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Abstract 

Condition Based Maintenance Optimization for Multi-Component Systems Based 

on Neural Network Health Prediction 

Jialin Cheng 

Condition-based maintenance (CBM) is an effective maintenance approach to prioritize 

and optimize maintenance resources based on condition monitoring information. A well 

established and effective CBM program can eliminate unnecessary maintenance actions, 

lower maintenance costs, reduce system downtime and minimize unexpected catastrophic 

failures. Most existing work reported in the literature only focuses on determining the 

optimal CBM policy for single units. Replacement and other maintenance decisions are 

made independently for each component, based on the component‘s age, condition 

monitoring data and the CBM policy.  

In this thesis, a CBM optimization method is proposed for multi-component systems, 

where economic dependency exists among the components subject to condition 

monitoring. The proposed multi-component systems CBM policy is based on a method 

using artificial neural network (ANN) for remaining useful life (RUL) prediction which is 

proposed by Tian et al. (2009). Deterioration of a multi-component system is represented 

by a conditional failure probability value, which is calculated based on the predicted 

failure time distributions of components. The proposed CBM policy is defined by a two-

level failure probability threshold. A simulation method is developed to obtain the 

optimal threshold values in order to minimize the long-term maintenance cost.  
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We conduct a case study using real-world vibration monitoring data to validate the 

proposed CBM approach. These data are collected from bearings on a group of Gould 

pumps at a Canadian Kraft pulp mill company and help to demonstrate the effectiveness 

of the proposed CBM approach for multi-component systems. The proposed CBM 

approach is also demonstrated using simulated degradation data for multi-component 

systems. The proposed maintenance policy can fulfill the requirements of a real plant 

environment where multiple components are under condition monitoring. By using the 

proposed CBM policy, maintenance managers can easily and quickly adjust the 

maintenance schedule according to the working condition of the system. 
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Chapter 1 

Introduction 

1.1 Introduction to Maintenance on Multi-Component Systems 

Nowadays, the manufacturing industry is always looking for a way to achieve better 

quality and higher reliability. However, no matter how high quality the equipments have, 

they will deteriorate over time from operational wear. The Remaining Useful Lifetime 

(RUL) of the equipment is uncertain even when operating under certain load restrictions 

or within a specific environment. This will lower the reliability level of the system. Thus, 

maintenance has been introduced as an efficient approach to improve the reliability level 

during the useful life of a physical asset (Jardine et al. 2006). Condition-based 

maintenance (CBM) is an efficient maintenance approach to prioritize and optimize 

maintenance resources based on condition monitoring data.  

The use of condition monitoring techniques has increased rapidly since the 1990s. With 

rising requirements for production performance, plants have increased cost and 

complexity while reducing downtime available for routine maintenance (preventive 

replacement, inspection and adjustment). Condition monitoring is seen as the appropriate 

technique for better maintenance in these circumstances (Nandi and Toliyat 1999, Wang 

et al. 2001, Wang et al. 2002, Saha 2003, Sabnavis et al. 2004). The greatest challenges 

for embedding condition monitoring techniques in decision models are the limited 

availability of failure histories for monitored components and quantifying the costs and 
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benefits. The costs of data collection need to be balanced against the expected gains as a 

result of operating a maintenance policy with near-optimum cost (Baker and Scarf 1995). 

So when we talk about CBM on a component, that component should be under condition 

monitoring and allowed to fail before it is replaced by a new one. Take a manufacturing 

plant as an example. There are a great amount of production units containing many 

moving (rotation) parts such as motors, pumps, gear boxes and valves inside. These units 

are often in series and when one of the units fails, it can cause the entire system fails, 

resulting in a great loss in productivity. Various types of deterioration are suitable for 

CBM analysis, such as a ball bearing wear in a machine (Huang et al. 2007) and gearing 

wear in a laboratory gearbox experimental system (Tian and Zou 2009). Examples of 

CBM are the use of information obtained from oil analysis, vibration analysis, fuel 

consumption, environmental condition, etc. (Benjevic et al. 2001). Through condition 

monitoring, damage can be identified before failure occurs and unexpected shutdown of 

the entire system can be effectively prevented by taking preventive maintenance. 

Most existing work reported CBM policy only focuses on single unit maintenance. 

Replacement and other maintenance decisions are made independently on each 

component, based on the individual component‘s age, deterioration, condition monitoring 

data and CBM policy. However, during the past three decades, there has been a growing 

interest in the modeling and optimization of maintenance of systems that consist of 

multiple components. The advantages are obvious. First, more complex systems can be 

investigated at the same time based on the development on analytical techniques and the 

availability of fast computers. Secondly, interactions, like economic dependency, 

between components in a system can be taken into account when making maintenance 



3 

 

decisions. Economic dependency is common in most continuous operating systems, such 

as aircraft, ships, power plants, telecommunication systems, chemical processing 

facilities, and mass production lines (Cho and Parlar 1991). For these types of systems, 

the costs of system unavailability (e.g. onetime shut-downs) may be much higher than 

maintenance costs. Therefore, there is often great potential for cost savings by 

implementing preventive maintenance on multiple components.  

Recently several articles address the maintenance of multi-component systems. Cho et al. 

(1991) reported a survey of maintenance models for multi-unit systems from 1976 to 

1991, most of which used time-based model. The most basic time-based replacement 

policy for multi-component systems is group maintenance policy. Under this policy, 

some existing literature consider fixed groups of components, which is also known as 

block-replacement policy (Berg and Epstein 1976, Sheu 1991, Archibald and Dekker 

1996); while some consider indirect grouping policy to find optimal possible groupings 

(Dekker et al. 1997, Van Dijkhuizen 2000). The overview of multi-component 

maintenance models with economic dependence are summarized by Dekker et al. (1997), 

including stationary grouping models and dynamic grouping models. The downtime of a 

system or failure of a component is often an opportunity to combine preventive and 

corrective maintenance.  Berg (1977) proposed an opportunistic maintenance policy for a 

machine with two identical components. When the failed unit has to be replaced 

immediately at failure point, the second unit is also replaced by a new one if its age 

exceeds a predetermined control limit  . The opportunistic maintenance policy can be 

extended to a multi-level control-limit rule replacement policy, in which several 

thresholds are defined for performing inspections, preventive and corrective 
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replacements, and opportunistic maintenance (Zheng and Fard 1991, Van der Duyn 

Schouten and Vanneste 1993, Pham and Wang 2000, Gürler and Kaya 2002). Most of the 

existing multi-component maintenance models allow groupings of maintenance tasks, but 

fewer of them are proposed in context of condition-based maintenance. Castanier et al. 

(2005) consider a condition-based maintenance policy for a two-unit series system. The 

fixed-cost for inspecting or replacing a component is charged only once if the 

maintenance actions are taken on both components. Four thresholds for each component 

are defined for performing inspections, preventive and corrective replacements 

(individual/joint maintenance). Gupta (2006) analyze strategically optimal maintenance 

actions for an n-component system whose deterioration is observed through a CBM 

monitoring system and a simulation-based optimization heuristic is developed to obtain 

the critical threshold value in order to minimize the long-term maintenance cost. 

1.2 Research Motivations 

Every inspection or replacement entails a fixed cost and a component-specific unit cost, 

but if maintenance actions on more than one component are combined, the fixed cost is 

charged only once. Since the maintenance of systems has become more and more 

complex, it is sometime worthwhile to replace similar components simultaneously rather 

than individually. Replacement costs can be saved when several components are jointly 

maintained instead of separately, that is, economies of scale can be achieved. The 

motivation for investigating this method is to reduce unit fixed replacement costs, such as 

sending a maintenance team and equipment to the site, for both failure replacement and 

preventive replacement. Thus, by considering the fixed replacement cost, it would be 
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more economical to replace multiple components simultaneously instead of replacing one 

component at a time. 

1.3 Research Contributions 

A parametric CBM decision framework is proposed to coordinate failure/ preventive 

replacements on multiple components, and minimize long-run replacement cost of the 

system. The suggested methodology which allows evaluating the degradation of the 

multi-component system is based on an artificial neural network (ANN) method for 

predicting remaining useful life (RUL) which is proposed by Tian et al. (2009).  

A simulation model is first introduced by considering a non-repairable single component 

subjected to stochastic degradation. Then the simulation model is generalized to multiple 

identical components. The cost optimization procedure is performed to find the optimal 

degradation thresholds of maintenance decision policy. Simulation results imply that the 

proposed policy for multi-component systems is more economical than the policy that 

maintains the system units separately. 

A case study is conducted using real-world vibration monitoring data, which are collected 

from bearings on a group of Gould pumps at a Canadian kraft pulp mill company. This 

case study demonstrates the effectiveness of the proposed CBM policy for multi-

component systems. Besides, a set of simulated degradation data for multi-component 

systems is also used to demonstrate the proposed CBM policy. 

1.4 Thesis Organization 

The rest of this thesis is organized as follows: 
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In Chapter 2, we conduct a detailed literature review on existing maintenance methods 

for multi-component systems; brief introduction to CBM and ANN prediction models are 

also given. 

In Chapter 3, based on neural network health condition prediction, we propose a CBM 

optimization method for multi-component systems, where economic dependency exists 

among the components subject to condition monitoring. Details of the proposed CBM 

policy for multi-component systems will be discussed and a simulation method is used to 

obtain the decision variables of the proposed policy.  

In Chapter 4, we conduct a case study using real-world vibration monitoring data and use 

a set of simulated degradation data for multi-component systems to demonstrate the 

proposed CBM policy for multi-component systems.  

Finally, conclusions from our research and several direction of future work are presented 

in Chapter 5. 
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Chapter 2 

2  

Literature Review on CBM Optimization for Multi-component Systems 

and ANN RUL Prediction 

In this Chapter, before we review the existing maintenance methods for multi-component 

systems, brief introduction to CBM and ANN prediction models are given. 

2.1 Basic Concept and Applications of CBM 

In the past several decades, maintenance on deteriorating systems has been extensively 

investigated in the literature. When maintenance becomes more and more important, 

there is a growing interest in developing and implementing optimal maintenance 

strategies, leading to higher system reliability, lower maintenance costs and limited 

occurrence of unexpected system failures. 

2.1.1 Introduction of CBM 

Nearly 99% of machine failures are preceded by some indicators (Bloch and Geitner 

1983), which means most damage can be identified before failure occurs. Therefore, 

Condition-Based Maintenance (CBM) is an efficient maintenance approach for 

prioritizing and optimizing maintenance resources based on condition monitoring data. A 

well established and effective CBM program will prompt the maintenance personnel to 

perform necessary maintenance actions at the appropriated time, lower maintenance costs, 

reduce system downtime and minimize unexpected catastrophic failures. Also important 

from a psychological point of view, condition monitoring can reduce the uncertainty 
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about the current operation state of the plant by providing knowledge about the vibration 

levels of a certain critical component, such as a bearing or any other components. 

The use of condition monitoring techniques has increased rapidly since the 1990s. In 

order to achieve rising requirements for production performance, plants have increased 

cost and complexity, squeezed downtime which are required for routine maintenance 

(preventive replacement, inspection and adjustment). Condition monitoring is seen as the 

appropriate maintenance technique which can be used to balance maintenance cost and 

productivities. CBM can help a company save over 50-80 percent in maintenance costs 

and improve the profits of a plant by 20-60 percent (Rao 1996). Martin (1994) 

summarized the history of development and application of maintenance techniques and 

fault diagnosis of machine tools, from unplanned (breakdown) maintenance to planned 

maintenance, and the extension of this into condition based maintenance (CBM) and the 

necessity for condition monitoring. There have been lots of papers reviewing or 

providing overviews of the research on mechanical systems implementing CBM with an 

emphasis on models, algorithms and technologies in different fields of application (Nandi 

and Toliyat 1999, Wang et al. 2001, Wang et al. 2002, Saha 2003, Sabnavis et al. 2004). 

No matter what the objective of a CBM program is, a typical CBM program consists of 

three key steps (Lee et al. 2004): 

1. Data acquisition (information collecting), to obtain useful data from targeted 

physical assets. 

2. Data processing (information handling), to analyze the data collected from step 1. 
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3. Maintenance decision making, to develop efficient maintenance policies for 

purpose of CBM.  

Data 

Acquisition

Data 

Processing

Maintenance 

Decision 

Making  

Figure 1 Three steps of CBM program (Lee et al. 2004) 

The challenge for embedding condition monitoring techniques in decision models is to 

quantify the cost and the benefit from implementing a CBM policy; on the other hand, the 

limited availability of failure histories for monitored components makes more difficult to 

develop truly condition based maintenance. The costs of data collection need to be 

balanced against the expected gains as a result of operating a maintenance policy with 

near-optimum cost (Baker and Scarf 1995), and that is the reason why the first generation 

of CBM in the oil and gas industry has only focused on vibration in heavy rotating 

equipment. 

2.1.2 Diagnostics and prognostics approaches 

As shown in Figure 1, maintenance decision-making is the last step of a CBM program. 

Diagnostics and prognostics are two main techniques for maintenance decision support in 

a CBM program. Diagnostics aim at fault detection, isolation and identification when a 

failure occurs on a component. Prognostics aim at fault prediction before a failure occurs. 

In another word, diagnostics are posterior event analysis and prognostics are prior event 

analysis. A CBM program can be applied to perform diagnostics or prognostics, or both. 

Jardine et al. (2006) review the recent research on diagnostics and prognostics of 
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mechanical systems implementing CBM with an emphasis on models, algorithms and 

technologies for data processing and maintenance decision support. 

Maintenance 

Decision Making

Diagnostice

Prognostic

Expert systems(ESs)

RUL estimation

Statistical approaches

AI approaches

Model-based 

approaches

ANN approach

Others

 

Figure 2 Main techniques for maintenance decision support 

Form the definition of prognostics and diagnostics, it is obvious that prognostics is 

superior to diagnostics in the terms of prognostics can prevent unexpected faults or 

failures, and thus extra unplanned maintenance cost can be saved by preparing spare parts 

and planning human resources in advance. However, prognostics, like any other 

prediction techniques, cannot achieve 100% accuracy of faults and failures prediction, 

since there are always unpredictable faults and failures, so prognostics cannot completely 

replace diagnostics. In some practical cases, diagnostics can be a complementary tool for 

providing maintenance decision support (Wang and Sharp 2002). In addition, diagnostic 

information can be used as important feedback data for system redesign and helps to 

improve the accuracy of prognostics or to build better CBM model for prognostics by 

preparing more accurate event data. Similar to diagnosis, the approaches to prognosis 

also fall into three main categories: statistical approaches, artificial intelligent approaches 

and model-based approaches.  
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2.1.3 ANN approaches for diagnostic  

Artificial neural networks (ANNs) is one of the popular artificial intelligence (AI) 

techniques which have been increasingly applied to machine diagnosis and have shown 

better performance than other diagnostic approaches. Siddique et al. (2003) review recent 

developments in applications of AI techniques for induction machine stator fault 

diagnostics, including Expert Systems (ES), Artificial Neural Networks (ANN), Fuzzy 

Logic Systems (FLS) and Genetic Algorithm (GA). They also point out that ANN 

modeling techniques for fault diagnosis sometimes do not provide satisfactory results 

mainly because of the noise present in the signals, usage of an inaccurate feature set and 

the local convergence problem. But a multi-layer feed forward ANN can be trained with 

GA as a global search technique to overcome the problem. 

An ANN is a mathematical model that tries to approximate a complex relationship 

between inputs and outputs or to find patterns in data. Modern neural networks are non-

linear statistical data modeling tools. Their learning mechanism is modeled on the human 

brain‘s adjustments of its neural connections. An ANN model consists of a network of 

simple processing elements (neurons). Each processing element comprises a node and a 

weight. By adjusting its weights with observations of inputs and outputs, ANN learns the 

unknown function and this process is usually called the training of an ANN. Figure 3 

shows the two-layer perceptron structure of a neural network model. The inputs form the 

input nodes of the network; the outputs are taken from the output nodes. The middle layer 

of nodes is termed the hidden layer, and unlike the input and output layers, its size is not 

fixed. The algorithm and the functionality can be found in D. Michie‘s book (Michie et al. 

1994) 
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x:

Input vector

Input nodes

Hidden nodes

Output nodes

output vector

y (O):

y (H):

Weights w

(usually non-linear)

Weights w

(linear or non-linear)

 

Figure 3 Structure of neural network model (Michie et al. 1994) 

Artificial neural networks (ANNs) have also been considered to be very promising tools 

for predicting machine condition trends due to their adaptability, nonlinearity and 

arbitrary function approximation ability, and the details can be referred to session 2.2.  

2.1.4 RUL estimation 

RUL estimation is the major prediction types in machine prognostics. Remaining Useful 

Life (RUL), also called remaining service life, refers to the time left before a component 

and/or system of components experiencing a failure. The most widely used prognostics 

are used to predict the remaining useful life of a physical asset given the current machine 

condition and previous operation information. RUL can be defined as the conditional 

random variable (Jardine et al. 2006): 

   |              (2-1) 

where   denotes the random variable of time to failure,   is the current age and      is 

the condition profile from past to current time. In the literature, the term ―RUL estimation‖ 
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has two meanings. In some cases, it means finding the distribution of RUL; and in other 

some, it means the expectation of RUL, i.e., 

 [   |        ]      (2-2) 

Jardine et al. (2006) summarize current AI techniques applied to RUL estimation in their 

review, including the use of neural networks to estimate the residual life of a bearing 

system (Zhang and Ganesan 1997), and to predict the machine condition trend (Yam et al. 

2001). 

2.1.5 Optimal maintenance policies 

Maintenance aims to improve system availability and Mean Time Between Failures 

(MTBF), to reduce failure frequency and downtime. However, sometimes the 

maintenance required to achieve satisfactory system availability is very costly, so it is 

also necessary to consider how to reduce maintenance cost. Most research in maintenance 

involves the study of stochastic behavior of systems under various maintenance policies, 

in order to determine optimal system maintenance policies. The stochastic behavior of 

systems usually can be represented by system maintenance cost measures: maintenance 

cost per unit time, discounted cost rate, and the system reliability measures: availability, 

MTBF and failure frequency, etc. Generally, an optimal maintenance policy may have at 

least one or more of the objectives below (Wang 2002): 

i. Minimize system maintenance cost rate, 

ii. Maximize the system reliability measures, 

iii. Minimize system maintenance cost rate while the system reliability requirements 

are satisfied, 
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iv. Maximize the system reliability measures when the requirements for the system 

maintenance cost are satisfied. 

An optimal maintenance schedule may properly consider or incorporate various 

maintenance policies (like age replacement policy; block replacement policy; 

repair/failure limit; sequential), system configurations, shut-off rules, maintenance 

restoration degrees, correlated failures and repairs, failure dependence, economic 

dependence, non-negligible maintenance time, etc. In a series system there exists some 

shut-off rules. For example, while a failed component in a series system is in repair, all 

other components remain in ‗‗suspended animation‘‘ (they do not age and do not fail). 

After the repair is completed, the system is returned to operation. At that instant, the 

components in ‗‗suspended animation‘‘ are as good as they were when the system 

stopped operating (Barlow and Proshan 1975). Such a shut-off rule is practical and can be 

applied in other system configurations. Wang (2002) summarize a few shut-off rules and 

the following points are worthwhile to mention: 

i. Because components are building blocks for multi-component systems, it is 

necessary and worthwhile to develop effective methods for modeling reliability 

measures and maintenance cost rates of a single-unit system. Analysis of multi-

component systems will base on the developed methods for single-unit systems. 

ii. Most optimal maintenance models in the literature use the optimization criterion: 

minimizing the system maintenance cost rate but ignoring reliability performance. 

However, maintenance aims to improve system reliability performance. 

Therefore, the optimal maintenance policy must be based on not only the cost rate 

but also system reliability levels. It is important to note that for multi-component 
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systems, minimizing system maintenance cost rate may not imply maximizing 

system reliability measures. Sometimes when the maintenance cost rate is 

minimized the system reliability measures are so low that they are not acceptable 

in practice. This is because various components in the system may have different 

life-time distributions, different maintenance costs and different reliability 

importance in the system (Wang and Pham, 1997). Therefore, an optimal 

maintenance policy needs to consider both maintenance cost and reliability 

measures simultaneously to achieve the best operating performance. 

iii. The structure of a system must be considered to obtain optimal maintenance 

policy and optimal system reliability performance. For example, once a subsystem 

of a series system fails it is necessary to repair it at once. Otherwise, the system 

will have longer downtime and worse reliability performance. Meanwhile, when a 

subsystem of a parallel system fails, the system will still function even if the 

subsystem is not repaired immediately. In some practical case, repair of the 

subsystem can be delayed until it is time to perform preventive maintenance on 

the whole system by taking advantage of economic dependence; or when all 

subsystems have failed and thus the system fails, if the system failure during 

actual operation is not critical (Wang et al. 2001). 

2.2 ANN RUL Prediction Model 

Lots of existing literature proposed the ANN methods that utilized for component or 

equipment health condition prognostics and remaining life prediction. Lee et al. (2006) 

shows neural network methods are very intelligent prognostics tools for health condition 

prediction. A major application of ANN in the mechanical area is prediction of machine 
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deterioration, like health condition prognostics of gears (Tian and zuo 2009), RUL 

predictions for ball bearings (Huang et al. 2007). Gebraeel et al. (2004, 2008) proposed 

the ball bearing remaining life prediction methods using vibration-based degradation 

signals, the output of the ANN models was a condition monitoring measurement, such as 

overall vibration magnitude. 

Tian (2009) developed an artificial neural network (ANN) model based on Wu‘s method 

(Wu et al. 2007) and achieved a more accurate remaining useful life (RUL) prediction of 

equipment subject to condition monitoring. The prediction error is mainly improved by 

two aspects, one is reducing the effects of noise factors that are irrelevant to the 

equipment degradation, and another one is utilizing the validation mechanism in the 

ANN training process. Based on experiments by comparing the option of using two time 

points and using three time points, Tian et al. found that ANN using two time points is 

able to produces slightly more accurate prediction results and is more computationally 

efficient to calculate.  

Later, Tian et al. (2009) also developed a neural network approach for RUL prediction 

utilizing both failure histories and suspension histories. Failure history refers to failure 

replacement; it means the component is ended with failure. Suspension history refers to 

preventive replacement, meaning the component ended with suspension and was 

preventively replaced. The ANN model in this paper takes the age and the condition 

monitoring measurements values at the current and previous inspection point as input 

data while the life time percentage of the inspected component at the current inspection 

point is output data.  
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2.3 Maintenance for Multi-Component Systems 

Since the 1970s, there has been a growing interest in the modeling and optimization of 

maintenance of systems that consist of multiple components. The advantages are 

obviously. The developed analytical techniques and the availability of faster computers 

give promising to investigate more complex systems simultaneously. On the other hand, 

interactions between components in a system can be taken into account in maintenance 

decisions. In early maintenance literature, there are three types of interaction between 

components which are: economic dependence, structural dependence and stochastic 

dependence (Thomas 1986). That implies a multi-component system consist of several 

units of machines or many pieces of equipment, which may or may not depend on each 

other (Cho and Parlar 1991). Economic dependence implies that maintenance costs can 

be saved when several component are jointly maintained instead of separately, that is 

economies of scale can be obtained, in another point of view maintenance can be spread 

over time with simultaneous downtime of components. Structural dependence means if 

components structurally form a part, one failed component implies maintenance of other 

components as well. Stochastic dependence also referred to as failure interaction or 

probabilistic dependence, occurs when the state of a component influences the lifetime 

distribution of other components. Most multi-component maintenance models only 

consider economic dependence or structural dependence, since combining them makes 

the models too complicated to analyze. In this literature review, we will pay more 

attention to economic dependence because economic dependency is common in most 

continuous operating systems, such as aircraft, ships, power plants, telecommunication 

systems, chemical processing facilities, and mass production lines. For this type of 
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system, the cost of system unavailability (e.g. onetime shut-down) may be much higher 

than maintenance costs. Therefore, there is often a great potential for cost savings by 

implementing preventive maintenance on multiple components.  

Recently several articles address the maintenance of multi-component systems. Cho et al. 

(1991) reported a survey of maintenance models for multiunit systems from 1976 to 1991, 

most of which were time-based model. Dekker et al. (1996) gives a good overview of the 

multi-component maintenance models with economic dependence up to 1997, including 

stationary grouping models, where a long-term stable situation is assumed, and dynamic 

grouping models, which can take information into account that becomes available only in 

the short term. Wang H. (2002) gives a survey of maintenance policies of deteriorating 

systems. The maintenance policies for single component system are emphasized in this 

survey, but one section is devoted to opportunistic maintenance policies for multi-

component systems. Some optimal maintenance planning for systems consisting of 

components that interact to each other were summarized in Nocolai and Dekker (2006).  

Since the maintenance of systems has become more and more complex, it is sometime 

worthwhile to replace similar components simultaneous rather than singly. Replacement 

costs can be reduced when several components are jointly maintained instead of 

separately, that is economies of scales can be obtained. In the following section, we will 

review different multi-component system models based on different maintenance or 

replacement policies. 
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2.3.1 Group maintenance policy (block replacement) 

Group maintenance policy is the most basic multi-component time-based replacement 

policy. Earlier group maintenance only consider grouping corrective maintenance, that is, 

components are only correctively maintained and a failed component can be left in the 

failed state until its corrective maintenance is carried out jointly with other failed 

components. Grouping of corrective maintenance is applicable for systems in which some 

kind of redundancy is available. Maintenance policies of this type are motivated by the 

existence of economies of scale through simultaneous repair of a number of (identical) 

components. Although leaving components in a failed condition for an extended period 

can increase the risk of costly production losses, modern management methods make it 

possible to achieve satisfactory system reliability with lower redundancy. For more detail 

of grouping corrective maintenance see (Dekker et al. 1997). 

The main advantage of preventive maintenance is that its predictability. This is important 

when work preparation can conducted in advance, for example, new components can be 

ordered in time and enough maintenance crew are available at the planned maintenance 

execution times. Set-up cost can be saved by executing preventive maintenance 

simultaneously, and unexpected failures can be prevented. 

An important class of group maintenance policy is block replacement policy. Under this 

policy, a component is maintained or replaced preventively at fixed intervals, regardless 

of the events occurring within such an interval. In that case, the average costs      are 

equal to                    , where   is a block interval of length;      expresses 

the expected costs due to failures (minimal repairs and operating costs over the interval), 
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and   denotes the cost of preventive replacement. When this block replacement applied to 

a group of components while using the same interval, we have          

∑      
 
       for maintaining a group of   components preventively at a cost of    

each time. Sheu (1991) deals with a multiple components system considering minimal 

repairs and failure replacements within the interval. Notice that the block replacement 

policy allows the coordination of the replacement of components, but does not react to 

any event within the interval, such as failure replacement on one of the components. 

Archibald and Dekker (1996) extend the modified block-replacement policy (MBRP) 

from Berg and Epstein (1976) in two ways; 1) a discrete time framework which allows 

the use of any discrete lifetime distribution, and 2) multi-component systems. In MBRP, 

components are replaced immediately on failure, and preventive maintenance (PM) is 

performed at regular intervals. During PM every component whose age is greater than a 

fixed threshold age is replaced. Unlike many models for multi-component systems, this 

policy is structured. MBRP results in a lower average cost-rate by replacing components 

selectively during PM by comparing to the standard block-replacement policy (SBRP) 

even thought in both of them PM is performed at regular intervals and so can be planned 

in advance. They also find that compared to the age-replacement policy the MBRP is 

easier to compute and characterize for multi-component systems. 

Similar to block-replacement policies, there are other group maintenance policies for 

indirect grouping problems. While block-replacement policy considers a fixed group, 

indirect grouping policy consider the optimization over the possible groupings. This 

makes the problems more difficult, because of the combinatorial aspects that are 

involved. 
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In the standard indirect-grouping models: every   time units an occasion for preventive 

maintenance is created, and component   is preventively maintained at the integer 

multiple     of  . For example, if   equal to one month, and      ,      , then 

component 1 is preventively maintained every month, and component 2 every three 

months. After preventive maintenance a component is considered as good as new. So we 

get the total average costs      are equal to
 

 
 ∑

          

   

 
   , where the function       

denoting the expected cumulative deterioration costs of component   (due to failures, 

repairs, operating costs, etc.),   time units after its latest preventive maintenance; S is the 

set-up cost incurred each time an occasion for preventive maintenance is created, and    

is the extra cost of maintaining component   preventively on an occasion. Finding 

optimal values for   and    is a mixed continuous-integer programming problem and in 

general such problems are difficult to solve. However, since the      function is 

separable in the vector            , several fast (heuristic) solution methods can be 

developed (Dekker et al. 1997). 

An extension of the standard-indirect grouping problem is studied by Van Dijkhuizen 

(2000). The author attempts to build a maintenance model with a hierarchical set-up 

structure, so preventive maintenance can be clustered in a multiple set-up multi-

component system. Each component is maintained preventively at an integer multiple of 

a certain basic interval, and corrective maintenance is carried out in between whenever 

necessary. So, every component has its own maintenance frequency which is based on 

the optimal maintenance planning for single components. In this model, set-up activities 

may be combined when several components are maintained at the same time. The 
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difficulty is in finding the optimal maintenance frequencies that minimize the average 

cost per unit of time. 

The problem of establishing group maintenance policies, which are best from the view of 

the system‘s reliability or operational cost, has received significant attention in the 

maintenance literature. In Wang‘s (2002) opinion, there are three classes of problem for 

group maintenance. One class of problem has been to establish categories of units that 

should be replaced when a failure occurs. This is particularly important when there are 

varying access costs associated with disassembly and reassembly, and simultaneous PM 

of categories of parts may be more appropriate. A second class of group replacement 

studies has been concerned with reducing costs by including redundant parts into systems 

design. The third class of papers has been concerned with establishing group maintenance 

policies for systems of independently operating machines, all of which are subject to 

stochastic failures from the same distribution. In Popova and Wilson‘s studies (1999), 

there are three existing group maintenance policies for the third class of problems which 

are m-failure, T-age and (m,T) failure group policies for a system of identical components 

operating in parallel. They assume that downtime costs are incurred when failed 

components are not repaired or replaced. When the components are left in a failed 

condition, with the intention to group corrective maintenance, downtime costs are 

incurred. In the maintenance policies a trade-off between the downtime costs and the 

advantages of grouping (corrective) maintenance is made. 

 A T-age group replacement policy (Okumoto and Elsayed 1983), calls for a group 

replacement when the system is of age T. The m-failure policy (Assaf and Shanthikumar 

1987) calls for replacing the system after   failures have occurred.  The (m,T) failure 
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group policies (Ritchken and Wilson 1990) combine the advantages of the m-failure and 

T-age policies. This policy calls for a group replacement when the system reaches the age 

of T, or when   failures have occurred, whichever comes first. In the (m,T) policy, the 

failure times for each machine are considered as Weibull with cumulative distribution: 

                                          .   (2-3) 

  and   are the policy decision variables that can minimize the total expected cost which 

is given by:  

   
   

       
                    

    
 

which    is the fixed cost of inspecting the machines;       is the expected cost of 

servicing (during the time of operation);       is the expected replacement cost;       

is total expected downtime cost and      is expected time between successive renewals, 

that is,           {    } . The (m, T) group replacement policy requires inspection 

at either the fixed age T or the time when m machines have failed, whichever comes first. 

At an inspection, all failed units are replaced with new ones and all functioning units are 

serviced so that they become as good as new.  

Gertsbakh (1984) introduces a group maintenance policy in an   identical units system. 

Each unit has exponential lifetimes, and is repaired when the number of failed units 

reaches the prescribed number k, the policy decision variable. Vergin and Scriabin (1977) 

propose a (n,N) policy. Under this group maintenance policy, a unit undergoes preventive 

replacement if it has operated for N periods, and undergoes a group replacement if it has 

operated   periods and if either another unit fails or another unit reaches its preventive 

(2-4) 
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replacement age (where n < N). Sheu and Jhang (1997) propose a 2-phase group 

maintenance policy for a group of identical repairable units. The first phase is the time 

interval (0; T], and the second time phase is the time interval (T; T + W]. Individual units 

have two types of failures. Type I failures are removed by minimal repairs, whereas Type 

II failures are removed by replacements or are left idle. A group of maintenance is 

conducted at time T+ W or upon the kth idle, whichever comes first. The policy decision 

variables are T, W, and k. 

Many maintenance models consider the grouping of maintenance activities on a long-

term basis with an infinite horizon. Wildeman et al. (1997) propose a rolling-horizon 

approach that takes a long-term tentative plan as a basis for a subsequent adaptation 

according to information that becomes available on the short term, and it yields to a 

dynamic grouping policy. Costs are minimized since only one set-up is utilized in the 

execution of a group of activities. This policy makes it easy to incorporate with many 

preventive maintenance optimization models such as block replacement, inspection and 

efficiency models and age-replacement models.  

2.3.2 Opportunistic maintenance policy   

The downtime of a system or failure of a component is often an opportunity to combine 

preventive and corrective maintenance. Especially in the case of series systems, a single 

failure results in a breakdown of the system. Of course, non-failed components should 

not be replaced when they are in a good condition, because useful lifetime would be 

wasted. The condition of a multi-component system depends on the condition of each 

component. From the view of minimize maintenance cost, economies of scale are 
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incorporated when maintenance activities are combined. For example,   is a fixed cost 

that is incurred for any maintenance operation (preventive, corrective or combined), 

while       are additionally individual cost incurred when component   is subject to 

preventive or corrective maintenance. We assume that all repairs are supposed to be 

instantaneous and to result in components which are as good as new. When a corrective 

maintenance action on component   is combined with preventive maintenance of 

component  , the associated costs equal to        , which is   cheaper than in the 

case of separate actions. The maintenance policies proposed in the articles discussed 

below use the opportunistic maintenance policy. 

Berg (1976, 1977, 1978), suggests a preventive replacement policy for a machine with 

two identical components which are subject to exponential lifetime distribution. Failure 

of either of the units causes a failure of the machine and the failed unit has to be replaced 

immediately. Under this policy, at failure point, the second unit is also replaced by a new 

one if its age exceeds a predetermined control limit  . Later, Berg (1978) extends it to a 

trigger-off policy: both units are replaced in one of the following circumstance:  

I. When one of the two units fails and the age of the other unit exceeds the critical 

control limit L, both units are replaced; 

II. When any of them reaches a predetermined critical age S, both units are replaced.  

One unit is replaced at age T or at failure, whichever occurs first. Control limits L and 

critical ages S are the policy parameters to minimize the total expected costs per unit time 

in the long run.  
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Van der Duyn Schouten et al. (1998) investigate a maintenance solution for replacing 

light bulbs in traffic control signals. Each installation consists of three compartments for 

the green, red, and yellow lights. Maintenance action for light bulbs means replacement, 

either correctively or preventively. First, economic dependence is present in the form of 

set-up cost, because each replacement action requires a fixed cost in the form of 

transportation of manpower and equipment. Second, the failure of individual bulbs is an 

opportunity for doing preventive maintenance on other bulbs, thus can be saved fixed 

costs. The authors apply two types of maintenance policies in this article. In the first 

policy, also known as the standard indirect-grouping strategy (introduced in maintenance 

by Goyal and Kusy 1985), corrective and preventive replacements are strictly separated. 

Economies of scale are achieved by combining preventive replacements on various 

classes of bulbs. The second policy type is opportunistic age-based grouping policy. 

Upon failure of a light bulb, the failed bulbs and all other bulbs older than a certain age 

are replaced. 

Another extension application of opportunistic maintenance policy is in k-out-of-n 

system. If      , then it is a parallel system; if      , then it is a series system. One 

problem of optimizing (age-based) maintenance in k-out-of-n systems is to determine 

downtime costs when a failure of a component does not directly result in system failure. 

Smith and Dekker (1997) derive the uptime, downtime and costs of maintenance in a 1-

out-of-n system with cold standby, which means that the redundant machines cannot fail 

while they are waiting and failed units can be replaced by spare units in order to reduce 

the system downtime. But in general it is very difficult to assess the availability and the 

downtime costs of a k-out-of-n system. In this article, the authors optimize the following 
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age-based replacement policy. A machine is taken out for preventive maintenance and 

replaced by a standby one, if its age has reached a certain value,    . The maximum 

long-term economy can be obtained by determining the value     and the number of 

redundant components needed in the system. 

Also consider in a k-out-of-n system, the opportunistic maintenance policies proposed in 

the following article is age-based and also contain a threshold for the number of failures. 

A modified strategy of maintenance the light-standards is studied in Dekker et al. (1998). 

A light standard consists of   independent and identical lamps screwed on a lamp 

assembly. The lamps are subject to stochastic failures and are replaced if the number of 

failed lamps reaches a pre-specified number   in order to achieve a minimum luminance. 

That means the replacement of a failed lamp can be postponed till the number of failed 

lamps reaches a certain number at which the luminance becomes unacceptably low. The 

set-up activity is an opportunity to combine corrective and preventive maintenance. In 

this paper, several opportunistic age-based variants of the m-failure group replacement 

policy are considered and in particular, an age-criterion to indicate which non-failed 

lamps should be preventively replaced at the same time. A simulation optimization is 

used to determine the optimal opportunistic age threshold. 

2.3.3 Multi-level control-limit rule replacement policy 

This kind of maintenance policy is actually an extension of opportunistic maintenance 

policy. In multi-level control-limit rule replacement policy several thresholds are defined 

for doing inspections, preventive and corrective replacements, and opportunistic 

maintenance. These thresholds are maintenance decision variables. Most articles on this 



28 

 

type of models only consider single components, when few articles apply this model on 

multi-component systems.  

L

L-u

t
minimal repair

failure or passive replacement

active replacement

 

Figure 4 Replacement and repair interval as function of hazard rate (Zheng & Fard 1991) 

Zheng and Fard (1991) examine an opportunistic hazard rate replacement policy based on 

failure rate tolerance for a repairable system with several types of units. A unit is subject 

to minimal repair at failure when the hazard rate falls in interval          , see figure 4. 

A unit is replaced by a new one either when the hazard rate reaches   or at failure with 

the failure rate in a predetermined interval    –      . An operating unit is replaced when 

its hazard rate reaches  . When a unit is replaced due to the hazard rate reaching  , all 

operating units with their hazard rates falling in           are replaced at the same 

time. Optimal   and   are obtained to minimize the total maintenance cost rate. Later, 

Zheng (1995) develops an all opportunity-triggered replacement policy for a non-

repairable system with   identical units. In this policy, both failure replacement and 

active replacement create the opportunities to replace other units preventively. A unit is 

replaced at failure or when the age of a unit exceeds  , whichever occurs first. When a 

unit is replaced, all the operating units with their age in the interval         are 
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replaced simultaneously. Optimal   and   are obtained to minimize the mean total 

replacement cost rate. 

Pham and Wang (2000) introduce optimal        opportunistic maintenance of a k-out-

of-n system with imperfect PM and partial failure. It is a two-stage opportunistic 

maintenance policy for the system and in the first stage only minimal repairs are 

performed on failed components before time  . During time   to time  , the corrective 

maintenance (CM) of all failed components are combined with PM of all functioning but 

deteriorated components when   components have failed; if the system survives to time 

  without perfect maintenance, it will be subject to PM at time   (see figure 5). 

Application to aircraft engine maintenance is presented as an example in this article. 

Based on this policy, Wang et al. (2001) investigate opportunistic preparedness 

maintenance of multi-unit systems with (    ) subsystems considering imperfect 

maintenance and economic dependency. 

No PM

0 T

CM with PM

m comp failed

PM

 

Figure 5        opportunistic maintenance policy (Pham and Wang 2000) 

Lots of articles in the maintenance field reveal that the detailed age information on 

component level should be used in making maintenance decisions. Gürler and Kaya 

(2002) propose an opportunistic maintenance policy for a series system with identical 

items, which is an extension work by Van der Duyn Schouten and Vanneste (1993). In 

their model, the lifetime stature of the components is described by several stages, which 
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are classified as good, doubtful, preventive maintenance (PM) due and failed. The 

proposed policy is of the control-limit type. Components which are PM due or failed are 

preventively or correctively replaced immediately. The entire system is replaced when a 

component is PM due or failed and the number of components in doubtful states is at 

least N. Here, N is a policy decision variable that achieves significant savings in this 

policy.  

2.3.4 CBM optimization method for multi-component maintenance 

In condition-based maintenance, the maintaining decision is taken based on the observed 

condition of the system. Cost and other system resource can be saved by taking 

preventive maintenance only when necessary. So far, most published research on 

condition based maintenance deals with simple one-unit systems, fewer of them subject 

to multi-component systems. 

Fran Barbera et al. (1999) built a condition based maintenance model with exponential 

failures and fixed inspection intervals for a two-unit system in series, which introduced in 

Ozekici (1988) first, in order to minimize the long-run average cost of maintenance 

actions and failures. For identical unit, Fran‘s policy can be simplified and summarized 

as follows: 

 Decision A: Repair only Unit 1 when                    ;   

 Decision B: Repair only Unit 2 when                    ; 

 Decision C: Overhaul the system when                              

    ; 

 Decision D: Do nothing otherwise. 
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            is the state (condition) of unit   at the end of period  . So     is assumed as 

an initial state value of unit   and      .               is the optimal numerical 

solution to the dynamic programming equation which is the minimum cumulative cost. 

The optimum cumulative future cost from period   on is denoted as            , and is 

equal to the minimum of the cost of period   plus the optimum cumulative future cost at 

period                               . 

                    
                                  

     
   

                         (2-5) 

where     

0  if no maintenance action is initiated on unit   

1  if a maintenance action is initiated on unit   

and    
      [       ]  .      

     
   is the conditional expected cost of failure at 

the end of period t. 

Barata et al. (2002) investigate the use of Monte Carlo (MC) simulation for modeling 

continuously monitored deterioration systems and finding the optimal degradation 

threshold of ‗on condition‘ maintenance strategy that minimizes the expected total system 

cost over a given mission time by a direct search. A non-repairable single component 

subjected to stochastic degradation was first considered in this paper and then the 

degradation model was generalized to multi-component repairable systems. As a result of 

that, a two-component series system has a higher total expected cost than one-component 

repairable system due to the greater degradation rate of the second component which 

leads to more preventive maintenance actions, failures and replacements. 
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Marseguerra et al. (2002) proposed an approach which combined the Monte Carlo 

simulation method, for a more realistic modeling of the degradation process, and Genetic 

Algorithms (GAs), for searching the optimal thresholds (a degradation level) which can 

simultaneously optimizing two typical objectives of interest, profit and availability. 

The objective function of the maintenance optimization model usually consists of a fixed-

cost (the set-up cost) and variable cost. Castanier et al. (2005) consider a condition-based 

maintenance policy for a two-unit series system. The fixed-cost for inspecting or 

replacing a component is charged only once if the maintenance actions are taken on both 

components. That means joint maintenance of two components saves costs. In this article 

the condition of the components is modeled by a stochastic process and it is monitored by 

non-periodic inspection. Four thresholds for each component are defined for doing 

inspections, preventive and corrective replacements (individual/joint maintenance). A 

cost model based on the long-term average operating cost per unit of time is proposed to 

optimize the performance of the multi-threshold policy. The cumulative operating cost up 

to time   is: 

              ∑     
       

 

   

∑     
      

 

   

                 

where:  

          is the cumulative cost associated with the system inspections on a 

horizon of length  ;  

(2-6) 
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 ∑      
       

    is the cumulative cost associated with the preventive replacements 

of the component   independently on the operation performed on the component   

(i.e. it includes the cumulative set-up costs); 

 ∑      
       

    is the cumulative cost associated with the corrective replacements 

of the component   independently on the operation performed on the component   

(i.e. it includes the cumulative set-up costs); 

    is set-up cost and        is the total number of complete system replacements 

performed between 0 and  ; 

        is the cumulative cost incurred by the time elapsed by the system in the 

failed state (i.e. when at least one component has failed). 

So the long-run average operating cost per unit time is defined as:          
       

 
. 

Gupta (2006) aims to analyze strategically optimal maintenance actions for an n-

component system whose deterioration is observed through a monitoring system set in 

place to support CBM. Deterioration of a multi-component system is modeled by a 

continuous-time jump diffusion model which incorporates interaction between the 

components of the system. Under this policy, A decision maker can create an option to 

maintain a system and/or its components if the deterioration of the system and/or its 

components exceeds a critical threshold level,    
    or    

 , respectively,   {       }. 

A component fails if its deterioration level exceeds the maximum deterioration level: 

   
      

    {       } . The whole system fails when    
        

   . A 

simulation-based optimization heuristic is developed to obtain the critical threshold value 

in order to minimize the long-term maintenance cost. 
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Zhou et al. (2006) introduce a condition-based predictive maintenance (CBPM) model for 

continuously monitored multi-unit series system. First, they applied CBPM model for a 

single-unit: PM is performed whenever the reliability of unit   reaches the threshold  . 

Then by introducing the ―set-up cost‖ concept, a dynamic opportunistic maintenance 

(OM) policy for multi-unit system was developed. The substance of the OM policy is to 

determine the optimal combination   of the   component system by maximizing the cost 

saving. For example, in a three-unit system, there are four possible combination 

candidates. If    is {(1, 2), 3}, it means when unit 1 reaches its reliability threshold, only 

unit 2 is performed a PM action together with unit 1. 

Tian and Liao (2010) investigate a multi-component system CBM policy based on 

proportional hazards model (PHM), where economic dependency exists among different 

components subject to condition monitoring. The fixed preventive replacement cost only 

incurred once when multiple components preventively replace simultaneously. In their 

proposed policy, component   is preventively replaced if        , where  is a 

constant,    is the hazard value of component  . A preventive replacement on one 

component offers the opportunity to combine preventive maintenance on other 

components. So if preventive replacement is performed on any component in the system, 

perform preventive replacement on component   if        ,                 are 

the level-1 and level-2 on condition risk threshold and which are the PHM based CBM 

policy decision variables to minimize the long-term expected replacement cost. 
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Chapter 3 

3 CBM Optimization for Multi-Component Systems Based on ANN 

RUL Prediction 

Condition-based maintenance optimization is a process that attempts to balance the 

maintenance requirements (cost, system reliability, etc.) and the maintenance resources 

(manpower, equipment, facilities, etc.), based on the condition monitoring data. The 

objective of this process is to select the appropriate maintenance strategy for the multi-

component systems and identifying the optimum time for replacement of components 

before failure in order to achieve high system reliability and low replacement costs. The 

maintenance optimization process will effectively improve system reliability and reduce 

overall maintenance costs.  

The optimal CBM policy for multi-component systems directs the maintenance actions 

using the information collected through condition monitoring. In this Chapter, we 

illustrate the methodology of CBM Optimization for Multi-Component Systems based on 

ANN health condition prediction. A simulation method for cost evaluation will be 

illustrated and we will see how the optimal CBM policy can achieve a lower maintenance 

cost. 

Deterioration of multi-component systems in this paper is represented by a condition 

failure probability value. The CBM policy we proposed is defined by a two-level failure 

probability thresholds and simulation optimization is used to determine the failure 

probability thresholds. Systems consisting of multiple identical components are referred 
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to multi-component systems when we consider there will be economic dependency 

existence among the components. 

 

Notations: 

     Parameters of the normal distribution; 

     Parameters of the weibull distribution; 

   
    Level 1 failure probability threshold; 

   
    Level 2 failure probability threshold; 

     The cost of performing a failure replacement; 

     The variable cost of performing a preventive replacement; 

       The fixed cost of performing a preventive replacement; 

   The number of components in the multi-component systems; 

   The constant inspection interval; 

    Total expected replacement cost per unit time; 

     Predicted failure time of component  ; 

     Actual failure time of component  ; 
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3.1 The methodology of CBM policy 

Regarding the multi-component systems under discussion, we make several assumptions 

as follows: 

 The components in the system are identical, and are independent in their 

degradation and failure process. 

 The components in the system are economically dependent. That means, a fixed 

preventive replacement cost, denoted by    , is incurred when preventive 

replacement takes place on any component. If preventive replacement is 

performed on multiple components simultaneously, the fixed preventive cost is 

incurred only once. 

 Inspection points of the monitoring system are discrete and equally spaced, that is, 

between each inspection point, there is a fixed interval. 

 The condition of the component is monitored and predicted continuously. Each 

preventive or failure replacement will always restore the component to an ―as 

good as new‖ condition. 

 The costs of failure replacement are much higher than those associated with 

preventive replacement since an unexpected failure may cause unnecessary 

delays, long downtime of the system or damage to other equipment. 

In our research work, the predicted failure time distribution can be obtained by ANN 

health prediction model at each inspection point, and the degradation of a component is 

denoted by   , which is the condition failure probability from current to the next 

inspection time. By performing CBM optimization, an optimal threshold failure 
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probability value can be obtained, which is denoted by    . At each inspection point,     

is a threshold value that helps to make maintenance decisions on each component 

whether it should be replaced (preventive replacement or failure replacement) or should 

continue its normal operation.  

As pointed out in Chapter 2, maintenance of multi-component systems differs from that 

of single unit system because (economic/ structural/ stochastic) dependency exists. 

Therefore, when considering economic dependency among the components, if certain 

criteria we set are met, performing preventive replacements for multiple components 

simultaneously can significantly reduce the overall long-run replacement cost. In the 

following section, we illustrate the methodology of CBM optimization for both single 

unit and multi-component systems. 

The CBM policy for single unit 

The CBM policy for single unit based on ANN RUL prediction method is summarized as 

follows: 

1) Inspect a component which is subjected to condition-based monitoring in a fixed 

interval. At each inspection time, calculate the predicted failure probability    of 

the component based on ANN RUL prediction method. 

2) When a component‘s    exceeds the threshold value    , preventively replace 

the component. Otherwise, the operation can continue. 

3) When a component fails, perform failure replacement. 

Thus, the CBM policy for single unit is defined by the failure probability threshold value, 

denoted by    , there is only one decision variable in the single unit CBM policy. 
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The proposed CBM policy for multi-component systems 

In multi-component systems,    is used to determine not only when and also which 

components should be preventively replaced at each inspection time. The ANN RUL 

prediction based CBM policy for multi-component systems are proposed as below: 

1) Inspect these components which subjected to condition-based monitoring in a 

fixed interval. Calculate the predictive failure probability of each component at 

each inspection time based on ANN RUL prediction method. 

2) When a component‘s predicted failure probability    exceeds the level-1 

threshold value    
 , preventively replace the component.  

3) When a component fails, perform failure replacement. 

4) When there is a preventive replacement or a failure replacement performed on any 

component in the system, simultaneously replace other components if their    

values exceed the level-2 threshold value    
 . 

At each inspection time, one of the following events takes place exclusively for each 

component  :  

1. Component   reaches    
     a preventive replacement is performed on  . 

2. Component   reaches    
  if there is a failure replacement or a preventive 

replacement that needs to be performed on one of the components in the multi-

component systems   preventively replace component   simultaneously. 

3. Component   fails   a failure replacement is performed, the component is 

replaced by a new one. 

4. None of the above   component   continues its normal operation. 
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3.2 Calculation of predictive failure probability 

The predictive failure probability is decision variable in our proposed CBM policy. 

Calculation of this value is based on a predicted Remaining Useful Lifetime (RUL) of a 

component using ANN prognostic approach. Therefore, the predicted accuracy will 

influence the feasibility of the CBM policy. Support vector machines (SVMs) are another 

promising machine learning tools, which are widely used in statistical classification and 

regression analysis. In our research, we compared the predicted accuracy between ANN 

and SVMs, and the comparative results are shown in table 1. 

Table 1 The RUL prediction result 

  
Mean Prediction Errors 

(%) 
Standard Deviation of 

Errors (%) 

SVMs approach for RUL prediction 38.5% 43.4% 

ANN approach for RUL prediction  13.8%  14.3% 

 

Although some research show that SVMs have great learning performance and 

generalization ability in failure prognosis (Khawaja and Vachtsevanos 2009, Saha et al. 

2009), it still has its limitation and is unsuitable for long-term predictions in some case. 

Based on our experience, ANN approach for RUL prediction achieves a more accuracy 

and is more adaptive in our case. Tian‘s ANN prediction model (2009) is used in this 

research, and the output of this model is a predicted failure time or a RUL of a 

component which subject to condition monitoring. Although there is only one output, the 

uncertainties associated with the predicted failure time still exist, which we called the 

ANN life percentage prediction errors.  We obtain these errors during the ANN training 

and testing processes and use them to construct the predicted failure time distribution.  
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As shown in Figure 6, during the ANN training process, both failure histories and 

suspension histories are used for training the ANN model. The inputs include the 

component‘s age data and two condition monitoring measurements at the current and 

previous inspection point. The output of the ANN training model is the life percentage of 

the inspected component in the current inspection time. The ANN training process is 

actually a process of searching minimum training error which corresponding to an 

optimal training model that would be used in the testing process in the next step. 

Different weights and bias are adjusted to minimize the training error which denoted by 

the difference between predicted life percentage and the actual life percentage. The best 

performing ANN training model which has the minimum training error is used for ANN 

testing. Therefore, the ANN prediction error is defined as the difference between the 

ANN predicted value and the actual life percentage value at any inspection point in the 

test histories. For example, the age of the component at a certain inspection point is 400 

days and the ANN predictive life percentage value is 78.3%, that means the predicted 

failure time is 400/78.3% = 511 days. The actual failure time of the component is 540 

days. As a result, the ANN prediction error is |
       

   
|            . Since there 

are many inspection points in each test histories (both failure and suspension histories), a 

set of ANN life percentage prediction errors can be obtained by using several inspection 

histories for ANN testing. 
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Figure 6 Structure of the ANN model for RUL prediction 

After analyzing these ANN prediction errors, we assume that these values follow a 

normal distribution        
  , and we can estimate the mean  𝑝 and standard deviation 

 𝑝. Assuming that the ANN life predicted percentage is    at the inspection point  , so 

the mean of the predicted life percentage is        , and the standard deviation is  𝑝, if 

  also represents the current age of the component, then the mean predicted life time is 

         , and the corresponding standard deviation is  𝑝         𝑝 . So we can 

conclude that the predicted life time/ failure time   𝑝 follows the normal distribution: 

       
 

     
 (

    

     
)
 

     (3-1) 

Thus, we consider the same circumstance in a multi-component system. For example, we 

suppose there are 3 components under condition monitoring, all of their predictive 

lifetime distribution follow normal distribution (3-1) (see Figure 7), the distribution mean, 
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    𝑝
, is predicted failure time of each component and   

 𝑝  

    𝑝
 is the time 

prediction error standard deviation.  

 

Figure 7 Calculation of failure probability for 3 components 

The conditional failure probability during the next inspection time can be calculated 

through the following equation: 

    
∫

 

 √  
             

  
    

  

∫
 

 √  
             

  
 

  

 

where    is the inspection time of component  ,    is the constant inspection interval,   is 

the predicted failure time using ANN RUL prediction, and    is the time prediction error 

standard deviation. As showed in figure 7, the failure probability according to each 

component during the next inspection interval is equal to the area of shadow region 
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divided by the right side area starting from the current inspection point of time.    

indicate the probability that a component operates with a fail until next inspection 

interval. 

3.3 CBM Optimization model 

   
  and    

  are the decision variables in our proposed CBM policy for multi-component 

systems. By setting these two variables in different values, we can obtain different 

maintenance strategies and different corresponding expected replacement cost. The 

objective of the CBM optimization is to identify the most optimum time for replacement 

of components before failure in order to minimize the long-run expected replacement cost. 

In another word, the optimal failure probability thresholds indicate when and which 

component we perform failure/ preventive replacement can achieve the minimum long-

run expected replacement cost. The optimization model can be formulated as below: 

         
     

                                                  (3-3) 

     

            
     

     

where    is the cost constraint value     
  and    

  are Level-1 and Level-2 failure 

probability threshold values and also are the policy decision variables. 

3.4 Simulation method for cost evaluation 

In our research, a simulation method is used to model a real-life situation in Matlab to 

calculate total expected replacement costs. By changing two level conditional failure 
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probability thresholds,    
  and    

 , we can obtain different expected replacement costs 

results. After the simulation process, we can determine the optimal condition failure 

probability threshold value which corresponds to the minimum expected replacement cost. 

At the beginning of this section, we will explain the simulation method of cost evaluation 

for single component. Then, following the same rule, a simulation method used for cost 

estimation for multi-component systems will be further described. 

3.4.1 Simulation method for single unit component 

The procedure of the simulation method for one component is given as follows. 

 

Figure 8 The procedure of simulation for calculating Pr 

 



46 

 

Step 1: Define the maximum simulation iteration. 

Set the maximum simulation iteration   , for example, 100,000 inspection points. It 

means we start from inspection point 0 and end with inspection points 100,000. Between 

each inspection point, there is a fixed inspection interval  , like 20 days. In general, the 

more iteration we set, the more accurate the simulation result can be achieved. 

Step 2: Generate a random failure time as the actual failure time of a component.  

Weibull analysis is a promising method of analyzing and predicting failures and 

malfunctions of all type (Jardine and Tsang 2006). In general, distribution of data on 

product life time can be modeled by a Weibull function with distribution parameters    .   

     
 

 
 
 

 
       [ (

 

 
)
 

]                  

Thus, the lifetime distribution of a component can be obtained with the available failure 

and suspension histories subject to condition monitoring. The maximum likelihood 

method bellow can help us to estimate the lifetime distribution parameters        . 

  ∏        

  

   

 ∏    
     

  

   

 

The first part of the likelihood function is the probability density function of the 

distribution of the exact failure data. The second part is the reliability function 

distribution of the suspension data.   and    are the total numbers of failure and suspension 

histories;   is the parameters need to be estimated. In order to simplify the calculation 

process, we take logarithm on both side of equation (3-5). In our case, Matlab 

(3-4) 

(3-5) 
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optimization function is performed to find the optimal parameters which can maximize 

the objective function    . Details of how to using the maximum likelihood function is 

given in Chapter 4. 

After a component was replaced (failure / preventively) by a new one, a new life cycle 

begins. At the starting point of a new cycle, we generate a random failure time,   , of the 

component which follows Weibull distribution (3-4) with the parameters    . See Figure 

8, label 1. The value of    is defined as the actual lift time of the component in our case. 

Step 3: Generate a random predicted failure time of a component.  

We supposed the objective component was under condition monitoring and regularly 

inspect. In inspection point             , generate a predicted failure time,   , of 

the component by random, based on ANN RUL prediction error (See Figure 8, label 2). 

This predicted lifetime distribution follows normal distribution: 

                (3-6) 

By considering there is a prediction error exist, in our case:     ,        ,    is 

standard deviation of ANN RUL prediction error. 

Step 4: calculation of predicted failure probability.  

During a lifetime of the component, calculate predicted failure probability    in each 

inspection point by using equation below (see figure 8, label 3):  

    
∫

 

 √  
         

     
  

   

 

∫
 

 √  
         

     
  

 

 

                    

(3-7) 



48 

 

Where   is the inspection time in one life circle at inspection point  ,    is the constant 

inspection interval, and        ,    is standard deviation of ANN RUL prediction 

error. 

If     is greater than the failure probability threshold   
 , preventively replace the 

component at inspection point  . When   exceeds    and there is no preventive 

replacement performs during the lifetime of a component, perform failure replacement at 

the inspection point just behind the generated failure time   . 

In order to calculate the total replacement cost, we introduce two variables to represent 

the stature of a component: 

     
1   The component is preventively replaced at the point of time  ; 

0   No preventive replacement on the component at the point of time  . 

     
1   The component fails and is replaced by a new one at the point of time  ; 

0   No failure replacement on the component at the point of time   

If              , the component continues its normal operation. 

Step 5: New life cycle start.  

Start a new life cycle of the component after a preventive replacement or a failure 

replacement took place, back to Step 2. The iteration would not stop until maximum 

simulation inspection point is reached. 

Step 6: Estimate total expected replacement cost.  

After the maximum simulation inspection point is reached, we can calculate the total  
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expected replacement cost by the following formula:  

   
          

          
 

∑ (                   )
  
   

    
        

where     and    are the fixed and variable cost of preventive replacement that occur in 

inspection point  ,    is the failure replacement cost.    is the total inspection point in 

the simulation process,   is the inspection interval.  

Step 7: Determine the optimal CBM policy. 

The predicted failure probability threshold is decision variable in the single unit CBM 

policy. The minimum calculated cost corresponding to the optimal predicted failure 

probability threshold value   
 . So once   

  is determined, the optimal CBM policy is 

determined and the optimization model as follow can be satisfied. 

        
                              

                                 (3-9) 

3.4.2 The proposed CBM policy cost evaluation 

We assume that there are   components in the multi-component systems. The procedure 

of the simulation method for CBM policy cost evaluation is shown in Figure 9, and is 

discussed in details as follows:  

Step 1: Define the maximum simulation iteration. 

Set the maximum simulation iteration   , for example, 100,000 inspection points. It 

means we start from inspection point 0 and end with inspection points 100,000. Between 

each inspection point, there is a fixed inspection interval  , like 20 days. 

(3-8) 
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Generate a lifetime (failure time) Fti 

for component i.

Set the maximum simulation 

iteration. Kmax=100,000 

Calculate Pri for each 

component i

Pri>Pr1 ?

Replaced component i

Calculate Prj for other 

component j in the system

Prj>Pr2 ?

Replaced component i and 

preventively replaced component j

`

Yes

Yes

No

`

`

`

Generate a predicted failure time PTi 

base on FTi and ANN prediction 

error.

k=k+1

New component?

Yes

No

(RUL)i<0?

No

Yes

Calculate the total expected 

replacement cost C

k<=Kmax?
Yes

`
No

No

 

Figure 9 The procedure of the simulation method for cost evaluation in multi-component 

system 
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Step 2: Generate a random failure time as the actual failure time of each component.  

At the starting point of a new life cycle of component  , generate a random failure time, 

   , which follows Weibull distribution (3-4) with the parameters    .  

Step 3: Generate a random predicted failure time of a component. 

In inspection point             , generate a random predicted failure time for 

component   based on ANN RUL prediction error. In a simulation process, this random 

predicted failure time simulate the predicted result based on ANN model using condition 

monitoring data at each inspection time. The predicted lifetime is denoted by      and 

follows normal distribution: 

                    (                )  (3-10) 

where      ,         ,    is standard deviation of ANN RUL prediction error. 

Step 4: calculation of predicted failure probability. 

During a lifetime of component  , calculate conditional failure probability     
 in each 

inspection point by using equation below:  

    
 

∫
 

 √  
             

  
    

  

∫
 

 √  
             

  
 

  

                       

Where    is cumulated inspection time of component   in one life cycle,    is the constant 

inspection interval,   is the predicted failure time of different component at different 

inspection point of time     , and         ,    is standard deviation of ANN RUL 

prediction error. 

(3-11) 
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If      is greater than the level-1 condition failure probability threshold    
 , preventively 

replace the component at inspection point  . If there is no preventive replacement 

performs during a lifetime of the component  , perform failure replacement at the 

inspection point just past the generated failure time    . When there is a preventive 

replacement or a failure replace took place at inspection time  , check other components 

in the system, if                is greater than the level-2 failure probability 

threshold    
  , perform preventive replacement on component   simultaneously. 

We also introduce two variables to represent the stature of the component   in the multi-

component systems: 

      
1    Component   is preventively replace at the point of time  ; 

0    No preventive replacement on component   at the point of time  . 

      
1    Component   is preventively replace at the point of time  ; 

0    No failure replacement on component   at the point of time  . 

If                , the component   continues its normal operation. 

Step 5: New life cycle starts.  

Start a new life cycle of component   after a preventive or a failure replacement takes 

place, back to Step 2 and set the cumulated inspection time,    , equals to 0. The iteration 

would not stop until maximum simulation iteration is reached. 

Step 6: Estimate total expected replacement cost.  

Similar to cost calculation method for single component, the expected replacement cost  

for multi-component system can be obtained by the following equation:  

(3-12) 
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where    is the total cost occurs at inspection point   which calculated by formula (3-13), 

   is the total inspection point of the simulation process, and   is the inspection interval.  

      ∑    

 

   

    ∑    

 

   

             

where  (    )   , when ∑     
 
        ∑     

 
     ; otherwise  (    )   .   is 

number of components under condition monitoring,     is fixed preventive replacement 

cost and    is variable preventive replacement cost,    is failure replacement cost at a 

time. 

At inspection point  ,    can be in one of three possible circumstances as follows: 

1)                   , there is at least one preventive replacement 

needed but no failure replacement; 

2)                           , there are at least one failure 

replacement and   preventive replacement perform; 

3)     , there is neither preventive replacement nor failure replacement needed. 

Step 7: Determine the optimal CBM policy for multi-component systems. 

Similar to the single unit CBM policy, the two level predicted failure probability are 

decision variables in the CBM policy for multi-component systems. The minimum 

calculated replacement cost corresponding to the predicted failure probability threshold 

(3-13) 
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value    
  and    

 . So once    
  and    

  are determined, the optimal CBM policy is 

determined and the optimization model (3-3) can be satisfied. 

3.5 Implementation of the Optimal CBM Policy for Multi-component 

System 

The optimal CBM policy is determined once the level-1 and level-2 predicted failure 

probability thresholds are determined, and the maintenance policy can be implemented as 

follows: 

1. Define a multi-component system and determine the total number of components 

in such a system. The components in the system are identical, and are independent 

in their degradation and failure process.  

2. Obtain the significant condition monitoring data like oil analysis data or vibration 

data, at each inspection point, and between each inspection time there is a 

constant interval  . 

3. For component  , at each inspection point  , predict a lifetime percentage value 

   , based on the ANN RUL prediction method by using condition monitoring 

data. Corresponding to each    , a predicted failure time distribution as below can 

be built. 

  𝑝     
 

     𝑝

  
 𝑝   

     𝑝

 
 

  

where  𝑝 and  𝑝 are the mean and standard deviation of the ANN life percentage 

prediction error. For each component, calculate the predicted failure probability 

during next inspection interval,    , using Equation (3-11).  

(3-14) 
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4. Maintenance decision making.  

 Decision 1: Perform failure replacement if a failure occurs on any component 

in the current inspection interval.  

 Decision 2: No failure occurs on any component in the current inspection 

interval. Check the calculated failure probability of each components, if 

        
 , which is the level-1 failure probability threshold, preventive 

replace component  . 

 Decision 3: If preventive replacement or failure replacement is performed on 

any component in the system, perform preventive replacement on component 

  if         
 , where    

  is the level-2 failure probability threshold. And 

noted that   can be any other components in the multi-component systems. 

 Decision 4: If there is no failure or preventive replacement performs on any 

component at current inspection point, all the components continue their 

normal operation to the next inspection.  
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Chapter 4 

4 Case Studies 

In this Chapter, we use two examples to illustrate the proposed multi-component CBM 

policy, and the simulation method for the cost evaluation. Comparative studies between 

the CBM policy for multi-component systems and that for single unit are given to 

demonstrate the advantages of the proposed multi-component CBM policy. 

4.1 Case Study of Canadian Kraft pulp Mill Company 

In this case, we consider the multi-component systems consisting of five bearings under 

vibration monitoring. The bearing vibration monitoring data used in this case were 

collected from bearings on a group of Gould pumps at a Canadian kraft pulp mill 

company (Stevens 2006). 

4.1.1 Case introduction 

Kraft Mill is a large producer that manufactures over 300,000 tons of kraft pulp each year. 

By facing the competition stress of the market pricing for pulp and paper, key objective 

of Kraft Mill is reducing costs while keeping production in a high level. Management of 

this mill was seeking a way to balance the normal production pressure to keep running 

versus the cost of a failure, as well as eliminating or substantially reducing the frequency 

of pump failure. In Stevens‘ case studies (2006), an advanced failure prediction software 

package EXAKT, developed by OMDEC Inc., helps them to fix the problem. 
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The production process of kraft pulp is showed in Figure 10. The domain process is 

pulping, which reduces the wood to a fibrous mass for onward processing into paper and 

board products. The pulp they produce is transferred to the converting mill and then put 

on the market as lightweight publication grades of paper, tissues and paper relative 

products. During the pulping process, high incidence of unpredicted failures among a 

small group of Gould pumps are the major cause of breakdown facing by Kraft Mill.  

 

Figure 10 Production process of Kraft Pulp (Johnston et al. 1996) 

In this case, the examined units were Gould 3175L pumps which were used 24*7 for 

pulping process in Kraft Mill. When the pumps were run below their best efficiency point 

by throttling the discharge flow, it causes excessive load on the thrust bearings (see 

Figure 11). Although a thrust bearing is designed to support a high axial load while 

permitting rotation between parts like other rotary bearing, the failure of a thrust bearing 

is still the significant cause of the failure of the pumps. Three main causes of thrust 
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bearing failures are: poor crankshaft surface finish, misalignment of the thrust bearing 

and crankshaft, and overloading (Carley 2003). One kind of thrust bearing failures is 

shown in Figure 12, when the bearing load exceeds the designed load, the raceways 

"spall," eventually failing from fatigue stress. The spalling on the surface of a ball 

increases wear to the raceway, noise, and bearing vibration. By analyzing the pump 

failure histories, EXAKT can accurately predict whether a pump could continue to run or 

not  until the next shutdown (Stevens 2006). 

 

Figure 11 Gould 3175L pumps bearings (Stevens 2006) 
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Figure 12 Sample failure of pump thrust bearing (Dynaroll website 2010) 

In our case study, we use totally 24 bearing histories which were examined in 8 pump 

locations, embracing 10 bearing failure histories and 14 suspension histories. For each 

location, seven types of measurements were recorded: five different vibration frequency 

bands (   ), and the overall vibration reading (   ) plus the bearing‘s acceleration 

data (   ). So the original inspection data includes 56 (           ) vibration 

measurements at each time. 

An EXAKT Weibull Proportional Hazard model (Stevens 2006) was used to do the 

significance analysis for the 56 vibration measurements. As the result show in Table 2, 

only two of the variables were identified as significant influence on the health of bearings, 

which are P1H_Par5 (band 5 vibration frequency in Pump location P1H), and P1V_Par5 

(band 5 vibration frequency in Pump location P1V). Then we use these two 

measurements and the age time of the component as the inputs of the ANN RUL 

prediction model. 5 failure histories and 10 suspension histories are used as training ANN 

inputs and the other 5 failure histories are used as test inputs. After comparing the 
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predicted lifetime to the actual lifetime, we found that the prediction error follow the 

normal distribution, as shown in Figure 13, the mean of prediction error is 0.1385 and the 

standard deviation is 0.1429. 

Table 2 Significant analysis for Kraft Mill pump bearing measurement 

 

 

Figure 13 Normal distribution plot of ANN RUL prediction error 

In this case, no account was taken of the time required to perform failure or preventive 

replacement since they were considered to be very short (hours or days), compared to the 

mean time between replacement of an item, which may be measured in weeks or months. 

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

Data

P
ro

b
a
b
ili

ty

Normal Distribution Plot



61 

 

Any cost that are incurred due to replacement stoppages need to be included as part of 

   , the total fixed cost of a preventive replacement, and   , the total cost of a failure 

replacement. In this case,    is estimated to be $16,000, the fix preventive replacement 

cost     is $3,000, and the variable preventive replacement cost    is $1,800. That means, 

the total preventive replacement cost is estimated to be:                         , 

  is the number of components needed to be preventively replaced in one maintenance 

action. 

As mentioned before, the lifetime of bearing follows a Weibull distribution. We take total 

15 suspension histories (including 5 failure histories and 10 suspension histories) into 

maximum likelihood method function (3-5), and we got:  
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where         represents 5 failure histories under the estimate;          

represents 10 suspension histories under the estimate;    is the actual failure time in 

failure history  , and    is the actual suspension time in suspension history  . 

In order to simplify the calculation, we take logarithm on both side of equation (4-1). 
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By setting the objective function is equal to (4-2) and applying Matlab optimization 

function to analysis both the failure and suspension data, we obtain the lifetime 

distribution parameters         :                , thus we get the lifetime 

distribution as bellow:  
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4.1.2 Expected cost calculation for single unit 

In the CBM policy for single component, which is described in Chapter 3, the 

maintenance decision is made on components individually, and there is only one failure 

probability threshold value needed to be determined to minimize the long term 

replacement cost. By using the simulation method presented earlier, the cost of a certain 

CBM policy can be calculated by giving certain failure probability threshold,    . The 

failure replacement cost is set to be $16,000, the same as in a multi-component system. 

Since the preventive replacement is performed on the components individually, the 

preventive replacement cost is                       , that means both the fixed 

cost and the variable cost is charged when a preventive replacement is performed. The 

steps of cost calculation using simulation method for single unit are as follow: 

Step 1: Set the maximum simulation iteration is 100,000 inspection points. Between each 

inspection point, the fixed inspection interval,   equals 20 days. 

(4-3) 
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Step 2: At the starting point of each iteration, generate a random failure time,   , for the 

component which follows Weibull distribution (4-3).  

Step 3: In inspection point                  , generate a predicted failure time,   , 

of the component by random, based on ANN RUL prediction error.     follows a normal 

distribution (3-6). In this case:     ,        ,    is standard deviation of ANN 

RUL prediction error. Thus, we have  

                                     (4-4) 

Step 4: During a lifetime of the component, calculate conditional failure probability    of 

each inspection point by using equation (3-7), thus we have: 

    
∫
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where   is the cumulated inspection time in one life circle. 

If      is greater than the failure probability threshold     (       ), preventively 

replace the component at that certain point. If there is no preventive replacement during a 

lifetime of the component, perform failure replacement at the inspection point just behind 

the generated failure time,   . 

Step 5: Start a new life circle of the component after a preventive replacement or a failure 

replacement took place, back to Step 2. The iteration would not stop until a maximum 

simulation inspection point 100,000 is reached. 

 

(4-5) 
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Step 6: Then we estimate total expected replacement cost by equation (3-8), we got: 

   
          

          
 

∑ (                            )
       
   

          
        

where  

     
1    The component was preventively replaced at the point of time  ; 

0    No preventive replacement on the component at the point of time  . 

     
1    The component was failure and was replaced by a new one at time  ; 

0    No failure replacement on the component at the point of time   

Step 7: find the optimal expected cost. This is the minimum cost rate value responding to 

the condition failure probability threshold value    . The expected replacement cost as 

function of failure probability for single unit is plot in Figure 14.  

 

Figure 14 Cost versus failure probability threshold value for single-unit CBM policy 
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In Figure 14, there are totally 40 points of cost rate corresponding to different 

          values from -4.5 to 0. From this figure, the optimal threshold value exists, 

which the lowest cost rate for single component is $4.8264/day and the corresponding 

threshold value    is 0.0708. 

Thus, we can obtain the optimal CBM policy for the single unit as follows: 

At a certain inspection point  , one of the following actions will be performed on the 

bearing: 

1) If a bearing failed, perform failure replacement for the failed bearing; 

2) Perform preventive replacement if the bearing is still working but the following 

condition is met: 

               

4.1.3 Expected cost calculation for multi-component systems 

For multi-component systems, level-1 and level-2 probability thresholds are two decision 

variables to determine the optimal CBM policy, therefore, the expected replacement cost 

of certain CBM policy can be evaluated by giving certain probability threshold values 

   
  and    

 . In our case, we consider the multi-component systems consisting of 5 

identical bearings which are operating in parallel and which are subject to random 

failures. The lifetimes of the individual components are independent random variables 

and are identically distributed as Weibull distribution with parameters             

   .  

The simulation procedure is as follows: 
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Step 1: Set the maximum simulation inspection point is 100,000, same as in single unit 

policy. Between each inspection point, the fixed inspection interval,   equals 20 days. 

Step 2: At the starting point of each iteration for component            , set    equals 

0, generate a random failure time,    , of the component which follows Weibull 

distribution (4-3).  

Step 3: At inspection point                  , generate a random predicted failure 

time,    , of the component  , based on the ANN RUL prediction error.      follows a 

normal distribution (3-10). In this case:       ,         ,    is standard deviation 

of ANN RUL prediction error. Thus, we have  

                       
     (4-7) 

Step 4: During the lifetime of component  , calculate the conditional failure probability 

    of each inspection point by using equation (3-11), thus we have: 

     
∫

 

      √  
 
 
         

 

            
     

  

∫
 

      √  
 
 
         

 

            
 

  

                                       

where    is cumulated inspection time in one life circle for component  . 

At each inspection point  , if                is greater than the given level-1 

condition failure probability threshold    
        

     , preventively replace the 

component at time point  . If there is no preventive replacement during the lifetime of 

component  , perform failure replacement at the inspection point just behind    . When 

there is a preventive/ failure replacement occurs in time  , check other components, if 

(4-8) 
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               is greater than the given level-2 failure probability threshold    
  , 

perform preventive replacement on component   simultaneously. 

Step 5: When there is a preventive/ failure replacement took place on component  , start a 

new life circle of component   by setting     , and back to Step 2. The iteration would 

not stop until   equals 100,000.  

Step 6: Estimate cost rate. In this case, the fix preventive replacement cost     is 3,000 

and the variable preventive replacement cost    is 1,800. By using formula (3-13), we 

have: 

   
          

          
 

∑   
       
   

          
                          

where  

      ∑    

 

   

    ∑    

 

   

             

           ∑    

 

   

        ∑    

 

   

               

where   

      
1    Component   is preventively replace at the point of time  ; 

0    No preventive replacement on component   at the point of time  . 

      
1    Component   is preventively replace at the point of time  ; 

0    No failure replacement on component   at the point of time  . 

     If                , the component   continues its normal operation. 

(4-9) 

(4-10) 
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      (    )   , if ∑     
 
        ∑     

 
     ; otherwise  (    )   . 

Step 7: find the optimal total expected replacement cost. By setting different value of     

and    , the corresponding total expected replacement cost can be evaluated.  

The expected cost as a function of    
  and    

     
  is plotted in figure 15. The optimal 

failure probability threshold values can be observed from this figure, where the lowest 

expected cost exists.  

 

Figure 15 Cost versus two condition failure probability threshold values 

As shown in Figure 15, the minimal expected cost for multi-component occurs when 

   
           and    

             , the expected maintenance cost for the 
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The comparative results are showed in Table 3. Compare to the CBM policy for single 

component, the optimal cost is much lower when using multi-component CBM policy, 

cost savings in percentage is 27.21%. 

Table 3 Comparison of cost between single unit and multi-component CBM policy 

  
Single Unit 

Multi-component systems 
 (5 components) 

Cost ($/day) 4.8264 17.5651 

Cost for each component($/day) 4.8264 3.513 

Cost savings in percentage 27.21%   

 

This comparative study demonstrates that the proposed multi-component CBM policy 

can achieve a lower total expected replacement cost by taking advantage of economic 

dependency in the multi-component systems.  

We can obtain the optimal CBM policy for this case: 

   
              

         

Based on the proposed CBM policy for multi-component systems, at a certain inspection 

point  , one of the following actions will be performed on the bearing: 

1) If a bearing failed, perform failure replacement for the failed bearing; 

2) For bearing            , perform preventive replacement if the bearing is still 

working but the following condition is met: 

       
         

where     is a predicted failure probability of component   calculated by ANN 

RUL prediction 
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3) If one bearing meets condition 1) or condition 2), the other bearings will be 

preventively replaced simultaneously when they are not failed but the following 

condition is met:  

       
         

For Kraft Mill Company, as a result of executing the proposed CBM policy for multi-

component systems, four key benefits can be obtained: 

 Total downtime cause by replacement can be reduced, maintenance can be spread 

over time when simultaneous replace several components; 

 Unexpected shutdown of the systems can be prevented. The simulation results 

(see Table 4) indicate that the incidence of failure replacement is 0.067% in total 

100,000 inspection points of time. 

 Compared to CBM single unit policy, the proposed CBM policy for multi-

component systems can achieve cost saving of over 20%. 

 Use of these approaches can easily extend to other key equipments in the Mill in 

order to reduce production cost. 

Table 4 Times of replacement in total 100,000 inspection points 

Bearing #1 #2 #3 #4 #5 Average times 

Times of PR 2223 2212 2216 2182 2210 2209 

Times of FR 13 19 11 14 18 15 

Incidence of failure replacement  0.067% 

4.1.4 The extension of the case study  

In this section, we would use real bearing lifetime data to further clarify the feasibility 

and effectiveness of the proposed CBM approaches. We consider there are 3 major 
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bearing locations, #Lo_1, #Lo_2 and #Lo_3. In each location there is only one bearing 

under condition monitoring. We use 9 bearing failure histories in this case study and the 

actual failure times are list in Table 5. All these bearings are identical and were working 

in the same condition. We suppose all the 9 bearing are used in 3 locations following the 

sequence from 1 to 9, which means, at the beginning, Bearing 1, 2, 3 are working in 

location of #Lo_1, #Lo_2 and #Lo_3, Bearing 2 fails after 283 days and is replaced by 

Bearing 4 in day 284. So we have Bearing 1, 4, 3 works in location #Lo_1, #Lo_2 and 

#Lo_3 from then on. When Bearing 1 fails after 473 days, we replace it by Bearing 5. 

The process will stop until all these 9 bearing are used. 

Table 5 Bearing failure histories 

Bearing 1 2 3 4 5 6 7 8 9 

Time to Fail 

(days) 
473 283 601 511 692 986 1402 1246 964 

 

By using the failure histories in Table 5, we compare the performance of the proposed 

CBM policy with two maintenance policies, and the results are list in Table 6. We can see 

that when using breakdown maintenance policy, the bearing will not be replaced by a 

new until it fails. Cost of failure replacement is very high because of the unpredictable 

shutdown and no scheduled maintenance activities. The corresponding replacement cost 

is $20.117/day. If we implementing the single unit CBM policy which we illustrated in 

section 4.1.2 in these 3 location, we can obtain a lower expected replacement cost, which 

is $7.248/day. Replacement cost is much lower than the breakdown maintenance policy 

and there is no failure replacement occurs under this policy. The expected replacement 

cost is $5.417/day when we using the proposed CBM policy for multi-component 
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systems. From Table 6, we can see that in the first round of multi-component CBM 

policy, bearings in location #1 and location #3 have same replacement age, which are 380 

days, and they are preventive replaced at the same inspection point 19
th

. The fixed 

preventive replacement cost is charged only once, so the replacement cost occurs at the 

19
th

 inspection point is ($3,000+$1,800)+$1,800=$6,600.  The proposed CBM policy for 

multi-component systems can achieve a cost saving of 25.26% compared to the single 

unit CBM policy, and 73.07% when taking breakdown maintenance policy. 

Table 6 Comparison results between the proposed CBM policy and the other two 

maintenance policies 

Location/Type #Lo_1 Type #Lo_2 Type #Lo_3 Type 
Replacement 

Cost ($/day) 

Breakdown 

maintenance 

473 FR 283 FR 601 FR 

    
∑    

∑    
 

            
692 FR 511 FR 986 FR 

1246 FR 1402 FR 964 FR 

Single Unit 

CBM Policy 

280 PR(14) 140 PR(21) 520 PR(47) 

   
∑    

∑    
 

            
560 PR(69) 440 PR(97) 800 PR(137) 

1180 PR(204) 1340 PR(263) 700 PR(298) 

Multi-

component 

CBM Policy 

380 PR(19) 240 PR(12) 380 PR*(19) 
   

∑    

∑    
 

            
620 PR(50) 480 PR(36) 620 PR*(50) 

920 PR*(96) 1200 PR*(96) 920 PR(96) 

FR-Failure Replacement; PR/PR*- Preventive Replacement; 

PR(14) means the bearing is preventive replaced at inspection point 14th ; 

Cost Calculation: FR=$16,000; PR=$4,800: PR*=$1,800 

 

In the following part, we will investigate how the fixed replacement cost value affects the 

optimal CBM policy and the optimal total expected replacement cost. Suppose the total 

preventive replacement cost is fixed at $4,800, including fixed and variable preventive 

replacement cost. When the fixed preventive replacement cost is set to 0, the multi-
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component CBM policy can be simplified as the single-unit CBM policy. Because the 

preventive replacement cost is fixed at $4,800, joint maintenance or separate maintenance 

is at the same price. We use λ to denote the ratio between the fixed replacement cost and 

the total fixed and variable replacement cost. For example, when        , that means, 

the fixed preventive replacement cost is                    , and the variable 

preventive replacement cost is                        . By changing the 

proportion of the fixed cost in the total preventive replacement cost, we can obtain 

different condition failure probability thresholds that represent the optimal CBM policies.  

Table 7 Cost versus fixed preventive replacement cost ratio λ for case study 1 

ratio   
Optimal CBM policy: 

[   
     

 ] 
Cost ($/day) Cost savings in percentage 

0 [0.0737, 0.0737] 24.1695 0% 

0.1 [0.0608, 0.0136] 22.9864 4.89% 

0.2 [0.0743, 0.0273] 21.4912 11.08% 

0.3 [0.0907, 0.0017] 21.3160 11.81% 

0.4 [0.0907, 0.0074] 20.2336 16.29% 

0.5 [0.0907, 0.0027] 19.2080 20.53% 

0.6 [0.1108,          ] 17.4176 27.94% 

0.7 [0.1108,          ] 15.8816 34.29% 

0.8 [0.1108,          ] 14.9712 38.06% 

0.9 [0.1108,          ] 12.7968 47.05% 

1 [0.1108,          ] 10.9520 54.69% 

 

Table 7 lists the optimal cost values and the optimal CBM policies corresponding to 

different λ values. We can see that when ratio λ equals to 0, there is no fixed preventive 

replacement cost, the total expected replacement cost is the same as that for the single-

unit CBM policy. There is no economic dependency shown in this case. When ratio λ is 
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larger than 0, economic dependency appears and the optimal cost for the multi-

component CBM policy is lower than that when λ equals 0. As shown in Table 7, when 

we increase ratio λ, the optimal cost become lower, and the resulting cost savings as a 

percentage becomes higher. When ration λ increase to 1, the cost saving in percentage 

rise to as much as 54.69%. In other words, when the proportion of the fixed preventive 

cost to the total preventive cost become lager, the higher economic benefits we can obtain, 

and the advantage of utilizing the multi-component CBM policy becomes more and more 

obvious. 

4.2 A numerical example 

In this section, we use a set of simulation degradation signals to demonstrate the 

proposed CBM policy. The simulated degradation signals can be generated by the 

degradation model presented in Gebraeel et al. (2005). Let      denote the degradation 

signal as a continuous stochastic process, continuous with respect to time   and the 

degradation model has the following expression: 

                     
   

 
     (4-11) 

where   is a constant,   is a lognormal random variable, that means,     has mean    and 

variance   
 ,   is a normal random variable with mean    and variance   

 , and      

      is a centered Brownian motion such that the mean of      is zero and the variance 

of      is    . Gebraeel et al. assume  ,   and      are mutually independent. Under 

these assumptions, it makes it more convenient to work with the logged degradation 

signal and the degradation model can be simplified as follow: 
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                    (4-12) 

where        is a normal random variable with mean    and variance   
 ,      

  

 
. 

 

Figure 16 Plot of generated degradation paths 

As showed in Figure 16, we generate 50 degradation paths by setting up the parameters in 

the simplified degradation model as     ,     ,   
   ,    

     ,      .   

equals to 400, which is used to denote the critical level for the degradation path when the 

failure is assumed to have occurred. The failure time of each degradation path is defined 

as the time when the actual path cross the critical degradation level  . Among all these 

50 degradation paths, we randomly choose 20 failure paths as the input to train ANN and 

another 10 failure paths as the test histories. After using ANN to train and test the 

generated data, we obtain the mean and the standard deviation of the ANN life 

percentage prediction errors are:          ,          . By applying the Maximum 

likelihood method, we can determine the lifetime of the components follow the Weibull 
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distribution with the parameters of                    . Let total preventive 

replacement cost equal to $4,000, including the fixed preventive replacement cost, which 

is $2,400, and the variable preventive replacement cost, which is $1,600. Failure 

replacement cost equal to $12,000 and inspection interval   is 5days. As the result of the 

simulation method for single unit, the optimal failure probability threshold     is 0.0648 

and the corresponding total expected replacement cost is $44.98/day. Then, we also apply 

the simulation method for multi-component, through a numerical searching, the optimal 

failure probability threshold is found as:   
            

            
, and the 

corresponding lowest cost is $174.66/day. 

The comparative results are showed in Table 8. Compare to the CBM policy for single 

component, using multi-component CBM policy achieve a lower total expected 

replacement cost, cost savings in percentage is 22.33%. 

Table 8 Comparative results in the numerical example 

  Single Unit Multi-component systems (5components) 

Probability threshold    =0.0648    
            

             

Cost Rate($/day) 44.9784 174.6640 

Average Cost Rate($/day) 44.9784 34.9328 

Cost savings in percentage 22.33%   

 

Now we investigate how the fixed replacement cost value affects the optimal CBM 

policy and the optimal total expected replacement cost. By applying the proposed CBM 

policy for multi-component systems we can find out how the economic dependency 

exists. Again, λ is used to denote the ratio between the fixed replacement cost and the 

total fixed and variable replacement cost, which is $4,000. For example, if λ equals to 0.2, 

the fixed preventive replacement cost is                , and the variable 
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preventive replacement cost is                      . By performing the 

proposed simulation method for multi-component systems with respect to different λ 

values, the resulting optimal cost values and the optimal CBM policies can be obtain and 

are listed in Table 9.  

Table 9 Cost versus fixed preventive replacement cost ratio λ for case study 2 

ratio   
Optimal CBM policy: 

[   
     

 ] 
Cost ($/day) Cost savings in percentage 

0 [0.0648, 0.0648] 224.892 0% 

0.2 [0.0907,          ] 201.808 10.26% 

0.4 [0.0743,          ] 188.614 16.13% 

0.6 [0.0743,  ] 152.624 32.13% 

0.8 [0.1108, 0] 104.944 53.34% 

 

When    , the proposed multi-component CBM policy is the same as the single-unit 

policy, and the cost saving in percentage is 0%. When    , economic dependency 

exists, the optimal cost for the multi-component CBM policy decrease with the increase 

of   value. When ration λ increase to 0.8, the cost saving in percentage rising to as much 

as 53.34%. The larger the proportion of the fixed preventive cost to the total preventive 

cost, the higher the cost savings in percentage. This example demonstrates again that for 

multi-component systems where economic dependency exists, the proposed multi-

component CBM policy is more effective and can lead to lower total expected 

replacement cost.  
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Chapter 5 

5 Conclusion and Future Work 

In this Chapter, we conclude our research work and list some potential topics that are 

relevant to our work and that can be studied in the future. 

5.1 Conclusion 

Most existing reported CBM policies only focus on single unit maintenance. 

Replacement and other maintenance decisions are made independently on each 

component, based on the component‘s age, deterioration, condition monitoring data and 

the CBM policy. Since the maintenance of systems has become more and more complex, 

it is sometimes more economical to replace similar components simultaneously rather 

than singly. Replacement costs can be saved when several components are jointly 

maintained instead of separately, that is economies of scale can be obtained. In this work, 

we propose a multi-component system CBM policy based on ANN RUL prediction 

model. A simulation method is developed for the cost evaluation and searching for the 

optimal threshold to determine the CBM policy.  

A case study using real-world vibration monitoring data and a numerical example 

demonstrate the effectiveness of the proposed CBM policy for multi-component systems- 

a lower total expected replacement cost compared to the single unit CBM policy is easily 

achieved. The proposed dynamic multi-component CBM policy can function in a real 

plant environment with multiple components under condition maintenance and can be 
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modified to utilize information from other prognostics methods such as model-based and 

other data-driven methods, as long as the lifetime predicted error are known.  

5.2 Future Work 

Based on our work in this thesis, several further studies can be conducted as follows: 

 Develop an algorithm for the exact cost evaluation of the multi-component CBM 

policy. The algorithm can provide an accurate total expected replacement cost, 

which is important for finding the trend of the cost as a function of the probability 

threshold values then determine the optimal CBM policy decision variables 

corresponding to the lowest cost.  

 Because of the limited availability of failure data for monitored components, it is 

difficult to develop a truly condition-based maintenance. Applying the proposed 

approaches on a practical case can further eliminate the gap between theory and 

actual practice. 

 Some existing maintenance models for multi-component systems address the 

failure interaction (also called stochastic dependence) between the components, as 

there is also economic dependence between components (Scarf and Deara 1998, 

2003). We can further modify our proposed approach by taking failure interaction 

between the components into account.  
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