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ABSTRACT 

Design and Optimization of Hybrid Electric Vehicle Drivetrain and Control 

Strategy Parameters Using Evolutionary Algorithms 

Chirag Desai 

Advanced propulsion technologies such as hybrid electric vehicles (HEVs) have 

demonstrated improved fuel economy with lower emissions compared to conventional 

vehicles. Superior HEV performance in terms of higher fuel economy and lower 

emissions, with satisfaction of driving performance, necessitates a careful balance of 

drivetrain component design as well as control strategy parameter monitoring and tuning. 

In this thesis, an evolutionary global optimization-based derivative-free, multi-objective 

genetic algorithm (MOGA) is proposed, to optimize the component sizing of a NOVA
®

 

parallel hybrid electric transit bus drivetrain. In addition, the proposed technique has been 

extended to the design of an optimal supervisory control strategy for effective on-board 

energy management. The proposed technique helps find practical trade off-solutions for 

the objectives. Simulation test results depict the tremendous potential of the proposed 

optimization technique in terms of improved fuel economy and lower emissions (nitrous-

oxide, NOx, carbon monoxide, CO, and hydrocarbons, HC). The tests were conducted 

under varying drive cycles and control strategies. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

The growing need to reduce fuel consumption and emissions in the transportation 

sector has inspired urban transit fleet operators to pioneer the adoption of advanced 

electric drive system technologies. Hybrid electric drive systems for transit bus 

applications are being aggressively investigated as a means of improving fuel economy, 

reducing emissions, and lowering operation and maintenance costs [1]. A hybrid electric 

vehicle (HEV) improves overall drive system efficiency, reduces fuel consumption and 

emissions, recovers braking energy, and improves driveability [2]. Conventional transit 

buses exhibit relatively poor fuel economy and moderately high emissions while pure 

battery electric transit buses cannot meet demands of most transit duty cycles.  Moreover, 

all electric range of EVs is limited, due to battery limitations. In addition fuel cell and 

plug-in hybrid electric transit buses are still in their development stages and are not yet 

cost-effective. However, hybrid electric drivetrains that use two or more sources of on-

board energy can easily satisfy urban transit bus drive cycle requirements, while 

dramatically improving fuel economy and emissions. Thus, hybrid electric propulsion has 

emerged as an efficient solution for transit vehicles as well as other light and heavy-duty 

vehicles. 

1.1.1 WORKING PRINCIPLE OF AN HEV DRIVETRAIN 

Typically HEVs have an electric drivetrain equipped with a bidirectional energy 

storage device. Traditional internal combustion engine (ICE) is used as a unidirectional 
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energy source. Using an electro-chemical battery is the most common practice as an HEV 

energy storage device. An ultracapacitor and/or flywheel can also be integrated with 

batteries as a secondary energy source. Fig. 1-1 illustrates the general concept and power 

flow of a typical HEV. In order to satisfy load requirements, the HEV can select any 

power flow path.  Moreover, in an HEV drivetrain, vehicle braking energy can be 

recuperated efficiently. The control strategy of an HEV can be designed for various 

purposes, based on the different combinations of power flows. 

Electric 

Energy 

Converter

Primary 

Energy Source

(ICE)

Electric 

Energy Source

(Battery)

Loads

Energy 

Converter

 

Fig. 1-1 Illustration of power flow within the hybrid electric vehicle drivetrain 

As illustrated in the Fig. 1-1, considering the drivetrain is a combination of fuel 

energy and electric energy, the HEV can work in the following modes [3]: 

 ICE solely drives the load; 

 Electric Motor (EM) solely drives the load; 

 Both ICE and EM drive the load at the same time; 

 ICE charges the Energy Storage System (ESS) and the EM propels the 

vehicle (series HEV); 

 ESS is being charged from load during regenerative braking; 
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 ICE charges ESS; 

 ESS is charged by ICE as well as regenerative braking; 

 Finally, ICE delivers power to drive the vehicle as well as to charge the ESS. 

This liberty to select various power flow combinations creates tremendous 

flexibility of operation compared to conventional vehicles (CVs). However, such an 

operational characteristic introduces an interesting series of performance issues, which 

necessitates careful design of drivetrain components and control strategy parameters.   

1.2 BASIC HEV DRIVETRAIN CONFIGURATIONS 

As discussed in the previous section, propulsion energy of an HEV comes 

generally from two types of sources; one of them must be an electric source. In addition, 

integrating an EM with an ICE is the most practical means of realizing an HEV 

arrangment, before the pure electric vehicle (EV) eventually becomes commercial. Based 

on different combinations of electric and mechanical traction, HEV drivetrains are 

divided into three basic arrangements: series, parallel, and series-parallel combined 

hybrids, as shown in Fig.1-2, Fig.1-3, and Fig.1-4, respectively [4]. 

1.2.1 SERIES HYBRID ELECTRIC VEHICLE 

A series HEV typically consists of an internal combustion engine (ICE) directly 

coupled to an electric generator. The electric motor provides all the propulsion power. 

The electric generator is connected to the DC power bus via a controlled power electronic 

converter. An energy storage system (ESS) is connected to the DC power bus through a 

bidirectional controlled DC/DC converter. The traction motor is connected to the DC 

power bus by means of a motor controller, which is a bidirectional controlled DC/AC 
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inverter. The configuration of a series HEV is shown in Fig. 1-2. The vehicle master 

controller manages power flow based on power demand and power requirement from 

other components. 

Fuel 

Tank
ICE MotorConverterGenerator

ESS

 

Fig. 1-2 Series HEV drivetrain configuration 

In  a series HEV, because of no mechanical connection between the ICE and drive 

wheels, it is possible to operate the ICE very close to maximum effieciency. The ICE 

works in its optimal operation range as an on-board generator, maintaining battery state 

of charge (SOC) [5].  Thus, the control of a series HEV is fairly straightforward, 

compared to other HEV drivetrains. 

At the same time, multiple energy conversion stages exist in a series HEV. 

Mechanical energy of the ICE is converted into electrical energy via the generator. At the 

same time, electrical energy is converted into mechanical energy via the electric motor. 

Thus, the inefficiencies of the generator and traction motor may cause significant losses.  

The electric generator adds additional cost and weight. Because the electric motor 

provides the sole propelling power to the vehicle, in order to satisfy vehicle performance, 

in terms of acceleration and gradeability, the electric motor and the ESS must be properly 

sized. 
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1.2.2 PARALLEL HYBRID ELECTRIC VEHICLE 

In a parallel HEV, both the ICE and the electric motor deliver power to the 

wheels. A parallel HEV configuration offers freedom to choose a combination of traction 

sources. By merging the two different traction sources, a relatively smaller, more 

efficient ICE can be used. In addition, a parallel HEV arrangement requires a relatively 

smaller battery capacity compared to a series HEV, which reduces dirvetrain mass. In 

parallel HEVs, the ICE is not  directly connected to the generator, as in series HEVs. 

Instead, the ICE is directly coupled to the transmission. Output torques of the ICE and the 

EM are mechenically coupled through a torque coupler. The coupling device could be a 

chain drive, a belt drive, or a gearbox. Depending on the position of coupling device, a 

parallel HEV can be further subcategorized as pre-transmission or post-transmission 

parallel HEV [6]. Figs. 1-3 (a) and 1-3 (b) illustrate the configuration of pre-transmission 

and post-transmission parallel HEV, respectively. Occassionally,in parallel HEVs, the 

ICE and the EM drive separate sets of wheels.  Hence, the two torques are coupled 

through the road. This type of parallel HEV provides all-wheel drive capability. Fig. 1-3 

(c) shows parallel through-the- road HEV configuration.  

Fuel 

Tank
ICE

MotorConverter

Transmission

Coupler

ESS

 

(a) Pre-transmission parallel HEV 
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Fuel 

Tank
ICE

MotorConverter

Transmission
Coupler

ESS

 

(b) Post-transmission parallel HEV 

Fuel 

Tank

ICE

Converter

ESS

Transmission Motor

 

(c) Through-the-road parallel HEV 

Fig. 1-3 Parallel HEV drivetrain configurations 

In a parallel HEV drivetrain, both the engine and the electric motor directly 

supply torques to the driven wheels, and no energy conversion occurs. Thus, the energy 

loss is low, which increases overall drivetrain efficiency. Moreover, the parallel HEV  

drivetrain is compact, due to the absence of an electric generator. The small size of ESS 

and EM also makes the parallel HEV an attractive options. However, the control of 

parallel HEV drivetrain is more complicated than a series HEV. 
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1.2.3 SERIES-PARALLEL HYBRID ELECTRIC VEHICLE 

By adding a power split unit between the generator, the electric motor, and the 

engine, the series-parallel hybrid HEV combines the features of a series HEV as well as a 

parallel HEV, as shown in Fig. 1-4. Although it has the advantages of both series and 

parallel configurations, it also has the drawbacks of these two configurations. In addition, 

the technical complexity of the general design and development of the combined HEV 

drivetrain and its precise control strategy is a major challenge. 

Fuel 

Tank
ICE

MotorConverter Transmission

Coupler
ESS

Generator

 

Fig. 1-4 Series-parallel HEV drivetrain configuration 

1.3 CONTRIBUTION OF THE THESIS 

The major contributions of this Thesis include: 

(a) Define and recognize the problem of HEV drivetrain component sizing and 

control strategy parameter optimization. 

(b) Review and classification of HEV control strategies. A detailed overview of 

different existing control strategies, along with their respective merits and 

demerits. The overall effect of different control strategies (CS) on HEV 
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drivetrain efficiency and the compatibility of optimal CS options for parallel 

HEV drive. 

(c) Implementation of multi-objective non-dominated sorting genetic algorithm II 

(NSGA-II) for the parameter optimization of NOVA parallel hybrid electric 

transit bus. 

(d) Analysis and validation of obtained trade-off solutions. 

(e) Introduce a possible future plug-in version of NOVA parallel hybrid transit 

bus, along with a modified structure of a PHEV drivetrain.  

(f) Introduce hybrid vehicle control strategy design using model based graphical 

technique. 

1.4 THESIS OUTLINE 

The contents of this thesis are organized into 7 chapters. This chapter (Chapter 1) 

provided a brief introduction to the project as well as the general concepts and 

configurations of HEVs. It also summarizes the major contribution of the Thesis. 

Chapter 2 presents the HEV optimization problem and issues of classic 

optimization techniques to solve HEV parameter optimization. In this chapter, a 

population based evolutionary optimization alogorithm is discussed as an alternative to 

solve HEV parameter optimization.  

Chapter 3 reviews and categorizes HEV control strategies (CS). This chapter 

provides a detailed overview of different existing CS along with their respective merits 

and demerits. This chapter gives insights into the overall effect of different CS on HEV 

drivetrain efficiency and the compatibility of optimal CS options for parallel HEV 

drivetrains.  
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Chapter 4 presents the basics and applications of multi-objective genetic 

algorithm in NOVA parallel HEV transit bus design problem. In this chapter, the 

parameter optimization of NOVA parallel hybrid electric transit bus is carried out using 

NSGA-II optimization algorithm. The algorithm considers fuel economy as well as 

emissions as design objectives, drivetrain component and control strategy parameters as 

design variables, and vehicle acceleration and gradeability performance criterions as 

constraints. The modeling and simulation test results for the NOVA parallel hybrid transit 

bus parameters are analyzed after optimization, which shows substantial improvements in 

vehicle performance in terms of improved fuel economy and reduced emissions.  

Chapter 5 presents a possible future plug-in HEV version of a NOVA transit bus.  

This chapter also proposes a modified structure of a PHEV drivetrain for a PHEV transit 

bus. Finally, this chapter describes critical PHEV terminologies as well as defines various 

control strategies, with their merits and demerits.  

Chapter 6 expalins HEV control strategy design using Matlab graphical modelling 

technique, more commonly known as Stateflow. 

Chapter 7 summarizes the research conducted in the Thesis and presents the 

overall conclusion. Based on the conclusions of this thesis, and recognizing current 

automotive industry concerns, appropriate future research directions are finally 

suggested. 
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CHAPTER 2 

HYBRID ELECTRIC VEHICLE OPTIMIZATION PROBLEM  

 

2.1 INTRODUCTION 

As was mentioned in the previous chapter, a typical HEV consists of an ICE, an 

EM, single or multiple energy storage systems (ESS), power electronic converters, and 

controllers, with intelligent energy management CS. The drivetrain components and the 

CS have significant effects on fuel economy, emissions, and performance of HEVs [8]. 

Therefore, design of an efficient HEV requires optimal sizing of its important electrical 

and mechanical components as well as fine tuning of CS parameters. However, this 

optimization task becomes more challenging due to the presence of conflicting design 

objectives, i.e., improvement on one criterion deteriorates others, especially with the 

existence of large amount of design variables and nonlinear performance constraints. 

Moreover, the effect of these design parameters on objectives is non-monotonic. The 

response function may be discontinuous and HEV component models are non-

differentiable data maps [9]. Hence, HEV drivetrain parameter optimization can be 

treated as a multi-objective constrained nonlinear optimization problem. 

In this chapter, HEV classic optimization techniques are discussed along with 

their respective merits and demerits. In addition, a population based multi-objective 

optimization approach to handle HEV parameter optimization problem is proposed. 

2.2 HEV PARAMETER OPTIMIZATION 

HEV parameter optimization is multidisciplinary research topic. In the design of 

an HEV, the preliminary goal is to reduce fuel consumption and emissions, along with 
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the best possible sizing of ICE, EM, and ESS, with tuned CS parameters. Moreover, 

vehicle performance constraints have to be satisfied. Typical HEV multi-objective 

problem objectives, design variables, and performance constraints are listed in equations 

(2-1), (2-2) and (2-3), respectively. 

Objectives: 

Minimize F1(X) = {fuel economy}  

     F2(X) = {emissions}        (2-1) 

Design Variables: 

X= {ICE size, EM size, ESS size, control strategy parameters}   (2-2) 

Vehicle Performance Constraints: 

Acceleration time and Gradeability        (2-3) 

Significant portion of recent research work in the field of HEV parameters optimization 

considers only a singular objective, such as fuel economy or emissions, which are mainly 

conflicting parameters. Moreover, most conventional optimization methods are 

deterministic and convert multi-objective optimization problem (MOOP) into a single-

objective optimization problem (SOOP), using artificial fix-up approaches. A global 

optimization approach for simultaneous optimization of HEV parameters has never been 

discussed in literature. In the following subsection, two most popular classic multi-

objective optimization methods are described.  

2.2.1 WEIGHTED SUM METHOD 

In the weighted sum approach, each objective function is multiplied with a user-

supplied weight, and summed together, to form a composite objective function. 

Optimization of the composite objective function results in an individual objective 
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function optimization that highly depends on selected weights. The weight of an 

objective is generally chosen in proportion to the objective‟s relative importance in the 

problem. For example, in an HEV design problem, the emissions are more important than 

fuel economy. Thus, the designer can set higher weights for emissions than the fuel 

economy.  

However, it is possible that different objectives have different orders of 

magnitude. Thus, to set the values of suitable weights and to make objectives equally 

important, normalization of objectives is required. The weighted sum is the simplest and 

the most widely used classic optimization method to solve MOOP. For the problem 

having a convex pareto front, this method guarantees obtaining solutions on the entire 

pareto front. Nevertheless, in major nonlinear MOOPs, it is difficult to set the weight 

vectors, to obtain a solution in a desired region of objective space. The method is unable 

to find optimal solutions for problems with a non-convex pareto-optimal front [10]. For 

example, if the problem of Fig. 2-1 is considered, the method will only discover the curve 

“MN” and “PQ.” However, the curve “NOP” is not discovered. 

2.2.2 ε- CONSTRAINT METHOD 

The ε – constraint method considers one objective function as the main objective 

and the rest as constraints. It then optimizes single-objective problem by restricting each 

of the constraint functions within pre-specified limits [11]. However in the early HEV 

development, it is not certain as to which HEV parameter should be treated as the 

objective and which parameter should be treated as the constraint. Fig. 2-1 shows non-

convex pareto front of two objectives problem. If we consider F2 as an objective and F1 as 

a constraint: F1(X) < ε .If ε1 = ε1
 , the problem with this constraint divides the original 
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feasible objective space into two portions: F1(X) > ε1
  and F1(X) < ε1

 . The left portion 

becomes the feasible solution of the resulting problem, and the task is to find the solution 

which minimizes the feasible region. From Fig. 2-1, it is obvious that point „O‟ can be 

found. In this manner, using ε-constraint methods, intermediate pareto-optimal solutions 

can be found in non-convex objective spaces. 
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Fig. 2-1 Pareto-optimal front for multi-objective optimization problem 

However, in this method, the solutions depend greatly on the values of selected ε 

constraints. If the values of the constraints are too strict, no feasible solutions may be 

found. On the other hand, if they are too loose, the requirements may not be fulfilled 

adequately. Suppose, in Fig. 2-1, ε1
  is selected, there exists no feasible solution. On the 

other hand if ε1
 
 is chosen, the entire search space is feasible and the method will always 

find the optimum „Q‟. In addition, as the number of objectives increases, more 

information about ε vector is required from the designers. 

However, many gradient-based and derivative-free methods of optimization have 
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been proposed to solve this problem. Assanis [12] applied a deterministic sequential 

quadratic programming (SQP) method, to find optimal drivetrain component sizes. Fish 

[13] also executed a series HEV sizing by SQP for a specific combat mission. The 

obtained results proved that SQP converges to local optimum and is not suitable for HEV 

optimization problem. In reality, SQP relies on the derivative information of the objective 

function, although the derivative information is not always on hand. For example, the 

HEV objective functions are discontinuous and discrete. At the same time, HEV 

component models are non-differentiable. Fellini [14] and Wipke [15] have applied 

derivative free DIRECT [16] search methods, in HEV optimizations problems to conquer 

the limitation of gradient-based methods. They concluded that derivative-free methods 

are more efficient than gradient-based SQP. However, DIRECT optimization methods 

require a large number of function evaluation and they show slow convergence. 

To eliminate these issues related to all classic optimization methods, considerable 

research has been done in the development of an efficient population based optimization 

approach of multi-objective evolutionary algorithm (MOEA). Moreover, the concept of 

dominance aids to resolve some of the issues of classic methods and provides a practical 

means to handle multiple objectives. An elitist non-dominated sorting genetic algorithm 

(NSGA-II) has been proven to be an effective tool in solving multi-objective design 

optimization problems and to find multiple trade-off solutions in a single simulation run. 

In addition, NSGA-II does not require any artificial fix-ups and information about 

objective function gradient. Obtained multiple solutions give the designer a comparative 

scenario to select compromised optimal solution.  The main idea of this research work is 

to handle a constrained multi-objective optimization problem using NSGA-II, for  NOVA 

parallel HEV transit bus parameters. More detailed work of NOVA parallel hybrid transit 
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bus design optimization can be found in chapter 4.  

2.3 SUMMARY 

An HEV optimization problem is formulated as a constrained nonlinear 

optimization problem. Many classic, gradient-based and derivative-free methods of 

optimization have been proposed. Most of them repeat multiple simulations with different 

weights and constraint values to identify multiple trade-off solutions. This approach is 

effective only when suitable weights and constraint bounds are capable of accurately 

indicating the desired compromised among the design. However, there exist a few 

disadvantages using this approach:   

(1) Requires strong assumptions for the objective function so that appropriate 

weights associated with objectives can be specified; 

(2) Single solution for each objective optimization problem is obtained without 

any other information about trade-off among objectives; 

(3) Weighted sum and ε-constraint strategy may result in a suboptimal solution, if 

the objectives trade-off results in non-continuous and/or non-convex behaviour 

in function space; 

(4) Methods work on pre-defined rules. Hence, the method can only be efficient in 

solving a special class of problem and cannot be applied to a wide variety of 

problems.  

However, population based MOEAs project a tremendous potential for HEV 

design problems; involve numerous local minima, discontinuity in objective function, and 

nonlinear constraints. Moreover, MOEAs do not require any user dependent artificial fix-
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up or information about derivative of objectives. It can find multiple trade-off solutions in 

a single simulation run.  
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CHAPTER 3 

OVERVIEW OF HYBRID ELECTRIC VEHICLE CONTROL 

STRATEGIES 

3.1 INTRODUCTION 

HEVs can significantly improve fuel economy and reduce emissions with 

satisfactory vehicle performance [3]. Typical HEVs consist of an internal combustion 

engine (ICE), electric motor (EM), single or multiple energy storage systems (ESS), 

power electronic converters, and controllers. Regardless of the HEV architecture 

employed, critical tasks in the control of an HEV include optimal power spilt between 

ICE and EM as well as smart and efficient co-ordination between multiple energy sources 

and converters. To monitor these aspects, implementation of an intelligent control 

strategy is inevitable. Control strategies (CS) for HEVs are sets of algorithms 

implemented in the vehicle master controller, which optimally controls the generation 

and the flow of power between drivetrain components. Fig. 3-1 displays a typical HEV 

layout, with energy management controller. Inputs to the energy management controller 

are the drive‟s power demand, vehicle speed or acceleration, energy storage state of 

charge, present road load and even sometimes the information about future traffic 

conditions from Global Positioning System (GPS). The outputs of the energy 

management controller are decisions to turn-off or turn-on of the drivetrain components, 

the transition of their operating points by commanding subsystem controllers to achieve 

best performance and overall system efficiency. Due to the complex structure of HEVs, 

the design of control strategies presents a considerable challenge. The preliminary 

objective of the control strategy is to satisfy the driver‟s power demand, while 
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minimizing fuel consumption and emissions, without compromising vehicle performance 

constraints, such as acceleration, gradeability, and regulation of ESS state of charge 

(SOC). Moreover, fuel economy and emissions minimization are conflicting objectives, a 

smart control strategy should satisfy a tradeoff among them. 
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Fig. 3-1 Energy management controller layout 

In this chapter, various HEV control strategies will initially be reviewed and 

categorized. A detailed overview of different existing control strategies along with their 

respective merits and demerits will be presented. The overall effect of different control 

strategies on HEV drivetrain efficiency will be focused upon, and the compatibility of 

optimal CS options for parallel HEV drivetrains will be investigated. A broad 

classification of HEV control strategies is presented in Fig. 3-2. HEV control strategies 
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(CS) are broadly classified into rule-based CS and optimization-based CS and all other 

subcategories are classified based on these two main categories. 
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Fig. 3-2 Classification of hybrid electric vehicle control strategies 

3.2 RULE-BASED CONTROL STRATEGIES 

Rule-based control strategies are fundamental control schemes that depend on 

mode of operation. They can be easily implemented with real-time supervisory control, to 

manage power flow in a hybrid drivetrain. The rules are determined based on human 

intelligence, heuristics, or mathematical models and generally, without a beforehand 

knowledge of a predefined drive cycle. Most of the described rule-based (RB) control 

strategies are based on „IF-THEN‟ type of control rules and perform load balancing 
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within the vehicle [17], [18]. The main goal of load balancing is to move ICE operation 

closer to optimal region of fuel economy, efficiency, and emissions at particular ICE 

speed. However, for this type of system, fairly good fuel economy can be found at lower 

engine torques and speeds than the best efficiency. Thus, small acceleration demand can 

result in higher fuel economy [19]. The difference between driver‟s power demand and 

ICE generated power is compensated by using EM or utilized to charge by using EM as 

generator. This strategy is further subcategorized into deterministic rule-based and fuzzy 

rule-based and these approaches are discussed in following subsections. 

3.2.1 DETERMINISTIC RULE-BASED CONTROL STRATEGIES 

The rules are designed with the aid of fuel economy or emission data, ICE 

operating maps, power flows within the drivetrain, and driving experience. 

Implementation of rules is performed via lookup tables, to share the power demand 

between the ICE and the electric traction motor. 

3.2.1.1 THERMOSTAT CONTROL STRATEGY 

The thermostat control strategy uses the generator and ICE to generate electrical 

energy used by the vehicle. In this simple control strategy the battery state of charge 

(SOC) is always maintained between predefined high and low levels, by simply turning 

on or off the ICE [3]. Although the strategy is simple but it is unable to supply necessary 

power demand in all operating modes. This strategy is very effective for a series hybrid 

city transit bus running on prescheduled driving routes. 
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3.2.1.2 ELECTRIC ASSIST CONTROL STRATEGY 

The most successful commercially available HEVs have adopted electric assist 

control strategy approach [20]. In this strategy the ICE works as the main source of 

power supply and electric motor is used to supply additional power when demanded by 

the vehicle. Due to charge sustaining operation, the battery SOC is maintained during all 

operating modes. The electrical assisted control strategy works on following rules: 

(1) Below certain minimum vehicle speed, the vehicle works as a pure Electric 

Vehicle (EV), and only the electric motor is supplying total power; 

(2) The electric motor is used for power assist, if the required power is greater than 

the maximum engine power, at the engine‟s operating speed; 

(3) To avoid inefficient operation, the ICE turns off, if the power required is below 

minimum limit, and the electric motor will produce the required power; 

(4) Motor charges the battery during regenerative braking events;  

(5) When battery SOC is lower than its set minimum value (cs_lo_soc), the ICE 

produces extra torque to sustain battery SOC.  

ICE operation modes are shown in Fig. 3-3 and Fig. 3-4.  Fig. 3-3 represents the 

ICE operation when current battery SOC > (cs_lo_soc). In this situation EM delivers 

power to keep ICE operation in efficient region. To avoid inefficient operation of ICE, 

ICE should turn off when (a) vehicle speed < cs_elec_launch_speed and (b) add_trq + 

cs_charge_trq < ICE off torque. ICE off torque is obtained by equation (3-1)  

τICE off   τoff  frac.   τmax                                                                    (3-1) 
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Fig. 3-3 Engine operation when SOC > (cs_lo_soc) 

However, if current SOC is lower than (cs_lo_soc), the situation is a little 

complex. In Fig 3-4, if the requested engine torque is at the operation point “A,” the 

engine will work at point “B” since it must provide the additional power to charge the 

battery. Required additional torque from ICE is calculated using equation (3-2). This 

additional charging torque is proportional to the difference between actual SOC and the 

average of (cs_lo_soc) and (cs_hi_soc). 

τadditional   τcharge   
cs lo soc   cs hi hoc 

2
- SOC                                                        (3-2) 

Also, if the requested torque is at point “C”, and this torque plus the additional 

charge torque is below the “Minimum Torque Envelop”, the ICE will work at minimum 

ICE efficiency operating point “E” instead of “D”.  Minimum efficiency operating point 

is calculated using equation (3-3) 
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Fig. 3-4 Engine operation when SOC < (cs_lo_soc) 

3.2.2 FUZZY RULE-BASED CONTROL STRATEGIES 

Fuzzy systems are knowledge-based or rule-based systems. The knowledge of an 

expert can be used to form a rule base and by utilizing decision making quality of fuzzy 

logic, a real time control can also be realized [21].  Fuzzy logics are non-linear structure 

with robustness against imprecise measurement and component variability and if required 

they can be tuned and adapted easily, thus increasing the degree of freedom of control. 

Due to the highly nonlinear, time varying nature of the parallel HEV drivetrain, control 

strategy implementation using fuzzy logic control is one of the most reasonable methods 

to handle HEV energy management problems [22]. 
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3.2.2.1 TRADITIONAL FUZZY CONTROL STRATEGY 

Efficiency is decided based on the selection of input, output, and rule-base of this 

control strategy [23]. Two operating modes; namely, optimum fuel-use and fuzzy 

efficiency modes, are used to control drivetrain operation. The fuzzy logic controller 

accepts battery SOC and the desired ICE torque as inputs. Based on these inputs as well 

as the selected mode, the ICE operating point is set. Power requested by the electric 

traction motor is the difference of total load power request and power requested from 

ICE, which can be calculated from Equation (3-4). 

PEM   PLOAD - PICE                       (3-4) 

In the optimum fuel-use strategy, the fuzzy logic controller limits instantaneous 

fuel consumption, calculated from the fuel-use map, and maintains sufficient battery 

SOC, while delivering demanded torque. Inputs to the controller are an error between the 

desired fuel consumption and actual fuel consumption, the total power demanded, as well 

as the battery SOC, as shown in Fig. 3-5. However, this strategy does not consider ICE 

efficiency maps. 
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Fig. 3-5 Fuel-optimized fuzzy logic controller 
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In the fuzzy efficiency strategy, the ICE is operated in its most efficient operating 

region. The operating points of the ICE are set near the torque region, where efficiency is 

the maximum, at particular engine speed [24]. Load balancing is achieved by using the 

electric motor. This CS uses the motor to force the ICE to operate in the region of 

minimal fuel consumption, while maintaining SOC in battery. Load balancing is 

necessary to meet power demand and avoid unnecessary charging and discharging of the 

ESS. A major drawback of this CS is that the peak efficiency points are near the high 

torque region, whereby the ICE generates more torque than required, which in turn 

increases fuel consumption. Also, during load balancing, heavy regeneration over charges 

the ESS. To avoid this scenario, this CS should be used with a downsized ICE [20].  

3.2.2.2 ADAPTIVE FUZZY CONTROL STRATEGY 

With this strategy, both fuel efficiency and emissions can be optimized 

simultaneously. However, fuel economy and emissions are conflicting objectives, which 

means an optimal solution cannot be achieved to the satisfaction of all objectives. The 

optimal operating point can be obtained using weighted-sum approach optimization of 

conflicting objectives. Due to various driving conditions, appropriate weights have to be 

tuned for fuel economy and emissions. Within areas with stringent air pollution laws, 

operating points with high emissions are heavily penalized. The conflicting objectives 

within the adaptive fuzzy logic controller, presented in [25], include fuel economy, NOX, 

CO, and HC emissions. However, due to different dimensions, the values of fuel 

economy and emissions cannot be directly compared with one another. In order to weigh 

the interrelationship of the four contending optimising objectives with a uniform 

standard, it is essential to normalise the values of fuel economy and emissions by 
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utilising the optimal values of fuel consumption and emissions at current speed. Optimal 

values of fuel economy and emissions at particular ICE speed can be obtained from ICE 

data map. 

The overall problem formulation is described by Equation (3-5), where J is the 

cost function, parameters η, NOX, HC, CO are normalized values of efficiency, NOX, CO, 

and HC emissions, respectively, and wi are weights. 

min  J   W1 1 -η    W2NOX  W3HC  W3CO              (3-5) 

Relative weights are adaptively assigned to each parameter based on their 

importance in different driving environments. Moreover, weights must be selected for 

each ICE, based on their individual data maps. This control strategy is able to control any 

one of the objectives, by changing the values of relative weights. Furthermore, 

tremendous reduction in vehicle emission is achieved, with negligible compromise in fuel 

economy.  

3.2.2.3 PREDICTIVE FUZZY CONTROL STRATEGY 

If information of the driving trip is prior knowledge, it is extremely trivial to 

obtain a global optimum solution, to minimize fuel consumption and emissions. 

However, primary obstacles entailed include acquiring future information of planned 

driving routes and performing real-time control. With the aid of a Global Positioning 

System (GPS), this problem can be bypassed, with knowledge of the type of obstacles 

that will be faced in the near future, such as heavy traffic or a steep grade. Thereafter, 

control actions can be executed, to account for specific situations. For example, if the 

vehicle is on a highway, entering a city, where heavy traffic may be encountered, it is an 

intelligent decision to restore more energy, by charging the batteries, for later use, in 



27 

 

possibly all-electric city driving conditions. A predictive control strategy is proposed in 

[25], to achieve a higher degree of control over the fuel economy and emissions. A 

general overview of the concept is shown in Fig.3-6 
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Fig. 3-6 Structure of fuzzy predictive controller 

General inputs to the predictive fuzzy logic controller are vehicle speed variation 

corresponding to recent speeds, the speed state of the vehicle in a look-ahead window, 

and elevation of sampled points along a predetermined route, from the GPS. Based on 

available history of vehicle motion and the possible changes to vehicle motion in the near 

future, the fuzzy logic controller starts to calculate the optimal ICE torque contribution 

for the current vehicle speed. Supplied information of the future is a sampled set in a 

look-ahead window, along a planned driving route. The output of the predictive fuzzy 

logic controller is a normalized GPS signal in (−1, +1), which informs the master 
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controller to charge or discharge the batteries, to restore enough energy for future vehicle 

operating modes. For example, if the navigation system indicates an “uphill grade” and 

“slow traffic,” the predictive controller commands the main controller to charge batteries 

instantaneously. 

3.3 OPTIMIZATION-BASED CONTROL STRATEGIES 

 In optimization-based control strategies, the reference of the optimal torques and 

optimal gear ratios can be found by minimizing the cost functions of fuel consumption 

and/or emissions. Global optimum solutions can be obtained by performing optimization 

over a fixed driving cycle. However, with these control techniques, real-time energy 

management is not directly possible. At the same time, the results of these strategies 

could be used to compare the features of other control strategies [26], and also as base to 

define rules for online implementation. Also, on basis of an instantaneous cost function, a 

control strategy based on a real time optimization can be obtained. This instantaneous 

cost function relies on the system variables at the current time only and also, to guarantee 

the self-sustainability of the electrical path it should include equivalent fuel consumption. 

Although the solution obtained with such strategy is not globally optimal, but it can be 

utilized for real time implementation. 

3.3.1 GLOBAL OPTIMIZATION 

Global Optimization technique requires the knowledge of the entire driving 

pattern. It includes battery SOC, driving conditions, driver response, and route prediction. 

This method can be a good analysis, design, and assessment tool for other control 

strategies. However, due to computational complexity, they are not easily implementable 

for practical applications. Linear programming [27], dynamic programming [28], and 
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genetic algorithms [29] etc. are used to resolve vehicle energy management issues. 

3.3.1.1 LINEAR PROGRAMMING 

Energy management in an HEV using the Linear Programming (LP) technique is 

introduced in [27]. The problem of optimization of fuel economy is considered as a 

convex nonlinear optimization problem, which is finally approximated by a linear 

programming method. More specifically, LP is mostly used for fuel efficiency 

optimization in series HEV topologies. Formulation of fuel economy improvement 

problem as an LP can obtain globally optimal solution. However, approximate 

formulation of the problem restricts the application of LP to merely the uncomplicated 

series HEV architecture. 

3.3.1.2 DYNAMIC PROGRAMMING 

 The dynamic programming (DP) technique was originally developed by Bellman, 

to find optimal control policies for multi-stage decision processes. Opposite to the rule-

based algorithm, the dynamic optimization approach generally depends on a model to 

compute the best control strategy. Analytical or numerical models can be used. For a 

particular driving cycle, the optimal control strategy to achieve the best fuel economy can 

be obtained by solving a dynamic optimization problem. References [28] and [31] utilize 

the DP technique to solve the optimal power management problem of an HEV, by 

minimizing a cost function over a fixed driving cycle. To reduce the computational 

burden of the DP, they include only fuel consumption, NOx and PM emissions of the 

vehicle as state variables. 

This technique can efficiently handle nonlinearity, while searching a global 

optimum solution. It can also provide a logical approach for optimal HEV power 
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distribution. However, computational complexity of the programming method is a major 

constraint. 

3.3.1.3 GENETIC ALGORITHM 

Genetic algorithms (GA) are stochastic global search techniques, which mimic the 

process of natural biological evolution (survival of the fittest). They have been proven to 

be effective to solve complex engineering optimization problems, characterized by 

nonlinear, multi-modal, non-convex objective functions. GA is efficient at searching the 

global optima, without getting stuck in local optima [32]. 

The process begins with a set of potential solutions or chromosomes (usually in 

the form of bit strings) that are randomly generated or selected. The entire set of 

chromosomes forms a population. The chromosomes evolve during several iterations or 

generations. Three commonly used operations are employed: reproduction, crossover, 

and mutation. These 3 operators are applied, in turn, to the solutions in the current 

generation, during the search process. The chromosomes are then evaluated using a 

certain fitness criteria and the best ones are selected, while the others are discarded. This 

process repeats until one chromosome has the best fitness, and thus, is chosen as the best 

solution of the problem [33]. Unlike the conventional gradient based method, the GA 

technique does not require any strong assumption or additional information of objective 

parameters. GA can also explore the solution space very efficiently. However, this 

method is very time consuming, and does not provide a broader view to the designer. 
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3.3.2 REAL-TIME OPTIMIZATION 

Due to the causal nature of global optimization techniques, they are not suitable 

for real-time analysis. The main aim is to reduce global criterion to an instantaneous 

optimization, by introducing a cost function that depends only on the present state of the 

system parameters [34]. Moreover, global optimization techniques do not consider 

variations of battery SOC in the problem. Hence, in order to derive cost functions for 

instantaneous optimization of power split, while maintaining battery charge, real-time 

optimization is performed. 

3.3.2.1 REAL-TIME EQUIVALENT CONSUMPTION MINIMIZATION SCHEME 

(ECMS) 

References [34]-[36] introduce the application of optimal control theory for real-

time energy management of HEVs. Equivalent fuel consumption is the extra fuel required 

to charge the battery. On this basis, an instantaneous cost function can be calculated and 

minimized, by selecting a proper value for torque split control variable. The total 

equivalent fuel consumption is the sum of the real fuel consumption of ICE and the 

equivalent fuel consumption of electric motor. This allows a unified representation of 

both the energy used in the battery and the ICE fuel consumption. Reference [35] 

approaches this problem by calculating the equivalent fuel consumption, using mean 

efficiencies. 

Using this method, equivalent fuel consumption is calculated on a real-time basis, 

as a function of the current system measured parameters. No future predictions are 

necessary and only a few control parameters are required, which vary from one HEV 
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topology to another, as a function of the driving conditions. The only disadvantage of this 

strategy is that it does not guarantee charge-sustainability of the plant. 

3.3.2.2 MODEL PREDICTIVE CONTROL 

The equivalent fuel consumption, represented by a cost function over a look-

ahead window, to find a real-time predictive optimal control law, was introduced in [37]. 

The information supplied by the navigation system, corresponding to future states, is a 

sampled set in a look-ahead window, along a planned route. The value of the look-ahead 

window length and the number of samples in the region are set, based on optimal values 

for a given drive cycle and vehicle configuration. At each sampled point, traffic 

information, such as speed of the vehicle and elevation at that point, are collected. The 

speed state of the vehicle and elevation in the look-ahead zone are selected as the average 

of the sampled points. Optimal control theory is proposed to solve such a problem. This 

approach, which utilizes the preview driving pattern and route information, depicts 

superior fuel economy. A sample look-ahead window is shown in Fig. 3-7. 
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Fig. 3-7 Look-ahead window for predictive control 
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3.4 SUMMARY 

In this chapter, various hybrid electric vehicle energy management control 

strategies were discussed and contrasted in detail. The control strategies discussed varied 

from traditional on-off type thermostat control to advanced model predictive and adaptive 

control. In general, HEV control strategies were classified as rule-based and 

optimization-based. The classified control strategies were discussed, in general, and their 

sub-categories were introduced briefly, whereby their merits and demerits were 

highlighted. A comparative summary of global optimization techniques are listed in 

Table 3-1.  

Table 3-1 Comparison of optimization-based control strategy 

Technique Robustness 
Real-time 

Capability 

Computation 

Intensity 

Complex 

Structure 

Linear 

Programming 
- - - + + - 

Dynamic 

Programming 
- - - + 

Genetic 

Algorithm 
+ - - + + 

Although global optimization-based strategies cannot be used in real-time 

applications, but they provide a solid platform for design and comparison. From an online 

implementation point of view, optimal real-time and fuzzy rule-based methods are 

deemed highly suitable. Because of their adaptive and robust characteristics, fuzzy rule-

based control strategies are superior, compared to deterministic rule-based methods. 
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Following points should be taken into consideration while comparing HEV energy 

management control strategies: 

a) Computational complexity is a major issue in analytical optimal control methods, 

since they are more memory intensive than fuzzy rule-based methods. 

b) Since analytical optimal methods are based on drivetrain models, any uncertainties 

in modeling would affect the controller. On the other hand, fuzzy rule-based 

methods are robust and insensitive to modelling uncertainties. 

c) Information from the navigation system can be used for predictive and future 

control. However, this not only increases the number of inputs, but also makes for 

a much more complicated rule-based system. Nevertheless, the analytical optimal 

controller can obtain a semi-global solution without any complexity. 

d) Much more complicated controllers would be needed for complex HEV 

drivetrains. On the other hand, fuzzy rule-based methods are more flexible. 

Although the listed control strategies provide a fairly strong comparative view to 

the EV/HEV designer, there exist a few important points that can be considered for future 

development work. Energy storage devices are vital elements of EV/HEV drivetrains. 

Payback period, maintenance cost, and replacement cost of energy storage devices are 

strongly dependent on durability of these devices. Hence, it is advisable to design a 

control strategy keeping in mind extension of durability of the energy storage system. In 

future all-electric and plug-in electric vehicle architectures, additional energy storage 

components, such as ultra-capacitors and flywheels will most definitely be incorporated, 

which will require innovative and efficient power management strategies. 
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CHAPTER 4 

MULTI-OBJECTIVE OPTIMIZATION OF NOVA PARALLEL 

HYBRID TRANSIT BUS  

4.1 INTRODUCTION 

In chapter 2, the HEV optimization problem is formulated as a constrained 

nonlinear optimization problem. Many classic, gradient-based and derivative-free 

methods of optimization have been proposed to handle HEV optimization problem. They 

repeat multiple simulations with different weights and constraint values, to identify 

multiple trade-off solutions. These approaches are effective only when suitable weights 

and constraint bounds are capable of accurately indicating the desired compromise 

among the design. Moreover, these methods require strong assumptions for the objective 

function, so that appropriate weights associated with objectives can be specified. A single 

solution for each objective optimization problem is obtained without any other 

information about trade-off among objectives.  

Gradient based methods are not efficient for HEV parameter optimization, since 

they require derivative information of objective function. However, derivative-free 

DIRECT search method is more efficient than gradient-based SQP. However, this 

optimization method requires a large number of function evaluations and they show slow 

convergence. 

However, population based MOEAs project a tremendous potential for HEV 

design problems; they involve numerous local minima, discontinuity in objective 

function, and nonlinear constraints. Moreover, MOEAs do not require any user dependent 
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artificial fix-up, information about derivative of objectives, and can find multiple trade-

off solutions in a single simulation run.  

In this chapter, parameter optimization of NOVA parallel hybrid electric transit 

bus, using one the most efficient multi-objective optimization algorithm, NSGA-II, is 

devised. The algorithm considers fuel economy as well as emissions as design objectives, 

drivetrain component and control strategy parameters as design variables, and vehicle 

acceleration and gradeability performance criterions as constraints. Performance of the 

NOVA parallel hybrid electric transit bus is evaluated using the Advanced Vehicle 

Simulator (ADVISOR) software [20].  

Moreover, in this chapter, the basics and applications of multi-objective genetic 

algorithm (MOGA) in the proposed design problem are explained. Multi-objective 

problem of NOVA parallel hybrid transit bus is formulated. Modeling and simulations as 

well as performance of NOVA parallel hybrid transit bus parameters optimization are 

analyzed for different drive cycles.  

4.2 VEHICLE MODELING AND CONTROL STRATEGY  

4.2.1 PARALLEL HYBRID ELECTRIC TRANSIT BUS DRIVETRAIN 

The drivetrain of a parallel HEV is illustrated in Fig. 4-1. For modeling and 

simulation, a NOVA low floor transit bus database, available in ADVISOR, is used. In a 

parallel HEV, both the internal combustion engine (ICE) and the electric motor (EM) 

deliver power to the wheel. The electric motor works as a generator either during 

regenerative braking or while absorbing additional power from the ICE. In this case, the 

output of ICE is greater than the required power to drive the vehicle, and energy storage 
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state of charge is below the maximum level [3]. In some cases, ultra-capacitors and/or 

flywheels can be hybridized with a battery pack, to further enhance vehicle dynamic 

performance. 

1

2

3

4

5

6

7

8

1) ICE

2) Electric Motor/Generator

3) DC/AC Converter

4) Clutch

Parallel Hybrid Electric Bus Components

5) Transmission

6) Vehicle Electronic Control Unit

7) Energy Storage

8) Final Drive

Power Circuit

Control Circuit

 

Fig. 4-1  NOVA parallel HEV transit bus drivetrain 

High energy density, long life, and reasonable cost make nickel-metal hydride (Ni-

MH) batteries the first choice as the energy storage system (ESS). The drivetrain 

component sizing depends mainly on the driving requirement of the vehicle. The modeled 

vehicle is tested on the Urban Dynamometer Driving Schedule (UDDS), Montreal Pie-IX 

139 bus drive cycle, and the New York bus drive cycle. NOVA bus drivetrain components 

and parameters are listed in Table 4-1 and Table 4-2, respectively. Table 4-3 presents bus 

performance parameters. 
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Table 4-1 NOVA parallel hybrid electric transit bus drivetrain components 

No Component Specifications 

1 Engine Cummins ISL 208kW, 8.9L  Diesel Engine 

2 Electric motor Westinghouse AC Induction motor 

3 Energy storage Ovonic 60 Ah Ni-MH HEV battery, 40 Modules 

4 Transmission ZF Auto Transmission ZF5HP590AT 

Table 4-2 NOVA parallel hybrid electric transit bus parameters 

No Vehicle Type NOVA Low Floor Transit Bus 

1 Vehicle mass  18449 kg  

2 Frontal area 8.0942 m2 

3 Coefficient of drag 0.79 

4 Wheel base 6.19 m 

5 Wheel radius 0.5 m 

6 Rolling resistance coefficient 0.00938 

Table 4-3 NOVA parallel hybrid electric transit bus performance parameters 

No Performance Parameter Value 

1 Acceleration 0 – 80 km/h < 50 sec 

2 Gradeability @ 16 km/h, for 20 sec > 10 %  

4.2.2 PARALLEL HYBRID CONTROL STRATEGY 

HEVs principally employ one or more energy sources for propulsion, which 

require an intelligent power management scheme, known as the control strategy (CS), for 

optimal power sharing among them. These control strategies are sets of algorithms 

implemented in the vehicle master controller [38]. Moreover, the CS has considerable 

effects on the performance of the vehicle. Hence, an optimal control strategy plays a vital 
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role in improving overall performance. In this research work, parameter optimization of 

NOVA parallel transit bus using NSGA-II is analyzed using parallel electric assist and 

fuzzy logic based fuzzy efficiency control strategies. Both control strategies are rule-

based, charge sustaining CS and perform load balancing in the vehicle. Moreover, in both 

control strategies, the ICE works as the main source of power supply, and the EM is used 

to supply additional power, when demanded by the vehicle. Due to charge sustaining 

operation, the battery SOC is maintained during all operating modes. Both electric assist 

and fuzzy efficiency control strategy were earlier described, in chapter 3. The parameters 

of both control strategies are listed in Table 4-4.  

Table 4-4 Parallel electric assist and fuzzy efficiency control strategy parameters 

No Parameters Description 

1 cs_lo_soc Lowest desired battery state of charge 

2 cs_hi_soc Highest desired battery state of charge 

3 cs_electric_launch_speed_lo 
Vehicle speed below which vehicle runs as pure 

electric vehicle (ZEV mode) at low battery SOC 

4 cs_electric_launch_speed_hi 
Vehicle speed below which vehicle runs as pure 

electric vehicle (ZEV mode) at high battery SOC 

4 cs_charge_trq 
Additional torque required from engine to charge or 

discharge the battery based on battery SOC 

5 cs_off_trq_frac 
Fraction of ICE maximum torque at each speed at 

which the ICE should turn off when SOC > (cs_lo_soc) 

6 cs_min_trq_frac 
Fraction of ICE maximum torque at each speed above 

which ICE must operate if SOC < (cs_lo_soc) 
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4.3 MULTI-OBJECTIVE GENETIC ALGORITHM 

Most real-world engineering problems involve simultaneous optimization of 

multiple objectives. Moreover, because of conflicting multiple objectives, a multi-

objective optimization problem results in a number of optimal solutions, known as trade-

off or pareto-optimal solutions. Without any further (higher level) information on a 

problem, any one of these trade-off solutions cannot be treated superior than the other. 

Classic optimization methods follow pre-defined search rules, and convert the multi-

objective optimization problem into a single-objective optimization, using an artificial fix-

up, and can obtain only one trade-off solution in a single simulation run. To obtain 

different trade-off solutions, using classic methods, users have to run the simulation 

multiple times, with different values of artificial fix-up. Therefore, to eliminate these 

issues, deterministic classic search methods have been replaced by population-based 

multi-objective evolutionary optimization methods, which can find multiple trade-off 

solutions in a single simulation run. Moreover, these methods use the concept of 

dominance in their search, and they have been proven to be an effective strategy to solve 

complex engineering optimization problems, characterized by non-linear and non-convex 

objective functions.   

4.3.1 PARETO-OPTIMAL SOLUTION 

 A set of solutions is said to be pareto-optimal, if any improvement in one of the 

objectives inevitably leads to deterioration of at least one of the other objectives. Fig. 4-2 

illustrates a set of solutions of a two-objective problem. It is clear from the figure that, 

solution “O” cannot be treated as optimal, since solution “X” is better than “O” in both 
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objectives. All feasible solutions of search space are inferior in both objectives to those 

lying on the curve “VWXYZ”. Thus, solutions of the curve “VWXYZ” are optimal 

solutions, and termed as “Pareto-optimal” or “trade-off” solutions. The curve “VWXYZ” 

is known as the pareto-optimal front.  

F1F1 (X)

O
V

Y

X

W

Z

F2

F2 (X)

 

Fig. 4-2 Pareto optimal front 

Evolutionary Algorithms (EAs) are population based stochastic global search 

techniques, which mimic the process of natural biological evolution (survival of the 

fittest). Since EAs work with a population of solutions, a simple EA can be used to find 

multiple pareto-optimal solutions in a single simulation run. While dealing with a multi-

objective optimization problem, users are interested in finding as many pareto-optimal 

solutions as they can, and the obtained pareto-optimal solutions must be sparsely spaced in 

the pareto-optimal region. Thus, there exist two important goals of an ideal multi-objective 

optimization algorithm:  

1) To find a set of solutions as close as possible to the pareto-optimal front; 

2) To find a set of solutions as diverse as possible.  
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Over the past decade, a number of multi-objective evolutionary algorithms 

(MOEAs) have been suggested, to find multiple pareto-optimal solutions in a single 

simulation run [11]. The concept of non-domination and explicit diversity preserving 

operator were initially introduced in one of the first Non-dominated Sorting Genetic 

Algorithm (NSGA) [39]. However, this approach has high computational complexity of 

non-dominated sorting, including lack of elitism and specification of the sharing parameter 

(σ share). An improved version of NSGA, utilizing parameter-less elitist approach, named 

NSGA-II, was proposed in [40]. In the study of Zitzler, Deb, and Theile [41], it was 

clearly shown that elitism helps in achieving better convergence in MOEAs. The 

simulation results of NSGA-II for a number of difficult test problems outperformed its two 

contemporary MOEAs, the pareto-archived evolution strategy (PAES), as well as the 

strength-pareto EA (SPEA), in terms of finding a diverse set of solutions and converging 

near the true pareto-optimal set [42], [43]. 

The NSGA-II adopts a non-dominated sorting procedure for unconstrained 

MOOPs and a non-constrain-dominated sorting procedure for constrained MOOPs, to 

distinguish the closeness of the solutions to the pareto front. It also suggests an elite-

preserving strategy, to guarantee convergence. The diversity of the solutions is maintained 

by a crowding distance technique. The constraint multi-objective optimization is 

extremely essential in this research work, from the point of view of NOVA parallel hybrid 

electric transit bus parameter optimization. The advantages and simple methodology of 

NSGA-II encourages the use of the NSGA-II optimization method in this research work. 

The algorithm is outlined in the following subsection.  
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4.3.2 NSGA-II PROCEDURE  

Initially, a random parent population, P0, is created. The parent population is 

sorted based on non-domination. Each solution is assigned fitness equal to the level of 

non-domination (Level 1 is the best level). In this manner, minimization of fitness is 

assumed. An offspring population, Q0, of size N is created, using binary tournament 

selection, crossover, and mutation. Since the elitism is introduced by comparing current 

populations with previously found best non-dominated solutions, the procedure is 

different after the first generation, and onwards. The elitism procedure for t ≥ 1 and for a 

particular generation is described in Table 4-5. 

Table 4-5 NSGA-II elitism procedure 

Rt   Pt   Qt Combine Parent and offspring population 

  = Fast- non dominated-sort (Rt)                 all non dominated fronts of Rt 

Pt  1    and i 1  

Until Pt  1  Fi    N Until the parent population is filled 

Crowding distance  assignment (Fi  Calculate crowding distance in (Fi  

             Fi include ith non dominated front in the parent populations 

       Check the next front for inclusion 

               Sort in descending order using   n 

Pt  1  Pt  1    i           Pt  1 )] choose the first  (N    Pt  1 ) elements of  i 

                                 Use selection, crossover and mutation to create a new 

population Qt +1 

t = t +1 Increment the generation counter 
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At any generation, t, the offspring population, Qt, is created by using Pt parents 

and usual genetic operators like selection, crossover, and mutation. Thereafter, population 

Pt and Qt are combined together, to form a new population, Rt, of size 2N. Then, the 

population Rt is classified into different non-domination classes. Thereafter, the new 

population is filled by points of different non-domination fronts, one at a time. The filling 

starts with the first non-domination front (of class one) and continues with points of the 

second non-domination front, and so on. Since the overall population size of Rt is 2N, not 

all fronts can be accommodated in N slots available for the new population. All fronts 

which could not be accommodated are deleted. This scenario is illustrated in Fig. 4-3. 
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Fig. 4-3 NSGA-II Procedure 

4.3.3 CROWDING DISTANCE CALCULATION  

The crowded-sorting of the points of the last front, which could not be included 

fully, is achieved in the descending order of their crowding distance values and points 

from the top of the ordered list. The crowding distance, di, of point i, is a measure of the 

objective space around point i, which is not occupied by any other solution in the 
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population. The crowding distance, di, of a point in NSGA-II, is the perimeter of the 

cuboid, as shown in Fig. 4-4 formed by using the nearest neighbors in the objective space 

as the vertices. 

i

i + 1

i - 1

F1

F2

 

Fig. 4-4 Crowding distance measurement 

Although the crowding distance (diversity) is calculated in objective function 

space, if required, it can also be implemented in the design variable space [44]. 

4.4 MULTI-OBJECTIVE PROBLEM FORMUALTION OF NOVA 

PARALLEL HYBRID ELECTRIC TRANSIT BUS 

Mathematical formulation for the optimal selection of parameters of the NOVA 

parallel hybrid electric transit bus is shown in equations 4-1 to 4-6. The problem consists 

of an objective function, i.e. achieving best fuel economy with least emissions, as shown 

in equations 4-1 to 4-4, with three drivetrain and five control strategy variables, with their 

respective upper and lower bounds, as shown in equation 4-5. In equation 4-5, 

fc_trq_scale, mc_trq_scale, and ess_cap_scale are the scaled factors that decide the ICE, 

motor/controller, and ESS size, respectively. The default values of ICE power, 

motor/controller torque, and ESS capacity are multiplied with scaled values, to obtain 
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current ICE power, EM power, and ESS capacity. The values of bus performance 

constraints (acceleration and gradeablity) are shown in equations 4-6 and 4-7, 

respectively. Parameters of the multi-objective optimization algorithm are listed in Table 

4-6. 

Table 4-6 Multi-objectives genetic algorithm parameters 

No Parameter Value 

1 Population size 25 

2 Generation 100 

3 Crossover probability 0.8 

4 Mutation probability 0.1 

 

(i) Multi-objective function parameter: 

F1(X)  Fuel Econom               (4-1) 

F2(X)  NOX Emissions             (4-2) 

F3 X   CO Emissions             (4-3) 

F4 X   HC Emissions             (4-4) 

(ii) Fitness function parameters:  

X [fc trq scale , mc trq scale, ess cap scale,   

   cs off trq fac, cs min trq fac,cs charge trq, 

   cs electric launch spd lo,cs electric launch spd hi]        (4-5) 

  x1  0.56,1 ,  x2   0.66, 2 , x3  0.2, 3 , x4  0,1                                                                                           

  x5  0,1 , x6  0,30 , x7  0,10   x8    ,30               
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(iii)  Constraint parameters:  

 Acceleration time (0-80 km/h) < 50 sec              (4-6) 

 Gradeability (@16 km/h for 20 sec) > 10 %            (4-7) 

4.5 LINKING OF ADVISOR AND NSGA-II 

Since ADVISOR can also run in batch mode, without GUI, it is possible to 

integrate ADVISOR with other programs. In this study NSGA-II is written in MATLAB. 

However, the objective and constraint functions are evaluated in ADVISOR, within the 

MATLAB environment. NSGA-II alters the value of the fitness function parameters, 

listed equation 4-5, and evaluates them on complete simulation tests, such as the drive 

cycle test, acceleration test, and gradeability test.  

ADVISOR

Constraint 

Function

g(x)

Objective 

Function

f(x)

Updated 

Parameters

NSGA-II Optimization 

Algorithm in Matalb

 

Fig. 4-5 Linking of ADVISOR and NSGA-II optimization algorithm 

The drive cycle test is used to evaluate the multi-objective function parameters, 

i.e., fuel economy and emissions, where as acceleration and gradeabilty tests are used for 
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evaluating constraint functions. Fig. 4-5 illustrates the integration of NSGA-II 

optimization algorithm and the ADVISOR software. 

4.6 SIMULATION AND PERFORMANCE ANALYSIS 

Fuel economy and emissions are highly influenced by the acceleration rate, 

number of stops, and idle time. As such, the drive cycle has a considerable effect on 

measured fuel economy and emissions. Since there is no definitive cycle for testing 

heavy-duty transit vehicles, this thesis uses three different drive cycles with varying 

average speeds and number of stops per kilometre. At this stage, the multi-objective and 

constraint function parameters, based on the NSGA-II optimization algorithm, are 

evaluated on the standard Urban Dynamometer Driving Schedule (UDDS), Montreal Pie-

IX 139 drive cycle, and New York bus driving patterns, respectively under standard 

ambient conditions. The initial ambient temperature of the ICE parts, exhaust system 

catalyst, and the motor is 20°C. Two different control strategies are used. The drive 

cycles and control strategies are modeled in ADVISOR and are used for test purposes in 

this study. 

4.6.1 UDDS DRIVE CYCLE 

The cycle simulates an urban route of 11.99 km, with 17 stops. The maximum and 

the average speeds are 91.25 km/h and 31.51km/h, respectively. The average acceleration 

is 0.5 m/sec
2
. Total cycle time and idle time are 1369 seconds and 259 seconds, 

respectively. The drive cycle is shown in Fig. 4-6. 
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Fig. 4-6 Urban dynamometer driving schedule (UDDS) 

4.6.2 MONTREAL 139 PIE-IX DRIVE CYCLE  

The cycle simulates the Montreal city transit bus route of STM 139. Total 

distance of the route is 8.32 km, with 22 stops and high acceleration. The maximum and 

average speeds are 58.58 km/h and 21.14 km/h, respectively. The average acceleration is 

0.72 m/sec
2
. Total cycle time and idle time are 1416 seconds and 453 seconds, 

respectively. The drive cycle is shown in Fig. 4-7. 

 

Fig.4-7 Montreal Pie-IX 139 drive cycle 
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4.6.3 NEW YORK BUS DRIVE CYCLE 

The New York Bus (NY Bus) cycle is a chassis dynamometer test for heavy-duty 

transit vehicles, particularly for urban buses. The NY Bus cycle is representative of actual 

observed driving patterns of transit buses in New York city. It is a short test cycle with 11 

numbers of stops, fast average acceleration, and low speed. Total distance of the cycle is 

0.99 km. The maximum and average speeds are 49.57 km/h and 5.93 km/h, respectively. 

The average acceleration is 1.17 m/sec
2
. Total cycle time and idle time are 600 seconds 

and 404 seconds, respectively. The drive cycle is illustrated in Fig. 4-8. 

 

Fig. 4-8 New York bus drive cycle 

The population size of solutions was set to 25, and the total number of generations 

was set to 100. After 2526 ADVISOR runs on an Intel Core-II duo processor (2.66 GHz), 

final trade-off solutions were obtained for four objectives and eight variables listed in 

equations 4-1 to 4-5, respectively. Obtained trade-off solutions for objectives and design 

variables for three drive cycles, using two control strategies, are tabulated in Tables 4-7, 

4-8, 4-9, 4-10, 4-11, and 4-12, respectively. 
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Table 4-7 Trade-off solutions: UDDS drive cycle-electric assist control

Objectives Constraints Drivetrain Parameters Control Strategy Parameters 

FE 

L/100 

km 

NOX 

g/km 

HC 

g/km 

CO 

g/km 

Accel. 

sec 

Grade 

% 

X1 

kW 

X2 

kW 

X3 

Ah 
X4 X5 X6 X7 X8 

60.59 24.34 5.72 0.50 45.97 13.92 120.88 84.23 72.49 0.73 0.73 20.37 1.81 5.09 

60.16 24.23 0.31 0.52 48.76 13.92 123.43 76.36 65.46 0.69 0.65 28.52 2.09 3.43 

66.18 27.45 6.42 0.52 35.82 13.92 138.84 149.19 132.86 0.05 0.14 21.41 1.60 4.91 

60.45 24.32 0.31 0.52 47.15 13.92 122.94 80.10 65.08 0.78 0.67 27.63 1.90 4.48 

66.23 27.44 6.42 0.52 35.82 13.92 138.84 148.99 132.86 0.05 0.08 22.12 1.60 4.67 

63.03 25.43 0.28 0.51 40.51 13.92 130.88 100.49 70.63 0.73 0.59 27.13 2.03 3.00 

68.81 26.60 0.31 0.55 36.74 13.92 147.51 148.60 76.86 0.98 0.96 4.40 2.59 3.74 

64.28 25.36 0.28 0.51 39.03 13.92 133.86 118.63 73.18 0.89 0.77 15.04 1.69 4.03 

66.60 27.86 6.43 0.52 36.32 13.92 140.84 148.95 99.96 0.29 0.17 11.53 2.32 4.10 

70.20 27.22 6.66 0.54 34.58 13.92 149.59 140.60 158.57 0.22 0.77 9.54 1.39 3.25 

61.73 25.35 6.05 0.48 38.52 13.92 124.95 113.52 123.02 0.61 0.41 23.74 1.74 3.09 

60.73 24.34 0.32 0.50 49.14 13.92 123.43 76.36 80.46 0.69 0.90 28.52 1.06 3.84 

66.27 27.42 6.42 0.52 35.82 13.92 138.84 149.19 132.86 0.05 0.14 22.41 2.60 5.41 

67.08 26.95 6.29 0.53 36.61 13.92 136.86 147.94 105.21 0.34 0.51 18.06 2.42 4.67 

68.43 26.92 6.44 0.53 36.26 13.92 147.17 148.76 84.54 0.20 0.71 8.07 2.60 4.75 

69.46 26.98 0.52 0.58 34.63 13.92 149.03 140.41 156.73 0.31 0.73 13.77 1.42 3.37 

60.25 24.23 5.79 0.50 48.76 13.92 123.43 76.36 65.46 0.69 0.65 29.52 2.09 3.43 

66.31 28.08 6.57 0.52 34.80 13.92 147.55 147.09 140.23 0.16 0.26 10.60 1.48 3.68 

61.78 24.48 5.80 0.50 40.95 13.92 120.88 121.73 72.49 0.98 0.73 19.37 1.81 4.09 

68.36 26.49 6.46 0.53 36.11 13.92 139.51 148.61 111.54 0.30 0.72 6.26 1.75 3.90 

64.29 27.30 6.43 0.54 38.21 13.92 140.74 101.67 90.45 0.38 0.20 21.44 2.23 4.36 

66.29 26.15 0.29 0.54 38.71 13.92 142.34 106.56 68.38 0.74 0.86 20.23 2.11 3.36 

65.52 26.65 0.32 0.50 38.83 13.92 135.30 142.46 70.97 0.30 0.34 24.96 2.09 4.56 

68.81 26.60 0.31 0.55 36.74 13.92 147.51 148.60 76.86 0.98 0.96 4.40 1.09 4.74 

66.18 27.45 6.42 0.52 35.82 13.92 138.84 149.19 132.86 0.05 0.14 21.41 1.60 4.91 
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Table 4-8 Trade-off solutions: MTL-139 Pie-IX drive cycle-electric assist control

Objectives Constraints Drivetrain Parameters Control Strategy Parameters 

FE 

L/100 

km 

NOX 

g/km 

HC 

g/km 

CO 

g/km 

Accel. 

sec 

Grade 

% 

X1 

kW 

X2 

kW 

X3 

Ah 
X4 X5 X6 X7 X8 

62.85 25.77 0.72 0.52 41.27 13.92 108.58 138.24 88.51 0.90 0.07 0.17 1.40 3.42 

62.58 25.89 0.72 0.52 41.20 13.92 108.59 138.24 89.54 0.91 0.01 0.24 1.40 3.48 

61.57 23.72 0.88 0.58 35.01 13.92 145.03 144.14 160.67 0.15 0.70 11.32 1.82 3.79 

54.91 22.06 0.71 0.55 37.58 13.92 132.44 137.30 160.01 0.69 0.62 6.59 1.79 3.77 

61.07 22.82 0.76 0.55 35.49 13.92 141.82 143.83 135.14 0.71 0.84 7.60 2.66 4.71 

62.85 25.77 0.72 0.52 41.27 13.92 108.58 138.24 88.51 0.90 0.07 0.17 1.40 2.92 

55.12 20.71 0.57 0.53 37.70 13.92 128.60 143.75 167.49 0.85 0.84 9.60 1.70 3.29 

54.96 22.11 0.71 0.55 37.56 13.92 132.63 137.35 160.01 0.69 0.62 6.59 1.79 3.77 

61.45 23.24 0.82 0.57 35.16 13.92 143.42 144.78 160.61 0.39 0.77 10.76 2.25 4.05 

62.59 23.83 0.89 0.58 34.90 13.92 146.33 141.96 153.91 0.31 0.73 12.43 2.33 4.12 

59.22 22.08 0.67 0.53 35.85 13.92 137.14 143.88 160.64 0.70 0.84 13.81 2.46 4.58 

63.14 25.82 0.84 0.52 40.26 13.92 109.60 146.36 103.84 0.81 0.07 2.66 1.45 3.61 

62.85 25.77 0.72 0.52 41.27 13.92 108.58 138.24 88.51 0.90 0.07 0.17 1.40 2.92 

58.20 21.72 0.63 0.53 37.47 13.92 135.18 146.59 174.28 0.46 0.93 9.81 2.16 3.99 

62.54 25.92 0.73 0.52 41.15 13.92 108.88 138.58 89.63 0.93 0.01 0.25 1.41 3.49 

62.85 25.77 0.72 0.52 41.27 13.92 108.58 138.24 88.48 0.90 0.07 0.17 1.40 3.08 

60.29 23.35 0.82 0.57 35.40 13.92 141.98 139.49 149.60 0.59 0.68 15.06 2.10 3.95 

55.52 21.49 0.65 0.55 36.54 13.92 131.47 141.60 150.45 0.80 0.70 8.61 1.61 3.06 

62.73 23.46 0.84 0.57 34.91 13.92 145.81 144.25 162.05 0.44 0.84 12.49 2.04 4.78 

61.85 23.06 0.81 0.56 35.22 13.92 143.63 141.47 147.58 0.40 0.89 16.99 2.26 3.99 

59.94 22.38 0.71 0.54 35.74 13.92 138.93 138.66 151.20 0.63 0.84 14.91 2.24 3.79 

75.64 28.88 1.28 0.62 34.49 13.92 149.78 148.72 168.20 0.76 0.70 11.58 1.88 3.54 

62.01 23.13 0.80 0.56 35.19 13.92 144.07 139.50 145.43 0.26 0.86 17.36 2.35 3.98 

63.30 23.53 0.85 0.57 34.87 13.92 146.24 144.30 162.20 0.71 0.84 13.34 2.66 4.89 

62.72 25.84 0.82 0.52 40.65 13.92 109.97 144.26 94.42 0.81 0.11 1.21 1.48 3.57 
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Table 4-9 Trade-off solutions: New York bus drive cycle-electric assist control

Objectives Constraints Drivetrain Parameters Control Strategy Parameters 

FE 

L/100 

km 

NOX 

g/km 

HC 

g/km 

CO 

g/km 

Accel. 

sec 

Grade 

% 

X1 

kW 

X2 

kW 

X3 

Ah 
X4 X5 X6 X7 X8 

88.42 44.95 41.41 1.95 42.64 13.92 109.22 109.17 79.72 0.77 0.27 17.23 1.19 4.32 

120.26 53.31 43.12 2.95 35.76 13.92 141.13 140.63 121.18 0.02 0.66 10.02 2.59 4.91 

94.50 38.44 26.53 2.27 39.38 13.92 108.53 149.23 150.90 0.78 0.75 19.47 1.74 3.11 

84.86 52.30 55.72 1.84 40.47 13.92 112.44 130.73 93.12 0.68 0.01 0.01 1.43 3.51 

116.47 55.37 46.57 2.88 35.90 13.92 140.48 126.68 138.64 0.78 0.54 29.58 1.00 4.22 

84.66 52.46 56.00 1.84 40.47 13.92 112.44 130.73 93.12 0.93 0.00 0.15 1.43 3.51 

104.20 51.78 46.20 2.34 37.13 13.92 127.36 146.90 134.06 0.57 0.38 15.85 2.31 5.50 

102.24 49.41 40.39 2.46 38.88 13.92 122.35 133.75 95.33 0.40 0.46 3.53 1.98 3.33 

115.03 53.16 44.22 2.73 36.30 13.92 135.04 145.68 128.05 0.17 0.52 13.57 2.52 5.26 

95.42 45.26 36.26 2.20 38.95 13.92 112.93 139.96 141.71 0.14 0.40 15.74 2.79 3.38 

119.39 55.49 46.40 2.96 35.54 13.92 142.67 137.89 125.56 0.23 0.57 18.05 1.78 4.56 

87.56 46.92 46.97 1.78 39.84 13.92 110.08 134.43 117.28 0.91 0.14 13.21 1.71 3.29 

111.45 61.10 58.50 2.42 36.56 13.92 142.69 136.67 88.93 0.76 0.32 21.88 1.16 4.31 

89.10 52.61 54.13 1.84 39.61 13.92 115.56 128.74 103.32 0.86 0.09 7.37 1.36 3.56 

119.45 55.45 46.65 2.90 35.61 13.92 142.70 127.73 139.00 0.80 0.55 29.60 1.01 4.22 

100.34 51.53 47.76 2.21 38.54 13.92 125.38 115.05 111.92 0.49 0.31 20.89 1.36 4.36 

91.00 45.60 40.07 2.05 41.59 13.92 111.53 121.44 81.86 0.50 0.32 14.25 1.53 4.07 

103.99 48.17 38.76 2.39 38.14 13.92 121.91 129.43 128.49 0.81 0.45 28.26 1.50 3.81 

93.26 53.82 54.07 1.89 38.29 13.92 119.31 138.98 128.58 0.59 0.13 8.56 1.91 4.98 

102.04 52.73 48.82 2.33 38.18 13.92 127.58 133.48 95.55 0.50 0.37 5.39 1.80 3.94 

105.68 64.64 65.06 2.27 35.49 13.92 141.98 141.59 133.35 0.32 0.18 12.57 1.42 3.80 

127.65 53.44 43.19 3.00 34.98 13.92 146.19 149.83 135.31 0.04 1.00 15.65 1.39 5.35 

130.18 54.75 45.03 3.07 34.63 13.92 149.58 149.83 134.99 0.03 0.88 15.65 2.07 5.36 

84.64 52.46 56.01 1.84 40.49 13.92 112.44 129.77 93.12 0.93 0.00 0.14 1.45 3.52 

124.77 53.05 42.44 4.79 35.19 13.92 143.40 143.70 155.81 0.48 0.68 25.72 1.84 4.41 
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Table 4-10 Trade-off solutions: UDDS drive cycle-fuzzy logic control

Objectives Constraints Drivetrain Parameters Control Strategy Parameters 

FE 

L/100 

km 

NOX 

g/km 

HC 

g/km 

CO 

g/km 

Accel. 

sec 

Grade 

% 

X1 

kW 

X2 

kW 

X3 

Ah 
X4 X5 X6 X7 X8 

59.58 25.37 5.90 0.50 43.79 13.92 121.97 90.46 89.71 0.46 0.31 1.40 2.12 3.41 

62.09 25.86 0.35 0.52 38.86 13.92 132.42 119.44 77.44 0.52 0.07 24.88 2.05 3.88 

65.10 25.87 0.28 0.55 40.19 13.92 126.10 136.90 70.56 0.68 0.63 21.65 1.84 4.11 

60.36 24.89 5.87 0.48 45.29 13.92 126.56 84.27 87.15 0.52 0.15 27.49 1.20 3.22 

67.32 26.93 6.50 0.54 35.91 13.92 142.13 122.11 133.17 0.91 0.58 28.18 1.16 3.82 

69.18 26.66 6.46 0.53 34.88 13.92 147.04 137.86 150.66 0.99 0.75 23.74 2.22 3.61 

68.12 27.16 6.64 0.53 34.63 13.92 148.37 148.00 160.12 0.88 0.58 20.59 2.17 4.98 

65.60 28.05 6.59 0.53 36.13 13.92 148.74 112.91 96.85 0.15 0.24 13.42 2.28 3.30 

61.56 24.89 0.30 0.50 49.07 13.92 115.67 82.31 91.84 0.65 0.59 26.68 1.59 3.96 

67.72 27.05 6.54 0.53 34.97 13.92 147.73 130.57 144.46 0.91 0.58 23.63 1.38 4.70 

67.83 27.80 6.51 0.52 35.42 13.92 142.96 148.64 127.54 0.23 0.40 12.52 2.56 3.98 

68.82 28.40 6.75 0.54 34.53 13.92 149.42 147.05 166.47 0.18 0.46 4.48 2.01 5.09 

64.06 25.62 6.13 0.53 37.39 13.92 133.71 121.12 103.98 0.77 0.67 17.38 2.59 3.64 

61.55 25.54 6.06 0.50 39.89 13.92 122.42 109.98 123.68 0.47 0.42 2.63 1.51 3.79 

67.70 26.58 6.47 0.53 35.39 13.92 147.88 126.86 112.12 0.76 0.85 21.52 2.23 4.79 

66.82 27.52 6.51 0.52 35.00 13.92 146.02 142.43 139.14 0.32 0.36 20.04 2.33 4.03 

65.48 27.31 0.33 0.54 36.44 13.92 149.69 112.17 85.56 0.70 0.25 26.26 2.23 2.99 

65.79 25.77 6.13 0.49 37.11 13.92 129.59 134.20 125.96 0.93 0.75 19.01 2.79 4.38 

63.13 26.73 6.19 0.53 37.64 13.92 134.72 121.03 93.00 0.60 0.30 7.65 2.05 3.64 

67.39 28.64 6.67 0.53 34.99 13.92 149.58 135.21 115.37 0.41 0.28 6.10 2.12 3.08 

63.98 26.15 0.34 0.51 39.71 13.92 128.95 134.03 71.10 0.55 0.33 22.99 1.95 3.98 

68.68 26.84 6.54 0.54 35.27 13.92 145.05 129.51 148.03 0.95 0.70 28.16 1.18 3.69 

67.71 27.85 6.57 0.53 34.93 13.92 145.95 148.26 146.76 0.19 0.45 9.22 2.35 4.22 

67.93 27.28 6.54 0.53 35.35 13.92 143.81 142.58 127.79 0.83 0.53 21.50 2.48 3.62 

66.13 27.43 0.37 0.54 36.38 13.92 149.69 116.86 83.21 0.68 0.22 26.25 2.20 3.03 
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Table 4-11 Trade-off solutions MTL-139 drive cycle-fuzzy logic control 

Objectives Constraints Drivetrain Parameters Control Strategy Parameters 

FE 

L/100 

km 

NOX 

g/km 

HC 

g/km 

CO 

g/km 

Accel. 

sec 

Grade 

% 

X1 

kW 

X2 

kW 

X3 

Ah 
X4 X5 X6 X7 X8 

61.13 22.80 0.76 0.55 35.38 13.92 141.50 143.17 159.86 0.87 0.87 2.92 1.96 4.52 

59.28 22.68 0.73 0.55 35.67 13.92 138.79 144.80 160.47 0.74 0.69 21.15 1.48 4.79 

55.39 21.03 0.59 0.54 38.26 13.92 129.84 126.05 155.47 0.85 0.77 3.37 1.88 4.39 

55.62 20.95 0.59 0.54 36.83 13.92 130.21 134.67 145.96 0.61 0.91 7.21 1.57 4.03 

63.66 23.63 0.87 0.57 34.78 13.92 146.97 146.02 163.35 0.87 0.93 9.82 2.29 4.65 

60.43 23.09 0.79 0.57 35.37 13.92 141.43 145.88 160.69 0.85 0.71 17.67 2.74 4.15 

61.32 23.09 0.80 0.57 35.24 13.92 142.64 146.80 163.22 0.89 0.80 18.78 2.68 4.66 

62.45 23.20 0.82 0.56 35.05 13.92 144.15 148.28 164.74 0.89 0.98 19.82 2.13 3.67 

55.37 20.88 0.58 0.53 38.31 13.92 129.57 115.88 153.64 0.76 0.88 7.22 1.53 3.30 

64.94 24.08 0.95 0.58 34.48 13.92 149.74 149.93 163.69 0.68 0.96 21.88 2.14 4.82 

58.16 21.71 0.63 0.53 37.51 13.92 135.16 134.39 175.45 0.39 0.95 15.23 1.65 4.47 

59.65 22.26 0.70 0.54 35.82 13.92 138.27 138.26 150.35 0.42 0.90 12.87 1.56 4.91 

63.95 23.83 0.89 0.58 34.71 13.92 147.65 146.95 164.55 0.82 0.83 20.52 2.43 4.67 

59.67 22.76 0.75 0.56 35.64 13.92 139.41 141.19 155.14 0.89 0.72 11.78 2.73 4.35 

59.01 22.04 0.67 0.53 37.11 13.92 137.11 146.03 166.12 0.68 0.97 19.51 1.70 3.98 

59.97 22.68 0.74 0.56 35.60 13.92 139.52 143.54 155.83 0.93 0.76 8.46 2.22 4.98 

64.89 24.06 0.94 0.58 34.51 13.92 149.65 147.36 165.98 0.37 0.90 22.74 1.93 4.67 

58.72 21.92 0.66 0.53 37.21 13.92 136.44 131.24 177.50 0.19 0.90 17.11 1.31 4.27 

64.91 24.07 0.95 0.58 34.50 13.92 149.69 147.65 164.47 0.54 0.94 22.06 2.04 4.69 

58.72 21.92 0.66 0.53 37.21 13.92 136.44 131.24 177.50 0.19 0.90 17.11 1.31 4.27 

64.45 24.09 0.94 0.58 34.52 13.92 149.65 147.36 159.42 1.00 0.84 22.58 2.12 4.71 

62.87 23.47 0.85 0.58 34.94 13.92 145.25 148.47 163.30 0.89 0.81 21.06 2.64 4.72 

62.40 23.24 0.83 0.56 35.03 13.92 144.64 147.41 155.10 0.90 0.85 16.08 2.07 5.13 

63.16 23.50 0.86 0.57 34.88 13.92 146.29 144.00 154.58 0.64 0.99 7.27 1.53 4.17 

56.62 21.35 0.63 0.55 36.45 13.92 132.58 139.74 149.05 0.84 0.85 8.00 1.76 5.38 
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Table 4-12 Trade-off solutions New York Bus drive cycle-fuzzy logic control 

Objectives Constraints Drivetrain Parameters Control Strategy Parameters 

FE 

L/100 

km 

NOX 

g/km 

HC 

g/km 

CO 

g/km 

Accel. 

sec 

Grade 

% 

X1 

kW 

X2 

kW 

X3 

Ah 
X4 X5 X6 X7 X8 

88.42 44.95 41.41 1.95 42.64 13.92 109.22 109.17 79.72 0.77 0.27 17.23 1.19 4.32 

120.26 53.31 43.12 2.95 35.76 13.92 141.13 140.63 121.18 0.02 0.66 10.02 2.59 4.91 

94.50 38.44 26.53 2.27 39.38 13.92 108.53 149.23 150.90 0.78 0.75 19.47 1.74 3.11 

84.86 52.30 55.72 1.84 40.47 13.92 112.44 130.73 93.12 0.68 0.01 0.01 1.43 3.51 

116.47 55.37 46.57 2.88 35.90 13.92 140.48 126.68 138.64 0.78 0.54 29.58 1.00 4.22 

84.66 52.46 56.00 1.84 40.47 13.92 112.44 130.73 93.12 0.93 0.00 0.15 1.43 3.51 

104.20 51.78 46.20 2.34 37.13 13.92 127.36 146.90 134.06 0.57 0.38 15.85 2.31 5.50 

102.24 49.41 40.39 2.46 38.88 13.92 122.35 133.75 95.33 0.40 0.46 3.53 1.98 3.33 

115.03 53.16 44.22 2.73 36.30 13.92 135.04 145.68 128.05 0.17 0.52 13.57 2.52 5.26 

95.42 45.26 36.26 2.20 38.95 13.92 112.93 139.96 141.71 0.14 0.40 15.74 2.79 3.38 

119.39 55.49 46.40 2.96 35.54 13.92 142.67 137.89 125.56 0.23 0.57 18.05 1.78 4.56 

87.56 46.92 46.97 1.78 39.84 13.92 110.08 134.43 117.28 0.91 0.14 13.21 1.71 3.29 

111.45 61.10 58.50 2.42 36.56 13.92 142.69 136.67 88.93 0.76 0.32 21.88 1.16 4.31 

89.10 52.61 54.13 1.84 39.61 13.92 115.56 128.74 103.32 0.86 0.09 7.37 1.36 3.56 

119.45 55.45 46.65 2.90 35.61 13.92 142.70 127.73 139.00 0.80 0.55 29.60 1.01 4.22 

100.34 51.53 47.76 2.21 38.54 13.92 125.38 115.05 111.92 0.49 0.31 20.89 1.36 4.36 

91.00 45.60 40.07 2.05 41.59 13.92 111.53 121.44 81.86 0.50 0.32 14.25 1.53 4.07 

103.99 48.17 38.76 2.39 38.14 13.92 121.91 129.43 128.49 0.81 0.45 28.26 1.50 3.81 

93.26 53.82 54.07 1.89 38.29 13.92 119.31 138.98 128.58 0.59 0.13 8.56 1.91 4.98 

102.04 52.73 48.82 2.33 38.18 13.92 127.58 133.48 95.55 0.50 0.37 5.39 1.80 3.94 

105.68 64.64 65.06 2.27 35.49 13.92 141.98 141.59 133.35 0.32 0.18 12.57 1.42 3.80 

127.65 53.44 43.19 3.00 34.98 13.92 146.19 149.83 135.31 0.04 1.00 15.65 1.39 5.35 

130.18 54.75 45.03 3.07 34.63 13.92 149.58 149.83 134.99 0.03 0.88 15.65 2.07 5.36 

84.64 52.46 56.01 1.84 40.49 13.92 112.44 129.77 93.12 0.93 0.00 0.14 1.45 3.52 

124.77 53.05 42.44 2.98 35.19 13.92 143.40 143.70 155.81 0.48 0.68 25.72 1.84 4.41 
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In multi-objective optimization, when the number of objective functions is more 

than two, performance illustration of algorithm becomes difficult using two-dimensional 

objective space plot. In order to present the pair wise interaction among the solutions of 

four objectives,  4
2
  or 4 *3 =12 scatter plot interactions are plotted as shown in Figs. 4-9, 

4-10, 4-11, 4-12, 4-13, and 4-14 respectively, for three drives cycles and two control 

strategies. In all interactive plots, the diagonal sub-plots mark the axis for the 

corresponding off-diagonal sub-plots. For example, the subplot in position (1, 2) has its 

horizontal axis marked with NOX emission, [F (2)], and the vertical axis marked with fuel 

economy, [F (1)]. The designer has the flexibility in viewing the plots. If the designer is 

not comfortable in viewing a plot with NOX emission on the horizontal axis, the sub-plot 

in position (2, 1) shows the same plot with NOX emission marked in the vertical axis. 

Thus, a plot in the position (i, j) of the matrix is identical to the plot in the position (j, i), 

except that the plot is mirrored. 
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Fig. 4-9 Objective Trade-off: UDDS drive cycle-electric assist control 

 

Fig. 4-10 Objective Trade-off: MTL-139 Pie-IX bus drive cycle-electric assist control 
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Fig. 4-11 Objective Trade-off: New York bus drive cycle-electric assist control 

 

Fig. 4-12 Objective Trade-off: UDDS drive cycle-fuzzy logic control 
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Fig.4-13 Objective Trade-off: MTL-139 Pie-IX bus drive cycle-fuzzy logic control 

 

Fig. 4-14 Objective Trade-off: New York Bus drive cycle-fuzzy logic control 
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In order to evaluate the effectiveness of the NSGA-II algorithm, and to validate the 

optimal results, a comparison is performed between conventional bus parameters and the 

parameters of the NOVA parallel hybrid electric transit bus, obtained after optimization in 

ADVISOR. The performance parameters obtained after evaluating traditional NOVA 

transit bus configuration on UDDS, Montreal Pie-IX 139, and New York Bus drive cycles 

are listed Table 4-13. 

Table 4-13 Traditional Nova transit bus performance parameters 

 
UDDS  

Drive Cycle 

Montreal Pie- IX 139 

Drive Cycle 

New York Bus 

 Drive Cycle 

Fuel Economy (L/100 km) 69.5 79 243.8 

NOX  (g/km) 53.93 82.47 406.97 

HC  (g/km) 2.65 4.569 37.76 

CO  (g/km) 0.393 0.709 2.75 

 

It is clear from the data of Tables 4-7 to 4-12 that post-optimization, the values of 

all four objectives, i.e., fuel economy and emissions, obtained on all three drive cycles, are 

improved, compared to those of the traditional ones. Furthermore, the obtained 25 

solutions satisfy vehicle performance constraints, listed in Table 4-3. Though this 

comparison cannot sufficiently demonstrate that the solutions are real trade-offs, it does 

demonstrate that the obtained solutions are at least better than the traditional ones. The 

obtained results show substantial reduction in ICE power rating and emissions, due to the 

presence of the electric motor. After optimization, it is clear that fuel economy and overall 

efficiency of the drivetrain increases. This is because the developed control strategy forces 

the ICE to operate closer to its most efficient operating region. A detailed analytical 
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comparison is shown in next section. The range of each objective and design variable is 

listed in Table 4-14. In addition, from Figs. 4-9 and 4-12, for the UDDS drive cycle, it is 

observed that there exists a wide range of discrepancy in HC emissions, compared to other 

drive cycles. This is because the average speed of the engine under UDDS drive cycle is 

much higher than the other two drive cycles. Furthermore, the engine idle time for the 

UDDS drive cycle is much lower compared to other drive cycles. Hence, the engine 

depicts higher discrepancy in the column representing trade-off for HC emissions, in Figs. 

4-9 and 4-12. 

For better visualization and comparison of obtained multiple trade-off solutions, 

the objectives and the design variables of Tables 4-7 to 4-12 are represented using the star-

coordinate system, suggested by Manas [45]. 

In the star coordinate method, for N objective functions, a circle is divided into N 

equal arcs. Each radial line, connecting the end of an arc with the center of the circle, 

represents the axis for each objective function. For each line, the center of the circle and 

circumference marks the minimum and maximum value of the objective function. Since 

each objective function has a different range, the axes are scaled corresponding to the 

range of the objective. Figs. 4-15 to 4-20 represent comparative scenarios of obtained 

solutions in objective and design variable space, using the start-coordinate system. In each 

figure the right hand side plot shows design variables, whereas the left hand side plot 

represents the objectives.  
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Table 4-14 Objectives and range of design variables 

 

Electric Assist Control Fuzzy Logic Control 

UDDS 

Drive Cycle 

Montreal 

Pie- IX 139 

NY Bus 

Drive Cycle 

UDDS 

Drive Cycle 

Montreal 

Pie- IX 139 

NY Bus 

Drive Cycle 

Fuel Economy 

(L/100 km) 
60.16-70.20 54.91-75.64 84.64-130.18 59.58-69.18 55.37-64.94 84.64-130.18 

NOX 

(g/km) 
24.23-28.08 20.71-28.88 38.44-64.64 24.89-28.64 20.88-24.09 38.44-64.64 

HC 

(g/km) 
0.28-6.66 0.57-1.28 26.53-65.06 0.28-6.75 0.58-0.95 26.53-65.06 

CO 

(g/km) 
0.48-0.58 0.52-0.62 1.78-4.79 0.48-0.55 0.53-0.58 1.78-3.07 

ICE Power 

(kW) 
120.8-149.5 108.6–149.7 108.5-149.5 115.7-149.6 129.6–149.7 108.5-149.5 

Motor Power 

(kW) 
76.3-149.1 137.3–148.7 109.1 –149.8 82.3-148.6 115.8-149.9 109.2-149.8 

ESS Capacity 

(Ah) 
65.0-158.5 88.5–174.2 79.7–155.8 70.6.0-166.5 145.9–177.2 79.7-155.8 

off_trq_frac 0.05-0.98 0.15-0.93 0.02 - 0.93 0.15-0.98 0.19-1.00 0.02-0.93 

min_trq_frac 0.08-0.96 0.01-0.93 0.00–1.00 0.07-0.85 0.69-0.99 0.00–1.00 

charge_trq 4.4-29.5 2-17.4 0.0-29.6 1.4-28.2 2.9-22.7 0.00-2.96 

ele_spd_lo 1.06-2.60 1.40-2.66 1.00-2.79 1.16-2.79 1.31-2.74 1.00- 2.79 

ele_spd_hi 3.0-5.41 2.92-4.89 3.11–5.50 2.99-5.09 3.30-5.38 3.11–5.50 
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Fig. 4-15 Objectives and design variables: UDDS drive cycle-electric assist control 

  

Fig. 4-16 Objectives and design variables: Montreal Pie-IX drive cycle-electric assist control 

    

Fig. 4-17 Objectives and design variables: New York bus drive cycle-electric assist control 
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Fig. 4-18 Objectives and design variables: UDDS drive cycle-fuzzy logic control 

  

Fig. 4-19 Objectives and design variables: Montreal 139 Pie-IX drive cycle-fuzzy logic control 

  

Fig. 4-20 Objectives and design variables: New York bus drive cycle-fuzzy logic control 
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A set of trade-off (Pareto-optimal) solutions is extremely helpful. If the fuel 

economy is the designer‟s top concern, then they can select a solution having highest fuel 

economy. Similarly, a solution having lowest value of emissions can be selected, if low 

emissions are priority for designers. The selection procedure is also affected by the 

variables, besides the objectives. If the size of an ICE or EM or ESS indicated by a 

particular solution, for instance, is not accepted by the designers for some reason, or if 

some control strategy parameters are not suitable for the vehicle, designers can substitute 

other solutions with similar values of objectives and/or design variables from a set of 

trade-off solutions. Thus, the decision making procedure becomes very flexible, with 

trade-off optimal (Pareto-optimal) solutions set. 

Flexibility measure can be calculated in obtained trade-off solutions using 

equations 4-8 and 4-9, respectively. Fig. 4-21 to Fig. 4-26 graphically represents 

calculated flexibility measure in obtained solutions. The orange area of each bar indicates 

the flexibility of related the parameter. For all objectives, the total length of each bar 

corresponds to the obtained maximum value of the objective for all variables; the total 

length of each bar corresponds to the upper bound of the variable.  

Flexibility of objectives   
 max. (objective value) – min.(objective value)

max.(objective value)
   100      (4 8) 

Flexibility of variables   
 max. (variable value) – min.(variable value)

variable upper bound – variable lower bound
  100             (4 9) 
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Fig. 4-21 Flexibility: UDDS drive cycle electric assist control 

 

Fig. 4-22 Flexibility: UDDS drive cycle fuzzy logic control 
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Fig 4-23 Flexibility: Montreal 139 Pie-IX drive cycle electric assist control 

 

Fig. 4-24 Flexibility: Montreal 139 Pie-IX drive cycle fuzzy logic control 
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Fig. 4-25 Flexibility: New York bus drive cycle electric assist control 

 

Fig. 4-26 Flexibility: New York bus drive cycle fuzzy logic control 
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4.7 COMPARISON AND ANALYSIS  

Here, the traditional NOVA bus performance parameters are compared with the 

post-optimized trade-off solutions. For qualitative analysis, the traditional bus fuel 

economy, emissions and engine power are compared with a solution having minimum 

value among obtained trade-off solutions. The comparison is summarized in Table 4-15. 

Table 4-15 Parameter improvement 

 

Electric Assist Control Fuzzy Logic Control 

UDDS 

Drive Cycle 

Montreal 

 Pie- IX 139 

NY Bus 

Drive Cycle 

UDDS 

Drive Cycle 

Montreal 

 Pie- IX 139 

NY Bus 

Drive Cycle 

Fuel Economy 

(L/100 km) 
-13% -30% -65% -14% -31% -65% 

NOX   

(g/km) 
-55% -75% -91% -54% -75% -91% 

HC   

(g/km) 
-89% -88% -30% -89% -87% -30% 

CO   

(g/km) 
+23% -27% -35% +23% -26% -35% 

ICE Power  

(kW) 
-44% -50% -50% -46% -39% -50% 

Table 4-15 shows an improvement in fuel economy and reduction in ICE power 

for all drive cycles, using both control strategies. Emissions are also reduced 

considerably. However, while optimizing the parallel HEV, emissions during the 

manufacturing process of the mechanical and electrical drivetrain components were not 

considered. Thus, from the global emission point of view, it is found that the obtained 

trade-off solutions of emissions are merely locally optimized. 
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Based on the obtained results, it can be inferred that among the two control 

strategies, the fuzzy efficiency control strategy leads to enhanced performance. By using 

fuzzy efficiency control, in the UDDS drive cycle diminutive improvement in fuel 

economy is observed. For the Montreal 139 Pie-IX drive cycle, number of solutions with 

noticeable improved value of fuel economy and emissions are obtained using fuzzy 

efficiency control strategy. However, not much improvement is observed using fuzzy 

efficiency control on New York Bus drive cycle. In the simulation of NOVA hybrid 

transit bus on UDDS and Montreal 139 Pie-IX drive cycle, using fuzzy efficiency 

control, increased value of energy capacity, engine off torque fraction and electric launch 

speed shows that the strategy uses more electric energy, which improves fuel economy. 

Moreover, it is also observed that the value of engine minimum torque fraction and 

charge torque values are increased, which causes the engine to operate in an efficient 

region and maintains SOC in the battery. Thus, overall drivetrain efficiency is also 

increased. 
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4.8 SUMMARY 

In this study, the fuel economy and the emission optimization of a NOVA parallel 

hybrid electric transit bus is formulated as a constrained nonlinear optimization problem. 

The problem objectives, viz., fuel economy and emissions, are optimized simultaneously 

using NSGA-II, with design variables ICE size, motor size, ESS capacity, as well as 

control strategy parameters. Test results, demonstration, using interactive plots, projects a 

significant improvement in vehicle performance, compared to a conventional vehicle. In 

addition, the star-coordinate, flexibility, quantitative, and qualitative evaluation provides 

a firm selection platform for objectives, drivetrain components, and control strategy 

parameters for HEV designers. 

It has been found that MOEA projects a tremendous potential for HEV design 

problems, involving numerous local minima, discontinuity in objective function, and 

nonlinear constraints. Moreover, MOEAs do not require any user dependent artificial fix-

up or information about derivative of objectives. It can find multiple trade-off solutions in 

a single simulation run.  
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CHAPTER 5 

PLUG-IN HEV (PHEV) OPTION FOR NOVA TRANSIT BUS 

5.1 INTRODUCTION 

Plug-in hybrid electric vehicles (PHEVs) are similar to conventional hybrid 

electric vehicles, except that they are equipped with a larger battery and plug-in charger 

that allows electricity from the grid to replace a portion of the petroleum-fueled drive 

energy [46]. PHEVs may derive a substantial fraction of their miles from grid-derived 

electricity, but without the range and charging time restrictions of pure battery electric 

vehicles. In addition to reducing petroleum consumption, PHEVs have the potential to 

also reduce total energy expenses for the owner and the electric power industry. Existing 

commercial hybrid vehicles have proven to be successful components of the 

transportation system worldwide. 

PHEVs use grid electricity from diverse domestic energy sources, such as 

renewable, coal, and nuclear, thus reducing the nation‟s demand for imported oil. PHEVs 

demonstrate better performances where total distance traveled comprise of relatively 

shorter trips [47]. By recharging the energy storage system (ESS) between these short 

trips, a large portion of the motive energy can come from the electrical grid as opposed to 

gasoline or other fossil fuels. Similar concept can be used for STM NOVA transit bus. 

Energy storage of transit bus can be charged before beginning or after finishing of each 

trip or it can be charged at central bus depot. In this way, transit bus can run all-

electrically during most of the time of its trip. In the present urban transit environment, 

charging infrastructure, integration of renewable energy sources as a source of charging 

power are necessary to be investigated in the near future. 



74 

 

In this chapter, possible future plug-in version of NOVA parallel hybrid transit is 

discussed along with modified structure of a plug-in hybrid drivetrain.  PHEV Control 

strategy with their merits and demerits are discussed. 

5.2 NOVA PHEV TRANSIT BUS DRIVETRAIN 

The drivetrain of the PHEV NOVA transit bus is illustrated in Fig. 5-1. For 

modeling, a NOVA low floor transit bus database, available in ADVISOR, has been 

used. 
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Fig. 5-1 NOVA plug-in hybrid (PHEV) transit bus drivetrain 

In order to rely mostly on ESS module energy for the several miles of the drive 

cycle, PHEVs are equipped with higher energy capacity ESS. As long as ESS is not 

completely depleted, PHEVs can run all electrically. Afterwards, it operates like a regular 

HEV. Such a vehicle can be plugged in and charged off the grid. The ESS module energy 

capacity of PHEVs is larger than existing parallel HEVs, though it is not as large as the 
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ESS modules in electric vehicles [48]. In some cases, ultra-capacitors (UCs) and/or fly 

wheels can be hybridized with a battery pack, to further enhance the vehicle dynamic 

performance. Moreover, UCs can charge rapidly from the grid, by charging UCs at any 

stop of drive cycle and stored UCs energy can be transferred to battery pack during 

normal driving. This method reduces the overall charging time of battery and increases 

all electric range of transit bus. Few terminology associated with plug-in hybrid vehicle 

are discussed below. 

(1) Charge-sustaining (CS) mode  – A mode of operation in which the state-of-

charge of the energy storage system over a drive cycle may increase and 

decrease however, at the end of every drive cycle it will come back to a state 

with equivalent energy as at the start of the period.  

(2) Charge-depleting (CD) mode – A mode of operation in which the state-of-

charge of the energy storage system over a drive cycle will have a net 

decrease in stored energy. 

(3) All-electric range (AER) – The total distance driven electrically from the 

beginning of a drive cycle to the point at which the engine first turns on. 

(4) Electrified miles –Summation of all miles driven electrically (ICE off) 

including those after the engine first turns on. 

(5)  PHEV xx – A plug-in hybrid vehicle with adequate energy to drive xx miles 

electrically on a defined drive cycle generally assumed to be city driving. The 

vehicle may or may not actually drive the initial xx miles electrically. It total 

depends on the behaviour of driving and the control strategy. 



76 

 

5.3 PHEV CONTROL STRATEGY 

In the previous chapter we stated that the vehicle control strategy has considerable 

effects on the performance of the PHEV. PHEVs are equipped with one or more energy 

sources for propulsion. Moreover, PHEVs fuel economy is highly affected by total 

vehicle mile travelled.  

5.3.1 ALL-ELECTRIC RANGE (AER) FOCUSED STRATEGY 

In the all-electric range (AER) focused strategy, PHEV operates all-electrically 

during almost the full range of CD operation and the motor supplies the overall vehicle 

power demand, and the engine remains off. Fig. 5-2 illustrates the AER-focused strategy 

operation. Before driving, the vehicle ESS is fully charged. The SOC drops during the 

CD operating distance as the vehicle drives electrically without any assistance from the 

engine. Thus, a quiet and smooth all electric operation with zero emissions can be 

realized. Once SOC reaches at CS SOC level, the SOC remains roughly steady while the 

engine and motor work together during CS operating mode. 

In order to realize all-electric CD operation in AER-focused strategy, motor and 

ESS power capability should at least match the maximum power requirement of the drive 

cycle.  However, to meet the driver‟s demand for a given drive cycle, the peak power 

rating of the ESS needs to be high, which increases the cost of the vehicle. The control 

strategy is fixed and the ICE is always off until the CS mode begins. This may result in 

ESS being damaged during aggressive drive cycles when the driver demand is greater 

than the ESS peak power capability.  
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Fig. 5-2 PHEV all electric range (AER) focused strategy: ICE usage and SOC profile 

In PHEV, total driving distance between vehicle recharge influences the amount 

of petroleum displacement provided. For example, a PHEV is designed for the driving 

distance equal or less than the AER, the AER-focused strategy provides maximum 

petroleum displacement, and the ICE remains off and uses no fuel. For larger driving 

distances, the fuel consumed during CS operation is divided into the full CD plus CS 

distance to determine the average petroleum fuel economy for that particular driving. 

5.3.2 ENGINE-DOMINANT BLENDED STRATEGY 

In the engine dominant blended strategy, the ICE is the primary source of power 

and the ESS is used to assist the ICE. Stored energy expands the ICE operation in order 

to improve system efficiency. Fig. 5-3 demonstrates the engine dominated blended 

strategy operation. The Vehicle started with a fully charged ESS may operate all-

electrically during initial CD operation. However, the ICE turns on during the CD mode 

as soon as the vehicle power demand exceeds the power capability of the battery and 
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motor. After the ICE turns on, the ESS supplements the ICE power to maximize ICE or 

drivetrain efficiency. Motor supplies power only when power demand is greater than the 

maximum capacity of the ICE, negative power demand (regenerative braking) and at the 

low speed operation where the ICE would be inefficient. This strategy starts using the 

ICE energy from beginning of cycle and uses the ICE more often as compared to the 

AER focused strategy. The CD distance increases because of frequent use of the ICE. 

ESS SOC

ICE ON

Distance
CD Mode CS Mode

 

Fig. 5-3 PHEV engine-dominant blended strategy: ICE usage and SOC profile 

An engine-dominant blended PHEV uses much smaller and inexpensive electrical 

components. We can see that the engine-dominant strategy can be operated in a very 

similar way of present-day HEVs electrical assist control strategy, simply by making 

more use of electrical assist during CD operation.  Hence, there is no need to change the 

power capacity of the electric component than that of existing HEV components. In order 

to drive considerable distance in CD mode, the energy capacity of the ESS needs to 

increase than that of present HEVs. 
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5.3.3 ELECTRIC-DOMINANT BLENDED STRATEGY 

An electric, ESS/motor dominant blended uses mainly ESS energy to supply 

necessary power when ESS exhibits a high state of charge and driving demand is not 

greater than the power capability of ESS and motor. As the SOC of the ESS begins to 

decrease, the strategy uses more ICE energy in order to satisfy power demand, maintain 

ESS SOC, avoid ESS damage and reduced cycle life. Fig. 5-4 illustrates energy sharing 

between ESS and ICE on drive cycle. Vehicle operates all electrically only until driving 

requirement does not exceed ESS and motor power. As ESS SOC decreases, ICE usage 

increases, which maintains the ESS SOC.  

ESS SOC

ICE ON

Distance
CD Mode CS Mode

 

Fig. 5-4 PHEV electric-dominant blended strategy: ICE usage and SOC profile 

The parameters of electric-dominant blended control strategy used in ADVISOR 

are listed in Table 5-1, which are exactly similar to that of the parallel electric assist 

control strategy. Electric launch speed logic of PHEV blended control strategy is 

presented graphically in Fig. 5-5. State of the ICE can be determined using current values 

of ESS SOC and vehicle speed. In Fig.5-5, above solid line the ICE is on and below solid 
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line the vehicle attempts to run all electrically. Following rules decide ICE on-off state in 

charge-depleting blended mode. 

ICE can be turned off: 

1) When vehicle speed is less than electric launch speed. 

2) When vehicle is decelerating, during which torque demand is negative. 

ICE must be on: 

1) When ESS/motor capacity is inadequate to supply the requested power. 

Table 5-1 PHEV blended control strategy parameters 

Parameters Description 

cs_lo_soc Lowest desired battery SOC 

cs_hi_soc Highest desired battery SOC 

cs_electric_launch_speed_lo 
Vehicle speed below which vehicle runs as pure 

electric vehicle (ZEV mode) at low battery SOC 

cs_electric_launch_speed_hi 
Vehicle speed below which vehicle runs as pure 

electric vehicle (ZEV mode) at high battery SOC 

cs_charge_trq 
Additional torque required from engine to charge or 

discharge the battery based on battery SOC 

cs_off_trq_frac 
Fraction of ICE max. torque at each speed at which 

ICE should turn off when SOC > (cs_lo_soc) 

cs_min_trq_frac 
Fraction of ICE max. torque at each speed above 

which ICE must operate if SOC < (cs_lo_soc) 
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Fig. 5-5 PHEV electric launch speed logic 

The logic of ICE torque modification is illustrated in Fig. 5-6. When the ICE is 

on, torque requested from ICE may be modified based on the current ESS SOC status to 

deliver more or less power from ESS, which executes ESS charging or discharging, 

respectively. The strategy requests an additional charge torque from ICE (cs_charge_trq) 

when current ESS SOC is at minimum level (cs_lo_soc). In Fig.5-4 torque is modified 

from point (2) to point (4). Negative charge torque (– cs_charge_trq) is requested when 

ESS SOC is at high level (cs_hi_soc), ICE point of operation is modified from point (2) 

to point (3). ICE may work at point (1), a minimum engine torque (cs_min_trq_frac), if 

the ESS SOC drops below minimum SOC level (cs_lo_soc). 
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Fig. 5-6 ICE torque modification 

Due to intermittent engine operation during the CD mode, PHEV with electric-

dominant strategy cannot get zero emission vehicle credit. However, petroleum 

displacement rate during the CD mode will still be the same as that for AER-focused 

PHEVs. When driving greater CD distance, the electric-dominant blended strategy will 

consume slightly more fuel as compared with engine-dominant blended strategy, due to 

less focus on maximizing engine efficiency throughout all driving modes. However, for 

driving much less than CD distance, the electric-dominant blended strategy will consume 

considerably less fuel due to greater utilization of ESS recharge energy. 
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5.4 SUMMARY 

PHEV design and potential advantages are highly affected by the choice of CD 

operating strategy. The AER-focused strategy requires larger and costly electric 

equipments. However, AER-focused strategy gives all-electric cycle operational benefits, 

as well as it can receive more credits for zero emission vehicle (ZEV) regulation. The 

engine-dominant and electric-dominant blended strategies do not provide much all-

electric operation benefits, but PHEV implemented with these strategies required much 

smaller and less expensive electric components. The AER-focused strategy is mainly 

sensitive to cycle aggressiveness because this strategy is not able to satisfy significant 

power demands during the CD mode all-electrically.  

The engine-dominant blended strategy is particularly sensitive to driving distance, 

as the vehicle must exceed the CD distance in order to benefit from the efficiency 

maximization approach. For shorter driving distances, the engine-dominant blended 

strategy will have a significant fuel use penalty as compared to the other strategies due to 

under utilization of the electrical recharge energy.  

In electric-dominant blended strategy, the PHEVs are designed to accommodate 

large intermittent power demands, due to which the cycle aggressiveness does not have a 

huge impact. However, the resulting intermittent low-power engine operation will present 

unique emissions control system challenges for this type of PHEVs. 
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CHAPTER 6 

HYBRID ELECTRIC VEHICLE CONTROL STRATEGY DESIGN 

USING STATEFLOW 

6.1 INTRODUCTION 

In recent years, graphical modeling and simulation techniques have become 

increasingly popular for the development of automotive control systems. However, the 

power and high degree of freedom offered by these tools can also lead to problems, if not 

used properly, especially in large projects. Guidelines can help establish a consistent 

modeling style throughout a project, and thus, improve readability, understanding ability, 

and maintainability of the resulting product. The Stateflow chart is an interactive 

graphical design tool that works with Matlab/Simulink, to model and simulate event-

driven systems, also called reactive systems. Stateflow provides clear and brief 

descriptions of complex system behaviour, using finite state machine theory, flow 

diagram notations, and state-transition diagrams [49]. 

In this chapter, graphical modeling technique using Stateflow will be described. 

Moreover, as an initial step to future research in the field of HEV control strategy 

development, the design of a series HEV control strategy, using Stateflow, is 

demonstrated. 

 

 



85 

 

6.2 STATEFLOW AND CONTROL STRATEGY DESIGN 

Stateflow is a Matlab/Simulink interactive graphical design tool for constructing 

hierarchical state machines to represent discrete-state and discrete-event behaviors in 

dynamic systems. Stateflow uses a variant of the finite state machine notation, found by 

Harel [50]. Stateflow diagrams can be connected to continuous-state blocks in Simulink, 

to model hybrid dynamic systems, which are systems consisting both continuous state 

variables as well as discrete state variables.  These models can be used to investigate the 

model behavior under various operating conditions by simulation. The graphical design 

technique of Stateflow, in combination with Simulink, allows: 

1. Design and build up of deterministic and supervisory control systems; 

2. Visual modeling and simulation of complex even-driven (reactive) systems, based 

on finite state machine theory; 

3.  Alter design, evaluate the results, and validate system performance at any stage 

of the design; 

4. Generate integer, floating-point, or fixed-point code directly from the design.  

 In a Stateflow diagram, states and transitions form the basic building blocks of 

the system. Flow diagram notation creates decision-making logic, such as FOR loops 

and IF-THEN-ELSE constructs, without the use of states. In some cases, using flow 

diagram notation provides a closer representation of the required system logic that avoids 

the use of unnecessary states. 

In the ADVISOR series HEV architecture, the state machine part of the vehicle 

system controller decides the operating mode of the vehicle. To categorize the states for 

the state machine, for all subsystems, the sets of all possible operating modes are listed. 
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As an example, for the engine turn on and turn off logic, the possible operating modes are 

engine on and engine off. To construct the suitable switching strategy, transition 

conditions between on and off operating modes must be established. Many control 

strategy parameters make decisions to select operation mode, such as fuel converter off 

period (fc_off_time), the value of ESS SOC, required bus power (bus_pwr_req), ESS 

maximum power (ess_max_pwr), FC power commanded (fc_pwr_com), and the 

minimum power of the fuel converter (cs_min_pwr). Turn on and turn off rules for fuel 

converter operations are listed below. 

FC turn off rules: 

1) Required bus power is less than ESS max. power AND required fuel converter 

power (fc_pwr_com) is less than minimum fuel converter power (cs_min_owr) 

and ESS SOC greater than 90% of (cs_hi_soc) 

OR 

2)  Required bus power is negative (regeneration) and fuel converter minimum 

power is greater than the difference of required bus power and ESS charge power. 

FC turn on rules: 

1) Required bus power is greater than ESS maximum power.  

OR 

2) Value of ESS SOC drops below minimum SOC level (cs_lo_soc) AND 

required bus power (bus_pwr_req) is positive OR difference of required bus 

power and ESS charge power is higher than FC minimum power. 

3) FC off time is higher than set minimum off time AND required bus power is 

higher than minimum FC power AND ESS SOC value is less than the average 

of the highest and lowest desired ESS SOC AND required bus power is 
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positive OR difference of required bus power and ESS charge power is higher 

than FC minimum power. 

ADVISOR series HEV fuel converter turn on/off logic, modeled in Simulink, is 

shown in Fig. 6-1. Fuel converter turn on/off logic design using Stateflow is presented in 

Fig. 6-2.   

 

Fig. 6-1 ADVISOR series HEV fuel converter turn on/off logic using Simulink. 
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Fig. 6-2 ADVISOR series HEV fuel converter turn on/off logic using Stateflow 

It is clear from Fig. 6-2 that modeling using Stateflow simplifies the overall 

design procedure. Moreover, visual interaction with FC on/off states during simulation 

run provides the option of visual inspection, which is not possible with Simulink. 

During the simulation phase, designers can modify the design at any stage, which 

increases the possibility of obtaining optimal results, with minimum to zero error. The 

overall block diagram, upon implementing FC on/off logic, using Stateflow, is shown in 

Fig. 6-3. 
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Fig. 6-3 Series HEV fuel converter turn on/off block 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 SUMMARY 

Hybrid electric vehicle (HEV) parameter optimization is a multidisciplinary 

research topic. In the design of an HEV, the preliminary goal of the designer is to 

minimize fuel consumption and emission, along with best possible sizing of internal 

combustion engine (ICE), electric motor (EM), and energy storage system (ESS) with 

tuned CS parameters. Moreover, vehicle performance constrains also have to be satisfied. 

Classic weighted sum method, ε-constraint method, gradient-based, and derivative-free 

methods, for HEV parameter optimization, have been discussed. All of methods repeat 

simulations multiple times, with different weights and constraint values, to obtain 

multiple trade-off solutions. 

In addition, all methods require strong assumptions for the objective function, so 

that appropriate weights, associated with objectives, can be specified. Moreover, the 

classic methods obtain only single solution for each objective, without any other 

information about trade-off among objectives. Weighted sum and ε-constraint strategy 

may result in a suboptimal solution, if the objectives trade-off results in non-continuous 

and/or non-convex behaviour in function space. These methods work on pre-defined 

rules, so they can only be efficient in solving special class of problems, and cannot be 

applied to a wide variety of problems.  

However, population based MOEAs project a tremendous potential for HEV 

design problems, which involve numerous local minima, discontinuity in objective 

function, and nonlinear constraints. Moreover, MOEAs do not require any user supplied 
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artificial fix-up or information about derivative of objectives, and can find multiple trade-

off solutions in single simulation run.  

In this research work, various hybrid electric vehicle energy management control 

strategies were classified, discussed, and contrasted in detail. The control strategies 

discussed varied from traditional on-off type thermostat control to advanced model 

predictive and adaptive control. In general, HEV control strategies are classified as rule-

based and optimization-based. The classified control strategies were discussed, in 

general, and their sub-categories were introduced briefly, whereby their merits and 

demerits were highlighted.  

Although global optimization-based strategies cannot be used in real-time 

applications, they provide a solid platform for design and comparison. From an online 

implementation point of view, optimal real-time and fuzzy rule-based methods are 

deemed highly suitable. Because of their adaptive and robust characteristics, fuzzy rule-

based control strategies are superior, compared to deterministic rule-based methods. 

 Computational complexity is a major issue in analytical optimal control methods, 

since they are more memory intensive than fuzzy rule-based methods. Since analytical 

optimal methods are based on drivetrain models, any uncertainties in modeling would 

affect the controller. On the other hand, fuzzy rule-based methods are robust and 

insensitive to modelling uncertainties. 

Information from the navigation system can be used for predictive and future 

control. However, this not only increases the number of inputs, but also makes for a much 

more complicated rule-based system. Nevertheless, the analytical optimal controller can 

obtain a semi-global solution without any complexity. 
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In this study, the fuel economy and emission optimization of a NOVA parallel 

HEV transit bus is formulated as a constrained nonlinear optimization problem. Problem 

objectives, viz., fuel economy and emissions, are optimized simultaneously using NSGA-

II, with design variables as ICE size, motor size, and ESS capacity, as well as control 

strategy parameters. Test result demonstration, using interactive plots, projects a 

significant improvement in vehicle performance, compared to the conventional vehicle. 

In addition, the star-coordinate, flexibility, quantitative, and qualitative evaluation 

provides a firm selection platform for objectives, drivetrain components, and control 

strategy parameters for designers. 

7.2 POTENTIAL FUTURE WORK 

Presently, existing control strategies provide a fairly strong comparative view to 

the EV/HEV designer. However, there exist a few important points that can be 

considered for future development work. Energy storage devices are vital elements of 

EV/HEV drivetrains. Payback period, maintenance cost, and replacement cost of energy 

storage devices are strongly dependent on life and durability. Hence, it is advisable to 

design a control strategy keeping in mind extension of durability of the energy storage 

system. In future all-electric and plug-in hybrid electric vehicle architectures, additional 

energy storage components, such as ultra-capacitors and flywheels, will most definitely 

be incorporated, which will require innovative and efficient power management 

strategies. 

In the present optimization work, 25 populations, 100 generations, and diversity 

in objective (phenotype) space was used. In order to ensure the effectiveness of NSGA-II, 

vehicle performance should be investigated with a higher number of population and 
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generations, with diversity in objective (phenotype) as well as design variable (genotype) 

space. 

Optimization was performed over different single drive cycles. Hence, to analyse 

the sensitivity of the obtained solutions, the optimization must be tested over different 

multiple drive cycles. Moreover, the vehicle was simulated with ambient temperature of 

drivetrain components and under normal weather conditions. Alternatively, the vehicle 

optimization and simulation could be performed with varying temperature and weather 

conditions. 

The software ADVISOR was used in this analysis. The same transit bus 

optimization, using another vehicle modeling package, for instance, Powertrain System 

Analysis Toolkit (PSAT), may provide different results, due to different modeling 

approach and data sets. Moreover, the combination of Stateflow graphical modeling 

technique and NSGA-II evolutionary algorithm can lead to more efficient global optimal 

solutions. 

The NSGA-II optimization algorithm can work on parallel machines. In order to 

reduce computational time, each of the independent function evolutions can be performed 

on separate processors or machines. 
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