
 

 

Structural and Fluid-Structure Interaction Analysis of Stenotic Aortic 

Valves: Application to Percutaneous Aortic Valve Replacement  

 

 

Hoda Maleki 

 

A Thesis 

in 

the Department 

of 

Mechanical and Industrial Engineering 

 

 

 

Presented in Partial Fulfillment of the Requirements 

 for the Degree of Master of Applied Science (Mechanical Engineering) at 

Concordia University 

Montréal, Québec, Canada 

 

 

November 2010 

© Hoda Maleki, 2010 



CONCORDIA UNIVERSITY 
 

SCHOOL OF GRADUATE STUDIES 

 
This is to certify that the Thesis prepared, 

 

 By:   Hoda Maleki  

 

 Entitled:  “Structural and Fluid Structure Interaction Analysis of Stenotic Aortic 

Valves:  Application to Percutaneous Aortic Valve Replacement” 

 

 and submitted in partial fulfillment of the requirements for the Degree of 
 

Master of Applied Science (Mechanical Engineering)   
 
 complies with the regulations of this University and meets the accepted standards with 

respect to originality and quality. 

 
Signed by the Final Examining Committee: 
 
 
 
   Chair  
 Dr. H.D. Ng   
  
   Examiner 
 Dr. R. Wuthrich 
  
   Examiner  
 Dr. N. Bouguila  CIISE External 
  

   Supervisor 
 Dr. L. Kadem 
 
  
 
 
   
 
Approved by:   
 Dr. A.K.W. Ahmed, MASc Program Director 
 Department of Mechanical and Industrial Engineering 
 
 
 
   
 Dean Robin Drew 
 Faculty of Engineering & Computer Science 
Date:                
 

 



iii 
 

ABSTRACT 

Structural and Fluid-Structure Interaction Analysis of Stenotic 
Aortic Valve: Application to Percutaneous Aortic Valve Replacement  

Hoda Maleki 

The main objective of this thesis is to study and investigate the mechanical behavior of the aortic 

valve with an emphasis on aortic stenosis. Moreover, this thesis aims to characterize the severity 

of AS in terms of material properties. The development of percutaneous heart valves allows valve 

replacement without open chest surgery. This is the most desirable option for patients with 

elevated surgical risks. To avoid the risk of failure in percutaneous valve implantation, 

determination of material properties of diseased leaflets before surgery is necessary. Therefore in 

this study, a series of numerical simulations, including both structural and fluid-structure 

interaction approach, and experimental studies were performed to achieve the objectives of this 

research. The results of the numerical simulations of the aortic stenosis are compared with in vitro 

results before testing the method using in vivo data. There is good agreement between the results 

of the numerical simulation and the in vitro experiments and the literature. An algorithm is 

suggested to estimate the material properties of the stenotic valve, considering the realistic 

material of the aortic valve with hyperelastic, nonlinear and anisotropic properties. The 

simulations using the structural modeling allow determination of the patient’s specific material 

property of a calcified aortic valve, knowing invasively measured aortic and ventricular pressure 

waveforms and the geometrical orifice area prior to percutaneous valve replacement. Also, fluid-

structure interaction modeling helps to estimate a more realistic dynamic behavior of the aortic 

valve and also obtains the hemodynamic performance. 

 



iv 
 

ACKNOWLEDGEMENTS 
 

First and foremost I would like to thank my parents. The great interests that they had in 
me to continue my education in graduate field; their love, support and sacrifices are 
always the best reasons to push me forward. 

Secondly, I would like to express my deepest gratitude to my husband and colleague, 
Shahrokh Shahriari, for his support and understanding during the past years. His advice 
during my M.A.Sc. helped me to be creative and successful in my project. 

I would like to express my sincerest gratitude to my academic supervisor Dr. Lyes 
Kadem, director of cardiovascular fluid dynamics laboratory (LCFD), for his continuous 
assistance, guidance and financial support throughout the completion of this thesis.  

I would like to thank Dr. Louis-Gilles Durand (Co-supervisor) from Institut de recherches 
cliniques de Montréal (IRCM), for encouraging me and providing financial support from 
IRCM.  

I am truly grateful for the contribution of Dr. Michel Labrosse from the University of 
Ottawa; his input was valuable throughout this thesis. 

I also would like to thank the people at LCFD for contribution to the healthy competitive 
atmosphere in the group. 

Finally, I acknowledge the financial support that I received from Concordia University, 
which facilitated my research and life by awarding me the Concordia University 
Graduate Fellowship, International Tuition Fee Remission Award and Conference 
Traveling Award to give me the opportunity to attend ESB 2010 conference.  

 

 
 
 
 



v 

 

Table of Contents     

List of Figures ................................................................................................................................. ix 

List of Tables ................................................................................................................................ xiv 

Nomenclature ................................................................................................................................. xv 

Abbreviation ................................................................................................................................ xvii 

Chapter 1: Introduction .................................................................................................................... 1 

1.1 Overview ............................................................................................................................ 1 

1.2 Anatomy of Aortic Valve .................................................................................................. 2 

1.3 Physiology of Aortic Valve ............................................................................................... 3 

1.4 Aortic Valve Diseases ........................................................................................................ 6 

1.4.1 Congenital Valve Disease ........................................................................................ 6 

1.4.2 Aortic Regurgitation ................................................................................................. 6 

1.4.3 Aortic Stenosis ......................................................................................................... 7 

1.5 Prosthetic, Artificial Heart Valves ................................................................................... 10 

1.5.1 Mechanical Valves ................................................................................................. 11 

1.5.2 Bioprosthetic Valves .............................................................................................. 14 

1.6 Percutaneous Valves ........................................................................................................ 17 



vi 

 

1.7 Objective and Outline of Thesis Study ............................................................................ 19 

Chapter 2: Literature Review ......................................................................................................... 22 

2.1 Introduction ...................................................................................................................... 22 

2.2 Structural Modeling ......................................................................................................... 23 

2.3 Fluid Structure Interaction ............................................................................................... 28 

Chapter 3: In Vitro Experiments .................................................................................................... 32 

3.1 Introduction ...................................................................................................................... 32 

3.2 Experimental Facility ....................................................................................................... 32 

3.3 The Components of the System ....................................................................................... 34 

3. 3.1 Super Pump and Pump Regulator ......................................................................... 34 

3.3.2 Left Heart Simulation System ................................................................................ 35 

3.3.3 Pressure Transducers and Control Unit .................................................................. 36 

3.3.4 Electromagnetic Flow Meter and Transducer ........................................................ 37 

3.3.5 Programmed Waveform Generator ........................................................................ 37 

3.4 Experimental Conditions ................................................................................................. 38 

3.5 Experimental Results ....................................................................................................... 39 

3.5.1 Aortic Heart Valve Samples ................................................................................... 39 



vii 

 

3.5.2 How to Measure the Geometrical Orifice Area? .................................................... 44 

Chapter 4: Structural Model Analysis of Aortic Stenotic Valve .................................................... 46 

4.1 Introduction ...................................................................................................................... 46 

4.2 Numerical Method ........................................................................................................... 47 

4.3 Model Description ........................................................................................................... 49 

4.4 In Vitro Experiments ....................................................................................................... 56 

4.4.1 Case 1: Bioprosthetic Pericardial Valve ................................................................. 56 

4.4.2 Case 2: Silicone Valve with Moderate Stenosis ..................................................... 64 

4.4.3 Case 3: Silicone Valve with Severe Stenosis ......................................................... 72 

4.5 In Vivo Application (Patients’ Specific Aortic Stenosis) ................................................ 80 

4.5.1 In Vivo Case: Patient No. 1 .................................................................................... 82 

4.5.2 In Vivo Case: Patient No. 2 .................................................................................... 87 

4.5.3 In Vivo Case: Patient No. 3 .................................................................................... 89 

4.6 Summary .......................................................................................................................... 91 

Chapter 5:  Fluid Structure Interaction Analysis of Healthy and Stenotic Aortic Valves ............. 93 

5.1 Introduction ...................................................................................................................... 93 

5.2 Numerical Method in Fluid Structure Interaction Analysis ............................................. 94 



viii 

 

5.3 Model Description ........................................................................................................... 97 

5.3.1 Geometry ................................................................................................................ 97 

5.3.2 Element Formulation .............................................................................................. 98 

5.3.3 Material Properties ................................................................................................. 99 

5.3.4 Boundary Conditions ............................................................................................ 100 

5.3.5 Coupling Implementation ..................................................................................... 100 

5.4 Results and Discussion .................................................................................................. 102 

5.5 Limitations of the Current FSI Model ........................................................................... 112 

5.6 Summary ........................................................................................................................ 112 

Chapter 6: Conclusion and Future Work ..................................................................................... 113 

References .................................................................................................................................... 118 

Appendix 1 ................................................................................................................................... 126 

Appendix 2 ................................................................................................................................... 129 

 

 

 

 

 



ix 

 

List of Figures 

Figure 1.1 Aortic heart valve: (a) front view (b) above view. (Pick, 2007) .................................................... 2 

Figure1.2 Aortic valve interior view; L: left coronary and R: right coronary. (www.arthursclipart.org) ........ 3 

Figure1.3 Aortic and left ventricular pressure waveforms during a cardiac cycle. .......................................... 4 

Figure1.4 Human circulatory system. (www.teachnet.ie/farmnet/Circulatory.htm) ....................................... 5 

Figure1.5 Normal and bicuspid aortic valve ................................................................................................... 6 

Figure 1.6 Severe calcification of a three-leaflet aortic valve (Rajamannan et al., 2007). .............................. 7 

Figure 1.7 Schematic of the flow thorough an aortic valve. ............................................................................ 9 

Figure 1.8 Prosthetic heart valves: ................................................................................................................ 11 

Figure 1.9 Caged ball valve. (Stijnen, 2004) ................................................................................................. 12 

Figure 1.10 Three types of non-tilting disc valves. (Gott et al., 2003) .......................................................... 13 

Figure 1.11 Tilting disc valves. (Stijnen, 2004) ............................................................................................ 13 

Figure 1.12 Front view of a bileaflet valve. (Stijnen, 2004) .......................................................................... 14 

Figure 1.13 Switch operation (Ross procedure).(www.medicinenet.com/aortic_stenosis/article.htm) .. 15 

Figure 1.14 Allograft valve. (www.clevelandclinic.org) ............................................................................... 16 

Figure 1.15 Bovine pericardium prosthesis. (Bloomfield, 2002) .................................................................. 17 

Figure 1.16 Percutaneous aortic valve. (Southard and Low, 2006) ............................................................... 17 

Figure 1.17 A view of the catheter. (Hanzel et al., 2006) .............................................................................. 18 

Figure 1.18  Trajectory of catheter inside the heart. (Hanzel et al., 2006) .................................................... 18 

Figure 1.19  Percutaneous aortic valve replacement:  a) balloon valvuloplasty; b) balloon catheter with the 

prosthetic valve inside the diseased valve; c) balloon inflation to secure the prosthetic valve; d) prosthetic 

valve in place. (http://my.clevelandclinic.org/heart/percutaneous/percutaneousvalve.aspx) ........................ 19 

Figure 3.1 Front view of the left heart simulator. .......................................................................................... 33 



x 

 

Figure 3.2 A schematic of left heart simulator circulatory system. (MV: mitral valve and AV: aortic valve)

 ....................................................................................................................................................................... 34 

Figure 3.3 Super pump. ................................................................................................................................. 35 

Figure 3.4 Left heart system. ......................................................................................................................... 36 

Figure 3.5 Transducer and control unit. ........................................................................................................ 36 

Figure 3.6 Flow meter. .................................................................................................................................. 37 

Figure 3.7 Front panel of the waveform generator unit. ................................................................................ 37 

Figure 3.8 (a) Biological aortic pericardial valve; (b) home-made stenotic silicone valve. .......................... 38 

Figure 3.9 Pressure waveforms obtained in vitro on a biological pericardial valve. Red line: ventricle 

pressure, yellow: aortic pressure, light green: stroke volume, and green line: flow rate. .............................. 40 

Figure 3.10 Opening and closing of leaflets in the biological pericardial valve during one cycle recorded at 

1000 fps; (order: Top left to bottom right). ................................................................................................... 40 

Figure 3.11 Pressure waveforms obtained in vitro on a silicone valve with moderate stenosis. Red line: 

ventricle pressure, yellow: aortic pressure, light green: Stroke volume and green line: flow rate. ............... 41 

Figure 3.12 Opening and closing of leaflets in silicone valve with moderate stenosis during one cycle 

recorded at 1000 fps; (order: Top left to bottom right). ................................................................................ 42 

Figure 3.13  Pressure waveforms obtained in vitro on a silicone valve with severe stenosis. Red line: 

ventricle pressure, yellow: aortic pressure, light green: Stroke volume and green line: flow rate. ............... 43 

Figure 3.14 Opening and closing of leaflets in silicone valve with severe stenosis during one cycle recorded 

at 1000 fps; (order: Top left to bottom right). ............................................................................................... 43 

Figure 3.15 The maximum geometric opening area (GOA) of the valve (at 0.3 s); the red line is the location 

of leaflet free edges. ...................................................................................................................................... 44 

Figure 4.1  Rc: commissural radius, H: commissural height, hs: sinus height, Hs: commissural height, Xs: 

coaptation height, Rb: radius of the base, Lh: leaflet height, Lf: leaflet free edge length (Thubrikar, 1990). 51 

Figure 4.2 Different views of the one third aortic valve geometry used for the simulations. In all pictures, 

pink and green represent the leaflet and aortic root (sinus and base). First picture from the top (right) shows 

the location of boundary conditions. ............................................................................................................. 53 



xi 

 

Figure 4.3  Algorithm for of the estimation of material property of an aortic stenotic valve. ....................... 55 

Figure 4.4 Time varying pressure wave forms for in vitro pericardial aortic valve. ..................................... 57 

Figure 4.5 Variation of the GOA as a function of C1 (in vitro), for pericardial aortic valve. ........................ 57 

Figure 4.6 Instantaneous GOA measured experimentally and computed numerically (as percentage of 

systolic phase). .............................................................................................................................................. 58 

Figure 4.7 Maximum opening area of AV in pericardial aortic valve. .......................................................... 59 

Figure 4.8 Instantaneous pressure gradient including selected points. .......................................................... 59 

Figure 4.9 Opening and closing of pericardial aortic valve at different points selected in Fig. 4.8. ............. 60 

Figure 4.10 Minimum closing of in vitro pericardial aortic valve. ................................................................ 61 

Figure 4.11 Contours and vectors of maximum principle stress at: (a) maximum opening; (b) valve closure.

 ....................................................................................................................................................................... 63 

Figure 4.12 Stress analysis for two critical points during one cycle. ............................................................ 64 

Figure 4.13  Time varying pressure wave forms for in vitro moderate AS. .................................................. 65 

Figure 4.14  Variation of the GOA as a function of C1 (in vitro), for moderate AS. ..................................... 65 

Figure 4.15 Maximum opening area of in the model of moderate AS. The yellow area represents the 

maximum GOA at t=0.26 s. .......................................................................................................................... 66 

Figure 4.16 Contours of maximum and minimum principal stresses at the instant corresponding to the 

maximal opening of valve leaflets for the model of moderate AS. ............................................................... 67 

Figure 4.17 Contours of 2nd principal stress and Von- Mises stress at the instant of maximum opening of the 

valve leaflet for the model of moderate AS. .................................................................................................. 68 

Figure 4.18 Minimum closure area in vitro moderate AS, yellow area is the simulated regurgitation area. . 69 

Figure 4.19 Contours of maximum and minimum principal stress during the closure phase, for the model of 

moderate AS. ................................................................................................................................................. 70 

Figure 4.20 Contours of 2nd principal stress and Von- Mises stress during the closure phase, for the model 

of moderate AS. ............................................................................................................................................. 71 

Figure 4.21 Time varying pressure wave forms for in vitro severe AS. ........................................................ 73 



xii 

 

Figure 4.22 Variation of the GOA as a function of C1 (in vitro), for severe AS. .......................................... 73 

Figure 4.23 Maximum opening area of the model of severe AS, the yellow area is simulated GOA. .......... 74 

Figure 4.24 Contours of maximum and minimum principal stress at the instant of maximum opening for a 

model of severe aortic stenosis. ..................................................................................................................... 75 

Figure 4.25 Contours of 2nd principal stress and Von- Mises stress at the instant of maximum opening for a 

model of severe aortic stenosis. ..................................................................................................................... 76 

Figure 4.26 Minimum closure area in vitro severe AS, yellow area is the simulated regurgitation area. ..... 77 

Figure 4.27 Contours of maximum and minimum principal stress at the minimum closing of valve leaflets 

for the model of severe AS. ........................................................................................................................... 78 

Figure 4.28 Contours of 2nd principal stress and Von- Mises stress at the minimum closing of valve leaflets 

for the model of severe AS. ........................................................................................................................... 79 

Figure 4.29 Definition of the different areas used in clinical studies, No. #1 represent effective orifice area 

(minimum cross-sectional area of the blood flow jet), No.#2  represent geometrical orifice area , No.#3 

cross-sectional area of the ascending aorta at the sinotubular junction. ........................................................ 81 

Figure 4.30 Time varying pressure waveforms (in vivo), for patient #1. ...................................................... 82 

Figure 4.31 Variation of the GOA as a function of C1 (in vivo), for patient #1. ........................................... 83 

Figure 4.32  Sensitivity analysis with respect to variation in GOA for patient #1. ....................................... 85 

Figure 4.33 Sensitivity analysis with respect to variation in the leaflet thickness for patient #1. ................. 86 

Figure 4.34 Material property for different value of valve leaflet thickness. ................................................ 87 

Figure 4.35 Time varying pressure waveforms (in vivo), for patient #2. ...................................................... 88 

Figure 4.36  Variation of the GOA as a function of C1 (in vivo), for patient #2. .......................................... 88 

Figure 4.37 Time varying pressure waveforms (in vivo), for patient #3. ...................................................... 89 

Figure 4.38 Variation of the GOA as a function of C1 (in vivo), for patient #3. ........................................... 90 

Figure 4.39 Obtained C1 for all simulated cases. ........................................................................................... 92 



xiii 

 

Figure 5.1 Movement of solid part in the fluid domain based on ALE approach during one time step, “a”  is 

the Lagrangian cycle and “b” is the advection cycle (green represents solid domain and lines represent the 

fluid mashes). ................................................................................................................................................ 95 

Figure 5.2 Aortic valve geometry and meshes merged in fluid domain. ....................................................... 97 

Figure 5.3 Velocity pattern at maximum opening for a healthy valve. Fringe level’s unit is (mm/s). ........ 102 

Figure 5.4 Velocity pattern at maximum opening for a stenotic valve. Fringe level’s unit is (mm/s). ....... 103 

Figure 5.5 Transversal cross section of the aorta at the section corresponding to the maximum velocity for 

healthy valve (EOA: area inside pink line), Fringe level’s unit is (mm/s). ................................................. 105 

Figure 5.6 Transversal cross section of the aorta at the section corresponding to the maximum velocity for 

stenotic valve (EOA: area inside pink line), Fringe level’s unit is (mm/s). ................................................. 105 

Figure 5.7 Velocity profiles for healthy valve (Max. opening), Fringe level’s unit is (mm/s). ................... 106 

Figure 5.8 Velocity profiles for a stenotic valve (Max. opening), Fringe level’s unit is (mm/s). ............... 107 

Figure 5.9 Velocity profile at mid-valve closure. ........................................................................................ 108 

Figure 5.10 Comparison of maximal velocity upstream from the aortic valve, the vena contracta and 

downstream of the valve for healthy and stenotic valve at Max. opening. .................................................. 109 

Figure 5.11 Comparison of ET, RVOP and RVCT using the dry model; FSI model and comparison with 

experimental model (for healthy valve)....................................................................................................... 110 

Figure 5.12 Opening and closure of a healthy pericardial aortic valve at different points selected in         

Fig. 4.8. ....................................................................................................................................................... 111 

Figure 6.1 Curvilinear relationship between the EOA and material properties, each point represents one 

case study (this thesis). ................................................................................................................................ 116 

Figure 6.2 Curvilinear relationships between the EOA and EBCT score (Messika-Zeitoun et al., 2004). . 116 

Figure A1.1 A 2D Geometry of aortic valve. .............................................................................................. 126 

Figure A1.2 (Left) aortic and left ventricular pressure wave forms applied as the boundary condition; 

(right) the boundary of the domain. ............................................................................................................. 127 

Figure A1.3 Velocity vector map at different instants and planes:  (a) Healthy valve; (b) valve with AS. . 128 

 



xiv 

 

List of Tables 

Table 1.1 Aortic stenosis severity classification based on EOA ..................................................................... 9 

Table 3.1 Measured GOA for three different valves (in vitro study) ............................................................ 45 

Table 4.1 Specific dimensions of the model. ................................................................................................. 52 

Table 4.2 Opening and closing characteristics of the in vitro pericardial aortic valve. ................................. 61 

Table 4.3 Stress analysis for two critical points. ........................................................................................... 62 

Table 4.4 Opening and closing characteristics of the valve in vitro moderate AS. ....................................... 72 

Table 4.5 Opening and closing characteristics of the valve in vitro severe AS. ............................................ 80 

Table 4.6  Calculated GOA based on the energy loss coefficient (in vivo study). ........................................ 82 

Table 4.7 Opening and closing characteristics of the valve for patient #1. ................................................... 83 

Table 4.8 Opening and closing characteristics of the valve for patient #2. ................................................... 89 

Table 4.9 Opening and closing characteristics of the valve for patient #3. ................................................... 90 

Table A1.1 Dimensions for human aortic valve. ......................................................................................... 127 

Table A2.1 Commercially available software and methods used. (Lio and Quek, 2003) ........................... 129 

 

 

 

 

 

 

 

 



xv 

 

Nomenclature 

A, A1-2 

Ae 

C 

Area (m2) 

Area of element (m2) 

Speed of sound (m/s) 

C1-4 

[C] 

 ߛ

E 

Material property constants 

Damping matrix (Ns/m) 

Poisson’s ratio 

Young’s modulus (Pa) 

F 

k 

[K] 

Le 

[M] 

µ 

Force vector (N) 

Bulk modulus (kg/ms2) 

Matrix of stiffness (N/m) 

Characteristic length (m) 

Matrix of mass (kg) 

Dynamic viscosity (kg/ms) 

Δp Pressure gradient (Pa) 

p 

Q 

Pressure  (Pa) 

Flow rate (m3/s) 

ρ Density (kg/m3) 



xvi 

 

S 

σ 

te  

Stress tensor for structure (Pa) 

Stress tensor for fluid (Pa) 

Time step (s) 

{u} Matrix of displacement (m) 

{uሶ } 

{uሷ } 

Ve 

V, V1-2  

Matrix of velocity (m/s) 

Matrix of acceleration (m/s2) 

Volume of element (m3) 

Velocity (m/s) 

W 

[M] 

Energy function (kJ) 

Matrix of mass (kg) 

  

  

  

  

  

  

  



xvii 

 

Abbreviation 

ALE 

AP 

AR 

AS 

AV 

AVR 

BV 

CFD 

CSD 

CW 

EBCT 

ECG 

EOA 

FSI 

ET 

Arbitrary Lagrangian Eulerian 

Aortic pressure 

Aortic regurgitation 

Aortic stenosis 

Aortic valve 

Aortic valve replacement 

Biological valve 

Computational fluid dynamics 

Computational solid dynamics 

Continues wave 

Electron-beam computed tomography 

Electrocardiogram 

Effective orifice area 

Fluid structure interaction 

Ejection time 



xviii 

 

GOA 

LV 

LVOT 

MV 

PW 

RVCT 

RVOT 

TPG 

VIA 

VP 

Geometric orifice area 

Left ventricle 

Left ventricle out tract 

Mechanical valve 

Pulse wave 

Rapid valve closing time 

Rapid valve opening time 

Transvalvular pressure gradient 

Visco-elastic impedance adapter 

Ventricular pressure 

 

 



1 

 

Chapter 1: Introduction 

1.1 Overview 

Heart is a complex pump circulating the blood into the body. All human cells need blood 

to live. At each beat, heart sends oxygenated blood with all necessities into the body organs and 

removes waste materials from deoxygenated blood. The aorta is the artery that transports the 

fresh blood from heart to the body. Aortic valve is placed at the beginning of the aorta and lets 

blood be pumped into aorta, but prevents blood from flowing back to the heart. This valve has a 

very important role on the health and long life of the heart. Because of that, it plays a strategic 

role comparing with other heart valves. 

Several diseases can influence the nature and performance of the aortic valve. Aortic 

regurgitation (i.e., valve does not close properly) and aortic stenosis (i.e., valve dose not open 

properly) are the two important ones. In North America and Europe, aortic stenosis is the most 

frequent valvular heart disease and it is more common among men (Otto et al., 1999). Treatment 

for symptomatic patients with aortic stenosis is surgical replacement of the diseased valve. 

Engineers have worked on artificial valves in order to maximize their performance and 

durability since the first implantation sixty years ago (Gott et al., 2003). In all types of artificial 

heart valve implantation, open heart surgery has been needed, until recently after the development 

of percutaneous heart valves, which allowed valve replacement without open chest surgery 

(Feldman, 2006). This is now the optimal solution in patients with elevated surgical risks. 

In this chapter, first of all, the aortic valve anatomy and physiology are presented 

followed by a discussion on the most common aortic valve diseases and their effects on the valve 

structure and performance, in order to understand the necessity of valve replacement. Then, 
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different types of the artificial aortic valves are presented. Finally, the objective of this thesis and 

proposed studies and methodologies are described. 

1.2 Anatomy of Aortic Valve 

The aortic valve separates the left heart ventricle from the aorta (Fig. 1.1(a)). It consists 

of three half-moon-shaped pocket-like flaps of leaflets and three sinuses. For illustration, Fig. 

1.1(b) shows a view of the aortic valve from above the heart in open and closed situations. The 

contact area of neighboring leaflets in closed position is called coaptation surface (Thubrikar, 

1990). The leaflets are the most moveable parts in the valve and the sinuses are cavities behind 

the leaflets. The sinuses are attached to the aorta from the upper part and to the left ventricle from 

the lower part. The sinuses are consequently named left coronary sinus, right coronary sinus and 

noncoronary sinus. The coronary arteries supply blood in order to feed the heart itself (see Fig. 

1.2).  

  

Figure 1.1 Aortic heart valve: (a) front view (b) above view. (Pick, 2007) 
 

The aortic root creates a bridge between the left heart ventricle and the ascending aorta. It 

is the pathway for blood flow out of the left ventricle. Also, it provides the structure to serve as 

support for aortic valve leaflets. The aortic valve is composed entirely of connective tissues. 
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Figure1.2 Aortic valve interior view; L: left coronary and R: right coronary. (www.arthursclipart.org) 

 

1.3 Physiology of Aortic Valve 

The heart pumps blood from the left heart ventricle into the aorta, through the aortic 

valve, and then throughout the body. The aortic valve is a one-way valve. During systolic phase 

(contraction), the aortic valve leaflets open to allow oxygenated blood flows forward from left 

ventricle to aorta, and close to prevent backward flow from aorta to left ventricle during diastolic 

phase (relaxation). In general, the main functions of aortic valve are:  

• To providing a route for leaving blood from the heart. 

• To prevention of blood backflow into the heart after blood leaves it. 

A cardiac cycle has two main periods: systolic and diastolic (see Fig. 1.3). During 

systole, contraction of the left ventricle causes blood ejection into the aorta while the aortic valve 

remains open during this interval. During diastole, a relaxation leads to filling of the left ventricle 

with blood from the atrium.  
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Figure1.3 Aortic and left ventricular pressure waveforms during a cardiac cycle.  

Q: the flow curve, AO: valve opening and AC: valve closure.  (De Hart, 2002) 

 

The performance of the aortic valve can be affected in different ways. If calcium 

deposition builds up on the aortic valve leaflets, the valve structure becomes hard (calcified) over 

time. When this problem happens, the leaflets do not open normally and the volume of ejected 

blood from the left ventricle decreases, and as a consequence, heart performance is reduced. Age 

increasing and high blood pressure are the most important risk factors of calcified leaflets. In    

Fig. 1.4, the entire circulatory system and the flow directions of blood in the body are shown. The 

red color is associated with the oxygenated blood and the blue color shows the deoxygenated 

blood. 
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Figure1.4 Human circulatory system. (www.teachnet.ie/farmnet/Circulatory.htm) 
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1.4 Aortic Valve Diseases 

Valvular heart diseases mean disorders in structure or function of the heart valves. A 

valvular disease can be congenital (present at birth) or acquired later in the life. Infection and 

structural changes which happen over time are the common causes of acquired valve diseases. 

Treatment for symptomatic patients with severe aortic valve disease is surgical replacement of the 

valve. 

In the followings, the common aortic valve diseases: congenital valve diseases, aortic 

regurgitation and aortic stenosis are described. As the aortic stenosis is the most common valvular 

disease, it is the subject of this research. 

1.4.1 Congenital Valve Disease 

Congenital valve disease is a kind of deformity in valve structure developed before birth. 

Bicuspid aortic valve disease is a type of congenital valve disease that affects the aortic valve 

leaflet shapes and connections and lead to aortic flow obstruction (Fig. 1.5).  

 

Figure1.5 Normal and bicuspid aortic valve  

(Bicuspid valve has only two leaflets instead of three). (www.clevelandclinic.org/heart) 

 

1.4.2 Aortic Regurgitation 

Aortic regurgitation (AR) occurs when the valve does not close properly, and blood can 

leak backward into the left ventricle during diastolic phase. As a result, the left ventricle has to 

pump blood more than in a healthy case and this extra work causes enlargement of ventricle and 

its muscles will become thicker. The serious AR cases may require surgical treatment. This 
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involves replacing the diseased valve with an artificial one. Patients with AR are at increasing 

risk for developing heart valve infection.  

1.4.3 Aortic Stenosis 

The narrowing of flow passing through the aortic valve during systole is called aortic 

stenosis (AS). The leaflets do not open wide enough and the left ventricular work load increases 

significantly to maintain a physiological flow rate. AS can be caused by calcium deposition on 

the aortic side of the leaflets or caused by congenital abnormality of the valve. Nowadays, the 

most common cause of AS is buildup of calcium and cusps fusion that occurs with age. 

Patients with AS may not have any symptom and the diagnosis is based on examination 

by hearing the heart murmur. When the AS becomes severe, many symptoms may develop: 

shortness of breath (dyspnea), chest pain (angina) and dizziness (Nishimura, 2002). 

 

Figure 1.6 Severe calcification of a three-leaflet aortic valve (Rajamannan et al., 2007). 
 

AS can be diagnosed using different techniques, below are the most common ways to 

examine and identify occurrence of AS are: 

Clinical examination: includes of examining the neck and hearing a murmur. 

Electrocardiogram (ECG): It is a recording of the heart’s electrical activity.  
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Chest X-ray:  In people with AS, the aorta above the aortic valve is often enlarged which 

can be seen with chest X-ray. Also X-ray can reveal the calcification of the aortic valve. 

Echocardiography: In echocardiography, ultrasound waves are used to obtain images of 

the heart chambers, valves and surrounding structures. It is a non-invasive test, which helps 

physicians to diagnose aortic valve diseases. An echocardiogram can show a thickened, calcified 

aortic valve. It can also show the size and functioning of the heart chambers. 

Doppler echocardiography: this technique can be used to determine the blood pressure 

difference through the aortic valve and to estimate the aortic valve area (Kisslo et al., 2000). It 

can be performed by using two techniques, pulse wave (PW) or continuous wave (CW). PW 

Doppler generates and transmits a periodic pulse wave through a transducer (sensor) at a certain 

frequency (signal). The frequency of reflected signal from the blood is shifted by an amount 

proportional to the velocity of the blood flow (the "Doppler effect"). Using this method, 

measuring very high blood flow velocities is not possible due to the Nyquist-Shannon theorem 

(Ching and Wu, 1998). CW Doppler involves a constant and continuous wave signal that sends 

and receives from two different sensors. It is used to measure the highest velocity through the 

valve (peak systolic flow velocity across the orifice area) making possible the measurement of the 

effective aortic valve area (EOA) by the continuity equation to provide better assessment for 

severity of aortic stenosis (Alan et al., 1991). EOA is the minimum cross-sectional area of the 

blood flow jet. 
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Figure 1.7 Schematic of the flow thorough an aortic valve. 
 

The area of the outflow tract (A1) can be measured by two-dimensional 

echocardiography. In Fig. 1.7 the areas and velocities associated with aortic valve domain are 

shown. We are able to determine A2 (EOA) by, (Kisslo et al., 2000) 

A2= (A1×V1)/V2                                                                                                                1-1 

where V1 is the left ventricular outflow tract velocity measured using PW Doppler and V2 is the 

highest velocity through the narrowed area of the stenotic orifice using CW Doppler. Also, the 

pressure difference thorough the valve can be determined by ΔP=4V2
2. A2 is called the effective 

orifice area (EOA) of the valve. 

Table 1.1 shows the criteria to assess the aortic valve condition regarding stenosis based 

on the effective orifice area calculation. (Fuster et al., 2004) 

Table 1.1 Aortic stenosis severity classification based on EOA 

Aortic Valve Condition EOA 

Valve with mild stenosis valve area exceeds 1.5 cm2 

Valve with moderate stenosis valve area in the range of 1.0 to 1.5 cm2 

Valve with severe stenosis valve area is less than 1.0 cm2 
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Cardiac catheterization: Cardiac catheterization is one of the methods to evaluate AS. A 

small plastic tube (catheter) is inserted from a vein or artery and pushed through the aorta under 

X-ray guidance up to the aortic valve and into the left ventricle. Real-time pressures are measured 

on both sides of the aortic valve.  

Magnetic resonance imaging (MRI): MRI is a safe and non-invasive medical test that 

helps physicians to see the detailed pictures of the organs and soft tissues and then diagnose AS. 

Patients are placed in a magnetic field. So, the magnetic moment of protons in organs align with 

the magnetic field. When the field turned off, the protons in different tissues go back to their 

equilibrium state at different rates that can be detected in images. A computer receives 

information and constructs the images.  

Patients who have AS with symptoms of chest pain or shortness of breath need 

replacement surgery. Patients with symptoms usually undergo cardiac catheterization. In case of 

severe AS, aortic valve replacement (AVR) is usually recommended. Patients with the maximum 

and mean pressure gradient greater than 64 mmHg and 40 mmHg, respectively (Bonow et al., 

2006), and an effective orifice area less than 1 cm2 are recognized as having a severe AS. The 

overall mortality risk for AVR surgery is about 5%. Advanced age should not be a reason for not 

recommending AVR for AS. Patients in their 80s with strong heart muscles often benefit 

dramatically from AVR due to critical AS. (Dumesnil et al., 2008) 

 

1.5 Prosthetic, Artificial Heart Valves 

There are two types of prosthetic valves for replacement of aortic valves: mechanical 

valves (MV) and bioprosthetic valves (BV). A typical schematic of mechanical and a porcine 

type bioprosthetic valves are shown in Fig. 1.8. A biological prosthesis is usually made of porcine 
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aortic valve tissue or bovine pericardial tissue. Mechanical valves are made of pyrolitic carbon or 

combination of pyrolitic carbon and metal. Each type has its own advantages and disadvantages. 

Each year, more than 170,000 prostheses are implanted in patients in the world. Approximately 

60% of those are mechanical and 40% are biological valves (Schoen and Levy, 1999). The 

average lifetime of a biological valve is between 10 and 15 years (Sauren, 1981). Mechanical 

valves comparing with biological valves have more durability. As a result, to decrease the risk of 

another valve replacement, in younger patients it is often recommended using mechanical valves. 

 Biological valves are more biocompatible than mechanical ones; most patients who 

receive a biological valve replacement do not need life-long anticoagulant therapy after surgery. 

In fact, the final decision on which a valve type is more appropriate for a specific patient depends 

on several factors such as age, gender and health condition of the patient and the preferences of 

the surgical team. A after a brief review of the different types of prosthetic valves, a specific type 

of biological valves (Percutaneous valves) and its advantages and implantation technique will be 

described (see Sec. 1.6), as they are the main subject of this research. 

             

                       (a)                                             (b) 

Figure 1.8 Prosthetic heart valves:  

(a)  a St. Jude Medical bileaflet prosthesis; (b) a Hancock porcine bioprosthesis. (Sauren, 1981) 

1.5.1 Mechanical Valves 

Mechanical valves have progressed in different designs from the ball and cage to bileaflet 

valves. Because of their high durability, they are implanted in young patients. However, 

increasing the risk of blood clotting is the main disadvantages of these valves and can cause a 



12 

 

thrombosis formation and stroke. To prevent this problem, patients must take anti-coagulant 

drugs persistently, which creates hemophilia. Also, patients with mechanical heart valves usually 

complain about hearing the sound of their artificial valve. 

1.5.1.1 Caged Ball Valve 

The first implanted mechanical valve prosthesis was a caged ball model in 1952 by Dr. C. 

Hufnagel (Hufnagel et al., 1954). In this model, a small ball is held in place by a welded metal 

cage (Fig. 1.9). In caged ball valves blood flow has high shear stresses and pressure gradient even 

in fully open position. Another effect of the ball on blood is damage of blood cells leading to 

release blood clotting ingredients. In addition, the patients need to take lifelong prescriptions of 

anticoagulants. Also, implantation of this valve takes a large space in the aorta, and because of 

that, it cannot be implanted in all patients (Stijnen, 2004). 

 

Figure 1.9 Caged ball valve. (Stijnen, 2004) 

 

1.5.1.2 Non-Tilting Disc Valve 

As it is seen in Fig. 1.10, these types of valves are very similar to the ball caged valves. 

All the disadvantages mentioned for the ball caged valve exist also for this type, but these valves 

have smaller size and take less space in the aorta.  
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Figure 1.10 Three types of non-tilting disc valves. (Gott et al., 2003) 

 

1.5.1.3 Tilting Disc Valve 

For fifteen years, the caged ball valve was the best design. In the mid 1960s, a new type 

of mechanical valves was designed using a tilting disc to mimic the natural blood flow 

patterns. The disc floats between the struts, when the backward flow begins it closed and 

reopened when forward flow begins (Grixti et al. 2004) (Figure 1.11).  

 

Figure 1.11 Tilting disc valves. (Stijnen, 2004) 

 

The tilting disc valve improves the central flow while prevents backflow. Also for this 

valve type, blood cell damage is reduced comparing with caged ball valves. 

1.5.1.4 Bileaflet Valve 

The first design of bileaflet valves was performed in 1963. It consists of two semicircular 

leaflets that pivot on hinges. The carbon leaflets show high strength and excellent 
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biocompatibility. The leaflets stand parallel to the direction of the flow in completely open 

position (see Fig. 1.12).  

    

Figure 1.12 Front view of a bileaflet valve. (Stijnen, 2004) 
 

In around 2000 in UK, 91.8% of the implanted mechanical valves were bi-leaflet valves, 

6.5% were single leaflet valves and 1.7% were caged ball valves from a total of 4049 implants 

(Nair, 2003). 

1.5.2 Bioprosthetic Valves 

The implantation of all mechanical heart valves needs anticoagulant medication. 

However, replacement of a natural valve with a prosthetic biological valve which would not need 

a long term anticoagulant cure provides the advantage of avoiding the risks of taking 

anticoagulants, especially for young women planning pregnancy and patients with hemophilic 

problems. Different types of biological valves have so far been developed. 

An autograft valve is referred to the one translocated from one to other position of a same 

patient. As shown in Fig. 1.13, the patient's pulmonary valve is used to replace the diseased aortic 

valve. An allograft valve is a valve removed from another person and implanted to the patient.  
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Figure 1.13 Switch operation (Ross procedure). (www.medicinenet.com/aortic_stenosis/article.htm) 

 

A xenograft valve is one transplanted from animals such as pig, or manufactured from 

their tissue such as bovine pericardium (Bloomfield, 2002). The xenograft valves are less durable 

than mechanical prostheses; however, they have the advantage of not requiring a life-long blood 

medication (to prevent blood clots from forming on the valve surfaces).  

A bioprosthesis can degenerate and calcify rapidly (cause to stenosis or a narrow opening 

in young patients). Therefore, bioprostheses are primarily used in patients over 65 years old or in 

patients who cannot take anticoagulant medication. 

 Biomedical engineers in the fields of material and structure have worked on the design 

of these valves in order to maximize their performance and durability. Recently, the development 

of a new type of bioprosthetic valves, the percutaneous valves, allowed valve replacement 

without open chest surgery. This is an optimal solution for patients whose surgical risks are 

elevated.  
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1.5.2.1 Autograft Valves 

Donald Ross in 1967 introduced the Ross procedure that involves replacing the patients’ 

diseased aortic valve with their own pulmonary valve (Fig. 1.13 and Fig. 1.14). This procedure 

requires a double valve replacement during one operation, thus increasing the surgical risk 

(Stelzer et al. 1997).  

1.5.2.2 Allograft Valves 

Allograft valve is a human heart valve that is obtained from a donor after death. The 

valve is frozen and then transplanted in the recipient. A homograft may be used to replace a 

diseased aortic valve or to replace the pulmonic valve during the Ross procedure. The patients’ 

heart well accepts allograft valves as they are like their native valves (see Fig. 1.14).  

 

Figure 1.14 Allograft valve. (www.clevelandclinic.org) 

1.5.2.3 Xenograft Valves 

a) Porcine Valves: Most bioprosthetic valves are mounted on stents attached to a sewing 

ring. The stentless valves are more difficult to implant but they have a greater effective orifice 

area than the stented valves (Bloomfield, 2002). Hancock II Porcine (Medtronic) and the Biocor 

Porcine (St Jude Medical) prostheses are the most widely used types of this valve. 

b) Bovine Pericardial Valves: These valves are made from bovine pericardium mounted 

on a stented frame (Fig. 1.15).  
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Figure 1.15 Bovine pericardium prosthesis. (Bloomfield, 2002) 

1.6 Percutaneous Valves 

 In this section, a new type of bioprosthetic valves, the percutaneous valves, is 

introduced. A percutaneous valve does not need an open heart surgery. Its durability is in an 

acceptable range. For both groups of young and aged people, those who did not have a valve 

replacement previously and for whom their biological valve has to be replaced, it is a practical 

choice and the patients do not have to undergo the risks of open heart surgery.   

The first human percutaneous aortic valve implantation was performed by Cribier in 

April 2002 as a treatment for a severe AS (Feldman, 2006). The percutaneous aortic valve is a 

three leaflets bovine pericardial valve mounted inside a stainless steel stent (Hanzel et al., 2006). 

A schematic of this valve is shown in Fig. 1.16. Percutaneous aortic valve replacement is a novel 

alternative and under investigation treatment for patients with severe symptomatic AS. 

 

Figure 1.16 Percutaneous aortic valve. (Southard and Low, 2006) 
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 A catheter is inserted into the body through the femoral artery and guided into the left 

heart.  In Figs. 1.17 and 1.18, the catheter and its trajectory inside the heart are shown. When 

catheter reaches the heart, a balloon is inflated and pushed the calcified valve toward the aortic 

root and makes enough space for the new valve implantation (see Fig. 1.19 A). Then, a 

compressed percutaneous valve placed over the balloon-mounted catheter is located inside the 

diseased aortic valve (Fig. 1.19 B). The balloon is inflated and placed the valve in its final 

position (Fig. 1.19 C). In Fig. 1.19 D the implanted valve is shown. 

 

 Figure 1.17 A view of the catheter. (Hanzel et al., 2006) 

 

 

 

Figure 1.18  Trajectory of catheter inside the heart. (Hanzel et al., 2006) 
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Figure 1.19  Percutaneous aortic valve replacement:  
a) balloon valvuloplasty; b) balloon catheter with the prosthetic valve inside the diseased valve; c) balloon 

inflation to secure the prosthetic valve; d) prosthetic valve in place. 
(http://my.clevelandclinic.org/heart/percutaneous/percutaneousvalve.aspx) 

1.7 Objective and Outline of Thesis Study 

Thousands of people experience aortic valve diseases in North America every year. 

Among aortic valve diseases, Aortic stenosis (AS) is the most frequent cardiovascular disease 

after hypertension and coronary artery diseases. Patients with severe AS need surgery to replace 

their diseased valve with a prosthetic one. Open heart surgery to implant mechanical and 

traditional biological heart valves is difficult and painful for the patients and also is considerably 

costly for the government. Moreover, implantation of mechanical heart valves always increases 

the risk of thrombosis events and stroke, due to blood clotting. Also, biological valves implanted 

in the patients need to be re-implanted in ten to fifteen years. As it was discussed earlier, the 

development of percutaneous valves allowed valve replacement without open chest surgery. This 

is the optimal solution in patients whose the surgical risks are elevated. However, in a significant 

number of cases, the valve replacement with percutaneous valves failed due to the stiff leaflet 

material of the patient’s stenotic valves due to thick calcium deposition.  
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Physicians can only rely on their personal experience to choose the treatment procedure 

for patients, which is a significant limitation in the management of cardiovascular disease. Also, 

it is important for surgeons to have an estimation of the material property of the valve leaflets in 

patients with severe stenosis to choose the most suitable surgery procedure to improve the 

patients’ outcome.  

The investigation of material property of the stenotic valve in vivo needs insertion of 

instruments into the body while in vitro, it is expensive and difficult in terms of reproducing the 

patients’ own physiological conditions. Thus, it is of great interest to develop a virtual computer 

simulation to give surgeons a good estimation of the material properties of aortic valve leaflets 

based on easily achievable clinical patients’ information. This may help to select the appropriate 

model of percutaneous valve or to change the surgery procedure (not to implant a percutaneous 

valve but replacement with a mechanical or bioprosthetic substitute). 

The main objective of this research is to develop numerical modeling based on in vitro 

data in order to simulate and understand the dynamic behavior of the aortic valve mainly in 

presence of stenosis. The importance of this study is to develop a method for the noninvasively 

estimation of the patient’s aortic valve material property. Also, the results can be useful to design 

of the tissue engineered valves. 

 Based on the defined objective, two separate numerical simulations are performed in this 

research: First, a structural model (dry model) of the aortic valve that is able to estimate the 

material properties of the aortic leaflets without considering a fully coupling interaction with the 

blood flow is developed. The review of the literature reveals that there is no previous works 

dedicated to the structural analysis of a stenotic aortic valve.  Second, a numerical fluid structure 

interaction (FSI) simulation is performed in order to investigate the interaction between the flow 

and the structure of the aortic valve in a two way coupling modeling. A limited number of 
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research groups have studied FSI modeling of aortic stenotic valves and the existing models need 

improvements in terms of the FSI implantation technique and applied material property. 

In particular the following chapters of this thesis are organized as follow: 

Chapter 2 presents a review of the literature of the subject of this research. The literature 

review is divided in two parts: first a review on structural models (dry model) dealing with aortic 

valves will be presented and second a review on FSI modeling (wet modeling) of the aortic valve 

will be discussed.  

The in vitro experimental study is presented in Chapter 3. The experimental facility, 

components of the system, experimental procedure and results are explained in this chapter. 

Chapter 4 contains details of structural model (dry model). The numerical simulation 

results of three dimensional dry modeling of a healthy and five stenotic aortic valves are 

presented. Then, the proposed methodology to find the material properties of these valves based 

on the numerical simulations is introduced.  

In Chapter 5, the three dimensional FSI modeling of realistic healthy and stenotic valves 

are presented. FSI modeling can also address the flow characteristics through the valve besides 

the structural information. 

The last chapter, Chapter 6, forms the conclusion and discussion on the results of this 

research. The possibility of future studies and directions are suggested. 
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Chapter 2: Literature Review 

2.1 Introduction 

The cardiovascular system has been targeted by many researchers investigating its 

dynamic behavior function and hemodynamic physics. Among all studies in cardiology, modeling 

of the heart valves still has the opportunity for more improvement and study. The importance of 

the study on aortic valves can be understood when referring to statistics. Approximately each year 

26,000 people die in the United States because of aortic valve disorder and also it is predicted that 

by the year 2020, 800,000 people worldwide will require heart valve replacements every year 

(Croft and Kaazempur Mofrad, 2010). Different strategies have been used to study the heart 

valves: in vivo studies using magnetic resonance imaging, echocardiography and other cardiac 

imaging modalities; in vitro experiments and numerical simulations. In numerical simulations, 

different simplifications and assumptions must be defined to analyze the behavior of aortic 

valves, but numerical simulations of the aortic valve can greatly contribute to a better 

understanding of the mechanics and hemodynamics of the valve. Moreover, it can help to explore 

the cause of diseased natural valves and also predict the durability and efficiency of artificial 

valves. 

Numerical simulation can be used as an exceptional tool to study the mechanics of the 

aortic valves. There are two points of view: structural modeling (dry model) and fluid structure 

interaction modeling (wet model). In the dry model, pressure is applied to the surface elements of 

the structure as a boundary condition or applied load. There are two kinds of analysis; steady 

analysis (constant pressure applied) and dynamic analysis (time dependent pressure applied). It is 

the same also for fluid structure interaction (FSI) modeling, the steady case in which constant 
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pressure or velocity are applied as an inlet boundary condition and dynamic analysis which uses 

the time varying pressure or velocity. 

The aim of using a dry model is to simulate the motion of the leaflets and find the stress 

and strain rates and other physical properties in the valve structure. In this modeling, there is no 

access to the hemodynamics. To have better understanding of blood flow characteristics such as 

velocity components, flow shear stress and vortices that play the major role in blood hemolysis 

and thrombosis, FSI modeling should be considered. In FSI modeling, there is a coupling 

between structure which is aortic root and fluid domain which is blood. In this method, fluid flow 

velocities are computed by solving Navier–Stokes equation through a computational fluid 

dynamics (CFD) algorithm while the structural elements remain fixed in place, then the structural 

elements are influenced by the flow velocities and pressure. In fully coupling algorithms, flow is 

also affected by the movement of the structure.  

The present chapter consists of a comprehensive review on numerical modeling of the 

natural and prosthetic aortic valves.  

2.2 Structural Modeling  

In the field of cardiovascular research, increasing the power of computers led to a fast 

growth of numerical simulations in computational solid dynamics from the pioneer studies of the 

70s up to present. Models were changed from two-dimensional to three-dimensional, dynamic 

analysis was employed instead of steady one and a huge progress happened in terms of applying 

more complex material properties to mimics the realistic behavior of biological tissues. In this 

section, a review of the works performed in numerical modeling of aortic valves using the dry 

model analysis is presented from the early 90s.    
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Huang et al. (1990) presented a two-dimensional (2D) finite element model of a Sheffield 

bicuspid valve (pericardial valve). They considered two models of a leaflet modeling (a radial and 

a circumferential slice) using an updated Lagrangian scheme in order to capture the dynamical 

behaviour in a semi-static loading. The model was based on a nonlinear hyperelastic material for 

tissue. The computed stress distribution in the deformable leaflets was presented.  

Black et al. (1991) developed a three-dimensional (3D) geometry of the Sheffield 

bioprosthetic bicuspid heart valve using a steady analysis. They used a nonlinear elastic material. 

They found that using shell elements (4 node elements) was not enough to achieve accurate 

results. The results were however validated for the calculation of peak stress.  

Thoronton et al. (1997) simulated a 3D model of the Sheffield bicuspid valve using finite 

element method. They concentrated on the leaflets and considered them as shell elements with 

linear material properties and different leaflet thicknesses. Unexpectedly, they found that 

maximum stress happens in the belly of leaflets and is decreased with reducing thickness.  

In 1999, Burriesci et al. provided additional details to the model of Black et al. (1991) on 

the Sheffield bioprosthetic bicuspid valve. They used LS-DYNA software to simulate a 

dynamical model with nonlinear orthotropic material properties. They showed that orthotropy 

causes a significant effect on the dynamic behavior and stress distribution in the valve. 

De Hart et al. in 2000 used finite element method to simulate a three leaflet valve. They 

created a model based on one-half of a single leaflet. Two different fiber orientations (a 

sinusoidal and a unidirectional circumferential) were used to model the tissue material. The 

circumferential fiber reinforcements reduced stresses in the rubber layers by up to 60. The 

maximum stress happened at the commissures and the belly regions of the layers. In a separate 

study, they presented two more leaflet models (one with stent and one without stent) using a 
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linear elastic material for sinuses and a non-linear elastic material for leaflets. They described the 

Mooney-Rivlin material as a good candidate being similar to a realistic valve; however, because 

of difficulty in finding the material parameters they did not employ that model to their simulation. 

The results revealed a 47% reduction of the maximum principal stress in stented models 

compared to stentless models. The stentless sinusoidal model had much lower maximum 

principal stresses than the stented model. In both studies, applied maximum pressure was lower 

than the realistic physiological range, but they justified this by limitations due to the numerical 

instability.  

Grande et al., 1998 and 2001, created a realistic geometric model of the aortic valve 

based on the MRI images using ANSYS software. They used an implicit, quasi-static scheme in 

their finite-element analysis. The results showed that by increasing the aortic root diameter and 

stiffening the surrounding structures, the leaflet stresses increased. In terms of material properties, 

they found that using graft material results in a more realistic valve behavior and stress 

distribution than using polyurethane.   

In 2001, Li et al. simulated a model of porcine aortic valve using a nonlinear anisotropic 

material. Their study was based on steady condition using LS-DYNA software. They found even 

small amount of orthotropy can significantly affect the stress distribution on the valve leaflets. 

They concluded that anisotropic property is necessary to describe the realistic in vivo mechanism 

of the failure of porcine valves. They also compared the effect of linear and nonlinear material 

properties. However, as their simulation was based on applying a steady load, the effect of 

material nonlinearity was not noticeable. 

Another study using LS-DYNA software was done by Arcidiacono et al. (2004) on 

pericardial valves. Their dynamic analysis consists of a linear elastic orthotropic material. They 
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found that even a small change in orthotropy can influence the leaflet performance in terms of 

stress distribution and dynamical behavior.  

Some publications did not present experimental studies to validate their dynamical 

simulation such as those of Li et al. (2001), Grande et al. (1999), and Huang et al. (1990). But in 

2005, Sun et al. simulated a pericardial valve under the quasi-static loading and showed that the 

experimental study is necessary for improving simulation and the design of the bioprosthetic 

valve. They validated their model using an experimental setup. The study found a small 

discrepancy between the finite element model and the experiment in terms of overall strain. 

One of the advantages of using computational modeling is the ability to determine the 

ideal dimensions of the aortic valve in order to figure out the appropriate behavior of the normal 

valve. This work was done by Labrosse et al. (2006) in the context of clinical applications. The 

goal of the study was to determine a range of valve dimensions allowing a proper functioning of 

the leaflets (means normal opening and normal closing without regurgitation). This study 

consisted of numerical analysis and analytical and graphical works based on in vitro experiments. 

The results led to a list of geometric parameters ensuring normal valve function. 

Ranga et al. (2004) developed a static model of the healthy aortic valve using the ANSYS 

software. They applied systolic phase pressure on the open configuration and diastolic phase 

pressure in the closed position. A longitudinal stretch was applied to the entire aortic root. The 

valve had an isotropic non-linear, five parameter Mooney-Rivlin, material. The material 

parameters were obtained based on the experimental data for stress and strain. They also 

compared the linear and nonlinear models and found that the non-linear model gives better 

results. The study also concluded that increasing Young’s modulus results in an increase in stress 

and decrease in strain.  
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In 2008, Haj-Ali et al. did a structural simulation of a prosthetic heart valve by using the 

ABAQUS software with an implicit scheme. A nonlinear shell-based structural model was 

employed. A quasi static load was generated and the input data was obtained from in vitro 

experiments. The results were validated in terms of stress analysis by the experimental results of 

Alferiev et al. (2003). The objective of the study was to measure the six distance parameters of 

leaflet displacement by image processing. They evaluated the distance characteristics numerically 

and experimentally. 

Koch et al. (2009) used the nonlinear, anisotropic and hyperelastic material for the 

leaflets. The hyperelastic parameters were obtained from curve fits to results of orthogonal 

uniaxial tensile tests on porcine aortic valve leaflets. They used steady analysis to model a 

complete aortic valve.  

One of the best ways to simulate a realistic geometry is to obtain the geometry from MRI 

images. Conti et al. (2010) obtained the MRI data for ten people with healthy valves and used it 

as an input to their numerical simulation. They tested nonlinear and anisotropic materials. The 

results showed that the anatomical differences cause differences in stress and strain patterns. To 

validate the study, they used the experimental results reported in the literature. 

One of the recent studies in finite element modeling of pericardial aortic valves was done 

by Xiong et al. (2010) using ABAQUS software. They compared the numerical simulations in 

three different implementation models: single point attached commissure (SPAC) tubular model, 

SPAC molded and conventional model. The main objective of this work was to compare the 

leaflet designs in order to achieve a clinical application. The molded leaflet design showed more 

improvement in performance compared to the tubular design and affected the durability of the 

valve. It represented better dynamic behavior with increase in effective orifice area and decrease 

in the magnitude of comprehensive stress.   
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One of the comprehensive models of aortic valve geometry was developed by Labrosse et 

al. (2010) using LS-DYNA software. The model is 1/6 of a complete geometry of the healthy, 

native aortic valve with anisotropic and hyperelastic material properties. The material parameters 

were obtained based on the experimental data. The dynamic pressure was applied to the surface 

of the valve. The results were validated by in vitro experiment. In terms of stress analysis they 

found that the maximum stress on the leaflet occurs on the attach line near the commissure during 

the diastolic phase.  

In conclusion, the review of all structural modeling studies reveals that the numerical 

simulation of aortic stenotic valve, which is the subject of this thesis, has not been investigated 

before. 

2.3 Fluid Structure Interaction  

Development in numerical algorithms and computer facilities paved the way for 

simulation of blood flow in coupling with internal body structures using fluid structure interaction 

(FSI) modeling. 

One of the pioneer works on FSI modeling of aortic valves was done by Chew et al. in 

1999. Their model consisted of a 3D bioprosthetic porcine valve with a non-linear elastic 

behavior of the tissue and the reinforcement of the leaflets by collagen fibre bundles. Results 

were validated in comparison with pulse duplicator images. Their objective was to simulate tissue 

damage in porcine prosthetic valves.  

De Hart et al. in 2000 developed a 2D FSI model, and later, extended it to 3D in 2003. 

For the 2D model, linear material properties were considered. The model consisted of two walls 

with the leaflets. The sinus, aorta and left ventricle were assumed to be completely rigid. A no-

slip condition was applied on the wall boundaries and a time varying flow rate was applied at the 
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inlet. To validate the numerical simulations, they built an experimental set up. The results showed 

a good agreement between the numerical and experimental works. A small delay for the 

numerical model in terms of opening of the valve happened but the velocity profiles were in the 

acceptable range. Their new FSI methodology was based on their code and was validated, 

although the number of elements in fluid domain seems inadequate. For the 3D and isotropic 

model, they simulated during the systolic phase, one-sixth of the geometry with a fixed aortic root 

using SEPRAN software. They used a low elastic modulus and also an unrealistic inlet condition 

(Reynolds number five times less than the physiological one) in order to avoid numerical 

instabilities. This affected the results of maximum principal stress. But generally, the model 

showed a good dynamic behavior. 

Another study by Nicosia et al. (2003) was done on the FSI modeling of an asymmetric 

aortic valve using LS-DYNA software. The geometry was developed based on MRI images of 

human aortic valves and coronary ostia. The material for aortic root had a linear elastic modulus 

and the leaflets were modeled using a nonlinear material. This is the only group who applied the 

pressure gradient as the inlet condition, but as they used an elastic module they had to scale down 

the pressure in order to avoid element distortion. The variation in instantaneous orifice area was 

shown; however, the trend for a healthy valve was not physiological.  

Ranga et al. in 2006 studied the dynamical behavior of aortic valves employing FSI 

modeling. The geometrical data of fifteen volunteers was extracted using MRI. They considered 

three different geometries for normal, reimplanted and remodeled aortic valves. Ventricular and 

aortic pressures were applied as inlet and outlet boundary conditions. Dynamic behavior of the 

valve in terms of ejection time and rapid opening and closing time for each case was compared to 

the MRI results. Their results were not satisfactory since the computed maximum velocities were 

far from the MRI results. 
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Carmody et al. (2006) employed LS-DYNA software to study a three dimensional 

integrated left heart ventricle and aortic valve model using FSI approach. First, the blood flow in 

and out of the left ventricle was modeled. After that, they used the results of the ventricular 

outflow as an inlet velocity for the aortic valve. The advantage of this approach is to avoid 

assumption of flat or simplified parabolic inlet velocity condition as it is common in most of the 

numerical simulations. They concluded that the pressure difference across the valve leaflets is 

uniform. It means the pressure gradient which should be applied on the surface of valve leaflets in 

dry models can be uniform but has to be time varying.  

Weinberg et al. (2007) developed a FSI modeling of one-sixth of a natural aortic valve. 

They investigated the dynamic and static behavior of the valve at cell, tissue and organ levels. 

They used nonlinear, anisotropic material (single term Mooney-Revlin) using LS-DYNA 

software. The instantaneous ventricle and aortic pressure were applied at inlet and outlet 

boundary conditions. For both static and dynamic analysis, they found that the radial stretch is 

higher than the circumferential one. The other work of this group was on the comparison between 

bicuspid and tricuspid valves which was published in 2008 (Weinberg et al., 2008). They 

concluded that the bicuspid valve does not open smoothly; the maximum velocity of bicuspid is 

lower than the tricuspid and besides the blood velocity pattern is completely different. In 2009 

(Weinberg et al., 2009), the same authors studied the effect of ageing and calcium deposition on 

the aortic valve leaflets. They used the same geometry and boundary conditions as in their former 

works. The calcified zones were modeled with stiff shell elements and the thickness and material 

property of the leaflets in their simulation varied based on the age. They showed the relationship 

between the age of patients and the thickness of leaflets in order to investigate the influence of 

age on the dynamic and hemodynamic behavior the valve.  
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In 2008, Katayama et al. performed the FSI modeling of an aortic valve with and without 

sinuses (sinuses are dilations of the ascending aorta just after the aortic valve) for different semi 

physiological ventricular pressures. The results showed that a valve with sinuses has a rapid and 

longer opening. Also, the stress and bending deformation in longitudinal direction are higher. 

This work did not include in vivo or in vitro validation.    

Van loon in 2009 investigated different shapes and stiffness for leaflets in a FSI analysis. 

This work has been done using SEPRAN package. Three models for valve leaflets were 

considered in an aortic root similar to the geometrical model of de Hart et al. in 2003. The flow 

velocity was applied as inlet condition, but the peak velocity was not physiologically correct and 

it was less than half of the physiological one. Also the flow domain was discretized by a very low 

number of elements, less than 1000. They considered the Neo-Hookean material for leaflets. The 

results as they explained were not satisfactory in terms of effective orifice area (EOA). In existing 

AS, the EOA should be less than 1 cm2 but in their simulation the computed EOAs were greater 

than 1 cm2, even when using low inlet velocity magnitude. Also, the effect of thickening in the 

leaflets in appearance of AS was not considered. 

As it was explained, there are only two groups who studied numerically the effect of AS 

on the dynamics of the valve with FSI modeling. These works have some limitations and need 

more improvements.  

In this thesis, besides the results of structural simulation (dry modeling) of healthy and 

stenotic aortic valves, the results of FSI simulation (wet modeling) are presented and discussed. 

Also, the improvements made in the present study compared with the literature will be addressed.  
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Chapter 3: In Vitro Experiments 

3.1 Introduction 

To study the behavior of aortic valves in healthy and unhealthy conditions, a series of in 

vitro experiments were performed. The acquired information will be used in the next chapters to 

demonstrate the applicability of the numerical algorithm for the estimation of stenotic valve 

properties under the same conditions as with the in vitro experiments.  

In vivo, having all the information about a native valve, mostly to have the behavior and 

dynamics of the valve, is difficult; but, in vitro all those information are accessible.  The 

advantage of such experiments is that the variation of the geometrical orifice area can easily be 

recorded and that the severity of the stenotic valve is known. For this purpose, three different 

models of aortic valves (biological pericardial valve, moderate and severe silicone hand-made 

valves) were placed into a left-heart simulator. The pressure curves upstream and downstream of 

these valves were stored and the motion of the leaflets (to extract the geometrical orifice area) 

was recorded. This information will be used as an input for the numerical algorithm.  

3.2 Experimental Facility 

A left heart simulator (Vivitro Systems; see Fig. 3.1) was used in order to perform the 

experimental tests [Vivitro Systems Inc., www.vivitro.bc.ca]. This simulator is capable of 

reproducing the flow and pressure conditions existing in the human heart. Another important 

application of this simulator is to facilitate examining the effect of different prosthetic and 

synthetic valves on the flow characteristics.  

Figure 3.2 sketches mechanical components of the left heart simulator setup.  It consists 

of a left ventricle including inlet mitral valve and outlet aortic valve, a compliance chamber and a 

resistive element. Also, the figure shows the close-loop circulation circuit. The compliance 
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chamber simulates the elasticity of the arteries and the resistive element simulates the peripheral 

resistance induced by the large arteries and small capillaries.  

This chapter also includes a brief explanation of the different components of the left heart 

simulator, a description of the stenotic valves tested, the experimental conditions and an example 

of typical pressure waveform obtained using this simulator.  

 

 

Figure 3.1 Front view of the left heart simulator. 
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Figure 3.2 A schematic of left heart simulator circulatory system. (MV: mitral valve and AV: aortic valve)  

 

3.3 The Components of the System 

The system includes a model of left heart ventricle, a pump, instrumentations to measure 

flow and pressure, and a data acquisition system. The figures presented in this section (Figs. 3.3 

to 3.7) are extracted from the Vivitro operating manual, 2006. 

 

3.3.1 Super Pump and Pump Regulator 

In the super pump system, a low inertia electric motor drives a piston cylinder pump. It is 

used to drive the flow in the left heart circulation. A linear actuator converts the rotary motion of 

the motor to a linear displacement of the piston using a ball-screw. The input waveform generated 

by the power amplifier can be controlled by position or velocity switches. 

This system consists of different parts: amplifier, linear actuator, motor, pump head, 

motor cooling fan, and interconnecting cables. A visco-elastic impedance adapter (VIA) is placed 
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between the pump and the left-heart model. Its task is to damp the pressure and flow waveforms 

generated by the pump to produce physiological waveforms. The VIA includes a fixed resistive 

element and two adjustable compliance chambers (Fig. 3.3). 

 

 

Figure 3.3 Super pump. 

3.3.2 Left Heart Simulation System 

The left heart system is designed to test heart valves under realistic conditions (Fig. 3.4). 

Before and after the valves there are pressure transducers. In order to have a good optical access, 

like for particle image velocimetry measurements, all the parts are made of transparent Plexiglas. 

The transparent elastic left ventricular model is placed in a hydraulic chamber and surrounded by 

water. A peripheral resistance knob controls the increase / decrease in the obstruction to the flow.  

The compliance of the cardiovascular system is simulated by two compliance chambers. 

One is connected to the left heart system (right above the aortic valve) and another is connected 

to the aortic chamber. 
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Figure 3.4 Left heart system. 
 

3.3.3 Pressure Transducers and Control Unit 

The amplifier is the main part of the pressure control system. Up to three pressure 

transducers can be plugged in using syringes. Before measuring, each transducer should be filled 

with fluid and de-bubbled. The transducers used in this study are Millar catheter MPC-500, with 

an accuracy of ±0.025% on the full scale. (Fig. 3.5) 

 

Figure 3.5 Transducer and control unit. 
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3.3.4 Electromagnetic Flow Meter and Transducer 

A flow measuring system is used to measure the cardiac output (Fig. 3.6). The system 

consists of a wave flow meter (FM501) and an electromagnetic flow probe made by Carolina 

Medical Electronics Incorporated. The electromagnetic flow probe is inserted just downstream of 

the aortic valve. The probe has a diameter of 28 mm and matches the internal diameters of the 

aortic and mitral valve flow channels in the model.  

 

Figure 3.6 Flow meter. 
 

3.3.5 Programmed Waveform Generator 

A programmed waveform generator (WG5891 type) is able to generate complex 

waveforms at different frequencies (ranging from 30 to 200 cycles per minute) for the left heart 

simulator system (see Fig. 3.7). The unit is designed to provide physiological waveforms as input 

to the super pump. It is able to store up to seven waveforms. 

 

Figure 3.7 Front panel of the waveform generator unit. 
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3.4 Experimental Conditions  

In this research, three different trileaflet aortic heart valve samples have been tested 

experimentally: a) a biological prosthetic pericardial heart valve (mimicking a healthy native 

valve) (Fig. 3.8(a)) and two previously validated home-made models of aortic stenotic heart 

valves (Blais et al. 2006) (Fig. 3.8b). These valves are made of several layers of silicone 

determining the rigidity (stenosis severity) of the stenotic valve. The two different examined 

severities are moderate stenosis with (EOA= 1.4 cm2) and severe stenosis with                           

(EOA= 0.94 cm2). 

 

Figure 3.8 (a) Biological aortic pericardial valve; (b) home-made stenotic silicone valve. 
 

A saline solution with a concentration of 9 grams of salt in 1 liter of distillated water is 

used to fill the left ventricle model, since the flow sensor measures the voltage of a conductive 

solution flowing through a magnetic field. This solution has a viscosity of 1.002 ൈ 10ିଷ Pa.s at 

25 ºC.  

In all the experiments, the heart rate was kept at 70 beats /min, cardiac output was fixed 

at 5 lit/s and the systolic/diastolic aortic pressure for all three cases was between 80-120 mmHg 

(physiological condition).  
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For all cases, a high-speed camera captures the motion of the aortic valve leaflets at each 

instant. The camera has a frame rate of 1000 frames per seconds and it was installed on the top 

side of the valve near to sinotubular junction.  For a closer view, an endoscope, equipped with a 

light source, was extended from the camera towards the aorta. These images were used as a 

reference for the numerical simulation (Chapters 4 and 5). An image processing is needed to 

extract the required information from theses raw images. This was done in this research by 

writing a MATLAB code.  

3.5 Experimental Results  

3.5.1 Aortic Heart Valve Samples 

a) A Healthy Biological Prosthetic Heart Valve 

The pressure and flow rate waveforms obtained in vitro for the biological prosthetic heart 

valve are shown in Fig. 3.9. These curves are comparable to what is obtained in a healthy patient. 

Fig. 3.10 shows the opening and closing of the healthy biological pericardial valve during one 

cycle captured by the high speed camera. 
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Figure 3.9 Pressure waveforms obtained in vitro on a biological pericardial valve. Red line: ventricle 

pressure, yellow: aortic pressure, light green: stroke volume, and green line: flow rate.  

 

 
Figure 3.10 Opening and closing of leaflets in the biological pericardial valve during one cycle recorded at 

1000 fps; (order: Top left to bottom right). 
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b) A Silicone Valve with Moderate Stenosis 

The results on the moderate stenotic silicone valve are shown in Fig. 3.11. A significant 

increase in the maximum left ventricular pressure compared to the healthy biological prosthetic 

heart valve (previous case) is considerable (the maximum value of 150 mmHg vs. 120 mmHg). 

This is due to the pressure loss induced by the stenotic valve. This pressure loss has to be 

compensated by the left ventricle to ensure a constant flow rate through the valve.  

Figure 3.12 shows the opening and closing of this valve with moderate stenosis during 

one cycle captured by the high speed camera. 

 

Figure 3.11 Pressure waveforms obtained in vitro on a silicone valve with moderate stenosis. Red line: 
ventricle pressure, yellow: aortic pressure, light green: Stroke volume and green line: flow rate.  
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Figure 3.12 Opening and closing of leaflets in silicone valve with moderate stenosis during one cycle 
recorded at 1000 fps; (order: Top left to bottom right). 

 

c) A Silicon Valve with Severe Stenosis   

Figure 3.13 shows the results obtained for the severe stenotic silicon valve. In this case, 

the maximal left ventricular pressure have a value of 170 mmHg. Physiologically such pressure 

will increase left ventricle load significantly and result left ventricular hypertrophy. Figure 3.14 

shows the opening and closing for this valve with a severe stenosis in a cardiac cycle. 
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Figure 3.13  Pressure waveforms obtained in vitro on a silicone valve with severe stenosis. Red line: 

ventricle pressure, yellow: aortic pressure, light green: Stroke volume and green line: flow rate.    

 

 
Figure 3.14 Opening and closing of leaflets in silicone valve with severe stenosis during one cycle recorded 

at 1000 fps; (order: Top left to bottom right). 
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3.5.2 How to Measure the Geometrical Orifice Area? 

Geometrical orifice area (GOA) is defined as the maximum area that a valve can reach 

during the systolic (ejection) phase. The captured images of opening and closing leaflets (at a 

high frame rate of 1000 frames per seconds) then can be used to measure the GOA. Different 

image processing codes and software can be used to allow measuring the geometrical area 

accurately. In this research, a MATLAB code was used to post process the images to measure the 

GOA. Figure 3.15 shows the maximum opening state of the valve, GOA is recognized as the area 

inside the red contours. 

 

Figure 3.15 The maximum geometric opening area (GOA) of the valve (at 0.3 s); the red line is the location 
of leaflet free edges. 

 

Using this post processing technique, the GOA for three tested aortic heart valves were 

obtained and listed in table 3.1. This information along with the recorded pressure waveforms are 

used in numerical simulation (structural modeling) to find the material properties for each valve. 

This is more elaborated in chapter 4. 
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Table 3.1 Measured GOA for three different valves (in vitro study) 

Case study GOA (cm2) 

Biologic pericardial valve 6.03 

Moderate silicone valve 1.4 

Severe silicone valve 0.94 

 

 It should be mentioned that in clinical practice, the effective orifice area (EOA) is 

measured, instead of the GOA, which can be determined by Doppler echocardiography. However, 

the determination of the EOA requires the knowledge of the velocity field upstream and 

downstream of the stenotic valve. This can be achieved numerically using FSI modeling. This is 

more discussed in chapter 5.  
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Chapter 4: Structural Model Analysis of Aortic Stenotic Valve 

4.1 Introduction 

As previously described in the first chapter, treatment for symptomatic patient with AS is 

open-chest surgical replacement of the diseased valve. The development of percutaneous aortic 

valves is currently allowing valve replacement without open chest surgery. This is then the 

optimal solution for patients with elevated surgical risks. However, this new technique is not 

mature yet and a significant number of cases of valve replacements have failed. 

The main goal of this study is to provide clinicians with engineering tools that will guide 

them in making the best decision when the implantation of a percutaneous aortic valve is 

required. In fact, percutaneous valve implantation failure is mainly due to the interaction between 

the new implanted valve (with its stent) and the native stiff calcified aortic valve (Cribier et al. 

2002). It is then important to determine the mechanical properties of the calcified aortic valve 

prior to percutaneous aortic valve implantation. However, this is not feasible since it will require 

stenotic valve explantation (and then no need for percutaneous valve replacement). To overcome 

this limitation, in this chapter, a method is suggested allowing the development of an index of 

valve stiffness. The originality of this model is that it considers aortic valve leaflets as anisotropic 

hyperelastic material under dynamic loading. Most of the previous studies on the aortic valve 

used simplified models by assuming isotropic material properties or static loading (mentioned in 

literature review).  

This chapter organized as followed; first the numerical method used for the simulations is 

described including the structural analysis and material property formulations. Next, the geometry 

of the aortic root and aortic valve leaflets are described. Finally, the results of simulations on 

three in vitro and three in vivo cases are presented and discussed.  
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4.2 Numerical Method 

Two types of model can be employed to simulate the aortic valve in structural modeling: 

static and dynamic.  

For static models, the fundamental equation in finite element method is 

[K] {u} = {F}                                                                                                                   4-1 

where [K] is the material stiffness matrix, {u} is a displacement vector and {F} is the vector of 

forces. By multiplying both sides by the inverted stiffness matrix, the displacement can be solved.  

In dynamic models, however, the fundamental equation is 

[M]{uሷ } +[C] {uሶ } + [K] {u } = {F}                                                                                  4-2 

where [M] represents the mass matrix, {uሷ } is the acceleration vector, [C] is damping matrix and 

{uሶ } represents the velocity vector (Rao, 1999). To solve this problem, time can be discretized 

with two possible schemes: implicit or explicit.  

For an implicit approach, the displacement vector {u} at time t+∆t is not simply 

expressed as a function of properties known at time t, but it also depends on the properties at time 

t+∆t. Then,  

{u}n+1=f ({uሷ }n+1, {uሶ }n+1, {uሷ }n, {uሶ }n, {u}n,…)                                                                  4-3  

As an advantage of this scheme, the numerical stability is independent from the time step; 

however it requires significant memory storage resources.  

In the explicit approach, the solution is based on a central difference scheme for time. As 

shown in Eq. 4-4, the displacement vector {u} at time t+∆t can simply be expressed as a function 
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of quantities known at previous time steps (t and t-∆t), and it does not involve any complex 

matrix inversion. 

{u} n+1=f ({uሷ }n, {uሶ }n, {u}n, {uሷ }n-1, {uሶ }n-1, {u}n-1,…)                                                        4-4   

One of the important things to consider when using an explicit approach is an appropriate 

choice for the time step, since this highly influences the numerical stability and the computational 

cost. The time step should be small enough to reduce problems of numerical instability; however 

it is associated with a high computational cost. The time step depends on the speed of sound 

through the smallest element of the mesh and also depends on the stiffness of the material. 

Therefore, the element size and the material properties significantly affect the computational time 

(Burriesci et al., 1999). As an advantage, explicit solvers are more efficient, compared to implicit 

ones when a large number of nodes have to be considered in the domain.  

The specific characteristics of the problem of interest in this thesis (such as large 

deformation in a short period of time), place LS-DYNA software as a desirable candidate to 

model the structural dynamics. LS-DYNA uses explicit scheme for time integration of the 

governing equations and, as mentioned previously, the time step in explicit solvers plays an 

important role. In LS-DYNA, for structural modeling, time step is governed by the speed of 

sound in the tissue material. The critical time step size is computed as (LS-DYNA keyword user 

manual. 2007), 

∆Tୣ ൌ L౛

ሼቂQାඥQమାୡమቃሽ
                                                                                                           4-5         

Q ൌ ൜qଵ ൅ qଶ Lୣ|ߝሶ୩୩|       ߝሶ୩୩  ൏ 0
ሶ୩୩ߝ                                  0 ൒ 0                                                                                   4-6 

The sound speed is set for all simulation as 
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c ൌ ට Eሺଵିఊሻ
ሺଵାఊሻሺଵିଶఊሻρ

                                                                                                    4-7 

where, Le is characteristic length (Le=Ve/Aemax), Ve is volume of the element, Aemax is the 

maximum area of element, q1=1.5 and q2=0.06 are constant dimensionless parameters of bulk 

viscosity, C is sound speed, ߛ is Poisson’s ratio and E is Young’s module of material.  

As the first step, in a finite element analysis, the structure of interest is discretized into 

elements (mesh generation) with consideration of specific material properties, then loads are 

applied following the boundary conditions of the problem.  

The equation of motion for each node is solved at each time step. Then, the resulting 

acceleration is integrated in order to find the velocities and displacements. Therefore, the nodes 

are moved to the new position. At each time step, the forces acting on the nodes are derived from 

the elemental stresses calculated from the strain along the constitutive equation of material 

properties. 

 

4.3 Model Description 

The model was discretized with brick elements with eight nodes element and loaded with 

physiological and realistic time-varying pressures. The physical governing equations of the 

structure are discretized with second order spatial accuracy. The initial aortic valve model is the 

same as the one used by Labrosse et al. (2010). However, in this thesis some modifications have 

been added to this model and a one third model of the aortic valve is considered (instead of 1/6).  

Figure 4.1 shows aortic valve geometry and Fig. 4.2 shows the geometry used in this 

study. A total number of 5934 elements and around 8000 nodes are used for one third of the 

aortic valve. 
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Boundary conditions: 

1) A prescribed boundary condition is used at the top surface of the ascending aorta (the 

purple color in Fig. 4.2). The motion of elemental nodes in this surface is set and 

constrained in the longitudinal (z) direction and just the 20% stretch of the entire 

model is applied on the nodes.  

2) All the nodes on the bottom of the model, which are shown in yellow, are considered 

fixed to their position. 

3) Because only one-third of the complete valve is modeled here, all the nodes on the 

aortic wall (shown in red in fig 4.2) are specified as contact nodes, and are restricted 

from penetrating the surface of the rigid wall (2 imaginary wall attached to these 

nodes) and the left ventricle outflow tract (LVOT). These nodes can change their 

position but they should remain in contact with the rigid wall without penetrating it.  

Loads: 

1) Pressure waveforms are applied as external loads to the model.  The first load is the 

aortic pressure waveform applied on the aortic wall (see Fig. 4.2; blue area). The 

second load is the left ventricle (LV) pressure waveform applied on the LV wall at 

the level of the LVOT.   

2) Transvalvular pressure gradient (TPG) is directly applied on the surface of the valve 

leaflet.  
 

The specific dimensions of the model used for the simulations are taken from Labrosse et 

al, 2010 and listed in Table 4.1. 
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Figure 4.1  Rc: commissural radius, H: commissural height, hs: sinus height, Hs: commissural height, Xs: 
coaptation height, Rb: radius of the base, Lh: leaflet height, Lf: leaflet free edge length (Thubrikar, 1990). 
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Table 4.1 Specific dimensions of the model.  

Parameter Value 

Inner diameter of the base 23 mm 

Inner diameter at the commissure 18.2 mm 

Valve height (H) 17.8 mm 

Sinus height (hs) 21.0 mm 

Leaflet height (Lh) 13.1 mm 

Leaflet free edge length (Lf) 28.0 mm 

Sinus maximum inner radius 17.2 mm 

Sinus max .radius height 4.0 mm 

Aortic thickness 3.4 mm 

Leaflet thickness 0.5 – 2.5 mm 

Tissues mass density (ߩ) Healthy 1000 kg/m3 
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In order to apply these material properties, a strain energy function (W) must be chosen. 

Over the years, many strain energy functions have been developed for different types of 

biological tissues, for example by Takamizawa and Hayashi (1987), or Fung et al. (1979). A 

strain energy function introduced by Guccione et al. (1991) has been implemented in LS-DYNA. 

For large deformations, the stress tensor S (second order Piola-Kirchoff stress tensor) can be 

calculated as, 

S= ∂W
∂E                                                                                                             4-8 

where E is the Green-Lagrange deformation tensor. The energy function is given as 

W ൌ Cభ
ଶ

൫eQ െ 1൯ ൅ P
ଶ

ሺJ െ 1ሻ                                                                                            4-9 

Q ൌ bଵEଵଵ
ଶ ൅ bଶሺEଶଶ

ଶ ൅ Eଷଷ
ଶ ൅ Eଶଷ

ଶ ൅ Eଷଶ
ଶ ሻ ൅ bଷሺEଵଶ

ଶ ൅ Eଶଵ
ଶ ൅ Eଵଷ

ଶ ൅ Eଷଵ
ଶ ሻ                   4-10 

where C1, b1, b2 and b3 are material constants, P is a Lagrange multiplier (it is used to implement 

numerically a semi-incompressibility for material) , J is third invariant stress tensor and Eij is the 

Green-Lagrange strain components. The constants b1, b2 and b3 represent the circumferential, the 

radial and the longitudinal directions, respectively. The values of material constants for the 

healthy leaflet are considered as b1 = 10.446, b2 = 1.925 and b3 = 1.925 (Labrosse et al., 2010). In 

this study, for modeling an aortic stenotic valve, the constants b1, b2 and b3 are kept at the same 

values as those for the healthy valve and the stiffness of the valve is modified by adjusting C1. 

Then, the value of C1 will represent an index for stiffness valve.  

 Figure 4.3 shows the algorithm developed in order to estimate the material properties for 

a stenotic aortic valve. First, as inputs, the pressure waveforms (aortic and LV) must be recorded 

(using catheterization) and the geometrical orifice area (GOA) of the stenotic valve must be 

measured (using Doppler echo-cardiography or any other imaging technique) for each patient.  
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kg/m3) and the density of calcium (1500 kg/m3). The impact of choosing this specific value for 

the density is further discussed in the section dedicated to sensitivity analysis.  

4.4 In Vitro Experiments  

The in vitro part of this study has been described in Chapter 3. A left heart simulator 

system was used to test the algorithm on healthy, moderate AS and severe AS cases. The pressure 

waveforms obtained experimentally are used directly in the numerical model as input loading. 

Also, for each valve, the maximum GOA was captured using the high speed camera and the 

computed using a Matlab code.  

 

4.4.1 Case 1: Bioprosthetic Pericardial Valve 

The real measured geometrical orifice area for the pericardial bioprosthetic valve is 6.03 

cm2. Also, the pressure curves from in vitro test are shown in Fig. 4.4. For the healthy condition 

(with the systolic/diastolic aortic pressure between 80-120 mmHg and thickness of 0.5 mm) the 

value for C1 obtained using the algorithm is 0.048 MPa (an interpolation method is used to find 

the exact value for C1). Figure 4.5 shows how the GOA numerically obtained varies as a function 

of C1. In Fig. 4.6, the instantaneous numerical GOA during one cycle is shown and compared to 

the real instantaneous GOA obtained experimentally. There is a good agreement between 

numerical and experimental results, except for the closing phase. This can be explained by the 

fact that contribution of the fluid to valve closure is not taken into account in structural modeling 

(dry model).  
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Figure 4.4 Time varying pressure wave forms for in vitro pericardial aortic valve. 

 

 

Figure 4.5 Variation of the GOA as a function of C1 (in vitro), for pericardial aortic valve. 
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Figure 4.6 Instantaneous GOA measured experimentally and computed numerically (as percentage of 
systolic phase).  

 

In Fig. 4.7, the maximum opening of the bioprosthetic valve is shown from an upper view 

(in yellow). The maximum opening of the valve occurs at t=0.167 s. Figure 4.8 shows some 

selected points at different instants during one cardiac cycle. Figure 4.9 shows the instantaneous 

computed opening and closing of the pericardial valve at different instants of the cycle.  
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Figure 4.7 Maximum opening area of AV in pericardial aortic valve. 

 

 

Figure 4.8 Instantaneous pressure gradient including selected points. 

 



60 

 

  

 

Figure 4.9 Opening and closing of pericardial aortic valve at different points selected in Fig. 4.8. 
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The complete closing of the valve happens at t=0.44 s (see Fig. 4.10). The kinematic 

characteristics of opening and closing of the valve obtained numerically are compared with the 

experimental measurements in Table 4.2. Here, ET is the time of ejection of blood from the LV 

beginning with aortic valve opening and ending with aortic valve closure, RVOT is the time 

interval between the initiation of leaflet opening and full valve opening, and RVCT is the time 

interval between initiation of valve closure and full valve closure. 

 

Figure 4.10 Minimum closing of in vitro pericardial aortic valve. 

 

 

Table 4.2 Opening and closing characteristics of the in vitro pericardial aortic valve. 
 

 Numerical simulation In vitro data % error 

ET (ejection time) 325 ms 285 ms 14.03 % 

RVOT (rapid valve opening time) 50 ms 60 ms 16.67 % 

RVCT (rapid valve closing time) 60 ms 72 ms 16.66 % 
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The contours and vectors plots for maximum principal stress at the t=0.167 s (maximal 

valve opening) and t= 0.44 s (valve closure) are shown in Figures 4.11. Figure 4.12 shows the 

maximum principle stress and Von-Mises stress for the two critical points: 1) the attachment of 

leaflet to the sinus, and 2) the middle of belly leaflet. Table 4.3 shows the stress analysis results at 

the maximum opening and closing.  

Table 4.3 Stress analysis for two critical points. 
 

Location Stress 
At maximum opening 

(0.167 s) 

At valve closure 

(0.440 s) 

Middle of the leaflet belly 

Von-Mises stress 1.01 MPa 0.98 MPa 

Max. Princ. Stress 1.06 MPa 1.05 MPa 

Leaflet attached to the sinus 
Von-Mises stress 0.45 MPa 1.94 MPa 

Max. Princ. Stress 0.47 MPa 1.90 MPa 

 

At maximum opening of the valve (t=0.167 s), the maximum principle stress is 1.06 MPa 

and Von-Mises stress is 1.01 MPa (happen at the middle of the leaflet belly). The maximum 

principle and Von-Mises stresses at the valve closure (t=0.440 s) happen in the region of leaflet 

attachment to the sinotubular junction which is 1.9 MPa and 1.94 MPa respectively. The 

maximum principle stress found by Burriesci et al. (1999) was 0.87 MPa, by Conti et al. (2010) 

was 0.5 MPa and by Labrosse et al. (2010) was 0.75 MPa. These values were reported for healthy 

native or the porcine valves. Because of that, the reported values are smaller than what is 

computed in the current study. For a pericardial valve, Xiong et al. (2010) reported the maximum 

Von-Mises stress of 3.4 MPa which happened after maximum opening; in the present study, it is 
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found as 2.5 MPa (see Fig. 4.12 at t=0.46 s). The stress analysis shows agreement with other 

works.  

 
(a) 

 

 
(b) 

Figure 4.11 Contours and vectors of maximum principle stress at: (a) maximum opening; (b) valve 
closure. 
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Figure 4.13  Time varying pressure wave forms for in vitro moderate AS. 

 

 

 
Figure 4.14  Variation of the GOA as a function of C1 (in vitro), for moderate AS. 
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Figure 4.18 shows the aortic valve from two different views during the closure phase 

(diastolic phase). At this instant, it is expected to have a completely closed valve, like a healthy 

valve, (see Fig. 4.10). However, for a stenotic valve, this is not the case since a regurgitant area 

will persist (Wallerson, et al, (1986) and Zoghbi, (1988)). Interestingly, our simulations were 

capable of capturing the regurgitant orifice, approximately 9.1 mm2 (yellow area in Fig. 4.18). 

Figures 4.19 and 4.20 show the stress distribution in the valve leaflet during the closure phase.  

 

Figure 4.18 Minimum closure area in vitro moderate AS, yellow area is the simulated regurgitation area. 
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It is also interesting to compare the ejection time, RVOT and RVCT obtained 

numerically with the experimental results (see table 4.4). The errors are in an acceptable range, 

except for the rapid valve opening time (38.9%).  

Table 4.4 Opening and closing characteristics of the valve in vitro moderate AS. 

 Numerical simulation In vitro data % error 

ET (ejection time) 340 ms 295 ms 15.25 % 

RVOT (rapid valve opening time) 100 ms 72 ms 38.9 % 

RVCT (rapid valve closing time) 117 ms 108 ms 8.33 % 

 

4.4.3 Case 3: Silicone Valve with Severe Stenosis 

The third valve tested in vitro was mimicking a severe AS. This is achieved numerically 

by increasing the thickness of the valve leaflets up to 2.5 mm. Figure 4.21 shows the pressure 

waveforms obtained in vitro for this case. The maximum geometric orifice area obtained for this 

valve is 0.936 cm2 (at a time of 0.26 s). Our simulations for this model of severe AS give a 

material property, C1, of 3.25 MPa (Fig. 4.22).  



73 

 

 
Figure 4.21 Time varying pressure wave forms for in vitro severe AS. 

 

 

 
Figure 4.22 Variation of the GOA as a function of C1 (in vitro), for severe AS. 

 

 

‐90

‐40

10

60

110

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LV pressure

AO pressure

pressure grad.
Pr
es
su
re

(m
m
H
g)

time(s)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

calculated GOAfrom numerical 
simulation 
real GOA in vitro

C1 (MPa)

G
O
A
 (c
m

2 )



74 

 

In Fig. 4.23, the maximum opening of the valve leaflet is shown. Stress distribution 

contours of a valve with severe stenosis are shown in Figs. 4.24 and 4.25.  

 

 

Figure 4.23 Maximum opening area of the model of severe AS, the yellow area is simulated GOA. 
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Figure 4.24 Contours of maximum and minimum principal stress at the instant of maximum opening for a 
model of severe aortic stenosis. 
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Figure 4.25 Contours of 2nd principal stress and Von- Mises stress at the instant of maximum opening for a 
model of severe aortic stenosis. 
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This model of valve with severe AS closes at t=0.5 s and the corresponding GOA (yellow 

area in Fig. 4.26), or regurgitant areas, is obtained 0.23 cm2. Figures 4.27 and 4.28 represent the 

stress distribution in the valve leaflet during the closure phase.  

 

 
Figure 4.26 Minimum closure area in vitro severe AS, yellow area is the simulated regurgitation area. 
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Figure 4.28 Contours of 2nd principal stress and Von- Mises stress at the minimum closing of valve leaflets 
for the model of severe AS. 
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Table 4.5 shows the comparisons of the ejection time, rapid valve opening time and rapid 

valve closing time between numerical predictions and experimental measurements. The errors are 

in a reasonable range. 

Table 4.5 Opening and closing characteristics of the valve in vitro severe AS. 

 Numerical simulation In vitro data % error 

ET (ejection time) 355 ms 319 ms 11.28 % 

RVOT (rapid valve opening time) 125 ms 144 ms 13.19 % 

RVCT (rapid valve closing time) 135 ms 126 ms 7.41 % 

 

4.5 In Vivo Application (Patients’ Specific Aortic Stenosis) 

Following the in vitro evaluation of the performance of the new proposed numerical 

procedure for the estimation of the material property (C1) for an AS, in this section, the procedure 

is applied to in vivo cases to estimate in vivo material properties.  

In vivo cases were obtained from the study of Garcia et al. (2005). In their study, left 

ventricular and aortic pressure waveforms were obtained for 6 patients with severe AS before and 

after valve replacement. However, in all patients, instead of measuring the GOA (point 2, on Fig. 

4.29), the energy loss coefficient was determined. Three patients among this group are selected in 

this thesis to demonstrate the applicability of the proposed method in vivo. The energy loss 

coefficient characterizes the pressure loss in the presence of a severe contraction followed by an 

expansion. It is a function of the effective orifice area (EOA) (point 1, on Fig. 4.29), or the area of 

the vena contracta downstream of the stenotic valve, and the area of the ascending aorta at the 

sinotubular junction (AA) (point 3, on Fig. 4.29). The energy loss coefficient represents a 

correction of the EOA with respect to AA:  
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ELCO= 
EOA .  AA
 AAെEOA= Q

EL√כ50
                                                               4-11 

In this study, AA is considered fixed with a value of 4.52 cm2 and the EOA varies 

depending on the severity of the AS. 

 

Figure 4.29 Definition of the different areas used in clinical studies, No. #1 represent effective orifice area 
(minimum cross-sectional area of the blood flow jet), No.#2  represent geometrical orifice area , No.#3 

cross-sectional area of the ascending aorta at the sinotubular junction. 
 

 

The ratio between EOA and GOA is called contraction coefficient, CC= EOA
 GOA

 , and it is in 

the range of 0.6 to 1 (Garcia et al. 2004). In this thesis, the value of 0.67 is considered for CC. 

Based on Eq. 4.12, one can calculate the EOA from the ELCo reported by Garcia et al. 

(2005). Having the EOA for each patient and assuming a contraction coefficient of 0.67 allow 

estimating the GOA for each patient. The results for the three selected patients are listed in   

Table 4.6.  
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Table 4.6  Calculated GOA based on the energy loss coefficient (in vivo study). 
 

Patient No. 
ELCO cm2 

(Garcia et al. 2004) 

EOA cm2 

(Garcia et al. 2004) 

GOA cm2 

(Current study) 

1 0.52 0.50 0.74 

2 0.85 0.72 1.07 

3 0.45 0.41 0.61 

 

 

4.5.1 In Vivo Case: Patient No. 1 

Figure 4.30 represents the pressure waveforms for the patient #1. The corresponding 

GOA is then approximately computed as 0.74 cm2.  

Figure 4.31 shows how to determine the patient-specific value for C1 using numerical 

simulation. For this patient, C1 is found equal to 1.35 MPa.   
 

 
Figure 4.30 Time varying pressure waveforms (in vivo), for patient #1. 
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Figure 4.31 Variation of the GOA as a function of C1 (in vivo), for patient #1. 
 

Numerical simulations shows that maximum opening of the valve leaflets occurs at 

t=0.23 s and closure happens at t=0.55 s. At closure instant (t=0.55 s) the regurgitation area 

obtained numerically is 19 mm2.  

Table 4.7 shows the numerically calculated time characteristics for this patient. 

Unfortunately, the corresponding in vivo results have not been reported and as a consequence it is 

not possible to validate these findings contrary to in vitro measurements.   

Table 4.7 Opening and closing characteristics of the valve for patient #1. 

Clinical property Numerical simulation 

ET (ejection time) 430 ms 

RVOT (rapid valve opening time) 100 ms 

RVCT (rapid valve closing time) 120 ms 
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Since different parameters can affect the computed value for C1, in this part a sensitivity 

analysis is performed for this specific patient.  

As it described in the method section, because there is no access to the percentage of 

calcium on the patient’s valve leaflets, the density of the leaflet was assumed to be 1250 kg/m3. It 

is the average between the normal density of leaflet tissue 1000 kg/m3 and density of calcium 

(1500 kg/m3). Sensitivity analysis shows if the density is chosen as ρ=1500 kg/m3 (the valve 

includes only calcium), the GOA would have been 0.79 cm2 instead of 0.74 cm2, which represent 

an error of around 8%. For a density ρ =1000 kg/m3 (there is no calcium on the leaflets) the GOA 

would reach to the 0.71 cm2 which represents an error of 3%.  

It is also interesting to evaluate how the value obtained for C1 is sensitive to the errors in 

the measured GOA. Based on Fig. 4.32, which represents the GOA as a function of C1, a 10% 

error above of the reporting GOA (means GOA=0.803 cm2) will cause the 7.4% error on C1, 

(C1=1.25 MPa). However, for 10% error less than the real one (means GOA=0.657 cm2), the 

value of C1 will be around 2.15 MPa (error is 59.25%). The error here is explained by the specific 

“J liked” shape of the curve GOA versus C1. 
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Figure 4.32  Sensitivity analysis with respect to variation in GOA for patient #1. 
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Figure 4.33 Sensitivity analysis with respect to variation in the leaflet thickness for patient #1. 
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Figure 4.34 Material property for different value of valve leaflet thickness. 

 

4.5.2 In Vivo Case: Patient No. 2  

Figure 4.35 represents the pressure waveforms obtained in the patient No. 2, with a 

reported ELCO of 0.85 cm2 and corresponding GOA of 1.07 cm2.  

For this patient, the numerical simulation results in a value of 1.0 MPa for C1 as shown in 

Fig. 4.36. The maximum opening and minimum closing happen at 0.25 s and 0.50 s, respectively. 

At t=0.50 s, the computed minimum closing area or regurgitation area (AR) is 0.16 cm2. Table 

4.8 shows other calculated clinical properties for this patient. 
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Figure 4.35 Time varying pressure waveforms (in vivo), for patient #2. 

 

 

  
Figure 4.36  Variation of the GOA as a function of C1 (in vivo), for patient #2. 
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Table 4.8 Opening and closing characteristics of the valve for patient #2. 

 Numerical simulation 

ET (ejection time) 340 ms 

RVOT (rapid valve opening time) 90 ms 

RVCT (rapid valve closing time) 90 ms 

 

4.5.3 In Vivo Case: Patient No. 3 

The last case analyzed in vivo represents a patient with an ELCO of 0.45 cm2 and a GOA 

of 0.61 cm2.  Figure 4.37 represents left ventricular, aortic and pressure gradient waveforms 

recorded on this patient.   

 
Figure 4.37 Time varying pressure waveforms (in vivo), for patient #3. 

 

This patient had the most severe hemodynamic condition because of its small GOA. The 
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‐110

‐60

‐10

40

90

140

190

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

AO pressure

LV pressure

pressure grad.

time(s)

Pr
es
su
re
(m

m
H
g)



90 

 

  

Figure 4.38 Variation of the GOA as a function of C1 (in vivo), for patient #3. 

 

The maximum opening and minimum closing happens at 0.22 s and 0.45 s, respectively. 

The computed AR is approximately 0.33 cm2. Table 4.9 shows other calculated clinical properties 

for case No. 3 based on numerical model. 

Table 4.9 Opening and closing characteristics of the valve for patient #3. 

 Numerical simulation 

ET (ejection time) 330 ms 

RVOT (rapid valve opening time) 130 ms 

RVCT (rapid valve closing time) 130 ms 

 

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9

calculated GOA from 
numerical simulation 
real GOA in vivo

C1 (MPa)

G
O
A
 (c
m

2 )



91 

 

4.6 Summary 

A computational approach enabling the determination of an equivalent index for 

mechanical properties of stenotic aortic valves was developed and tested in vitro and in vivo. The 

results of this numerical modeling can be mainly used to have an idea on the material properties 

of valve leaflets prior to percutaneous valve replacement. This index was based on the value of 

the first constant for the formulation of the material properties (C1). Sensitivity analysis 

demonstrated that uncertainty in C1 is largely dependent on the value of the measured GOA and 

the thickness of the leaflets and less dependent on the density of leaflet material. Since, here the 

objective was to develop a reference model that can be applied for all patients, the thickness of 

the valve leaflets was kept constant 2 mm and then C1 was mainly a function of the GOA. So, in 

this approach, a thicker valve will just produce a larger pressure gradient that will be translated as 

a higher C1.    

To validate the code and present the methodology, three in vitro cases, a pericardial 

bioprosthetic valve, silicone valves with moderate and severe stenosis were tested and simulated 

numerically using structural modeling. Validation has been done by comparison with the 

instantaneous GOA experimentally and numerically. Also stress analysis was done to compare 

the results of this study with those published in the literature. The results showed a good 

agreement.  

The results of the in vitro cases demonstrate that the value of C1 should be greater than    

1 MPa for stenotic valves. All values of C1 for the six cases (3 in vitro cases and 3 in vivo cases) 

are presented in Fig. 4.39. 
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Figure 4.39 Obtained C1 for all simulated cases. 
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Chapter 5:  Fluid Structure Interaction Analysis of Healthy and 

Stenotic Aortic Valves  

5.1 Introduction 

The structural analysis (dry model) of aortic valve was investigated in the previous 

chapter. Although the dry model can directly be applied in vivo to estimate the mechanical 

properties of the valve leaflets prior to percutaneous valve replacement, it requires as boundary 

conditions, the in vivo recording of the pressure waveforms (aortic and ventricular) invasively. 

Moreover, the geometrical orifice of the valve must be determined with a reasonable accuracy 

(see sensitivity analysis in chapter 4). This requires high resolution imaging techniques. This 

chapter represents an attempt to extend our new algorithm to overcome these limitations of the 

dry model. This will be achieved by determining the effective orifice area of the aortic valve, 

instead of the geometrical orifice area, through fluid-structure interaction (FSI) simulations.  

FSI applied to cardiovascular disease in general, and to aortic stenosis in particular, is 

still a recent research area and many improvement are still required. For example, in a recent 

study, Van Loon (2009) tried to investigate the flow through a model of aortic stenosis. However 

several drawbacks affected the results: the magnitude of the inlet velocity applied was not 

physiologically correct, the flow domain was discretized by less than 1000 elements and a 

material with linear properties was used. The same year, Weinberg et al. studied the dynamics of 

aged and calcified aortic valves by changing the thickness and material properties of the leaflets.  

In this chapter, FSI is first briefly introduced and then more details on the implementation 

of FSI in LS-DYNA are provided. Second, FSI simulations are performed on two different cases: 

a healthy aortic valve and a stenotic aortic valve. Finally, the results obtained using FSI are 

analyzed and discussed. 
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5.2 Numerical Method in Fluid Structure Interaction Analysis 

FSI is a coupling method to connect Eulerian/ALE (Arbitrary Lagrangian Eulerian) parts 

with Lagrangian parts in order to make them interact with each others. In this study, LS-DYNA is 

employed to perform FSI simulation on an aortic valve. This software employs an explicit time 

integration scheme because of its ability to solve the fully coupling between fluid and structure in 

the presence of large deformable and flexible structures. In addition, Lagrangian and 

Eulerian/ALE solution methods can be combined on the same model and the FSI can be handled 

by a coupling algorithm. Structural parts are modeled with Lagrangian elements whereas fluid 

parts can be modeled with Eulerian/ALE elements. To better understanding these concepts, here 

are some brief explanations: 

Lagrangian approach:  the mesh moves directly with the material and therefore elements and 

materials are able to translate, rotate, and deform together. Material does not cross element 

boundaries and it means that elemental masses remain constant and the conservation of mass is 

satisfied during the simulation. This approach is useful in structural analysis. 

Eulerian approach:  the mesh remains fixed while the material passes through it. This approach is 

suitable for large deformations, such as fluid flow. Herein, tracking surfaces and boundary 

conditions are difficult; however, because the mesh is stationary, mesh distortion cannot happen. 

ALE approach: The ALE approach is based on the arbitrary movement of a reference domain. 

Fluid mesh/elements at the fluid-solid interface can move in a Lagrangian way and solid elements 

are following them as they are coupled together. Then an advection term is applied to remap the 

fluid mesh which is an adaptive technique. It is called operator split technique.  A simple example 

to describe this approach is shown in Fig. 5.1. It represents the two cycles, Lagrangian cycle and 

advection cycle, within one time step. First cycle shown in the figure “a” represents the 

Lagrangian cycle and “b” represents the advection cycle. 
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Figure 5.1 Movement of solid part in the fluid domain based on ALE approach during one time step, “a”  is 
the Lagrangian cycle and “b” is the advection cycle (green represents solid domain and lines represent the 

fluid mashes). 

 

 
 

Some limitations are associated with ALE modeling in LS-DYNA as mentioned by Day 

(2009). The ALE solver in LS-DYNA is mainly applicable to laminar flow, and also is not 

appropriate to model boundary layer flow effects. The solver is not well-matched to solve the 

problems with low pressure gradients which is not the case in the present study. The 

computational time is usually high due to the explicit time integration. The time step is limited 

based on the size of elements and material sound speed. ALE method is more time consuming 

when compared with Lagrangian one as a result of additional computation due to advection and 

interface reconstruction and coupling process. 
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In ALE algorithm, three coordinates are identified: arbitrary referential, Lagrangian and 

Eulerian coordinates. Based on the general ALE technique, the time derivative of a physical 

property, f, in a Lagrangian coordinate is (Askes et al., 2004) 

ப୤ሺX౟,୲ሻ
ப୲

ൌ ப୤ሺ୶౟,୲ሻ
ப୲

െ w୧  ப୤ሺ୶౟,୲ሻ
ப୶౟

                                                                                            5-1 

where t stands for time, Xi is the Lagrangian position, xi the Eulerian position and w୧ is the 

relative velocity between material and mesh nodes. If v୧ shows the velocity of the material and u୧ 

the velocity of the mesh; therefore, the relative velocity is w୧ ൌ v୧ െ u୧. The relative velocity is 

usually referred to as the convective or advective term.  

Then governing equations for the ALE formulation can be presented as, (Souli et al. 1999) 

a) The conservation of mass: 

பρ
ப୲

ൌ െߩ ப୴
ப୶౟

െ w୧
பఘ
ப୶౟

                                                                                                  5-2 

here ߩ is density. 

b) The conservation of momentum:  

ρ ப୴
ப୲

ൌ െ൫ߪ୧୨ ൅ b୧൯ߩ െ ρw୧
ப୴౟
ப୶ౠ

                                                                                                   5-3 

where ߪ is stress tensor and described as, 

୧୨ߪ ൌ െpߜ୧୨ ൅ ൫v୧,୨ߤ ൅ v୨,୧൯                                                                                                            5-4 

where ߤ is flow viscosity, p is pressure and ߜ୧୨ is Kronecker’s delta function.   

c) Boundary and initial conditions:                                                            

If Γ stands for the whole boundary of the domain and ߁ଵ and ߁ଶ represent the partial 

boundaries of ߁ as: ߁ଵ ׫ ଶ߁ ൌ ଵ߁ and ߁ ת ଶ߁ ൌ 0, the initial and boundary conditions on partial 

boundaries can be specified as v୧,୨ ൌ U଴ on ߁ଵ and ߪ୧୨n୧ ൌ 0 on ߁ଶ. The initial velocity is assumed 

to be zero in the entire domain. Herein n୧ is the normal vector on the boundary.  
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5.3.2 Element Formulation 

The structural model consists of the aortic root, sinuses and valve leaflet and is meshed 

with 1286 (4-noded Belytchko-Lin-Tsai) shell elements. Why shell elements are used to describe 

the structure instead of solid ones? The reason is related to the time step. Because the time step is 

set automatically in the software based on the time needed for a sound wave to pass through the 

smallest solid element in the model. But in shell elements, the time step is independent of the 

shell thickness and a shell element can have several integration points through its thickness. This 

means that shell element results in more efficient computation than solid brick elements in 

modeling thin-walled structures (Carmody et al., 2005). 

The aortic root, sinuses and leaflets share nodes at their intersection. To define the shell 

element besides the four nodes, some additional parameters are required: a shear factor, four 

thicknesses at each four nodes and the number of integration points. Here, shear factor is taken as 

1, the thicknesses are taken as 1 mm for stenotic and 0.5 mm for healthy valve. The number of 

integration points by default is considered to be 2.  

All the structural parts of the model are surrounded by a fluid domain.  Fluid domain is 

divided into three parts: inlet, middle reservoir and outlet sections. Fluid parts, which represent 

the blood flow domain, are described by eight-noded hexahedral brick elements with an Eulerian 

formation. The structure and fluid meshes are placed in the same spatial domain and forces 

exerted by one on the other are communicated in both directions. The fluid motion, first step, 

described by the Navier–Stokes equations is solved with Lagrangian approach and in the second 

step, the deformed meshes are returned to the unchanged location of Eulerian mesh.  

Fluid domain has 25350 element numbers for the one third of a complete geometry. 

Compared to the previous works, the mesh used in this study is finer. 
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5.3.3 Material Properties 

In current study, blood is modeled as a compressible (this is an assumption for modeling 

the fluid in ALE approach) Newtonian fluid. In LS-DYNA, fluid material is called “MAT_ 

NULL” and the viscous deviatoric stresses is calculated by ́ߪ୧୨ ൌ  ୧୨ , where µ is the dynamic′ߝߤ2

viscosity and  ߝ′௜௝ is deviatoric strain rate. Compressibility of fluid is governed by an equation of 

state as, 

 P ൌ .଴ߩ cଶߟ ൅ Eߛ ൎ kߟ ൅  E                                                                                                        5-5ߛ

where P is the pressure, ߩ଴ is the initial density, k is bulk modulus, and ߟ is volumetric parameter 

equal to ( ఘ
ఘబ

െ 1). Sound speed can be calculated as c ൌ ට୩
ఘ
 . The properties of blood were taken 

as the density of 1000 kg/m3 and dynamic viscosity of 0.004 Pa.s.  

The solid domain is modeled as a hyperelastic and nonlinear, Mooney-Rivlin material. 

The material strain energy density function is defined as, (LS-DYNA user manual, 2007) 

W ൌ AሺI െ 3ሻ ൅ BሺII െ 3ሻ ൅ CሺIIIଶ െ 1ሻ ൅ DሺIII െ 1ሻଶ                           5-6 

where, A, B, C and, D are material constants and I, II, III = invariants of right Cauchy-Green 

Tensor. The value of A ൌ 2 ൈ 10ସ (Pa is chosen as to fit the bending data test for the leaflet 

(Weinberg et al., 2007). 

C ൌ 0.5A ൅ B                           5-7a 

D ൌ AሺହఊିଶሻାBሺଵଵఊିହሻ
ଶሺଵିଶఊሻ                              5-7b 

where ߛ is Poisson’s ratio (0.49). Density of material is considered as 1000 kg/m3. 

To model a stenotic aortic valve, the value of A was considered two times larger than the 

healthy aortic valve. 
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5.3.4 Boundary Conditions 

Boundary conditions should be defined for both fluid and solid domains. The inlet fluid 

boundary condition is time-varying pressure gradient and outlet boundary condition is zero 

pressure. 

The true coaptation surfaces (the contact region of the leaflets’ structures) are identified 

as master and slave scheme.  If a slave node penetrates into a master surface, a penalty force is 

applied in order to bring back the slave node to the plane of the master surface. All other 

structural parts (except the leaflets) are considered fixed in the domain.  

5.3.5 Coupling Implementation  

The structural geometry of the aortic valve is represented as an immersed Lagrangian 

structure surrounded by the Eulerian fluid domain in LS-DYNA with a fully coupling between 

the fluid and the structure components. The coupling between the fluid and the structure is 

modeled by an exchange in the velocity and acceleration constrains between the Eulerian master 

(fluid domain) and the Lagrangian slave (the valve structure).  

The following steps are used to couple the velocity and acceleration of the fluid and the 

structure: (Kunzelman et al., 2007) 

• The fluid elements which contain structural nodes are determined. The mass of 

structural element nodes can be distributed to the fluid element nodes according to 

m୧
f୪୳୧ୢ ൌ m୧

f୪୳୧ୢ ൅ h୧mୱ୲୰୳ୡ୲୳୰ୣ                                                                                          5-8 

where i is the nodal index and h is a weighting coefficient between 0 and 1. 

• The force of  the structural nodes is distributed to the fluid nodes according to 

F୧
f୪୳୧ୢ ൌ F୧

f୪୳୧ୢ ൅ h୧Fୱ୲୰୳ୡ୲୳୰ୣ                                                                                                   5-9 



101 

 

• The acceleration of the fluid nodes is calculated as, 

a୧
f୪୳୧ୢ ൌ F౟

fౢ౫౟ౚ

୫౟
fౢ౫౟ౚ                                                                                           5-10  

• Finally, the acceleration of the structural nodes can be calculated in constraint with the 

fluid nodes acceleration, 

a୧
ୱ୲୰୳ୡ୲୳୰ୣ ൌ ∑ h୧

଼
୧ୀଵ . a୧

f୪୳୧ୢ                                                                                    5-11 

For the velocity coupling, the structural nodal momentum is distributed to the fluid nodes 

by using a geometric weighting. The steps below represent the velocity coupling of the fluid and 

the structure (Kunzelman et al., 2007): 

• In addition, the structural nodal momentums are distributed to the fluid element nodes 

according to 

M୧
f୪୳୧ୢ ൌ M୧

f୪୳୧ୢ ൅ h୧Mୱ୲୰୳ୡ୲୳୰ୣ                                                                                                   5-12 

• Then, the velocity of fluid nodes can be determined based on 

u୧
f୪୳୧ୢ ൌ M౟

fౢ౫౟ౚ

୫౟
fౢ౫౟ౚ                                                                                                                               5-13 

• Finally, the velocity of structural nodes are matched to the velocity of fluid nodes based 

on 

u୧
ୱ୲୰୳ୡ୲୳୰ୣ ൌ ∑ h୧

଼
୧ୀଵ . u୧

f୪୳୧ୢ                                                                                                          5-14 

Small time steps are needed for the stability of the explicit time-integration scheme and to 

reduce numerical errors. For all modeling cases, the time step is selected 4.78 ൈ 10ି଻ s. This 

shows the computational time cost that should be paid to model and couple the blood domain to 

the solid structure.  
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5.4 Results and Discussion 

Velocity vector map at maximum opening of the valve is shown in Fig. 5.3 (for a healthy 

valve) and Fig. 5.4 (for a stenotic valve).  

  

Figure 5.3 Velocity pattern at maximum opening for a healthy valve. Fringe level’s unit is (mm/s). 
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Figure 5.4 Velocity pattern at maximum opening for a stenotic valve. Fringe level’s unit is (mm/s). 

 

To validate these results, the maximum velocity is compared with the values obtained in 

the literature for a healthy valve.  Carmody et al. (2004) found a maximum velocity of 0.75 m/s; 

Nicosia et al. (2003) reached a velocity of 1.32 m/s; Weinberg et al. (2007) reported a maximum 

velocity of 1 m/s; and Ranga et al. (2006) found the value around 1.1 m/s. In current work, the 
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maximum velocity for the healthy model is computed as 1.406 m/s. However, this value is found 

2.56 m/s for a case of stenotic valve due to the narrowing of the flow path. 

The two main parameters controlling this kind of flow are the Reynolds number (Re=ఘ୳D
ఓ

, 

where u is mean velocity and D is diameter of the aortic base upstream from the valve) and the 

Womersley number (ߙ ൌ D
ଶ ට

ఠఘ
ఓ

  , in which ߱ is variational frequency). In this study, α is 14.41 

and Reynolds number for healthy and stenotic valves are 1955 and 2875, respectively. 

The obtained GOAs using FSI simulation are also compared with the GOAs obtained in 

vitro. The calculated GOA for healthy bioprosthetic valve (pericardial valve) using FSI analysis is 

4.96 cm2 while the measured GOA in vitro is 6.03 cm2. This represents a difference of 17.75%.  

This difference can mainly be explained by the absence of dilatation of the aortic base (the aortic 

root was assumed without displacement) and can be due to use of different material properties in 

in vitro studies and in the numerical simulation.  

For the stenotic valve, the simulated GOA is 3.34 cm2. Although, this does not represent 

a severe aortic stenosis, but it shows the effect of increasing in thickness and changing the 

material properties on the behavior of an aortic valve. It should be mentioned that in order to 

investigate this effect, the same pressure boundary conditions as for the healthy case was used for 

the stenotic case.   

The EOA can be calculated by considering the flow cross sectional plane of the 

maximum velocity. The area on this plane which includes the highest velocity magnitude is EOA. 

This region is shown by a closed pink line in Figs. 5.5 and 5.6 for the healthy and stenotic aortic 

valves respectively.  
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Figure 5.5 Transversal cross section of the aorta at the section corresponding to the maximum velocity for 
healthy valve (EOA: area inside pink line), Fringe level’s unit is (mm/s). 

 

 

  

Figure 5.6 Transversal cross section of the aorta at the section corresponding to the maximum velocity for 
stenotic valve (EOA: area inside pink line), Fringe level’s unit is (mm/s). 
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The velocity profiles at three different locations: upstream from the valve, at the vena 

contracta and downstream of the valve are plotted on Fig. 5.7 for the healthy valve.  

 

Figure 5.7 Velocity profiles for healthy valve (Max. opening), Fringe level’s unit is (mm/s). 

 

Figure 5.8 shows the velocity vectors at three different locations in a case of aortic 

stenosis. As the most interesting part in modeling the fluid domain is to analyze the velocity field, 

then the vectors in the sinuses are also shown on Fig. 5.8. Two vortices can be noticed: a strong 
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one and a weak one. These vortices play a crucial role in optimal valve closure (Bellhouse  

and  Talbot, 1969). 

 

Figure 5.8 Velocity profiles for a stenotic valve (Max. opening), Fringe level’s unit is (mm/s). 
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Figure 5.9 Velocity profile at mid-valve closure.  

  In the deceleration phase, these vortices grow and move towards the center of the aorta 

which causes valve closure. Figure 5.8 shows the vortex at the maximum opening and Fig. 5.9 

shows the same vortex when valve is at mid-closure.  

Fig. 5.10 summarizes the values for the maximal velocity at each location on the 

centerline along Z direction for both healthy and stenotic valves.  
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Figure 5.10 Comparison of maximal velocity upstream from the aortic valve, the vena contracta and 

downstream of the valve for healthy and stenotic valve at Max. opening.  
 

The ratio of upstream flow velocity in a stenotic valve and a healthy valve is 1.4; this 

difference shows the effect of AS on upstream velocity. This ratio in the plane of maximum 

velocity (this plane is located between the three leaflets when they are completely open) is 1.83, 

representing an increase in velocity due to the narrowing of the flow path. Finally, the ratio of 

downstream the flow velocity in a stenotic valve and a healthy valve is 2.57; indicating the effect 

of aortic stenosis on the flow velocity in aorta. Such information cannot be obtained using the dry 

model. 

In Chapter 4, the comparison between the in vitro experiment and the numerical 

simulation for ET, RVOT and RVCT were performed. It is good to have a comparison between 

the dry model, FSI model and the experiments (see Fig. 5.11). 
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Figure 5.11 Comparison of ET, RVOP and RVCT using the dry model; FSI model and comparison with 

experimental model (for healthy valve). 

 

The results show mainly that FSI modeling lead to more accurate results when compared 

to experiments. 

Figure 5.12 shows the opening and closure of the healthy pericardial valve leaflet during 

one cardiac cycle. A, B, C, D and E represents the points which were selected in Fig. 4.8. 
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Figure 5.12 Opening and closure of a healthy pericardial aortic valve at different points selected in         
Fig. 4.8. 
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5.5 Limitations of the Current FSI Model 

This preliminary investigation of the flow through a stenotic aortic valve using FSI 

modeling has certain limitations that are listed below: 

• Turbulent flow is not considered due to software limitation. 

• Except for the leaflet all the parts are considered as rigid body (without dilatation). 

• Material properties are not optimized like for the dry model. This needs to be further 

investigated. 

5.6 Summary 

A numerical FSI modeling for a stenotic aortic valve and healthy valve was developed 

based on the pressure curves obtained in vitro for a bioprosthetic valve. A one-third model of the 

aortic valve structure is represented as an immersed Lagrangian structure surrounded by the 

Eulerian fluid domain with a fully coupling between the fluid and the structure components. The 

coupling between the fluid and the structure is modeled by exchange in the velocity and 

acceleration constrains between the Eulerian master (fluid domain) and the Lagrangian slave (the 

valve structure). 

The comparison between the results of stenotic valve and healthy valve is done in terms 

of velocity magnitude and patterns. The velocity magnitude in a stenotic valve is increased while 

the GOA and EOA are decreased. The trend of opening and closure for the valve shows better 

agreements with in vitro tests, in terms of the deformation shape of the leaflets (compare Fig. 

5.12 and 3.10) and the clinical parameters: ET, RVCT and RVOT. 

 Material properties to model these valves were obtained from previous works, but more 

work has to be done to optimize them. 



113 

 

Chapter 6: Conclusion and Future Work 

The main objective of this thesis was to investigate and study the mechanical behavior of 

the aortic valve with an emphasis on aortic stenosis (AS). Moreover, this thesis aimed to 

characterize the severity of AS in term of material property.  

In chapter one the importance of implanting percutaneous aortic valves was explained. 

The development of percutaneous valves allowed valve replacement without open chest surgery 

and that is the most desirable option in patients were the surgical risks are elevated. To avoid the 

risk of failure in percutaneous valve implantation, determination of material properties of the 

diseased leaflets before surgery is necessary. Detailed investigation of AS in vivo needs insertion 

of instruments into the body and in vitro experiment can be expensive and unrealistic. Therefore, 

in this study a series of numerical simulations and experimental validation were performed to 

address the objectives of this research. 

The numerical simulations were done using structural and fluid structure interaction (FSI) 

modeling (wet model). The dimensions used to establish the geometry of the aortic root were 

obtained from a published data by Labrosse et al. in 2010. To validate the numerical methodology 

and algorithm, the results of numerical and experimental studies were first compared in a case of 

a pericardial prosthetic heart valve. The validation was done by comparing the instantaneous 

GOA from both studies. Also, the stress distribution in leaflet structure was compared with the 

results found in the literature.  

The numerical simulation of the AS was developed based on data obtained from in vivo 

and in vitro studies. A left heart simulator capable of reproducing the flow and pressure 

conditions existing in the human heart was used in order to perform the experimental tests. 
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Numerical simulation shows that the proposed stiffness characteristic of material of the 

valve increases with increasing the severity of AS. Changing the thickness of the leaflets causes a 

significant effect on both GOA and material properties. With a same GOA, increase in leaflet 

thickness leads to decrease in the material property C1. 

A series of sensitivity tests have been done in terms of density and geometric orifice area: 

The sensivity test on first in vivo case revealed that changing density in a range of 1250±250 

kg/m3 has 2.9 – 7.6 % effect on the C1. An error in reported (obtained clinically) GOA in a range 

of ±10 %, results a difference of 7.4 -59.25 % in estimated material properties. This range shows 

that the results are strongly depend on the reported GOA. 

In stress analysis of AS, there is not available reported data for comparison. However, the 

thesis found some interesting points that do match qualitatively well with literature: 

 1) The maximum principal stress happens at diastolic phase in the attachment area of the 

leaflets to the sinuses near sinotubular junction. This is consistent with the work of Li et al. 

(2001). 

2) The other critical region is in the middle of the belly leaflets in systolic phase, which 

might explain why this is the common place of tissue as rupture reported by Carpentier et al. 

(1976). 

3) In addition, it is found that increasing the leaflet thickness lead to reduction in 

principal stress. This behavior was reported by Thoronton et al. (1997).  

The future plans for this research are as follows: In collaboration with clinicians, one can 

establish different in vivo tests to have access noninvasively to the patients’ specific pressure 
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curves and EOA. This information as input to the numerical code will lead to determination of the 

material property of the valve for each specific patient.  

Some plans can be targeted more specifically towards the numerical code itself. Instead 

of modeling one-third of the aortic valve, it would be interesting to model a complete valve. 

Moreover, the effect of left and right coronary arteries can be considered in the model by 

interaction between aortic stenosis and coronary blood flow.  

Calculated GOA against C1 in this study (Fig. 6.1) shows a curvilinear trend when 

considering all six aortic valve cases. Interestingly, these results could be compared to the results 

of Messika-Zeitoun et al. (2004) who found the relationship between the aortic valve area and 

EBCT score. This score represents the intensity of pixels that construct the calcified regions of 

the leaflets. In addition, they showed that there is a direct relationship between EBCT score and 

calcium weight. It means that the calcium weight and aortic valve area have a curvilinear trend as 

shown in Fig. 6.2. Their study showed an increase in EBCT score with decrease in aortic valve 

area. As a consequent, our numerical simulations can be considered as an additional noninvasive 

tool or even replaces the EBCT score, as the patients will not need exposure to X-rays. This 

requires however a larger number of cases to make a more proper judgment on the correlation 

between EOA and material property. 
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Figure 6.1 Curvilinear relationship between the EOA and material properties, each point represents one 

case study (this thesis). 

 

 
Figure 6.2 Curvilinear relationships between the EOA and EBCT score (Messika-Zeitoun et al., 2004). 

 

In this study, the stenotic aortic valve was mimicked geometrically by thickening the 

leaflets. Another approach to investigate the mechanical behavior of the stenotic leaflets is to add 
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To simulate more realistic dynamic behavior of the aortic valve, employing a FSI 

analysis was necessary.  Although, structural modeling is able to show the mechanical behavior 

of aortic valve, it is important to understand also the valve hemodynamic. Chapter 5 discussed 

about FSI modeling of the healthy and stenotic valves. The flow velocity profiles were 

determined in addition to the dynamic behavior of the valve structure. The opening of the valve 

leaflets including the velocity vector map and stress analysis of the leaflets were extracted. 

It is difficult to verify the FSI simulation results quantitatively as it has a complex 

physics and it is difficult to find the same case in the literature to compare with. However, the 

results are qualitatively in a good acceptable range. The maximum velocities at the maximum 

opening of the valve are 1.406 m/s and 2.56 m/s for healthy and stenotic valves respectively, 

which are consistent with the reported values for healthy valves and AS at the same level of 

severity. 

Using FSI analysis can improve the determination of parameters describing time duration 

of the dynamic behavior of the leaflets. The calculated ET, RVOT and RVCT using FSI modeling 

are more close to the in vitro experiment compared with the results of structural modeling. 

Moreover, FSI analysis simulates more realistic dynamic behavior of the aortic valve. 

In future, some modifications can be proposed to improve the performance and accuracy 

of the FSI analysis. It can be interesting to increase the number of fluid elements to investigate 

the sensitivity of the results, although in this thesis, the numbers of fluid elements were in the 

same or higher range compared with the ones used in the FSI literature.  The proposed flowchart 

for estimating the material property of a stenotic aortic valve (Figure 4.3) using the structural 

modeling can be extended by using noninvasive clinical data and FSI simulation. More accurate 

validation of FSI results is still required. This will be performed through experimental 

measurements using particle image velocimetry (PIV). 
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Table A1.1 Dimensions for human aortic valve. 

Base diameter Commissural diameter Sinus height Leaflet height Leaflet free edge

24.0 mm 23.6 mm 20.5 mm 13.3 mm 30.9 mm

In this thesis, one of the proposed strategies for modeling the AS was to place a layer of 

calcium on the aortic side of the leaflets which is shown in Fig. A1.2 with green color. This 

approach can be used as an alternative to the already employed strategy through out of this thesis 

which was increasing the thickness of the leaflets, the density and young’s module of the material 

to model AS. In order to have a comparison between the dynamical behavior and hemodynamics 

of healthy and diseased valves, two simulations were done with and without adding the calcium 

layer. 

The time-varying pressure curves applied at the inlet and outlet of the domain are shown 

in Fig. A1.2. Also, the no slip boundary condition was employed in order to model the fixed 

sinuses and aortic root.  

 

Figure A1.2 (Left) aortic and left ventricular pressure wave forms applied as the boundary 
condition; (right) the boundary of the domain. 
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The velocity vectors at three different planes are shown in Fig. A1.3 for both healthy and 

stenotic valves. The maximum velocity at the maximum opening of the valve in healthy case is 

0.84 m/s which is in agreement with the results of of De Hart et al. (2003). The maximum 

velocity in the case of stenotic valve is computed 2.2 m/s.   

              

        Middle of opening t=0.2 s     Maximum opening t=0.35 s, max v=0.84 m/s      Closing time t=0.45 s 
(a) Healthy valve 

                  

         Middle of opening t=0.2 s    Maximum opening t=0.35 s, max v=2.2 m/s   Closing time t=0.45 s 

(b) Valve with AS 

Figure A1.3 Velocity vector map at different instants and planes:  (a) Healthy valve; (b) valve with 
AS. 
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Appendix 2 

The goal of this thesis necessitates employing a computational algorithm capable to 

handle the analysis of fluid and structure dynamics together. A list of available professional 

software is shown in Table A2.1. Among them, LS-DYNA, ABAQUS and MSC-DYTRAN 

software use explicit finite element (FE) method to obtain numerical solutions for time-dependent 

governing physical equations of the fluid and structure (a comprehensive discussion on explicit 

methods in FE is included in Chapter 4). In this thesis a commercially available combined 

computational fluid and solid dynamics (CFD and CSD) software package, LS-DYNA 971 

(LSTC, Livermore, CA, USA) is used to simulate fluid and structure parts.  

Table A2.1 Commercially available software and methods used. (Lio and Quek, 2003) 

Software Method used Application 

ABAQUS FEM (implicit, explicit) Structural analysis, acoustics, thermal analysis 

I-deas FEM (implicit) Structural analysis, acoustics, thermal analysis 

LS-DYNA FEM (explicit) Structural computational fluid dynamics, FSI 

ANSYS FEM (implicit) Structural analysis, acoustics, thermal analysis, … 

ADINA-DYNA FEM (implicit) Structural analysis computational fluid dynamics, FSI 

MSC-DYTRAN FEM + FVM (explicit) Structural dynamics, computational fluid dynamics, FSI 

LS-DYNA is a general purpose finite element package for analyzing the large 

deformation dynamic of structures separately or coupled with fluids. Mainly, the large dynamic 

motion of the aortic valve leaflets in a short period of time (a cardiac cycle) and existence of a 

highly coupled fluid and structure physics make this software an appropriate candidate to be used 

in this study.  
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