INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Aliso, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UM! directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48108-1346 USA

800-521-0800

A SOFTWARE TOOL TO DISPLAY MESSAGE
SEQUENCE CHARTS

Xiaoming Tang

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada

January 1999
© Xiaoming Tang, 1999

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your hie Votre reférence

Our file Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-61243559-8

Canadi

ABSTRACT
A Software Tool to Display Message Sequence Charts

Xiaoming Tang

Message Sequence Charts (MSC) is a trace language. It is widely used to show
sequences of messages interchanged between system components and their environment.
It is gaining popularity in software engineering methods for concurrent and real-time
systems. MSC has been standardized by the ITU-T (International Telecommunication
Union, Telecommunication Standardization Sector of ITU) in Recommendation Z.120
since 1992. A new revised standard Z.120 (MSC96) was approved by ITU-T in 1996.
MSC includes two syntactical forms, MSC/PR as a pure textual and MSC/GR as a
graphical representation. An MSC in MSC/GR representation can be transformed
automatically into a corresponding MSC/PR representation. However, the reverse way is
difficult since MSC/PR does not include graphical information such as height, width of
symbols and texts. This report presents a software tool to convert a textual description
into an internal representation, then to display the graphical representation. The object

structure built in this software can be used in the further studying or analyzing of MSC96.

Acknowledgements
A great thanks goes to my supervisor, Dr Gregory Butler, for his great patience and

valuable guidance.

I am also grateful to Dr Ferhat Khendek for bringing me to the interesting communication
world.

Thanks to Steven Li for his help around school.

Finally, I would like to thank my wife, Tong Hu, for her love that keeps me going.

Table of Contents

LINrOdUCHONcocoviireceiiiiicniceetsecreceee e ereceresesasenesssssssssassssnssnonten 1
2 Background Knowledgecccuecervueenrnrncrnernennn creeneseses wee 5
2.1 Basic Message Sequence Charts . . 6

2.2 MSC structure concept and high-level Message Sequence Charts 10

2.3 Our deviation from standard MSC/PRcccvineninninninnnnnnnmonsrssmes 16

2.4 Microsoft Visual C++and MFCcucocirieerrenrennrennennsescseseenennsssens 18

3 The Software TOolcccocevinirenineereirenernenninnsessesssseenssssssssssessasssssesnes 23
3.1 Overall designcccoenerueucnene cesetersestesbisssassosassesressnessessssssstrasassasen 23

3.2 Detail of parsing the MSC/PR 26

3.3 Details of the object structure for MSC 31

3.4 Details of drawing MSC ... 31

3.5 Major classes int the toolceervereerirenriccrncrneceneseenenss 32
3.5.1 Classes used to represent MSC element....... 32

3.5.2 Classes used to represent high level MSC 38

3.5.2 Classes represent the sharp of the MSC elements 41

4 Conclusion and Future Works.................... crenennees 43

REfEIRIICESocueieniiceirnnececreencstenssresesnssestessssasessesessssesssssesessasssssesssenas 45

Appendix A The Grammar of MSC’96.................creereernenrnenresnrensnes 47

Appendix B Tokens..........c.c.ccovvieiinienienieniniiniminencneseessesnessnsnesened 1

Appendix C List of C Function............................. 53

Appendix D Class Dictionary...............ccomvmmcetiennineiinernenmnnnsesssesseses

62

List of Figures

Figure 1 A MSC example in MSC/GR and MSC/PR..

Figure 2 MSC timeout in MSC/GR and MSC/PR

Figure 3 Ordering between two instances

Figure 4 Coregion with generalized orderingco.ecovevreverreenenne

oooooooooo

oooooooooo

Figure 5 An inline alt example in MSC/GR and MSC/PRcccooremvemrnenrecsernenes

Figure 6 An inline exception example in MSC/GR and MSC/PR

11

12

14

Figure 7 High level MSC diSCONNECHONccevrerecrneecnrercrensesenens

Figure 8 High level parallel MSC

Figure 9 The overview of the tool to display a textual MSC...

Figurel0 Relationship of representation classes

Figure 11 Object model for Figure 3

15

...16

24

.34

36

Chapter 1 Introduction

Message Sequence Charts (MSC) can be viewed as a special trace language that
shows the sequence of messages interchanged between communication entities and their
environment. The communication entities are modeled as SDL services, processes and
blocks [1]. The MSC includes two syntactical forms, MSC/PR and MSC/GR. MSC/PR is
a pure textual representation and MSC/GR is a graphical representation [7]. The word
MSC sometimes is used to refer to a single Message Sequence Chart. A single Message
Sequence Chart is used to document a single system, which may be a sub-system of the
system. A Message Sequence Chart is not a description of the complete behavior of the
whole system. It usually covers a partial behavior and merely expresses the execution
trace [2].

Message Sequence Chart’s (MSC) main applications is in the area of
telecommunication systems [4]. However, its usage is not restricted to only
telecommunications. MSC is increasing its popularity within the software engineering
community [3]. MSC has already been adopted by several software engineering
methodologies and tools. For example: MSC can be used in the use case model. In the
use case model, the user and server can be viewed as instances in the MSC. The user’s
request or action can be viewed as a message sent to the server, and the server’s response
can be viewed as a message sent back. The trace of the system can be documented as a
MSC. The different scenarios can be represented by the inline construct or by high level
Message Sequence Chart [5].

Analysis and documentation of a complex system is a crucial and a non-trivial

task. MSC can make this kind of task easy. The main advantage of an MSC is its clear

graphical layout that immediately gives an intuitive understanding of the described
system behavior. Firstly, MSC can be used in the software requirement stage to document
the system [4,6]. It is used to visualize sample behavior of a simulated system
specification [4]. Secondly, MSC is used to guide software design, describe the test cases
and scenarios in the test stage. Furthermore, MSC can be used to express system
properties in the verification stage and in the interface specification. Also, MSC is helpful
in software maintenance and reengineering [4,5,6].

MSC has matured within a very short period of time to become a considerably
powerful and expressive language [6]. At the beginning, MSC was used merely as an
informal and illustrative language. Then it advanced to a formal and descriptive language
[6,7]. The International Telecommunication Union (ITU, former CCITT) approved the
first MSC recommendation Z.120 in 1992 [2]. A formal syntax and semantics for MSC
has been standardized in the Z.120. That increased the usage and popularity of the MSC
language. MSC’92 was influenced very much by the idea coming from Petri Nets with its
composition mechanisms based on conditions [7]. However, the language constructs
defined in MSC’92 are not sufficient to describe an information system comprehensively.
MSC’92 has to be used in combination with other languages like SDL. Thus, the study
group of ITU developed corresponding formal semantics based on process algebra [6].
Then ITU approved the new standardization of MSC, which is MSC’96 [1]. MSC’96
becomes a powerful synthesis of concepts taken from process algebra, Petri Nets, and
from object oriented modeling (6]. The object-oriented community has shown interest in
using MSC. Now, it is even under discussion within the “Unified Method for Object

Oriented Development” [13].

The standardization of MSC by ITU makes it possible to provide tools to support
it, to exchange MSCs between different tools and to ease the mapping to and from SDL
specifications. Many tools are built for this purpose. One example is ObjectGEODE.
ObjectGEODE is a software that user can draw and edit a MSC/GR. The elements of the
graph are the elements of MSC. ObjectGEODE can transfer the graphic MSC into the
textual MSC [15]. However most of those tools are graphical editors based on MSC/GR.
They transform an MSC from MSC/GR representation into a corresponding MSC/PR
representation [7]. However, transforming an MSC from MSC/PR representation to
MSC/GR representation is not so obvious since MSC/PR does not include graphical
information such as height, width, or alignment of symbols and texts. One problem is
displaying the MSC in the right position. MSC'96 has a very rich grammar, which
supports both instance-oriented and event-oriented representations in MSC/PR. In
instance-oriented representation, MSC is ordered by instance. And in event-oriented
representations, events are listed in form of a possible execution trace. Event-oriented
representation is preferable to describe the global ordering. It is closer to the graphical
grammar. It is less ambiguity using event-oriented representations in the PR-GR
transformation [7]. Mixture of above two syntaxes is allowed in MSC’96. That makes it
even harder to transfer a textual MSC to a graphical MSC.

The MSC/PRs are not only used internally by tools, but also edited by human [7].
The MSC is used frequently in connection with the SDL language. The MSC/PR can be
analyzed by SDL tools in the cases of validation, tracing, debugging, simulation and test
case specification [1,4,6,14]. Also MSC/PR is easy to be convert to process algebra, and

to be modified, adjusted during the analysis. So transformation of MSC/PR to MSC/GR

is important to visually observe the results of modification. Although there is GIF(
Graphic Interchange Format), which is a standardized graphic format, for the exchange
between different tools, it is basically display the same graphic under different tools,
specially in the web site. It is not easy to transfer the element in the graphic as object.
Thus, using MSC/PR to exchange and edit between different tools is easy. What do we
need is that there are tools to analysis the syntax and semantic of MSC/PR and represent
itin MSC/GR.

This paper presents a new software tool, which transfers a textual representation
of MSC (MSC/PR) to a graphic representation (MSC/GR). This software will read the
textual representation of MSC, analyze it and build a network of objects of class to
represent it, then display them graphically.

Chapter 2 briefly reviews the syntax and semantics of a basic MSC and high-level
MSC. It also reviews the Microsoft Visual C++ that the software is based on. Chapter 3
describes the design including assumptions, overview, and detail. Chapter 4 provides
conclusions, covers some issues of further work, and describes the experience that [have
learned. Appendix A presents the grammar of MSC. Appendix B presents the tokens used
in the parser. Appendix C presents the C functions of the project. Appendix D presents

the classes of the project.

Chapter 2 Background Knowledge

Message Sequence Charts (MSC) is graphical specification formalism. It focuses
on the messages interchanged between communication entities and their environment. As
mentioned in the introduction, the use of MSC has evolved from describing and
visualizing sample, finite system runs and test cases as basic MSC, to describing the
behavior of complex system in a modular and hierarchical fashion as high-level MSC [3].
In the first section of this chapter, we review the specification of basic MSC. In the
second section we describe the high level MSC. The third section is about our deviation
from standard MSC/PR.

Microsoft Visual C++ is a popular software package for programming under
Microsoft Windows in PC environment [8]. It also can be used as a C/C++ compiler for
writing C/C++ programs under PC platform. The Microsoft Foundation Class (MFC)
library has a set of powerful tools to create applications for Windows [10]. In the section

4, abrief review of MFC is given.

2.1 Basic Message Sequence Charts

Basic MSC describes a partial behavior of a system. It describes the finite
executions of the processes in the system [1]. Figure 1 shows an example describing a
successful connection case. The left side of the figure is MSC/GR. And the right side is

MSC/PR

msc connection;
inst Initiator, Responder;
~MSC connection instance Initiator: process digit;
- condition Disconnected
Initiator Responder shared Responder;
process digit process digit in ICONTreq from env;
r 1 [| out ICON to Responder;
| in ICONF from Responder;
i out ICONconf to env;
Disconnected > condition connected
shared Responder;
endinstance;
ICON ICONind 4/ instance Responder: process digit:
coNF | tcomes | TR
ICONconf | in ICON from Initiator;
< out ICONind to env;

in ICONresp from eav;
< connected > out ICONF to Initiator;
I S condition connected
shared Initiator;
endinstance;
endmsc;

ICONreq

Figure 1 A MSC example in MSC/GR and MSC/PR

Basic MSC contains all constructs that are essential to specify the message flow.
Those constructs are instance, message, environment, gate, condition, action, timer,
instance creation, and instance stop [7]. The most important construct is instance [2],
which is represented as a vertical line delimited by a start and an end in the Figure 1. An
instance of an entity is an object of the entity. An entity can be a process, a block, a
system or a service. An entity name may be specified for the instance. In Figure 1,

instance “Initiator” is an object of entity “process digit”.

In MSC/GR each horizontal or sloping arrow represents a message. A tail of the
arrow denotes the event message sending. The head denotes the event message
consumption. In the MSC/PR, a message inter-change between two instances is split into
two events: the message input denoted by keywprd in, and message output denoted by
keyword out. A message has a name and may have parameters. A message can be sent to
“lost”, which means it is not consumed. Or a message can be received from “found”,
which means it appears from nowhere.

The system environment is represented by the frame symbol of MSC, that is, the
boundary of the diagram, in MSC/GR, and by the keyword env in MSC/PR. The
environment can send or receive messages. In Figure 1, instance “Initiator” receives
message “ICONreq” from the environment and then sends “ICON™ to instance
“Responder”.

A gate represents the interface between MSC and its environment. A message
sent to the environment or received from the environment is associated with a gate. A
gate name can be implicitly or explicitly given. The explicit gate name will appear on the
diagram of MSC/GR. In MSC/PR, all gates are defined in the interface by a gate list.

A condition describes the state of a non-empty set of instances of the MSC.
When a condition refers to all the instances in the MSC, it describes the global state of
the MSC. Otherwise it describes a non-global state. If it only refers to one instance, it
describes the local state of the instance. In Figure 1, condition “Disconnected” is a global
state that describes the initial state of the communication. A global condition can be an

initial global condition, an intermediate global condition, or a final global condition. In

Figure 1, “connected” is the final condition. A condition is defined by the keyword
condition in MSC/PR.

An action describes an internal activity of an instance. In MSC/GR, an action is
a box that contains the text of the action. The keyword action is used in MSC/PR.

A timer is used to describe timer request, like time expiration, of an instance.
Time expiration is represented though set a timer and a subsequence time out. Time
supervision is represented though set a time and a subsequence reset timer. Timer is
represented by an hourglass in MSC/GR. The keywords set, reset, and timeout are used
in MSC/PR.

Using the instance creation and instance stop to represent a dynamic
communication system. In such a system, an instance can appear and disappear during
the run time. It can be created by another instance and terminate (stop) itself. The
instance creation symbol in the MSC/GR is a dashed arrow from parent instance to the
head of the child instance. The instance stop is a cross in the end of the instance axis.
Only the instance created by another instance can stop itself. The keyword create and

stop are used in MSC/PR. Figure 2 shows action, set timer and reset timer.

MSC time_out
" msc time_out;
Initiator W“&‘ﬁt inst Initiator, Responder;
[| _ process digl instance Initiator;
[] in ICONreq from env;
ICONreq action ‘counter=1";
- > out ICON to Responder;
Counter=1 se“ tT;
ICON | 1coNind_| aut IESind to env;
T > endinstance;
instance Responder;
in ICON from Initiator;
) out ICONind to env:
IDISind endinstance;
¢ endmsc;
I

Figure 2, MSC time_out in MSC/GR and MSC/PR

The order of one MSC is partial ordering. No ordering of message within
environment is assumed. Within each instance, time is running from top to bottom;
however no proper time scale is assumed. Also no global time axis is assumed for one
MSC. The events along the instance axis are ordered (exception in high-lever MSC).
Events of different instances are ordered via message(s) or via generalized ordering
mechanism among the orderable events of difference instances. A message must be sent
before it is consumed. In Figure 2, event “out ICON” is before “in ICON™, so before “out
ICONind”. The orderable events are message event, create instance, timer events, and
action. The keyword before and a label are used to specify the order in MSC/PR. In
MSC/GR is an arrow connecting two events. Figure 3 shows the generalized ordering
mechanism.

MSC TSD
. msc TSD;
Initiator Responder inst Initiator, Responder;
C | __process digit instance Initiator;
[] in ICONreq from env;
ICONreq out ICON to Responder before labell;
——-—D\. [CONind out [DISind to env;
iy > endinstance;
IDISind instance Responder;
ICONresp labell in ICON from Initiator;
in ICONresp from env;
endinstance;
I endmsc;

Figure 3, Ordering between two instances

2.2 MSC structure concept and high-level Message Sequence Charts

The structural language elements are introduced into MSC to specify more
general MSC or refine MSC. Those elements are the generalized time ordering,
composition and decomposition of instance, MSC reference and composition of events
inside the MSC. Then high level MSC is added to MSC. High level MSC focuses
completely on the composition aspects. It acts like a road map, which gives a very good
characterization how individual MSC composed into an overall system [6]. The structural
language elements are coregion, instance decomposition, inline expression, MSC
reference, and High-level MSC.

Coregion is used to indict the non-deterministic period in one instance. It marked
with starts (keyword concurrent) and ends (keyword endconcurrent). During this time
period, event is unordered expect explicit ordering. The explicit ordering can be the
generalized ordering mechanism mentioned above, or the timer which must be set before
cither reset or timeout. Figure 4 show a coregion with generalized ordering. The dashed

instance axis is used to represent coregion in MSC/GR.

10

MSC connectivity
Init_Resp_service msc connectivity;
[] inst Init_Resp_service;
concurrent;
in ICONreq from env before labell, label2;
ICONreq) label1 out ICONind to env before label3;
f ICOde, label2 out IDISind to env;

label3 in ICONresp from env;
ICONresp endconcurrent

endinstance;

endmsc

IDISind

a—

Figure 4, Coregion with generalized ordering

In Figure 4, “input ICONreq” is before “out IDISind”, “in ICONresp”, and “out
ICONind”. “out ICONind” is before “in ICONresp”. “out IDISind” is unordered with
“out ICONind” and “in ICONresp”.

A MSC instance can be referred by another MSC. This technique is called
instance decompoesition. It is used to determine the transition between different entities
of different levels of abstraction. The referred MSC may have explicit name or take the
same name as the instance. In both MSC/PR and MSC/GR, the keyword decomposed is
used.

The inline expression describes alternative ways for event execution in the MSC.
It is used to hold different situation in the presentation of the system. There are five inline
express, alt, opt, par, loop, exc.

The alt inline expression means there are two set events and only one set is
executed. In such case, MSC has common part of events and separate part belongs to
each case. The keyword alt is used in MSC/PR. See the example in Figure 5 that shows

the special situation where “user A” is busy.

11

MSC Reply_A_Busy msc Reply_A_Busy;
instance User_A;
User_A Network User_B condition Status_Check_A shared

E | | | | I jall:
out Facility to inline Z via gl;
~— Status_Check A In Facility_2 from network;

Iy
condition User_A_Busy shared all
Al ;J |endlnstance;
. - instance Network;
Facili le‘% 4—XT condition Status_Check_A
gl shared all;
- altbeginZ ;
Facility T gate g1 out Facility to lost
external in Facility from User_A;
timeout T;
alt;
Facility_2 gate g1 out Facility to Network;
< Suspend ; in Facility from eav via g1;
reset T;
Some altend;
I actions out Facility_2 to User_A;
out Suspend to User_B;
" User_A_Busy condition User_A_Busy shared all
endinstance;
— instance User_B;
condition Status_Check_A
shared all;
In Suspend from network;
Figure 5, An inline alt example in MSC/GR and MSC/PR condition User _A'ieBusy:'lured all
endinstance;
endmsc

In Figure 5, in alternative 1, network is waiting for a message from user A but the
message is lost. Then timer T is expired. In alternative 2, network received the busy
message and reset time T. The gate “gl” is the inline gate used to define the connection
point for the inline expression to outside. There are also timeout, send message to lost
and gate interface in the Figure 5.

The opt inline expression means the part of event of the system is optional. That
means the part of system may never happen. It is same as an alt inline expression where

the second operand is the empty MSC. The keyword opt is used in MSC/PR.

12

The par inline expression means that all events within the parallel sections are
executed. The only restriction is that the event order within each section is preserved. The
keyword par is used in MSC/PR.

The loop inline expression is the set of events will be executed at least some
times (low boundary) and at most some times (upper boundary). The loop may execute
infinite time if the upper boundary is infinitive. It may also not be executed at all if the
lower boundary is greater than upper boundary. The keyword loop is used in MSC/PR.

The exc inline expression means a compact way to describe exceptional cases in
a MSC. The mean of the operator is that either the events inside the exc inline expression
are executed and then the MSC is finished, or the events following the exc inline
expression are executed. It likes the alt inline expression, which the second part is the
entire part of MSC after the exc inline expression. The keyword exc is used in MSC/PR.
There is an example in Figure 6.

Figure 6 shows that the system connection is either failure or success. The
connection is failed if the response is not coming within time expiration, then the system
will remain disconnected. The connection is success if the response is coming in time,

then system is connected.

13

MSC exception

<I Connected

Initiator Responder
Disconnected
ICONEa
X_ ICON ICONind
T
Wait_for_Resp
exc)
<—XT
IDISin
Disconnected
ICONF ICONresp
‘ﬁ
T
ICONFconf '_X
o m———

msc exception;
Initiator: instance;
Responder: instance;
all : condition disconnected;
Initiator; in ICONreq from env;
out ICON to Responder;
setT;
Responder: in ICON from Initiator;
out ICONind to env;
all: condition Wait_for_Resp;
exc begin;
Initiator: timeout T;
out [DISind to env;
all : condition Disconnected;
exc end;
Responder: in ICONresp from env;
out ICONF to Initiator;
Initiator: in ICONF from Responder;
resetT;
out ICONFconf to env;
all : condition Connected;
Responder: endinstance;
Initiator: endinstance;
endmsc;

Figure 6 An inline exception example in MSC/GR and MSC/PR

The MSC reference is used to refer other MSC in the same document. It may

also have the mapping from the current MSC element to the referred MSC element. Such
element can be messages, instances, gates, and MSCs. MSC reference is done by a point

to the reference text in MSC/GR and by the keyword reference in MSC/PR.

MSC'96 defines all above structure concepts. In addition to that, it also defines

by HMSC.

high level MSC (HMSC). The elements of a high level MSC can be MSC (basic MSC
or high level MSC), conditions, MSC reference, and connecting point of MSCs. The
whole system is divided into objects and each object is a MSC. HMSC explains how the
whole system is constructed and how is the overall control. HMSC can also define the

alternative execution path or a parallel subsystem. The subsystem may also be described

Often the word MSC refers to high level MSC.

14

Figure 7 shows a system started from disconnected state and tries to connect. Due

to either request message is lost or time is out, the system goes back to disconnected

state. MSC “message_lost” is that system receives a connection message from

environment and lost inside system. MSC “time_out” is that the request is send out to

environment after getting connection message, but time is out before getting response

from environment. MSC “disconnection” is that a disconnect indicator is sent to

environment. Those basic MSC is not drawn in the figure 7.

msc disconnection

disconnection

msc disconnection;
exprLl:
L1: condition disconnected
seq (L2 alt L3);

L2: message_lost seq (L4);

L3 : time_out seq (I4);

LA: disconenction seq (L1);
endmsc;

Figure 7 High level MSC disconnection

Figure 8 shows parallel composition. The system receives a connection request

from “Initiator” and a disconnection request from the ‘Responder’ at a same time. Two

requests are parallel. The basic MSCs CR and DR are not showed in the figure.

15

msc parallel

i | expr L4;
DR CR LA : DR seq (LS);

msc parallel;
exprLl:
L1: exprL2;
L2 : CR seq (L3);

L3 :end;
endexpr;
par

endexpr;
seq (L6);
L6 : end;

T ke

Figure 8 High level parallel MSC

! LS : end;

2.3 Deviation from standard MSC/PR

In this section, some detail of MSC/PR, which is not mentioned in last two
sections, but they are related to the project will be discussed. The concrete textual
grammar of MSC is listed in Appendix A.

The grammar defines MSC document. A MSC document contains one or several
MSCs. The MSC inside the same document is visible to others. A MSC can refer to
another MSC in the same document. Usually the high level MSC is put with its basic
MSC element in the same document. Only one MSC document is allowed for one MSC
textual file (2]. The MSC document defined here is different from the text file generated
by ObjectGEODE [15].

MSC uses Backus-Naur-Form (BNF) in its grammar. The name of a MSC object
is take wider ranger characters in the Z.120. Those characters include notional like ‘#',
or ‘{‘. The grammar used has minor variations from the standard, in that names have a

more restrict syntax. Our syntax is defined here:

16

<alphanumeric> ::= <letter> | < decimal digit>

<full stop> ::=.

<underline> ::= _

<word> ::= { <alphanumeric> | < full stop> } * <alphanumeric> { <alphanumeric> | <full stop> } *
<name> ::= <word> { <underline> <word> }*

MSC has three types of comments. First one is started with “/*” and end with
“*/, this one is supported by this project. The second one is started with keyword text,
but this one only appears in a fix place in the grammar. According to the grammar, it can
only appear in the body of basic MSC. The third is started with keyword comment.
Z.120 attaches it with the end symbol, ‘;’. This make it can appear in the end of event
statement. In this project, I changed to not attaching the end symbol. If the keyword
comment is found, all the following characters in the same line will be ignored.

In Z.120, the <identifier> ::= [<< <text> >>] <name>. In the project, only take
the name, as <identifier> ::= <name>.

There are two types of representations, instance-oriented and event-oriented. The
MSC/PRs in the Figure 1 to Figure 5 are instance-oriented. The MSC/PR in the Figure 6
is event-oriented. Event-oriented textual representation is new to MSC and more readable
than instance-representation. Both representations can be used, but the semantic of mix
usage is not very clear [2,7]. User should not mix them in an MSC. Also an instance must
declared first before it has event. It can not have event after it is ended.

The gates in the MSC can have order with other gates. A default order out gate
is before one event. The default order in gate is before another gate. The display rules
are very complicated. Also there are not enough examples can be found. Therefore this
project only supports to parser the orderable gate, not to display it.

The grammar of inline expression of MSC makes it possible to have new instance

declared inside the inline expression, and also a nesting inline expression. User can

17

declare a new set of instances inside inline expression and have all events belonged to
the new instance. However it is not what the inline expression means and makes cause
confusing. Since the structure of MSC reference and high level MSC are powerful, I
assume no one uses pervious method. No nesting inline expression is supported
although maximum five nesting inline expressions are supported in the parser part. The
events inside the inline expression belong to the instances which own the inline
expression.

MSC reference can have very powerful combination according to the grammar,

but the usage is not clear [7].

2.4 Microsoft Visual C++ and MFC

Microsoft Visual C++ (Visual C++) is a software package based on PC. Visual
C++ can be used to compile and build a program, which is written in C/C++. It has a
graphic interface for the user to edit their programs, list class hierarchy tree [10]. Visual
C++ with its sophisticated application framework, is for professional programmers [8].
The build-in class libraries are tools for user to create applications for windows. The
basic library is Microsoft Foundation Class [10].

The window base program processes user input via message from the operation
system. MFC simplify programming by hiding the main function and structuring the
message-handler process [10]. The AppWizard in MFC is a code generator that creates a
working skeleton of a windows application [8]. The base class in MFC is CObject. The

general-purpose classes are derived from CObject [10]. Those classes are file manager,

18

data structure collections, template based classes. CString class, CStringList class, and
template CList class are used as basic data structures in this project.

CObject is the principal base class of MFC. It serves as the root both for library
classes and the classes defined by user. It supports serialization, run-time class
information, object diagnostic output and compatibility with collection classes [10]).

CString represents a variable length string. It is the replacement of C strings and
the associated standard C library. It has a constructor which user can pass C style string.
It overloads binary operators like compare two CStrings. This class is used to hold the
name in the MSC/PR. CString can be used as const char* in C.

CStringList is a list class , which is a doubly link list for store CStrings. It has
following main functionality: adding an element in the head or tail of the list, peeking
the list head and tail, removing an element or all elements from the list, accessing the
element of the list, inserting an element into the list at any position, iterating through the
list, and finding an element.

CList , CList< TYPE, ARG_TYPE >, is a template version of the list class. It
allows user to store any type of data. TYPE is type of object stored in the list.
ATG_TYPET is the type used to reference objects stored in the list. It supports ordered
lists of non-unique objects. Access the objects can be done by sequentially or by value.

CPoint represents a two-dimensional point with x, y coordinates.

The Graphic Device Interface (GDI) refers to the graphic output functions to
windows. GDI separates the window program from physical devices such as screen. All
GDI functions appear as the member function of CDC class. User can do all drawing

through the member functions of a CDC object. CDC class provides member functions

19

for device-context operations, working with drawing tools, type-safe graphics device
interface (GDI) object selection, and working with colors and palettes. It also provides
member functions for getting and setting drawing attributes, mapping, working with the
view port, working with the window extent, converting coordinates, working with
regions, clipping, drawing lines, and drawing simple shapes, ellipses, and polygons. CDC
member functions are also provided for drawing text, working with fonts, using printer
escapes, scrolling, etc.

In the AppWizard, CDocument class and CView class are basic classes to
display the draw.

A document represents the unit of data that the user typically stores in. The
CDocument class provides the basic functionality for user-defined document classes.

CDocument class supports standard operations such as creating a document,
loading it, and saving it. The framework manipulates documents using the interface
defined by CDocument.

An application can support more than one type of document. Each type of
document has an associated document template; the document template specifies what
resources are used for that type of document. Each document contains a pointer to its
associated CDocTemplate object.

Application programs interact with a document through the CView object(s)
associated with it. A view renders an image of the document in a frame window and
interprets user input as operations on the document. A document can have multiple views

associated with it. When the user opens a window on a document, the framework creates

20

a view and attaches it to the document. The document template specifies what type of
view and frame windows are used to display each type of document.

Documents are part of the framework's standard command routing and
consequently receive commands from standard user-interface. A document receives
commands forwarded by the active view. If the document doesnt handle a given
command, it forwards the command to the document template that manages it.

When a document’s data is modified, each of its views must reflect those
modifications. CDocument has the UpdateAllViews member function to notify the
views of such changes.

A view is attached to a document and acts as an intermediary between the
document and the user: the view renders an image of the document on the screen ,
printer, etc. The CView class provides the basic functionality for user-defined view
classes.

A view is a child of a frame window. More than one views can share a frame
window. A CDocTemplate object establishes the relationships between a view class, a
frame window class, and a document class. When the user opens a new window, the
framework constructs a new view and attaches it to the document.

A view can be attached to only one document, but a document can have multiple
views attached to it at once. User application can support different types of views for a
given document type. For example, a word-processing program might provide both a
complete text view of a document and an outline view that shows only the section
headings. These different types of views can be placed in separate frame windows or in

separate panes of a single frame window.

21

A view may be responsible for handling several different types of input. A view
receives commands forwarded by its frame window. If the view does not handle a given
command, it forwards the command to its associated document through a message map.

The view is responsible for displaying and modifying the document’s data but not
for storing it. The document provides the view with fhe necessary details about its data.
A view access the document’s data members directly or by member functions in the
document class for the view class to call.

When a document’s data changes, the view responsible for the changes typically
calls the CDocument::UpdateAllViews function for the document, which notifies all the

other views.

Chapter 3 The Software Tool

This section describes the overview of the software I developed. The software
input is a text file, which contains the textual MSC. The software tool has three functions.
The first one is parsing a MSC/PR text according to the grammar of MSC'96. The second
is building a set of objects of the classes in the MSC/PR. And the other is displaying the
shape of those classes in a window.

The requirements of this project are to parse the text format MSC, detect syntax
or semantics errors, create the objects to represent the MSC concepts like instance,
message and action, and to represent their relationships, and to draw those objects in the

window.

3.1 Overall design

The software is divided into three subsystems : parser, MSC structure, and visual
classes. Each subsystem represents one of the three functions. The system is not a three
layers system. Actually it is like three set of functions or classes dependence on the

language. Both C and C++ are used. The overview of the tool is in Figure 9.

Text file of MSC

Token & Identifier
—P

Lexical Analysis Parser

Get next token

Object pointer
Symbol Table " P! Create Object Structure
Update
Calculate position
Add to list
Build View < Update Position

l Display in Window

Figure 9 : The overview of the tool to display a textual MSC

The parser subsystem has a set of C functions for the parser. The parser has three
subsets of functions. The first subset functions are used to read string from the text file to
the buffers, delete white space, and then get the next token. See appendix B for the list of
Token. The second subset functions are parser functions. They uses the token information
and production rule of the grammar to check the syntax. Some functions are recursive.
The third subset functions are used to build symbol table to check semantics. The symbol
table is also used to build the classes. The symbol table is a class. Two symbol tables
object pointers are used. One has the name of each MSC and pointer to it. The other one

has all the important element of one MSC.

MSC structure subsystem is a collection of classes. It defines the classes and their
relationships. It looks like a relational database with entities. The classes are in same
level except inline loop class that is a child class of inline class. An object of the class,
which represents the element of MSC, represents an object of a MSC. For example : an
object of instance class is created for an instance of a MSC. A MSC has a correspond
MSC object. Using the construct functions and other element functions, the objects of
the classes are built during the parsing. The whole classes relationship diagram looks
like a tree. The MSC document is the root node; Basic MSC or HMSC is its child. Class
instance is a child of basic MSC, and so on. All the objects can be reached through the
object of MSC document object. This object has pointers that pointed to the MSC or
HMSC in the MSC document.

The parser functions are the draw force to invoke other functions. The objects of
the classes are built during parsing the text file. After a MSC is parsed, all the objects of
that MSC are known. The symbol table is used to update some objects.

The draw part is done by calculating the position of each object in the display
window. Assign the sharp class to each object. The shape class is assigned to a list in the
AppWizard view document. After the document is built. the view class will display
those object in the windows. All are done after the parser is finished.

Some restrictions, such as the length of a name, are applied in this project. The
whole software is not case sensitivity that means user used lower case is same as the

upper case.

3.2 Details of parsing the MSC/PR

The parser sub-system has three sets of functions as mentioned in previous
sections. The first set is used for lexical analysis. The second set is used for parser
analysis. The last one is a C like class used for symbol analysis. The parser is base on
top_down parser method. The input file is only read once to retrieve.

In the parser subsystem, we use some restrictions due to the limitation of the
program. The maximum length of a name, L_IDENTIFIER, is 32.

In the lexical analysis, two buffers, each size is 256, are used. Using two buffers
is for the lookahead technique. At the beginning of parsing, two blocks of characters are
read into the buffer. The function MSC_Ix_getchar() is used to get a character; After
return the last character in the current buffer, it will switch buffer by pointer switch, and
load a new buffer by calling buffer function. Function MSC_lx_lookahead() is used to
returning next character to read as a peek. Function MSC_Ix_skip_wsp() is used to skip
all white space, like space, tab, or comments. MSC_Ix_get_token() is to get next token.
MSC_Ix_get_token() calls MSC_Ix_skip_wsp() to skip white space, then gets next
character and decides what to do according a global table. The table, which is used for
each ASCII character, is an array of structure. The structure contains the function pointer
and a token code associated with the character. There are two kind function pointers,
which point to function MSC_Ix_letter() and MSC_Ix_just_return(). Those functions will
return the token. MSC_Ix_get_token() passes the return token to the calling function. If
the character is one of the characters made word, MSC_Ix_letter() is called. The word
definition is given in section 2.3. In this function, it calls another function to get a stream

of characters, which make a word. Then if it is underlined next, call the function to get

another word. Repeat until the string passes the limit of a name or to a character that is
not in the word definition. Then this name string is compared with the keywords, and
returns either the token of the keyword or a token of identifier to indicate the string is a
name. The string is stored for further usage if it is an identifier. MSC_Ix_just_return() is
just return the token assigned in the table. For most character, the token returned is an
error token to indicate unexpected character, for example: $, is found. The other is
return the token value, for example: char “;’. The char *;’ is a terminal symbol. Each
MSC statement is ended with *;’, like in C/C++ language [9,12].

The main assumptions in the lexical analysis is that the input file is a non-empty
text file.

The parser functions are built according to product rule. The parser uses the
recursive descent method [11]. The name of the function starts with MSC_ps_. For
example: rule 11 <msc inst interface> ::= inst <instance list> <end>. The function to
parse it is: MSC_ps_msc_inst_interface() is like

MSC_ps_msc_inst_interface(){

get token inst;
MSC_ps_instance_list() ;
\ MSC_ps_end();

Another example is for rule 12, <instance list> ::= <instance name> [:<instance

kind>][,<instance list>]. The function is like:

MSC_ps_instance_list) {
if (token == name) {
get name;
if (token == *:")
MSC_ps_instance_kind() ;
if (token == *,"
MSC_ps_instance_list();

27

}

A global variable is used to record the current token. The parser of high level
MSC is straightforward. But the parser of basic MSC is difficult and will be discussed in
the following parts.

The problem we got is that MSC’96 is not a LL1 grammar [11]. Sometimes the
second token is needed to decide which rule should be used. In the event-oriented
representation, a name can be the name of instance or the name of event according to the
product rule 22 to 30 (in appendix A). The MSC/PR in figure 3 can be rewritten as:
msc TSD;
inst Initiator, Responder;

Initiator : instance ;
in ICONreq from env;
out ICON to Responder before labell;
Responder : instance;
labell in ICON from Initiator;
Initiator : out IDISind to env;
endinstance;
Responder : in ICONresp from env;
endinstance;
endmsc;

In this example, the identifier Responder is a name of instance, which is the start
of <event definition>. The identifier labell is the name of event, which is start of
<orderable event> . Only knowing next token is a name, it is not enough to decide which
product rule to be used. A structure, similar to the stack, is used to store token. The push
function stores a token to the stack. The retrieve function either returns the store token or
gets a new one if the stack is empty. This structure is also used later in the inline

expression since inline expression needs two tokens to know its end.

Another problem is that the <instance name list> can only have one instance. By
the rule 22 to 30 and the rule 60 to 65, both following statements are correct.
instance_name : condition condition_name shared; <--~ <instance event>
instance_name : condition condition_name; <-- <multi instance event>
But the following statements are wrong:

instance_name : condition condition_name shared; <— <instance event>

alt begin inline_name ; <-- <multi instance event>
instance_name : condition condition_name; <--- <multi instance event>
out message_l toenv ; <-— <instance event>

since they mix the product rule of <instance event list> and <multi instance event list>.
In such case, using which product rule can not be decided until the keyword shared is
found or not found. Then the parser knows the rule for next event statement. A set of
functions and a local static variable are used to deal with this problem. The variable is set
to be single instance statement at the beginning of rule 22. Then it changes the value if
multi instance event statement is found. The above problem is also the reason why the
keyword shared should be in the statement even a condition is only for an instance.

Some product rules share one function, like rule 76 and rule 82. This is because
the above reason and they are similar. In the grammar is the in rule 81 to 86. <inline
expr> calls back to <msc body>. The parser is push the local variable, which is used to
distinguish multi-instance event list and single instance event list, to another stack and
pop out later.

In symbol analysis, a class, MSC_table, is used. This table is a hash table using
double hash functions. The node of the table is a structure. The structure has name of the

element (used as a key), name type(the name is event name, ..), status(like declared,

defined), and a general pointer pointed to the object(like to the instance). The class has
following public element functions.
e search_table() : search table by the name.
¢ insert_table() : insert a element into the table. If the element is already in table, either
ignore the insert or print a error message. The message name can be duplicated. The
other names are not.
e update_table() : either updates the status or the object pointer by key name.
e get_ptr() : return the object pointer.
e get_status() : return the status by the name or the position.
¢ update_event_link(): update the pointer of orderable event. Since the after event is
only known after all MSC is parsed.
A global table is created for the MSC document. It contains the name of the
MSCs in the document. For each MSC, a local MSC_table object is created. This table
contains all the name of instance, message name, event name, etc. defined in the MSC.
In MSC’96, an instance is declared by an instance head statement and ended by
an instance end statement. Each instance must have a header and an end statement. An
instance can have event only after it is declared. The other instances can have message
statement related to it. An instance can not have any event after it ends. If there is a
instance interface in the MSC header, it must contains the same instances as specified
in the msc body.
A function check_inst_in_table() is used when a instance name is found. It will

insert into the table if not exist in the table, or check the status in the table. Another

30

function is used to check if the instance declared in the head statement is match to the
one in interface.
3.3 Details of the object structure for MSC

Building the represent classes is done in the parser function. An instance object
is created as soon as it is insert into the local table since all its events have to be attached
to the event list. It also makes it possible for other object to point to it. In the basic MSC,
only instance name, inline expression name, and MSC reference name may appear
before its declaration. In such case, the name is in the message address. Also the
instance name may be in the shared list of shared event before it is declared. The type of
an instance in the interface, if has one, must be same as its head statement. The instance
object is updated when the instance is declared.

The message object is created right after it is first declared. A message from
instance to instance must appear in both instances event lists. So it is checked in the
second time declaration. Other objects are created in their declaration function and built

across several parser functions.

3.4 Details of drawing MSC

Each class is associated a sharp. For example: the sharp of a message is an arrow.
After the parser is done, all the objects of the MSC are known. Currently we use the fixed
window size in this project. In the basic MSC, the number of instances and the
window’s horizontal size decides for the horizontal distance between instances. The
vertical size is close to the window’s vertical size. The number of event is counted for

each instance. After the largest number of events is known. The largest number and the

31

window’s vertical size decide for the vertical distance between events of an instance. The
event horizontal position is aligned to the axis of the instance. For the event across event,
the vertical position is adjusted. The draw sharp of each object is added to the view list
once.

The document list is used. It is a template list that can store an arbitrary collection
of all sharps in any sequence. The draw class defined in the project has the capability to

draw itself. Then draw in window is accomplished by stepping through the sharp list.

3.5 Major Classes in the tool

In this sector, we will discuss the major classes used in represent the MSC. There
are two set of classes. One set is used to represent the elements of MSC. The other one is
used to represent the sharp of the elements.

All classes are derived classes from msc_element class. The class msc_element

itself is a derived class from CObject.

3.5.1 Classes used to represent MSC element

The major classes to represent the elements of MSC are:

e msc_element : Base class to represent an element in MSC.

e msc_document : represents the whole document of MSCs.

¢ msg seq_chart : represents the basic Message Sequence Chart.
o HMSC_expression : represents the high level MSC.

¢ instance : represents the instance in a basic MSC.

e msc_gate : represents the gate in a basic MSC.

32

o order_inst_event : represents the orderable event of an instance in basic MSC.
e message : represents the message in a basic MSC.
e msc_condition : represents the condition in MSC.
¢ msc_timer : represents the timer in basic MSC.
Class msc_inline, msc_reference, simple_event, msc_action, and
create_instance_class are used to represent other elements. The relationships between

classes are showed in the figure 10 and explained after the figure.

33

msc_document

Y1

1

19 - {
HMSC_expression 1
msg_seq_chart
T HMSC_expression_node
Default gat Tl
msc_gate 12 msc_instance
L l Ll\
0.1 . IT T Yo
oflow Message between instance

*

1
—< order_inst_event 5

Threugh

create_instance_class

[

msc_timer

l..i
0l

msc_inline .

condition

T simple_event

msc_loop_expr

Figure 10 relationship of representation classes

msc_reference .

0.1

The msc_element class contains same important attributes for name, sharp, and

position. Those attributes are the common parts of all MSC elements. Another good point

to have this base class is that an instance can have a list of msc_element. The pointer of

the instance msc_element list can be assign to different element, like condition or

M

orderable event. All the classes are “declare dynamic” [10]. By that, the program calls
run-time lib to get run-time information about an object's class. Some virtual functions
are defined in msc_element and its deriving classes.

The msc_document class has two lists of pointers. One is a pointer list of basic
MSC. This list has pointers pointed to all the basic MSCs in the document. The other list
is a list of pointers of high level MSC. This list has pointers pointed to all the high level
MSC:s. If viewing the relation of elements of MSC as, then msc_document is the root of
the tree. A basic MSC or a high level MSC is belongs to one MSC document. There is
only one msc_document object for one MSC’96/PR file.

To make things straightforward, I am going to discuss HMSC_expression after I
finish all elements of basic MSC.

The msg_seq_chart (basic MSC) class has two pointer lists. One is instance
pointer list and the other one is a gate pointer list. Each instance of the MSC has a
corresponding pointer in the instance pointer list. An instance is visible inside MSC. The
gate pointer list records all the default in gates and default out gates of the MSC. The
defauit order in gate and default order out gate are not represented in this tool since I
can not understand them clearly. The class msc_gate will be discussed in the end of basic
MSC classes.

The instance class contains the instance kind (process) information defined in the
instance head statement. Instance has an important list, inst_event_list. This list is a
msc_element pointer list. Since all the MSC elements are the derived class of
msc_element, the class of the objects pointed to can be determined in run time. With the

advantage of virtual, even no class information is needed. When an instance has an

35

event, such as condition, the pointer to the event is added to the list. The pointed classes
from instance are: order_inst_event, msc_condition, msc_inline, msc_reference, and
simple_event. Some event, like condition, can belong to one or more instances. Some
event, like the order_inst_event, is only belonged to one instance. An instance can have
many events.

The order_inst_event is used to represent the orderable events. It has a pointer
pointing to the event. The point is point to a msc_element object, which can be an object
of class message, class msc_timer, class msc_action, or class create_instance_class.
Order_inst_event also has a list of pointer pointed to the events ordered after it if there
is one. For example: the statement

in ICONreq from env before labell, label2
in Figure 4 will created a order_inst_event object . This order_inst_event object has a
pointer pointed to message, “in ICONreg from env”. The object also has a pointer list
that has two pointers pointed to two other objects of order_inst_event. These two
objects have name labell and label2.

Class msc_timer has attributes to record the name and duration of the timer and
the action type(set, reset, timeout).

Class msc_action has a CString attribute to hold the action string.

Class create_instance_class has attributes of the created instance name,
parameter list (CString list), and a pointer pointed to the instance.

Class message is another important class. It has a message type. This type records
that the message is from what’s kind of element to what’s kind of element. For example:

from env to instance. It has two CString objects to hold message from element name

36

and send to element name. It also has two pointers pointed to from/to elements. Message
sent to (or received from) environment has one NULL pointers. A pointer is NULL
indicates the side is unknown. Message has a lost type to indicate if the message is lost or
not. A lost can be sender lost or receiver lost. Usually one pointer of the lost message
will be NULL. But a lost message may still have both side information [2]. For example:
sender lost may still have send name. Message has a parameter list. The pointers of
message may point back to instances. Two instances may have two same message
statements and will have same message object through different order_inst_event.

Class condition has a name list since its name can contains several sirings. It has
an instance name list , which has all instances that shares the condition. It also has an
instance pointer list pointed to those instances.

The simple_event class is a mixed usage class. It is used to represent the event
that doesn’t need any other attribute, for example: instance stop. It current handler
following events: instance start, instance end, instance stop, coregion start, coregion
end, inline separate line, and inline end line. we will discuss inline staff later. The
coregion start(or coregion end) tells when the enter (or leave) the coregion.

The inline class actually only contains the inline head information. we haven’t
built a real inline class. A real inline class must have a instance list and the list must be a
subset of the instances that shared the inline expression. All the events inside the inline
expression must be assigned to the instance in the inline instance list not to outside
instance. It is also possible of nesting inline expression. That also make the draw
function very complicated. It is left for further work. Now the inline class have two gate

lists for the gates attach to the inline expression. Two lists are used to distinguish the

37

gates of different alternatives. An instance list is used to point to the instances that shared
the inline expression. All the events inside the inline expression are assigned to the
origin instance. The origin instance has the simple events to know when it goes into
second alternative and when the inline expression is ended.

The msc_loop_expr is a derived class of msc_inline. It has addition loop
boundary information.

The msc_reference class only records the reference string. Further work can be
done to have a pointer list to MSCs.

The msc_gate class is used to represent the default input gate, default output
gate, inline input gate, inline out gate, actual input gate, and actual output gate. The
orderable gate is left for further work. The msc_gate has a type to indicate what kind of
gate it is. It has one message pointer since a gate can be implicitly defined by the
direction of the message through the gate and by the message name. A gate also can be

explicitly defined by a name.

3.5.2 Classes used to represent high level MSC

Now we am going to discuss the classes represent high level MSC.

Class HMSC_expression has name list for its name. It has a
HMSC_expression_node pointer list pointed to the node it has.

Class HMSC_expression_node has a pointer pointed to current node, and a list
of pointers pointed to the node followed it.

Class HMSC_node has a type to indicate the node type, a name for the referred

MSC or condition, or msc_reference. It also has a HMSC_expression pointer list to

38

point to the sub-expression belongs to the node. That sub-expression will be a parallel
high level MSC expression.

The object model of Figure 3 is showed in Figure 11.

39

msc_document

msg_seq_chart

| P TSD
’_—
/z
\
‘ > msc_instance
I msc_instance | Name:Responder
Name:]nitiator -
' 1
\ N
/\ AN
/ + \
simple_event simple_event
Type instance start Type instance start
order_inst_event order_inst_event order_inst_event order_inst_event
Name: Name: Name: Labell Name:
\ | T \ |
] 1 \X \ !l
message message ge message
Name [DISind Name [CONreq Name ICONind Name ICONresp
simple_event simple_event
Type instance end Type instance end

Figure 11 Object model for Figure 3

3.5.3. Classes represent the sharp of the MSC elements

The classes, which are used to represent the sharp of the MSC elements, are quite
straightforward. Like the classes representing the MSC element, there is a base class,
CElement.

CElement is a derived class from CObject. It has common attributes of the
sharps used to display the element of MSC. Those attributes are : color (type
COLORREF), EnclosingRectangle (CRect), Name (CString), and Name position point
(CPoint). It has a virtual function draw, which take a CDC parameter.

Class CLine is used to draw a line. It needs the start and end point as its
parameters.

Class CDashLine is used to draw a dash line. It also needs start and end point as
parameters.

Class CRectangle is used to draw a rectangle. It uses an Enclosing Rectangle to
transfer its parameter. So it also only needs two parameter Start point(left up point) and
End point(right bottom point).

Class CLineArrow is used to draw an arrow. It uses a start and a end point.
Current cnly vertical or horizontal arrow can be drawn.

Class CDiamRect is used to draw the Diamond Rectangle, which is used to
present the condition. It is a collection of several line segments. It takes four parameter:
one is used to pass a View point into the function, two is used to pass the drawing start
and end point, another one is used to pass the visual unit Vunit .

Class CTimeSetSymb is used to draw the MSC timer set symbol . It is a

collection of several line segments. It also takes four parameter: one is used to pass a

41

View point into the function, two are used to pass the drawing start and end point,
another one is used to pass the Vunit .

Class CTimeResetSymb is similar to the class CTimeSetSymb, but it is used to
present the MSC timer reset. It takes the same four parameters.

Class CTimeOutSymb is also similar to the class CTimeSetSymb, but it is used
to present the MSC timer out. It takes the same four parameters.

Class CCircle is used to draw a circle. It is used to present the HMSC node, and
used to draw the message found/lost symbol. It needs circle center point and the radium
value as parameter.

Class CMsgFoundSymb is used to draw the MSC message found symbol. It is a
collection of a line and a circle. It takes four parameter: one is used to pass a View point
into the function, two is used to pass the drawing start and end point, another one is used
to pass the Vunit which is used to determinate the radium of the circle.

Class CMsgLostSymb is similar to the class CMsgFoundSymb . It is used to
present the MSC diagram of message lost. It also takes the same four parameters.

Class CText is used to present the text in the MSC diagram . It takes two
parameter: one is a point that passes the start point of the text, another one is a CString

which pass the text.

42

Chapter 4 Conclusion and Future Work

The main goal of this project is to display Message Sequence Charts. This project
is the first step towards a more powerful tool that can display and edit MSC’96 model
and be compatible with other existing MSC tools. Another goal is to learn software
design and programming under the Windows environment.

The main steps in the tool of this project are parsing MSC/PR, creating the object
structure to represent the MSC, and displaying under the Windows environment.

The grammar of MSC’96 is not easy to parse. The C language is used in this part
because it is fast and efficient, and there are tools available for compilers [11].

The object structures to represent elements of MSC’96 are done in C++. It takes
advantage of the object paradigm, which is supported by C++ [10]. The elements of
MSC’96 have object characteristics, which makes it easy to convert MSC to an OO
model.

The display part is done under Microsoft Windows because now PCs are widely
used, and the windows program became more and more popular. Many software tools are
built under Windows, and the Microsoft MFC library is an open library with many
programming tools [10].

All the 22 examples listed in the end of the Z.120 standard are tested. The parser
correctly identifies all errors in the examples. The object structure is correctly build for
all examples. However the display part is not working in all cases now. It is due to the
limitation of the time. Further work is needed in this area.

Through the work of the project, I gained a lot of valuable experiences about

parsing complex languages, OO design, C++ and MFC. First of all, I now know the

43

importance of overall design and planning ahead. I learnt to make my design flexible for
any future modification. Secondary, Programming under different environments is a quite
valuable lesson. Now I clearly know the difference of the input/output method under
UNIX and windows: the UNIX uses device driver to control /O, while the window uses
the message. Furthermore, I learnt the resource based program under windows with
visual C++, i.e. we can store data in a resource file using a number of established format.
Another thing I learnt in MFC is using the dynamic linked library. Now I knew how to
use MFC run time type information and how to link the document to its view. In addition,
in this project I mixed the C structured design and C++ object oriented design. I used
almost all the C++ OO design features: class hierarchies, template, access control,
operator overloading, friend class member, polymorphism, etc. All these are very good
experiences for me.

The tool I built is far from perfect. Many improvements need to be done, say as
the following.

Create a class to fully encapsulate MSC inline. This class may be similar to
msg_seq_chart class. Also the class for MSC reference should be able to handle all kinds
of references.

The display should be improved to allow screen scrolling, multiple display
windows, and to link related diagrams.

The whole software can be improved to be clear and reliable.

References

[1] ITU-T. ITU-T Recommendation Z.120 (1996). Message Sequence Chart
(MSC). ITU-T, Geneva, Oct. 1996.

[2] ITU-T. ITU-T Recommendation Z.120 (1993). Message Sequence Chart
(MSC). ITU-T, Geneva, Sep. 1994

[3] Hanene Ben-Abdallah and Stefan Leue. Syntactic Analysis of Message
Sequence Chart Specifications. Technical Report 96-12. Electrical and
Computer Engineering. University of Waterloo.

[4] S. Mauw and M.A. Reniers. An Algebraic Semantics of Basic Message
Sequence Charts. The Computer Journal, Vol. 37, No 4, 1994.

(5] Bjom Regnell, Michael Andersson, and Johan Bergstrand. A Hierarchical Use
Class Model with Graphical Representation. [EEE Intemnational Symposium
and Workshop on Engineering of Computer-Base System. March 1996.

(6] Ekkart Rudolph, Jens Grabowski, and Peter Graubmann. Tutorial on Message
Sequence Charts (MSC'96). Tutorial of the FORTE/PSTV'96 conference in
Kaiserslautern, Germany, Oct. 1996.

[7] Ekkart Rudolph, Jens Grabowski, and Peter Graubmann. Tutorial on Message
Sequence Charts. 1994. http://www.win.tue.nl/cs/fm/Sjouke. Mauw/msc.html.

(8] David J. Kruglinski. Inside Visual C++. Fourth Edition. Microsoft Press.
1997. ISDN 15723154652.

(9] Brain W. Kemnighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall. 1988. ISDN 0131103628.

[10] David Bennett. Visual C++ 5.0 Developer's Guide. Sams 1998. ISBN
0672310317.

[11] Ravi Sethi Alfred V. Aho and Jelfrey D. Ullman. Compilers, principles,
techniques, and tools. Addison Wesley, 1998. 0201 100886

[12] Bruce Eckel. Thinking in C++. Prentice Hall. 1995. ISDN 0139177094.

[13] G. Booch, J. Rumbaugh. Unified Method for Object-Oriented Development.
Rational, 1996.

45

[14] Z.100 I (1993). SDL Methodology Guidelines. Appendix I to Z.100. ITU-T,
July 1994

{15] ObjectGEODE: An Integrated SDL -based Software Development Solution
for Today’s Telecommunications and Real-Time Systems,
www.tdr.dk/public/SDL/verilog/ogeode.html.

Appendix A The Grammar of MSC’96

In the grammar of MSC'96, a terminal symbol is either indicated by not inside <> or it is
one of <name> and <character string>. Keywords are in bold. A non-terminal symbol is
indicated inside < and >. A production is given for each non-terminal symbol.

The symbol ‘I’ is used for alternative productions; ‘{‘ and ‘}’ means the element
is group together; * is used to indicate the group is for optional and can be further
repeated any number of times; * is used to indicate the group must appear once and can
be further repeated any number of times; [and] means optional. A underlined part
stresses a semantic aspect of the symbol. For example: <msc name> means the name is a
MSC name. It is same as <name>.

The Backus-Naur-Form of the textual token is not include in this appendix. The

important tokens are:

<alphanumeric> ::= <letter> | < decimal digit>
<full stop> ::=.

<underline> ;== _

<word> ::= { <alphanumeric> | < full stop> } * <alphanumeric> { <alphanumeric> | <full stop> } *
<name> ::= <word> { <underline> <word> }*

Also <character string> means a string inside two apostrophes. For example, ‘“Take action’ .
The start symbol is <msc document>.Rule 1 and 6 are the rules that deviate from the standard for
this project.
1 <end> =3
2 <msc document> ;= <msc document head> <msc document body>

3 <msc document head> ::= <document head>
4 <msc document body> ::= {<message sequence chart>}*

$ <document head> ::= mscdocument <ms¢ document name> [related to <sdl reference>] <end>
6 <sdl reference> ::= <sdl document identifier>
7 <identifier> ::= <name>

8 <message sequence chart> ::= msc <msc head> { <msc body> | expr <msc expression> } endmsc <end>

9 <msc head> :>= <misc name> <end> [<msc interface>)
10 <msc interface> ::= [<msc inst interface>] [<msc gate interface>]

47

11 <msc inst interface> ::= inst <instance list> <end>

12 <instance list> ::= <instance name> [:<instance kind>][,<instance list>]
13 <instance kind>::= [<kind denominator>]<identifier>

14 <kind denominator>::= system | block | process | service | <name>

15 <msc gate interface> ::= <msc gate def>*

16 <msc gate def> ::= gate {<msg gate> | <order gate>} <end>
17 <msg gate> ::= <def in gate> | <def out gate>

18 <order gate> ::= <def order in gate> | < def order out gate>

19 <msc body> ::= <msc statement>*
20 <msc statement> ::= <test definition> |
<event definition> |
<old instance head statement> <instance event list>
21 <test definition>::= text <character string> <end>
22 <event definition>::= <instance name> : <instance event list> |
<instance name list> : <multi instance event list>

23 <instance event list> ::= {<instance event> <end>}"
24 <instance event> ::= <orderable event> | <non-orderable event>
25 <orderable event>::=

[<event name>]

{<message evenblincomplete message event> I<create> I<timer statement> I<action>}

[before <cvent name lis>)
26 <event name list>::= {<gvent name> I<gate name>} [,<event name list>]
27 <non-orderable event> ::= <coregion> | <shared condition> | <shared msc reference> |

<shared inline expr> | <instance head statement> | <instance end statement>|
<stop>

28 < instance name list> ::= <instance name> {,<instance name>}* | ail
29 <multi instance event list> ::= {<multi instance event> <end>}*
30 <multi instance event>::=<condition>| <msc reference> | <inline expr>

31 <old instance head statement> ::=
instance <instance name> [[:] <instance kind>][<decomposition>}<end>

32 <instance head statement> ;= instance [<instance kind>][<decomposition>]
33 <instance end statement> ::= endinstance

34 <message event> ::= <message output>icmessage input>
35 <message output> ::= out <msg identification> to <input address>
36 <message input> ::= in <msg identification> from <output address>
37 <incomplete message event> = < incomplete message outputi< incomplete message input>
38 <incomplete message output> ::= out <msg identification> to lost <input address>
39 <incomplete message input> ::= in <msg identification> from found<output address>
40 <msg identification> ::== <message name> [,<message instance name>][(<parameter list>)]
41 <parameter list>::= <parameter name> [,<parameter list>]
42 <output address> ::= <jnstance name> | {env | <reference identification>}(via <gate name>]
43 <reference identification> ;= reference <msc reference identification> |
inline <inline expr identification>
44 <input address> ::= <jnstance name> | (env | <reference identification> } [via <gate name>]

45 <actual out gate> ::= [<gate name>] out <msg identification> to <input dest>

46 <actual in gate> ::= [<gate name>] in <msg identification> from <output dest>
47 <input dest> ::=lost [<input address>] | <input address>

48 <output dest> ::= found [<output address>] | <output address>

49 <def in gate> ::= [<gate name>)] out <msg identification> to <input dest>

50 <def out gate> ::= ::= [<gate name>] in <msg identification> from <output dest>

48

51 <actual order out gate> ::= <gate name> before <order dest>
52 <order dest> ::= <event name> | {env | <reference identification>} via <gate name>
53 <actual order in gate> ::= <gat¢ name>
54 <def order in gate> ::= <gate name> before <order dest>
55 <def order out gate> ::= <gate name>
56 <inline out gate> ::= <def out gate>

[external out <msg identification> to <input dest>]
57 <inline in gate> ::= <def in gate>

[external in <msg identification> from <output dest>]
58 <inline order out gate> ::= <gate name> [external before <order dest>]
59 <inline order in gate> ::= <gate name> before <order dest> [external]

60 <shared condition> ::= <condition identification> <shared>

61 <condition identification> ::= condition <condition name list>

62 <condition name list> == <condition name> {,<condition name>}*
63 <shared> ::= shared {[<shared instance list>] | all}

64 <shared instance list>::= <instance name> [,<shared instance list>]
65 <condition> ::= <condition identification>

66 <timer statement> ::= <set> | <reset> | <timeout>

67 <set> ::= set <timer name> [, <timer instance name>] {<duration name>]
68 <reset> ::= reset <timer name> [, <timer instance name>]

69 <timeout> ::= timeout <timer name> [, <timer instance name>]

70 <action> ::= action <action character string>

71 <create> ::= create <jnstance name> {(<parameter list>)]

72 <stop> ::= stop

73 <coregion> ::= concurrent <end> <coevent>* endconcurrent
74 <coevent> ::= <orderable event> <end>

75 <shared inline expr> ::= <shared loop expr> | <shared opt expr> | <shared alt expr> |
<shared par expr> | <shared exc expr>

76 <shared loop expr> ::= loop [<loop boundary>] begin <inline expr identification>] <shared> <end>
[<inline gate interface>] <instance event list>
loop end
77 <shared opt expr> ::= opt begin <inline expr identification>] <shared> <end>
[<inline gate interface>] <instance event list>
optend
78 <shared exc expr> ::= exc begin <inline expr identification>] <shared> <end>
[<inline gate interface>] <instance event list>
exc end
79 <shared alt expr> ::= alt begin <inline expr identification>] <shared> <end>
[<inline gate interface>] <instance event list>
{ alt <end> [<inline gate interface>] <instance event list> }*
altend
80 <shared par expr> ::= par begin <inline expr identification>] <shared> <end>
[<inline gate interface>] <instance event list>
{ par <end> [<inline gate interface>] <instance event list> }*
parend
81 <inline expr> ::= <loop expr> | <opt expr> | < alt expr> | <par expr> | <exc expr>
82 <loop expr> ::= loop [<loop boundary>] begin <inline expr identification>] <end>
[<inline gate interface>] <msc body>
loop end
83 <optexpr> ::== opt begin <inline expr identification>] <end>
[<inline gate interface>] <msc body>

49

opt end
84 <exc expr> ::= exc begin <inline expr identification>] <end>
[<inline gate interface>] <msc body>
exc end
85 <altexpr> ::= alt begin <inline expr identification>] <end>
[<inline gate interface>] <msc body>
{ alt <end> [<inline gate interface>] <msc body> }*
alt end
86 <parexpr> ::= par begin <inline expr identification>] <end>
[<inline gate interface>] <msc body>
{ par <end> [<inline gate interface>] <msc body> }*
parend
87 <loop boundary> ::= ‘<’<inf natural> [,<1nf natural>] ‘>’
88 <inf natural> ::= inf | <natural name>*
89 < inline expr identification> ::= <jnline expr name>
90 <inline gate interface> ::= {gate <inline gate> <end>}*
91 <inline gate> ::= <inline out gate> | <inline in gate> |
<inline order out gate> | <inline order in gate>

92 <shared msc reference> ::= reference [<msc reference identification> :] <msc ref expr>
<shared> [<reference gate interface>]
93 <msc reference> ::= reference [<msc reference identification> :] <msc ref expr>
[<reference gate interface>]
94 < msc reference identification> ::= <msc reference name>
95 <insc ref expr> ::= <msc ref par expr> {alt <msc ref par expr>}*
96 <msc par expr> ::= <msc ref seq expr> {par <msc seq par expr>}*
97 <msc seq expr> ::= <msc ref exc expr> (seq <msc exc par expr>}*
98 <msc ref exc expr> = [exc] <msc ref opt expr>
99 <msc ref opt expr> ::= [opt] <msc ref loop expr>
100 <msc ref loop expr> ::= [loop] [<loop boundary>]
{empty lxmsc name> [<parameter substitution>] | (<msc ref expr>) }
101 <parameter substitution> ::= subst <substitution list>
102 <substitution list> ::= <substitution> [,<substitution list>]
103 <substitution> ::= <replace message> | <replace instance> | <replace msc>
104 <replace message> ::= [msg] <message name> by <jnessage name>
105 <replace instance> ::= [inst] <jnstance name> by <instance name>
106 <replace msc> ::= [msc] { empty | <msc name> } by { empty | <msc name> }
107 <reference gate interface> ::= {<end> gate <ref gate>}*
108 <ref gate> ::= <actual out gate> | <actual in gate> | <actual order out gate> | <actual order in gate>
109 <decomposed> ::= decomposed [<substructure reference>]

110 <substructure reference> ::= as <qessage sequence chart name>

111 <msc expression> ::= <start> <node expression>*
112 <start> ::= <|abel name> {alt <lgbe] name>}* <end>
113 <node expression> ::=
<label name> : { <node> seq (<labe] name> {alt <]abe] name>}*) | end} <end>

114 <node> ::= (<insc ref expr>)
| empty | <ns¢ name>
| <par expression>
| condition <condition name list>
| connect
115 <par expression> ::= expr <msc expression> endexpr {par expr <msc expression> endexpr }*

50

Appendix B Tokens

Token symbol

T_NONE

T LB
T_R_B
T_COMMA
T_COLON

_APOSTROPHE

e
(7]
Q
%

- -
95%

-]

5
3

-
(@]
Z

5ES

-
>
7]

~]
o

EFORE

-
t
4]
2

T_BLOCK

T_BY
T_COMMENT
T_CONCURRENT
T_CONDITION
T_CONNECT
T_CREATE
T_DECOMPOSED
T_EMPTY

T_END
T_ENDCONCURRENT
T_ENDEXPR
T_ENDINSTANCE
T_ENDMSC
T_ENV

T_EXC

T_EXPR
T_EXTERNAL
T_FOUND
T_FROM
T_GATE

Means

Not token, error char
Left
Right)’

’
”e

’<]
> 1]
identifier

keyword action
keyword all
keyword alt
keyword as
keyword before
keyword begin
keyword block
keyword by
keyword comment
keyword concurrent
keyword condition
keyword connect
keyword create
keyword decomposed
keyword empty
keyword end
keyword endconcurrent
keyword endexpr
keyword endinstance
keyword endmsc
keyword env
keyword exc
keyword expr
keyword external
keyword found
keyword from
keyword gate
keyword in
keyword inf
keyword inline
keyword inst

51

T_INSTANCE
T_LOOP
T_LOST
T_MSC
T_MSCDOCUMENT
T_MSG
T_OPT
T_ORDER
T_OUT
T_PAR
T_PROCESS
T_REFERENCE
T_RELATED
T_RESET
T_SEQ
T_SERVICE
T_SET
T_SHARED
T_STOP
T_SUBST
T_SYSTEM
T_TEXT
T_TIMEOUT
T_TO

T_VIA

keyword instance
keyword loop
keyword lost
keyword msc
keyword mscdocument
keyword msg
keyword opt
keyword order
keyword out
keyword par
keyword process
keyword reference
keyword related
keyword reset
keyword seq
keyword service
keyword set
keyword shared
keyword stop
keyword subst
keyword system
keyword text
keyword timeout
keyword to
keyword via

52

Appendix C List of C Functions

MSC_RETURN_TYPE MSC_Ix_init_I(FILE *p_input_file)
// initialize the read file buffer and global variables

static int MSC_Ix_read_bf(FILE *p_input_file, char *p_buffer)
/I read character string from file to the buffer

static MSC_RETURN_TYPE MSC_init_buffer(FILE * p_input_file)
// Read the buffer at the initial time

char MSC_lIx_getchar(FILE *p_input_file)
/I gets next character from buffer. return null if it is end of file

char MSC_lx_lookahead()
// Function looks next available char

void MSC_lIx_get_string(FILE *p_input_file, char *p_out_string)
// gets the string up to end of line or end of file.

static void MSC_init_alphanumeric()
// initialize alphanumeric char array used to check a char is alphanumeric or not

int MSC_Is_Alphanumeric(char p_ch)
// check a char is alphanumeric or not

static void MSC_Ix_get_alphanumeric_string(FILE *p_input_file, char *p_char, int *

p_length)
// get alphanumeric char string followed by p_char from the buffer

static MSC_RETURN_TYPE MSC_Ix_get_word(FILE *p_input_file, char *p_string, int

*p_length)
// get the pointer and length of a word string start with p_char.

MSC_RETURN_TYPE MSC_Ix_get_name(FILE *p_input_file, char *p_string)
// gets a name string. Name string is defined by MSC

void test_main()
// test main function to run the tool

static int MSC_Ix_init(FILE *p_input_file)
// Overall initialize function

FILE *MSC_get_file_ptr()

53

// Return current file pointer

char *MSC_get_name()
// Return current name string of an identifier

static void MSC_Ix_skip_wsp(FILE *p_input_file, char p_ch)
// skip white space

MSC_token_td MSC_Ix_get_token()
// get next token

static MSC_token_td MSC_lIx_letter(FILE *p_input_file)
// lexical function used to analysis alphanumeric char start string
// Tt is call MSC_Ix_get_name to get a name

static int MSC_compare_key_word(const void *p_keyv_ptr, const void

*p_table_entry_ptr)
// compare a name string against a key enter in the word table. Like comp function

static MSC_token_td MSC_Ix_check_key(char *p_string)
// check a string is keyword or not.

static MSC_token_td MSC_Ix_number(FILE *p_input_file)
// lexical analyze for a string started with digit number. Not used in the project

static MSC_token_td MSC_Ix_just_return(FILE *p_input_file)
// Return token assigned to the character

Please note : following parser function also build the represent classes object.

int MSC_ps_is_end_token(MSC_token_td p_token)
// check a token is <end>. This design is intent to add comment before the end

void MSC_ps_end()
// parser <end> rule 1

void MSC_ps_msc_document()
// parser grammar rule 2-7

void DrawSystem()
// start draw.

void SetViewPtr(CMscGraphicView* Vp)
// update view pointer of the object tree.

void MSC_ps_message_sequence_chart()

// parser grammar rule 8

void MSC_ps_msc_head()
// parser grammar rule 9, 10

void MSC_ps_msc_inst_interface()
// parser grammar rule 11

void MSC_ps_instance_list()
// parser grammar rule 12

void MSC_ps_instance_kind()
// parser grammar rule 13, 14

void MSC_ps_msc_gate_interface()
// parser grammar rule 15

void MSC_ps_msc_gate_def()
// parser grammar rule 16-18 and part of 49, 50.and rule 55

void MSC_ps_def_in_gate()
// parser grammar rule 49

void MSC_ps_def_out_gate()
// parser grammar rule 50

void MSC_ps_def_order_in_gate()
// parser grammar rule 54

void MSC_ps_msg_identification()
// parser grammar rule 40 and 41

void MSC_ps_input_dest()
// parser grammar rule 47

void MSC_ps_input_address()
// parser grammar rule 44

void MSC_ps_output_dest()
// parser grammar rule 48

void MSC_ps_output_address()
/I parser grammar rule 42

void MSC_ps_input_output_address()
// sub-function parser grammar rule 42, 44

55

void MSC_ps_order_dest()
// parser grammar rule 52

void MSC_ps_reference_identification()
// parser grammar rule 43

void MSC_ps_name_listtMSC_NAME_TYPE p_type, MSC_NAME_STATUS p_status)
//sub function to parser a name list, like <name> [,<name>]*

int MSC_ps_is_expr_token(MSC_token_td p_token)
// function to check if the token is a inline token

void MSC_ps_init_instance_no_type()
/finitialize function to the stack of structure, which is used to check single or multi
instances.

int MSC_ps_is_single_inst()
// Return true if the events belong to a single(one) instance

int MSC_ps_is_multi_inst()
// Return true if the events belong to muiti (more than one) instances

void MSC_ps_reset_inst_no_type(MSC_INST_NO_TD p_inst_no_td)
// reset the stack

void MSC_ps_increase_inst_type_index()
// increase the stack pointer

void MSC_ps_decrease_inst_type_index()
// decrease the stack pointer .

void MSC_ps_put_back_token(MSC_token_td p_token)
// put the token into a temporary stack

void MSC_ps_get_store_token()
// get the token in the temporary storage or get one from the file

int MSC_is_any_store_token()
// retumn is there any stored token

int MSC_update_instances(MSC_NAME_STATUS p_status)
// update the instance status.

void MSC_add_all_instance_list(char *p_name)
// add an instance to all instance list

56

void MSC_ps_msc_body()
// parser grammar rule 19

void MSC_ps_msc_statement()
// parser grammar rule 20

void MSC_ps_text_definition()
// parser grammar rule 21

void MSC_Ix_get_text_string(char *p_text_string)
// get text string

void MSC_ps_old_instance_head_statement()
// parser grammar rule 31

void MSC_ps_event_definition()
// parser grammar rule 22

void MSC_ps_decomposition(char *p_inst_name)
// parser grammar rule 109 and 110

void MSC_ps_instance_event_list()
// parser grammar rule 23

void MSC_ps_instance_event()
// parser grammar rule 24

void MSC_ps_orderable_event(int p_inside_one_inst)
// parser grammar rule 25

void MSC_ps_message_event()
// parser grammar rule 34 and 37

void MSC_ps_message_output()
// parser grammar rule 35 and 38

void MSC_ps_message_input()
// parser grammar rule 36 and 39

void MSC_ps_create()
// parser grammar rule 71

void MSC_ps_time_statement()
// parser grammar rule 66 to 69

57

void MSC_ps_action()
/] parser grammar rule 71

void MSC_ps_multi_instance_event_list()
// parser grammar rule 29

void MSC_ps_multi_instance_event()
/] parser grammar 30

void MSC_ps_non_orderable_event()
// parser grammar 27

void MSC_ps_coregion()
/4 parser grammar 73 NS 74

void MSC_ps_condition()
/I parser grammar 65

void MSC_ps_msc_reference()
// parser grammar 92 , 93 AND 94

void MSC_ps_msc_ref_expr()
/i parser grammar 95

void MSC_ps_msc_ref_par_expr()
i parser grammar 96

void MSC_ps_msc_ref_seq_expr()
" parser grammar 97

void MSC_ps_msc_ref_exc_expr()
I/ parser grammar 98

void MSC_ps_msc_ref_opt_expr()
1/ parser grammar 99

void MSC_ps_msc_ref_loop_expr()
i parser grammar 100

void MSC_ps_parameter_substitution()
n parser grammar 101

void MSC_ps_substitution_list()
i parser grammar 102

void MSC_ps_substitution()
i parser grammar 103, 104, 105, and 106

58

void MSC_ps_ref_gate()
f parser grammar 107 and 108

void MSC_ps_actual_out_gate()
i parser grammar 45

void MSC_ps_actual_in_gate()
/ parser grammar 46

void MSC_ps_actual_order_out_gate()
/ parser grammar 51

void MSC_ps_inline_expr()
/i parser grammar 75 and 81

void MSC_ps_loop_expr()
" parser grammar 76 and 82

void MSC_ps_opt_expr()
" parser grammar 77 and 83

void MSC_ps_exc_expr()
n parser grammar 78 and 84

void MSC_ps_alt_expr()
/i parser grammar 79 and 85

void MSC_ps_par_expr()
/i parser grammar 80 and 86

void MSC_ps_inline_expr_term(MSC_token_td p_token, MSC_INLINE_TYPE p_type,
char * p_function_name)
// sub function parser common part of each inline expression and grammar 89

void MSC_ps_inline_gate_interface()
i parser grammar 90

void MSC_ps_inline_gate_interface_term()
/i parser grammar 91

void MSC_ps_inline_out_gate()
I/ parser grammar 56

void MSC_ps_inline_in_gate()
n parser grammar 57

59

void MSC_ps_inline_order_out_gate()
/i parser grammar 58

void MSC_ps_inline_order_in_gate()
/i parser grammar 59

void MSC_ps_instance_head_statement()
/) parser grammar 32

void MSC_ps_instance_end_statement()
/i parser grammar 33

void MSC_ps_stop()
n parser grammar 72

void MSC_ps_shared(SHARED_TYPE p_shared_type)
/i parser grammar 63 and 64

void MSC_ps_loop_boundary(MSC_NAME_TYPE p_type)
n parser grammar 87 and 88

void MSC_call_msc_body()
n function pushes other variables before call msc_bosy

void MSC_ps_msc_expression(HMSC_expression *p_hmsc)
" parser grammar 111

void MSC_ps_start(HMSC_expression *p_hmsc)
i parser grammar 112

void MSC_ps_node_expression(HMSC_expression *p_hmsc)
n parser grammar 113

void MSC_ps_node(HMSC_expression_node *p_expr_node)
i parser grammar 114

void MSC_ps_par_expression(HMSC_node *p_node)
i parser grammar 115

Following is the utility functions, which are used to build the objects

void MSC_print_token(MSC_token_td p_token)
n print token name by token number

int MSC_ps_insert_message()

// Create and insert a message object into local table

message * MSC_ps_create_message()
// create message object

void MSC_ps_insert_order_event(char *p_name, order_inst_event *p_order_event)
// insert the order inst event into the local table

int check_inst_in_table(char *p_name, MSC_NAME_STATUS p_status)
// check the instance status by using local table

void MSC_ps_update_inst_in_table(char *p_inst_name, instance *p_instance)
// update the instance definition in the local table

void MSC_ps_update_instances_event(MSC_element *p_event)
// Add event to each instance on the current instance list

Instance_List *MSC_ps_get_inst_ptr_list(CStringList& p_name_list)
// return an instance pointer list by a name list

61

Appendix D Class Dictionary

1 Class MSC_eleement
typedef enum {LINE,RECTANGLE} CElement_shape;
class MSC_element : public CObject

{
DECLARE_DYNAMIC(MSC_element)
public:
virtual void draw(void) const{ };
virtual void print_item(void) const{} ;
virtual void update_DrNo(int DrawNo){ };
virtual void update_pos(MSC_element *PriorElementPtr,
long Hunit,long Vunit){ };
virtual void update_ViewPtr(CMscGraphicView* ptr){m_ViewPtr = ptr; };

MSC_element() ;

MSC_element(char *p_string) ;

inline int operator == (const MSC_element &e) const {
return (element_name == e.element_name) ;

}

protected:
CString element_name ;
CElement_shape m_shape;
public:
int m_DrwOdrNo;
CMscGraphicView* m_ViewPtr;
CPoint m_AxisStart;
CPoint m_AxisEnd;
)i

typedef CList<MSC_clement*, MSC_element*> MSC_Element_List;

2 Class msc_document

class msc_document : public MSC_element

{
DECLARE_DYNAMIC(msc_document)

public:
virtual void draw(void) const;
virtual void print_item(void) const;

private

virtual void update_DrNo(int DrawNo);
virtual void update_pos(MSC_element *PriorElementPtr,long Hunit,long Vunit);
virtual void update_ViewPtr(CMscGraphicView* ptr);

msc_document(char *p_name) : MSC_element(p_name) {m_DrwOdrNo =0;} ;
void add_basic_msc(msg_seq_chart *p_msc) {
msc_seq_chart_list. AddTail(p_msc); } ;

void add_high_msc(HMSC_expression *p_hmsc) {
HMSC_expression_list. AddTail(p_hmsc) ; } ;

.
.

Msg_Seq_Chart_List msc_seq_chart_list;

b

HMSC_Expression_List HMSC_expression_list ;

3 Class msg_seq_chart

class msg_seq_chart : public MSC_element

public:

DECLARE_DYNAMIC(msg_seq_chart)

virtual void draw(void) const;

virtual void print_item(void) const;

virtual void update_DrNo(int DrawNo);

virtual void update_pos(MSC_element *PriorElementPtr,long Hunit,long Vunit);
virtual void update_ViewPtr(CMscGraphicView* ptr);

msg_seq_chart() : MSC_element(), instance_list() {m_DrwOdrNo =0;} ;

msg_seq_chart(char * p_msq_seq_chart_name)
: MSC_element(p_msq_seq_chart_name), instance_list()
{m_DrwOdrNo =0;} ;

void add_instance(instance *p_instance) ;
void add_gate(msc_gate *p_gate) ;

friend class MSC_table ;
friend class CMscGraphicView;

private:

};

Instance_List instance_list ;
Gate_List def_gate_list;

63

typedef CList<msg_seq_chart*, msg_seq_chart*> Msg_Seq_Chart_List;

4 Class instance

class instance : public MSC_element

{
public:

DECLARE_DYNAMIC(instance)

virtual void draw(void) const;

virtual void print_item(void) const;

virtual void update_pos(MSC_element *PriorElementPtr,Jong Hunit,Jong Vunit);
virtual void update_DrNo(int DrawNo);

virtual void update_ViewPtr(CMscGraphicView* ptr);

instance() : MSC_element(), kind_denominator(), kind_name(),
inst_event_list(), decomposion_name()
{ decomposion_ptr =NULL ; m_DrwOdrNo =0; };

instance(char * p_inst_name) : MSC_element(p_inst_name), kind_denominator(),
kind_name(), inst_event_list(), decomposion_name()
{ decomposion_ptr = NULL ; m_DrwOdrNo =0;} ;

int update_instance(const instance &p_inst) ;
void update_kind_denominator(char *p_kind_denominator) ;
void update_dmom_name(char *p_dmom_name) ;

void update_decom_name(char *p_name) { decomposion_name = p_name; } ;

void add_inst_event(MSC_element *p_event) ;
void print_name() { printf("inst name is %s \n", element_name); };

friend MSC_table ;
friend message ;

private:

CString kind_denominator ;

CString kind_name ;

MSC_Element_List inst_event_list ; // point to all event belonged to this instance
msg_seq_chart *decomposion_ptr ;

CString decomposion_name;

CPoint m_InstStartl1;
CPoint m_InstStart2;

CPoint m_InstEnd1;
CPoint m_InstEnd2

}i

typedef CList<instance*, instance*> Instance_List;

§ Class order_inst_event

typedef order_inst_event* Order_Inst_Event_Ptr ;
typedef CList<Order_Inst_Event_Ptr, Order_Inst_Event_Ptr> Order_Inst_Event_List;

class order_inst_event : public MSC_element

{
DECLARE_DYNAMIC(order_inst_event)

public:
virtual void draw(void) const;
virtual void print_item(void) const;
virtual void update_DrNo(int DrawNo);
virtual void update_pos(MSC_element *PriorElementPtr,long Hunit,long Vunit);
virtual void update_ViewPtr(CMscGraphicView* ptr);

order_inst_event();
order_inst_event(char *p_name, MSC_element *p_element);

void add_after_event_name(CStringList *p_event_name_list) ;
friend MSC_table ;

private:
MSC_element *event;
CStringList after_event_name;
Order_Inst_Event_List after_event;

L

6 Class Timer

typedef enum {
UNKNOWN_TIME ,

SET_TIME,
RESET,
TIME_OUT

} ACT_TIMER_TYPE ;

class msc_timer : public MSC_element

{
DECLARE_DYNAMIC(msc_timer)

msc_timer() ;
msc_timer(char* p_timer, ACT_TIMER_TYPE p_type) ;
msc_timer(char* p_timer, char* p_duration);

public:
virtual void draw(void) const;
virtual void print_item(void) const;
virtual void update_DrNo(int DrawNo);
virtual void update_pos(MSC_element *PriorElementPtr,long Hunit,long Vunit);
virtual void update_ViewPtr(CMscGraphicView* ptr){m_ViewPtr = ptr; };

private:
ACT_TIMER_TYPE act_type ;
CString duration ;

CPoint m_TimerStartPoint;
CPoint m_TimerEndPoint;

}s

7 Class Create Instance

class create_instance_class : public MSC_element

{
DECLARE_DYNAMIC(create_instance_class)

public:
virtual void draw(void) const;
virtual void print_item(void) const;
virtual void update_DrNo(int DrawNo){ };
virtual void update_pos(MSC_element *PriorElementPtr,
long Hunit,long Vunit){ };

create_instance_class() ;
create_instance_class(char *p_name);
create_instance_class(char *p_name, CStringList *p_para_list);
void update_inst_ptr(instance *p_inst) ;
private:
CString created_instance_name ;
instance *created_instance ;
CStringList inst_parameter_list ;
s

8 Class msc_action

class msc_action : public MSC_element

{
DECLARE_DYNAMIC(msc_action)

public:
virtual void draw(void) const;
virtual void print_item(void) const;
virtual void update_DrNo(int DrawNo){ };
virtual void update_pos(MSC_element *PriorElementPtr,
long Hunit, long Vunit){ };

msc_action(char *p_name) : MSC_element(), action_string(p_name) {} ;
private:
CString action_string;
K

9 Class message

typedef enum {
UNKNOWN_DIRECTION =0,

INST_TO_INST,
ENV_TO_INST,
INST_TO_ENV,
REF_TO_INST,
INST_TO_REF,
INLINE_TO_INST,
INST_TO_INLINE,
TO_GATE,
FROM_GATE

} MESSAGE_TYPE;

typedef enum {
NOT_LOST,

INPUT_LOST,
OUTPUT_LOST
} MESSAGE_LOST_TYPE ;

class message : public MSC_element

{
DECLARE_DYNAMIC(message)

public:

virtual void draw(void) const;
virtual void print_item(void) const;

67

virtual void update_DrNo(int DrawNo);
virtual void update_pos(MSC_element *PriorElementPtr,long Hunit,long Vunit);
virtual void update_ViewPtr(CMscGraphicView* ptr){m_ViewPtr = ptr; };

message();
message(char *p_string, MESSAGE_TYPE p_type,
MESSAGE_LOST_TYPE p_lost_type , char *p_from_name,
char *p_to_name, char *p_gate) ;

void add_from_element(MSC_element *p_from_inst)
{ from_inst = p_from_inst; } ;
void add_to_element(MSC_element *p_to_inst) { to_inst = p_to_inst; } ;

friend int operator == (const message &msg1, const message &msg?) ;
void add_parameter(CStringList *p_list);

friend MSC_table ;

public:
MESSAGE_TYPE message_type ;
private:
MSC_element *from_inst ;
MSC_element *to_inst ;
CString from_name;
CString to_name;
CStringList parameter_list ;
MESSAGE_LOST_TYPE lost_type ;

CString via_gate_name ;
msc_gate *via_gate ;

CPoint m_MsgStart;
CPoint m_MsgEnd;
15

10 Class simple_event

typedef enum {
COREGION_START,

COREGION_END,
INSTANCE_HEAD,
INSTANCE_END,
INSTANCE_STOP,

68

INLINE_SEP_LINE,
INLINE_END_LINE
} MSC_SIMPLE_EVENT_TYPE;

class simple_event : public MSC_element

{
DECLARE_DYNAMIC(simple_event)

public:
virtual void draw(void) const;
virtual void print_item(void) const;
virtual void update_DrNo(int DrawNo);
virtual void update_pos(MSC_element *PriorElementPtr,long Hunit,long Vunit),
virtual void update_ViewPtr(CMscGraphicView* ptr){m_ViewPtr = ptr; };

simple_event(MSC_SIMPLE_EVENT_TYPE p_type) :
MSC_element() { event_type =p_type; }

private:
MSC_SIMPLE_EVENT_TYPE event_type ;
CPoint m_SmpevtStart;
CPoint m_SmpevtEnd;

b

11 Class condition
class MSC_table ;

class condition : public MSC_element

{
DECLARE_DYNAMIC(condition)

public:
virtual void draw(void) const;
virtual void print_item(void) const;
virtual void update_DrNo(int DrawNo);
virtual void update_pos(MSC_element *PriorElementPtr,long Hunit,long Vunit);
virtual void update_ViewPtr(CMscGraphicView* ptr);

condition() : MSC_element(), condition_name_list(), shared_instance_list()
{m_DrwOdrNo =0; m_OnceAccess=0; };
condition(CStringList& p_condition_name_list) ;

void add_shared_instance(Instance_List* p_shared_instance) ;

friend MSC_table ;

private:
CStringList condition_name_list;
Instance_List shared_instance_list ;

CPoint m_CdnStart;
CPoint m_CdnEnd;
int m_OnceAccess:

>,

12 Class msc_inline

typedef enum {
UNKNOWN_EXPR ,
LOOP_EXPR ,
OPT_EXPR,
EXC_EXPR,
ALT_EXPR,
PAR_EXPR

} MSC_INLINE_TYPE ;

class msc_inline : public MSC_element

{
DECLARE_DYNAMIC(msc_inline)

public:
virtual void draw(void) const;
virtual void print_item(void) const;
virtual void update_DrNo(int DrawNo);
virtual void update_pos(MSC_element *PriorElementPtr,long Hunit,long Vunit);
virtual void update_ViewPtr(CMscGraphic View* ptr){m_ViewPtr = ptr; };

msc_inline();

msc_inline(char *p_string, MSC_INLINE_TYPE p_type) ;
void add_instacne(Instance_List *p_inst_list);

void add_inline_gatel(msc_gate *p_gate);

void add_inline_gate2(msc_gate *p_gate);

protected:
MSC_INLINE_TYPE msc_inline_type ;
private:
Gate_List msc_gate_listl ;
Gate_List msc_gate_list2 ;
Instance_List instance_list ;

70

13 Class msc_loop_expr

class m

{
DEC

public :

private

>

sc_loop_expr : public msc_inline
LARE_DYNAMIC(msc_loop_expr)

msc_loop_expr() : msc_inline(), lower_bound(), upper_bound()
{ msc_inline_type = LOOP_EXPR; }; msc_loop_expr(char *p_string) :

msc_inline(p_string, LOOP_EXPR), lower_bound(), upper_bound()
{msc_inline_type = LOOP_EXPR; };

void add_low_bound(char *p_bound) ;
void add_up_bound(char *p_bound) ;
void update_loop_name(char *p_string) { element_name = p_string ; };

virtual void print_item(void) const;

CStringList lower_bound ;
CStringList upper_bound ;

14 Class msc_reference

class m

{
DEC

public:

sc_reference : public MSC_element

LARE_DYNAMIC(msc_reference)

virtual void draw(void) const;

virtual void print_item(void) const;

virtual void update_DrNo(int DrawNo){};

virtual void update_pos(MSC_element *PriorElementPtr, long Hunit,
long Vunit){};

msc_reference(char *p_name, char *p_string) ;

private:

%

CString referr_item ;

71

15 Class msc_gate

typedef enum {
UNKNOWN_GATE,
DEF_OUT_GATE,
DEF_IN_GATE,
ACTUAL_IN_GATE,
ACTUAL_OUT_GATE,
INLINE_IN_GATE,
INLINE_OUT_GATE

}MSC_GATE_TYPE;

class msc_gate : public MSC_element

{
DECLARE_DYNAMIC(msc _gate)

public:
virtual void draw(void) const;
virtual void print_item(void) const;
virtual void update_DrNo(int DrawNo){ };
virtual void update_pos(MSC_element *PriorElementPtr, long Hunit,
long Vunit){};
msc_gate();
msc_gate(char *p_name, MSC_GATE_TYPE p_type) ;
void update_related_msg(message *p_message) ;
void update_extern_msg(message *p_message) ;

friend message ;

public:

MSC_GATE_TYPE msc_gate_type ;
private:

message *related_msg ;

message *extern_msg ;

%

typedef CList<msc_gate*, msc_gate*> Gate_List;

16 Class HMSC_node

typedef enum {
REF_NODE,
EMPTY_MSC,
MSC_NODE,
PAR_HMSC,
CONDITION,

72

CONNECT,
END_NODE
} HMSC_NODE_TYPE;

class HMSC_expression;
typedef CList<HMSC_expression*, HMSC_expression*> HMSC_Expression_List ;

class HMSC_node : public MSC_element

{
DECLARE_DYNAMIC(HMSC_node);

public:
virtual void draw(void) const;
virtual void print_item(void) const;

HMSC_node(HMSC_NODE_TYPE p_type) ;

HMSC_node(HMSC_NODE_TYPE p_type, char *p_string) ;

HMSC_node(HMSC_NODE_TYPE p_type, CStringList *p_list) ;

void add_par_hmsc(HMSC_expression *p_hmsc) {
par_hmsc_list. AddTail(p_hmsc); } ;

private:
HMSC_NODE_TYPE node_type ;
CStringList name_list;
HMSC_Expression_List par_hmsc_list ;

int m_DrwQdrNo;

17 Class HMSC_expression_node

class HMSC_expression_node : public MSC_element

{
DECLARE_DYNAMIC(HMSC_expression_node);

public:

virtual void draw(void) const;
virtual void print_item(void) const;

HMSC_expression_node(char *p_name) ;

void add_after_label(char *p_label) { after_label. AddTail(p_label); };
void assign_node(HMSC_node *p_node) { hmsc_node = p_node; } ;
void add_after_listtHMSC_expression_node* p_expression_node) ;

73

private:

%

HMSC_node *hmsc_node ;

CStringList after_label ;
HMSC_Expression_Node_List *after_list
int m_DrwQdrNo;

typedef CList<HMSC_expression_node*, HMSC_expression_node*>

HMSC_Expression_Node_List;

18 Class HMSC _expression

class HMSC_expression : public MSC_element

{

DECLARE_DYNAMIC(HMSC_expression);

public:

private:

virtual void draw(void) const;

virtual void print_item(void) const;

virtual void update_DrNo(int DrawNo){};

virtual void update_pos(MSC_element *PriorElementPtr,long Hunit,
long Vunit){};

HMSC_expression() : MSC_element() , expression_label_list() , node_list() {} :
HMSC_expression(char *p_name)
: MSC_element(p_name), expression_label_list() , node_list() {} :

void add_expression_label_list(char *) ;

void add_node(HMSC_expression_node *) ;

CSuingList expression_label_list;
HMSC_Expression_Node_List node_list ;

Following Table is used to build symbol table.

19 Class MSC_table

typedef enum {

UNKNOWN_NAME,

74

MSC_NAME,
INST_NAME ,
GATE_NAME,
MSG_NAME,
EVENT_NAME,
PARA_NAME,
TIME_NAME,
COND_NAME,
REF_NAME,
INLINE_NAME
» MSC_NAME_TYPE ;

typedef enum {
UNKNOWN =0,
REFERRED,
USED,
DEFINED ,
DECLARED,
FINISHED

} MSC_NAME_STATUS ;

typedef struct {
char name[L_IDENTIFIER+1] ;
MSC_NAME_TYPE type ;
MSC_NAME_STATUS status ;
MSC_element *object_ptr ;

} MSC_Element_Node ;

class MSC_table {
public:
MSC_table() ;
~MSC_table();
int insert_table(char *p_name,MSC_NAME_TYPE p_type,
MSC_NAME_STATUS p_status, int p_ignore_duplicate) ;
int search_table(char *p_name);
int update_table(char *p_name, MSC_element *p_ptr);
int update_table(char *p_name, MSC_NAME_STATUS p_status) ;

MSC_element *get_ptr(char *p_name);
MSC_NAME_STATUS get_status(char *p_name) ;
MSC_NAME_STATUS MSC_table::get_status(int p_position) ;
MSC_NAME_TYPE get_type(int position) ;

void update_event_link();

void update_position();
void print_table();

75

private:
int hashkeyl(char *p_str, int M);
int hashkey2(char *p_str) ;
private:
MSC_Element_Node element_table[TABLE_SIZE];
CElement* m_pTempElement;

3,

76

