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ABSTRACT 

Curvelet Transform-Based Techniques for Biometric Person Identification 

Vijaya Kumar Emani 

Biometric person identification refers to the recognition of a person based on the 

physical or behavioral traits. Palm print based biometric identification system is one of 

the low cost biometric systems, since the palm image can be obtained using low cost 

sensors, such as desktop scanners and web cameras.  Because of ease of image 

acquisition of palm prints and identification accuracy, palm images are used in both uni- 

modal and multimodal biometric systems. A multi-scale and multi-directional 

representation is desirable to represent thick and scattered thin lines of a palm image. 

Multi-scale and multi-directional representation can also be used in image fusion, where 

two images of two different biometric traits can be fused to a single image to improve 

the identification accuracy. Face and palm images can be fused to keep the desired high 

pass information of the palm images and the low pass information of the face images. 

The Curvelet transform is a multi-scale and multi-directional geometric transform that 

provides a better representation of the objects with edges and requires a small number 

of curvelet coefficients to represent the curves.  

In this thesis, two methods using the very desirable characteristics of the curvelet 

transform are proposed for both the uni-modal and bi-modal biometric systems. A palm 

curvelet code (PCC) for palm print based uni-modal biometric systems and a pixel-level 

fusion method for face and palm based bi-modal biometric systems are developed. A 

simple binary coding technique that represents the structural information in curvelet 
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directional sub-bands is used to obtain the PCC. Performance of the PCC is evaluated for 

both identification and verification modes of a palm print based biometric system, and 

then, the use of PCC in hierarchical identification is investigated. In the pixel-level fusion 

scheme for a bi-modal system, face and palm images are fused in the curvelet transform 

domain using mean-mean fusion rule. Extensive experimentations are carried out on 

three publicly available palm databases and one face database to evaluate the 

performance in terms of the commonly used metrics, and it is shown that the proposed 

methods provide a better performance compared to other existing methods. 
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Chapter 1 

 

Introduction 

 

Person identification is a process of recognizing the identity of a person based on a 

claimed identity, such as physical key, password, and identity card. Automatic person 

identification has an important role in everyday life, for example, students use personal 

identification numbers (PIN) to login a shared computer and employees use identity 

cards for attendance at work place. Traditional identification methods are based on 

possession of an identity like access card or knowledge of a secret number. Traditional 

identification methods check only the possession of a piece of identity or the knowledge 

of a secret number, but not the right ownership.  Moreover access cards can be stolen 

and the PIN numbers can be guessed. Anyone having the access card or PIN number will 

be authorized. So an identification process based on “who he/she is” is more secured 

than traditional methods which are based on “what he/she has” or “what he/she 

knows” [41]. Biometric identification comes under the category in which a person is 

identified based on “who he/she is”.     

Biometric identification is a process of recognizing people based on his/her physical or 

behavioral traits. Iris, face, fingerprint, palmprint and hand geometry are popular 
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examples of physical traits.  Behavioral traits include speech, gait and signature.  

Biometric identification is more reliable and secured compared to automatic traditional 

identification. In biometric identification, a sensor acquires the physical or behavioral 

trait, and features are extracted from the pre processed signal, these features are 

compared with a template database to identify the person. Low cost sensors, hardware, 

efficiency, and fast algorithms made biometrics to spread in all levels of security 

systems, starting from attendance, door locks and to a high level security like border 

crossing.  

1.1  Motivation 

 

Even though great deal of research has been conducted on different biometric traits like 

face, iris, fingerprint and palmprint, each biometric trait has its own advantages and 

disadvantages in terms of ease of accessibility, uniqueness, and cost of the sensors. For 

example face image acquisition is simple and cost effective compared to iris scanning, 

because a simple web camera can be used to acquire a face image and the person to be 

identified need not pay special attention during image acquisition.  Palmprint belongs to 

one of those physiological traits which can be acquired using a low cost camera or 

scanner. Many researchers have shown that the performance of palmprint based 

biometric systems is comparable to those of face, fingerprint and hand geometry. The 

information in palmprint images is in the form of thick, regular and thin irregular curves 

called principal lines and wrinkles, respectively.  Most of the feature extraction 
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algorithms aim at representing this information of curves effectively. These methods 

can be broadly classified into statistical methods, line-based methods, subspace-based 

methods, and coding methods [2]. 

In statistical approach various statistical measurements are obtained either directly 

from the preprocessed palm images or from the transformed versions. In the transform 

domain, Fourier transform [1] and wavelet transform [4] are used to extract the 

statistical features. In [4], authors have used wavelet transform and directional context 

modeling to represent the edge like features of a palm image.  Statistical features, such 

as density, center of gravity, and energy are computed to represent a given palm image. 

This method is verified on a small size database of 200 palms. In [1], Fourier transform 

of the image is obtained and the Fourier plane is divided into concentric circles and 

directional wedges. The energy of the concentric circles and directional wedges are used 

as a feature vector. Neither the Fourier transform nor the wavelet transform can 

represent the directional features accurately. 

There are some other transforms that can represent the directional features, such as 

dual tree complex wavelet transform [6], contourlet transform [7], and curvelet 

transform [8]. In [6], support vector machine is used as classifier to train the directional 

feature vectors.  In [7], contourlet transform and the Fourier transform features are 

used to represent the given palm images. Palm image is decomposed into a preset 

number of scales and directions using contourlet transform. Magnitude of the Fourier 

transform of each contourlet subband is used as a feature vector. Adaboost [38] is used 
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to train these feature vectors. Even though the size of the feature vector has not been 

mentioned in the method explicitly, the size of the input palm image and the algorithm 

suggests high dimensionality. Moreover this method requires training.  In [8], first 

generation digital curvelet transform is used; the magnitude and positions of the 

significant coefficients are used as a feature vector. In [9], complex wavelet transform is 

used to match two palm images. A modified structural similarity index is applied to 

match the images in complex wavelet domain. The main drawback of this method is the 

very high dimensionality of feature vectors. Even though all these methods used the 

transforms that can represent the directional features, none of these methods used the 

directional structure information explicitly.  

Line based methods extract line like features from the palmprint. In [11], line edge map 

of the palm images are obtained and line segment Hausdorff distance is used as a 

classifier. The method was tested on a small database of size 200 palms, and the authors 

have claimed identification rate of 96 %. In [12], Sobel and morphological operators 

have been applied to extract features. A neural network is then used to train the 

features. In subspace methods, principal component analysis (PCA), Fisher linear 

discriminant analysis (FLDA), and independent component analysis (ICA) have been 

applied either directly on the palmprint image [1] or on feature vectors [10] to reduce 

the dimensionality. Subspace based methods require training. Every time a new 

template is added, training process has to be repeated.  
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In [5] Gabor filters have been used to extract the texture feature. A coding scheme 

similar to Iris code is applied.  Even though good error rates are claimed, feature 

matching is based on translations. Each feature is translated vertically and horizontally 

before matching. This is acceptable in verification process, but consumes more time in 

identification process, especially in large databases.   

Because of the low resolution images and ease of image capturing, palmprint features 

have been used in multimodal biometric systems to improve the performance and to 

overcome the limitations of the other biometric traits. The fusion of the information 

from different biometric traits has been conducted at various levels of a biometric 

identification process, such as sensor level, feature level, and classifier level. When two 

biometric traits such as face and palm are obtained from the same imaging setup, fusion 

can be done at pixel level. In [26], Gabor transform have been used in fusion process. 

Gabor transform is obtained for 4 scales and 8 orientations. The transformed images of 

face and palm are simply concatenated to obtain fused image. A kernel discriminative 

common vectors algorithm with radial basis function (RBF) network is used in feature 

extraction and classification. In [27], the wavelet transform domain fusion have been 

applied and scale invariant feature transform (SIFT) have been used in feature 

extraction. In [26], images are concatenated in the transform domain. Thus this process 

cannot be considered as fusion of features. In [27], fusion is applied in wavelet 

transform domain. Effective fusion can be achieved if more directional bandpass images 

are included. 
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Curvelet transform is a multi-scale and multi-directional transform developed by Cand`es 

et al. [13], to overcome the limitations of the conventional 2-D discrete wavelet 

transform [14]. Curvelet transform provides almost optimal representation of objects 

with curve singularities. That means, curvelet transform needs relatively a small number 

of coefficients to represent a line or a curve in a given image. Two factors encourage the 

usage of curvelet transform for palmprints. One is the optimal representation of edges 

and the second factor is multi-scale and multi-directional representation. 

Main features in palm images are principal lines and wrinkles. Principal lines are regular 

and thick structure, whereas wrinkles are irregular and thin structure. Wrinkles are 

scattered in different orientations.  Multi-scale and multi-directional representation 

gives a better representation of these scattered wrinkles.  This representation also helps 

in improving the fusion scheme in pixel-level fusion of face and palm. Since the lines and 

curves are represented by only a small number of coefficients of curvelet transform, we 

expect low dimensionality feature vector. 

A major problem in palmprint identification systems is the size of the database. To scan 

a large database, we need to adapt to a guided search to improve the speed of the 

identification process. Multiple methods are needed to extract multiple features for a 

guided search. Instead of using multiple methods to extract multiple features, it is 

desirable to extract multi-scale features using one technique to develop a guided 

search.  Since curvelet transform is multi-scale and multi-directional decomposition, 

features at various scales and directions can be used in guided search.   
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Since the curvelet transform has the very characteristics desired by the biometric 

applications, it would be worth investigating the use of curvelet transform. 

1.2 Problem Statement 

 

Palmprint-based biometric systems have gained more interest because of their ease of 

data acquisition and uniqueness. In low resolution palm images the features are mainly 

principal line features and wrinkle features. Principal line features are regular and thick 

lines, wrinkles are thin, irregular features and wrinkle features can be classified into 

coarse wrinkles and fine wrinkles [1]. These features have to be accurately measured in 

terms of their structure for a better palmprint identification system. Because of 

orientation information and coarse and fine scale structure, an efficient feature 

extraction is required to measure these features. A multi-scale and multi-directional 

representation of the palmprint is necessary.  

One of the advantages of palmprint is its application in bi-modal or multimodal 

biometric systems. In multimodal systems different modalities are fused to improve the 

accuracy and security.  This fusion is carried out at different levels of identification 

process, for example, at sensor level, at feature level, and at classifier level. A pixel-level 

fusion of face and palm is advantageous because one feature extraction technique and 

one classifier are sufficient for the system.   

The objective of this thesis is to propose curvelet transform-based techniques for 

palmprint based uni-modal biometric system, and face- and palm-based bi-modal 
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biometric system. A curvelet transform-based coding technique is proposed to 

represent the line and curve features of a palmprint. A guided search scheme is also 

proposed using this technique. Extensive experimentations are conducted on three 

different palmprint databases to evaluate the performance of the proposed method. 

Finally a pixel-level fusion scheme in curvelet transform domain for face and palmprint 

based bi-modal biometric system is proposed.     

1.3 Organization of the Thesis 

 

This thesis is organized into three parts, overview of relevant concepts, proposed 

methods for uni-modal and bi-modal biometric systems, experiments and analysis.  

In Chapter 2, an overview of the relevant concepts is given. Modes of operations of a 

biometric system, the parameters used in performance evaluation of a biometric 

system, curvelet transform and different databases used in this thesis are explained. 

Various errors rates used in a performance evaluation, such as false acceptance rate 

(FAR), and false rejection rate (FRR) and their effects are detailed. Basic concepts of 

curvelet transform and its implementation details are explained. Details of the research 

conducted on palmprint recognition using curvelet transform are also given. Finally 

various databases used in this thesis are discussed. Size of the databases and image 

acquisition procedures are explained. 

In Chapter 3, curvelet transform based techniques for the uni-modal and bi-modal 

biometric systems are proposed. The details of the coding approach to extract the 
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directional line features of a given palmprint and the details of the distance metrics are 

explained. A pixel-level fusion scheme of face and palm for a bi-modal biometric system 

is detailed.      

In Chapter 4, details of the experiments and the results are presented for both uni-

modal and bi-modal biometric systems. The experimental setup detailing the training 

databases, test databases and various parameters is explained followed by the results 

and comparisons. 

Concluding remarks and the scope for the future research are detailed on Chapter 5.  
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Chapter 2 

 

Overview of Relevant Topics 

 

In this chapter, some concepts relevant to this thesis are presented. Details of the 

palmprint characteristics and preprocessing methods to extract the region of interest 

(ROI) are explained. Different modes of a biometric system and the metrics used in the 

performance evaluation are detailed followed by the details of curvelet transform. 

Finally various databases used in this thesis are explained. 

 2.1 Characteristics of Palmprint  

“A palmprint is defined as the skin patterns of a palm, composed of the physical 

characteristics of  the skin patterns such as lines, points, and texture”*1+. Epidermis, the 

outermost layer of the skin, finger movements and the tissue structure determine the 

line features of the palm [1]. These line features on the palm can be classified into three 

main categories, principal lines, wrinkles and ridges. Principal lines are the regular and 

the thickest lines of the palm. Wrinkles are the irregular and thin lines. Fingerprint-like 

lines of the palm are the ridges. The ridges in the fingerprint and palm are due to the 

thickening of the epidermis [1]. An example hand image is shown in Fig. 2.1.  Principal 

lines and wrinkles can be observed in low resolution palm images, whereas ridges can 
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be seen only in high resolution palm images. For an online palm identification system, 

images of 75 dpi / 150 dpi resolution are sufficient [1].  

2.2 Palm Preprocessing 

Palm preprocessing refers to the extraction of ROI and enhancement of the ROI. Entire 

palm region is not necessary to extract line features, only the center region that covers 

the maximum possible length of the principal lines is sufficient. Palmprint alignment is 

also important to minimize the system errors. So ROI extraction and enhancement are 

carried out in preprocessing stage. There have been many methods proposed in the 

literature to align and extract the center part of the palm region [1], [22]. For the 

alignment of the palm image, one needs to find the orientation of the palm image.  

There are two methods in the literature to find the orientation, one is based on ellipse 

fitting [2], in this method an ellipse that fits the boundary of the given hand image is 

obtained. The orientation of hand image is obtained by the major axis of the ellipse. The 

second method is based on the extraction of key points [1]. These key points help in 

deciding the coordinate system.  Usually, the key points are the valley points between 

index finger and middle finger, and between ring finger and the little finger. The line 

joining these two points gives the orientation information.  In ROI extraction, the center 

of the palm region is obtained and a fixed size of palmprint is cropped around the center 

point. The crop area can be obtained by the key points. Using key points, the coordinate 

system of the palm region is fixed and the ROI is cropped with reference to the 

coordinate system. 
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In some other methods the center point has been obtained using morphological 

operations [22]. Image erosion is carried out with a square type structuring element to 

find a square that best fits in. Distance transform also have been used to find the center 

of the palm region [23]. In this work, author used key point based palm alignment and 

ROI extraction. The main steps in preprocessing can be summarized as follows. 

a. Apply a low pass Gaussian filter to smooth the palm image.   

b. Apply a proper threshold to binarize the palm image. 

c. Apply morphological operations like hole filling. 

 

1 

2 

Figure 2.1: Hand image scanned using a desktop scanner, showing principal lines (1) 

and wrinkles (2).  
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d. Trace the boundary of the palm image to fix the key points. 

e. Find the orientation of the palm image. 

f. Fix the coordinate system to crop the region of interest. 

A smoothed hand image and its binary image are shown in Fig. 2.2. It is clear from Fig. 

2.2(b) that a proper uniform background helps in effective threhsolding.  The process of 

key point detection and alignment are shown in Fig. 2.3. Finally image enhancement is 

applied to enhance the line features. Contrast limited adaptive histogram equalization is 

a good choice to enhance the line features.  

2.3 Modes of Biometric System and Metrics used for Performance Evaluation 

A biometric system can be operated in two modes, identification mode and verification 

mode. In identification mode, the person has to be identified based on the biometric 

feature without any prior information.  Identification is a one-many matching process.   

A query biometric feature is compared with stored templates to obtain a set of 

matching scores.  If the scores are less than a prefixed threshold, a classifier identifies 

the query sample to a best match in the registration database. In verification, the query 

biometric sample is matched against one template that is claimed by an additional 

identity card of the person to be verified. Verification process is a one-one matching 

process. In identification mode, correct recognition rate (CRR) or correct identification 

rate (CIR), false rejection rate (FRR) and false identification rate (FIR) are the important 

parameters. CIR, FIR and FRR are defined as follows  
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(a) 

Figure 2.2: (a) A sample hand image (b) Binary image after a fixed thresholding. 

(b) 
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where     is the total number of query samples,      is the total number of wrongly 

identified samples and      is the total number of wrongly rejected samples. The effect 

of the threshold on CIR, FIR and FRR is also an important measurement in identification 

process.  

Figure 2.3: Boundary of a hand image showing key points and the angle of rotation θ 

 

θ 
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In verification mode, false acceptance rate (FAR), false rejection rate (FRR), and equal 

error rates (EER) are important performance evaluation parameters. These parameters 

can be obtained by calculating the genuine and impostor score distributions and are 

defined as follows, 

    
   

   
      

    
   

   
      

where     is the total number of accepted imposters,    is the total number of imposter 

claims,     is the total number of rejected genuine claims, and    is the total number 

of genuine claims. EER is the rate at which FAR is equal to FRR. FAR and FRR are useful 

parameters in comparing two biometric systems. At a given threshold, a biometric 

system that gives low FAR and low FRR is a better one.  The usage of a biometric system 

at different security levels depends on FAR and FRR. For example, in a high level security 

system very low FAR is desirable, whereas in low level security system low FRR is 

desirable. The effect of the threshold on FAR and FRR can be observed using receiver 

operating characteristics (ROC). ROC is the plot between genuine acceptance rate (GAR) 

and false acceptance rate (FAR). Genuine acceptance rate is defined as         

   . Fig. 2.4 shows a plot of genuine and impostor distributions. A threshold T is 

selected to get minimum FAR and minimum FRR. The area under the genuine 

distribution for above threshold T gives the FRR and the area under the imposter 

distribution and below threshold T gives the FAR.     
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2.4 Curvelet Transform 

Curvelet transform (CT) is a geometric transform developed by Emmanuel Cand`es et al. 

[13] to overcome the inherent limitations of wavelet like transforms. Curvelet transform 

is a multi-scale and multi-directional transform with needle shaped basis functions. 

Basis functions of wavelet transform are isotropic and thus it requires large number of 

coefficients to represent the curve singularities. Curvelet transform basis functions are 

needle shaped and have high directional sensitivity and anisotropy. Curvelets obey 

parabolic scaling. Because of these properties, curvelet transform allows almost optimal 

sparse representation of curve singularities [13]. The curvelet transform at different 

scales and directions span the entire frequency space, which is not the case with other 

directional transforms such as Gabor wavelets.  

Curvelet transform has undergone a major revision since its invention [13]. The first 

generation curvelet transform is based on the concepts of ridgelet transform [13]. The 

Figure 2.4: Calculation of FAR and FRR at a given threshold T. 
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curve singularities have been handled by smooth partitioning of the bandpass images. In 

each smooth partitioned block the curve singularities can be approximated to a line 

singularity. A ridgelet transform is applied on these small blocks, where ridgelets can 

deal the line singularities effectively. To avoid blocking artifacts, the smooth partitioning 

is done on overlapping blocks which results in redundancy, and the whole process 

involves subband decomposition using atrous wavelet transform, smooth partitioning 

and ridgelet analysis on each block; this process consumes more time.  The 

implementation of second generation curvelet transform is based on the Fourier 

transform and is faster, less complex, and less redundant [13]. 

Two implementations have been proposed in second generation curvelet transform, 

one is based on un-equispaced fast Fourier transform (USFFT) and the second one is 

based on wrapping technique [13]. Wrapping based method is simple and easy to 

understand.  

The frequency tiling by the discrete curvelet transform is shown in Fig. 2.5. We can 

observe that the entire frequency plane is covered by the curvelets at different scales 

and orientations. Fig. 2.6 shows some curvelets at different scales and orientations in 

both spatial and frequency domain. As the scale is increased, the curvelets are more 

sensitive to the orientation. This can be observed in this figure. The curvelet in spatial 

domain at scale 4 is smaller and finer to the one at scale 3 and it can be observed that 

curvelets show oscillating behavior perpendicular to the orientation in the frequency 

domain.  
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Discrete curvelet transform of a two dimensional image  [   ] (          

     ) at a given scale, orientation, and position is given by 

  (     )  ∑  [   ]      
 [   ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

      
     

 

where   (     ) is the curvelet coefficient at scale  , orientation  , and position 

 [     ]. In the above equation       
 [   ] is the digital curvelet waveform. In the 

frequency domain the mother curvelet is represented as a product of two windows, 

radial and angular windows as given by, 

    ̃( )    ̃( )  ( )                                                                         

 

 

Figure 2.5: (a) Frequency tiling of whole image by curvelet transform in discrete 
domain (b) Support of a curvelet at scale j in frequency domain showing its length and 
width.  

(a) (b) 
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In the above equation    ( ) is a smooth, real valued, and non negative angular window 

obeying the admissibility conditions and   ̃( ) is the cartesian equivalent of radial 

window, supported on concentric squares and is given by  

  ̃( )  = √    
 ( )    

 ( )                                                

where   is defined as the product of low pass one dimensional windows given by 

  (     )    (      ) (      ) 

Function   is equal to 1 in [-1/2,1/2] and vanishes outside [-2,2].Using the window 

  ̃( )  we can separate the scales of the frequency plane. The angular localization is 

obtained using   ( ). The product of   ( ) and   ̃( ) isolates the frequencies near the 

wedge           ,                [13]. In the frequency domainIn curvelet 

coefficient can be obtained as [20] 

                         [    (        )      (     )] 

where IFFT is the inverse fast Fourier transform and FFT is the fast Fourier transform. 

The digital curvelet waveform in frequency domain is obtained by the product of two 

windows, called radial window and angular window. The support of the wedge like 

digital curvelet waveform is not rectangle and hence IFFT cannot be applied to the 

product to find the curvelet coefficient. A wrapping technique has been developed by 

Cand`es et al. [13] to solve this problem. The idea behind the wrapping technique is to 

select a parallelogram that can support the wedge shaped digital curvelet waveform and 
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wrap the parallelogram around the origin to obtain a rectangular support to apply IFFT. 

The wrapping technique is explained in Fig. 2.7. 

 

 

 

 

 

 

 

 

 

 

 

The periodic tiling of the parallelogram results in a rectangular support at the center on 

which IFFT is obtained. The wrapping based curvelet transform is calculated as follows 

[13]: 

a. Apply the 2D FFT and obtain Fourier samples  ̂[   ] of the image.  

 

 

(a) 

(b) 

Figure 2.6: (a) Curvelet at scale 3 and orientation 1. (b) Curvelet at scale 4 and orientation 
8. Left images are in spatial view and right side images are in frequency view. 
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b. Find the product of Fourier domain digital curvelet waveform and the Fourier 

samples of the image. 

c. Wrap the product around the origin to obtain rectangular support. 

d. Apply the inverse 2D FFT on the wrapped product. 

 

 

 

 

 

 

 

 

This wrapping based curvelet transform is shown Fig.2.8.  

To the best of author’s knowledge, so far only one attempt *8+ has been made to apply 

curvelet transform on palmprint. A modified first generation curvelet transform has 

been used to obtain the directional features. A two dimensional stationary discrete 

wavelet transform using discrete Mayer wavelet have been applied on the input palm 

image (of size 64 x 64) and four subbands were obtained. Ridgelet transform has been 

 Figure 2.7: Wrapping method. The support in a parallelogram is finally 

into a rectangle (Reproduced from [13]). 
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applied on each subband to obtain curvelet coefficients. Finally hard thresholding has 

been applied on the curvelet coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The magnitudes of the significant coefficients and their positions have been used as a 

feature vector.  Euclidean distance was used as a classifier. The method has been tested 

 

Figure 2.8: Curvelet transform using wrapping technique, reproduced from [21]. 
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on a database of 600 samples and reports 95.5% recognition rate and high FAR and FRR 

values (6.25%). Moreover, the size of the curvelet coefficients is 65536 (4x128x128). After hard 

thresholding, even one percent of the coefficient and their positions form a high dimensional 

feature vector.  

2.5 Details of Databases 

 In this section, the details of various databases used in this research are explained. Two 

types of biometric traits are used in this research, palm and face. Three publicly 

available palmprint databases and one face database are used for various experiments. 

PolyU Palmprint Database [17]: PolyU palmprint database is a large publicly available 

database collected at Hongkong Polytechnic University. There are 7752 images collected 

386 different palms. On average 20 images are collected from each palm. The 20 images 

are collected in two different sessions. In each session ten images are collected. The 

average time interval between two sessions is 69 days. Maximum time difference is 162 

days and the minimum time difference is 4 days [5]. The light source and camera focus 

are changed for the second session images. The resolution of the images is 384 x 284 at 

75 dpi. A fixed pegs structure has been used to collect the images.  Some examples of 

the PolyU palm images are given in Fig. 2.9 and Fig. 2.10. In Fig. 2.9 different samples 

from different palm images are shown. It can be observed that both left and right hand 

palm images are available. Fig. 2.10 shows the two different samples of a palm collected 

in two different sessions. The variations in illumination can be observed from these 

images. 
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IIT Delhi Touchless Palmprint Database [15], [16]: IIT Delhi database contains hand 

images collected from touchless imaging setup. There are samples from 235 persons, 

each one providing 5 samples on average. All the images are bit map images of 

resolution 800x600 pixels. There are scale and rotation variations because of touch less 

imaging setup. Some sample images are shown in Fig. 2.11. Variations in scale, 

orientation and illumination can be observed in these images. The scale and rotation 

changes are high compared to the PolyU database. 

GPDS Hand Database [18]:  GPDS hand database contains 1440 images collected form 

144 persons. Ten samples are collected from each person. Images have been collected 

using a desktop scanner at a resolution of 120 dpi. No pegs or templates have been used 

in imaging.  Fig. 2.12 shows some sample images from GPDS database. There are some 

rotations in the images, but no scale changes because of a scanning surface.  

AT & T Face Database (formerly the ORL database of faces) [19]: AT & T face database 

contains frontal face images of 40 different persons collected at the AT & T laboratories 

of Cambridge University. Each person provided 10 sample images, taken at different 

times, different lighting conditions, different expressions and different facial details [19]. 

Fig. 2.13 shows the sample images from the AT & T database. Variations in pose and 

expressions can be observed in this figure. 

 

 



26 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.9: Sample images from the PolyU palmprint database. 

  

Figure 2.10: Two different samples of same person in two session of the PolyU 

palmprint database. 
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Figure 2.11: Sample images from the IIT Delhi palmprint database. 

 

  

Figure 2.12: Sample images from the GPDS hand database. 

 Figure 2.13: Sample images from the AT & T face database. 
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Chapter 3 
 
Curvelet Transform Techniques for 
Uni-modal and Bi-modal Biometric Systems 

 

Two curvelet transform-based methods for biometric person identification are proposed 

in this chapter. The first method is for a palmprint-based uni-modal biometric system 

and the second method is for a bi-modal biometric system using face and palm. In uni-

modal system, a binary code using curvelet directional subband images of a palm is 

obtained to represent the structure of the palm lines. A pixel-level fusion scheme using 

face and palm is proposed for a bi-modal system to improve the performance of 

eigenfaces [29] and eigenpalms.   

3.1 Feature Extraction Technique for Palmprint Based Uni-modal Biometric System 

Important palm lines in low resolution images and their structural details are discussed 

in Section 1.1 and it was discussed that a multi-scale and multi-directional 

representation is desirable in feature extraction. It was argued that the use of curvelet 

transform is worth investigating in extracting palm line features. In this section, a 

curvelet transform-based technique to extract palm line features is proposed.  

Fig. 3.1 shows a cropped palmprint image and its curvelet transform. This transformed 

image is obtained by decomposing the image into 3 scales, decomposing scale 2 into 16 
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directions and scale 3 into 32 directions.  The low pass image and directional bandpass 

images are arranged in a nice format for the display. The curvelet tool box [28] is used 

to calculate and display the curvelet transformed image. Because of the symmetry of 

the directional bandpass images, at each scale only one half of the directional bandpass 

images are sufficient for feature extraction.  Fig. 3.2 shows how the directional bandpass 

images are directly related to the curve and line features of the input palm image. From 

this figure, it can be seen that one of the principal lines is related to the large magnitude 

curvelet coefficients at 3rd scale and 3rd orientation. The arrows in this figure connect 

the corresponding lines and the curvelet coefficients.  Fig. 3.3 shows the optimal sparse 

representation of the curvelet transform. The image in Fig. 3.3a is the original 

preprocessed palm image. The curvelet transform of the original image is computed and 

a threshold is used to keep only 10% of the total coefficients. Inverse curvelet transform 

of these thresholded coefficients is obtained and shown in Fig. 3.3b. Since only 10% 

coefficients are used and the strong lines of the input image are recovered in Fig. 3.3b, it 

is clear that curve singularities are represented by a very small percentage of the 

curvelet coefficients.  These features of curvelet transform clearly indicate that curvelet 

transform is a good choice for the palmprint representation. 

3.1.1 Feature Extraction 

If a given palm image of size 128 × 128 is decomposed into 5 scales, 8 directions at scale 

2, 16 directions at scale 3, and 16 directions at scale 4, then, after excluding redundant 
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directional bandpass images, there are 20 directional bandpass images for feature 

extraction.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:    (a) A preprocessed palm image.  (b) The curvelet transform of the 

palm image (c) Showing lowpass and directional bandpass images in the 

curvelet transform.  
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(b) 

(c) 
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Figure 3.2: (a) A directional subband at scale 3 and direction 3, (b) A directional 

subband at scale 3 and direction 15 and (c) Corresponding palm image. Arrows 

show the corresponding directional features of the input palm image. 

  

(a)                                                       (b) 

Figure 3.3: (a) Original palm image (b) Palm image 

reconstructed with 10 % of the curvelet coefficients. 

  

 

(a) (b) 

(c) 
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The size of the directional bandpass image varies from scale to scale, for example, at 

scale 2 there are 4 bandpass images with size 10 × 21 and 4 with size 21 × 10. Similarly 

at scale 4, four bandpass images of size 35 × 44, 4 images of size 32 × 42, 4 of size 42 × 

32 and 4 of size 44 × 35. Extracting the directional line features from these bandpass 

images and representing in a compact form is a major problem. Here a simple and very 

effective binary coding scheme is presented to represent the information in directional 

bandpass images. The method consists of the following steps. 

Algorithm 1: Generation of Palm Curvelet Code (PCC) 

Step 1 Decompose the preprocessed palm image into a fixed number of scales 

and directions. 

Step 2 Downsample each directional bandpass image by a factor δ. This 

downsampling reduces the size of the feature vector. The range of δ 

depends on the size of the directional bandpass image.  

Step 3 Keep only pre-specified percentage, say κ%, of the coefficients in each 

directional bandpass image, since the lines and curves are represented by 

a small number of the curvelet coefficients. 

Step 4 Divide each row of the downsampled significant coefficient matrix into 

preset number of blocks β.  

Step 5 Each block in a row is coded into a zero or a one. Each block is encoded to 

zero if all the coefficients in that block are zero. Block is encoded to one if 
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there is at least one non-zero coefficient. If the downsampled matrix is of 

size M × N, then the length of the code is Mβ bits.  

Step 6 Repeat the steps 3 to 5 column wise, i.e., divide each column of the matrix 

into k blocks and encode each block. If the downsampled matrix is of size 

M × N, then the length of the code is βN bits. 

Both the row and column codes can represent the structure of the directional bandpass 

image in a compact form. A directional bandpass image of size M × N is represented by 

B bytes where B is (Mβ +βN)/8. The value of β can be between 2 to 5 depending on the 

size of the matrix and is fixed for each scale. The significant coefficient percentage κ is 

between 5%-20%. All the directional bandpass images need not be downsampled, only 

those at higher scales can be downsampled to reduce the size of the code and δ can be 

in the range 0.6-1. 

A PCC is obtained by concatenating row and column codes of the entire directional 

bandpass images. Length of PCC is in hundreds of bytes. Fig. 3.4(a) shows a 

downsampled significant coefficients directional bandpass image. This image is obtained 

by keeping only 15% of the coefficients and downsampling by 0.6. Fig. 3.4(b) is the row 

code obtained by dividing each row into 5 blocks and Fig. 3.4 (c) is the column code 

obtained by dividing each column into 5 blocks. By changing the number of scales of 

decomposition, number of directions at each scale, and downsample ratio different 

lengths of the feature vector can be obtained.  For example, a 344 bytes PCC can be 

obtained for a 128 × 128 size palm image (by selecting number of scales = 5, number of 
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directions = [1,8,16,16,1], β = *1,2,2,5,1+, and δ = [1,1,1,0.6,1]). If the number of 

directions at each scale is increased, then the palm lines are observed with high angular 

resolution. This may result in increase of intra class variations. Therefore the number of 

decomposition scales and directions are empirically selected based on the resolution of 

the input palm image.        

3.1.2 Matching 

The PCC is a binary code and hence a binary distance metric is used to find the distance 

between the two codes.  There are many binary distance metrics in the literature [30]. 

Most of these metrics, such as Hamming distance and Jaccard dissimilarity are based on 

the total number of mismatches. Experiments have been conducted on palm databases 

to evaluate the performance of Jaccard and Hamming distance metrics. A significant 

improvement in verification rates has been observed with Jaccard distance metric, and 

hence Jaccard dissimilarity has been selected as a distance metric to match palmprints.  

If X and Y are two binary vectors and    ,    , and     are the mismatch and matching 

counts defined as follows, 

                (           ) 

                (           ) 

                (           ) 

then, the Jaccard dissimilarity or distance between the two binary vectors can be 

defined as 
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The Jaccard distance is calculated for the given two PCCs. The score should be zero if 

both the palm images are from the same class. But practically zero score is not possible 

because of the intra class variations.  

 

 

  

(a) 

(b) (c) 

Figure 3.4: (a) A downsampled, significant coefficient directional subband, (b) its row 

code, and (c) its column code. 
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3.1.3 Hierarchical Identification using PCC 

Palmprint identification in large size databases is a time consuming process; hence a 

guided search with multiple features will be appropriate for improving the speed of the 

identification process. The proposed PCC can be used in a guided search. The proposed 

code is calculated for different scales and different directions. The code at each scale 

can be used to eliminate some percentage of samples of the large database. Since the 

PCC is obtained using scale 2 to scale 4 CDSCs, there can be two levels in a guided 

search. The hierarchical identification using PCC is described in the following steps. 

Algorithm 2: Guided Search using PCC 

Step 1 Search the registration database with the scale 2 feature vector. Obtain 

subset 1, that contains the feature vectors from the registration database 

with a matching score less than or equal to a preset threshold T1.  

Step 2 Search the subset 1 using scale 3 feature vector and a preset threshold 

T2, to obtain subset 2.  

Step 3 Finally, use the scale 4 feature vector and a threshold T3 to select a 

sample from the subset 2. 

The number of directions at scale 2 is one half of those at scale 3 and the size of the 

directional bandpass images is also small at scale 2 and hence only a small percentage of 

bytes of the PCC are used in the first level identification. This process saves the 

identification time. 
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If τ1 is the time required for a matching by the scale 2 feature vector, τ2 and τ3 are the 

times required for a matching by those feature vectors at scale 3 and scale 4 and D is 

the size of the registration database, then, hierarchical identification takes a time IT 

given as follows  

IT = D x τ1 + (D-E1) x τ2 + (D-E1-E2) x τ3 

where E1 is the number  of the samples eliminated by scale 2 feature vector and E2 is the 

number of samples eliminated by the scale 3 feature vector.  

 

3.2 A Bi-modal Biometric System using Pixel-level Fusion of Face and Palm 

Multimodal biometric systems have gained much concentration over the past few years.  

In multimodal biometric systems different biometric traits are fused to improve the 

performance of the system. Fusion is carried at different levels of an identification 

system.  In [24], information fusion in biometrics is broadly classified into two 

categories, pre-classification fusion and post-classification fusion.   

In Pre-classification fusion, the information is fused before applying a classifier. This 

fusion can be at sensor level or at feature level. In sensor level fusion, different sensor 

outputs are combined. This sensor level fusion may not be feasible for all the cases. The 

output data of the sensors must be compatible. In feature level fusion, the information 

is fused after the feature extraction. This can be simple feature concatenation or 

weighted summation [25].  In the post-classification fusion, the decision information 
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from different classifiers is combined to improve the system performance. In this 

section the author concentrates on pre-classification fusion. 

In this section a pixel-level fusion scheme for face and palmprint using curvelet 

transform is proposed.  The method is given as follows: 

Algorithm 3: Pixel- level Fusion of Face and Palm 

Step 1 Enhance the cropped palm image to elevate the palm lines and to reduce 

the effect of back ground illumination. 

Step 2 Apply a Gaussian smoothing filter and enhance the palm image using 

adaptive histogram equalization. 

Step 3 Resize the palm image to match with the face image size using bicubic 

interpolation [39].  

Step 4 Obtain the curvelet transform of the face and the processed palmprint 

images for a fixed number of scales and directions. 

Step 5 Apply the fusion rule for the lowpass image and each directional 

bandpass image of face and palm.   

Step 6 Find the inverse curvelet transform and obtain the fused face and 

palmprint image. 

Step 7 Take the absolute values of the resultant image and normalize the image. 

If   is the image obtained by the inverse curvelet transform then 

normalized image can be obtained as 
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 (   )  
 (   )      

         
     

In the above equation,      is the minimum value of the image  ,       is 

the maximum value of   ,   is the maximum value of the gray scale range 

(255) and     are the coordinates of the pixel. 

Step 8 Downsample the fused images to 30 × 30 to reduce computational cost in 

feature extraction. 

The fusion process is shown in Fig. 3.5. Fusion rule is a function that takes two curvelet 

coefficients of the face and the palm and produces a resultant curvelet coefficient. If the 

function calculates the mean of the two coefficients, then it is called mean fusion rule; if 

the function results in the maximum of the two coefficients, then the rule is max fusion 

rule, similarly min fusion rule results in the minimum of the two coefficients. Curvelet 

transform produces lowpass image and directional bandpass images, two different 

fusion rules can be selected for lowpass images and bandpass images and hence 

different fusion rules can be formulated. In mean-mean fusion rule, mean fusion rule is 

applied for both lowpass and directional bandpass images, similarly in max-mean fusion 

rule, max fusion rule is applied on lowpass image and mean fusion rule is applied on 

directional bandpass images. Some other possibilities are max-max, mean-max and min-

min fusion rule.  Fig. 3.6 shows the mean fusion rule for lowpass images and Fig. 3.7 

shows the same fusion rule for directional bandpass images. Finally inverse curvelet 

transform results in a fused face and palm image and the resultant image is normalized 

to the gray scale range. Some sample fused images using mean-mean fusion rule are 
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shown Fig. 3.8. From these images it can be seen that both face and palm features are 

available in the fused image.   

 

 

 

 

 

 

 

 

 

 

3.2.1 Feature Extraction and Matching 

Subspace methods, such as principal component analysis (PCA) and independent 

component analysis (ICA) have been already proven to be successful in face recognition 

[29], [32]. In this thesis, PCA method is used to classify the fused face and palmprint 

images.  PCA is a dimensionality reduction technique that transforms the large number 

of correlated variables into a small set of uncorrelated variables. These uncorrelated 

variables are called principal components [31]. These principal components are the 

Figure 3.5: Fusion in curvelet transform domain. 

Palm (PolyU Database) 

 

Face (AT&T Database) 

 

 

Fused Face and Palm 

Inverse 

Curvelet 

Transform 

Curvelet 

Transform 

Fusion 

Curvelet 

Transform 



41 
 

eigen vectors of the covariance matrix. Eigen vectors with non-zero eigen values 

produce orthonormal basis for the given feature space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

   

     

 
 

 

Figure 3.6: Mean fusion of lowpass face and palm images. 

 

 

   

 

   

     

 
 

 

Figure 3.7: Mean fusion of directional bandpass face and palm images. 
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The dimensionality reduction can be achieved by selecting a subset of eigen vectors that 

correspond to the largest eigen values. The PCA algorithm can be summarized as below:  

a. Convert all the training images into column vectors. Let the training set of fused 

images be               where M is the number of training samples. Then the 

size of each column vector     is      .  

b. Calculate the average of the training set denoted by,  , as given below:    

  (
 

 
) ∑   

 

   

 

c. Calculate    for each image   , where    is the difference between image     and 

the average image   .   

         

d.  Obtain the covariance matrix of   

     (
 

 
)∑      

  
            

    

Figure 3.8: Samples of some fused images. 
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               where   [          ].  

e. Calculate the eigen vectors of  . The size of the matrix   is        . Since     

is the size of the image, it is very complicated and time consuming to calculate 

the eigen vectors of such a large matrix. Therefore the eigen vectors  , of the 

matrix     with size M x M are calculated [29].  

f. Calculate the M eigen vectors of     as given below: 

   ∑      

 

   

                    

g. Normalize the eigen vectors to improve the classification accuracy [37]. Choose 

M’ eigen vectors associated with M’ largest eigen values to define the feature 

space [29].  

h. Project the training samples on to this space and calculate the weight vectors. 

These weight vectors along with M’ eigen vectors form the feature space. The 

weight vector of a training image    is calculated as follows 

   [           ] 

where      
        for   = 1,2,...,M’. 

 

3.2.2 Recognition 

When a new query test sample is given, its difference from average space is calculated 

and its weight vector is calculated by projection. This weight vector is compared with 

the weight vectors of the training samples by calculating the Euclidian distance to 
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identify the test sample. If X and Y are the two weight vectors of the test and training 

samples, then the Euclidean distance   is calculated as follows 

   √∑(     )   

  

   

 

where M’ is the length of the feature vector. The training class, that results in a 

minimum Euclidean distance is assigned to the test sample.  

3.3 Summary 

In this chapter advantages of curvelet transform and its ability to represent curve 

features are explained with examples. The problem of feature extraction using the 

directional bandpass images has been discussed.  A simple binary coding technique has 

been proposed to generate PCC and the use of PCC in hierarchical identification has also 

been discussed. A second method in curvelet transform domain for a bi-modal biometric 

system using pixel-level fusion of face and palm has been proposed.  

 

 

 

 

 



45 
 

 

Chapter 4  

Experiments and Analysis 

Two techniques in curvelet transform domain for biometric person identification have 

been proposed in Chapter 3. In this chapter, comprehensive set of experiments are 

conducted to evaluate the performance of the proposed methods and the details of the 

experiments, results and analysis of the two proposed methods are presented. 

4.1 Experiments on Palmprint Based Uni-modal System 

The performance of the proposed method for palmprint based uni-modal biometric 

system is tested on three different palmprint databases. The details of the three 

palmprint databases and the methods of preprocessing have been explained in Chapter 

2. Performance is tested for the two modes of the biometric system, namely, 

identification and verification. Identification and verification experiments are conducted 

on all the three databases.  Since the resolution and method of image acquisition of the 

three palm databases are different, various experiments are conducted by changing the 

parameters of the curvelet transform and the coding scheme. The parameter set that 

gives the best performance is selected for each database. Two sets of parameters are 

selected for the three databases. Two feature vectors of lengths 344 bytes and 380 

bytes are generated using these parameter sets. The parameters used in the extraction 

of the feature vectors and the lengths of the resulting feature vectors are given in Table 



46 
 

4.1. It can be observed from this table that the two feature vectors differ in angular 

resolution, downsample ratio, and the number of coding blocks. The angular resolution 

for 380-byte PCC is twice that of 344-byte PCC.  Experimental results on PCCs of lengths 

398.5, 366, 381.5, and 342.5 are also presented to study the effects of the variations in 

the lengths of the feature vectors on the performance. The experiments are divided into 

three parts. In part 1, experiments are conducted to evaluate the performance of the 

proposed method on person identification without hierarchy, whereas part 2 

experiments are on the person identification with hierarchy. In part 3, experiments are 

conducted to evaluate the performance of the proposed method on the palmprint 

verification.  

Table 4.1: Two parameter sets to generate 344 and 380-byte PCC. 

Parameters Values 

380-byte PCC 344-byte PCC 

Number of scales 5 5 

Number of directions [1,16,32,32,1] [1,8,16,16,1] 

Downsample ratio (δ) at 

each scale  

[1,1,0.7,0.5,1] [1,1,1,0.6,1] 

Percentage of significant 

coefficients (κ) to keep at 

each scale 

[100,15,10,8,100] [100,15,20,18,100] 

Number of blocks (β) [-,2,3,4,-]* [-,2,2,5,-] * 

*Hyphen (-) indicates that the scales are not used in the coding scheme.  
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4.1.1 Experiments on Identification without Hierarchy 

In these experiments, the databases are divided into training and test databases. Three 

tests are performed by changing the number of training samples from 1 to 3. Results are 

obtained for all the possible training sets and the average values of the identification 

results along with their standard deviations are presented. If the total number of 

samples in each class is NSC and the number of training samples is NTS   then there are 

NTE ways to select these NTS   samples as given by 

     (
     
   

)  
     

(       )   (   ) 
  

As discussed in Chapter 2, the images in the PolyU database have been collected in 2 

sessions, and hence, the training samples are taken from only session 1 for a thorough 

testing. Two different test sets are formed for the PolyU palm database. Test set 1 

contains all the images except for the training samples. Test set 2 contains only the 

images collected in session 2. For example, there are 362 classes of different palms with 

20 samples for each palm. If the number of training samples (NTS) is 3, then, Test set 1 

contains 17 x 362 images whereas Test set 2 contains 10 x 362 images of each class. 

There are no exact details of the time delays among the samples for GPDS and IIT Delhi 

databases; hence, there are no special test cases for these two databases. 

Table 4.2 gives the average identification results using Test set 1 of the PolyU database 

for different numbers of training samples. CIR, FIR and FRR are calculated as given in 

Section 2.3. It can be seen from this table that very high identification rates even with 
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small training sample size are possible with the proposed method. It should be noted 

that these results are not the best-case results. They are the average of the all possible 

sample sets collected from only session 1. For example, when the number of training 

samples is set to 2, two samples are selected from session 1 which can be done in 45 

ways (selecting 10 out of 2). The average of all the 45 test cases is calculated. In the case 

of a single training sample set, the samples are collected from both the sessions, and 

hence, there are 20 possible training sets.  It can also be observed from Table 4.2 that 

the deviation from the average rate is also very small indicating a constant performance 

for all possible sample sets. Table 4.3 gives the identification results using Test set 2, 

where training samples are collected from session 1 and test samples are from session 

2. This test is more appropriate to verify the performance on the PolyU database. In all 

these cases FRR is zero and low FIRs are obtained.  Table 4.4 gives the best and the 

worst case CIRs of all the test cases for both the test sets.  

Table 4.2: Identification results on the PolyU database with Test set 1 and 380-byte PCC. 

Number  of 
Training 
Samples 

Average Rates and Standard Deviations Threshold Number of 
Experiments       CIR                               FIR                 FRR 

1 98.06 ± 0.25 1.93 ±0.25 0 0.78 20 

2 98.89 ± 0.17 1.10 ±0.17 0  0.78 45 

3 99.17 ± 0.13 0.82 ± 0.13 0  0.78 120 

 

Table 4.3: Identification results on the PolyU database with Test set 2 and 380-byte PCC. 

Number of 
Training 
Samples 

Average Rates and Standard Deviations Threshold Number of 
Experiments       CIR                               FIR                 FRR 

1 96.51 ± 0.25 3.48 ±0.25 0 0.78 20 

2 98.11 ± 0.27 1.88 ±0.27 0 0.78 45 

3 98.63 ± 0.21 1.36 ± 0.21 0  0.78 120 
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Table 4.4: The best and the worst identification results on the PolyU database on Test 
set 1 and Test set -2 with 380 bytes PCC. 

Number of Training 
Samples 

                         The best and the worst CIR 
              Test set 1                                      Test set 2 

The best CIR The worst CIR The best CIR The worst CIR 

1 98.73 97.74 96.85 96.07 

2 99.26 98.40 98.67 97.37 

3 99.52 98.68 99.19 97.97 

 

Finally, the results comparing the proposed method with the other methods are 

presented in Table 4.5. Based on the training sets and number of experiments, it can be 

observed from this table that the proposed method gives the best identification results 

compared to other methods. The experiments are repeated on the GPDS and the IITD 

palm databases.  Table 4.6 gives the average identification results and their standard 

deviations of the IITD database. The best and the worst CIRs of the IITD database are 

given in Table 4.7. The results on GPDS database are given in the tables 4.8 and 4.9. A 

consistent performance of the proposed PCC is observed form these tables. Experiments 

using different lengths of PCCs are also conducted on all the three databases and the 

results are given in Table 4.10. Parameter values used to generate these PCCs are given 

in table 4.11. The identification rates in the Table 4.10 are the average rates of all the 

possible training sets and the number of training samples is 3. It can be seen from this 

table that the changes in identification rates are very small for GPDS and IITD databases. 

The changes in the PolyU database are considerable for 344- byte PCC. The 344-byte 

PCC is obtained for an angular resolution of 8. It should be noted that the PolyU image 

resolution is 75 dpi. This shows that the selection of angular resolution depends on the 
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resolution of the input palm image. A low angular resolution for high resolution images 

and a high angular resolution for low resolution palm images is desirable. 

Table 4.5: Identification results comparing the proposed method with the other 
methods on the PolyU database. 

Method Recognition 
Rate 

Number of 
Training 
Samples 

Number of 
Test 
Samples 

Number of Classes /Number 
of Samples 

[3] 99.50 800 200 200/5 

[4] 98.00 50 150 50/4 

[7]* 99.00 400 200 100/6 

[6]* 97.00 400 200 100/6 

[8]* 95.50 200 400 100/6 

[33] 95.16 3860 3860 386/20 

[33] 99.69 1544 2316 386/10 (images from session 
2) 

[34] 99.20 1800 1200 300/10 

[5] 97.00 300 1700 100/20 

Proposed 
method 
Test set 1 

99.52  
(99.17) † 

1086 6154 362/20 

Proposed 
method 
Test set 2 

99.19  
(98.63) † 

1086 3620 362/20 

*These methods used samples from both the sessions for training. †The rates are the 
average of the identification rates of 120 experiments. 

 

Table 4.6: Identification results on the IITD database with 380-byte PCC. 

Number of 
Training 
Samples 

Average Rates and Standard Deviations Threshold Number of 
Experiments       CIR                               FIR                 FRR 

1 89.53 ± 0.46 10.46 ± 0.46 0 0.78 5 

2 95.51 ± 0.96 4.48 ± 0.96 0 0.78 10 

3 97.42 ± 0.55 2.57 ± 0.55 0 0.78 10 
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Table 4.7: The best and the worst case identification results on the IITD database with 
380-byte PCC. 

Number of Training Samples The best and the worst CIR 

The best CIR The worst CIR 

1 90.29 89.19 

2 96.92 93.85 

3 98.30 96.35 

 

 

Table 4.8: Identification results on the GPDS database with 344-byte PCC. 

Number of 
Training 
Samples 

Average Rates and Standard Deviations Threshold Number of 
Experiments       CIR                               FIR                 FRR 

1 99.32 ± 0.32 0.67 ± 0.32 0 0.78 20 

2 99.83 ± 0.11 0.16 ± 0.11 0 0.78 45 

3 99.90 ± 0.08 0.10 ± 0.08 0 0.78 120 

 

 

Table 4.9: The best and the worst case identification results on the GPDS database with 
344-byte PCC. 

Number of Training Samples          The best and the worst CIR 

The best CIR The worst CIR 

1 99.76 98.84 

2 100 99.56 

3 100 99.70 

 

In all these experiments, results are obtained using MATLAB code. To test the execution 

time of the proposed method, feature extraction and matching codes are written in C++ 

to test the identification results on the GPDS database.  Intel OPENCV library [36] for 

image processing applications and curvelet tool box [28] are used for this test. For the 

same set of parameters, curvelet transform generates slightly different sizes of 
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bandpass images for MATLAB and C++ implementations, and hence, the PCCs slightly 

differ. For example, the parameter set that generates 344-byte PCC in MATLAB, gives a 

353-byte PCC in C++, but there is very small deviation in the performance. 

Table 4.10: Average recognition rates for all databases for different feature vectors. 
(Number of training samples is 3 for all these cases). 

Database PCC Length in 
Bytes (bits) 

       Average Rates 

CIR FIR FRR 

PolyU Test set 1 398.5 (3188) 98.92 1.07 0 

PolyU Test set 2 398.5 (3188) 98.21 1.78 0 

PolyU Test set 1 342.5 (2740) 99.01 0.98 0 

PolyU Test set 2 342.5 (2740) 98.37 1.62 0 

PolyU Test set 1 344    (2752) 98.14  1.85 0 

PolyU Test set 2 344    (2752) 96.93 3.06 0  

IITD 344    (2752) 97.01 2.98 0 

IITD 398.5 (3188) 97.28 2.71 0 

IITD 342.5 (2740) 97.13 2.86 0 

GPDs 380    (3040) 99.80 0.19 0 

GPDS  381.5 (3052) 99.92 0.07 0 

GPDS  366    (2928) 99.88 0.11 0 

 

Table 4.11: Parameter sets used to generate PCCs of different lengths. 

Length of 

PCC 

Number of 

Directions 

β  δ κ 

398.5 [-,16,32,32,-] [-,2,3,4,-] [1,1,0.5,0.7,1] [100,15,10,8,100] 

342.5 [-,16,32,32,-] [-,2,3,4,-] [1,1,0.5,0.5,1] [100,15,10,8,100] 

381.5 [-,8,16,16,-] [-,2,2,5,-] [1,1,1,0.7,1] [100,15,20,18,100] 

366 [-,8,16,16,-] [-,2,3,4,-] [1,1,1,0.7,1] [100,15,20,18,100] 
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Table 4.12 gives the details of the identification rates and the execution times for both 

the cases. All the experiments are conducted on windows machine with 1.86GHz 

processor speed and 1 GB RAM. MATLAB codes are tested in MATLAB R2007b.The 

execution time in C++ shows the feasibility of the PCC for real time applications. The 

execution time in C++ can be reduced further as the codes are not optimized.  

Table 4.12: Results and execution times of the PCC on GPDS database with 3 training 
samples 

Code Average 

CIR   

Best CIR Feature Extraction 

Time 

Feature Length 

MATLAB 99.90 100 145 ms 344 bytes 

C++ 99.59 100 78 ms 353 bytes 

 

4.1.2 Experiments on Identification with Hierarchy 

In these experiments, hierarchical identification using the proposed method is tested. 

Three stage guided search scheme is selected using scale 2, scale 3 and scale 4 CDSCs. 

The threshold values are selected empirically and set to 0.65, 0.75 and 0.80 for scale 2, 

scale 3 and scale 4 CDSCs, respectively. Three experiments are conducted to test the 

performance of the guided search. In the first experiment the identification results for 

different number of training samples are obtained to compare the performance with 

and without hierarchical search. Table 4.13 gives the hierarchical identification results 

on the PolyU database with Test set 1 using 380-byte PCC. The recognition rates are the 

average values of all the possible test cases. Comparing Tables 4.2 and 4.13, it is clear 
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that identification rates of guided search are 0.97%, 1.45% and 2.91% less than those of 

without guided search for training samples 3, 2 and 1, respectively. In the second 

experiment, the percentage of eliminations by each stage are studied. For this purpose, 

the feature vector of every sample of the PolyU database is identified from the rest 

using guided search and the elimination percentage of each stage are noted. This 

process is repeated for all the samples of the PolyU database and the average of the 

eliminations is noted. Fig. 4.1.1 shows the bar plot of the elimination and candidate 

percentage at each level giving the best, average, and the worst elimination 

percentages. Scale 2 CDSCs can eliminate on average 80.6% of the registration samples 

and scale 3 CDSCs can eliminate 90.6% of the selected sample set by the scale 2 CDSCs. 

In this test each feature vector is compared with 7239 other feature vectors in a guided 

scheme. First stage eliminates approximately 6226 feature vectors leaving 1013 feature 

vectors for the second stage. In a 380-byte PCC, first stage requires only 39 bytes to 

eliminate 80% of the registration database. Second stage utilizes 123 bytes and the third 

stage utilizes remaining 218 bytes. This clearly indicates the effectiveness of the guided 

scheme with respect to the matching time. In third experiment, a large palm database is 

used to study the execution times of the identification methods, with and without 

hierarchy. A large palmprint database is not available, and hence, the three databases 

are combined to form a large database of size 9710 images. All the PolyU images are 

used as test samples. Each PolyU palm image is identified from other 9709 images using 

guided scheme. The time taken to identify all the PolyU images is calculated for both the 

identification methods, with and without hierarchy. The matching times in seconds are 
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given in Table 4.14. From this table it is clear that guided search saves 3 times of the 

time.      

Table 4.13: Average identification rates of guided search on the PolyU database. 

Number of Training 
Samples 

CIR FIR FRR 

1 95.20 ± 0.41 3.27 ± 0.29 1.71 ± 0.2 

2 97.46 ± 0.25 1.76 ± 0.20 0.77 ± 0.1 

3 98.22 ± 0.22 1.29 ± 0.16 0.48 ± 0.07 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.1: Elimination percentage and candidate percentage of the guided scheme at 

each level. 

   Level 1                                               Level 2   
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Table 4.14: Identification times with and without guided search for a large database. 

Identification Method Time in seconds Remarks 

Hierarchical 2047 Time is the total time 
taken to identify 7240 
samples from a given 
registration database of 
size 9710. The method is 
tested in MATLAB R2007B, 
on a desktop with 1.86GHz 
speed and 1 GB RAM. 

Without hierarchy 6395 

 

4.1.3 Experiments on Palm Verification 

In these experiments, verification mode of the biometric system is tested using the 

proposed method. This test is conducted for all the three databases. Each image in the 

database is matched with every other image to calculate the genuine and imposter 

scores. If both the images are from the same class, the matching score is genuine 

otherwise the score is imposter. Since the preprocessing and ROI extraction is not 

perfect, there are some translational and rotational errors in the cropped images. These 

errors may increase the intra class variance and hence different ROIs of the same palm 

image are compared with each image in the database and the minimum of these scores 

is considered for the verification. In total, 9 ROIs are used in this process and are 

obtained by translating the center point of the first ROI into 8 directions by 5 pixels. All 

the genuine scores and imposter scores of a palm database are used for obtaining equal 

error rate (EER), receiver operating characteristics (ROC), and genuine acceptance rate 

(GAR).  In the PolyU database there are 7240 images which accounts for 68780 genuine 
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scores and 26136400 imposter scores. In the GPDS database there are 1440 images that 

results in 6480 genuine scores and 1029600 imposter scores. Similarly there are 2060 

genuine scores and 527875 imposter scores in the IITD database. The verification error 

rates FAR, FRR are calculated for the different thresholds and ROCs are plotted. These 

results are compared with the state of the art method, competitive coding scheme [35].  

Tables 4.15-4.17 give EER and GAR for the lowest FAR for all the three databases. In 

terms of EER, the proposed method outperforms the competitive coding scheme for the 

three databases. Genuine acceptance rates at the lowest false acceptance rates (FAR) 

for the IITD and the GPDS databases are better than those of the competitive coding 

scheme. But, GAR for the PolyU database is 5% less than that of competitive coding 

scheme. All the ROCs for different lengths of PCCs for all the databases are given in the 

Figs. 4.1.2-4.1.4. Even though the results on the PolyU database are not better than 

those of the competitive coding scheme, EER and GAR are still acceptable. These figures 

show that the proposed method for palmprint verification provides a consistent 

performance.  

Table 4.15: EERs and GARs of [35] and proposed method for different lengths of PCCs on 
the PolyU database.  

Method EER GAR @ Lowest FAR 

Competitive Code 0.30 97.89 

PCC 3040 0.26 92.60 

PCC 3188 0.33 89.20 

PCC 2740 0.32 89.90 

PCC 2752 0.42 89.80 
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(a) 

(b) 

Figure 4.2: Comparisons of ROCs of the PolyU database for proposed method and 

competitive coding scheme [35], (a) 3040-bit PCC vs. [35], (b) 2740-bit PCC vs. 

[35]. 



59 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 4.3: Comparisons of ROCs of the PolyU database for proposed method 

and competitive coding scheme [35] (a) 3188-bit PCC vs. [35] and (b) 2752-bit 

PCC vs. [35]. 
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(a) 

(b) 

Figure 4.4: Comparisons of ROCs of the IITD database for proposed method and 

competitive coding scheme [35], (a) 2752-bit PCC vs. [35] and (b) 2740-bit PCC vs. [35]. 



61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Comparisons of ROCs of the IITD database for proposed method and 

competitive coding scheme [35], (a) 3040-bit PCC vs. [35] and (b) 3188-bit PCC vs. [35]. 

(a) 

(b) 
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Table 4.16: EERs and GARs of [35] and proposed method for different lengths of PCCs on 
the IITD database. 

Method EER GAR @ Lowest FAR 

Competitive Code 7.00 26.50 

PCC 2752 1.87 54.80 

PCC 2740 2.67 42.30 

PCC 3040 2.64 43.50 

PCC 3188 2.52 41.10 

 

Table 4.17: EERs and GARs of [35] and proposed method for different lengths of PCCs on 
the GPDS database. 

Method EER GAR @ Lowest FAR 

Competitive Code 0.8636 90.80 

PCC 2928 0.7329 89.30 

PCC 2752 0.6322 92.50 

PCC 3052 0.4750 88.00 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Comparison of ROCs of 2752-bit PCC and the competitive coding scheme 

[35] on the GPDS database.  
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(a) 

(b) 

Figure 4.7: Comparisons of ROCs of the GPDS database for proposed method and 

competitive coding scheme [35], (a) 3052-bit PCC vs. [35] and (b) 2928-bit PCC vs. [35].  
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4.2 Experiments on Bi-modal System 

In this section, experiments on bi-modal biometric system using fusion of face and palm 

at pixel level are detailed. In the proposed bi-modal biometric system two different 

biometric traits, namely, face and palm of the same person are required, but a bi-modal 

database is not available. Therefore, two different databases are selected, one for face 

and one for palm.  A fixed pair of face and palm images are selected and formed a bi- 

modal database. The AT & T face database and the PolyU palm database are selected for 

the experiments. These databases are explained in Section 2.5. The AT & T database [19] 

consists of 400 images from 40 different persons, with 10 samples for each person. The 

PolyU database [17] contains 7752 images of 386 different palms, with 20 samples for 

each palm. To match the size, images of the entire AT & T database are selected and 400 

palm images from the PolyU palm database are selected. As discussed in Section 2.5, the 

PolyU palm images have been collected in two different sessions, ten samples in each 

session. Therefore, for this fusion experiments, the first 40 classes of the palm database 

are selected, and for each class, first 5 samples from session one and last 5 samples 

from session 2 are selected to complete 10 samples set. 

Palm images are enhanced as discussed in Section 3.2.1. A 3 x 3 Gaussian lowpass filter 

with standard deviation of 0.5 is applied to smooth the palm image and adaptive 

histogram equalization is applied to enhance the palm images. Since the fusion process 

requires same size images of face and palm, the processed palm images of size 128 x 

128 are resized to the size of the face image (112 x 92) using bicubic interpolation [39]. 
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Both the images are decomposed into 3 scales. Scale 1 of the curvelet transform is a low 

pass image whereas scale 2 and scale 3 are the bandpass images. Scale 2 bandpass 

image is decomposed into 8 directional bandpass images and scale 3 into 16 directional 

bandpass images. The mean-mean fusion rule as explained in Section 3.2 is used for the 

fusion. Two experiments are conducted to test the proposed method. 

 In first experiment, the performance of the method is verified against the number of 

training samples. Since performance with small sample size is the main objective, 

number of training samples (NTS) is limited to 1, 2, and 3. The average identification 

rates are calculated for each experiment. Experiments are repeated for all the possible 

training sample sets. Since both the sessions of the PolyU palm images are used in the 

fused database, samples are taken only from session one. Out of 10 samples 5 are from 

session 1 and the remaining are from session 2. If the number of training samples is 2, 

then 2 images can be selected in 20 ways from 5 samples. Experiments are repeated for 

all these 20 possibilities; similarly there are 20 possibilities if the number of training 

samples is 3.  For all these experiments number of PCA components (NPCA) is fixed to the 

maximum.  Table 4.18 gives the identification results when the number of training 

samples (NTS) is 1. These results are the average of 10 experiments. The threshold values 

are obtained empirically. Three sets of training samples are taken to calculate the 

maximum distance of the registration database from the test database. The average 

value of these three distances is selected as a threshold.  Same training sets are used for 

face, palm and fused databases. From Table 4.18, it is clear that even with single sample 

registration database, the proposed method achieves above 90% identification rates 
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and the deviation from the average CIR is less than those of face and palm. The 

recognition rates for training samples 2 and 3 are given in tables 4.19 and 4.20. The best 

and the worst recognition rates for different sizes of training sets are given in the Tables 

4.21-4.23. It can be seen from these tables that even the worst case recognition rates of 

the proposed method are better than those of the eigenfaces and eigenpalms. The 

proposed method outperforms eigenface [29] and eigenpalm techniques and yields best 

recognition rates with small sample training sets.  

In second experiment, the performance of the proposed method is evaluated in terms 

of the number of PCA components. Number of PCA components decides the feature 

vector dimension. Experiments are conducted for all the possible training samples and 

the average identification rates are presented. The recognition rates vs. number of PCA 

components for training samples 1, 2, and 3 are shown in Figs. 4.2.1-4.2.3, respectively.   

From these figures it can be observed that the proposed method yields almost 7 to 10% 

improvement compared to eigenfaces [29].  

In the third experiment, the performances of the wavelet fusion and the curvelet fusion 

are compared. Face and palm images are fused using Haar wavelet, decomposing to 3 

scales. The experiments are repeated for all the possible training sets. All the 

recognition rates for all the possible cases are plotted for both the fusion schemes in 

Fig. 4.2.3-4.2.5. From these figures it can be seen that, in most of the cases the curvelet 

fusion is better than the wavelet fusion.  
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4.3 Summary 

In this chapter, comprehensive set of experiments have been conducted on three 

palmprint databases to evaluate the performance of the proposed PCC. The 

performance of the PCC has been verified on two modes of  palmprint based biometric 

systems namely identification mode and verification mode. It has also been 

demonstrated that the proposed PCC can be used in hierarchical identification. The 

extensive experiments and the results indicate that the proposed PCC is a better choice 

compared to other existing methods. Extensive experimentation in terms of feature 

vector dimensions and number of training samples have been conducted on proposed 

pixel-level fusion method and showed that proposed fusion method yields better 

recognition rates compared to eigenfaces [29] and eigenpalms. 

Table 4.18: Performance evaluation of fusion method for NTS = 1, NPCA= 40, and NTE = 10. 

Biometric System Mean CIR (%) 

± Deviation 

Mean FIR (%) Mean FRR 

(%) 

Threshold (x 103) 

Palm 82.02 ± 1.72 17.5 0.47 1.161 

Face 69.77 ± 2.77 29.88 0.33 1.142 

Proposed 90.47 ± 1.10 8.58 0.94 0.834 
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Table 4.19: Performance evaluation of fusion method for NTS = 2, NPCA= 80, and NTE = 20. 

Biometric System Mean CIR (%) 

± Deviation 

Mean FIR (%) Mean FRR 

(%) 

Threshold (x 103) 

Palm 85.64 ± 1.83 12.53 1.82 1.158 

Face 81.17 ± 2.43 18.29 0.53 1.14 

Proposed 91.76± 1.53 3.10 5.12 0.805 

 

 

 

 

Table 4.20: Performance evaluation of fusion method for NTS = 3, NPCA= 120, and           
NTE = 20. 

Biometric System Mean CIR (%) 

± Deviation 

Mean FIR (%) Mean FRR 

(%) 

Threshold (x 103) 

Palm 86.01 ± 2.27 10.32 3.66 1.172 

Face 86.87 ± 2.23 12.64 0.48 1.13 

Proposed 93.66 ± 1.38 3.44 2.89 0.839 
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Table 4.21: The best and the worst CIRs of eigenface, eigenpalm, and the proposed 

fusion method with number of training samples = 1. 

Biometric System CIR 

The Best CIR The Worst CIR 

Palm 84.16 78.88 

Face 72.50 64.72 

Proposed 92.77 89.16 

 

Table 4.22: The best and the worst CIRs of eigenface, eigenpalm, and the proposed 

fusion with number of training samples = 2. 

Biometric System CIR 

The Best CIR The Worst CIR 

Palm 89.68 82.81 

Face 85.62 77.50 

Proposed 95.31 89.06 

 

Table 4.23: The best and the worst CIRs of eigenface, eigenpalm, and the proposed 

fusion method with number of training samples = 3. 

Biometric System CIR 

The Best CIR The Worst CIR 

Palm 90.35 82.50 

Face 91.07 83.92 

Proposed 96.78 90.35 
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Figure 4.8: Recognition rates of the three methods against varying NPCA, when NTS = 1. 

 

Figure 4.9: Recognition rates of the three methods against varying NPCA, when NTS = 2. 
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Figure 4.10: Recognition rates of the three methods against varying NPCA, when NTS = 3. 

Figure 4.11: Comparison of the Wavelet fusion and the curvelet fusion for NTS = 1. 
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Figure 4.12: Comparisons of the Wavelet fusion and the Curvelet fusion for (a) NTS = 2 and 

(b) NTS = 3. 

 
(b) 

 (a) 
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Chapter 5 

 

 Conclusion and Scope for Future Work 

 

5.1 Concluding Remarks 

Automatic person identification is an important task in our day-to-day life. Traditional 

identification methods are based on a claimed identity like personal identification 

number (PIN) and identity card. A disadvantage of these traditional identification 

methods is that any person with the claimed identity will be given authorization. The 

identity cards can be stolen and the PIN can be guessed. Therefore, it is desirable to 

identify the person based on “who he/she is?”. Biometric person identification is a 

solution to this problem, in which the person is identified based on his/her physical or 

behavioral traits. Palmprint is one of the physical traits that can be used in online 

identification systems.  The characteristics in a palmprint are in the form thick and thin 

lines called principal lines and wrinkles, respectively. As the lines and curves are 

scattered and have different thickness, a multi-scale and multi-directional 

representation is more appropriate to represent these principal lines and scattered 

wrinkles. Moreover this multi-scale and multi-directional representation is useful in 

image fusion. Curvelet transform is a multi-scale and multi-directional geometric 
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transform that requires relatively a small number of coefficients to represent edges and 

curves.  

In this thesis, these desirable characteristics of the curvelet transform have been used 

to represent a palm image and two methods have been proposed to devise uni-modal 

and bi-modal biometric systems, respectively. In first method, a simple binary coding 

scheme has been used to represent the multi-scale and multi-directional structural 

information of palm images and a palm curvelet code (PCC) is obtained. In the second 

method, a pixel-level fusion scheme in the curvelet domain has been used for a face and 

palm based bi-modal biometric system.  

The performances of both the uni-modal and bi-modal biometric systems have been 

evaluated using extensive experimentation. The performance of PCC has been evaluated 

on three publicly available palm databases, namely, PolyU, GPDS, and IITD. It has been 

shown that PCC yields higher identification rates and provides a consistent 

performance. It has also been shown how PCC can address the problem of identification 

in large databases and demonstrated that hierarchical identification using PCC improves 

the speed of matching at the cost of a very little loss in accuracy. The execution times 

for both in MATLAB and C++ have been presented and shown the feasibility of the 

method in real time applications.  The performance of the fusion method for a bi-modal 

biometric system has been evaluated on AT&T face database and PolyU palm database. 

Palm and face images have been fused in the curvelet transform domain using mean-

mean fusion rule and a subspace method, principal component analysis (PCA), has been 
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used in feature extraction and matching of the fused images. Performance evaluation of 

the proposed fusion method in terms of the size of the training samples and the 

recognition rates has shown to provide a better performance compared to that of 

eigenfaces and eigenpalms.           

5.2 Scope for Future Work 

The work in this thesis can be modified in a number of ways to improve the speed and 

performance. The following is a brief description of possible areas of future 

investigation. 

 In palm verification using PCC, the palm images are translated in 8 directions to 

avoid translational errors. The effect of translation in curvelet directional bands 

may be studied and different translated PCCs from the curvelet transform of a 

single image may be obtained. This process should improve the speed in the 

verification process.           

 An optimized set of directional bandpass images may be selected to generate a 

PCC. All the directional bandpass images of a particular palm may not be useful 

in identifying the palm from a database. There may be a set of bandpass images 

having large deviation from the imposters. For each palm image in the database, 

one could select a set that is most optimized. This set can be obtained by training 

images. Optimization algorithms such as particle swarm optimization (PSO) [40] 

may be used to find an optimum set for a particular palm class. The algorithm 

should target to improve some of the performance evaluation parameters, such 



76 
 

as EER and the area under the curve of ROC. With an optimized set of directional 

bandpass images, variable length PCCs may be generated. This process may 

improve the accuracy and the speed of identification.  

 The idea of optimization may also be applied to the fusion based bi-modal 

biometric system. Fusion may be carried out for a selected number of sub-bands 

to improve the accuracy. Other feature extraction and classification methods, 

such as independent component analysis (ICA) and Fisher linear discriminant 

analysis (FLDA) may be studied. 
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