INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

USING SKIP LISTS IN THE IMPLEMENTATION OF A
HYPERTEXT TOOL FOR MAINTENANCE
PROGRAMMERS

BING ZHANG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FoR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoNCORDIA UNIVERSITY
MONTREAL. QUEBEC. CANADA

Marcu 1999
© BiNnG ZHANG, 1999

i~

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Waellington Street 385, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your Me Votre référence
Our fle Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-39119-1

Abstract

Using Skip Lists in the Implementation of a Hypertext Tool for

Maintenance Programmers

Bing Zhang

This thesis presents a hypertext browser tool mainly for mnaintenance phase of soft-
ware development. As the maintenance phase is the most costly and time-consuming
phase in the whole process of software development and system evolution, our tool
is aimed at providing support to maintenance programmers for better understanding
of existing code and maintaining of large applications. With this tool, programmers
can sctup link between identifiers and their definitions, browse through source code,
have easy access to definitions of any user defined identifiers and routines through
hypertext. and inspect each occurrences of an identifier, which can be highlighted in
browser window, of any file. But our tool is not limited to the maintenance phase
activities. It can be used in any phases with text documentation, such as the im-
portant phases like the design and implementation phases. Our tool can also provide

assistance to designers and developers by supporting documentation inspection.

In this thesis. we surveyed software development environments and supporting tools.
From our survey, we understand the development history and future directions in this

area. This helps the design and implementation decisions of our tool.

Some future applications of this tool are also discussed. Our tool will be more com-
pleted and helpful to maintenance programmers with these future enhancement. We

believe this will brighten the future of our tool.

sos

H1

Acknowledgments

[would like to express my gratitude to my supervisor Dr. Peter Grogono for his
enthusiastic support and consistent guidance. It is his valuable suggestions and en-

couragement that made this work possible.

[appreciate the helpful comments and suggestions from my committee members,

Dr. Thiruvengadam Radhakrishnan and Dr. Joey Paquet.

My sincere thanks to my hushand, Ping, [or his encouragement, patience and moral

support.

Finally [would like to dedicate this work to iy parents who always stood behind me

with their unwavering love and encouragement.

Contents

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Software Development Process 1

I.1.Il Software Development Process Model L

1.1.2 Cost of Software Development }

1.2 Why Is the Tool Needed?. 5

[.3 Structureofthe Thesis T

2 Background 9
2.1 Development of Tools to Assist Programmers.

2.1.1 Vliet’s Tool Category 9

2.1.2 A Taxonomy of Program Development Environments 10

2.1.3 Integrated System Development Environments 13

20t OtherTools 21

2.2 What Do Programmers Actually Need? 23

2.3 Tools for Code Understanding 24

23.1 VIFOR. e 25

232 SAMS .o e e e 25

233 GRAB o e 27

2340 DOCKET i 27

235 Summaryof QurSurvey L Lo 23

3 Design of the Tool 34

3.1 Objectives C L e e e e e e e 3

32 Tool Design i 15

3.2.1 OverviewoftheTool

3.2.2 Function Structure e e e e
3.2.3 Data Structure L . e e e e e e e e e e
324 UserlInterface i

4 Implementation of the Tool

L1

4.2

+.3

Al
A2

[mplementation Language
Dictionary and Parser
+.2.1 Format of the Dictionary
Skip List e e
43,0 Initialisation L L oL
+.3.2 Search Algorithm
4.3.3 Insertion and Deletion Algorithms
4.3.1 Choosing A Random Level
4+.3.5 At What Level Do We Start A Search? Defining L(n)
1.3.6 Determining Maximum Levelofa Node

4.3.7 Choosing the Fraction of Nodes With Higher Level Pointers

Skip ListsinQur Tool
User Interface e
4.5.1 BrowserWindow,
4.5.2 Definition Window
1.5.3 Miscellaneous Functions in User Interface Module

+.5.1 Functions in Data Structure Modlule

Conclusion

User Manual

Introduction oL oL L e
Major Services Qur Tool Provides
A.2.1 Entering HyperTool oo L.
A22 OpeningFile o o i
A.23 Exit HyperTool
A.24 Hypertext File Browsing
A25 GettingHelp Lo oL
A26 SearchaString o o o

A.27 Showing Definitions Lo

vi

35
37
10
19

52
52
54
55
56
56
57
53
59
59

61
62
62
69
71
2

74

A.2.8 Close the Definition Window . .

A.29 Displaying Next Occurrence . .

A.2.10 Displaying Previous Occurrence

Bibliography

vit

.................

.................

ooooooooooooooooo

List of Figures

I Software Development Process Model 2
2 Distribution of Maintcnance Activities 3
3} Relative Distribution of Hardware/Software Costs 5
I The [nformation Management View 13
5 The Process Support View 14
6 TheAPSEModel 15
7 Common Representation Access: Simple and Uniform 16
8 ESF Comrmunications Oriented Architecture 29
9 ISTAR: A Hierarchy of Contracts 29
10 The Threc Dimensions of Integration 30
Il Relation Between Two CASE Cultures 31
12 Levels of Abstraction in Development Environments 31
13 DIF Organisation 32
I+ The C' Information Abstraction System 32
15 Support in a Typical Development Environment 33
16 General Process for Corrective Maintenance 33
[T Model of Corrective Maintenance 33
I8 Layersof QurTool 36
19 Layers of the Dexter Model 37
20 Organisationof Qur Tool 39
21 The BB-Tree Structure 12
22 The BB-Tree Structure After the Insertion of Item 303" 13
23 Linked Lists e L
20 Skip List © L e 15
25 Probabilistic Analysis of the Expected Scarch Cost 1T
26 Format of the Dictionary 54
2T CCodeof Filemain.c 55

36
37
38
39
40

12
43
i
45
16

C Codeof Filecalculate.c
The Dictionary File of File main.c and calculate.c
Skip List Search Algorithm
Pictorial Description of Steps Involved in Performing An Insertion . .
Skip List Insertion Algorithm
Algorithm to Calculate a Random Level
Relative Search Speed and Space Requirements Depending on the
Valueofpo o i e e
Structure of Browser Window
Layout of the Browser Window
Structure of Prompt Window
Prompt Window Layout.
Structureof MenuBar L oo oL
Layout of FileSelectionDialog Widget
Layout of Reminder Popup Window
Layout of Warning Dialog
Layout of Help Window
Structurc of the Main Window,
Main Window With Examples
Layout of the Definition Window

Structure of the Delinition Window

List of Tables

Chapter 1

Introduction

1.1 Software Development Process

Since the first computers were built in the 1940s, softwarc has become part of our
everyday lives recently. The scale and scope of software application has changed
tremendously. Programs are often very large and complicated, and are developed by

tcams that collaborate over periods spanning months or even years.

We do not need to explain the enormous importance of the field of soltware engi-
neering. The definition of software enginecring given in the [EEE Standard Glossary

of Software Engineering Terminology is as follows:

Softwarc engineering is the systematic approach to the development. op-

eration. maintenance. and retirement of software.

1.1.1 Software Development Process Model

In software engineering the development of software is divided into distinct phases.
The phases are an abstraction of the complex process of software developiment. but
these basic phases have to be completed in some sense in every project. The so-called
process model consists of the basic components of these phases which are shown in

Figure 1.

¢ Requirement analysis is the first phase of the process model. The goal of
the requirement analysis phase is to get a complete description of the problem

to be solved and environment requirements.

e The Design phase develops a model of the whole system and produces a global

structure of modules and their interfaces.

e The Implementation phase concentrates on the individual modules. This
phase actually realizes the design to [ulfil the requirements. The result of the
implementation phase is an executable program. which is the core of the soft-
ware delivered to the customer. During this phase, programmers usually writes

programs with one or more text editors of their choice.

The text editor is a very common tool for programmers, as all programmers
need to edit the source code to accomplish their day-to-day tasks. Text cditing
is one of the main activities that programmers practice every day. The use of
a good tool can affect the cfficiency of programmers by an order of magnitude

[McC89]. We will discuss this aspect in detail in later sections.

problem

requirement analysis
|

requirement definition

design

specification

implementation
i

program

testing

working program

maintenance

Figure 1: Software Development Process Model

o Testing is a phase to detect and correct errors. To fix the problems and issues

found. programmers use a debugger to locate errors and editor to modify the

source code accordingly.

e Maintenance is the last phase in the software development process model. as
shown in Figure 1. After delivery of the software. there are often errors that have
still gone undetected. But maintenance is not limited to the correction of these
errors or faults. Asshown in Figure 2, the fault correction activity only accounts
for about a quarter of the total maintenance effort. In addition, the actual use
of the system can lead to requests for changes and enhancements. Software
maintenance is defined in [EEE Standard Glossary of Software Engineering

Terminology as:

the modification of a software product after delivery to correct faulls,
to improve performance or other attributes, or to adapt the product

to a changed environment.

Lientz distinguishes four kinds of maintenance activities [LS80]. The distribu-

tion of maintenance activity is shown in Figure 2.

corrective
21%
perfective

50% adaptive

25%

preventive
4%

Figure 2: Distribution of Maintenance Activities

— Corrective maintenance: the repair of actual errors. We will discuss a

corrective maintenance tool in the next chapter.

— Adaptive maintenance: adapting the software to changes in the environ-
ment. such as new hardware or the next release of an operating or database

system.

— Perfective maintenance: adapting the software to new or changed user re-
quirements. such as extra functions to be provided by the system. Perfec-
tive maintenance also includes work to increase the system'’s performance

or to enhance its user interface.

— Preventive maintenance: increasing the system'’s future maintainability.
Updating documentation, adding comments, or improving the modular

structure of a system are examples of preventive maintenance activities.

We can summarise maintenance activities in the following way:

*Maintenance concerns all activitics needed (o keep the system oper-

ational after it has been delivered to the customer.” [V1i93]

Customer service and support ensures customer satisfaction, which leads to
real success for everyone. “The only thing we maintain is user satisfaction™ by
Lehman [Leh80] summarises the importance of maintenance activities in the

software development process.

1.1.2 Cost of Software Development

The cost of software includes not only the cost of implementing the software, but also
the cost of keeping the software operational after it has been delivered to the cus-
tomer. In recent years hardware costs have decreased dramatically. Hardware costs
now typically comprise less than 20% of total expenditure. The remaining 30% com-
prise all non-hardware costs: the cost of programmers, analysts, management, user
training, administration cost, etc. Fignure 3 shows the distribution of costs studied by
Chikofsky and Rubenstein [CRSS].

When we consider the total cost of software system over its lifetime. it turns out
that on average maintenance alone consumes 50-75% of these costs [Boe76] [Leh80].
Thus. maintenance alone consumes more than all of the other development phases

taken together.

1.2 Why Is the Tool Needed?

It is well known that software development, especially large project with many com-

ponents. is difficult and expensive. And to make things worse, software evolution is

inevitable.
100
2
g 80 Hardware
3 Development
8 60
ot
(-]
B 40
@
5
A 20
Maintenance
0]
1955 1970 1985
Year

Figure 3: Relative Distribution of Hardware/Software Closts

Lehman and Belady [LBS5] have extensively studied the dynamics of software
systems that grow in size and need to be maintained. Based on those ¢uantitative

studies, they formulated the following laws of software evolution:

l. Law of continuing change: A system undergoes continuous change until it’s
more cost-effective to restructure the system or replace it by a complete new

version.

(84
3

Law of increasing complexity: A program becomes less structured and more
complex after changes. One has to invest extra effort in order to avoid increasing

complexity.

3. Law of program evolution: The growth rate of global system attributes may
seem locally stochastic, but is in fact self-regulating with statistically deter-

minable trends.

2]

1. Law of invariant work rate: The global progress in software development projects

is statistically invariant.

5. Law of incremental growth limit: A system develops a characteristic growth
increment. When this increment is exceeded, problems concerning quality and

usage will result.

So, these laws explain that a software system changes continuously towards in-
creasing complexity, exactly as we see in the industry. We can not stop or slow down

the trend, the only thing we can do is how to cope with it and how to work efficiently.

Even if we start with perfectly designed, implemented and documented software,
the software will tend towards the cycle of decay and getting more difficult to main-
tain. Since most of the development time and cost are spent on software maintenance,
tools to facilitate maintcnance programmers to improve their efficiency will be very

uscful.

Better tools for software development may result in large financial savings, in more
effective methods of soltware development, in systems that better fit user needs, in
more reliable software systems, and thus a more reliable environment in which those
systems function. Quality and productivity, the two most central themes in the field

of software engineering, can be imnproved a great deal with a good tool.

Boehm estimates Lthat even the use of very modest tools may result in cost savings
of up to 10% [Boe3l1]. The study reported in [NN89] also shows that, in the percep-
tion of software engineers. productivity is improved with the use of automated tools.
From this study, it appears that the data flow diagram and data dictionary functions
of the CASE (Computer Aided Software Engineering) products contribute the most

to the software eugineer’s procductivity improvements over manual methods.

[n the whole process of software developinent, several phases have a close rela-

tionship with source code browsing and editing.

e [n the implementation phase, programmers translate the design document into
code in a chosen language. In order to do so. programmers need to keep in

mind the function dependencies, data structures and variable declarations in a

particular scope, interface and utility procedures. parameters passed. etc. For a
large software system with many components. each programmer is working on
a small part of it and it is impossible for one programmer to understand and
memorise every piece of code. Consequently, tools are used to let programmers
browse through and understand the finished code, program and finish their

code.

e In the testing phase, whenever a bug is found, a programmer will be notified.
The programmer will investigate the cause of the bug, find the location of the
bug, modify the code and retest it. The tools needed are a debugger and an

editor.

In the maintenance phase, maintenance programimers spend a large proportion of
their time browsing through source code, trying to understand the code which most
possibly was written by somcone else, looking for the bugs and finding a right place

to put the new code or debug code in.

From the above. it is clear that programmers, especially maintenance program-
mers, need a tool to help them to browse the code and to understand the functionality
and structure of the software system so that they can maintain the software. Our tool
is designed to facilitate these activities. The tool allows maintenance programmer to
inspect the code, to look up a routine or variable, to search a particular string and
highlight it in the code. to learn function call relations, ctc., and provides a user-

friendly interface.

In the following chapter, we will review the history of software tool development
and examine several tool systems in detail. Compared to those CASE systems. our
tool is not as sophisticated and has less functionality, but its simplicity and its use of

hypertext make it casier to use. And it has the most useful functions for maintenance

programmers.

1.3 Structure of the Thesis

The thesis is organised as follows:

-3

("hapter | introduces the background of software development. cost ol software,

importance of maintenance phase and usefulness of tools.

In Chapter 2. we first review the background of development of tools in many
fields of software development process, such as editors. debuggers, integrated devel-
opment environments, automated testing tool. ctc. by analysing some tools. We then
conclude which tool functions we think are really needed by programmers. Several

tools reported are then explained in detail.
Chapter 3 reviews the design issues that are considered to complete this project.
Decisions about user interface, data structures and [unction structures are discussecl

and illustrated.

Chapter 4 explains the implementation of this tool. Details are given about the

organisation of the code, the access structure, the user interface, major functions. etc.

C'hapter 5 gives a general conclusion to the thesis and presents some future work

that necds to be done to improve this tool.

Finally. a simple user manual of the tool with an example is given in the Appendix.

o

Chapter 2
Background

[n this chapter, we review the development of tools, what tools programmers really

need, and various tools that have been developed.

2.1 Development of Tools to Assist Programmers

At an carly stage, tools were used for the implementation of software, such as com-
pilers, linkers and loaders, and test drivers. The development of tools to support
cach phase, especially carly phases, of the software life cycle and the development

of integrated tool sets to support the whole software life cycle is more recent and

fast-growing.

The application of tools in the software development process is referred to as CASE
(Computer Aided Software Enginecring). The first tools to support design activities

appeared in the early 1930s. In 1990s, the number of C(C'ASE tools is overwhelming.

2.1.1 Vliet’s Tool Category

To structure the growing amount of available tools. Vliet gives a tool category system

depending on the scope of the tool collection [VIi93]:

e Analyst workbench (AWB): a collection of tools that support the requirements

specification/global design phase.

e Programmer workbench (P\WB): tools that mainly support the implementation

and test phases.

e Management workbench (MWB): tools to support management tasks.

o [ntegrated project support environment (IPSE) or Software developinent envi-
ronment (SDE): a collection of tools is intended to support all phases of the

software life cycle.

This classification suggests a certain relation between a given modcl of the software
life cycle and a corresponding tool collection. Ideally, this would be the case. but the
classic waterfall model of software development is often disputed, one reason being
that the number of available tools is rapidly increasing, and those tools support other
process models. such as prototyping and evolutionary development, etc. There is an
interaction between trends in support environments and trends in process models.
[V1i93]

2.1.2 A Taxonomy of Program Development Environments

Dart et al [DEFHS3T7] gives a taxonomy to sketch the developments in this area and
distinguishes four categories. based on trends that have a major impact on support

environments:

e Environments based on a specific programming language contain tools

specifically suited to the support of software development in that language.

In a language-based environment, the set of tools supports software development
in one specific language. Well-known examples of language-based environments
are Interlisp and the Smalltalk-30 environment. Ada Program Support Envi-

ronment (APSE) is another example that will be discussed in section 2.1.3.

¢ Environments based on the syntax of programming languages contain

tools aimed at manipulating program structures.

These environments can he generated from a grammatical description of those
program structures. Some special editors with built-in knowledge of certain
language are a good example of this kind of environment. For example. in
C'ornell Program Synthesizer [TR81], if the user types in an if, the template

appears:

IF (<condition>)
THEN <statement>
ELSE <statement>

10

The user is asked to fill in the holes. Other supports. like indentation. close
parentheses. incremental program analyses. etc. are offered as well. Structure-
oriented environments provide capabilities for the direct manipulation of pro-
gram structures, multiple views of programs, incremental checking of static

semantics, and program debugging.

In toolkits we find tools that are generally not so well integrated.

The support offered is independent of a specific programming language. A
toolkit merely offers a set of useful building blocks. In particular. toolkits
tend to contain tools that specifically support programming-in-the-large. UNIX
is a prime example from this category. UNIX may be viewed as a general
programming environment, not aimed at one specific programming language.
UNIX offers a number of convenient and simple building blocks with which more

complex things can be realized. Here are several examples:

— The file system is a tree. Leaves of the trce are files, and directories are
inner nodes, which are files as well. Files have a very simple structure and
an [/O device has the same hehaviour (from the user’s point of view) as a
file. Any file can be processed by the user as il it is a stream of bytes: its

actual structure is hidden by the operation system.

— UNIX offers a large set of small. useful programs, such as we, grep, 1lpr.

input and output redirecting.

— UNIX programs can easily be combined to form larger programs. Pipe.
denoted by |. allows users to try to reach their goals by gluing existing

components together, rather than writing a program from scratch.

On the other hand. there is little consistency in interfaces and the choice of
command names. To siop a dialogue, you may try kill, stop, quit, end. and
more likely CTRL-c. The average UNIX user knows only a fairly limited subset
of the available commands and tools [Fis86]. So the facilities offered under

UNIX are far from optimally used.

Tools based on certain techniques are used in specific phases of the software

life cycle.

[n early phases of software development (requirements analysis and design).

tools, called Analyst WorkBenches (AWB) [V1i93], are used to support analysis

3

and gathering design data. Often, a graphical image of the system is made. for
instance in the form of data flow diagrams. The AWB usually contains tools to
support the following types of activities:

— drawing. changing and manipulation of pictures.

— analysis of data produced, consistency and completeness.

— generating reports and documentation.

A Programmer WorkBench [V1i93] consists of a set of tools to support the
implementation and test phases of software development. [n a PWB, we
find tools to support, among others:

— edition and analysis of programs;

— debug:

— generation of test data;

- simulation:

— test coverage detcrmination.
In the above two cases, the support offered mostly concerns the individual pro-
grammer. These environiments are dominated by issucs of software construction.

‘The emphasis is on tools that support software construction: editors. debug-

gers, compilers, etc.

A Management WorkBench [VI1i93] contains tools that assist the mnanager dur-
ing planning and control of a software development project. ‘Tools in an
MWB include:

— configuration control

—~ work assignment

— cost estimation

— reliability

e Finally, integrated tool sets aim at supporting the full spectrum of the soft-

ware lile cycle in a coordinated fashion.

2

An Integrated project support cnvironments is meant to support all phases
of the software life cycle. Because of the complexity of this kind of system. we

have a separate section to discuss its development.

2.1.3 Integrated System Development Environments

We first take a look at the environments from different point of views:

Information management view :

The philosophy behind this approach is that the key to automation in systems
development is in systematically capturing and structuring the many differ-
ent “objects” that are produced: requirements, design specifications, meeting
records, software modules, test specifications, plans, etc. The state of a project
is defined by the states of its objects and the progress is measured in terms
of the growth of the objects in this information base. The idea is illustrated

by Figure 1. This view has naturally led to database-centered approaches to

environments.
Set of Objects, defining
the project state, shared
change among developers.
User_1
debug / modify) L inspect
User_2 User_3 User_4

Figure 4: The [nformation Management View

Process support view :

First define a precise development process to identify the necessary steps. ac-
tions. roles, and information fows throughout the complete life cycle. Taking
the development process as a kind of blueprint. the environment should support
the specified process. manifest it in executable software and computer stored

structures. Sometimes the process engine is introduced. It would monitor the

13

state changes. ‘execute’ the process model and finally give guidance to users

and tools (see Figure 5 [SVY3]).

Process Engine/
Assistant .

T F N el

!

N \ - -
' 1 \
' : ' Documents
4 ' production
, | Tool-tool .

[} 3

Database server

\
i

Requirements

-

Database

Figure 5: The Process Support View

Models of Development Environments

Scveral generic models of environments have been suggested, at varying levels of

abstraction and detail [SV93]. Let’s look at some of them:

l. Data orientation:

An early example, which has had significant impact. is the Stoneman document
[Bux80] [Bux31]. This requirement specification for an Ada development en-
vironment established the APSE/MAPSE/KAPSE model, shown in Figure 6.
Schefstrom [SV93] claims that *Stoneman can be viewed as an early example

of an environment reflerence model’.

“The loolset must nol only support the appropriale functions. bul must

be integrated inlo a consistent environment.”

This sentence from Stoneman requirements emphasised inlegration - the recog-

nition that for significant progress to be marle, tools must cooperate towards a

4

common goal to a higher degree than was currently the case.

The Stoneman requirements also emphasised the idea of the environment database.

the all-encompassing structured data storage.

“The APSE must provide a well coordinated set of useful tools. with
uniform inter-tool interfaces and with communicalion through a com-
mon dalabase which acls as the information source and repository for

all tools.”

All this was placed in the three level KAPSE/MAPSE/APSE model, with the
database at the very kernel KAPSE level (see Figure6) .

APSE - Ada Programming
Support Environment

MAPSE - Minimal APSE
KAPSE - Kernel APSE

Figure 6: The APSE Model

2. Language orientation:

Rational Environment [Rip33] [Mor33] is a highly integrated development en-
vironment dedicated to software development in Ada. [t closely adhered to the
original vision of an APSFE and combined the large-scale project support atti-

tucle of Stoneman with ideas from early environments works. such as Interlisp.

Smalltalk. and language-oriented editors. Special purpose hardware supporting
an operation sysiem that was completely dedicated towards production of Ada
software was used. The compiler was built to be incremental. with most tools
supporting the internal representation of the Ada programs. The language.
Ada, acts as the major integrating factor, resulting in a major example of the
language oriented approach to environments. In addition, Rational environ-
ment has the unified internal form, that all data should be stored in a common
format suitable for automatic processing. All tools should access the common
representation, and thereby achieve both simplicity and uniformity, as indicated
in Figure 7. With the language oriented and tight integration approach, it could
also provide interactive cross-referencing and sernantic completion, configura-
tion control and documentation. But requiring special purpose hardware also
introduces a problem: it may separate the environment from the continuous
evolution of the rest of the world. However, the Rational environment is one of

the few novel environments that have reached the state of a stable procduct in

industrial use.

Common
Internal

Representation Configuration Managea

Figure 7: Common Representation Access: Simple and Uniform

Communication orientation:

A representative example of a development strategy bascd on communication
is the Furopean multi-company cooperation Eureka Software Factory. FESF
[Fer88] [FOS9]. ESF suggests a communications oriented architecture. where
components communicate with each other over a software bus. The idea is

shown in Figure 3.

This approach more or less rejects the idea of the central database, partly on

the basis that a large number of companies are unlikely to agree on a single

16

standard database and schema.

UIC UIC UIC
I Software Bus
SC SC

UIC: User Interface Components
SC: Service Components

Figure 8: ESI' Communications Oriented Architecture

I. Process orientation:

An early example of an environments effort with a strong “process orienta-
tion” was ISTAR [Dow87]. The programming aspect of environments was
de-emphasised, claiming that we should instead provide support for the or-
derly management of projects. The word, contract, was made a hasic concept,
around which any project should be organised. ISTAR therefore supported the
organisation of a hierarchy of contracts, which defined what were the input and

constraints and the expected deliverables. Figure 9 illustrates the idea.

- specification. Y
- acceptance criteria - deliverables Contract
- schedule - reports i
- reproting requirements
- standards : Contract Contrac:t
y |
Contract Contract Contract
Conn'act * + T *

Figure 9: ISTAR: A Hierarchy of Contracts

5. Model orientation:

17

A more recent model-oriented work related to environments is the so-called
ECMA Reference Model for Frameworks of Software Engineering Environments,
which is a quite extensive enumeration of services that can be expected to be
present in a CASE framework. The model now is getting close to the three

dimensions of integration as originally introduced in [Sch89] (see Figure 10):

User Interface
A (presentation)

Multimedia, (audio, picture, etc).
Style guides, standard look and feel.
User Interface Management Systems
Motif, XT, Open/Look, etc
Xintrinsics

Xlib

Shell Files

Data dictionary

Programmati Objectbase system

Tool ifs Object-Orriented Database
Std calls Shared, distributed,

orRPC
Broadcase
message server

Data

Process model (information)

engine

Cooperaation
support

Control

{(Communication)

Figure 10: The Three Dimensious of Integration

e Data. that is intuitively understood as the degree of data representation

uniformity among tools.

e Control. determines a tool’s communicational ability, i.e. the degree to
which it communicates its findings and actions to other tools. and the

degree to which it provides means for other tools to communicate with it.

I8

o Presentation, that is the extent to which the “user interface™ is uniform

among tools in an environment.

The model also addresses access and security issues, as well as administration
of the environment. It is strong on elaborating the data aspect, but is less
developed in the control and especially User Interface domains. It furthermore

provides a single level abstraction of tools.

With the above examples of development environment orientation, we can see that

they are based on different levels of abstraction and detail.

Two CASE Cultures

Most of the discussion above has its roots in the culture and approaches related to the
Stoneman document. Another trend has placed greater emphasis on the design phase,
providing support for drawing of data flow diagrams, architecture diagrams, program
decompositions, etc [SV93]. From initially being design methods. illustrated by more
or less informal hand drawn diagrams, there evolved a necd for easy maintenance of
those drawings, and for making sure that they were made in a standardised way,
using a proper format. Software tools supporting drawings were developed, and a
market evolved offering products supporting a range of notations, such as Data Flow

Diagrams, different forms of Structure Charts, and more or less standardised methods.

The concept of CASE has occasionally been associated with the market of those
diagramming and graphics editing tools. Given the background presented above, it
does however scemn more appropriate to view CASE as the gradually evolving merger
of two cultures, one which we call the Environments Culture. and another one
which we call the Diagramming Tools culture [SV93]. Their relation could be

characterised by Figure 11.

[n the Environnents area the original representatives, or carriers of culture, were
[nterlisp, Smalltalk. and later exemplified by systems like Rational. At the Diagram-
ming Tools side. we have the graphical notations and methods that are the basis
for the tools. While the Environments culture always has emphasised the “whole”,
using words like architecture. framework, and integration, the Diagramming tools are

usually more localised in their scope, producing isolated tools rather than complete

19

cnvironiments.

The Environments culture has been mostly honoured in the academic and techni-
cal context. while the Diagramnming tools have had more of an industrial and adminis-
trative flavour. Referring to the phases of the traditional life cycle, the Environments
were mostly interested in the later phases, while the Diagramming tools have usually
focused in on the earlier requirements and design phases. Based on this positioning,

they correspond to Back-End CASE and Front-End CASE respectively.

Fast turnaround time in the edit-compile-dehug cycle was always a main goal
within the Environments culture. while the Diagramming tools have had less emphasis
on this issue, based on the assumption that a good work in the design phase makes
the coding trivial. The Environments have been more interested in providing good
prerequisites for allowing fast prototyping and more exploratory development, while

the Diagramming tools culture fully accepts the traditional phased Waterfall model.

The Two CASE Cultures
Environments Diagramming Tools
Interlisp, Smalltalk - Yourdon, Gane/Sarson,
Rational. Jackson.

Architeccturally and

Integration oriented. - Single tools.

Technical culture. - Administrative cculture.

Back_End CASE - Front-End CASE

Fast turnaround time -— “Move work to spec/design
phase”

Suited for prototyping ~ <———» Suited for Waterfall model

Figure 11: Relation Between Two CASE C'ultures

Mutual influence. and the fact that the [final goal is the same, has however grad-

ually decreased the differences. The CASE tools have widened their scope, often by

20

attempting integration with code-generation or programming support tool sets. The
originally rather programming oriented environments have on the other hand evolved
into broad concerns for full project support. which in turn forces a certain moderation

of integration ambitions.

Flecher considers ('ASE tools to include project management, configuration man-

agement, testing, reverse engineering, and other related tools and tool sets [FH93].

Integration in Development Environments

The essence of the idea of an environment, as opposed to a set of independent tools,
is in the incrcased coordination and uniformity that we associate with the former

concept. Schefstrom claims [SV93] that:

The purpose of any environment integralion effort is lo increase the pro-

ductivity of the system devcloper.

Since development is never truly automatic, the role of tools is most often in providing
the user with the information he needs, and doing so with short response time and
without requiring him to engage in error prone or context breaking dialogues with
other different tools. Although it is hard to define the exact quantitative value of a
service, one can ohserve that it is always relative to its cost, the latter of which has

three components:

o the cost of activation service in terms of knowing about its necd. finding it, and

providing the right parameters
e the cost. in waiting time. [or the user while the computer is working

e the cost of finally utilising and assimilating the result of the service in the

context where the user needs it.

A purpose ol integration is to minimise the sum of those costs. which we call the
turnaround time. Clearly. cooperation among tools is a key issue. The turnaround
cost can obviously be reduced by utilising context information - making one tool ex-
plicitly utilise knowledge about the detailed state and context of the other tool. Also

much less computer resources are consumed in a carefully built integrated system.

Integration efforts have their own costs, however. Integration is more complex.
and requires significantly more overview and architectural skill to create an integrated
system than a non-integrated one. And, therc is an inherent tension between the
desire to integrate components. in order to make the system more helpful, and the

need to keep them separate and independent. in order to decrease overall complexity.

Levels of Abstraction

Software development environments consist of a set of tools that are assumed to
cooperatively support the development of software. I[n addition, in almost every
environment, there are multiple levels of abstraction can be identified, and where the
requirements for cooperation/integration differ depending on the level. Schefstrom

[SV93] develops a multiple level tool model:

e the smallest entity of concern is called a service, it is an action performed by the
computer that is of interest to a system developer. The services are partitioned

into subsets that are called tools.

o A lool is a set of services that shows strong internal cohesion and low external
coupling. Cohesion and coupling are well known within the area of software
design: cohesion is a measure of the strength of the arguments on why certain
entities should be grouped together, while coupling denotes the extent to which

entities that we choose not to group together anyway depend on each other.

o A toolsel is a set of lools that shows strong internal cohesion and low exter-
nal coupling. Certain sets of tools are more closcly related than others. For
example a compiler and its associated debugger, a project planning tool and
its critical path analyser. a graphical design editor and its associated analyser
and code generator, a document editor, its spelling checker and picture drawing

subsystem, etc.

e An environmenl is a set of loolsels that shows strong internal cohesion and low

external coupling.

e [n this model we need an clement that explicitly identifies some basic pieces of
software that we expect to be of use to many different tools. A framework is a
set of software modules that is expected to be of interest to several tools. and is

therefore especially well documented and supported. litilizing a framework is

22

-

cconomical and imposes uniformity among its users. The model is summarised

graphically in Figure 12. An example of framework is HyperCASE [CR92].

HyperCASE is an architectural framework for integrating the collection of tools.
The system provides a visual, integrated and customisable software-engineering envi-
ronment consisting of loosely coupled tools for presentations involving both text and

diagrams.

[t integrates tools by combining a hypertext-base user interface with a common
knowledge-base document repository. It also includes extensive natural-language ca-

pabilities tailored to the CASE domain.

Toolset
= Toolset
o
=
[m—
| 20 Spm—|
=
Toadl
Framework services

Figure 12: Levels of Abstraction in Development Environments

The HyperC'ASE has three subsystems:
e HyperEdit: the graphical user interface
e HyperBase: the knowledge base

e [IyperDict: the data dictionary

2.1.4 Other Tools

As development of tools evolves rapidly, it is still too early to have a precise taxonomy,
and sorne tools may fit in more than one category. We've discussed several examples of
tools in each category. In the following paragraphs of this section, we will take several
tools as examples, which might fit in several categories. to see how tools developed

and functioned to help programmers.

DIF

Documents Integration Facility (DIF) [GS90] is a hypertext system for the devel-
opment, use and maintenance of large-scale systems and their life-cycle documents.
DIF helps integrate and manage the documents produced and used throughout the
life cycle — requirements specifications, functional specifications. architectural de-

signs, detailed designs, source code, testing information, and user and maintenance

manuals.
Gist
specificaations
/ annalyzer
NuMil
RCS DIF processor
. \ — .
database - Niviz visualizer
Unix tools:
Mail, Make, Latex
editors, Talk

Information bank

Figure 13: DIF Organisation

[n DIF. software documents are considered as the objects to be stored. processed.
browsed, revised, and reused. Links explain the relationship between the objects.
DIF stores the objects in files and the relationships hetween the objects in a rela-
tional database (Ingres database). DIF allows two modes of operations: a superuser
mode and general-iser mode. Superusers define the project management informa-

tion and structure of the documents. General users can create, modily, and browse

24

through the hypertext base.

The superuser defines the forms and the basic templates, while the user can define
links between basic templates. DIF provides several features that enable users to view

system information in an integrated manner within and across projects.

At the heart of DIF's implementation are the UNIX file system and the Ingres
database system. The file system provides a repository for the textural and graphical

information; Ingres stores information-structure-level and project-level information.

DIF is considered to he a software-enginecring environment as DIF can accommo-
date all life-cycle activities. DIF offers a uniform interface to access the appropriate
tools, like functional specilication analyser and an architectural design processor.

DIF’s organisation is shown in Figure 13.

CIA

Analysing the structure of large programs is one of the most frustrating and time-
consuming parts of software maintenance. Several program abstraction systems have
been implemented and reported to aid the discovery process during software main-
tenance. MasterScope analyzes and cross-references user programs in the Interlisp
environment [TM81]. FAST (Fortran Analysis System) is used to analyze Fortran
programs [BH77]. OMECA is an experimental system [or a language called Model
using INGRLES for database management [Lin81]. Cscope creates a cross-reference
file to allow user to browse (' program and locate or modify function definitions

[St.e‘ 5] .

The most interesting of those program abstraction systems is CIA. The (! Infor-
mation Abstraction system (C'[A) [CNR90] summarizes the structure information
of programs in a relational database. Programmers can invoke relational queries to

analyze various aspects of their software.

The construction of a program abstraction system involves three steps:

I. Form a conceptual model: this model defines a complete set of the software

objects and relationships for C.

2. Extract relational views: according to the conceptual model. a parser converts

the textual representation of programs to a relational database.

3. Construct abstract views: different levels of abstract views are provided based

on the relational views.

The CIA system consists of three major comnponents: the C Abstractor, the Infor-
mation Viewer and Software Investigator (see Figure 1-1). It makes use of the depen-
dency checking mechanism of the UNIX Make command to construct the program
database incrementally. Object, its attributes and reference relationship between ob-

jects are defined in CIA conceptual model. Relational and textural views can be

textual views

C modules Ml M2 M3
{
Make
C Abstractor

incremental
databases

Figure 14: The C Information Abstraction System

|

®

program
atab.

Software
. a—
Investigator .
high levle
abstractions
Information .
Viewer
1 relational views
queries

created by retricving and processing information in the databasc, such as retrieval of

attribute information. retrieval of relationships between two object domains, view the

definition of an object, etc. With the basis of program database. the software inves-

tigator is a set of software tools that can be used to examine the program structures:

graphical views. subsystem extraction, program layering, dead code elimination and

binding analysis.

2.2 What Do Programmers Actually Need?

In the ideal case, the choice for a specific set of tools will be made as follows. First.

a certain approach to the software development process is selected. Next, techniques

are selected that support the various phases in that development process. As a last

26

step. tools are sclected that support those techniques. Possibly, some steps in the
development process are not supported by well-defined techniques. Some techniques
may not be supported by tools. Thus. a typical development environment will have

pyramidal shape as in Figure 15.

In practice, we often find the reverse conical form: a hardly developed model of
the development process, few well-defined techniques. and a lot of tools. In this way,
the benefits of the tools will be limited at best. As Schefstrom [SV93] paraphrase the
situation: “for many a CASE, there is a lot of Computer Aided, and precious little

Software Engineering”.

tools

techniques

model of the software life cycle

Figure 15: Support in a Typical Development Environment

With all these fancy tools available, what does a maintenance programmer actu-

ally need?

This is a typical pattern of work process: if the looking up of an imported interface
is a common task, one could expect its turnaround time to be large in a traditional
environment since it probably involves leaving an editor to go out in a file system,
explicitly locating a file holding the interface, studying the interface and remembering
it. and then returning to the first point of editing without any other result than what

could be memorized during the break.

When viewing source coce. programmers are not simply reading the text; they
are also attempting to understand its structure. Those unique symbols appearing in
the code are either user-defined or system or language keywords. User-defined sym-

bols include routine names, variables, type and constant identifiers. Each symbol has

27

propertics associated with it. such as what it is. what it docs, and what importance
it has. For variables and types. these properties would include the specification of
composite types. For routines, these properties would include a description of the

parameter list and what type of value is returned.

A tool to make all these information be easily available is a real help to mainte-
nancc programmers. For them, the biggest challenge is to understand the code that
is most probably designed and implemented by others. In the following section, we

review tools that help programmers to understand code.

2.3 Tools for Code Understanding

In this section, we describe several tools we found in our survey. These tools are
created to help programmers to understand code from different viewpoint. After this

survey we have more clear idea of what our tool should accomplish.

2.3.1 VIFOR

VIFOR (Visual Interactive FORtran) [DLK90] is a typical language-centered pro-
gramming tool. It’s oriented towards maintenance of medium-to-large Fortran77 pro-
grams. With VIFOR, programs can be displayed and edited in two forms of represen-
tation: the code and the graph. It also contains transformations in both directions:
from code to graph and from graph to skeletons of the code. The data model of

VIFOR coutains only four different classes of entities and three relations.

The data model consists of the [ollowing entity classes:
e modules: files of source code (both compilation units and include files)
e declarations: divided into two subclasses

— processes: main program, subroutines. and functions

— commons: global data elements

It also contains the following relations:

e The belonyg to relation that specifies whether any entities are parts of another

entity. In particular, declarations beloug to modules.

28

e The call relation interconnects processes. The processes and their call relations

coustitute a call-graph.

o The reference relation interconnects processes and commons. They define which

processes have access to which commons.

This tool allows the programmer to deal with program architecture directly by
maintaining the graphical representation of the program and providing a visual editor

to build and modify the program.

2.3.2 SAMS

A systematic approach to corrective maintenance is suggested by K. Jambor-Sadeghi
et al [JKCGY4). The general process for corrective maintenance is shown in Figure
16.

1. Analyze the bug report to understand the nature of malfunction.

2. Develop an understanding of the software.

3. Based on information gathered in steps | and 2 establish association

between the bug and the code.
4. Design changes and modify the software to correct the bug.

5. Test to make sure the bug is fixed.
6. Test to make sure all other functionalities are working properly.

Figure 16: General Process for Corrective Maintenance

The soltware maintainer must complete steps 1, 2 and 3 in Figure 16 to build a
cognitive model of expected bhehavior based on code and existing documents. The
cognitive model that is developed in this fashion is used to fill the gap between the
caode and bug. The task of developing the cognitive model heavily relies on software
understanding. Understanding software can he approached from two directions: the
code-driven (or bottom up) approach and the functionality-driven (or top-down) ap-

proach. The two approaches are usually used together and iteratively.

Building this cognitive model for large and complex software systems is difficult.
Furthermore. in the absence of correct and up-to-date documentation of software such

cognitive models are often incomplete and inconsistent and may even be incorrect.

29

And. there is very little change that the knowledge and experiences gained in the pro-
cess of fixing a bug by one maintainer is shared in subsequent maintenance activities

by others.

The authors analyze the corrective maintenance activities and develop a model of
corrective maintenance (see Figure 17). Based on this model, they develop a process
for corrective maintenance. This process consists of a set of ordered steps that should
he performed to complete a corrective maintenance task. The information needed
at each step is identified and organized into informnation niodels. A set of tools that
operated on the information models is identified. Realizing the information models
and providing the tools through a uniform interface lead to a software maintenance

system that supports corrective maintenance.

Intended functionality

Forward engineering
Associate functionalitties
Software
to components

Reverse engineering '

Actual functionality <— Associate reported
Refine Bug bugs to
description functionality
_— Bug

Figure 1T: Model of Corrective Maintenance

SAMS is an integrated system for software maintainers that allows sharing of in-
formation about the software system among maintainers by supporting various views
of the software systemn and by providing a set of tools that simplify performing and
verilying maintenance activitics. The SAMS allows integration of various aspects of
the software system. The system facilitates analysis of the various aspects (source
code, test suite. documentation and build procedures) and provides the nccessary
tools to establish logical associations among components of each aspect as well as

related components across these aspects.

An integrated and complete set ol tools that support the steps in the process is

30

necessary, such as the bug browser. the testcase browser. the functionality browser.
the structure browser. the execution path browser. the call graph and data flow in-

formation, etc.

The information needed for corrective maintenance is structure, functionality, ere-
cution path, bug and lestcase. SAMS provides facilities for acquisition, representation,

manipulation and browsing of such information.

2.3.3 GRAB

[n a large software system there are complex relationships and data dependencies.
The module dependency relationship can be clearly represented in a directed graph.
A general-purpose browser for directed graphs, GRAB (GRAph Browser) [RDM*87],

is designed and implemented by L. Rowe et al.

GRAB displays the nodes of a graph as icons and the edges as lines drawn be-
tween the icons that represent its endpoints. The nodes of the graph represent the
procedures and the edges represent the CALLS relationship. The user can examine a
graph, insert or delete nodes and edges, to move nodes and to change a node or edge
label. GRAB provides an operation to lay out a graph automatically. In addition to
these browsing and editing operations. a user can invoke an entity-specific browser
for a node that opens a separate window through which detailed information about

the node can be displayed.

More recent visual programming environments (VPE) not only provide a visual
interface that includes windows and views, but also provide object-oriented libraries
and extensive tools (e.g., drawing tools. configurations, versions) to help the user cre-
ate application specific programs; examples of such environments include Agentsheets
and VPE. The domain of VPEs has also been extended to provide program visual-
ization. which allows the state of a program (or state transitions. exccution history)

to be visualized [She9y7].

2.3.4 DOCKET

Evolutionary approaches to software development, together with an emphasis on
reuse, has brought about the reevaluation of software maintenance tools. Such tools
range from source code analysers to semi-intelligent tools which seek to reconstruct
systems designs and specification documents from source code. Most of these tools

rely solely upon source code.

DOCKET is a prototype environment which supports the development of a system
model linking user-oriented, business aspects of a system, to operational code using a
variety of knowledge source inputs: code, documents and user expertise. Its aim is to
provide a coherent model to form the basis for system understanding and to support

the software change and evolution process [LF93].

2.3.5 Summary of Our Survey

Maintenance typically requires more resources than new software development. A sig-
nificant portion of the maintenance effort involves reverse engineering which depends
heavily on the code comprehension process. Typical tasks that require understand-
ing include troubleshooting, code leveraging (reuse with modification), and program
enhancement. If we can present the maintenance programmer with information that
best helps to understand code, we can significantly improve quality and efficiency of

program understanding and thus maintenance [MV93].

As we discussed in Section 2.1.3. the two culture of CASE are competing from
many aspects (see Figure 11), but gradually the differences are decreasing and both
are developing towards the area of the opposite. In other words, the integration of
development environmeuts is more and more accepted by both cultures. The desire
to integrate components. to make the system more helpful and the cost of integration

efforts are two issues that every tool development programmer has to balance.

We have studied language-centered. program architecture graphical representation
tools like VIFOR. browsers with directed graphs like GRAB, and more integrated sys-
tem for maintenance programmers like SAMS.

Our conclusion from this survey is that maintenance programimers need browsing

32

tools that help them to understand code rapidly and efficiently. In particular. the tool
should relate cach use of an identifier to its definition and should perfrom dependancy

analysis.

33

Chapter 3

Design of the Tool

In this chapter, we discuss the issues that we considered during the design of our tool.
The basic objectives of the tool are explained in the first section, then the details of

design decisions we made for the tool are described.

3.1 Objectives

As we mentioned in previous chapters, maintenance programmers have to face these

frustrating situations frequently:

Obsolete documentation :

The requirement specification and design documents often hecome obsolete

when the system evolves.

Quick fix or patch deteriorate original design :

After software is delivered to customer, there are often bugs existing in the
code. Sooner or later. some of the bugs will appear and they will be reported
back to the maintenance team. At this time, flinding a fix becomes urgent as the
software load is active on customer site. In addition. there are more limitations
on how to fix the problem. in many cases it is impossible to change the structure
of the code dramatically as it is not affordable to stop the service/traffic and
reload completely new software. So the fix has to be quick and small so that it

has least impact on the customer and its end user.

Under this circumstance, the original design has to give way to how to make
the fix work with this sort of limitations. Obviously a sequence of many small

fixes will eventually destroy the original design.

Different code styles and formats decrease readability :

Lost

For large software system development, there are some coding protocols to begin
with, such as indentations, variable and function names, comments, macros, etc.
These may look trivial and may even be viewed as limitation to the freedom of
some programuners. but these regulations build the uniform style of the code and
greatly [acilitate readability and understanding of the code. But some time later
in the whole development process, more and more inconsistent programming
model/style goes into the code, and less and less effort is put in for the strict

code protocols.

expertise from the quick turnover of programmers :

The software may bhe designed or implemented among several individuals, and
it is easy both for information to be lost and for information bottlenecks to
be created. Moreover, a trend of quick turnover of programmers is observed
in the industry. As experienced programmers leave with their expertise, main-
tenance programmers lose the help they nced to verify their understandings.
and could modify code the way that is not consistent with the design due to

misunderstanding.

The key point for maintenance programmers to work efficiently is to understand

the code well. With all the difficulties listed above. the troublesome maintenance

tasks

need good tools to help maintenance programmers. This is exactly the goal of

our tool. We want to help maintenance programmers to understand the code with a

simple-to-use tool. With this tool, information essential to maintenance programmers

can be easily available to themn through mouse click on the appropriate identifiers.

3.2

Tool Design

3.2.1 Overview of the Tool

Our tool can be viewed as a four-layer hypertext tool illustrated in Figure 13. In

Figure I8 the arrows represent flow of information.

35

l. the interface layer

o

. the access structure layer
3. the dictionary

1. source code layer

Interface layer
text representation
p . <
hypertext representation
interface Source
T code layer
Access structure layer linear
representation
create access structures .
. in files
access structure operations
@ file operations
Dictionary layer
parse tree representations [
parse tree operations

Figure 18: Layers of Our Tool

This is similar to the HyperSoft model of hypertext introduced by Jukka Paakki
el al [PSK96]. The laycrs have a correspondence to the layers of the Dexter model
of hypertext [HS94]. The Dexter model divides a hypertext system into three layers

as illustrated in Figure 19.
I. the run-time layer
2. the storage layer
3. the within-component layer

The Dexter model run-time layer as well as our interface layer deal with the pre-

sentation of the hypertext and user interaction. The Dexter model storage layer

36

models the basic essence of the hypertext in the same way as the access structure
layer. containing the nodes and links. The Dexter model within-component layer is
concerned with the contents and structure inside the nodes. We have two layers corre-
sponding to the Dexter model within-component layer: the dictionary layer contains

the parsed program text and the source code layer contains the source code files.

Run-time Layer

Presentation of the hypertex;
user interaction; dynamics

Presentation Specifications

Storage Layer

a ‘database’ containing a
network of nodes and links

Anchoring

Within-Component Layer

the content/structure inside
the nodes

Figure 19: Layers of the Dexter Model

3.2.2 Function Structure

In order to meet the goals outlined in section 3.1, we decided that our tool should

have the following functions:

e Text browser:

In this browser. the programmer can open and browse a source code file. To
support effective navigation of the source code, hyperlinks will be provided for
cach variables. function/procedure names. etc. The programmer siinply moves
the cursor onto the identifier in the context shown in the text browser window

and clicks the left mouse button. This selection cause the properties associated

37

with that identifier to be presented in the definition viewer window.

We considered incorporating the edit function into text hrowser. which would
enable programmers to browse the source code and edit when necessary. This
is not a difficult feature to add on. On the other hand, there are drawbacks of

the text browser with edit function.

— First, we have to allow changes made to the source code through the editor
to be propagated back to the dictionary, then to the access structure.

Otherwise we lose the correct content of nodes and links.

— Another problem with the current implementation is that two editors can
be spawned on the same file. A concurrency control mechanism is needed

that will allow only one user at a time to update the source code.

['or these reasons. we decided not to include any editing functions in the text

browser.

e Definition viewer:

This is the window to show definition context of an identifier or a routine that

is pointed to by the hyperlink.

How do we decide what is included in the definition context?

— Identifier: when a user-defined variable. type or constant is selected, the
declaration of that identifier surrounds the point at which it is declared.
The declaration should include some comment on usage. but this inclusion

depends on the parser we will select and how the parser works.

— User-defined routines: As with identifiers. when a user-defined routine is
clicked on. the declaration of that routine is presented. including formal
parameters and a header comment describing the purpose and function of

the routine. Such comments arc assumed to be written within the code.

¢ Procedure dependency viewer:

This is a useful tool for programmer to have a clear grasp ol function depen-

dencies between functions/procedures.

This part is not implemented. But the basic functionality that we think would
be useful to programmers is followed. This is a hierarchical hrowser that

represents the high-level information structure. It makes the program’s struc-

functional modules

[user interface J-—» @eﬁnition vieweg

s
'

4

P . T s

! _' not implemented/finished

Figure 20: Organisation of Qur Tool

ture more visible. The representation window displays the headings of the
prograin routines and routines’ nesting levels. The programmer sees only the
highest level routines at first. If a routine is local to a global routine, it is not
shown in the initial display. This structure may be expanded to include lower
levels of nesting. The representation window allows the programmer to select
the routine to be displayed in the source window. Note that this approach

clearly supports the top-down design methodology.

The organisation of the tool is shown in Figure 20.

39

3.2.3 Data Structure

Our tool is based on the dictionary that stores all the information for the hrowser:
for each identifier or procedures, we need to keep a significant amount of information
in the dictionary. For example, what is the name of the identifier. which is the key
of a node. where is the identifier defined. and how and where it is referenced each
time. etc. So for large programs, the amount of information to be stored is huge. To
accommodate the huge. amount of information in the memory, we need a fast-access

data structure to maintain satisfactory performance.

¢ Hashing function

At first we considered using a hashing function. Hashing function takes a key
as input and transform it into an integer address in a prescribed range [Col92)
[GBYL). The function is designed so that the integer values it produces are
uniformly distributed throughout the range. These integer values are then used
as indices for an array called the hashing table. Records are hoth inserted into
and retrieved from the table by using the hashing function to calculate the
required indices from the record keys. There are many hashing algorithms that
are studied, such as uniform probing hashing, double hashing, optimal hashing,
extendible hashing, perfect hashing, etc. As McKenzie et al states [MHDB90],

the basic criteria for choosing a hashing function are:

— the degree to which the algorithm uniformly distributes candidate keys

over the possible values

— the speed with which the algorithm executes

So. we wanted to find such a hashing function that the transformation from
keys into integers involves some quickly computable operation on the key and
its method can handle the collision problem well. In addition. we want to
have reasonablc response time for searching. But consider the complexity of an
optimal hashing function and the time nceded to look for a good algorithm, we

think hashing function is not a good choice for this tool.

¢ Binary tree

Binary tree was also considered for our dictionary data structure. Binary tree

usually works well with cach node inserted in random order. However, il the

10

input to be inserted is in order. the binary trec performs very poorly. So.
the problem with binary tree is that we have to keep the tree balance using
balanced tree algorithms to rearrange the tree in order to maintain certain
balance conditions and assure good performance in searching and insertion.
But the action to keep the tree balance itself is hard to implement and time-

consuming,

B-tree

A B-trce is a balanced multi-way tree with the following properties:

. Every node has at most 2m + | descendants.

2. Every internal node except the root has at least 1 + | descendants, the

root either being a leaf or having at least two descendants.

3. The leaves are null nodes which all appear at the same depth.

B-tree is used mainly as a primary key access inethod for large databases that
cannot be stored in internal memory. B-trees are well suited to searches that
look for a range of keys rather than a unique key. Furthermore, since the B-tree
structure is kept balanced during insertions and deletions, there is no nced [or

periodic reorganisations.

Although B-trces can be used for internal memory dictionaries, this structure
is most suitable for external searching. For external dictionaries, each node can
be made large enough to fit exactly into a physical record, thus yielding, in
general. high branching factors. This produces trees with very small height. As
opposed to general B-trees. 2-3 trees are intended for use in main memory. 2-3

tree are the special case of B-trees when n = I. Each node has two or three

descendants. and all the leaves are at the same depth.

BB-tree

The BB-Tree (Binary B-Tree) access method. introduced in [And93], follows a
more conventional structural approach to offer fast query-response time. The
proposed method is based on a simple observation that limits the number of
required restructuring operations. This observation suggests that before break-

ing up a node, we have to ensure that only right-hand edges are in the same

4L

level. In this way. the re-balancing of the tree can bhe achieved with only two
simple operations. The BB-Trce is maintained by a set of elegant and simple-
to-implement routines. The two main reported advantages of the BB-Tree are

easy coding and satisfactory performance.

The BB-Tree could be characterised as a binary representation of the 2-3 tree.
BB-Tree nodes maintain a record of balancing information along with their data.
This balancing information simulates the behaviour of the 2-3 tree nodes and
is called the ‘level’ of the node. The bottom layer of the structure has balance
equal to [. The root of the trec has the maximum level in the structure. Figure
21 depicts a BB-Tree. Each node contains the level information (next to the
key). Note that only right-hand edges are allowed to be in the same level (i.e.
325 and 631).

6313

185] 2 410i2 681]| 2

v l AY l \\ yd l \
301{ 1 304 1
T [~
\ \
1 309| 1 398| 1 510/ 1 731 917| 1
, T T I T I

Figure 21: The BB-Tree Structure

Rearrangement occurs if there are more than two nodes with the same level
value. This situation corresponds to the case of an overflowing node in a 2-3
tree. Sibling nodes belonging to the same level can be connected with left- and
right-hand edges called ‘horizontal edges’. In order to maintain balance in the

BB-Tree. two cases have to be dealt with:

— firstly, all the horizontal left-hand edges have to be eliminated:

2

— secondly. the tree has to be rearranged if more than two siblings exist with

the same level values (i.e. over-floating tree nodes at the same level).

The former action both checks and corrects against “skewed’ internal node ar-
rangement in the BB-Tree and the latter provides for the halanced expansion of
the tree upward through splitting. Therefore, only two operations are required
to maintain the BB-Tree, namely Skew(n) and Split(n), where n is a tree
nocde. The former extends horizontal left-hand edges beneath n. The latter

splits the pseudo-node n if it is too large by augmenting the level of every other

node.
32513
T <
631| 3
| ~J
185| 2 410i2 681] 2
I ~ 303 2 L LL L [A
L AN
504
| \\
| 30141 309| 1 398} 1 5101 1 731 9171 1
1]] | | | |

Figure 22: The BB-Tree Structure After the Insertion of Item 303’

The searching of the BB-Tree is similar to that of the binary tree. Insertions
and deletions are constructed around the Skew() and Split() operations since
updates are likely to violate the balancing relationship among the tree’s nodes.
[nsertions occur initially at the first (lowest) level of the structure. Subsequently,
the tree is traversed from this new node to the root and at each node bhoth
the Skew() and Split() operations are applied to rectify possible iinbalances.
Figure 22 shows the resulting structure if a node with the key 303 is inserted.
Node deletion from the lowest level is followed by a traversal up to the root
of the tree. While ascending in the structure, the level of the current node is
checked against the levels of its children. If the level of the current node differs

from a child by two then the level of the node is reduced by two and the Skew()

13

and Split() operations arc performed. To handle deletions of internal nodes.

two additional global pointers are used to keep track of the traversal.

o Skip list

William Pugh introduced a self-adjusting access structure termed the skip list

[Pug90]. Skip lists are a probabilistic alternative to balanced trees.
What is Skip List?

We start from a linked list. In Figure 23a, the linked list is stored in sorted
order with n nodes in the list. As every node has a pointer to the next node, we
might necd to traverse n nodes to find the concerncd one. If the list is stored
in sorted order and every other node of the list also has a pointer to the node
two ahead of it in the list, we have to examine no more than [n/2] + 1 (see
Figure 23b). Also giving every fourth node a pointer four ahead (Figure 2ic)
requires that no more than [n/4] + 2 node be examined. Furthermore, if every
(2)th node has a pointer 2° nodes ahead (Figure 23d), the number of node that
must be examined can be reduced to [logon] while only doubling the number
of pointers. This data structure could bhe used for fast searching, but insertion

and deletion would be impractical.

I] o ey [ot I e) o e LY K L ot T Y o P g 2 i e D10

ENEE N NG L TP C ROl BT e = U7 s K
E T2 - -

| |~ >1 9] 7= 211 >Ld—NIL
J—>'_3H_’6 "—’Fﬂq* h—ﬂgj—-’l' 1 19— -——ﬁ_-}ezd

E T2 .

— |~ [—

ks = 6l o[4 e 211_] > NIL
EREENNC LN E N lG e e i L

Figure 23: Linked Lists

44

A node that has & forward pointers is called a level & node. If every (2/)th node
has a pointer 2‘ nodes ahead. then levels of nodes are distributed in simple
pattern: 50 percent are level 1, 25 percent are level 2, 12.5 percent are level 3
and so on. What would happen if the levels of nodes were chosen randomly.
but in the same proportions (as in Figure 24)? A node’s ith forward pointer.
instead of pointing 2 — | nodes ahead, points to the next node of level i or higher.
Insertions or deletions would require only local modifications; the level of node,
chosen randomly when the node is inserted, need never change. Because these
data structures are linked lists with extra pointers that skip over intermediate

nodes, William Pugh named them skip lists.

| J

NIL

———— | - »125

NN

rlylyd

Figure 24: Skip List

Skip lists are balanced by consulting a random number generator. Although
skip lists have bad worst-case performance, no input sequence consistently pro-
duces the worst-case performance (much like quick sort when the pivot element
is chosen randomly). It is very unlikely a skip list data structure will be signifi-
cantly unbalanced (e.g.. for a dictionary of more than 250 elements, the change
that a search will take more than three-times the expected time is less than one
in a million). Skip lists have halance properties similar to that of search trees

built by random insertions, yet do not require insertions Lo be random.

It is easier to balance a data structure probabilistically than to explicitly main-
tain the balance. For many applications. skip lists are a more natural repre-
sentation than trees, and they lead to simpler algorithins. The simplicity of
skip list algorithms makes them easier to implement and provides significant
constant factor speed improvements over balanced tree and self-adjusting tree
algorithms. Skip lists are also very space efficient. They can easily be config-
ured to require an average of 11 pointers per element (or even less) and do not

require balance or priority inforiation to be sorted with cach node.

Wy = N L T3 21 —Ld 1

Skip lists are data structures that use probabilistic balancing rather
than strictly enforced balancing. As a result, the algorithms for in-
sertion and deletion in skip lists are much simpler and significantly

faster than equivalent algorithms for balanced trees. [Pug90]

Skip List Algorithms

The search operation returns the contents of the valuc associated with the de-
sired key or failure if the key is not present. The insert operation associates
a specified key with a new value (inserting the key if it had not already been
present). The delete operation deletes the specified key. It is easy to support

additional operations such as “find the minimmum key” or “find the next key.”

Each element is represented by a node, the level of which is chosen randomly
when the node is inserted without regard for the number of elements in the
data structure. A level i node has i forward pointers, indexed 1 through i.
We do not need to store the level of a node in the node. Levels are capped at
some appropriate constant MaxLevel. The level of a list is the maximum level
currently in the list (or | if the list is empty). The header of a list has forward
pointers at levels one through MaxLevel. The forward pointers of the header at

levels higher than the current maximum level of the list point to NIL.

Detailed implementation will be explained in next chapter.

Analysis of Skip List Algorithms

The time required to execute the search. delete and inscrt operations is dom-
inated by the time required to search for the appropriate clement. For the
insert and delete operations. there is an additional cost proportional to the
level of the node being inserted or deleted. The time required finding an ele-
ment is proportional to the length of the search path, which is determined by

the pattern in which elements with different levels appear as we traverse the list.

The structure of a skip list is determined only by the number of elements in
the skip list and the results of consulting the random number generator. The

sequence of operations that produced the current skip list does not matter.

Prob.
i
— 10’
1 102
=1 103
1 10*
——— p=I1/4, n=256 5
—— p=1/4, n=4096 — 10
—— p=1/4, n=65536 - 10
— p=I1/2, n=256 10'7
—— p=1/2, n=2096 N g
= p=I1/2, n=65536 - 10
i L L | L L 1 10.9
1.0 2.0 3.0

Ratio of actual cost to expected cost

This graph shows a plot of an upper bound on the probability of a search taking substantially longer
than expected. The vertical axis show the probability that the length of the search path exceeds

the average length by more than the ratio on the horizontal axis. For example, for p=1/2 and
n=4094, the probability that the search path will be more than three times the expected length is
less than one in 200 million. This graph was calculated using our probabilistic upper bound.

Figure 25: Probabilistic Analysis of the Expected Search Cost

Pugh did an analysis of the expected scarch cost. The result shows that the
total expected cost of a list of n clements is at most O(log n). The number of
comparisons required is one plus the length of the search path (a comparison is
perforined for cach position in the search path. the length of the search path is
the number of hops between positions in the search path). From his probabilis-

tic analysis. some results are shown in Figure 25.

Balanced trees and self-adjusting trees can be nsed for the same problems as

skip lists. All three techniques have performance bounds of the same order.

4T

But we found that what the author claims is true:

For most applications. implementers generally agree skip lists are sig-
nificantly easier to implement than either balanced iree algorithms or

self-adjusting tree algorithms.

Behavior Comparison Between Skip Lists and BB-Trees

In order to obtain a clear understanding regarding the merits of both the skip list and
BB-Tree, and to see how these access structure behave under the presence of both
queries and update (i.e. mixed workloads), Alex Dellis and Quang LeViet [DL97]
carried out a large-scale comprehensive experimental study in the UNIX environment.
Large, skewed and mixed-data workloads of varying compositions are used and the

sensitivity of the access structures to distributions of input data is examined.

Their experience indicates that BB-Trce offers elegant maintenance routines. If
these routines are implemented efficiently, they yield very competitive response tiines

in a number of cases.

On the other hand, the skip list demonstrates consistently better creation time
and improved response times for all experiments that involve mixed workloads with

frequent updates. The skip list also has minimal space overhead requirements.

The major results are:

L. In environments where data rarely change, the iterative version of the BB-Tree
consistently outperforms the skip list for queries on structures created from

randomly ordered input data.

[
.

The skip list provides a much better alternative for mixed workloads with a
high volume of updates. The use of the skip list is also advantageous when the

input. data used are highly skewed.

3. The iterative implementation of BB-Trees presents very compelitive response
times in the light of workloads, with a limited number of updating operations
and structures generated from randomly ordered data. In this type of environ-

ment, they have found that the skip list offers inferior response iteins.

18

4. Under large space requiremeunts, the skip list demonstrates smallest space over-
head of the structure considered. This is due to high utilisation of the forwarding
pointers of the skip list cells. Their experience also indicates that it is practically

impossible to create a degenerate skip list.

5. The recursive maintenance routines of the BB-Tree produced consistently infe-

rior performance than the skip list in all their experiments.

On the basis of this analysis, we decided to adopt skip lists as the principal data

structure for our tool.

3.2.4 User Interface

Principles of UI Design

The user interface is an important part of any softwarc system. Without the user
interface, the system itself would be useless. There are many principles of software

user interface design. We follow these principles as listed [Shn92] [Thi90]:

‘
e ‘know the user’ was the first principle in Hansen'’s list of user-engineering prin-
ciples. Most users of our tool will be nainly maintenance programmers. They
are software-centcred, having sufficient knowledge about all kinds of design and
maintenance tools. So we design our tool with their tasks, needs, difficulties.

knowledge level and habits in mind.

e A design should be task-specific: in other words, it should not only be designed
for a certain purpose, but it also should be clear what that purpose is to its
users. Just as a theory should be domain specific, it would be good if users

could know what they are getting with a system.

o A design should be simple: A system should be simple enough for a user to
be able to perform uscful experiments. Any complexities confusing the user by

preventing user perform their tasks are not cdesigned or organised properly.

o Ease of use: Tools are design to provide some functionality to their users. In-
terface is designed to permit or aid users to perform more complex tasks than
they would otherwise be able to undertake. So case of use is by all means the

basic goal for our tool.

49

o Productivity: The interface may permit the user to perform certain tasks faster

and over longer periods without rest.

Hypertext

Hypertext is a storage structure where information is stored in the nodes of a graph.
Links between hypertext nodes allow efficient browsing of the information. In the
hypertext timeline [Ber9l], Hypertext was first conceived in 1945 [Bus45] as a way
to store all kinds of information, both for ready access and cross-reference. Hyper-
text is a medium-grained, entity-relationship-like data model that lets information
be structured arbitrarily and keeps a complete version history of both information
and structure. “Researchers at Tektronix built Neptune, which demonstrates that
hypertext provides an appropriate data model for CASE systems™ [SSWS6]. At a
very abstract level, each of these hypertext systems provides its users with the abil-
ity to create, inanipulate, and/or examine a network of information-containing nodes

interconnected by relational links [HS94).

Sometimes a hypertext metaphor is used to emphasise the information browsing
and navigation ability. “Such immediate availability of accurate information is be-

lieved to be the key to productivity increase” [SV93].

No restriction is put on the nature of information in the nodes, so the same hy-
pertext may contain a node of natural-language text and a node of program code.
This is the main advantage that hypertext systems have over conventional database-

management systems, document bases and knowledge bases [(GS90].

The hypertext offers a convenient way of viewing a program. The text browser of
our tool can show the main program body. The programmer inspects it and selects a
routine to display. The programnmer is then shown the declaration of that routine, and
is able Lo inspect its code. A second routine may also be easily selected and inspected.
Having a question about a type, the programmer selects it and its declaration is
displayed. The programmer can check on the exact syntax of the any user-defined
routine. With this tool. details can bhe found easily, permitting the programmer to
concentrate on the higher level structures. All these benefits aid the progranumer in

detecting and correcting faults.

50

User Interface of Our Tool

The goal of our tool is to help maintenance programmers to work efficiently. The
user interface part is an important part to achieve the goal. We design the window

layouts in the tool carefully. bear in mind those principles of user interface design.
From the organisation of our tool (see Figure 20), we design the window layouts
of our tool containing two main windows:
e Text browser window
e Definition viewer window

Detailed function and implementation of these two windows. as well as other windows,
such as input prompt window, file selection window, dialog/message windows, help

window, etc.. will be discussed in next chapter.

Chapter 4
Implementation of the Tool

In this chapter, we discuss the implementation of the maintenance tool. First we
explain what language we choose to use to implement the tool. Then we discuss the
parsed dictionary and its layout format. In the third section we discuss the imple-

mentation of skip list. Finally, we describe the user interface of the tool in detail.

Our tool is based on X1 libraries and will operate on Sun SPARC station running

under SunOS V.41,

4.1 Implementation Language

We use (' language to implemnent our tool and Motil to implement the user interface

part.

C is a general-purpose programming language that was originally designed by
Dennis Richies of Bell Laboratories and implemented there in 1972. It was first used
as the systems language for the UNIX operating system. Now ANSI C (American
National Standards [ustitute) is a mature, general-purpose language that is widely
available on many machines and in many operating systems and it is one of the chief

industrial programuming languages of the world [KP95].

C is small langnage. And small is beautiful in programming. (' is the native
language of UNIX. which is the major interactive operating system on workstations,

servers. and mainframes. (' is portable, terse, modular and efficient on most machines

[KP95).

C++ is built upon the foundation of C. Several new features and extensions, such
as steam [/O, operator and function overloading, classes, constructors. destructors.
data hiding, inheritance and type hierarchies, designed to support object-oriented

programming were added to C [Sch95).

Motif is a toolkit developed by the Open Software Foundation (OSF). It provides
a set of guidelines that specifies how a user interface for graphical computers should
look and feel — how an application appears on the screen (the look) and how the
user interacts with it (the feel). The OSF/Motif toolkit is based on the X Window
System, a network-based windowing system that has been implemented for UNIX,

VMS, DOS, Macintosh, and other operation systems [Del92].

As a proposed standard for graphical user interfaces, Motif has been implemented
on a wide range of computer platforms from large IBM mainframes down to PCs. To
enhance portability and robustness, the Motif Graphical User Interface (GUI) was im-
plemented by OSF using X as the window system and the X Toolkit Intrinsics (Xt)
as the platform for the Application Programiner’s Interface (API). Xt provides an
object-oriented framework for creating reusable, configurable user-interface compo-
neuts called widgets. Motil provides widgets for such common user-interface elements
as labels, buttons, menus, dialog boxes, scrollbars, text-entry or display arcas. and
widgets called managers to control the layout of other widgets. Xt defines certain
base classes of widgets, whose behaviour can be inherited and augmented or inodified
by other widget classes (its subclasses). Xt also supports lighter-weight objects called
gadgets, which look and act like widgets, but whose behaviour is actually provided
by a manager widget that contains them. The object-oriented approach of Xt forces
the programmer to think about the application in a more abstract and generalised

fashion. which lead to better design in the long run, and fewer bugs in the short run.

Although Motif binds to many languages, C is by [ar the most common for building

Motif applications [Bra92].

4.2 Dictionary and Parser

We assume that the parser module for the tool would be constructed in a conventional
way. for example. using lex and yacc. The parser module for our tool should include
three parts: a scanner for scanning the input file and generation tokens: a parser which
uses the tokens to check the syntax of the input stream and report errors if there are
any; and constructors which create the skip list (see Section 3.2.3) in memory. We
also tried to find a good parser that could save us some time without repeating the
work someone elsc has done, but we did not succeed in finding a parser that suited
our requirements. The information in the web is so overwhelming that we decided to

continue our work with the following assumptions:

e The source files are free of syntax errors. This assumption is justified by the
fact that maintenance programmers deal with code that has been compiled and

executed.

e We assume we have suitable parser which will scan all the input files and gen-
erate tokens. since there arc no syntax error preventing us from constructing
an output file with those tokens, the output file will be a dictionary file in fixed

format.

e The fixed-format dictionary file will be the base for our tool to create the skip

lists which are the data structure of the tool.

[1D]sp [D-File [sP | D-Pos |SP | ID-Len [sp | D-Len [sp | » |

[1D[sp | D-File | s | D-Pos | SP | ID-Len [sP | D-Len [sp | I-File [SP | 1-pos | SP| * |

[1D]sp | D-File | sp | D-Pos |SP | ID-Len [sP | D-Len [sp|))| nFile | SP| nPos | sp| » |

ID identifier name D-Len length of the definition text

D-File file name where the identifier is defined n-File file name where the identifier occurs, ex. 1-File, 2-File, ...
D-Pos position where ID is defined in D-File n-Pos Pposition in the file n-File

ID-Len length of the identifier name SP one space as seperator

Figure 26: Format of the Dictionary

We do not have a complete implementation of the parser module.

M

4.2.1 Format of the Dictionary

The format of the dictionary is shown in Figure 26.

Let us consider a short example: file main.c contains the main() function which
calls fibonacci() in file calculate.c to calculate the Fibonacci value and prints the
final result returned. File main.c is shown in Figure 27 and File calculate.c is shown

in Figure 28.

[HERERRRRE Aol afe e ol 2 o o 40 246 ol o o6 ok e rvvrvvrr,'
/* main.c */
/* calculate Fibonacci numbers */
JEREERBERR RN R RARER TR ERBEREAAK

int fibonacci(int n)

int main(void)

{
int number;
printf("input an integer: ");
scanf("%d", &number);
printf(""The value of Fibonacci(%d)\n", number, fibonacci(number));
return 0;
}

Fignre 27: ¢ Code of File main.c

After the parser processed the two source files, the output dictionary file should
look like Figure 29. In dictionary file, the position of an identifier is the total number
of characters counted from the beginning of the file. because this is how Motif widget

handles the position of the mouse cursor.

55

4.3 Skip List

As we discussed in Chapter 3. skip lists are easy to implement. Let’s look at the

algorithms for initialisation, search, insertion and deletion [Pug90].

4.3.1 Initialisation

An element NIL is allocated and given a key greater than any legal key. All levels of
all skip lists are terminated with NIL. A new list is initialised so that the level of the

list is equal to | and all forward pointers of the list’s header point to NIL.

lhddddd ddd Al ddd dd i sl il dd d dd it it l ot il

/* calculate.c */
/##*****##********#***********t*‘***#/

int fibonacci(int n)

{
if(n<=1)
retumn n;
else
retumn (fibonacci(n-1) + fibonacci(n-2));
}

Figure 28: C Code of File calculate.c

main main.c 27 4 172,

fibonacci calculate.c 4 9 105 calculate.c 74 calculate.c 92 main.c 4 main.c 165 ,

n calculate.c 18 | 1 calculate.c 30 calculate.c 49 calculate.c 85 calculate.c 102 calculate.c main.c I8 ,
number main.c 47 6 6 main.c 105 main.c 157 main.c 175,

Figure 29: The Dictionary File of File main.c and calculate.c

56

4.3.2 Search Algorithm

We search for an element by traversing forward pointers that do not overshoot the

node containing the element being searched for (Figure 30).

Search (list, searchKey) {
x = |ist->header

x = x->forward[1]

return x->value
else
return failure

/* loop invariant: x->key < searchKey */
for i = list->level downto 1 do

x = x->forward([i]

if x->key == searchKey then

while x->forward(i]->key < searchKey do

/* x->key < searchKey <= x->forward[1]->key */

Figure 30: Skip List Search Algorithin

Search path
Y
> |G A —
AU > . =
2 — 5 \, 7 > zi
G- [=5 2= =24
a: original list, 17 tobe inserted
C
I_1 p—
> _| - B
| = 9= 111 3 ;
| [1= 2| [ohd 4

b: list after insertion, updated pointers highlighted

Figure 31: Pictorial Description of Steps Involved in Performing An Insertion

When no more progress can he made at the current level of lorward pointers, the

S

. scarch moves down to the next level. When we can make no more progress at level
I. we must be immediately in front of the node that contains the desired element (if

it is in the list). See Figure 3la for an example of search algorithm.

4.3.3 Insertion and Deletion Algorithms

To insert or delete a node, we simply search and splice, as shown in Figure 31. Fig-

ure 32 gives algorithms for insertion and deletion. A vector update is maintained so

Insert (list, searchKey, newValue) {
local update(1..MaxLevel]
x = list->header
for i= list>level downto | do
while x->forward[i]->key < searchKey do
x = x->forward(i]
/* x->key < searchKey <= x->forward[1]->key */
updatefi] = x
x = x->forward[1]
if x->key == searchKey then
x->value = newValue
else
newlLevel = randomLevel()
if newLevel > list->level then
for i=list->level+ 1 to newLevel do
update[i] = list->header
list->level = newLevel
x = makeNode {newLevel, seerchKey, value)
fori=1 to newLevel do
x->forward([i] = update(i]->foward(i]
update{i]->forward{i] = x

Figure 32: Skip List Insertion Algorithm

that when the search is complete {(and we are ready to perform the splice), updatel[i]

58

contains a pointer to the rightmost node of level i or higher that is to the left of the

location of the insertion/deletion.

If an insertion generates a node with a level greater than the previous maximum
level of the list and initialise the appropriate portions of the update vector. After
each deletion, we check to see if we have deleted the maximum element of the list and

if so. decrease the maximum level of the list.

4.3.4 Choosing A Random Level

Initially, we discussed a probability distribution where half of the nodes that have
level i pointers also have level i + | pointers. To get away form magic constants, we
say that a fraction p of the nodes with level ¢ pointers also have level i + | pointers
(say p = 1/2). Levels are generated randomly with an algorithm equivalent to the
one in Figure 33. Levels are generated without reference to the number of elements
in the list. Since the random new level of a skip list could be very large, the last line

of code in Figure 33 makes surc that the new level will be MaxLevel + | at most.

randomLevel()
newLevel := |
/* random() returns a random value in [0...1] */
while random() <p do
newLevel := newLevel + |

return min(newlLevel, MaxLevel)

Figure 33: Algorithm to C'alculate a Random Level

4.3.5 At What Level Do We Start A Search? Defining L(n)

In a skip list of 16 elements generated with p = 1, we might happen to have 9 clements
of level 1: 3 elements of level 2; 3 elements of level 3: and | element of level 14 (this
would be very unlikely. but it could happen). How should we handle this? If we use

the standard algorithm and start our search at level 14, we will do a lot of useless work.

Where should we start the search? The analysis [Pug90] suggests that ideally we
would start a search at the level L where we expect 1/p nodes. This happens when
[= log,/, n. Since we will be referring frequently to this formula. we will use L(n) to

denote log,,, n.

There are a number of solutions to the problem of deciding how to handle the

casc where there is an element with an unusually large level in the list.

e Simply start a search at the highest level present in the list. As we will see in
our analysis, the probability that the maximum level in a list of n elements is
significantly larger than L(n) is very small. Starting a search at the maximum
level in the list does not add more than a small constant to the expected search

time.

e \lthough an clement may contain room for 14 pointers, we do not need to use
all 11. We can choose to utilise only L(n) levels. There are a number of ways to
implement this. but they all complicate the algorithms and do not noticeably

improve perforinance.

o I[we generate a random level that is more than one greater than the current
maximum level in the list. we simply use one plus the current maximun level
in the list as the level of the new node. In this way, the level of a node is no
longer completely random. In practice and intuitively, this works well. This is

the solution we use in the implenmientation of our tool.

4.3.6 Determining Maximum Level of a Node

Since we can salely cap levels at L(n), we should choose MaxLevel = L(.V) (where

N is an upper bound on the number of elements in a skip list). If p = &, using

MaxLevel=16 is appropriate for data structures containing up to 2'® elements.

4.3.7 Choosing the Fraction of Nodes With Higher Level

Pointers

As shown in Figure 31, Pugh gives the relative time and space requirements for dif-

ferent values of p [Pug90].

60

Decreasing p also increases the variability of running times. If i is a power of 2,
it will be easy to generate a random level from a stream of random bits (it requires
an average of (log, 1/p)/(1 — p) random bits to generate a random level). Since some
of the constant overheads are related to L(n) (rather than L(n)/p), choosing p = '7 (
rather than }) slightly improves the constant factors of the speed of the algorithms
as well. So he suggests that a value of 1 be used for p unless the variability of running

times is a primary concern, in which case p should be [Pug90].

p Normalized search time Avg. # of pointers per node
(i.e., normalized L(n)/p) (i.e., 1/(1-p))
12 ! 2
/e 094 1.58
1/4 I 1.33
1/8 1.33 1.14
1716 2 1.07

Figure 34: Relative Search Speed and Space Requirements Depending on the Value
of p

4.4 Skip Lists in Our Tool

Based on the above skip lists algorithms [Pug90]. skip lists for our tool are imple-

mented in the following way.

File list: A node of file list corresponds to one file. It stores the file name, pointer

to next file, pointer to its position list and its position list level.

Position list: All nodes of a particular position list are from the same file. Each
node of the position list corresponds to one valid identifier position in this file.
[t stores position number, pointer to a identifier list, pointer to previous oc-
currence and next occurrence and a variable sized array of pointers pointing to

other position node.

61

The identifier list stores information related to an identifier: such as identifier
name. its definition file name, its length, its position number in definition file.

pointer to next identifier. etc.

4.5 User Interface

In this section, we will first look into the two major windows, their structures, layouts
and their functionality, as well as some important issues ol the implementation; then

somne routines will be described.

Our tool has two major windows: one is the browser window, the other is the

definition window.

4.5.1 Browser Window

"The structure of widgets in the Browser Window is shown in Figure 35, and the layout

of the window is displayed in Figure 36.

top

XtVaApplnitialize
toplevel shell

/

main_w

XtVaCreateManagedWidget
XmMainWindowWidgetClass

menubar ©
XtVaCreateWidget
XmVaCreateSimpleMenuBar xmRowColumnWidgetClass

Figure 35: Structure of Browser Window

This is the main window of the tool. First, the top-level shell is created. xm-

MainWindowWidget('lass main_w for the application is built on top of the shell. In

62

main_w we create mcnubar and xmRowColumnWidgetClass re. The menubar con-
tains three pulldown menus: file. dict and help. Before rc is realized. we call function
prompt_dictionarynname() to create dialog window Prompt Window using XmC're-
atePromptDialog(). In the upper part of rc we have widget search_w, fillename.w and
message_display; in the lower part we have reference_window and ScrolledText widget

texrt_w which is the working area of the main_w to display source code.
Now we will go through each widget in main_w in following sections.

Prompt Window

We assumne that a well-formatted dictionary is ready to use as input to our tool. This
dictionary file contains all information about source files. So when we invoke our tool,
the first window that comes up is the prompt window asking for dictionary file name.
The structure of widgets and the layout of the prompt window are shown in Figure

37 and Figure 38 respectively.

Figure 36: Layout of the Browser Window

63

This dialog window asks the user to type in dictionary name, accepts user input
and passes it to call-back function call_creater() to create all data structure in

skip list. If the user selects Clancel, the dialog will simply be destroyed.

l

rc

XtVaCreateWidget
meowColumnWidgetClass

' l ;

 J

dialog

(123

XmCreatePromptDialog

Figure 37: Structure of Prompt Window

Menubar

Figure 39 shows the widget structure of menubar.

Figure 38: Prompt Window Layout

The menubar has three pulldown menus:

o File: under this menu, there are two sub-menus Open and Eril associated with
call-back function £ile_cb().

64

~ when the user selects Open menu

The file_cb() creates a FileSelectionDialog widget (Figure 10) listing

!

menubar

XmVaCreateSimpleMenuBar

y {

file_menu

(File) dict_menu (Dictionary) help_menu (Help)

XmVaCreateSimplePulldownMenu XmVaCreateSimplePulldownMenu XmVaCreateSimplePulldownMenu

y

Exit Dictionary About ... Help

R IR,

.

- ' -
'

- ' I S

XmVaPUSHBUTTON

Figure 39: Structure of Menu Bar

files and directories for the user to choose from, and it associates call-back
function read file() to OA button and XtUnmanageChild with Cancel
button. When a readable regular file is sclected and O button is clicked,
read file() will check the validity of the skip list data structure in mem-
ory and display the content of selected file in the working area of main_w,
i.e. tert_w. If the data structure has not heen created properly in memory,
the user will be advised to re-enter a correct dictionary file name by a
reminder popup window (Figure 1) followed by the prompt window (sce
Figure 38). When OR button is clicked with no file selected, nothing will
be done except returning back to file_cb(). When the user clicks Cancel
button, the FileSelectionDialog widget will disappear and return back to

file cb().

when user selects Lrit menu

The filecb() creates a warning dialog window to confirm user’s inten-
tion. Figure 12 shows the layout of the warning dialog. We quit our tool
when user confirms by clicking OR™ button. otherwise nothing is changed

cxcept that the warning dialog window is removed.

65

e Dict: When the Dict menu item is selected, the prompt window (See Figure
38) will appear for user to enter a new dictionary name. All this is handled by

call-back function dict_cb().

Ty

7 |
!
i‘
i
e |
I I

P o T ey T BT e e A e e e T R RT3 e R T T P . T T T ST e BTy 5 e Yo e

Figure 41: Layout of Reminder Popup Window

o Help: Figure 13 shows the layout of help window. The call-back function
help.cb() will create a help window by calling XmCreatclnformationDialog

with detailed information displayed in it.

66

Details of the Main Window

Figure 14 and Figure 15 shows the structure and layout of the main_w.

Figure 43: Layout of Help Window

o filename_w: This window allows user to type in filename directly. It has the
exact same functionality as the sub-menu Open under File menu and the same

function read file() is invoked.

e search_.w: This window enables user to search for certain string in the opened

file, which is currently displayed in browser window. by typing in the scarch

pattern.

67

o message_display: This message window displays search result messages. If a
given search string is not found. “Pattern not found™ will be displayed. If the

search string is found. its occurrence numbers will be displayed, such as “int is

'

rc

StVaCreateWidget
xmRowColumnWidgetClass

'

found 22 occurrences”.

)

form reference_w text'_w
XtVaCreateManagedWidget XmcreateScrolledText XmcreateScrolledText
xmFormWidgetClass
one (File Name) two (Search String) three (Messages)
XtVaCreateManagedWidget XtVaCreateManagedWidget XtVaCreateManagedWidget
xmLabelGadgetClass xmLabelGadgetClass xmLabelGadgetClass
Y y
filename_w search_w msg_display

XtVaCreateManagedWidget XtVaCreateManagedWidget XtVaCreateManagedWidget

xmTextFieldWidgetClass xmTextWidgetClass xmTextFieldWidgetClass

Figure H4: Structure of the Main Window

o reference_window: This window shows the history of user references. [n Figure

13, we can see each columns in reference_window:

—~ Browsed gives number of references/queries.
~ Identifier gives Lthe name of the identifier.
— DefinitionFilename shows the name of the definition file.

— Position displays the position number of this identifier in current file.

o ferl_uz This is the core area for our tool as it is where file can be opened
and displayed. We called it working area. In working area, a click of cur-

sor positioned on any identifier/routine will invoke the event handler function

show_definition().

63

Figure 45: Main Window With Examples

4.5.2 Definition Window

Figure 16 and Figure 17 shows the layout and structure of the Definition window.

MenuBar

From Figure IT we know that the menubar of Definition window has a similar struc-
ture to that of browser window. So we skip it and go through other parts of definition

window.

Textbar

The tertbar has following sub-fiell:

e FileName gives the name of current file.

69

e Identifier gives the name of the identifier.

e Char# shows the start position in the definition file.

Figure 46: Layout of the Definition Window

Text_win

This window displays definition text. When left mouse button is clicked. the event
handler show_definition() will find out what identifier is clicked, if it is an iden-
tifier or routine it will call create.def w(), which brings up definition window, and
read definitio(), which displays the concerned definition in text_win.

Buttons

e Next hutton: call-back function viewnext() brings the next occurrence in

current file, if any. into display.

e Prev hutton: call-back function view_prev() brings the previous occurrence in

current file, il any, into display.

e Dismiss button: call-back function close def () closes the definition window.

70

4.5.3 Miscellaneous Functions in User Interface Module

update_ref w()
This function updates the reference count in referenc_w. The counter is | when user

first reference an identifier, increment by 1 each time the user references the identificr.

def_dialog
XtVaCreatePopupShell
xmDialogShellWidget
v
pane
XtVaCreateWidget
xmPanedWindowWidgetClass
y : v
form form
XtVaCreateWidget - XtVaCreateWidget
xmFormWidgetClass print xmFormWidgetClass
file close
menubar NEXT
XmVaCreateSimpleMenuBar about 1 XtVaCreateManagedWidget
help | xmPushButtonGadgetClass
help
textbar w_in_textbar | PREV
. »! XtVaCreateManagedWidget - -
xmg:\‘,”aéi)rle::m?ge;tcnm xmTextFieldWi dgetCl ass XtVaCreateManagedW ulget
g] xmPushButtonGadgetClass
w_in_textbar 2
w_in_textbar 3
w_in_textbar 4 DISMISS
tex]_win XtVaCreateManagedWidget
aCreateManagedWidge
XmCreateScrolledText xmPushButtonGadgetClass

Figure 17: Structure of the Definition Window

set_txtbar name()
Display given string in designated text bar widget. It is called in create_def w()

three times to show the right values in tertbar.

modify filename()

7l

Remove the unnecessary characters from the full-path file name until only the file

name is left. This is called in show_definition().

4.5.4 Functions in Data Structure Module

In this module we have a group of functions to initialise and build up the skip list data
structure in memory, and we also have some important interface functions between

the data structure module and interface module.

creater() is the function that get called from the interface module. In order
to create the skip lists. it calls init 1ists() to initialise global variables and calls
build.lists() to read each line of the dictionary file and process them by invoking
process.line(). process.line() process and analyses the input string ‘line’ and

store values to appropriate field in those skip lists.

In process_line(), when a node is read from the ‘line’. we use search file()
or search_position() to determine whether the node exists in the lists. If a new
node is found, new_id_element (), new_file_element () and new_pos_element() are
used to allocate memory for a new identifier/file/position structure and initialise its
fields where necessary. enq.id(), enq_file() or enq_pos() will insert the new iden-

tifier/file/ position structure into global skip lists.

When the user has clicked on an identifier, show_definition() uses the function
search by_pos_in_file() to find out rclated information. Given file namne and po-
sition in this file, function search by_pos_in_file() retrieves the identifier name,

definition file name and definition position.

Debug Routines

Following are some debug routines we used during implementation:
e print_pos_list()
e print_occurrence()
e print file 1list()

e print_id 1ist()

72

e get_prev_occ()

e getnext_occ()

Chapter 5
Conclusion

In this thesis, we present a browsing hypertext tool for maintenance programmers.
As the maintenance phase is the most costly and time-consuming phase in software
system development, our tool is intended to help maintenance programmers. The

tool:

o [t is easy-to-use;

It has no learning curve;

It has reasonable performance:

e [t has no language dependency.

The design and implementation ol our tool are presented in the thesis. We use the
concept and algorithm of skip lists by Pugh to implement the data structure of our
tool. From our research we [ound that skip list is easy to implement and has good

performance compared to other data structures.

We use the concept of hypertext to implement the interface of our tool, which
enables our tool to be casy to use. But we do not change the source files like many
hypertext tools do, and we do not create a set of files for this purpose either so that

no extra space is nceded.

Our tool uses a dictionary file to build data structure in memory. The dictionary
file is created by parser and is a plain text file with certain format. So our tool is

language independent as long as the dictionary file is given.

Our tool does have some limitations. Moreover. our tool can be made better by

future improvement work. Some suggestions for future work are listed below:

e Parser:

This is the biggest limitation in our tool implementation. Due to following

reason, we haven’t had this part completed.

- It is easy to find identifiers in source code: if it is not a keyword or in a

comment or a string and it begins with a letter, it is an identifier.

— Finding identifiers is not enough for our tool because we must distinguish
declaration and use of an identifier. In some languages, such as Pascal,
it is easy to distinguish because Pascal has keyword (VAR, FUNCTION,
PROCEDURE) before declarations. But it is difficult in C because there
are no such obvious *syntactic markers’ in C language and even harder in
C++, which has an ambiguous grammar. Therefore, it is necessary for us
to find a complete C parser to extract declarations and uses of identifiers

for our tool.

— In order to find such a parser, we looked on the Internet. We found a C++
parser but it was too large, which has several hundred C++ classes, to be
incorporated into our tool. We could not find a C parser that would fit
comfortably into the tool. So we decided not to incorporate a parser into

the tool.

Therefore, in this thesis we present a simple example to show how our tool
behaves, and the dictionary file is created manually. Unfortunately this might
greatly affect the utilisation and persuasiveness of our tool for now. With a
suitable parser incorporated in future version of this tool. our tool can hecome

useful and be more appreciated.

o Procedure dependency viewer:
Our tool provides programmers the ability to inspect each occurrence of certain
routine and its definition. This only concerns details on each individual routine.
On the other hand, the procedure dependency viewer can enable programimers
to stand on a higher level and grasp a bigger picture of the whole system, in-

stead of being lost in too many details.

(4

Moreover, we could add some features. such as print the graph of function
dependencies, convert between the text and graph representation of function
dependencies, convert hetween the function call relationship and source code,

etc.

Add some new features or new functionality:

We could add the ability to cdit source files in browser window and definition
windows. This requires not only a set of editing related functions to be pro-
vided, such as cut and paste. undo, save, etc, but also a proper notification to
other users and an automatic update of dictionary file as well as data structures
in memory. One dircction to add the edit ability is to maintain two stated of
the too: one is the plain text state in which source code can be edited and after
modification the dictionary and data structures can be updated accordingly;

the other is the hypertext state in which source code can only be inspected.

New fcatures like adding book mark to help user remember some special loca-
tions in files, saving reference list, and differentiate the browsed and unbrowsed
occurrences in the saved reference list, discard reference history in browser win-

dow, etc.

Becomme part of a software environment:
The tool could he added to with a system interface, so that it could be in-
corporated with other tools to form a unified development and maintenance

environment [Din94].

Application to documentation:

With proper parser. our tool can also be used in design document inspection.
Given the dictionary file generated from a set of files, no matter they are source
files or design documnents or product verification documents. or all above. our
tool can browse and jump between design and code or between code and test

plan.

Appendix A

User Manual

A.1 Introduction

A typical scenario that a user would use this tool is like this:
¢ [nvoke HyperTool from UNIX by typing 'hypertool’ and hit return
e Choose Open from the HyperTool menu to open a file
¢ Select a file from the FileSelection Dialog, click OK

o The selected file is displayed in HyperTool browser window (sec Figure 36).

User can look through the text until he finds an unclear identifier
e Click on this identifier to find out its definition
e The definition text is shown in Definition Window (sec Figure 16)

¢ To find out an example usage of this identifier, click Next or Previous icon at

the bottom of the Definition Window

A.2 Major Services Our Tool Provides

A.2.1 Entering HyperTool
Invocation

At UNIX prompt. the user types "hypertool™.

-}
-3

Effects

e Two windows appear on the screen: prompt window (see Figure 38) followed

by hypertext browser window.

A.2.2 Opening File

The open command allows user to open a file in current directory.

Invocation

User have two methods to open a file: invoke the file selection pop-up window (see
['igure 10) from the File pull-down menu and double click on a file name; or type in

a file name in Filename sub-window.

Effects

e The sclected file is displayed in the browser window.
o If the browser window has text in it already, the old text is replaced by the

selected file text.

A.2.3 Exit HyperTool

The Exit command allows user exit from the HyperTool

Invocation

User selects the Exit sub-menu from File pull-down menu.

Effects

e User will be prompted confirmation message (see Figure 12).
e If confirmed. Definition windows will be closed if exist.
o If confirmed, Browser windows will be closed.

o If cancelled, all windows remain unchanged.

-3
]

A.2.4 Hypertext File Browsing

Acts like a normal text browser. A typical scenario is provided at the beginning of

this appendix.

A.2.5 Getting Help

User can get help information.

Invocation

User clicks on the Help menu in the Browser Window.

Effects

o A Ilelp Window (see Figure 43) appears. User can find relevant info in this

window.

A.2.6 Search a String

A string can be searched in the browser window and highlighted if it is found.

Invocation

User enters a string in the search window and return.

Effects

e If the string is found, it will be highlighted for each occurrence in this file

e [n the message window, a message, indicating the number of occurrences of this
string in this file. will be shown if the string is found; otherwise message "No

such pattern” will be displayed.

A.2.7 Showing Definitions

Browsing through the hypertext. user is allowed to click on any identifier/function.

Invocation

User clicks on an identilier

Effects

e The browsing space stays unchanged and it’s ready to accept any other opera-

tion.

o If the position clicked on is not a valid identifier - for example: user might
click on '+, an addition operator or ‘int’ integer type, the Mcssage sub-window
should show 'No such id in dictionary’. There will be no definition window
created if it didn't exist. But if definition window already exists, the text

displayed in the definition window will be cleared.

e if the identifier is found in dictionary, the definition window will be created if

it did not exist.
e The definition context of clicked identifier will be displayed in the definition

window. Old content in definition window if any will be overwritten.

A.2.8 Close the Definition Window

This function allows user to close the Definition Window.

Invocation

User selects the Close icon in Definition Window File menu or clicks on the DISMISS

button at the hottom of Definition window.

Effects

The Definition window will he closed.

A.2.9 Displaying Next Occurrence

This function allows user to find next occurrence of this identifier in this file

Invocation

User pushes the NEXT button in Definition Window.

Effects

The next occurrence of this identifier will be displayed in Definition window. (The
sequence of 'the occurrence’ is defined by the dictionary: firstly definition occurrence.
secondly the smallest position number. then the next smallest position number in the

rest. and so on.)

A.2.10 Displaying Previous Occurrence

This function allows user to find previous occurrence of this identifier in this file

Invocation

User selects the Previous button in Definition Window.

Effects

The previous occurrence of this identifier will be displayed in Definition window. (The
sequence of 'the occurrence’ is defined by the dictionary: first definition occurrence,
secondly the occurrence whose position number is the closest sinaller number, then

the next closest smaller position number in the rest, and so on.)

81

Bibliography

[And93]

[Ber9l]

[BHTT]

[BoeT6]

[Boe8l]

[Bra92]

[Bus5)

[Bux30]

[BuxsS]

[CNR9O]

Anderson, A. Balanced search trees made simple. Jrd Workshop on
Algorithms and Data Structures (WADS), 1993.

Berk, E. Devlin, J. Hypertext/Hypermedia Handbook. Intertext Publica-
tions, HcGraw-Hill Publishing Company, Inc, 1991.

Browne, J.C. and Hohnson, David B. FAST: A Second Generation Pro-
gram Analysis System. Proceedings of Second [nternational Conference

on Soflware Engineering, 1977.

Boehm, B.W. Software Engineering. [EEL Transactions on Computers,
C-25(12), 1976.

Boehm, B.W. Software Engineering Economics. Prentice-Hall, 1981.

Brain, M. Motif Programming, The Essentials ... and More. Digital Press,
1992.

Bush, V. As We May Think. The Atlantic Monthly, 176(1):101-108, July
19:45.

Buxton, J. DoD) Requirments for ADA Programming Support Environ-
ments. STONEMAN. DoD High Order Language Working Group. Febru-
ary 1930.

Buxton, J. Rationale for Stoneman. Inleractive Programming Enwiron-

ments. Mcgraw-Hill. 1981.

Chen. Yih-Farn. Nishimoto, Michael Y.. and Ramamoorthy, C'.V. The C
information Abstraction System. [EEE Trans. On Software Engincering.

March 1990.

[Col92)
[CR8Y]
(CRY2]
[DEFHST]
[Del92]
[Din9.i}
[DLY7]

[DLKY0]

[DowS7]
[Ferss]
[FH93]

[Fis36]

[FO8Y)

Collins, W.J. Data Structures, an Object-Ovriented Approach. Addison-
Wesley Publishing Company. 1992.

Chikofsdy, E. J. and Rubenstein, B. L. CASE: Reliability Engineering for
Information Systerm. [EEE Soflware, pages 11-16, March 1988.

Cybulski, Jacob L. and Reed, Karl. A Hypertext based software Engi-
neering Environment. [FEE Software, March 1992.

Dart, S.A., Ellison, R.J., and Feiller, P.H.and Habermann, A.N. Software
development environments. [EEE Computer, 20(11), 1987.

Deller, D. Motif Programming Manual, Volume Sir. O'Reilly Associates,
[nc., 1992.

Ding, Hanwei. A Design Tool for Object-Oriented Development. Master's

thesis, Concordia University. 1994.

Delix, A. and LeViet. Q. Contemporary Access Structures under Mixed
Workloads. The Computer Journal, 10(4), 1997.

Damaskinos, V.R.N., Linos, P., and Khorshid, W. VIFOR: A Tool for
Software Maintenance. Software - practice and erpcrience, 20, January
1990.

Dowson, Mark. [ntegrated project support with istar. [EEE Software,

November 1987.

Fernstrom, C. ESF Desgin Guidelines and Architecture. ESF Consortia,
19838.

Flecher, T. and Hunt. J. Software Engineering and CASE. Bridging the
Culture Gap. McGraw-Hill, Inc, 1993.

Fischer, G. From interactive to intelligent systems, in Software Systemn
Design Methods. VATO ASSI Series F: Computer and Systems Sciences,
22(Springer):185 212, 1936.

Fernstrom, (. and Ohlsson, L. The ESI vision of Software Factory. Pro-
ceddings of the [nternational Conference on System Developmenl Enei-

ronments and Factories, May 1989.

33

[GBY]

[GS90]

[HS94]

[JKCGY4]

[KP95]

[LBSS]

[Leh80]

[LF93]

[Lin34]

[LS80]

[MeC89]

[MIIB90]

[Mor33]

Gonnet. G.H. and Baeza-Yatcs, R. Handbook of Algorithms and Data
Structures in Pascal and (. Addison-Wesley Publishing Company, 1991.

Garg, Pankaj K. and Scachi, Walt. A hypertext system to manage soft-
ware life-cycle documents. [EEE software, May 1990.

Halasz and Shwartz. The Dexter Hypertext Reference. Communications
of the ACM, 37(2). Feburary 1994.

Jambor-Sadeghi, Kamyar, Ketabchi, M.A., Chue, Junjie, and Ghiassi, M.
A systematic Approach to corrective Maintenance. The computer Journal,
37(9), 1994.

Kelley, A. and Pohl, I. A book on C. The Benjamin Cummings Publishing
Company, Inc, 1995.

Lehman, M.M. and Belady, L.A. Program evolution. -cadcmic Press.
APIC Studies in Date Processing (27), 1985.

Lehinan, M.M. Programs, life cycles, and laws of software evolution.
Proceedings of the [EEE, 63(9), 1980.

Layzell, P. J. and Freeman, M. J. DOCKET: A CASE Tool and Method to
Support Software system Understanding and Modification. [EEE, 1993.

Linton, M.A. Implementing Relational Views of Programs. Proceedings of
ACM SIGSOFT/SIGPLAN Software Engincering Symp. Practical Soft-

ware Development Environment. May 198

Lientz. B.P. and Swanson, E.B. Software Maintenance Management.

Addison-Wesley, 1930.
McClure, C. CASE is Software Automation. Prentice-Hil. 1989.

McKenzie, B.J.. Harrics, R.. and Bell, T. Selecting a Hashing Algorithm.

Software - practice and erperience, 20(2), Febuary 1990.

Morgan. Configuration Management and Version Control in the Rationnal
Programming Environment. Proceedings of the Adu-FEurope (‘onference,

June 1938.

[MV93)

[NN89|

[PSK96]

[Pug90]

[RDM*87]

[Rip83)

[Schs9]

[Sch95)

[She9T]

[Shn92)

[SSW36]

[Stess]

[SV9i]

Mayrhauser, A. von and Vans, A. M. . From Code Understanding Needs
to Reverse Engineering Tool Capabilities. [EEFE, pages 230-239. 1993.

Norman, R.J. and Nunamaker, J.F., Jr. CASE productivity perceptions
of soft ware engineering professionals. Communications of the ACM, 32(9).
1989.

Paakki, Jukka, Salminen. A., and Koskinen, J. Automated Hypertext
Support for Software Maintenance. The computer Journal, 39(7), 1996.

Pugh. W. Skip lists: a probabilistic alternative to balanced trees. Comm-
nun. ACM,, 33:668-676, 1990.

Rowe, L.A., Davis, M., Meesinger, E. Meyer, C., Spirakis, C., and Tuan,
A. A browser for Directed Graphs. Software - Practice and Erperience,
L7(1). January 1987.

Ripken, K. Automated Support for Design and Documentation of Large
Ada Systems. Milcomp'88 Conference, September 1988.

Schefstrom, D. Building a Highly Integrated Development Environment
Using Preexisting Parts. [FIP 89, September 1989.

Schildt, Herbert. C++: The Complete Reference. Osborne McGraw-Hil,
1995.

Sheu, P. C.-Y. Software Engineering and Environment. Plenum Press,

1997.

Shneiderman, B. Designing the User I[nterface, Strategies for Effec-
tive Human-Computer Inleraction. Addison-Wesley Publishing Company.

1992,

Shneiderman. B., Shafer, P.. and Weldon, L. Display Strategics for Pro-

gram Browsing: Concepts and Experiment. [EEE Software. May 1936.

Steffen, J.L. Interactive cxamination of a C program with Cscope. Pro-

ceeding of USENIX Assoc. Winter Conf., January [935.

Schefstrom, D. and Van den Brock. G. Tool intergration: Enciromnets

and Frameworks. Wiley prelcssional computing, 1993.

85

[Thi90] Thimbleby, H. User Interface Design. ACM Press, 1990.

[TM81] Teitelman, W. and Masinter. L. The Interlisp programming environment.
Computer, 14 (1), 1981.

[TR31] Teitelbaum, T. and Reps, T. The Cornell Program Synthesizer, a syntax-
directed programming environment. Communicaations of the ACM,
24(9):563-573, 1981.

[V1i93] Vliet, Hans Van. Software Engineering. Principles and Practice, 1993.

86

