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ABSTRACT 
 
 

Experimental investigation of the Ca-Mg-Zn system via  

diffusion couples and key experiments 
Yinan Zhang 

 

Nine diffusion couples and 32 key samples have been used to study the phase diagram of 

the Ca-Mg-Zn system at 335ºC and crystal structures of ternary intermetallics. Four 

ternary compounds have been found in this system: Ca3MgxZn15-x (4.6≤x≤12 at 335ºC) 

(IM1); Ca14.5Mg15.8Zn69.7 (IM2); CaxMgyZnz (x = 8.2-9.1; y = 27.1-31.0; z = 60.8-64.7 at 

335ºC) (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Phase relations and solubility limits have been 

determined for binary and ternary compounds using Scanning Electron Microscopy, 

Electron Probe Microanalysis and X-ray Diffraction techniques. Crystal structures of the 

IM1 and IM3 ternary compounds have been studied by means of XRD, Transmission 

Electron Microscopy and Electron Back Scattered Diffraction. The refinement of the 

XRD patterns for IM1 ternary compound has been carried out by Rietveld analysis. XRD 

data has shown that this solid solution crystallizes in hexagonal structure having 

P63/mmc (194) space group and Sc3Ni11Si4 prototype. The lattice parameters decrease 

linearly with decreasing Mg content obeying Vegard’s law. The fractional atomic 

occupancy of 6h, 4f, 2b and 12k sites of this compound are function of Mg concentration. 

Focused Ion Beam has been used to lift Transmission Electron Microscopy specimen of 

the ternary compound and the hexagonal structure has been confirmed by means of 

Selected Area Electron Diffraction data. Based on the atomic occupancy results and the 
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crystallographic details, a three sublattice (Ca)(Zn)(Mg,Zn)4 model is proposed for this 

compound. 

 

Three binary compounds are found to have extended solid solubility into the ternary 

system. CaZn11, CaZn13 and Mg2Ca are forming substitutional solid solutions where Mg 

substitutes Zn atoms in the first two compounds, and Zn substitutes both Ca and Mg 

atoms in Mg2Ca. Based on the current experimental results, the isothermal section of Ca-

Mg-Zn phase diagram at 335ºC has been constructed. The morphologies of diffusion 

couples have been studied in the Ca-Mg-Zn system at 335ºC. Depending on the terminal 

compositions of the diffusion couples, the morphology of the two-phase regions in the 

diffusion zone has: ‘tooth-like’ morphology or matrix phase with isolated and/or 

dendritic shape precipitates morphology. 
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CHAPTER 1 
 

Introduction  
 
 

As weight reduction is one of the major means available to improve fuel efficiency, 

magnesium-based alloys have attracted much attention as the lightest structural alloys for 

the aerospace and automotive applications. Mg-Al based alloys are one of the most 

important Mg alloys where the AM and AZ series can perform very well at room 

temperature. However, the precipitation of γ-Al12Mg17 phase is responsible for poor creep 

property of Al containing Mg-based alloys. Hence, a large amount of effort has been 

made to increase the service temperature of these alloys. The addition of Ca to the Al-

Mg-Zn based alloys can be beneficial not only to keep the cost low but also to increase of 

grain boundary phases and improve the mechanical properties especially the creep 

resistance at elevated temperatures [1].  

 

Furthermore, the addition of Ca element has been reported in recent years to be suitable 

to replace the cost intensive rare earth metals [2]. It is also well known that the addition 

of Ca up to 0.3 wt.% increases ductility through the grain size refinement [3]. Ca content 

in Mg alloys improves strength, castability, and creep and corrosion resistance [4]. In 

addition, it has been reported that another major alloying element Zn has significant 

amount of solid solubility in Mg. This results in improving solid solution strengthening in 
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Mg alloys. Zn also results in good balance of yield strength, increases fracture toughness 

of wrought magnesium alloys and reinforces the age hardening response [5]. Although 

many researchers have concentrated on the Mg-rich region, recently a biocompatible 

metallic glass has been found by Zberg et al. [6, 7] in Ca-Mg-Zn alloys containing 

approximately 28 at.% of Zn. This metallic glass shows a great potential for the 

development of biodegradable implants.  

 

Phase diagram plays a significant role in basic materials research in fields such as 

solidification, crystal growth, joining, solid-state reaction, and phase transformation. It 

also serves as a blueprint for material design and processing variables to achieve the 

desired microstructures and mechanical properties [8, 9]. The properties of a material 

depend first on the phases and microstructural constituents that are present. The alloy 

systems containing several elements have complex phase relations. A Phase diagram is 

essential for better understanding and investigating these complex phase relationships.  

 

The CALPHAD (Calculation of Phase Diagrams) method is based on the fact that a phase 

diagram is a representation of the thermodynamic properties of a system [10]. Thus, if the 

thermodynamic properties are known, it would be possible to calculate the multi-

component phase diagram [11]. The Gibbs energy of a phase is described by a 

representative model that contains some experimental information such as melting, 

transformation temperatures, solubility, as well as thermodynamic properties. 

Experimental investigation of a multi-component phase diagram such as the Ca-Mg-Zn 

ternary system can be time-consuming and expensive. Therefore, CALPHAD method 
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offers a reliable and versatile alternative to generate phase diagrams, and requires key 

experiments that are identified using preliminary calculations to validate the 

thermodynamic models and to check inconsistencies in the reported experimental data. 

This combined approach of thermodynamic modeling and the experimental investigation 

is used in this research to provide consistent description of the phase equilibria in the Ca-

Mg-Zn system at 335ºC.  

 

Thermodynamic modeling of the Ca-Mg-Zn system was performed by Wasiur-Rahman 

and Medraj [12] through combining the thermodynamic descriptions of the constituent 

binaries and two ternary intermetallics using FactSage program [13]. They reported the 

calculated liquidus surface of the Ca-Mg-Zn system presented in Fig 1.1 with the 

experimental results obtained by Paris [14], and the calculated isothermal section of the 

Ca-Mg-Zn system at 335ºC as illustrated in Fig 1.2 
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Fig 1.1: Calculated liquidus surface of the Ca-Mg-Zn system [12]. 
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Fig 1.2: Calculated isothermal section of the Ca-Mg-Zn system at 335ºC [12]. 

 

Despite the fact that this system was studied many times in the past, there are still several 

contradictory results need to be verified. The details will be shown in the next chapter. 

Hence, the research in this thesis is directed towards resolving these contradictions by 

experimentally investigating the Ca-Mg-Zn system via diffusion couples and key 

experiments. 

 

Objectives of the present work 

The main purpose of adding alloying elements to pure magnesium is to increase its 

strength, to improve its corrosion and creep resistance which is important for commercial 

applications including those in automotive and aerospace industries. Since the Ca-Mg-Zn 

Clark 
[34] 
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system is promising as a next-generation material in both transportation and biomedical 

applications, understanding the phase diagram and the crystal structure of the ternary 

compounds in this system significant. The present work aims at: 

• Studying the phase relations and solubility limits of binary and ternary 

compounds using SEM, EPMA and X-ray diffraction techniques. 

• Determination of the crystal structures of the ternary compounds using EBSD, 

TEM and X-ray diffraction techniques. 

• Studying the morphologies of diffusion couples in the Ca-Mg-Zn phase 

diagram at 335ºC and establishing the mechanism of these morphologies. 

• Construction of the isothermal section of Ca-Mg-Zn phase diagram at 335ºC 

experimentally. 
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CHAPTER 2 
 

Literature review 
 

2.1 Ternary phase diagram 

The initial experimental work on the Ca-Mg-Zn phase diagram was carried out in 1934 

by Paris [14]. Based on thermal analysis and metallography, he reported one ternary 

compound with the Ca2Mg5Zn5 composition, as shown in Fig 2.1, whose crystallographic 

information and other thermophysical properties could not be found in the literature. 

 

The isothermal section in the Mg-Zn side of the Ca-Mg-Zn system at 335ºC was studied 

by Clark [15] using metallography and powder X-ray diffraction. He [15] reported two 

solid solutions β and ω as shown in Fig 2.1. These are different from the composition of 

Ca2Mg5Zn5 reported by Paris [14]. The compositions of the two ternary compounds and 

XRD patterns were mentioned by Clark later in the publication of the Joint Committee on 

Powder Diffraction Standards (JCPDS) [16, 17] as Ca2Mg6Zn3 and Ca2Mg5Zn13. Both 

XRD patterns of the ternary phases were reported. The composition of Ca2Mg6Zn3 is 

slightly different from his previous report [15] as β with extensive solubility range, but 

the composition of Ca2Mg5Zn13 is consistent with ω. Then, Larinova et al. [18] worked on 

this system using XRD and reported a ternary compound with Ca2Mg6Zn3 composition. 

Clark [16] and Larinova et al. [18] mentioned that this compound has a hexagonal 

structure with lattice parameters a = 9.725 Å, c = 10.148 Å, but did not report the space 

group or structure type. 
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Later, Jardim et al. [19, 20] worked on this system using Scanning Transmission Electron 

Microscopy (STEM) with Energy Dispersive X-ray Spectroscopy (EDS) as well as XRD. 

Several Mg-rich alloys were prepared in the form of ribbons using melt spinning 

technique. They claimed that all the observed precipitates belong to the same ternary 

compound Ca2Mg6Zn3. Then, Oh-ishi et al. [21] investigated the same alloys by mould 

casting followed by TEM. Both of them reported a ternary compound with Ca2Mg6Zn3 

composition, which is similar to the compound given in the JCPDS card reported by 

Clark [16]. However, they reported this compound as a trigonal structure with space 

group P3�1c, lattice parameters a = 9.7 Å, c = 10 Å, and Si2Te6Mn3 prototype, which does 

not agree with the hexagonal structure reported by Clark [16] and Larinova et al. [18].  

 

In order to resolve these controversies [15, 16, 18-21] of both composition and 

crystallography, the solubility range and crystal structure of this compound Ca2Mg6Zn3 

are verified and investigated here. In addition, although the homogeneity range and XRD 

pattern of the other ternary compound Ca2Mg5Zn13 were reported by Clark [15, 17], the 

crystal structure, including the space group, structure type and lattice parameters are not 

mentioned in the literature. Also, the ternary element solubility in the binary compounds 

has not been reported before. All of the above issues in this Ca-Mg-Zn system will be 

address in this thesis. 

 

Brubaker and Liu [22], and Wasiur-Rahman and Medraj [12] modeled the Ca-Mg-Zn 

ternary phase diagram and included two ternary compounds. They did not consider the 
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ternary homogeneity ranges. The thermodynamic model proposed by Brubaker and Liu 

[22] was based on the random mixing of atoms in the liquid phase, which cannot properly 

handle the presence of short-range ordering. This system was remodeled using the 

modified quasichemical model by Wasiur-Rahman and Medraj [12]. The isotherm of Ca-

Mg-Zn system at 335ºC is calculated in mole fraction based on the work of Wasiur-

Rahman and Medraj [12], as shown in Fig 2.1. Since the contradictory results affect the 

accuracy of the thermodynamic model of this system, studing this system experimentally 

is significant. 
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Fig 2.1: Isothermal section of the Ca-Mg-Zn system at 335ºC calculated based on the 
database of Wasiur-Rahman and Medraj [12] including comparison of the ternary 
compounds reported in the literature [14-19, 21]. 
 

2.2 Binary phase diagram 

The most recent descriptions of the constituent binaries of the Ca-Mg-Zn system are 

discussed in the following sections. 
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2.2.1. Mg-Zn phase diagram 

The equilibrium phases in the Mg-Zn system include liquid, Mg solid solution, MgZn2 

solid solution (C14), hexagonal Zn and other four stoichiometric compounds, as shown in 

Fig 2.2. The maximum solid solubility of Zn in Mg is 2.5 at.% Zn at 613 K.  

 

Fig 2.2: Mg-Zn binary phase diagram. 

2.2.2. Ca-Zn phase diagram 

The equilibrium phases of Mg-Zn system contain eight stoichiometric compounds as 

illustrated in Fig 2.3: Ca3Zn, Ca7Zn4, CaZn, CaZn2, Ca7Zn20, CaZn5, CaZn11 and CaZn13. 

CaZn2, CaZn5 and CaZn11 melt congruently and the other five compounds undergo 

peritectic decomposition. 
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Fig 2.3: Ca-Zn binary phase diagram. 

2.2.3. Ca-Mg phase diagram 

The equilibrium phases of Mg-Zn system include the liquid, hcp-Mg, Mg2Ca 

stoichiometric binary compound, bcc-Ca and fcc-Ca, as shown in Fig 2.4. The congruent 

melting intermediate compound Mg2Ca has the Laves C14 crystal structure which is 

similar to MgZn2. 
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Fig 2.4: Ca-Mg binary phase diagram. 

2.3 Diffusion couple approach 

The present study employs the high throughput diffusion couple technique, a valuable 

experimental approach to map the phase diagram of ternary systems  [23-27]. In the solid-

solid diffusion couples or diffusion multiples, there are no problems associated with 

melting or powder contamination since all the phases form by diffusion reactions of bulk 

constituents at the temperature of interest [28]. Equilibrium phases form grain or layers 

and local equilibrium occur at the phase interface [28]. However, the diffusion couples 

approach is not omnipotent [28]. When they are used in determining phase diagrams, one 

should always be watchful for the possibility of missing phases [25, 28]. This may 

happen because the nucleation of these phases does not take place, or even if the 

nucleation occurs, the growth rate of these phases is too slow resulting in too thin 

diffusion layers to determine by EPMA. This can result in inaccuracies in estimating tie-
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line compositions for these phases, because it is difficult to extrapolate to the interface 

based on a few data points. In order to solve this problem and to assure the consistency of 

the analysis, other diffusion couples with different terminal compositions should be used 

to compare and determine the phase equilibria. It is also important to verify whether the 

known binary and ternary phases form. Furthermore, in order to guarantee the precision 

and reliability of the information obtained, in this work, a combination of the diffusion 

couples technique with an investigation of selected equilibrated alloys is desirable, 

especially for the regions where the exact phase boundaries are questionable. 
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CHAPTER 3 
 

Experimental procedures 
 
 

In order to study the Ca-Mg-Zn ternary system, nine diffusion couples and 32 key alloys 

have been prepared to map the whole composition range at 335ºC based on the 

preliminary thermodynamic model of Wasiur-Rahman and Medraj [12]. The reason of 

choosing the annealing temperature as 335ºC:  

• The annealing temperature should be as high as possible, because heat treatment, 

with higher annealing temperature, the interdiffusion and reaction among 

elements are easier to take place, also the alloys cause less time to achieve the 

equilibrium. 

• The annealing temperature should be lower than the lowest point of liquidus 

curve, which is the Mg-rich eutectic at 341 ºC in the Mg-Zn system. 

The starting materials are high-purity Mg ingot of 99.8%, Zn with purity of 99.99%, and 

Ca with 99%, all supplied by Alfa Aesar. The key alloys are prepared in an arc-melting 

furnace with water-cooled copper crucible under a protective argon atmosphere using a 

non-consumable tungsten electrode. Samples are re-melted five times to ensure 

homogeneity.  
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3.1 Solid-solid and solid-liquid diffusion couples  

To prepare solid-solid diffusion couples, the contacting surfaces are grinded down to 

1200 grit SiC paper and polished using 1µm water-based diamond suspension and 99% 

pure ethanol as lubricant. The two end members are carefully pressed and clamped using 

a steel ring, placed in a Ta container, and sealed in a quartz tube filled with argon. Since 

Mg and Ca are susceptible to oxygen and nitrogen contamination, it is critical to keep the 

samples free from external interstitials by the quartz tube. The encapsulated samples are 

then annealed at 335ºC for 4 weeks followed by quenching in water. Terminal 

compositions of the solid-solid diffusion couples are shown in Fig 3.1 (a). Their 

compositions are as follows: 

• DC1. Ca17.6Mg10.1Zn72.3-Zn 

• DC2. Ca31.8Mg17.5Zn50.7-Zn 

• DC3. Ca31.7Mg29.2Zn39.1-Zn 

• DC4. Ca20.2Mg63.1Zn16.7-Zn 

• DC5. Ca10.3Mg41.4Zn48.3-Zn 

• DC6. Ca9.8Mg74.7Zn15.5-Zn 

 

When the solid-solid diffusion couples failed, solid-liquid diffusion couples are used 

instead. The block of alloy with the lower melting temperature was melted on top of the 

block with higher melting temperature in the arc-melting furnace under a protective Ar 

atmosphere. The prepared samples were annealed at 335ºC for 4 weeks. Terminal 

compositions of the solid-liquid diffusion couples are illustrated in Fig 3.1 (b). Their 

compositions are as follows: 

• DC7. Mg2Ca-Zn 

• DC8. Mg-CaZn2 
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• DC9. Mg69.4Ca20.3Zn10.3-Mg22.3Ca14.3Zn63.4 

 

 
                                 (a)                                           (b)  
Fig 3.1: Terminal compositions of the diffusion couples superimposed on the 335ºC   
calculated isothermal section of the Ca-Mg-Zn system based on the thermodynamic 
modeling [12]: (a) six solid-solid diffusion couples; (b) three solid-liquid diffusion 
couples. 

 

3.2 Preparation of key samples  

Key samples are prepared using the arc-melting furnace. They are encapsulated in 

tantalum foil, sealed in quartz tube under Ar atmosphere, annealed at 335ºC for 4 weeks, 

and quenched in water. The actual composition of the samples is determined by 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The difference between 

nominal compositions and actual compositions is below 3 at.% in most cases. 
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3.3 Characterization of samples 

Diffusion couples and key samples have been experimentally investigated using SEM 

(Scanning Electron Microscopy), Electron Probe Microanalysis (EPMA) with 

Wavelength Dispersive X-Ray Spectrometry (WDS), Electron Backscattered Diffraction 

(EBSD), X-ray Diffraction (XRD) as well as Transmission Electron Microscopy (TEM). 

The microstructure, layer thickness, phase composition, and homogeneity ranges are 

analyzed using quantitative EPMA (JEOL-JXA-8900) with a 2μm probe diameter, 15kV 

accelerating voltage, 20nA probe current. Phi-Rho-Z (PRZ) matrix corrections (modified 

ZAF) are applied during the analysis. The error of the EPMA measurements is estimated 

to be about ±2 at.%. This value is obtained using statistical analysis of the compositions 

of selected phases from several samples. The phase composition measurements are 

performed perpendicular to the interfaces between every two adjacent phases in the 

diffusion couples. The equilibrium compositions of each phase are obtained by 

extrapolating the composition-distance curves for each element to the phase boundaries 

[25, 29]. 

 

X-ray diffraction is used for phase analysis and determination of the solubility limits in 

the key alloys. The XRD patterns are obtained using PANanalytical Xpert Pro powder X-

ray diffractometer with a CuKα radiation at 45kV and 40mA. The XRD spectrum is 

acquired from 20 to 120º 2θ with a 0.02º  step size. X-ray diffraction study of the samples 

is carried out using X'Pert HighScore Plus Rietveld analysis software in combination 

with Pearson’s crystal database [30]. 
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In order to improve surface preparation for EBSD diffraction, the samples are prepared 

using first standard mechanical metallographic preparation, then a plasma cleaning, and 

optimized ion milling, finally cleaning with plasma again. Three successive stages of ion 

milling are used on the surface of the diffusion couples with a current of 5mA and 

accelerated voltages of 3.5kV for 2hr, 2.5kV for 30min and 1.5kV for 30min. As a very 

powerful and efficient technique for crystal structure identification with a high spatial 

resolution [31], EBSD analysis is performed using a Hitachi SU-70 Schottky-SEM 

equipped with a Nordlys F+ camera and OXFORD HKL CHANNEL 5 software. Typical 

operation parameters are 20kV accelerating voltage and 13nA beam current. Secondary 

Electron Images (SEI) are employed for the observation of surface topographic features. 

Phase identification has been accomplished by a direct match and indexation of the 

Kikuchi diffraction bands with simulated diffraction patterns generated by means of 

known structure types and lattice parameters. 

 

Focused Ion Beam (FIB) is used to lift a specimen of the ternary compound from key 

sample (Ca18.0Mg44.2Zn37.8) and to obtain the crystallographic information using TEM. 

The Selected Area Electron Diffraction (SAED) and CM20 FEG TEM operated at 200kV 

are used to analyze this ternary compound. Ternary key sample Ca6.2Mg48.3Zn45.5 is 

prepared to study the crystallographic information of IM3 compound and phase relations 

between IM3 and Mg solid solution. The sample is crushed using a mortar and pestle and 

the fragments are suspended in ethanol before depositing them on a carbon coated Cu 

grid. The Selected Area Electron Diffraction (SAED) and Philips CM200 TEM operated 

at 200kV are used to analyze the IM3 compound and Mg solid solution.  
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CHAPTER 4 
 

Results and Discussions 
 
 

4.1 Isothermal section at 335ºC through diffusion couples  

4.1.1 Solid-solid diffusion couples 

Backscattered electron images of the solid-solid DC1 with gradually increased 

magnification of the area of interest are illustrated in Fig 4.1 (a) and (b). During heat 

treatment, extensive interdiffusion among Ca, Mg and Zn took place allowing various 

equilibrium phases to form. EPMA line scan has been used to determine the solubility 

range of CaZn11, CaZn13, and Zn phases, as shown in Fig 4.1(a) and Fig 4.2. Spot analysis 

has been carried out for composition identification of smaller grains, such as those of 

CaZn5 and IM2. Based on the compositional information obtained by EPMA analysis, 

ternary and binary intermetallic compounds and the solid solubility of the binary 

compounds extending in the ternary system have been identified. Using the local 

equilibrium at the interfaces formed between the phases, the sequence of the phases along 

the diffusion path is: CaZn2 + (IM1) → CaZn2 + IM2 → CaZn3 + IM2 → CaZn5 + 

IM2→ CaZn5 + (CaZn11) → (CaZn11) → CaZn13 → Zn. The following four phase 

triangulations are identified from Fig 4.1(b): CaZn2, (IM1) and IM2; CaZn2, IM2 and 

CaZn3; CaZn3, IM2 and CaZn5; CaZn5, IM2 and CaZn11. Two ternary intermetallic 

compounds have been detected in this diffusion couple by EPMA spot analysis: ternary 

intermetallic 1 (IM1) with composition 16.7 at.% Ca, 26.0 at.% Mg, and 57.3 at.% Zn. 
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IM2 is a new ternary stoichiometric compound with Ca14.4Mg15.8Zn69.8 composition. The 

result of the 80µm EPMA line scan of the diffusion couple is shown in Fig 4.2. The line 

scan clearly illustrates that the CaZn11 phase forms substitutional solid solution where Mg 

substitutes Zn atoms while Ca content remains constant at 8.3 at.%. On the other hand, 

CaZn13 does not show significant solid solubility. The least squares approximation is used 

to obtain the solubility limits of the CaZn11 compound. The deviation from the linearity is 

about ±1 at.%, which is within the error limits of the EPMA measurements.  

 
Fig 4.1: (a) and (b) Backscattered electron images of the solid-solid DC1 annealed at 
335ºC for 4 weeks, showing the formation of seven different intermetallic compounds, 
with the tooth-like morphology clearly showing up. 

 



22 
 

Distance (um)
0 20 40 60 80

At
. %

 o
f e

le
m

en
t

0

80

90

100

110

Zn 
Ca
Mg

CaZn11 CaZn13

y = 1.209x + 83.13
R2 = 0.985

y = -1.159x + 8.226
R2 = 0.983

 
Fig 4.2: Composition profile of the line scan in Fig 4.1(a). 

 
 

Backscattered electron images of the solid-state DC3 with increased magnification of the 

area of interest are illustrated in Fig 4.3. The sequence of the phases along the diffusion 

path is: Zn → Mg2Zn11 → (CaZn13) + Mg2Zn11 → (CaZn13) + (MgZn2) → (CaZn11) → 

IM2 → IM1 → CaZn2 + (Mg2Ca). The following two phase triangulations are identified 

from Fig 4.3: (CaZn13), (MgZn2) and Mg2Zn11; IM2, (Mg2Ca) and CaZn2. Two ternary 

intermetallic compounds have been observed in this diffusion couple by EPMA: ternary 

intermetallic 1 (IM1) with composition 16.7 at.% Ca, 25.4 at.% Mg, and 57.9 at.% Zn 

and ternary intermetallic 2 (IM2) which is a new ternary stoichiometric compound with 

Ca14.4Mg15.8Zn69.8 composition. CaZn11 and CaZn13 compounds have been found to form 

extended substitutional solid solutions where Mg substitutes Zn up to 8.3 and 9.1 at.% 

Mg, respectively. The experimental results indicate that no significant solid solubility of 
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Mg2Zn11. Binary homogeneity range of the MgZn2 isolated precipitates imbedded in the 

(CaZn13) matrix is determined as 33.3 to 36.2 at.% Mg by EPMA point analysis and the 

result is consistent with the Mg-Zn binary phase diagram reported by Park and Wyman 

[32]. 

 

The morphology of the diffusion zone evolved in this solid-state DC3 has been studied. 

The Mg2Zn11 diffusion layer appears as a continuous layer adjacent to the end member 

Zn, as demonstrated in Fig 4.3(a). Then the morphology changes to an interpenetrating 

type structure consisting of isolated (MgZn11) precipitates and (3.8-6.4 at.% Mg)matrix 

(CaZn13). After that, the morphology of the reaction layer changes gradually, another two 

two-phase structure consisting of the same matrix (CaZn13) but with different Mg 

concentration (6.4-9.1 at.% Mg) and the isolated precipitates of MgZn2 compound form. 

Then the CaZn11 diffusion layer appears as a continuous layer changing to the IM2 

compound and gradually transforming into (IM1), as illustrated in Fig 4.3(b). Then the 

morphology terminates at the two-phase end member (Mg2Ca) and CaZn2 alloy. 
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Fig 4.3: (a) and (b) Backscattered electron images of the solid-state DC3 annealed at 
335ºC for 4 weeks, showing the formation of eight different intermetallic compounds. 
 

Combining the EPMA results of the solid-solid DC1, DC2 and DC3, a large amount of 

phase equilibrium information has been obtained. A partial isothermal section at 335ºC of 

the Ca-Mg-Zn system has been constructed and the phase relations are demonstrated in 

Fig 4.4. The existence of (IM1) and IM2 ternary compounds has been confirmed by these 

three diffusion couples. The (IM1) substitutional solid solution has been determined and 

IM2 is considered to be a stoichiometric compound. Based on EPMA analysis, the solid 

solubility limit of Mg2Ca compound has been determined as 31.3 at.% Ca, 63.5 at.% Mg 

and 5.2 at.% Zn, where Zn atoms substitute both Ca and Mg atoms, which is consistent 

with the extended solid solution of Mg2Ca phase reported by Clark [15]. CaZn11 and 

CaZn13 compounds have been found to form extended substitutional solid solutions 

where Mg substitutes Zn up to 8.35 and 9.80 at.% Mg, respectively. Binary homogeneity 

range of MgZn2 isolated precipitates imbedded in the (CaZn13) matrix is determined as 
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33.3 to 36.2 at.% Mg by EPMA point analysis. This result is consistent with the Mg-Zn 

binary phase diagram reported by Park and Wyman [32]. 

 

 
Fig 4.4: Partial isothermal section of the Ca-Mg-Zn system obtained from solid-solid 
DC1, DC2 and DC3 annealed at 335ºC for 4 weeks. 
 

Backscattered electron images of the solid-solid DC4 diffusion couple annealed at 335ºC 

for 4 weeks are shown in Fig 4.5. The result of the EPMA 140µm line scan of the 

diffusion couple is shown in Fig 4.6. Two phases are identified by EPMA line scan: 

Ca2Mg5Zn13 (IM3), and IM1 solid solution. The line scan clearly demonstrates that the 

IM1 compound forms substitutional solid solution where Mg substitutes Zn atoms while 

Ca content remains constant at 16.7 at.%. The least squares approximation was used to 

establish the concentration profiles of this compound. The change of Mg and Zn 

concentration profiles show that the substitution of Zn by Mg has a linear relationship 

with the diffusion distance. The deviation from the linearity is ±2 at.% which is within 

the error limits of the EPMA measurement. The least squares approximation of the Ca 
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profile shows no changes in its concentration. Based on this diffusion couple, the 

tentative minimum and maximum solid solubility limits of the IM1 ternary compound 

determined by EPMA are 35.31 at.% Mg and 65.20 at.% Mg, respectively. Because the 

solubility limits can be identified by the triangulations between each phase, taking into 

account that the diffusion layers contacting IM1 compound in the diffusion couple do not 

correspond to the three phase field, it is possible that IM1 compound did not establish the 

maximum solubility range. Therefore, key samples are used to obtain the actual 

boundaries of this solubility range. The solid solubility of IM3 compound will be 

discussed in next section. 

 

Fig 4.5: Backscattered electron images of the solid-solid DC4 annealed at 335ºC for 4 
weeks. 
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Fig 4.6: Composition profiles of the line scan shown in Fig 4.5. 
 

Backscattered electron images of the solid-solid DC5, Fig 4.7 shows the formation of five 

different intermetallic compounds. Two ternary intermetallic compounds IM1 (hP36), 

IM3 (hP92) and the extended solid solubility of CaZn13 (cF112) in the ternary system 

have been confirmed by both EPMA and EBSD. The crystal structure determination by 

EBSD is extremely useful for analyzing this system near the Zn-rich corner since several 

compounds have compositions very close to one another and EPMA data alone would not 

be enough to distinguish them. For instance, the extended binary homogeneity limits of 

Ca(Mg,Zn)11 (8.3 at.% of Ca content) and Ca(Mg,Zn)13 (7.1 at.% of Ca content) are very 

close to each other. Also, due to the extensive amount of Mg concentration (15.8 at.%) in 

the case of Ca(Mg,Zn)13 compound, it is very difficult to conclude whether this is an 

isolated ternary compound or a binary compound with extended solubility in the ternary 

system. Fortunately, this confusion is resolved by EBSD crystal structure determination. 

Without EBSD, this would require the time-consuming FIB-TEM and selected area 
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electron diffraction analysis to confirm the results. The crystallographic information of 

intermetallic compound has been used for indexation of Kikuchi diffraction bands, as 

listed in Table 4.1. Detailed description of the crystal structure of IM1 ternary compound 

will be discussed in section 4.3.1. The EBSD patterns of IM1, IM3 and CaZn13 are 

illustrated in Fig 4.8. The solubility limits of CaZn13 compound extending in the ternary 

system has been analyzed by quantitative EPMA and the crystal structure of this 

compound has been confirmed by EBSD across the solubility line, as shown in Fig 4.7 

and Fig 4.8. Besides, qualitative SEM/EDS mapping clearly demonstrates that the CaZn13 

compound forms substitutional solid solution where Zn substitutes Mg atoms while Ca 

content remains constant, as illustrated in Fig 4.9. 

 

Analysis of the diffusion reaction zone reveals that the sequence of the phases along the 

diffusion path is: (IM1) + (IM3) + (Mg) → CaZn2 + IM2 → (IM3) + (MgZn2) → (CaZn13) 

+ (MgZn2) → (CaZn13) + Mg2Zn11 → Mg2Zn11 → Zn. The following three phase 

triangulations are identified from Fig 4.7: (IM1), (IM3) and (Mg); (IM1), (CaZn13) and 

(MgZn2); (CaZn13), (MgZn2) and Mg2Zn11. IM3 ternary compound has a complex 

homogeneity range: 8.2-9.1 at.% Ca, 27.1-31.0 at.% Mg and 60.8-64.7 at.% Zn, where Zn 

atoms substitute both Ca and Mg atoms. This is in agreement with the solid solution ω 

reported by Clark [34]. The solubility of Zn in (Mg) has been measured to be 2.3 at.% 

Mg. EPMA results indicate that Mg2Zn11 does not have extended solubility in the ternary 

diagram. 
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Fig 4.7: Backscattered electron images of the solid-solid DC5 annealed at 335ºC for 4 
weeks showing the formation of six different intermetallic compounds. 
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Table 4.1: Crystallographic information of the phases in the Ca-Mg-Zn system [30]. 

Phase Pearson symbol Space group 
Lattice parameters (Å) 

a b c 

CaZn2 I12 Imma (74) 4.591 7.337 7.667 

CaZn3 hP32 P63/mmc (194) 9.168 9.168 7.327 

CaZn5 hP6 P6/mmc (191) 5.371 5.371 4.242 

CaZn11 tI48 I41/amd O2 (141) 10.699 10.699 6.830 

CaZn13 cF112 Fm-3c (226) 12.154 12.154 12.154 

Zn hP2 P63/mmc (194) 2.665 2.665 4.947 

Mg hP2 P63/mmc (194) 3.199 3.199 5.154 

MgZn2 hP12 P63/mmc (194) 5.221 5.221 8.567 

Mg2Zn11 cP39 Pm-3 (200) 8.552 8.552 8.552 

IM1 hP36 P63/mmc (194) 9.486 9.486 9.950 

IM3 hP92 P63/mmc (194) 14.758 14.758 8.804 
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Fig 4.8: The EBSD pattern of (I) IM1, (II) IM3 ternary compounds and (III) CaZn13 
binary compound having an extended solid solubility in the ternary system. The un-

indexed pattern is on the left and the indexed pattern is on the right. 
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Fig 4.9: SEM/EDS mapping of solid-solid DC5, green, red and blue representing the Zn, 

Mg, Ca concentration profile, respectively. 
  

Combining the EPMA results of the solid-solid DC4, DC5 and DC6, a partial isothermal 

section at 335ºC of the Ca-Mg-Zn system has been constructed and the phase relations 

are demonstrated in Fig 4.10. The IM1 substitutional solid solution has been studied. The 

existence of IM3 ternary phase has been confirmed by these three diffusion couples. IM3 
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compound forms a complex solid solution where Zn substitutes both Ca and Mg atoms. 

The maximum solid solubility of (CaZn13) is determined as 15.5 at.% Mg. 

 

 

Fig 4.10: Partial isothermal section of the Mg-Zn-Ca system obtained from solid-solid 
DC4, DC5, DC6 annealed at 335ºC for 4 weeks.  
 

4.1.2 Solid-liquid diffusion couples 

Solid-liquid diffusion couples are used, when preparing solid-solid diffusion couples is 

impossible due to the brittleness of the end members. Mg2Ca-Zn solid-liquid diffusion 

couple has been prepared and analyzed.  Backscattered electron image of the solid-liquid 

DC7 annealed at 335ºC for 4 weeks, showing the formation of three different 

intermetallic compounds, is presented in Fig 4.11. Analysis of the diffusion reaction zone 

indicates that the sequence of the phases along the diffusion path is: (Mg2Ca) → (IM1) 

→ (CaZn13) →Zn. The results of the 125µm EPMA line scan of the diffusion couple is 

shown in Fig 4.12 illustrating that the Mg2Ca compound forms a complex solid solution 
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where Zn substitutes both Ca and Mg atoms. The IM1 and CaZn13 compounds form 

substitutional solid solutions where Mg substitutes Zn atoms while Ca content remains 

constant at 16.7 and 7.3 at.%, respectively. The least squares approximation is used to 

establish the elemental concentration profiles of Mg2Ca, IM1 and CaZn13 compounds. Ca, 

Mg and Zn concentration profiles of Mg2Ca show that the substitutions of Ca and Mg by 

Zn have linear relationships with the diffusion distance. Also, Mg and Zn concentration 

profiles of IM1 and CaZn13 compounds show that the substitution of Mg by Zn has a 

linear relationship with the diffusion distance. The deviation from the linearity of all 

phases is ±2 at.%, which is within the error limits of the EPMA measurements. Based on 

this diffusion couple, the maximum solid solubility limit of the Mg2Ca compound, 

determined by EPMA, is 31.1 at.% Ca, 64.1 at.% Mg and 4.8 at.% Zn, which is 

consistent with the solubility limits obtained from the solid-solid DC3 and DC4. The 

minimum and maximum solid solubility limits of the IM1 phase are 38.3 at.% Mg and 

44.2 at.% Mg, respectively. The maximum solid solubility limits of the CaZn13 

compound is 12.1 at.% Mg.  
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Fig 4.11: Backscattered electron image of the solid-liquid DC7 annealed at 335ºC for 4 
weeks showing the formation of three different intermetallic compounds. 
 

 

Fig 4.12: Composition profile of the line scan in Fig 4.11. 

 

Line Scan

ZnIM1Mg2Ca CaZn13
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Combining the results obtained from six solid-solid diffusion couples and three additional 

solid-liquid diffusion couples, a partial isothermal section of the Ca-Mg-Zn system at 

335ºC has been constructed and the phase relations are demonstrated in Fig 4.13. Besides, 

the experimental results revealed that the solid-liquid DC9 demonstrated tie lines among 

IM1, IM2, and IM3 compounds in the terminal alloy. This is contradictory to the results 

from solid-liquid DC7 which show that IM1 and CaZn3 are in equilibrium. This situation 

is observed in other studies [33, 34] indicating that the local equilibrium at the interface is 

not real because the IM2 or IM3 is missing from between IM1 and (CaZn13) due to their 

sluggish nucleation. In order to improve the reliability of the information obtained from 

the diffusion couples, 32 selected key alloys have been used to study the phase relations, 

phase boundaries and crystallographic information of the ternary compounds in the Ca-

Mg-Zn system. 

 

Fig 4.13: Partial isothermal section of the Mg-Zn-Ca system obtained from solid-liquid 
DC7, DC8 and DC9 annealed at 335ºC for 4 weeks.  
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4.2 Morphological evolution of the reaction zone in the 

diffusion couples  

4.2.1 Solid-solid diffusion couples 

In the solid-solid DC1, CaZn11 and CaZn13 phases are the dominant reaction products, as 

the microstructure in Fig 4.1(a) illustrates. Another morphology of the diffusion zone 

evolved in this diffusion couple is the ‘tooth-like’ structure, as can be seen clearly in Fig 

4.1, which grows in a very irregular fashion, somewhat similar to the ‘finger-like’ 

structure that is reported in earlier works [24, 33, 34]. However, the concepts and 

mechanisms of the ‘tooth-like’ and ‘finger-like’ structures are different, as illustrated in 

Fig 4.14. In the present work, a two-phase terminal alloy CaZn2 + (IM1) has been 

prepared. To understand the morphology of the ‘tooth-like’ structure model, a diffusion 

couple with ‘finger-like’ structure is used for comparison. The diffusion couple can be 

divided into several sub-diffusion couples. In this work, the DC1 with ‘tooth-like’ 

structure can be considered as several CaZn2-CaZn11 and IM1-CaZn11 sub-diffusion 

couples. On one hand, the formation of CaZn5, CaZn3 phases is a result of the 

interdiffusion reaction between CaZn2 and CaZn11. On the other hand, IM2 ternary 

compound forms by the interdiffusion reaction between IM1 and CaZn11, as illustrated 

with square marks in Fig 4.14(a). However, in the ‘finger-like’ structure, all the sub-

diffusion couples present the phases formed by the same interdiffusion reaction. For 

example, NiSi and NiSi2 phases form by the interdiffusion reaction between Ni3Si2 and Si. 
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                    (a)                                                                             (b) 
Fig 4.14: Different morphologies of diffusion couple: (a) ‘tooth-like’ structure, (b) 
‘finger-like’ structure. 
 

The morphology of the diffusion zone evolved in the solid-solid DC5 is completely 

different from the morphology of solid-solid DC1. The diffusion reaction starts from the 

three-phase end member (IM1) + (IM3) + (Mg), as demonstrated in Fig 4.7, then the 

morphology changes to a single phase (IM3) layer. Afterwards, the morphology changes 

to isolated (MgZn2) precipitates imbedded in the (IM3) matrix. Then, the matrix (IM3) 

changes to (CaZn13) (6.4-15.5 at.% Mg) with the same isolated (MgZn2) precipitates. 

After that, the morphology of the reaction layer changes gradually, another two-phase 

structure consisting of the same matrix (CaZn13) but with different Mg concentration 

(3.8-6.4 at.% Mg) and the dendrite type structure of Mg2Zn11 compound form. Then the 

Mg2Zn11 diffusion layer appears as a continuous layer changing to the end member Zn. In 

order to calculate the interdiffusion coefficient, determination of the volume fraction of 

phases in the diffusion couple is needed. The volume fraction of the MgZn2 precipitates 

with layer (CaZn13) matrix is considerably higher than the layer (CaZn13) with Mg2Zn11 

precipitates and the layer (IM3) with MgZn2 precipitates, as illustrated in Fig 4.7. 

Furthermore, SEM/EDS elemental mapping has been carried out to study the evolution of 
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the morphology of this diffusion couple as shown in Fig 4.9. It also shows good 

consistency with the phase identification by EPMA. A schematic representation of the 

possible morphologies when a pure element is coupled with a three-phase alloy is 

depicted in Fig 4.15. 

 
Fig 4.15: The possible morphologies in solid-solid diffusion couples when a pure element 
is attached to a three-phase alloy. 
 

4.2.1 Solid-liquid diffusion couples 

The morphology of the diffusion zone evolved in solid-liquid diffusion couples are 

different from those in solid-solid diffusion couples. For instance, in solid-liquid DC7, 

CaZn13 phase is the dominant product during interdiffusion, as the microstructure in Fig 

4.11 illustrates. Instead of forming ‘tooth-like’ morphology or matrix phase with 

isolated/dendritic type precipitates morphology, uniform layer morphology has occurred 

in this diffusion couple. 
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4.3 Key alloys 

4.3.1 Solubility range and crystal structure of the IM1 ternary 

compound 

4.3.1.1 Study of solubility range and crystal structure of IM1 compound via EPMA 

and XRD 

Part of this work is directed towards determining the solubility range and the crystal 

structure of the Mg-rich IM1 ternary compound using 6 key samples (numbers 1 to 6), as 

illustrated in Fig 4.16. The composition and phase identification of these samples are 

summarized in Table 4.2. The actual chemical compositions of the alloys are measured 

by ICP and the composition of IM1 compound is determined by EPMA. The phase 

relations obtained from EPMA show great consistency with the results obtained by XRD. 

The XRD pattern of key sample 4 annealed at 335ºC for 4 weeks is shown in Fig 4.17(a). 

Full pattern refinement has been carried out by Rietveld method. The use of Si as an 

internal calibration standard enabled correcting the zero shift and specimen surface 

displacement which are the most serious systematic errors in x-ray powder diffraction 

patterns. The XRD pattern of sample 4 shows good consistency with that reported by 

Clark [16] as shown in Fig 4.17. The peak positions shift to higher angle with decreasing 

Mg content.  The substitution of Mg by Zn, which has a smaller atomic radius, decreases 

the unit cell parameters. This is confirmed by the increase of the 2𝛳𝛳 values of the peaks 

positions from sample 2 to 5 due to increasing Zn concentration, as demonstrated in Fig 

4.18. Combining Pearson’s crystallographic database [30] with Rietveld analysis, the 

crystal structure of IM1 compound has been found to have Sc3Ni11Si4 prototype with 

hexagonal structure and P63/mmc (194) space group [35]. The XRD pattern generated 
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using Sc3Ni11Si4 prototype [35] perfectly corresponds to the experimental patterns 

reported by Clark [16] and Larinova et al. [18]. However, this crystal structure 

contradicts with the trigonal structure reported by Jardim et al. [19] and Oh-ishia et al. 

[21]. Also the XRD pattern generated using Si2Te6Mn3 prototype, reported by Jardim et 

al. [19] and Oh-ishia et al. [21] does not match with the current experimental results. 

 
Fig 4.16: The actual composition of the key samples used to study the solubility ranges, 
phase relations and crystal structure of various compounds in the Ca-Mg-Zn system. 

 
 

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXD-4WTRSBB-5&_user=1069146&_coverDate=11%2F25%2F2009&_alid=1147136850&_rdoc=1&_fmt=full&_orig=search&_cdi=5588&_sort=r&_docanchor=&view=c&_ct=161&_acct=C000051262&_version=1&_urlVersion=0&_userid=1069146&md5=f15058ab60554447c42398d5ac50d97e#aff1�
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Table 4.2: The actual composition of the key samples and the phases present. 

Sample 
No. 

Actual composition 
identified by ICP 

(at.%) 

Phases identification 
 

Composition of IM1 
identified by EPMA 

Ca Mg Zn By EPMA By XRD Ca Mg Zn 

1 18.8 74.1 7.1 
Mg Mg 

16.7 66.9 16.4 Mg2Ca Mg2Ca 
IM1 IM1 

2 22.4 59.3 18.3 Mg2Ca Mg2Ca 16.7 56.1 27.2 IM1 IM1 

3 18.4 48.8 32.8 Mg2Ca Mg2Ca 16.7 47.8 35.5 IM1 IM1 

4 18.0 44.2 37.8 Mg2Ca Mg2Ca 16.7 43.3 40.0 IM1 IM1 

5 18.0 42.9 40.3 Mg2Ca Mg2Ca 16.7 42.1 41.2 IM1 IM1 

6 15.0 23.1 61.9 
IM1 

IM1 16.7 25.4 57.9 IM3 
IM2 

 

 
Fig 4.17: (a) XRD patterns of key samples 2; (b) XRD pattern reported by Clark [16]. 
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Fig 4.18: XRD patterns of the ternary compound IM1 showing the solid solubility effect. 

 

4.3.1.2 Study of solubility limits of IM1 compound via EPMA and XRD 

In order to determine the phase boundaries of IM1 ternary compound, two ternary 

samples 1 and 6 have been prepared to identify the maximum and minimum solid 

solubility. Backscattered electron images of these samples are presented in Fig 4.19. 

Sample 1 contains three phases: IM1, (Mg) and Mg2Ca. The maximum solid solubility of 

IM1 has been determined by EPMA as 66.9 at.% Mg. The XRD pattern is illustrated in 

Fig 4.20(a). This figure demonstrates Rietveld analysis for the IM1, Mg2Ca and Mg 

phases in sample 1. Sample 6 contains three phases, the dominating phase is IM1. The 

minimum solid solubility of IM1 has been determined by EPMA as 25.4 at.% Mg. The 
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XRD pattern is illustrated in Fig. 4.20(b). Ca2Mg5Zn13 (IM3) is not detected in the XRD 

pattern due to its small relative amount. IM2 is a new stoichiometric compound, the 

prototype has not been reported hence this compound cannot be verified by Rietveld 

analysis. 

 
Fig 4.19: BE images: (a) sample 1, (b) sample 6. Both are annealed at 335ºC for 4 weeks. 
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Fig 4.20: Rietveld analysis: (a) sample 1, (b) sample 6. Both are annealed at 335ºC for 4 

weeks. 

Combining the EPMA results of the solid-solid diffusion couple and key alloys, the 

actual composition of the Mg-rich ternary compound and its complete homogeneity range 

have been determined. Taking into account the structure type of IM1, the formula of this 

compound is Ca3MgxZn15-x (4.6≤x≤12) at 335°C. The actual chemical composition of this 

ternary compound has been measured quantitatively by EPMA, which shows great 

consistency with the results obtained by Rietveld approach, as summarized in Table 4.3. 

Furthermore, refinement of the XRD patterns has been carried out. All XRD data has 

shown that this solid solution, in six samples, crystallizes in hexagonal structure with 
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P63/mmc (194) space group and Sc3Ni11Si4 prototype. Fig 4.21 shows the cell parameters 

variations with Mg concentration, where substitution of Mg by Zn decreases the unit cell 

parameters a and c (Å), and the lattice volume (Å3). This is shown in more details in 

Table 4.3. The linear relation between the lattice parameters, lattice volume and Mg 

concentration obeys Vegard’s law [36] indicating clearly the occurrence of substitutional 

solid solubility. The composition Ca2Mg6Zn3 reported by Clark [16] and Jardim et al. [19] 

is very close to sample 2, and they reported consistent unit cell parameters with the 

current work, as can be observed in Table 4.3 and Fig 4.21. 

 

4.3.1.3 Study of lattice parameters of IM1 compound by Rietveld analysis 

The degree of refinement in the Rietveld analysis is judged by the goodness of fit, s, 

which is calculated as follows: 

s= (Rwp/Re)2……………………………….. (4.1) 

Where Rwp is the weighted summation of residuals of the least squared fit and Re is the 

value statistically expected. Therefore an s value of 1.0 indicates perfect fit. In order to 

achieve an acceptable goodness of fit, Rietveld analysis has been carried out to study the 

fractional atomic coordinates and occupancy. Table 4.4 shows the refined structural 

parameters of the IM1 compound and the reliability factors. The decrease in all unit cell 

parameters is in favor of the occupation of 6h sites by Zn from sample 1 to sample 2. The 

prerequisite substitutional position of 6h sites has also been confirmed by the shortest 

bond lengths of Mg1-x (x=Ca, Zn, Mg1, Mg2, Mg3) in sample 1, as can be seen in Table 

4.5. Most of the bond lengths with Mg1 (6h atomic sites) demonstrate relatively short 

distance, indicating that the Mg1 position has higher potential to be substituted by Zn 



47 
 

because of the smaller size of Zn atom. For instance, the bond length of Mg2-Mg1 is 

3.1014Å, and the distance between Mg2-Mg2, Mg2-Mg3 and Mg2-Mg4 is 3.4156Å, 

3.1234Å and 3.2660Å, respectively. It is obvious that the bond length of Mg2-Mg1 

shows the shortest distance, suggesting that the Mg1 atomic position is in favor of the 

substitution of magnesium by Zinc. Once the 6h sites are occupied completely by Zn 

atoms, as in the fictitious Ca2Mg6Zn4 compound, Mg atoms start to be replaced in 4f, 2b 

and 12k sites by Zn simultaneously. The fractional atomic occupancy of 6h, 4f, 2b and 

12k sites of IM1 have been determined as a function of the Mg concentration, as shown 

in Fig 4.22. Crystallographic and the site occupancy data of MgYZn3 [37] are similar to 

those for IM1 solid solution. The occupancy of 6h, 4f and 12k sites show good 

consistency with the current experimental results obtained by Rietveld analysis. The 

occupancy of 2b sites has not been used in this comparison, because it involves mixing of 

both Y and Mg atoms, whereas in the current case, this site is occupied by Mg and Zn 

atoms (Y atom is analogous to Ca not to Zn atom).  

 

The coordination spheres and atomic substitution of Mg by Zn for the different atomic 

sites have been identified, as can be seen in Fig 4.23. The atomic environment types of 6h, 

4f and 12k form icosahedrons, whereas 2b sites have a tricapped trigonal prism atomic 

environment type with the additional three Ca atoms on the sides of the prisms. 
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Table 4.3: The chemical composition and unit cell parameters of the IM1 compound 
determined by EPMA and Rietveld analysis. 

*Recalculated from the Ca2Mg6Zn3 formula. 

 

Sample No. 

Composition of 

IM1 compound 

identified by 

EPMA 

IM1 phase 

composition 

identified by 

Rietveld analysis 

hexagonal crystal structure, 

space group P63/mmc(194) 

and prototype Sc3Ni11Si4 

Ca Mg Zn Ca Mg Zn 

Unit cell parameters and  

lattice volume 

a(Å) c(Å) V(Å3) 

1 16.7 66.9 16.4 16.7 66.6 16.7 9.958 10.395 892.710 

2 16.7 56.1 27.2 16.7 54.5 28.4 9.734 10.169 834.319 

3 16.7 47.8 35.5 16.7 46.2 37.1 9.558 10.013 792.139 

4 16.7 43.3 40.0 16.7 43.4 39.9 9.486 9.950 775.369 

5 16.7 42.1 41.2 16.7 41.9 41.4 9.464 9.925 769.913 

6 16.7 25.4 57.9 16.7 25.4 57.9 9.225 9.522 701.803 

Paris [14] 

(metallography) 
16.7 41.6 41.6 - - 

Clark [16] 

(XRD) 
- 18.2 54.5 27.3* 9.725 10.148 831.17 

Jardim [19] 

(TEM/EDS) 
18.2 54.5 27.3* - 9.7 10 814.84 
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Fig 4.21: Cell parameters with Mg concentration for the IM1 compound, where 
progressive substitution of Mg by Zn decreases the unit cell parameters a and c and the 
lattice volume. 
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Table 4.4: Refined crystal structure parameters of the IM1 solution compound. 

Samples No. 

Atomic 
coordinates 
(Wyckoff 
Position) 

Occupancy (%) 

Reliability factors* 

Re Rwp s 

1 

Ca - 6h 
Zn1 - 6g 
Mg1 - 6h 
Mg2 - 12k 
Mg3 - 4f 
Mg4 - 2b 

Ca 100.0 
Zn 99.9 

Mg 100.0 
Mg 100.0 
Mg 100.0 
Mg 100.0 

12.1 15.8 1.71 

2 

Ca - 6h 
Zn1 - 6g 

Mg,Zn1 - 6h 
Mg2 - 12k 
Mg3 - 4f 
Mg4 - 2b 

Ca 100.0 
Zn 99.8 
Mg 26.9 
Mg 100.0 
Mg 100.0 
Mg 100.0 

11.2 16.9 2.27 

3 

Ca - 6h 
Zn1 - 6g 
Zn2 - 6h 

Mg,Zn2 - 12k 
Mg,Zn3 - 4f 
Mg,Zn4 - 2b 

Ca 99.9 
Zn 100.0 
Zn 100.0 
Mg 97.7 
Mg 80.8 
Mg 82.2 

11.0 20.5 3.44 

4 

Ca - 6h 
Zn1- 6g 
Zn2 - 6h 

Mg,Zn2 - 12k 
Mg,Zn3 - 4f 
Mg,Zn4 - 2b 

Ca 100.0 
Zn 100.0 
Zn 99.8 
Mg 94.8 
Mg 71.1 
Mg 82.2 

10.4 20.5 3.87 

5 

Ca - 6h 
Zn1 - 6g 
Zn2 - 6h 

Mg,Zn2 - 12k 
Mg,Zn3 - 4f 
Mg,Zn4 - 2b 

Ca 100.0 
Zn 100.0 
Zn 100.0 
Mg 93.3 
Mg 66.2 
Mg 64.5 

10.3 19.6 3.61 

6 

Ca - 6h 
Zn1 - 6g 
Zn2 - 6h 

Mg,Zn2 - 12k 
Mg,Zn3 - 4f 
Mg,Zn4 - 2b 

Ca 100.0 
Zn 99.8 
Zn 100.0 
Mg 59.5 
Mg 31.3 
Mg 40.7 

10.9 22.3 4.18 

* Reliability factors: s presents the goodness of fit; Rwp is the weighted summation of 
residuals of the least squared fit; Re is the value statistically expected. 
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Table 4.5: Atomic bond lengths of the IM1 compound in sample 1. 
Atom1 Atom2 Distance (Å) 
Mg2 Ca 3.5291 
Mg2 Ca 3.5234 
Mg2 Mg2 3.3052 
Mg2 Mg2 3.4156 
Mg2 Mg1 
Mg2 

3.1014 
Mg3 3.1234 

Mg2 Mg4 3.2660 
Ca Mg3 3.4984 
Ca Mg4 3.3117 
Ca Ca 4.2224 
Ca Mg1 3.4446 
Ca Zn1 3.7352 

Mg2 Zn1 3.0540 
Mg1 Zn1 
Mg3 

2.8088 
Zn1 2.8761 

Mg1 Mg1 3.1329 
Mg1 Mg3 3.2399 

 

 
Fig 4.22: Mg occupancy in the IM1 compound as a function of Mg concentration. 
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Fig 4.23: The coordination spheres of dynamic atomic substitution of magnesium by zinc 
with different atomic coordinates: (a) substitution of Mg atoms by Zn atoms on 6h sites 
until they are completely occupied by Zn atoms; (b) to (d) the simultaneous substitution 
of Mg atoms by Zn atoms on the 12k, 4f and 2b atomic sites. 
 

4.3.1.4 Study of crystal structure of IM1 compound via TEM 

The structure of IM1 single phase region has been studied by TEM. Focused Ion Beam 

(FIB) is used to lift a specimen of the ternary compound from sample 4 

(Ca18.0Mg44.2Zn37.8), as shown in Fig 4.24(a). According to the crystallographic data 

obtained by XRD, the hexagonal structure has been indexed and confirmed by means of 

Selected Area Electron Diffraction (SAED) data, as shown in Fig 4.24 (b) and (c). The 

planar spaceing, d values, obtained from the SAED pattern of sample 4 shows good 
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consistency with the XRD results, as can be seen in Table 4.6. Furthermore, because of 

the difference in solid solubility between samples 4 and 2, d values determined from 

sample 2 are slightly larger than those from sample 4 corresponding to the higher content 

of the larger Mg atom in sample 2. Even though Jardim et al. [19] reported different 

structure type, the d values calculated from the SAED pattern can be used to compare 

with the values obtained by XRD from sample 2, since sample 2 and Ca2Mg6Zn3 have the 

sample IM1 compound composition. The SAED pattern reported by Jardim et al. [19] as 

shown in Fig 4.24(d). It is clearly shown that both series of d values obtained from XRD 

pattern reported by Clark [16] and SAED pattern reported by Jardim et al. [19] show 

good consistency with the values determined by XRD from sample 2, as detailed in Table 

4.6. In addition, the consistent results of d and (hkl) values obtained from XRD and 

SAED patterns support the fact that this ternary compound has the said hexagonal 

structure.  
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Fig 4.24: (a) Using FIB to lift a specimen of the ternary compound; (b) SAED pattern of 
the sample 4 [02�0] zone axis indexed as a hexagonal structure; (c) SAED pattern of the 

sample 4 [2�2�0] zone axis indexed as a hexagonal structure; (d) SAED pattern of 
Ca2Mg6Zn3 [001] zone axis reported by Jardim et al. [19]. 

 

Table 4.6: Comparison of planar space (d value (hkl)) of the IM1 compound in samples 2 
and 4. 

(hkl) 

d (Å) (sample 4) d (Å) (sample 2) 

By XRD 
(in this work) 

From SAEDP 
(in this work) 

By XRD 
(in this 
work) 

From 
JCPDS 

card (Clark 
[16]) 

 

From SAEDP 
(Jardim et al. 

[19]) 

100 8.211 8.223 8.440 8.400 8.4 
002 4.975 4.958 5.064 5.100 5.0 
110 4.743 4.760 4.867 4.900 4.85 
102 4.251 4.275 4.351 - 4.36 
112 3.430 3.460 3.514 - - 
300 2.731 2.724 2.809 2.800 - 
004 2.486 2.479 2.527 2.530 - 
220 2.370 2.380 2.433 2.430 - 
114 2.202 2.223 2.253 2.250 - 
222 2.140 2.148 2.194 2.190 - 
224 1.723 1.728 1.757 1.752 - 
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4.3.1.1 Study of sublattice model of IM1 compound 

Moreover, modeling of an intermetallic solid solution requires information regarding the 

crystal structure of the phases and their homogeneity ranges. From the crystallographic 

data obtained in this work, the following sublattice model is applied to represent the 

current compound: 

(Ca)6(Zn)6(Mg,Zn)6(Mg,Zn)12(Mg,Zn)4(Mg,Zn)2 – Model I 

Considering the atomic positions and site occupancy from the current experimental 

results, the atomic occupancy of 4f and 2b demonstrate the same tendency, as shown in 

Fig 4.22.  Thus, these two sites should be coupled to reduce the number of end members. 

The sublattice model can be modified to: 

(Ca)6(Zn)6(Mg,Zn)6(Mg,Zn)12(Mg,Zn)6 – Model II 

Model II can be simplified further in order to have a more practical sublattice model 

suitable for thermodynamic modeling of this compound. This can be achieved using the 

similarity in the coordination numbers and the site occupancy information obtained in 

this work.  The final model for this compound can be written as: 

 (Ca)(Zn)(Mg,Zn)4 – Model III 

This model provides a solubility range of 0 ≤ Mg ≤ 66.7 at.% and 16.7 ≤ Zn ≤83.3 at.%, 

which covers the wide homogeneity range of the Ca3MgxZn15-x (4.6≤x≤12 at 335°C) 

compound. 
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4.3.2 Phase boundaries of the Mg2Ca compound and phase relations 

among Mg2Ca, IM1 and Mg solid solutions 

In order to study the phase boundaries of the Mg2Ca compound and the phase relations 

among Mg2Ca, IM1 and Mg solid solutions, seven ternary key samples (1 to 5, 7, 8) have 

been prepared, as illustrated in Fig 4.16. The compositions and phase identification of 

these samples are summarized in Table 4.7. The actual chemical compositions of the 

alloys are measured by ICP and the composition of Mg2Ca compound has been measured 

quantitatively by EPMA/WDS. The phase relations obtained from EPMA are consistent 

with those from XRD. Backscattered electron image of sample 7 annealed at 335ºC for 4 

weeks is presented in Fig 4.25(a). The equilibrium microstructure consists of three phases: 

(Mg2Ca), CaZn and CaZn2. The Mg2Ca form substitutional solid solution where Zn 

substitutes Mg atoms while Ca content remains constant at 33.3 at.%, the solid solubility 

limit has been identified by EPMA as 10.8 at.% Zn. In order to verify the EPMA findings, 

this sample has been studied by XRD using Rietveld analysis. The XRD pattern is 

illustrated in Fig 4.25(b). Full pattern refinement has been carried out. However, the 

EPMA and XRD results obtained from samples 1 to 5 clearly show that the Mg2Ca phase 

has complex solid solution, where Zn atoms substitute both Ca and Mg atoms. Fig 4.26 

and Table 4.8 show the cell parameters variations with Zn concentration from sample 1 to 

5, where substitution of Ca and Mg by Zn decreases the unit cell parameters a and c, and 

the lattice volume. Table 4.8 shows the refined structural parameters of the Mg2Ca 

compound and the reliability factors. The least squares approximation is used to establish 

the relation between the lattice parameters and Zn concentration. The cell parameters a 

and c extrapolated at 10.8 at.% Zn concentration (the solubility limit determined by 



57 
 

EPMA where Mg is only substituted by Zn atom not Ca) are used to compare with the 

results obtained from samples 7 and 8, as can be seen in Fig 4.26. This figure clearly 

shows that the unit cell parameters of samples 1 to 5 are smaller than those of samples 7 

and 8. Such behavior is understandable considering the atomic sizes of elements. 

According to the Periodic Table [38], the metallic radii of Ca, Mg and Zn are 180, 150 

and 130pm, respectively. Hence, the unit cell parameters, where Zn substitutes both Mg 

and Ca atoms, should be smaller than those, where Zn just substitutes Mg atoms. The 

experimental results on solid solubility of the Mg2Ca compound at 335ºC have been 

confirmed by both EPMA and XRD techniques proving the existence of complex solid 

solution. The homogeneity ranges and phase relations among the Mg2Ca, Mg and IM1 

phases have been collected and analyzed, as demonstrated in Fig 4.27. 
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(a) 

 
(b) 

Fig 4.25: Sample 4 annealed at 335ºC for 4 weeks: (a) SEM BSE image; (b) Rietveld 
analysis. 
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Table 4.7: The actual composition of the key samples and the phases present. 

Sample 
No. 

Actual composition 
identified by ICP 

(at.%) 
Phases identification 

Composition of 
Mg2Ca identified by 

EPMA 
Ca Mg Zn By EPMA By XRD Ca Mg Zn 

1 18.8 74.1 7.1 
Mg Mg 

32.1 65.0 2.9 Mg2Ca Mg2Ca 
IM1 IM1 

2 22.4 59.3 18.3 Mg2Ca Mg2Ca 31.6 64.6 3.8 IM1 IM1 

3 18.4 48.8 32.8 Mg2Ca Mg2Ca 31.3 64.5 4.2 IM1 IM1 

4 18.0 44.2 37.8 Mg2Ca Mg2Ca 31.2 64.4 4.4 IM1 IM1 

5 18.0 42.9 40.3 Mg2Ca Mg2Ca 31.0 64.2 4.8 IM1 IM1 

6 35.2 36.3 28.5 
Mg2Ca Mg2Ca 

33.3 55.9 10.8 CaZn2 CaZn2 
CaZn CaZn 

7 40.8 9.8 49.4 
Mg2Ca Mg2Ca 

33.3 55.9 10.8 CaZn2 CaZn2 
CaZn CaZn 
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Fig 4.26: Cell parameters (a) a and (b) c with Zn concentration in the Mg2Ca compound, 
where substitution of Ca and Mg by Zn decreases both cell parameters. 
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Table 4.8: The chemical composition and unit cell parameters of the Mg2Ca compound 
determined by EPMA and Rietveld analysis. 
 

* Reliability factors: s presents the goodness of fit; Rwp is the weighted summation of 
residuals of the least squared fit; Re is the value statistically expected. 
 
 

Sample 

No. 

Composition of  

Mg2Ca 

compound 

identified by 

EPMA 

hexagonal crystal 

structure, space group 

P63/mmc(194) and 

prototype MgZn2 

Reliability factors* 

Ca Mg Zn 

Unit cell parameters and  

lattice volume Re Rwp s 
a(Å) c(Å) V(Å3) 

1 32.1 65.0 2.9 6.231 10.108 339.835 12.1 15.8 1.71 
2 31.6 64.6 3.8 6.221 10.087 338.002 11.2 16.9 2.27 
3 31.3 64.5 4.2 6.216 10.075 337.082 11.0 20.5 3.44 
4 31.2 64.4 4.4 6.209 10.067 336.117 10.4 20.5 3.87 
5 31.0 64.2 4.8 6.203 10.044 334.796 10.3 19.6 3.61 
6 33.3 55.9 10.8 6.156 9.960 326.866 14.1 21.7 2.37 
7 33.3 55.9 10.8 6.158 9.964 327.237 11.6 25.2 4.72 
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Fig 4.27: Phase boundaries of Mg2Ca compound and the phase relations among Mg2Ca, 

IM1and Mg solid solutions. 

 

4.3.3 Phase relations between IM3 and Mg solid solutions 

In order to determine the crystal structure of IM3 compound and phase relations between 

IM3 and Mg solid solutions, key sample 9 has been prepared, as illustrated in Fig 4.16 

and Fig 4.28(a). Backscattered electron image of this sample after annealing at 335ºC is 

presented in Fig 4.28(a). Quantitative measurement of the elemental concentrations of 

IM3 and Mg solid solutions has been carried out by means of EPMA. The phase relations 

obtained from XRD are consistent with the results determined by EPMA. For Mg solid 

solution, the hexagonal structure has been indexed and confirmed by means of Selected 

Area Electron Diffraction (SAED) data, as illustrated in Fig 4.28(b). The planar spacing, 
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d values, obtained from the SAED pattern of sample 9 show good consistency with the 

XRD results, as can be seen in Table 4.9. Furthermore, d values of Mg solid solution 

determined from sample 9 are slightly smaller than those reported by Latroche et al. [39] 

due to the higher content of the smaller Zn atom in sample 9. From Table 4.10, it can be 

seen that substitution of Mg by Zn decreases the lattice parameter a and c from 3.223 Å 

and 5.219 Å, for pure Mg [39], to 3.198 Å and 5.188 Å, for the Mg solid solution. 

According to the crystallographic data of (IM3) compound obtained by XRD, the 

hexagonal structure has been indexed and confirmed by means of SAED data, as shown 

in Fig 4.28(c) and (d). The planar spacing, d values, obtained from the SAED pattern of 

sample 9 shows good consistency with the XRD results, as can be seen in Table 4.11.  
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Fig 4.28: (a) SEM BSE image of sample 9; (b) SAED pattern of hexagonal Mg solid 
solution; (c) SAED pattern of (IM3) [03�1] zone axis indexed as a hexagonal structure; (d) 
SAED pattern of (IM3) [113] zone axis indexed as a hexagonal structure. 

 
Table 4.9: Comparison of planar space (d value (hkl)) of the Mg solid solution in sample 
9. 

(hkl) 
d (Å) (Mg) 

From SAEDP 
(in this work) 

By XRD 
(in this work) [39] 

010 2.76 2.769 2.791 
002 1.60 1.599 1.611 
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Table 4.10: Comparison of lattice parameters of the Mg solid solution in sample 9. 

Lattice parameters of (Mg) 

a (Å) c (Å) 

3.223 [39] 5.219 [39] 

3.198 (in this work) 5.188 (in this work) 

 
 
Table  4.11: Comparison of planar space (d value (hkl)) of the (IM3) compound in 
sample 9. 

(hkl) 
d (Å) (sample 4) 

From SAEDP 
(in this work) 

By XRD 
(in this work) 

101 7.31 7.250 
201 5.23 5.172 
300 4.31 4.260 
211 4.30 4.235 
500 2.56 2.556 
213 2.51 2.508 
330 2.49 2.460 
313 2.27 2.260 
511 2.24 2.221 
521 1.98 1.993 
304 1.97 1.955 

 

4.3.4 Homogeneity range of IM4 and phase relations between (IM3) and 

IM4 

Key samples 10 and 11 have been prepared to determine the homogeneity range of IM4 

and the phase relations between IM3 and IM4. Backscattered electron images of these 

samples annealed at 335ºC are presented in Fig 4.29(a) and (b). The microstructure of 

sample 10 consists of three phases: (Mg), (IM3) and IM4. Whereas sample 11 consists of: 

(IM3), Mg12Zn13 and IM4. Although the Ca concentration in IM4 is only 1.5 at.%, this is 
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not an extended solubility of a binary compound because there is no Mg-Zn binary 

compound around 45 at.% Zn in the Mg-Zn binary system. Hence, IM4 is a new ternary 

stoichiometric compound with Ca1.5Mg55.3Zn43.2 composition. Besides, in a similar 

system Ce-Mg-Zn, a ternary compound with a similar composition was reported by 

Kevorkov et al. [40]. The XRD pattern of sample 10 is illustrated in Fig 4.29(c) where 

the peaks of IM4 ternary phase are not labled. The crystallography determination is still 

underway by means of TEM. 

            
(a)      (b) 

 
(c) 

Fig 4.29: (a) SEM BSE images of sample 10; (b) SEM BSE images of sample 11; (c) 
Rietveld analysis of sample 10. 
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4.3.5 Phase relations in the Zn-rich corner 

Key sample 12 has been prepared to study the phase relations in the Zn-rich corner. 

Backscattered electron image of this sample annealed at 335ºC for 4 weeks is presented 

in Fig 4.30 (a). The XRD pattern is illustrated in Fig 4.30 (b). Full pattern refinement has 

been carried out by Rietveld analysis. The results obtained from EPMA and XRD show 

that this sample has four phases indicating that the equilibrium state has not been reached: 

(IM3), (MgZn2), (CaZn11) and (CaZn13). In the Zn-rich corner of the Ca-Zn binary phase 

diagram, CaZn11 is a very stable congruent melting compound with the melting point of 

722ºC, and the peritectic transformation of CaZn13 occurs at 669ºC. During the process of 

solidification, CaZn11 solid solution precipitates as a primary phase. After heat treatment 

at 335ºC for 4 weeks, the CaZn11 should transform to CaZn13 solid solution, but the 

decomposition process was not complete. Because with relative low heat treatment 

temperature and stable primary solidification phase, solid-state decomposition process is 

very sluggish. True equilibrium must be very difficult to reach in this sample. Therefore, 

in order to avoid those alloys with very sluggish decomposition kinetics, diffusion couple 

technique has the advantage to form equilibrium phases and has been used in the present 

work. 
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(a) 

 
(b) 

Fig 4.30: Sample 12 annealed at 335ºC for 4 weeks: (a) SEM BSE image; (b) Rietveld 
analysis. 
 

4.4 The Ca-Mg-Zn isothermal section at 335 ºC 

 

Combining the results obtained from 9 diffusion couples and 32 key alloys, the 

isothermal section of the Ca-Mg-Zn phase diagram at 335ºC has been constructed and 
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presented in Fig 4.31. The 335ºC isothermal section of Ca-Mg-Zn system based on the 

current experimental work compared with that calculated from Wasiur-Rahman and 

Medraj [12] is present in Fig. 4.32. The experimental data can be used for CALPHAD 

modeling and the re-optimization of this system. 

 
Fig 4.31: The 335ºC isothermal section of Ca-Mg-Zn system constructed from nine 
diffusion couples and 32 key samples. 
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Fig 4.32: The 335ºC isothermal section of Ca-Mg-Zn system based on the current 
experimental work compared with that calculated from Wasiur-Rahman and Medraj [12]. 
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CHAPTER 5 
 

Concluding Remarks, Contributions and 
Suggestions for Future Work 

 
 

4.1 Concluding remarks 

A combination of high throughput diffusion couple technique and selected equilibrated 

key alloys have been used to construct the Ca-Mg-Zn isothermal section at 335ºC. Phase 

relations, solubility limits and crystallographic information have been determined for 

binary and ternary compounds using SEM, EPMA, EBSD, TEM and XRD techniques. 

Four ternary compounds have been found in this system, the composition and 

homogeneity ranges of IM1 and IM3 have been determined. IM2 and IM4 are new 

compounds, both of them have been studied for the first time and are considered to be 

stoichiometric. The formula of IM1 compound is Ca3MgxZn15-x (4.6≤x≤12) at 335°C. It 

has hexagonal structure with P63/mmc (194) space group and Sc3Ni11Si4 prototype. The 

lattice parameters of this compound increase linearly with increasing Mg content obeying 

Vegard’s law. The site occupancy of 6h, 4f, 2b and 12k has been presented as a function 

of Mg concentration. Selected area electron diffraction data, obtained by TEM, and the 

planar spacing d values obtained by Rietveld analysis demonstrate excellent consistency. 

Combining the atomic occupancy results and the crystallographic details obtained in this 

work, a three sublattice (Ca)(Zn)(Mg,Zn)4 model is suggested for this compound. 
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Three binary compounds: CaZn11, CaZn13 and Mg2Ca have been found to have an 

extended solid solubility in the ternary system. A mechanism explaining the evolution of 

the different morphologies in the diffusion couples has been proposed. Depending on the 

different terminal compositions of diffusion couples, the morphological evolution can be: 

‘tooth-like’ morphology, matrix phase with either isolated or dendritic shape precipitates 

morphology, or uniform layer morphology. 

 

5.2 Contributions 

A combination of high throughput diffusion couple technique and selected equilibrated 

key alloys have been used to construct the Ca-Mg-Zn phase diagram in the present work 

and the following contributions can be seen: 

• The solid solubility and crystal structure of IM1, IM3 ternary compounds have been 

determined and confirmed by means of SEM, EPMA, XRD, EBSD and TEM. 

The contradictions surrounding their composition and structure have been 

resolved. 

• Two new ternary compounds IM2 and IM4 in the Ca-Mg-Zn system have been 

discovered in this work.  

• The solid solubility of CaZn11, CaZn13 and Mg2Ca binary compounds extended in 

the ternary system has been determined for the first time using diffusion couples 

and key alloys. 

• A mechanism explaining the evolution of the different morphologies in the 

diffusion couples has been proposed in the present research. 
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During the course of the current thesis research, the following journal publications and 

presentations have been accomplished. The significant contributions of the present 

research work include: 

5.2.1 Journal papers: 
1. Y.N. Zhang, D. Kevorkov, J. Li, E. Essadiqi, M. Medraj, Determination of the 

Solubility Range and Crystal Structure of the Mg-rich Ternary Compound in the 

Ca-Mg-Zn System, accepted by Intermetallics, Vol. 18, No. 12, 2010, pp. 2402-

2411. 

2. Y.N. Zhang, D. Kevorkov, F. Bridier, M. Medraj, Experimental investigation of 

the Ca-Mg-Zn system via diffusion couples and key experiments, submitted to 

Intermetallics, 2010. 

3. Y.N. Zhang, D. Kevorkov, F. Bridier, X.D. Liu, M. Medraj, Solubility range and 

crystal structure determination of Ca2Mg5Zn13 solid solution via SEM, EPMA, 

XRD, EBSD and TEM, will be submitted to Scripta Materialia. 

4. Y.N. Zhang, D. Kevorkov, M. Medraj, New intermetallic compounds in Ca-Mg-

Zn system, will be submitted to Material Letters. 

5.2.2 Conference paper: 
1. Y.N. Zhang, D. Kevorkov, J. Li, E. Essadiqi, M. Medraj, Experimental 

Determination of the Phase Equilibrium in the Ca-Mg-Zn system, submitted to 

TOFA, 2010. 

2. Y.N. Zhang, D. Kevorkov, F. Bridier, M. Medraj, Morphological and 

Crystallographic Characterization of Ca-Mg-Zn Intermetallics in Ternary 

Diffusion Couples, submitted to THERMEC, 2011. 

 

5.2.3 Oral presentation: 
1. M. Medraj, D. Kevorkov, Y.N. Zhang, M.N. Khan, M. Aljarrah, Sk. Wasiur 

Rahman, Combinatorial Approach to the Development and Application of 



74 
 

Multicomponent Thermodynamic Database for the Mg Alloy Systems, MS&T'10, 

2010 (invited). 

2. Y.N. Zhang, D. Kevorkov, J. Li, E. Essadiqi, M. Medraj, Experimental 

Investigation of the Ca-Mg-Zn system via diffusion couples and key experiments, 

CalphadXXXIX, 2010, Jeju, Korea. 

3. M. Medraj, Sk. Wasiur Rahman, D. Kevorkov, J. Li, E. Essadiqui, Y.N. Zhang, S. 

Konica and P. Chartrand, Thermodynamic Modeling and Experimental 

Investigations of the (Mg, Al)-Ca-Zn Systems, CalphadXXXVIII, 2009, Prague, 

Czech Republic. 

 

5.3 Ongoing research and Future Work 

The recommendations for further studies on the Mg-Ca-Zn system are summarized as 

follows: 

1. The intrinsic diffusion coefficients and interdiffusion coefficients at the interfaces 

for this ternary system are still underway via diffusion couple technique at three 

different temperatures (300, 350, 400ºC) and different annealing times (3 days, 1 

week, 2 weeks, 4 weeks). 

2. Study the preferable crystal orientation of compounds formed by diffusion 

reaction and obtains the relations of crystal orientation and planes among 

equilibrium phases in the solid-state diffusion couples via EBSD. 

3. The crystal structure determination of IM2 and IM4 ternary compounds is 

underway. 

4. The Ca-Mg-Zn system should be re-optimized based on the current experimental 

results. 
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