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Abstract 

Anillin Interacts with Microtubules to Define the Division Plane 

Husni Haji Bik 

 

Cytokinesis is the process by which the cell divides into two daughter cells and is driven 

by the formation and ingression of an actin-myosin contractile ring, which is under the 

control of RhoA. The plane of division is dictated by the position of the mitotic spindle. 

In particular, central spindle-associated Ect2 (a GEF) generates active RhoA to form the 

contractile ring in the overlying cortex. We recently found that the conserved scaffold 

protein anillin interacts with Ect2 at the cortex, in addition to its many interactions with 

actin, myosin, septins and RhoA (and others). Anillin’s interaction with Ect2 may anchor 

central spindle microtubules at the cortex to activate RhoA in a discrete zone, in a 

feedback manner. Consistent with this, depletion of anillin or Ect2 results in the loss of 

cortically-localized central spindle microtubules. Furthermore, disrupting the central 

spindle by inhibiting Aurora B or by MKLP1 depletion results in the broad localization of 

contractile ring proteins. In addition, depletion of both MKLP1 and anillin prevents the 

establishment of an equatorial plane as contractile ring components spread around the 

entire cell. 

These studies suggest that there is a strong relationship between anillin and microtubules, 

which may help define the division plane. We found that there is a strong negative 

relationship between astral microtubules and anillin’s cortical localization. Furthermore, 

we observed that anillin localization switches between the cortex and stable microtubules 
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depending on the cell cycle stage or condition (i.e. drug treatment). In the absence of Rho 

signaling (Ect2 or RhoA RNAi), anillin localizes to central spindle microtubules. Anillin 

also strongly localizes to taxol-stabilized microtubules. This suggests that RhoA 

activation coupled with microtubule instability switches anillin from the microtubules to 

the cortex. Disrupting central spindle microtubules by inhibiting Aurora B or by MKLP1 

depletion in taxol-stabilized cells causes anillin to re-locate to the cortex, and differs 

between discrete and broad depending on the treatment. Using deletion constructs, we 

mapped the possible microtubule-localizing region on anillin to the C-terminus. We 

hypothesize that there could be multiple sites where one could be Ect2-dependent to 

anchor cortical central spindle microtubules and the other could be Ect2-independent. We 

are still determining if the second interaction is direct. Recently, C. elegans ANI-1/anillin 

was shown to localize to astral microtubules where it removes myosin from the cortex 

and polarizes the early embryo. In addition, multiple Rho effectors, including mDia2, 

relocate to central spindle microtubules in the absence of Rho signalling in human cells. 

We propose that interacting with microtubules could be a conserved mechanism to keep 

Rho effectors off the cortex to help define cortical domains. 
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1. Introduction 

Understanding the cell cycle is important to understand life, particularly 

development and diseases such as cancer. Scientists have been studying the mechanisms 

that regulate the cell cycle for decades. One of the areas of the cell cycle that is still not 

well understood is cytokinesis, which occurs at the end of mitosis to separate the cell into 

two daughter cells. Although the mitotic spindle is required to establish the division 

plane, the molecular signals that communicate the position of the mitotic spindle to the 

cortex are not known. In this study, I am proposing that the cortical scaffold protein 

anillin is one of these molecular signals. 

 

1.1 The Cell Cycle 

The cell is the building block of life. Organisms develop from a single cell and are 

able to fight illnesses and injuries, because of cell division. Depending on the 

environmental conditions, cells multiply to repair a tissue or to build the organism. The 

cell cycle is divided into several phases, two gap phases, a synthesis (S) phase and a 

mitotic (M) phase.
 
During S phase, genetic information duplicates so that after the 

segregation of sister chromatids during M phase, two daughter cells form with identical 

genetic information. During the two gap phases (G1 and G2) before and after S phase, the 

cell grows in size and cytoplasmic organelles replicate preparing the cell to divide 

(Figure 1.1).
(1) 

The term ‘mitosis’ is taken from the Greek word for thread, which refers to the 

thread-like shape of the chromosomes during mitosis.
(2) 

Mitosis is the last stage of the cell 
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cycle and its start, prophase, is marked by the condensation of chromosomes inside the 

nucleus. During prometaphase, the nuclear envelope breaks down, the mitotic spindle 

starts to form and associates with chromosomes. The chromosomes align in the equatorial 

plane during metaphase. The final stages of mitosis start with anaphase, when the 

duplicated DNA gets segregated by the mitotic spindle toward opposite spindle poles.
(3)

 

In addition to DNA segregation, a new pool of microtubules, called the central spindle, 

accumulates between segregating DNA, the cell elongates and an actin-myosin 

contractile ring forms at the overlying cortex in the equatorial plane.
(4) 

Finally, during 

telophase, the actin-myosin ring ingresses to separate the two daughter cells, the 

segregated chromosomes decondense as the nuclear envelope reforms, and the central 

spindle microtubules (and remnants of the furrow) condense  to form the midbody. The 

midbody is a platform for the delivery of vesicles from the golgi and endosomes, and is 

important for abscission of the daughter cells. We use the term ‘cytokinesis’ to represent 

the division of cytoplasmic content and physical separation of the daughter cells by 

abscission, from anaphase through telophase.
(2, 3, 5)

 

The different cell cycle stages require specific kinase activities for their entry and 

progression. Cyclin-dependent kinase (Cdk)/cyclin complexes are formed and activated 

to drive entry into the different stages of the cell cycle. In metazoans, different complexes 

typically regulate progression through different stages. For example, in human cells Cdk4 

or 6/Cyclin D regulate G1 entry, Cdk2/Cyclin E regulates S phase entry and progression, 

Cdk2/Cyclin A regulates S phase progression, Cdk1/CyclinA regulates G2/M transition, 

and Cdk1/Cyclin B regulates M phase entry. Despite the ‘assigned’ role of many different 

Cdk enzymes, knockout studies in mice illustrated that Cdk1 is the only essential Cdk.
(1,2)
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There are mechanisms to sense when errors have occurred and delay the cycle so the cell 

can repair errors before proceeding. For example, the checkpoint kinases 1 and 2 (Chk1 

and 2) sense that DNA has been properly replicated before permitting the cell to cycle 

past S phase. Another important step in cell cycle progression is the inhibition of 

Cdk1/Cyclin B to trigger anaphase onset and mitotic exit. 
(2, 5) 

 

 

Figure1.1: A schematic of mammalian cells showing phases of cell cycle and the main stages of mitosis phase. Note: 

Figure is adapted from Morgan 2007. (41) 
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1.2 Cytokinesis 

As mentioned earlier, cytokinesis is the process by which a single mother cell 

divides into two daughter cells during mitosis. It is a complicated process and many 

proteins play a role in its regulation, organization and progression. Cytokinesis can be 

divided into several stages depending on the structural changes of the cell during mitosis 

starting with specification of the division plane, then cleavage furrow formation and 

ingression, midbody formation and finally cell separation.
(6) 

  

Stage I. Positioning the Division Plane and Initiating Cytokinesis: It is very important 

to establish the cleavage furrow in the right location so that both daughter cells receive 

identical genetic material and requires both temporal and spatial control.
 (6) 

Temporal control: In metazoans, cytokinesis is initiated by anaphase onset.
(8)

 

Studies have shown that inhibition of Cdk1 activity initiates cytokinesis, even in cells that 

have disrupted microtubules and are preventing form segregating their DNA. For 

example, cells treated with Cdk1 inhibitors enter ‘cytokinesis’ in the absence of 

microtubules by showing widespread and highly disorganized contractions for ~ 50 

minutes.
 (6, 7) 

 The disorganization of these contractions suggests the importance of 

microtubules in spatial control. Many of the temporal regulators that contribute to the 

timing of cytokinesis, such as the anaphase-promoting complex (APC)-mediated 

destruction of Cyclin B, control the down-regulation of Cdk1 activity.
(5, 9)

 In general, 

studies have shown that cytokinesis occurs within a flexible ~50 minute window after 

anaphase onset.  
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Spatial control: The spatial control of division plane positioning mainly occurs 

through microtubules from the mitotic spindle. For example, moving the mitotic spindle 

to a new location within the cell results in a new cleavage furrow that bisects the newly 

positioned mitotic spindle.
(6, 11) 

Although it is not well understood, different microtubule 

populations may have different roles in cleavage furrow positioning. Equatorial astral 

microtubules, which arise from centrosomes and extend to the division plane, and central 

spindle microtubules, generated between segregating chromosomes, deliver positive 

signals to the cortex. In contrast, astral microtubules that extend toward the polar cortex 

may deliver negative signals to promote cortical relaxation and prevent contractility away 

from the division plane.
(10) 

However, the position of microtubules and their ability to 

deliver a positive cue or sequester positive cues could be more important vs. delivering 

negative cues. 

The positive signal stimulated by microtubules to initiate cytokinesis is the 

RhoGEF Ect2, which activates the small GTPase RhoA. RhoA (described further in 

Section 1.3) is required for contractile ring formation and ingression. Ect2 is 

phosphorylated by Cdk1 and kept inactive until anaphase. After anaphase onset, 

dephosphorylated Ect2 is recruited to the central spindle (or stable equatorial-positioned 

astral microtubules), where it generates active RhoA in the equatorial plane of the cell.
(10, 

17, 30)  

Stage II. Ingression of the Cleavage Furrow: RhoA activation leads to the recruitment 

and activation of other proteins to form and ingress the contractile ring. 

Actomyosin-based contractile ring: The contractile ring is composed mainly of 

actin filaments that overlap with nonmuscle myosin II filaments (described further in 
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Section 1.3). RhoA mediates actin polymerization through the activation of formin 

proteins such as mDia1 and stimulates myosin activity by activating kinases such as Rho-

dependent Kinase (ROCK).
(6, 10) 

Active myosin can pull actin filaments together to 

constrict the ring. In addition, disassembly of both actin and myosin is important to 

constantly re-model the ring through ingression. Other filament systems, including 

septins and anillin, are important for crosslinking the ring to maintain its position through 

ingression.  

Membrane insertion during furrow ingression: Cytokinesis also requires the 

delivery of new membrane to increase the total membrane area to accommodate the 

formation of two new cells. Insertion of new membrane happens through the delivery of 

targeted vesicle insertion. Brefeldin A (BFA), an inhibitor of Golgi-derived vesicle 

transport, blocks this delivery and as a result, blocks cytokinesis.
(46)

 The role of 

membrane delivery is not well understood, but likely there is cross-talk with the 

contractile ring to ensure coordinated growth with ingression and abscission.
(6)

 

Membrane composition is important and may act as a platform for RhoA signaling. For 

example, the furrow is enriched with PI4,5P2 phospholipids, and recent studies showed 

yeast Rho1 preferentially interacts with these lipids.
(17, 42)

 

 

Stage III. Midbody Formation: At the end of furrow ingression, and presumably when 

active RhoA levels decrease, the contractile ring (and plasma membrane) forms a tight 

ring around the compacted central spindle microtubules to form a bridge that is 1-1.5 

microns in diameter. Many proteins that were associated with the plus ends of central 
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spindle microtubules also condense in this region. Together these molecules form an 

electron dense structure called the mid-body.
(6, 10)

 

Formation of the midbody is important for stabilizing the ingressed contractile 

ring and permitting the last stage of cytokinesis, abscission. The midbody also acts as a 

template for the delivery of membrane vesicles and localizes both the Fip3-Rab11 

complex, as well as the exocyst, both of which are important for targeting endosomal-

derived and golgi-derived vesicles, respectively. Failure to form a midbody prevents cell 

separation and causes the furrow to regress to form binucleate cells.  

 

Stage IV. Cell Separation/Abscission: Abscission is the final event of cytokinesis. In 

this stage, the cytoplasmic bridge becomes as narrow as 0.2 microns in diameter and 

microtubule bundles start to disappear. Many proteins that are required for vesicle and 

membrane trafficking (as described above) and membrane fusion are essential for 

abscission.
(6, 10)

 

Modulation of the plasma membrane: As described earlier, the composition of the 

plasma membrane changes during cytokinesis. For example, PI4,5P2 is enriched in the 

furrow and RhoA may preferentially associate with this phospholipid. During later stages 

of cytokinesis, another change that occurs is in the distribution of the membrane 

phospholipid phosphatidylethanolamine (PE). PE is usually asymmetrically distributed in 

the plasma membrane and is enriched in the inner leaflet compared with the outer leaflet. 

However, during cytokinesis, this lipid is localized in the outer leaflet of the plasma 

membrane in the cleavage furrow. The importance of PE is shown by experiments where 

its depletion causes a late block in cytokinesis. 
(6, 10, 15, 42)
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1.3 Rho Pathway 

As described earlier, the RhoA pathway is the main signaling pathway that 

regulates cytokinesis (Figure 1.2). RhoA is a GTPase that binds (and weakly hydrolyzes) 

GTP and GDP. Activation of RhoA is considered as the molecular switch that turns on 

the events required for cytokinesis. RhoA is inactive when bound to GDP, and active 

when GTP-bound 
(17, 47)

. Ect2 is a guanine nucleotide exchange factors (GEF) that 

promotes GTP binding by exchanging GDP to GTP to activate RhoA for cytokinesis. The 

activity of RhoA is counterbalanced by GTPase activating proteins (GAPs), which 

stimulate GTP hydrolysis to GDP. Although excess GAP activity leads to the 

downregulation of RhoA, and probably occurs at the end of furrow ingression, some 

GAP activity is required to promote the cycling of RhoA during furrow ingression. It is 

not clear which GAP carries out this function, although Cyk-4 is a candidate. A 

conformational change happens when RhoA is activated by binding GTP, which 

increases its affinity for effectors including profilin, formin, anillin, Rho-dependent 

kinase and Citron kinase. When active Rho binds to one of these effectors, it can alter 

their activity or interactions with other proteins and lipids.
(16, 17)

  

RhoA Localization: RhoA localizes to a discrete zone in the cleavage furrow area 

of dividing cells (Figure 1.2). This is the same zone where active RhoA regulates furrow 

formation and ingression, and it is likely that most of this RhoA is active. In support of 

this, a probe that specifically detects active RhoA localizes to the cleavage furrow, in the 

same place where endogenous RhoA localizes in fixed cells.
(17)

  

Spatiotemporal Regulation of RhoA: As described earlier, Ect2 is the GEF protein 

that activates RhoA. Accordingly, Ect2 is required for the localization of RhoA to the 
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equatorial cortex and Ect2 depletion blocks cytokinesis and phenocopies RhoA. During 

metaphase, Ect2 is phosphorylated by Cdk1, which causes it to fold into an inactive 

conformation. After anaphase onset, Ect2 is dephosphorylated and binds directly to Cyk-

4, which is part of the centralspindlin complex with the kinesin protein MKLP1. This 

binding recruits Ect2 to the central spindle and helps restrict the activation of RhoA to the 

equatorial plane of the cell. Cyk-4 is required for Ect2 activation, because depletion of 

Cyk-4 phenocopies Ect2 and blocks cytokinesis. MKLP1 depletion causes ectopic 

localization of active RhoA suggesting that only Cyk-4 is required for Ect2 activation and 

that the central spindle functions to restrict the localization of active Ect2.
(17, 19, 30)

 

RhoA Effectors: After its activation, RhoA regulates numerous proteins that 

modify the cytoskeleton. In addition to mediating actin assembly, Rho effectors regulate 

the activation of nonmuscle myosin II to slide actin filaments. The key RhoA effectors 

involved in cytokinesis are profilins, formins, Anillin (will be discussed further in Section 

1.6), Rho-dependent kinase (ROCK, also known as ROK) and Citron kinase (Citron 

K).
(17, 48, 49) 

 

Activation of RhoA is essential for contractile ring formation by directly 

activating the actin assembly factor formin.
(19)

 After binding to active RhoA, formin 

becomes functional and promotes actin polymerization. The core structure of formin 

involves two formin-homology FH1 and FH2 domains 
(50)

. These domains bind to 

profilin and actin, respectively, and mediate actin polymerization. This happens in vivo 

by mediating the association of two actin monomers and creating a binding site for a third 

monomer. The N-terminus has a DID (Diaphanous inhibitory domain) and the C-
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terminus has a DAD (Diaphanous autoinhibitory domain), which binds to active RhoA. 

When active RhoA is absent, the C-terminus of formin binds to the DID to autoinhibit.
(17)

  

Active RhoA also activates nonmuscle myosin II, another major component of the 

contractile ring. Myosin II is a hexamer containing pairs of heavy chains, essential light 

chains and regulatory light chains (RMLC) 
(51)

. Upon binding to active RhoA, ROCK is 

activated and phosphorylates the serine at position 19 in RMLC, which allows myosin to 

assemble into filaments and activates the actin-dependent ATPase activity of the motor 

domain.
(17)

 This slides the interacting actin filaments to close the ingressing contractile 

ring like a purse-string. 

Active RhoA also activates Citron kinase, an essential kinase for cytokinesis in 

Drosophila, however, is not essential for cytokinesis in many mammalian cell types. 

Citron kinase phosphorylates RMLC at two positions, Thr18 and Ser19. Although the 

function of Citron kinase is not well understood, it might be required for midbody 

formation, by stabilizing the ingressed contractile ring. 
(17)

 

Inactivation of RhoA:  RhoA must be inactivated at the end of cytokinesis. This 

may occur due to the removal of Ect2 from the central spindle, which becomes trapped in 

the newly formed nuclei. Downregulation of RhoA may also require a GAP protein. The 

GAP Cyk-4 is localized to the central spindle and becomes highly concentrated in the 

midbody, where it could act on RhoA. However, contradictory results have been obtained 

using GAP deletion mutants of Cyk-4 and it is not clear if its GAP domain is required for 

its function. Other GAP proteins that regulate RhoA have been found including RGA-3/-

4 in Caenorhabditis elegans.
 (17, 18, 19, 52) 
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Figure1.2: A schematic of mammalian cells showing the Rho pathway and its main effectors. Note: Figure is adapted 

from Piekny et al, 2005. (17)  

 

1.4 Contractile Ring 

The contractile ring form is the main structure that ingresses separate the two 

daughter cells. However, the mechanism by which this contractile ring assembled, 

controlled and functioned is very complicated. The ring contains multiple filament 

systems that are conserved among organisms, particularly actin, myosin, septins and 

anillin. The progressive sliding of actin filaments by myosin likely provides the 

contractile force that causes furrow ingression. 
(19)

 

Contractile ring assembly: As described earlier, RhoA activation is the switch 

that triggers contractile ring assembly. In early anaphase, active RhoA directs assembly 
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of the contractile ring by activation of profilin, formin and nonmuscle myosin II. Anillin 

and septins are also recruited to stabilize the position of the contractile ring and will be 

discussed later (Section 1.6). Formin nucleates and directs the elongation of actin 

filaments around the equator of the cell and at the same time, nonmuscle myosin II 

concentrates in cortical spots. Nonmuscle myosin II within a spot captures actin filaments 

growing from adjacent locations and pulls actin filaments together.
(20)

 The actin filaments 

have mixed polarities and are oriented in both directions around the ring. In animal cells, 

actin filaments are grouped into small bundles, but the lengths of these filaments are not 

known since it is difficult to track them for more than 0.25µm. 

One of the big mysteries is how the contractile ring is anchored to the cortex 

through the overlying plasma membrane, and if it also has similar associations with the 

mitotic spindle. The contractile ring is linked to both the central spindle and membrane 

through Ect2’s activation of RhoA (which is associated with the membrane through its C-

terminal lipid tail). However, another key protein that mediates this function is anillin 

(will be discussed in Section 1.6), which contains binding sites not only for actin and 

myosin, but also for septins, the plasma membrane, RhoA and central spindle proteins 

(Ect2 and Cyk-4).  

Mechanism of constriction and disassembly of the contractile ring: The 

proportion of actin and myosin filaments in the contractile ring remains constant through 

ingression 
(53)

. This suggests that both actin and myosin filaments must depolymerize in 

proportion to the circumference of the ring as it closes. In mammalian cells, drugs that 

inhibit myosin activity, but don’t block contractile ring assembly, result in an over-

accumulation of myosin and actin filaments in the ring. In fission yeast, the intensity of 
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GFP tagged nonmuscle myosin II heavy chain was found to be constant during 

contraction of the ring.
(20, 53)

 The rate of constriction also is proportional to the 

circumference of the ring and ranges from 0.5 nm s
−1

 for every 1μm in fission yeast to 3.5 

nm s
−1

 per 1μm in nematode embryos. The presence of both antiparallel actin filaments 

and nonmuscle myosin II suggested that constriction uses a sliding-filament mechanism 

similar to muscle sarcomeres. However, contractile rings may use a more complex 

mechanisms since the filament arrangement is less-organized compared to sarcomeres 

and undergoes disassembly as the ring constricts.
(18, 19, 20) 

 

1.5 Mitotic Spindle 

The microtubule cytoskeleton is reorganized during mitosis to form the bipolar 

mitotic spindle, which is important for segregating sister chromatids and dictating the 

position of the contractile ring for cytokinesis. The bipolar spindle contains microtubules 

from the centrosomes (minus ends at centrosomes and plus ends toward cortex or 

chromosomes) and from the kinetochores of chromosomes, which will incorporate into 

the spindle. Since the goal of the spindle is to segregate DNA, stable kinetochore 

attachments ensure the alignment and movement of sister chromatids to their respective 

poles. Many motor and other microtubule associated proteins have roles in assembling, 

modeling and generating forces for chromosome movement. Dynamic instability is an 

inherent property of microtubules that also is important for aligning and segregating 

chromatids.
(54)
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During anaphase, the microtubule-based central spindle forms between 

segregating chromatids. The central spindle contains antiparallel bundles of microtubules 

with the plus ends pointing toward the centre of the cell. These microtubules will 

elongate during anaphase, pushing the poles of the cell away from each other and causing 

cell elongation. As described earlier, the central spindle provides cues for contractile ring 

assembly and positions the division plane. Astral microtubules (‘astral’ refers to 

centrosome-derived microtubules that emanate toward the cortex in at the poles of the 

cell) may play a negative role in keeping contractile ring components away from the cell 

poles, and keeping them concentrated in the equatorial plane of the cell.
(21) 

Many proteins participate in central spindle assembly, stabilization and elongation 

and include mitotic kinases, kinesin motor proteins and microtubule-associated proteins 

(MAPs). The main proteins that will be discussed are PRC1 (Protein Regulator of 

Cytokinesis 1), which partners with the kinesin KIF4A, the centralspindlin complex 

(heterotetramer of Cyk-4 and the kinesin MKLP1) and the chromosome passenger 

complex (CPC; composed of Aurora B kinase, Survivin, INCENP and Borealin).
(21)

 

  PRC1 is a MT binding and bundling protein. PRC1 localizes to the mitotic spindle 

and concentrates in the spindle midzone during anaphase (Figure 1.3). Cdk1 

phosphorylation inhibits PRC1’s interaction with KIF4A, which ensures that the complex 

only localizes to microtubules in anaphase. PRC1 is the most upstream protein that 

functions in central spindle assembly. Depletion of PRC1 or its partner, KIF4A blocks 

central spindle formation altogether and blocks the recruitment of other central spindle 

proteins. Despite this strong phenotype, PRC1 is dispensable for division in many 

organisms, such as C. elegans and mammalian cells.
(27) 
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Figure1.3: Dividing mammalian cells showing PRC1 stained in green and DNA stained in red. PRC1 is located inside 

the nucleus during interphase and localizes to the central spindle during mitosis. Note: Figure is adapted from Mollinari 

et al, 2002. (27) 

 

Centralspindlin also regulates central spindle assembly, but is not required for the 

localization of some central spindle proteins including PRC1. The centralspindlin 

complex is prevented from forming in metaphase by Cdk1 phosphorylation of MKLP1. 

In anaphase, MKLP1 dephosphorylation increases its ability to bind to Cyk-4 and its 

affinity for microtubules. Blocking phosphorylation by Cdk1 causes increased MKLP1 

localization on metaphase spindle microtubules and leads to defects in chromosomes 

segregation.
(28)

 One of the main functions of the centralspindlin complex is to recruit 

Ect2, the activator of RhoA (discussed in Section 1.3).
 (29)

 In order to bind to Ect2, CYK-

4 must be phosphorylated by Polo-like kinase 1(Plk1) (figure 1.2).
(30)

 The ability of Plk1 

to regulate the binding and activation of Ect2 adds another layer of temporal control to 

cytokinesis. 

The CPC refers to a complex of Aurora-B kinase, INCENP, survivin and borealin, 

and localizes to kinetochores during metaphase and transfers to the central spindle during 

anaphase. Studies on cells that lack chromosomes show that the CPC localizes to the 

central spindle even without chromosomes.
(21)

 The complex is redundant for central 

spindle formation, but is required for the stabilization of central spindle proteins 
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including the centralspindlin complex. Mutations in or depleting members of the complex 

cause defects in chromosome segregation and abscission.
(31)

  

INCENP works as scaffold protein for the CPC and has two functional domains in 

its structure. The C-terminal domain binds and activates Aurora-B, and the N-terminal 

domain binds both Survivin and Borealin. Borealin directly interacts with both Survivin 

and INCENP, but not Aurora-B.
(32) 

The CPC also may communicate to the cortex. It is not clear what cortical 

component it interacts with, but the CPC also localizes to the cleavage furrow. Treating 

cells with drugs that inhibit polymerization of microtubules cause an enrichment of 

INCENP on the cortex. Studies have shown that it localizes to the tips of microtubules 

that reach the cortex suggesting that the CPC could ‘deliver’ cues for determining the 

cleavage plane.  

As cytokinesis progresses, the central spindle becomes more compact and many 

of the central spindle-associated proteins also compact into the midbody. Although PRC1 

and centralspindlin localize in the very centre of the midbody, the CPC spreads along the 

microtubules on either side of the midbody and it is not understood why they differ. 

 

1.6 Anillin 

Anillin is conserved across metazoans and functions as a scaffold based on its 

interaction with many proteins. Anillin contains an actin binding domain and myosin 

binding domain in its N-terminus and an Anillin Homology domain (AHD) and 

Pleckstrin Homology (PH) domain in its C-terminus. Anillin is required for cytokinesis in 

many organisms and localizes to the cleavage furrow with a pattern that strongly overlaps 
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with RhoA. It crosslinks different components of the cell; the plasma membrane, actin-

myosin filaments, septin filaments and the mitotic spindle, and its depletion causes 

destabilization of the contractile ring (Figure 1.3).
(33)

  

Actin: Anillin was first isolated as an F- actin-binding protein from Drosophila 

extracts. It also bundles F-actin and these functions are conserved in other organisms. 

Although they interact, anillin and F-actin localization to the cleavage furrow are 

independent from one other. In the absence of anillin, actin localizes outside the 

equatorial plane, suggesting anillin is required to stabilize the contractile ring.
(33, 34)

 In 

addition to its interaction with actin, anillin binds to the formin mDia2.
(33, 55, 61) 

Myosin: Anillin directly interacts with active myosin (phosphorylated on Ser19) 

and indirectly through actin 
(56)

. Similar to actin, anillin and myosin localize to the 

contractile ring independently of one another except in fission yeast S. pombe, where the 

anillin-like protein Mid1p localizes to the site of division in late G2 and is required to 

establish the division plane 
(62)

. Also similar to actin, depletion of anillin disrupts the 

spatial stability of myosin at the cell equator during cytokinesis. Anillin constructs with 

deleted actin and myosin binding domains localize to the cleavage furrow suggesting that 

anillin binds to the cortical equatorial plane through its C-terminus domains while the N-

terminus organizes the contractile ring.
(33, 34, 56, 58, 60)

 

Septins: Septins are a group of GTP binding proteins that form heterooligomers 

and localize to the cleavage furrow during cytokinesis. Septins can directly bind to anillin 

and their localization to the furrow is dependent on anillin. Anillin binds to septins 

through the AH and PH domains in the C-terminus 
(60, 63)

. Anillin localization to the 
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cleavage furrow depends on the septin protein (Peanut) and anillin constructs deleted for 

the PH domain cannot localize to the cortex.
(33, 57, 58, 60, 61)

 

Rho: Anillin directly binds to human RhoA through its AH domain. As described 

earlier (Sections 1.1-1.4), RhoA activation is the molecular switch that starts cytokinesis. 

Anillin is as an effector for RhoA, by interacting with GTP-bound RhoA, and is 

dependent on RhoA for its localization to the cleavage furrow. Anillin may feedback to 

further stabilize active RhoA because RhoA localization is lost in anillin-depleted cells 

and over-expressing the AH domain restores RhoA localization.
(33, 34)

 The mechanism for 

this feedback is not known, but could occur through anillin’s other interactions (see 

below).
(58, 64)

 

Ect2: Anillin binds to Ect2 through its AH domain. This interaction may be 

independent of RhoA binding. By binding to both Ect2 and RhoA, anillin could feedback 

to stabilize the localization of active RhoA in the furrow. As described earlier, Ect2 also 

binds to Cyk-4, which recruits it to the central spindle. This suggests that by binding to 

Ect2, Anillin also crosslinks the mitotic spindle to the contractile ring.
(33)

 

Cyk-4: Anillin binds to RacGAP50C (Cyk-4 homologue in Drosophila) through 

its C-terminus 
(65, 66)

. This interaction may have the same function as anillin binding to 

Ect2, to crosslink the mitotic spindle to the contractile ring. In both Drosophila and 

human cells, anillin depletion affects the ability of the central spindle to remain close to 

the cortex. It has not been shown in other organisms if anillin’s interactions with Cyk-4 

or Ect2 are conserved.
(33, 59)

 

Microtubules: Drosophila anillin may interact with microtubules and studies have 

shown that anillin-rich structures co-localize with microtubules after specific drug 
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treatments. For example, Latrunculin A treatment of Drosophila S2 cells resulted in 

colocalization of anillin with the plus ends of microtubules 
(43)

. This kind of association 

reflects a possible role for anillin in communicating the position of the mitotic spindle to 

the equatorial cortex.
(21, 33)

 

Plasma membrane/lipids: The PH domain is known for its ability to interact with 

lipids and could allow anillin to interact with the plasma membrane (although this hasn’t 

been shown). Deletion of the PH domain prevents anillin from localizing to the cortex 
(58, 

60)
. However, since anillin binds septins through its PH domain, which in turn can interact 

with the membrane, they could bridge the membrane interaction. In fission yeast, Mid1p 

directly localizes to the plasma membrane through a region in its C-terminus.
(33, 60, 62) 

 

Summary 

Several important questions about cytokinesis remain unanswered. How is the 

division plane determined? It is clear that the mitotic spindle dictates the position, but 

how is this communicated to the cortex, and how is this communication maintained 

through furrow ingression? Anillin is a good candidate to carry out this function since it 

interacts with actin and myosin, RhoA, their upstream regulator, the central spindle and 

the plasma membrane and could coordinate all of the key components of the cell for 

contractile ring formation and ingression. Another question regards the end stages of 

cytokinesis. How is the midbody formed and how is the contractile ring stabilized at the 

midbody? Anillin is also a good candidate for this function since it interacts both with the 

contractile ring and the central spindle microtubules.
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Figure1.4: A schematic of mammalian cells showing anillin accumulation in the contractile ring (shown in transparent 

red). A high-resolution view of Anillin’s interactions with other cytokinesis proteins is shown in the hatched box. Note: 

Figure is adapted from Piekny & Maddox, 2010. (33) 
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Hypothesis 

The mitotic spindle determines the division plane, presumably by communicating 

with the cortex. Anillin is a scaffold that interacts with components of the contractile ring 

as well as their upstream regulators. I hypothesize that anillin also interacts with 

microtubules to act as a molecular communicator between the mitotic spindle and the 

cortex to define the division plane.  

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

2. Material and methods 

 

2.1 Cell Culture and Transfection 

HeLa cells were gown and maintained in Dulbecco’s Modified Eagle Medium 

(DMEM; Wisent), which is a high glucose media supplemented with 10% fetal bovine 

serum (FBS; Wisent), 2 mM L-glutamine, 100 u penicillin and 0.1 mg/mL streptomycin 

(PS; Wisent) and kept in a humidified 5% CO2 incubator at 37°C. For transfection 

purposes, HeLa cells were plated in media without antibiotics and transfected with short 

interference RNA (siRNAs; sequences in section 2.2) and/or co-transfected with DNA 

(0.5 – 2 ug; description of constructs in section 2.3) using Lipofectamine 2000 

(Invitrogen) and Plus Reagent (Invitrogen) as per manufacturer’s instructions. We used 5-

fold less reagent than recommended by the manufacturer for best results and transfected 

cells between 50-70% confluency. Cells were transfected for approximately 30 hours for 

RNAi experiments (also when co-transfected with DNA), and 24 hours for DNA 

transfection. 

 

2.2 RNAi and Drug treatments 

As described above (section 2.1), we transfected Hela cells with siRNAs to 

knockdown the expression of endogenous genes. We used the following siRNAs in this 

study: Anillin siRNA CGAUGCCUCUUUGAAUAAA (Dharmacon), Ect2 siRNA 

GGCGGAAUGAACAGGAUUU (Dharmacon), MKLP1 siRNA 
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CGACAUAACUUACGACAAAUU (Dharmacon), and MCAK siRNA 

GCAGGCUAGCAGACAAAU (Dharmacon). 

The following drugs were used in this study: 2.5 mM thymidine (blocks cells in S 

phase; Bioshop)
(30)

, 10 µM taxol in DMSO (stabilizes microtubules; Bioshop)
(36)

, 40 

ng/mL nocodazole in DMSO (prevents microtubule polymerization; Sigma-Aldrich)
(30)

, 

100 nM hesperadin in 1 X PBS (inhibits aurora B kinase activity; Boehringer 

Mannheim)
(37)

, 22.5 nM purvalanol A in DMSO (inhibits Cdk1 kinase activity; Sigma-

Aldrich)
(38)

 and 2 µM S-trityl-L-cysteine (STC; inhibits eg5 kinesin; Sigma-Aldrich)
(30)

. 

To synchronize HeLa cells in anaphase, they were treated with 2.5 mM thymidine 

for 12-16 hours (blocks cells in S phase; on occasion this was repeated), then released 

and after 7 hours were treated with 40 ng/mL nocodazole or 2 µM STC for 3 hours (both 

drugs block cells in metaphase), then released for 45 minutes (to permit entry into 

anaphase). To synchronize DNA-transfected cells, they were treated with 40 ng/mL 

nocodazole or 2 µM STC for ~6 hours, then released for 45 minutes prior to fixing. To 

generate monopolar cells, 7 hours after release from a thymidine block, they were treated 

with 2 µM STC for 3 hours, then treated with 22.5 nM purvalanol A (to stimulate mitotic 

exit) for 30 minutes. 

 

2.3 Constructs  

As described above (section 2.1), several DNA constructs were used in this study. 

For imaging experiments, we used the following GFP-tagged RNAi-resistant Anillin 

constructs: GFP:Anillin (1-1087; full-length), GFP:Anillin (608-1087; delta N-terminus), 

GFP:Anillin (250-1087; delta myosin binding domain), GFP:Anillin (340-1087; delta 
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myosin and actin binding domains), GFP:Anillin (1-460; 608-1087; delta middle), 

GFP:Anillin (100-460; 943-1087; delta Anillin Homology domain), and GFP:Anillin (1-

943; delta PH domain)
(39)

. In addition, new constructs were generated for this study. 

GFP:Anillin (460-1087; delta actin and myosin binding domains and part of the middle), 

GFP:Anillin (340-460; delta actin bundling region and part of the middle) and 

GFP:Anillin (1-460; delta middle and C-terminus) all were generated by PCR using the 

primers in Table 2.1 and cloned into the pEGFPC1 vector (Clontech).  

 Primers Cut Site 

Anillin 

460-1087 

Forward 5’- GCTAAGCTTTGCAACTAGAAACCAAACAGGAA-3’ 
AAGCTT 

Hind III 

Reverse 5’- GAGGGATCCAGGCTTTCCAATAGGTTTGTA - 3’ 
GGATCC 

BamHI 

Anillin 

340-460 

Forward 5’- GCTAAGCTTTGCAGACAGTTCCATCCAAGGGA -3’ 
AAGCTT 

Hind III 

Reverse 5’- GCGGGATCCTTGTTTGCTTTTTGAGTTTCC - 3’ 
GGATCC 

BamHI 

Anillin 

1-460 

Forward 
5’- CAGGAATTCTATGGATCCGTTTACGGAGAAA – 3’ 

 

GAATTC 

EcoRI 

Reverse 
5’- CAGCCGCGGCTATTGTTTGCTTTTTGAGTTTCCGC - 3’ 

 

CCGCGG 

SacII 

 

Table 2.1: The primer sequence and restriction enzyme sites used to PCR and clone the indicated constructs. 

 

2.4 Fixation and Immunoflourescence 

To determine the localization of GFP-tagged constructs or endogenous proteins in 

Hela cells, they were fixed and stained with primary and fluorescent secondary 

antibodies. Coverslips with cells (treated as described in sections 2.1-2.3), were washed 

with pre-warmed (37 ºC) 1 X cytoskeletal buffer (80mM PIPES, 1 mM MgCl2, 5 mM 

EGTA) then ice-cold methanol or freshly prepared 10% trichloroacetic acid (TCA) was 
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added to the cells for 20 minutes and kept at 4 ºC, and subsequently washed 3-4 times 

with 1 X TBST (0.5% Triton X-100, 0.15 M NaCl and 0.05 M Tris pH 7.4). Before 

immunostaining, the coverslips were placed on parafilm in a wet chamber (a dish with a 

lid and wet paper towels) and incubated with 5% NDS (Normal Donkey Serum) in 1 X 

TBST for 20 minutes to block unspecific binding of primary antibodies. To immunostain, 

cells were incubated with primary antisera diluted in 1 X TBST with 5% NDS for 2 hours 

at room temperature. The following primary antibodies and dilutions were used for 

immunofluorescence (IF), 1:100 rabbit polyclonal anti-GFP antibodies (gift from Dr. 

Glotzer, University of Chicago, IL), 1:50 mouse monoclonal anti-Plk1 antibodies (Santa 

Cruz), 1:100 rabbit polyclonal anti-anillin antibodies (Piekny and Glotzer, 2008), 1:100 

mouse monoclonal anti-tubulin antibodes (DM1A; Sigma-Aldrich) and 1:2 media with 

mouse monoclonal anti-Myc antibodies (gift from Dr. Sacher, Concordia University, 

QC). After incubation with primary antibodies, cells were washed 3 times with 1 X 

TBST, then incubated with secondary antibodies with 5% NDS in 1 X TBST for 2 hours. 

The following secondary antibodies were used at 1:250 – 1:500 dilution, donkey or goat 

anti-mouse Alexa 488 (Invitrogen) and anti-rabbit Alexa 568 (Invitrogen), or anti-mouse 

Alexa 568 (Invitrogen), and anti-rabbit Alexa 488 (Invitrogen). After incubation with 

secondary antibodies, cells were washed 3 times with 1 X TBST, then 1:1000 1 mg/mL 

DAPI (Sigma-Aldrich) in 1 X TBST was added for 5 minutes, washed once with 1 X 

TBST, then washed with 0.1 M Tris pH 8.8. After removing the last wash, a drop of 

mounting media (5% n-propyl gallate (Alfa Aesar) in 50% glycerol 50 mM Tris pH9) 

was added to the coverslip, which was then placed onto a slide and sealed with nail 

polish. 
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2.5 Imaging 

Images were captured on a Leica DMI6000B inverted microscope with the 

40x/0.75 or 63x/1.4 NA objectives using an OrcaR2 (Hamamatsu) camera with Volocity 

acquisition software (PerkinElmer). Exposure times and gain settings were kept constant 

based on control slides. 0.5 µm Z-sections were collected using the piezo Z/ASI stage 

(Molecular Devices). All images were exported as TIFF’s (16-bit images) and opened in 

Image J (NIH), where pixel intensities were adjusted based on control cells, then 

converted into 8-bit images for making figures in Adobe Photoshop and Illustrator. Also, 

Image J (NIH) was used to add colour (for overlay to show co-localization) and/or to 

generate maximum intensity Z-stack projections. All quantitations (see section 2.6) were 

performed in Image J (NIH), and values were exported into PowerPoint or Excel 

(Microsoft) for generating graphs. 

 

2.6 Quantitation of Images 

Two types of quantitations were done in this study. The first was to determine the 

breadth of cortical anillin localization in nocodazole treated cells compared to control 

cells (Figures 3.2 and 3.3). To do this, images were opened in Image J (NIH) and the 

distance of anillin distribution along both sides of the cortex were measured, and 

averaged together. We then measured the length of the cell and calculated the ratio of the 

length of anillin localization to the length of the cell. Cells that were selected for this 

quantitation were elongated with slightly ingressed furrows. The results were graphed 

using Excel and PowerPoint 2007 (Microsoft). 
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The second quantitation was to detect the change in cortical anillin localization 

and increase in microtubule localization in taxol treated cells compared to control cells. 

Images were opened in Image J (NIH), and five square points were measured on each 

side of the cell at the equatorial plane. The fluorescence intensity of cortical anillin was 

calculated as an average of all squares. Using the same process, we selected five points in 

the region of the central spindle and determined the average intensity of anillin in a more 

central plane of the cell. Finally, a ratio of anillin localization on the cortex to its 

localization in a more central plane (i.e. microtubules) was calculated. The results 

presented using Excel and PowerPoint 2007 (Microsoft).  

For both quantitations, the standard deviation was found using the following 

equation:   

 

Where S = standard deviation  

            Σ = Sum of 

            X = Individual score  

            M = Mean of all scores  

            N = Sample size (Number of scores)  

 

 

 

 



28 
 

Statistical Analysis 

Graph data are presented as mean ± SD or SE of the means and were analyzed by 

the Student’s t test. A p value of ˂0.05 is statistically significant. The following formula 

was used.  

 

 

 

2.7 Co-sedimentation and Western blot 

To determine if anillin interacts with microtubules, co-sedimentation experiments 

were performed. Hela cells expressing GFP:Anillin (250-1087) treated with taxol for 30 

minutes or control (no taxol) were lysed with hypolysis buffer (10 mM HEPES, 1 mM 

EGTA, 1 mM MgCl2, 0.3 % Triton X-100, 1 mM DTT and protease inhibitors 1 mM 

PMSF, 10 μg/mL each leupeptin and pepstatin) and left at room temperature for 20 

minutes, then centrifuged at 15,000 rpm for 20 minutes. The supernatant was removed 

and after collecting an aliquot (and adding 10 µL sample buffer; 90% 4 X SDS and 10% 

BME (2-Mercaptoethanol), the pellets were re-suspended in cytoskeletal buffer, and 

incubated on ice for 30 minutes with nocodazole. They were then centrifuged at 15,000 

rpm for 20 minutes at 4 ºC and an aliquot was taken and resuspended in sample buffer. 

All samples were run by SDS-PAGE (BioRad) and then transferred to nitrocellulose 
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membrane (GE Healthcare) by wet-transfer (BioRad) for western blotting. The following 

primary antibodies were used for immunoblotting, 1:1000 mouse monoclonal anti-GFP 

antibodies (Roche), 1:2500 mouse monoclonal anti-tubulin antibodies (DM1A; Sigma-

Aldrich). Anti-mouse Alexa 488 (Invitrogen) secondary antibodies were used at a 1:2500 

dilution. Blots were scanned using the Typhoon Trio phosphoimager (GE) at 600 

intensity. Image J was then used to open the 16-bit images and bands were quantitated 

based on selected regions of interest and pixel intensities. Figures were made by changing 

the images to 8-bit and cropping them in Adobe Photoshop, followed by their import into 

Adobe Illustrator. 
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3. Results 

 

3.1 Anillin Localizes to Microtubules in Mitotic Cells 

Previous studies showed that Drosophila anillin directly interacts with the central 

spindle protein Cyk-4, and our lab has found that human anillin can bind to Ect2, which 

is recruited to the central spindle by Cyk-4 
(35)

. Anillin depletion in Drosophila and 

human cells causes a decrease in the density of microtubules stabilized toward the 

equatorial cortex and causes the contractile ring to become laterally unstable, resulting in 

cytokinesis defects and the formation of binucleate cells 
(33)

. These results suggest that 

anillin might be the key connector between the mitotic spindle and the contractile ring, a 

model that requires anillin interaction with microtubules. However, anillin has only been 

described as a cortical protein. To determine if anillin localizes to microtubules, we 

stained fixed Hela cells in different stages of mitosis for anillin. In metaphase cells, 

anillin was mostly cytosolic, with some protein visible at the cortex and some on astral 

microtubules (Metaphase/Ana-A; Figure 3.1). As shown before, anaphase cells displayed 

anillin localization at the equatorial cortex, but we also observed low levels of anillin on 

astral microtubules (Anaphase; Figure 3.1). Through late anaphase and early telophase, 

anillin predominantly localized to the equatorial cortex, although some anillin localized 

to central spindle microtubules (Early Telophase; Figure 3.1). During later stages of 

telophase, anillin localized to the midbody and central spindle microtubules (Telophase; 

Figure 3.1). These results show for the first time that anillin localizes to microtubules in 

mitotic cells, and its localization switches preferentially from astral microtubules to 

central spindle microtubules as cells progress through mitosis. 
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Figure 3.1 Anillin localizes to microtubules in mitotic Hela cells. Hela cells at varying mitotic stages were fixed and 

stained for anillin (green) and microtubules (red) as indicated. Inverted images of anillin are shown. The red arrows 

point to anillin localization on microtubules. 

 

3.2 The discrete cortical localization of anillin is dependent on astral 

microtubules 

We found that anillin localizes to astral microtubules just prior to and in early 

stages of cytokinesis. The polar astral microtubules might negatively regulate the 

distribution of contractile ring components in the poles, restricting them to the equator to 

establish the division plane 
(17)

. In both C. elegans and human cells, anillin is thought to 

be one of the proteins that may communicate the position of astral microtubules, since its 

co-depletion with the central spindle completely blocks contractile ring formation. To 

further study the relationship between anillin and astral microtubules, we examined 

anillin localization in dividing Hela cells after disrupting astral microtubules with 

nocodazole. Nocodazole is an anti-cancer drug that prevents microtubule polymerization 
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and promotes cell cycle arrest if cells are exposed to low doses of the drug in metaphase. 

Hela cells in late anaphase/early telophase were treated with 40 ng/mL nocodazole for ten 

minutes, then were fixed and stained for anillin (green) and microtubules (red). As shown 

in Figure 3.2, the localization of anillin appeared broader in comparison to control cells 

and although the central spindle microtubules are clearly visible, the astral microtubules 

are greatly diminished. To quantitate the change in the localization of anillin, the breadth 

of anillin distribution on the cortex was measured and calculated as a ratio to the length 

of the cell (n = 17 for control cells, n = 17 for nocodazole-treated cells, dots represent 

individual cells; light grey shows standard deviation and the red line shows the mean; 

Figure 3.2). As shown in the graph, the mean ratio for nocodazole-treated cells was 

statistically different from control cells (0.6 vs. 0.42, respectively), supporting that anillin 

localization was broader in nocodazole-treated cells. Anillin did not localize to the polar 

regions of the cell, suggesting that the astral microtubules are not required to prevent 

polar accumulation of contractile ring proteins. However, they are required to maintain 

discrete localization of contractile ring components at the equator.  
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Figure 3.2 Astral microtubules restrict anillin localization. Dividing Hela cells treated with nocodazole were fixed 

and co-stained for anillin (green) and tubulin (red). The ratio of anillin distribution on the cortex vs. cell length is 

shown in the graph on the right. The dots represent individual cells, the red bar shows the average ratio and the dark 

grey area shows the standard deviation. P ˂ 0.005 (independent sample student T-Test). 

 

 These results support a role for astral microtubules in restricting the localization 

of anillin, and possibly contractile ring proteins. However, we did not observe anillin 

localization in the poles and the mechanism by which astral microtubules regulate 

contractile ring proteins is not clear. If astral microtubules negatively regulate contractile 

ring proteins, then increasing the length of astral microtubules should decrease the 

breadth of their localization, causing a narrower division plane. Recently, it was shown 

that depletion of MCAK, a kinase required to depolymerize astral microtubules to model 

the bipolar spindle, caused an increase in the length of astral microtubules 
(40)

. We 

performed MCAK RNAi in Hela cells to determine if lengthening the astral microtubules 

would decrease the localization of anillin (Figure 3.3). In MCAK RNAi cells, the breadth 

* 
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of anillin localization was more restricted in comparison to control cells (0.23, n = 13 for 

MCAK RNAi cells vs. 0.3, n = 13 for control cells; Figure 3.3). Therefore, astral 

microtubules can impart a negative effect on the localization of contractile ring proteins, 

but other mechanisms or pathways prevent anillin from localizing to the poles of 

nocodazole-treated cells (perhaps something as simple as a limited gradient of a positive 

signal).  

 

 

 

Figure 3.3: Astral and central spindle microtubules restrict anillin localization. Dividing Hela cells transfected 

with MCAK-RNAi, MKLP1-RNAi and co-depleted for both were fixed and co-stained for DAPI, tubulin (red) and 

anillin (green). Inverted images of anillin are shown. The breadth of anillin localization was calculated as a ratio of cell 

length. The dots represent individual cells, the red bar shows the average ratio and the dark grey shows standard 

deviation. P values are shown as indicated for the different means by the student T-test (independent samples student 

T-Test).  

 

 

P ˂0.01 

P ˂0.005 

P > 0.2 

Double 
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3.3 The discrete cortical localization of anillin is dependent on central spindle 

microtubules 

The central spindle provides a stimulatory cue, RhoA activation, to form the 

contractile ring. It was previously shown that disruption of the central spindle causes 

active RhoA to spread along the cortex and is not restricted to a narrow equatorial plane. 

We performed MKLP1 RNAi to disrupt central spindle microtubules and determined the 

effect on anillin localization. Anillin localization significantly spread along the cortex, 

similar to what was previously observed for RhoA (0.55 for MKLP1 RNAi cells, n = 13 

vs. 0.3 for control cells, n = 13; Figure 3.3). Since MCAK RNAi caused anillin to 

localize more narrowly, possibly due to the inhibitory role of astral microtubules, we co-

depleted MKLP1 and MCAK to determine if combining them could restore a restricted 

zone of anillin. Indeed, in Hela cells treated with RNAi to both MKLP1 and MCAK 

RNAi simultaneously, anillin localization was more restricted in comparison to MKLP1 

RNAi cells (0.29 for MKLP1 and MCAK RNAi cells, n = 13 vs. 0.3 for control cells, n = 

13; Figure 3.3). Interestingly, anillin localization always followed the boundary of the 

astral microtubules, suggesting that their primary function is to delineate the localization 

boundary of anillin and other contractile ring proteins. Since anillin localizes to astral 

microtubules, one hypothesis is that anillin helps establish the division plane by ‘reading’ 

the position of these microtubules.  
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3.4 Anillin localizes to taxol-stabilized microtubules in mitotic cells  

In addition to anillin’s localization to astral microtubules, we observed anillin on 

central spindle microtubules, particularly in late anaphase and telophase cells. Central 

spindle proteins directly interact with anillin, suggesting that anillin could crosslink the 

central spindle to the cortex to maintain the division plane during furrowing. In furrowing 

cells, although active RhoA is initially high, it’s activity decreases as furrow ingression 

completes. Since anillin is a RhoA effector, once RhoA activity diminishes, this could 

free anillin to localize to other proteins or locations, including its enrichment on the 

central spindle. To further investigate the relationship between anillin and central spindle 

microtubules, we manipulated the stability of microtubules and observed any effects on 

anillin localization. Taxol is an anticancer drug that stabilizes microtubules. Hela cells in 

anaphase were treated with 10µM taxol, then fixed and stained for anillin (red) and 

microtubules (green; Figure 3.4). Over time, anillin localization shifted from the cortex to 

microtubules in taxol-stabilized cells, and was predominantly at the cortex in control cells 

(Figure 3.4). To quantitate this change in localization, we measured the fluorescence 

intensity of anillin localization on the cortex in comparison to microtubules (n = 16 

control cells vs. n = 20 cells after 5 min, 12 after 20 min, 12 after 30 min and 20 after 40 

min taxol treatment, dots represent individual cells; dark grey shows standard deviation 

and the red line shows the mean; graph Figure 3.4). All of the taxol-treated cells had 

significantly lower cortical: microtubule ratios (mean of 1.39 after 5 min, 0.75 after 20 

min, 0.69 after 30 min and 0.53 after 40 min taxol treatment) in comparison to control 

cells (mean of 1.93). Therefore, anillin’s localization to microtubules occurs most 

predominantly after 20 minutes of taxol treatment. These results show that anillin can 
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localize to stable microtubules and that microtubule instability might be important for 

anillin’s cortical localization. 

The mitotic spindle undergoes morphological changes in anaphase cells treated 

with taxol; the spindle poles move apart and there is no obvious central spindle. We 

stained taxol-treated anaphase Hela cells with antibodies to Plk1 (a component of the 

central spindle) to determine how stabilizing microtubules affects the central spindle 

microtubules and/or proteins. Although there was no obvious central spindle structure 

based on tubulin staining, we observed Plk1 localization along the tips of stabilized 

microtubules (Figure 3.5). This result suggests that taxol-stabilized microtubules arise 

from the central spindle or that central spindle proteins are recruited onto stable astral 

microtubules. This also suggests that anillin preferentially localizes to stable 

microtubules labeled with central spindle proteins and one hypothesis is that anillin’s 

localization to these microtubules could mimic its recruitment to the central spindle in 

telophase cells, after levels of active RhoA decrease.  
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Figure 3.4: Anillin’s cortical localization depends on microtubule instability. Hela cells were treated with taxol for 

varying periods of time as indicated, then were fixed and co-stained for tubulin (green) and anillin (red), and 

colocalization appears yellow. The ratio of fluorescence intensity of anillin at the cortex vs. on microtubules (Y-axis) 

was measured for control cells and cells treated with taxol for varying amounts of time as indicated. The dots represent 

* 
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individual cells, the red bar shows the average ratio and the dark grey shows standard deviation. P ˂ 0.005 

(independent samples student T-Test). 

 

 

Figure 3.5: Stable taxol-treated microtubules recruit central spindle proteins. Hela cells were treated with taxol, 

then fixed and stained for Plk1 (a central spindle marker; red) and anillin (green).  

 

Since we observed a strong decrease in cortical anillin localization in taxol-treated 

cells, we wanted to determine if other contractile ring proteins could be similarly 

affected. In particular, we wanted to examine RhoA localization, since anillin is a RhoA 

effector, and we hypothesize that active RhoA could compete with stable microtubules 

for anillin localization. As shown in Figure 3.6, RhoA was no longer discretely cortical 

after taxol-treatment. Furthermore, RhoA did not localize to microtubules, suggesting 

that anillin’s ability to localize to microtubules is Rho-independent. Since anillin is a 

RhoA effector, the loss of RhoA from the cortex in taxol-treated cells could promote 

anillin’s re-localization away from the cortex and on to microtubules. This could mimic 

anillin’s enrichment onto central spindle microtubules in telophase cells, when RhoA 

activity decreases. 
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Figure 3.6: RhoA localization requires microtubule instability. Dividing Hela cells treated with taxol were co-

stained for DAPI, RhoA and anillin. Inverted images for RhoA are shown.  

 

3.5 The localization of anillin to taxol-stabilized microtubules is central 

spindle-dependent 

We showed that anillin localizes to the central spindle in telophase cells when 

RhoA activity decreases, and anillin localizes to taxol-stabilized microtubules that are 

decorated with central spindle proteins. To investigate the dependence of anillin’s 

localization on the central spindle, we disrupted the central spindle by either MKLP1 

RNAi or using 1µM hesperadin (inhibitor of Aurora B kinase) in combination with taxol 

treatments. As described earlier, MKLP1 and Aurora B contribute to central spindle 

formation and their removal disrupts the central spindle. As shown in Figure 3.7 and 

Table 3.1, anillin no longer localized to microtubules after disruption of the central 

spindle in taxol-treated cells and re-localized to the cortex in all experimental conditions 
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(except control cells treated with taxol alone). In addition, depending on the length and 

timing of the treatments (MKLP1 RNAi for 30 hours, or hesperadin for 30 or 40 

minutes), anillin localized broadly over the entire cortex or in a discrete cortical location, 

respectively. There was one exception with the hesperadin treatment, when cells were 

treated with taxol and hesperadin simultaneously for 30 min and anillin also localized 

broadly at the cortex. This experiment suggests that as long as the central spindle has a 

chance to form and contact the cortex, this may cause anillin to localize discretely to the 

cortex after its disruption, vs. broadly when the central spindle may not have formed and 

contacted the cortex. Therefore, anillin’s ability to localize to taxol-stabilized 

microtubules is central spindle-dependent. Furthermore, anillin’s discrete cortical 

localization requires an intact central spindle that has contacted the cortex. 

 

Figure 3.7: The central spindle is required for anillin’s localization to microtubules in taxol-treated cells. Hela 

cells in late anaphase/early telophase treated with either MKLP1 RNAi (for 30 hours) or the Aurora B kinase inhibitor 

hesperadin (20-30 minutes) and taxol (20-30 minutes) were fixed and co-stained for anillin (green) and tubulin (red). 

Colocalization is yellow. Table 3.1 shows the different treatments that were used in this experiment. 
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Table 3.1: The different treatments of HeLa cells showed that anillin’s localization to taxol-stabilized microtubules is 

dependent on central spindle microtubules. 

 

3.6 Anillin localizes to central spindle microtubules in the absence of active 

RhoA  

Anillin is enriched on central spindle microtubules during late telophase, after 

RhoA activity decreases. In earlier stages of cytokinesis, anillin is enriched on the cortex 

in the equatorial plane. To assess the importance of RhoA in anillin’s localization, we 

decreased the levels of active RhoA using RNAi to its GEF, Ect2. In Ect2-depleted cells, 

anillin localized more strongly to central spindle microtubules (Figure 3.8) in comparison 

to control cells where it localized cortically (Figure 3.8). Anillin’s central spindle 

localization appeared more strongly in telophase cells in comparison to anaphase cells. 

The central spindle was still present after Ect2 depletion, although other studies in our lab 

have shown that cortically-associated pools of central spindle microtubules and proteins 

are decreased in Ect2 RNAi cells (unpublished observations). These results suggest that 

RhoA activation is required to enrich anillin localization on the cortex, and in its absence, 
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anillin localizes to central spindle microtubules. Furthermore, anillin’s ability to localize 

to either the cortex or central spindle microtubules is cell cycle-dependent. 

 

 

Figure 3.8: The cortical localization of anillin is Ect2-dependent. Hela cells were treated with Ect2 RNAi for 30 

hours, fixed and co-stained for DNA (blue), anillin (green) and tubulin or Plk1 (red).  For both control and Ect2 RNAi 

cells, an anaphase cell is shown in the top panel, and a telophase cell in the bottom panel. 
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3.7 The localization of anillin to either the cortex or to microtubules is Cdk-

dependent  

Active RhoA recruits anillin to the cortex, and we found a cell cycle timing in the 

enrichment of anillin either to the cortex or to central spindle microtubules in the absence 

of active RhoA. As previously described, RhoA activation is Cdk1-dependent. After 

entry into anaphase, Cdk1 activity drops and Ect2 is dephosphorylated, permitting its 

activation and recruitment to the central spindle through its interaction with Cyk-4. 

Therefore, the cortical recruitment of anillin requires Cdk1 inactivation. To determine if 

Cdk1 inactivation is also required for anillin’s localization to taxol-stabilized 

microtubules, we treated cells with taxol for ~3 hours, which arrested cells at metaphase 

with fragmented centrosomes. We then added the Cdk1 inhibitor purvalanol A and 

observed the effect on anillin localization. As controls, we also treated cells with other 

drugs for about 3 hours (nocodazole – blocks cells in metaphase and STC – blocks cells 

in prometaphase) then with purvalanol A to observe anillin’s recruitment to the cortex. 

As shown in Figure 3.9, while Cdk1 inhibition stimulated cortical recruitment of anillin 

in cells blocked with nocodazole or STC, Cdk1 inhibition stimulated anillin’s recruitment 

to microtubules in taxol-blocked cells. This result suggests that anillin’s ability to localize 

to microtubules also requires cell cycle exit, via Cdk1 inhibition, and anillin is only 

competent to interact with either the cortex or microtubules during later stages of mitosis. 
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Figure 3.9: Anillin’s localization to the cortex or to microtubules depends on Cdk1 activity. Hela cells were 

treated for three hours with nocodazole, STC or taxol as indicated by the star, which arrested the cells in either 

prometaphase or metaphase, then treated with the Cdk1 inhibitor purvalanol to stimulate mitotic exit. Cells were fixed 

and co-stained for tubulin (green) and anillin (red).  

 

3.8 Identifying microtubule-targeting sites in anillin  

Our results show that anillin localizes to microtubules, and this localization is 

enriched by Cdk1 inactivation, as well as by decreased RhoA activity. We also showed 

that anillin’s enrichment to microtubules changes from astral microtubules to central 

spindle microtubules as the cell cycle progresses. Our next step was to identify a minimal 

region for mediating localization (and possibly binding) to microtubules in anillin. We 

co-transfected various GFP-tagged RNAi resistant anillin deletion constructs (missing 

various domains or regions of the protein; Figure 3.10) with anillin RNAi, then treated 
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cells with taxol to determine their localization to taxol-stabilized microtubules. In 

general, we observed strong localization, weak localization or no localization (examples 

of cells for each category are shown; graph shows percentage of elongated cells; Figure 

3.10). All constructs containing C-terminal regions were able to localize to microtubules 

(although some were stronger vs. others). Therefore, the minimal targeting region maps 

to the C-terminus of anillin, although we cannot rule out the hypothesis that there may be 

multiple microtubule-targeting sites and we are currently testing this. 

 

 

 

Figure 3.10: The microtubule-localizing region on anillin maps to the C-terminus. Different GFP-tagged RNAi-

resistant anillin constructs were co-transfected with anillin RNAi and analyzed for their ability to localize to 

microtubules in taxol-treated cells (schematic of constructs in the elongated cells is shown at top left). Three 

predominant patterns were observed; no localization (cytosol), weak localization (cytosol and microtubules) and strong 

localization (microtubules). A graph of the proportion of localization patterns observed for each construct in elongated 

cells (graph for round cells is not shown) is shown at the upper right of the figure and examples of cells for each type of 

localization are shown below. Table 3.2 with the actual data is shown below.  
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Table 3.2: The number of cells showing no localization, weak localization or strong localization to microtubules for 

both round cells (likely in metaphase or early anaphase) and elongated cells (late anaphase or telophase). (Nona 

Chamankhah helped to quantitate the number of cells for the different constructs) 

 

To determine if anillin binds to microtubules, we transfected cells with a GFP-

tagged construct (Δ250), which localizes strongly to taxol-stabilized microtubules, and 

assessed its ability to co-sediment with either taxol-stabilized microtubules or non-treated 

microtubules from cell lysates. We also determined if anillin can be released from 

microtubules after their depolymerization with nocodazole (and cold) treatment. A 

western blot co-stained for GFP (to detect anillin) and tubulin is shown in Figure 3.11. 
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Fractions were collected from the supernatant of cell lysates (shown on the left) either 

with or without taxol treatment. Fractions collected from pellets treated with nocodazole 

and cold are shown on the right. The ratios of tubulin and anillin released from the pellet 

(by cold temperature and nocodazole) vs. the supernatant were calculated based on 

fluorescent intensity and show that proportionally more anillin was released from the 

taxol-pellet vs. the control pellet (Figure 3.11). Our data suggests that anillin 

preferentially co-sediments with taxol-stabilized microtubules. We are carrying out 

additional co-sedimentation experiments using purified microtubules and purified anillin 

protein, or lysates with over-expressed anillin to further analyze anillin’s ability to bind 

microtubules. 

 

 

Figure 3.11: Anillin may co-sediment with microtubules. Lysates from cells transfected with GFP:anillin (250-1087) 

treated with taxol or no drug (control) were pelleted. Supernatants are shown in the western blot on the left, co-stained 

for GFP (to detect anillin) and tubulin. Pellets were resuspended and treated with cold and nocodazole, and re-pelleted. 

Supernatants are shown in the western blot on the right, co-stained for GFP and tubulin. The ratio of tubulin or anillin 

in the pellet vs. the supernatant were calculated based on fluorescence intensity and are shown below. 
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4. Discussion 

Our results show that anillin may interact with microtubules during cytokinesis. 

We propose that this interaction communicates the position of the mitotic spindle to the 

cortex to define cortical domains. During early cytokinesis, anillin is on astral 

microtubules, which may deliver anillin to the central region of the cortex, but also 

negatively regulates its localization in the polar cortex to help define the division plane. 

During later stages of cytokinesis, anillin is on central spindle microtubules, which are 

required to maintain the division plane and form a stable midbody.  

 

4.1 Anillin Localizes to Microtubules in Mitotic Cells 

Anillin is an essential scaffold protein that is known to bind to various proteins at 

the cortex such as actin, myosin and RhoA 
(33)

. Anillin was also found to bind to central 

spindle proteins such as Cyk4 and Ect2, which are required to activate RhoA in the 

equatorial plane of the cell 
(35)

. Anillin depletion leads to the loss of centrally positioned 

microtubules toward the cortex and destabilization of the contractile ring at the division 

plane 
(33, 35)

. Also, anillin is required for the localization of contractile ring proteins in 

cells with disrupted central spindles, suggesting it may function as part of the ‘astral’ 

pathway, which helps to determine the division plane. These results suggest that anillin 

might communicate the position of the mitotic spindle to the cortex to help establish and 

maintain the division plane. 

Our results show that anillin localizes to microtubules during cytokinesis (Figure 

3.1). Anillin localization shifted from astral microtubules in the early stages of 
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cytokinesis to central spindle microtubules and the midbody in late stages of cytokinesis. 

In the early stages of cytokinesis, anillin localization to astral microtubules is consistent 

with it being a member of the ‘astral’ pathway. This interaction could deliver anillin to 

the cortex in the central region, but could also remove or inhibit anillin in the polar 

regions, to promote assembly of contractile ring proteins in the centre of the cell. Anillin 

localization on central spindle microtubules could play a role in helping to anchor or 

position these microtubules at the cortex. Also, anillin’s localization to the central spindle 

and midbody increases when active RhoA levels decrease after furrow ingression, where 

anillin could play a role in stabilizing the midbody. In general, this is the first time anillin 

has been shown to localize to microtubules in mitotic cells and supports our hypothesis 

that it might have an important role in communication between the mitotic spindle and 

the cortex. Since all of our data was collected using fixed cells, it will be important to 

show that the localization of anillin on microtubules also occurs in live cells (and is not 

an artefact of fixation) and to study the dynamics of this localization. 

 

4.2 The discrete cortical localization of anillin is dependent on astral 

microtubules 

Previous studies suggested that astral microtubules control the distribution of 

contractile ring components at the cortex. Since anillin localizes to astral microtubules in 

early cytokinesis, and is a contractile ring component, we determined how disruption of 

the astral microtubules would affect anillin localization. We used nocodazole, an 

anticancer drug that prevents the polymerization of microtubules. It is effective in 

blocking astral microtubules since they are more dynamic compared to central spindle 
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microtubules, which are more stable and allow us to observe the effect of losing the astral 

microtubules. Nocodazole-treated cells showed a broader distribution of anillin along the 

cortex (Figure 3.2), although we only measured cells in mid-late anaphase, and our 

results could differ for cells in other stages of cytokinesis. Anillin did not localize to the 

poles of the cell, which contradicts the hypothesis that astral microtubules have an 

inhibitory role in the distribution of contractile ring components and that it does this 

through anillin. However, there could be a limited amount of positive signal from the 

central spindle microtubules, and without further stimulation this also restricts the signal 

and the distance it can spread. The broadening of the cortical pool of anillin suggests that 

the astral microtubules do play some type of inhibitory or restrictive role to limit the 

position of the contractile ring. Since we only examined cells in late anaphase, we were 

unable to determine if astral microtubules are also required to deliver anillin to the cortex 

(in addition to negatively regulating its localization in the poles). I am currently 

investigating this by looking at nocodazole-treated cells in earlier stages of cytokinesis.  

To further study the role of astral microtubules in positioning the division plane, 

we stabilized astral microtubules and determined the effect on anillin localization. 

MCAK is required to model the mitotic spindle and its depletion prevents 

depolymerization and causes longer astral microtubules to form in cells. If astral 

microtubules negatively control anillin cortical localization then longer microtubules 

should cause a more discrete localization of anillin. As shown in (Figure 3.3), MCAK-

RNAi cells had more discrete anillin localization compared to that of the control cells. 

This supports our hypothesis that there is a negative relationship between the astral 

microtubules and anillin localization. However, it is not clear how the astral microtubules 
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are able to negatively regulate anillin and other contractile ring proteins. One hypothesis 

is that anillin localization to microtubules, brings it off the cortex, which may prevent the 

organization of contractile ring proteins. We did not notice if there was more anillin 

localized to microtubules, but this must be properly quantitated. Also, anillin localization 

on microtubules may be transient and the best way to study this may be to use live 

imaging.  

 

4.3 The discrete cortical localization of anillin is dependent on central spindle 

microtubules 

The central spindle has a stimulatory effect on contractile ring assembly and 

ingression, by recruiting and activating the RhoGEF Ect2 to activate RhoA in the central 

plane of the cell. However, it is not clear if the central spindle actually contributes to 

positioning the division plane, or if it is just required as a template to activate RhoA, 

which can diffuse to the overlying cortex. We studied the effect of central spindle 

disruption on anillin localization, by depleting MKLP1, which is part of the 

centralspindlin complex. Figure 3.3 shows that anillin localization is significantly broader 

in MKLP1-depleted cells compared to the control cells. This result is consistent with 

previous studies showing that RhoA localizes more broadly in MKLP1-depleted cells, 

and supports the hypothesis that the central spindle plays a role in determining the 

division plane. 

Our results show that astral and central spindle microtubules have different, yet 

complementary, functions and that the disruption of any of these microtubules results in a 



53 
 

broader localization of cortical anillin, and potentially other contractile ring components 

(Figures 3.2 & 3.3). To assess how these microtubule sets work together, we combined 

MCAK and MKLP1 RNAi and determined the effect on anillin localization. MCAK co-

depletion restored anillin localization patterns closer to control cells and interestingly, 

anillin always localized to the boundary of the long astral microtubules (Figure 3.3). Our 

results suggest that even when we disrupt the central spindle, enhancing the inhibitory 

effect of the astral microtubules will compensate for central spindle disruption. 

Therefore, the main function of the astral microtubules may be to restrict the localization 

of contractile ring components.  

 

4.4 Anillin localizes to taxol-stabilized microtubules in mitotic cells  

We observed anillin localization on both astral microtubules and central spindle 

microtubules in non-treated mitotic Hela cells. The localization to central spindle 

microtubules is enriched as cells progress through cytokinesis, and coincides with 

decreased levels of active RhoA. Since the central spindle microtubules are very stable, 

we determined what would happen to anillin localization if we further stabilized 

microtubules using taxol. Taxol is an anticancer drug that works by preventing the 

disassembly of the microtubule polymers, which stabilizes microtubules. Figure 3.4 

shows that with increasing times of treatment, anillin localization shifted from the cortex 

to microtubules. Since these studies were performed with fixed cells, it will be important 

to replicate them using live cells, to ensure anillin's localization to microtubules is not an 

artefact of fixation. These results suggest that microtubule dynamic instability is 
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important for anillin’s cortical localization and anillin’s localization to stable 

microtubules competes with its cortical localization. One hypothesis is that taxol-treated 

cells mimic what happens during late stages of cytokinesis, when active RhoA levels 

drop. Since RhoA is the effector for recruiting anillin to the cortex, lowering its levels 

allows the stable central spindle microtubules to better compete for anillin. Since the 

population of cells used for these studies were asynchronous, it will be interesting to 

determine how the timing and strength of anillin's microtubule localization compares 

with its stage in cytokinesis. Furthermore, the striking overlapping localization pattern 

between anillin and microtubules suggests that anillin might be able to directly interact 

with microtubules.  

The central spindle appeared to morphologically change after taxol treatment. We 

stained cells with Plk1, a central spindle marker, to help mark the central spindle 

microtubules. Figure 3.5 shows that central spindle proteins localized to the tips of 

stabilized microtubules, even though they were no longer antiparallel and overlapping. 

Therefore, the stabilized microtubules that anillin localized to have central spindle 

identity. This supports our hypothesis that anillin preferentially localizes to stable, central 

spindle microtubules. However, we also proposed that active RhoA competes for anillin’s 

microtubule localization, since RhoA activity drops at the end of cytokinesis when anillin 

localizes more strongly to the central spindle. We examined RhoA localization in taxol 

treated cells, and as shown in Figure 3.6, RhoA lost its localization to the furrow in 

comparison to non-treated cells. Therefore, taxol-treatment may resemble the end of 

cytokinesis, when RhoA activity drops and anillin transfers to the central spindle 

microtubules.  
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4.5 The localization of anillin to taxol-stabilized microtubules is central 

spindle-dependent 

Anillin localizes to taxol-stabilized microtubules marked with central spindle 

proteins. To determine if anillin’s localization to taxol-stabilized microtubules is central 

spindle-dependent, we disrupted the central spindle by depleting MKLP1 or inhibiting 

Aurora B kinase with the inhibitor hesperadin. We also altered the timing and order of 

treatments. Figure 3.7 and Table 3.1 show that long-term disruption of the central spindle 

caused anillin localization to shift to the cortex, even in the presence of taxol. Also, if the 

central spindle was disrupted for shorter times, then anillin localized discretely to the 

cortex. We hypothesize that the central spindle must contact the cortex to cause the 

discrete localization of anillin that is observed with shorter hesperadin treatments. 

However, our studies were  done using fixed cells and it will be important to replicate 

these experiments using live cells to better address this hypothesis. Therefore, The 

localization of anillin to microtubules stabilized with taxol is dependent on the central 

spindle and supports our hypothesis that anillin favors localization to central spindle 

microtubules. 

 

4.6 Anillin localizes to central spindle microtubules in the absence of active 

RhoA 

Our data supports the hypothesis that anillin localization is regulated by RhoA 

activity levels (Figures 3.1 & 3.6). When RhoA levels are high, anillin is predominantly 

on the cortex, but as RhoA levels decrease toward the end of cytokinesis, anillin localizes 
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to central spindle microtubules. To investigate the effect of RhoA activity on anillin 

localization, we co-transfected Hela cells with Ect2. Ect2 is the upstream activator of 

RhoA for cytokinesis and its depletion results in low levels of active RhoA. Figure 3.8 

shows that in the absence of Ect2, anillin’s localization to the central spindle was 

enhanced in comparison to control cells. This supports our hypothesis that the 

localization of anillin to the cortex is dependent on active RhoA, and that active RhoA 

competes with microtubules for anillin localization. These results also show that the 

localization of anillin to microtubules occurs independently of active RhoA (and Ect2) 

and anillin either directly interacts with microtubules, or indirectly interacts with 

microtubules through other proteins. 

 

4.7 The localization of anillin to either the cortex or to microtubules is Cdk-

dependent  

Ect2, which regulates RhoA activity, requires decreased Cdk1 activity for its 

activation. Previous studies showed that Cdk1 inhibition is sufficient to promote the 

activation of RhoA and the recruitment of contractile ring proteins. We also show in 

(Figure 3.9), that Cdk1 inhibition in either nocodazole or STC-blocked cells caused the 

recruitment of anillin to the cortex. We also found that the localization of anillin to 

microtubules was Cdk1-dependent. Therefore, our results suggest that the localization of 

anillin to the cortex or to microtubules requires low Cdk1 activity. The dependence on 

Cdk1 suggests that anillin could be regulated by phosphorylation, which could alter its 

conformation for direct association with microtubules, or interaction with other proteins. 
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It will be interesting to determine if other cell cycle kinases (or phosphatases) regulate the 

localization of anillin. 

 

4.8 Identifying microtubule-targeting sites in anillin 

Our data shows that anillin localizes to microtubules; to astral microtubules in early 

anaphase cells, to central spindle microtubules in anaphase/telophase cells and to taxol-

stabilized microtubules. This data supports an interaction between anillin and 

microtubules. To identify the minimal microtubule-binding region on anillin we used 

different anillin deletion constructs to determine their localization to taxol-stabilized 

microtubules. We also initiated co-sedimentation studies to biochemically study the 

region of anillin that mediates the interaction between anillin and microtubules. As 

shown in (Figure 3.10), most of the constructs localized to microtubules except for C3 (1-

460) and C5 (340-460). C8 (460-1087) and C10 (1-943) showed low levels of 

microtubule-localization, but it is difficult to derive a conclusion based on low sample 

size. In general, the ability of most constructs to localize suggests that there are multiple 

microtubule-binding sites and these site(s) lie in the C-terminus of the protein, since all 

constructs except for C3 and C5 contained at least one domain from the C-terminus. We 

also obtained preliminary data showing that C2 co-sediments with microtubules, and may 

do so more strongly (not statistically analyzed) with taxol-stabilized microtubules. We 

are currently testing additional constructs containing only N-terminal domains, as well as 

more biochemical studies with C2 and in vitro purified C-term anillin protein, to test 

these hypotheses. Anillin could have different ways of interacting with astral vs. central 

spindle microtubules, and these could be mediated by different sites. We only assessed 



58 
 

localization in taxol-treated cells, and may only be studying the domain that mediates 

anillin binding to central spindle-labeled microtubules. A follow-up study could be to 

also identify regions that regulate anillin's interaction with astral microtubules. 

Previous studies have shown that anillin can interact with central spindle binding 

proteins Cyk-4 and/or Ect2 depending on the organism. This interaction could bridge one 

of the microtubule binding sites. However, we detected anillin on microtubules in the 

absence of Ect2 suggesting that the ability of anillin to interact with microtubules is Ect2-

independent, or anillin has multiple sites, where one is Cyk-4/Ect2-dependent and the 

other is independent. 

In summary, our results suggest that after Cdk1 inactivation, RhoA is activated by Ect2 at 

the central spindle, which recruits anillin to the cortex. Anillin also localizes to astral 

microtubules, which may help establish the division plane by initially delivering anillin to 

the central cortex, but also by negatively regulating anillin and other cortical proteins. 

Once RhoA is strongly enriched at the cortex, anillin localization switches from astral 

microtubules to the cortex where it stabilizes the contractile ring. As cytokinesis 

progresses, anillin localizes predominantly to the cortex, but also localizes to the central 

spindle. It may help anchor central spindle microtubules at the cortex, to help maintain 

the division plane. In addition, anillin localizes more strongly to the central spindle in 

telophase, after RhoA activity levels have dropped. At this stage, anillin could participate 

to help form the midbody. Interestingly, other Rho effectors, including mDia2 (formin) 

and citron kinase 
(44, 45)

, also relocate to the central spindle in later stages of cytokinesis 

and in the absence of active RhoA suggesting that this could be a general theme of Rho 

effectors in cytokinesis. In general, we are describing, for the first time, interactions 
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between anillin and microtubules, which may perform multiple functions including 

communicating the position of the mitotic spindle to the cortex to help define the division 

plane, and for midbody transition in late stages of cytokinesis.  
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