison of CRR, EER and feature vector lengths. 

(a)   Comparison of CRR. 

Algorithm Correct Recognition Rate (CRR) (%) 

 ICE CASIA  UBIRIS WVU Combined 

Daugman [27-29] 98.13  95.70 97.28 83.14 93.43 

Ma et al. [31] 95.79 95.54 95.45 78.33 92.56 

Ma et al. [22] 95.64 94.90 95.78 77.24 91.23 

Proposed SGA 98.43 97.32 97.49 96.49 97.39 

(b)  Comparison of EER. 

Algorithm Equal Error Rate (EER) (%) 

 ICE CASIA UBIRIS WVU Combined 

Daugman [27-29] 0.49 1.80 0.96 8.45 6.38 

Ma et al. [31] 1.72 2.07 1.21 10.50 6.40 

Ma et al. [22] 1.80 2.62 1.13 11.43 8.72 

Proposed SGA 0.33 0.71 0.48 1.68 0.81 
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(c)  Comparison of feature vector lengths 

Algorithm Length of feature Vectors 

Daugman [27-29] 2048 bits 

160 elements 

384 elements 

99 elements 

Ma et al. [31] 

Ma et al. [22] 

Proposed SGA 

 

 
6.5 Conclusion 
 

In this chapter, we have achieved two performance goals. First, the SGA addresses 

the problem of segmenting the iris region using a geometric shape prior with local 

and global iris image information. The proposed SGA localizes the iris regions from 

degraded eye. The localization scheme based on SGA avoids the over-segmentation 

and performs well against the blurred iris/sclera boundary. Second, the GT is used 

to find the subset of informative texture features, and our proposed scheme 

requires only 99 elements to store an iris feature template, which is much less than 

the amount required in most current iris recognition algorithms. We validated the 

proposed iris recognition scheme on the ICE 2005, the CASIA Version 3 Interval, the 

UBIRIS Version 1, the WVU Nonideal datasets, and also on the nonhomogeneous 

combined dataset with encouraging performances.  
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Chapter 7 

 

--------------------------------------------------------- 

Conclusions and Future Work 

--------------------------------------------------------- 
 
This chapter discusses the key contributions of our research work in Section 7.1, 

and suggests the ways of conducting future research in Section 7.2.    

7.1 Research Findings and Conclusions 

Iris recognition has been a hot research topic over the last decade due to the 

enhanced security requirements for sophisticated personal identification based on 

biometrics. The rich textural details and stability of the iris pattern make it a robust 

biometric modality to identify an individual accurately and reliably. Most current 

iris recognition algorithms exhibit high recognition accuracies in relatively 

cooperative environments. However, the processing and recognition of a degraded 

iris image still remains a challenging issue. In this thesis, we focus on the processing 

of nonideal iris images using active contours, GAs, the shape guided model, AASVMs 

and GT. In order to verify the claimed performance, the proposed methods are 

evaluated on several challenging iris datasets, namely, ICE 2005, WVU Nonideal, 

UBIRIS Version 1, CASIA Version 3 Interval, and non-homogeneous Combined. 

Furthermore, to show the effectiveness of the proposed algorithms, comparisons 
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are made with several state-of-the-art iris recognition methods. In this thesis, the 

proposed iris recognition method is divided into two phases: cooperative iris 

recognition, and noncooperative iris recognition. The proposed noncooperative iris 

recognition method is further divided into three approaches.   

    While most of the current iris recognition schemes utilize the complete iris 

information for recognition, in the first phase of our research, an efficient iris 

segmentation approach is presented, which utilizes only the pupillary information 

and is based on a morphological operation, the Hough transform and the Canny 

edge detection. The information extracted from the pupillary zone is less affected by 

the eyelids and eyelashes, and therefore, can lead to a higher segmentation 

accuracy. The GA-based feature selection method reduces the dimensionality of the 

extracted iris feature sequence without losing the matching accuracy. The employed 

asymmetrical SVMs perform well in a poorly balanced sample space and control 

different types of misclassification errors. We also provide experimental validation 

which exhibits an encouraging performance with respect to the accuracy for a 

relatively ideal imagery setup. Although the proposed iris recognition algorithm 

based on pupillary information, GAs and asymmetrical SVMs can be applied in a 

wide range of security-related applications, this approach may fail to demonstrate 

the expected level of performance in a noncooperative environment. Therefore, in 

the second phase, we move towards the processing and recognition of nonideal iris 

images that have been affected by different noise factors, to further improve the 

matching performance.   

    In the second phase of our research, we propose three different nonideal iris 
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recognition approaches: 1) active contour-based approaches, 2) game-theoretic 

approaches, and 3) shape guided method. In the first approach of the second phase, 

we achieve three performance goals: (a) LS methods are deployed for the exact 

localization of the iris/pupil regions from the degraded eye images. The active 

contours with the edge stopping function are applied to detect the inner boundary 

since the pupil is considered as the darkest part of the iris. The Mumford-Shah 

segmentation model with an energy minimization algorithm is employed to detect 

the outer boundary with the assumption that the iris/sclera region is separated by a 

weak boundary. One limitation of the applied LS method is that the curve evolution 

process has a higher time complexity. Thus, a segmentation scheme based on the 

VLS method, which uses a significantly larger time step to solve the evolution PDE, is 

used and thereby, the curve evolution process speeds up substantially. The intensity 

inhomogeneity is another source of noise factors, and results in inaccurate 

segmentation. The proposed RAC algorithm exhibits a higher performance on the 

challenging iris datasets where the images are affected by asymmetrical intensity 

levels in many cases. (b) To improve the feature selection performance, a GA-based 

hybrid algorithm has been developed, which incorporates four feature selection 

criteria, namely, the SVM-RFE, the k-NN, the T-statistics, and the entropy-based 

methods. The experimental results demonstrate that the proposed method selects 

feature subsets with a better classification accuracy and/or a smaller size when 

compared to each individual feature selection algorithm. (c) The proposed iris 

pattern classification scheme based on AASVMs involves less computational time in 

the testing phase than the traditional SVMs and controls different types of 
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misclassification losses.  

    Accurate segmentation is an essential task in iris recognition because the accuracy 

of the subsequent phases depends on the correct localization of the iris region.  In 

the second approach, the proposed game-theoretic segmentation algorithm fuses 

the region-based and boundary-based methods and operates different probability 

spaces into a common information-sharing framework. This algorithm localizes the 

iris regions accurately from the degraded irises that have been affected by different 

nonideal factors. The proposed localization method based on GT avoids the over-

segmentation and performs well against the smooth iris/sclera boundary. The 

proposed image enhancement technique increases the quality of the normalized iris 

image and reduces the effects of different noise factors.  

   In the final approach, we focus on improving the iris recognition performance by 

accurate iris detection and feature ranking. The SGA detects the iris regions from 

degraded eye images that have been affected by severe gaze deviations, diffusions, 

non-linear deformations, low image intensities, poor acquisition processes, eyelash 

occlusions and small openings of the eyes. This segmentation method, in particular, 

demonstrates a reasonable improvement in isolating the upper and lower eyelids. 

The proposed localization scheme also performs well against over-segmentation, 

shape variation and blurred iris/sclera boundary. The GT is deployed to rank the 

best informative texture features from the extracted feature set and most 

importantly, our proposed scheme requires a smaller number of elements to store 

an iris template than most of the current iris recognition methods.  
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7.2 Future Research 

In this thesis, the proposed iris recognition approaches perform reasonably well. 

However, there are numerous issues that should be addressed and resolved. Future 

research could be conducted along the following directions to build a robust iris 

(biometrics) recognition system. 

1. In this thesis, GT fuses the complementary strengths of the gradient and region-

based methods to localize the iris boundary. However, a simple region-based 

method is used in the game-theoretic fusion. An improved iris segmentation 

scheme can possibly be developed if we integrate the RAC model with the VLS-

based boundary finding method while using GT as a fusion scheme. We can also 

include the shape information along with the region and boundary data in an 

attempt to further improve the segmentation performance. Similarly, the 

accuracy of SGA can probably be increased by integrating the RAC model, which 

works well on the images with heterogeneous intensity levels, instead of 

applying the current region-based method used in the proposed SGA.        

2. In order to increase the accuracy of the system, a more accurate and elaborate 

eyelash detection scheme can be employed.  

3. Since the quality of the images affects the overall matching accuracy, an iris 

image quality assessment scheme can be deployed. While most of the current iris 

image quality assessment methods deal exclusively with the iris images that are 

captured in a Near Infra-Red (NIR) setup, an enhanced method can be deployed 

to assess the quality of iris images captured by using the Visible Wavelength 
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(VW) light imagery. In general, the VW imaging setup is used to acquire iris data 

at significantly larger distances and on moving subjects.     

4. In this thesis, we only utilize the global or local features for recognition. 

However, the recognition performance can possibly be improved by fusing both 

the local and global features while using game theory and SVMs as fusion 

strategies. 

5. Although, in this thesis, we deal with the iris images that have been captured in 

both the NIR and VW imagery setups, a more sophisticated iris segmentation 

scheme can be developed to process the VW iris images. In this respect, the 

whitish sclera region can be utilized for segmentation instead of the iris 

information.    

6. In many real-world applications, the unimodal biometric system, such as iris 

recognition, often faces significant limitations due to noisy sensor data, 

restricted degrees of freedom, intra-class variability, unacceptable error rates, 

and other factors. Multimodal biometric systems seek to alleviate some of these 

problems by providing multiple pieces of evidence for the same identity. 

Multibiometric systems can significantly improve the recognition performance 

in addition to improving population coverage, providing antispoofing measures, 

increasing the degrees of freedom, and reducing the failure to enroll rate. 

Therefore, an effective fusion scheme that combines information presented by 

multiple domain experts, based on the score-level fusion method, can be used to 

address some of the limitations of the existing unimodal authentication systems. 
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To be more specific, the combination of iris, fingerprint, and palmprint features 

of an individual can be utilized for accurate and reliable identification purposes. 

7. We see that the most computation intensive part involves the segmentation with 

Hough transform technique and active contour-based curve evolution 

approaches. Since we have implemented the system in Matlab, which is an 

interpreted language, a development in speed can be achieved if the most time 

consuming parts are implemented in C++ programming language environment.  

8. The iris liveness detection is a major issue in the area of iris recognition, 

otherwise a high resolution photograph can be presented to an iris recognition 

camera which may result in an unauthorized match. Fake iris detection is 

another important factor which should be handled carefully. Contact lenses are 

vastly used nowadays which can change the color of an individual’s iris. This 

may create a problem to any iris recognition system, since a fake iris pattern is 

printed on the surface of the lens. The system may falsely reject an enrolled user. 

Contrarily, the system may falsely accept a subject, if the fake iris pattern of that 

subject has been enrolled in the database. Therefore, further research is 

required to avoid these errors.  
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Appendix A 

--------------------------------------------------------- 

Datasets Used 

--------------------------------------------------------- 
 

The extensive experiments were conducted on four datasets, namely, the ICE 2005 [189], 

the CASIA Version 3 [190], the UBIRIS Version 2 [191], and WVU Nonideal [192], plus non-

homogeneous combined dataset. We have selected the afore-mentioned datasets for the 

performance evaluation since these datasets contain nonideal iris images including off 

angle, occluded, blurred and noisy images that are acquired with different devices under 

varying conditions to facilitate a comprehensive performance evaluation in a real word 

application level scenario. These datasets also represent different ethnicities. A brief 

description of each of these datasets is given below:       

• The Iris Challenge Evaluation (ICE) 2005 [189] dataset contains 2953 images 

corresponding to 244 classes. The ICE dataset consists of left and right iris images for 

experimentation (1528 left iris images from 120 classes and 1425 right iris images from 

124 classes). This dataset is divided into two categories: the ‘‘gallery’’ images, which are 

considered as good quality images, and the ‘‘probe’’ images, which represent iris images 

of varying quality. The iris images are intensity images with a resolution of 640×480. 

The average diameter of an iris is 228 pixels.  
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• The CASIA Version 3 Interval [190] iris dataset includes 2655 iris images from 249 

different persons, with 396 iris classes. Most of the images are captured in two sessions 

with at least one month interval. The iris images are 8-bit gray level images with a 

resolution of 320×280.   

• The UBIRIS Version 1 [191] dataset contains 2410 iris images from 241 classes. The iris 

images are captured in two sessions. The iris images captured in the first session 

represent the good quality images whereas the images in the second session have the 

irregularities with respect to focus, intensity, and reflection.   

• The West Virginia University (WVU) Nonideal [192] iris dataset contains 800 images 

corresponding to 200 classes. Each class is represented by four images collected at 

three angles on the order of 0°, 15°, 30° and again 0°. The iris images are intensity 

images with a resolution of 640×480. 

• The combined non-homogeneous dataset -- In order to perform an extensive 

experimentation and to validate our proposed approach, we generate a heterogeneous 

dataset by combining the above four datasets, and this dataset consists of 8818 images 

corresponding to 1081 classes. 

 




