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Abstract
A Computer Assisted Approach to Hilbert's 16th Problem

Xianhua Huang

A planar polvnomial system of degree n is an autonomous system of ordinary

differential equations

T = Pu(r,y). (1

j = Qalz.y). ’
where = d/dt . and P,(z.y).Qn(7.y) are relatively prime real polynomials. of degree
at most n. one of which is of degree n. In the second part of the famous Hilbert
16th Problem. Hilbert asked for an upper bound .V(n) for the number of limit cvcles
of polynomial systems of degree n. Subsequent research has indicated that it is a
remarkably intractable question.

In this thesis. we discuss a new approach to the Hilbert 16th problem via com-
puter assisted analysis. In Chapter 1. we briefly recall the basic concepts of differen-
tial equations and the history of Hilbert's 16th problem. In Chapter 2. we describe
multiparameter vectors. their bifurcations and rotated vector fields. In Chapter 3.
we introduce parameter continuation methods and applications to multiparameter
vectors. In Chapter 1. we summarize recent studies of quadratic systems and ad-
dress the most used methods. including the uniqueness theorems and classifications
of Hopf bifurcations. In Chapter 5. we mention examples of cubic systems having
eleven limit cycles and the cubic systems of Liénard type. In Chapter 6, we apply
parameter-continuation method to compute the limit cyclé bifurcation diagram for
quadratic systems of special interest, whose limit cvcles can not be determined with
the techniques of qualitative theory. Our computations support the assumption that
quadratic systems have at most four limit cycles.In Chapter 7. parameter-continuation
methods are applied to investigate some Liénard cubic systems. These systems are
derived when codimension-three bifurcations are investigated and they are related to
Hilbert’s 16th problem. Bifurcation diagrams are obtained, in particular. some global

bifurcations are seen for the first time. AUTO is used for bifurcation computations



v

and DSTOOL is used for phase portrait drawing. In addition. we have developed a
Java program QSYS. which is used to visualize quadratic systems. In Appendix A. a
brief user manual of QSYS is presented. In Appendix B. part of the Java source code

of QSYS 1s given.
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Chapter 1

Introduction

1.1 Hilbert’s 16th problem

A polyunomial system is a planar differential equations of the form

.i' = ZZ:O Z‘-:-_;:i: (l,'j.l.[:l/'] P(‘r‘ .l/)‘
U =0T, =k bty =Q(x.y).

—
(R
-~

where " = d/dt and «a;,.b; € R. and P(r.y) and Q(x.y) are relatively prime real
polynomials (i.e. thev have no common factors). with at least one of them of degree

n.

In the Second International Congress of Mathematicians. held in Paris in 1900.
Hilbert listed 23 mathematical problems. which had a significant impact on twentieth
century mathematics. In the famous list. Hilbert asked in the second part of the 16th
problem for an upper bound on the number of limit cycles for nth degree polynomial

systems. in terms of n (see Figure 1). The English translation reads as follows

L



o

i8. Problem der Topologie algebraischer Eurven und Flichen.

Die Maximalzahl der geschlossenen und getremmt liegenden Ziige,
welche eine ebene slgebraische Kurve nter Ordnung haben kamn, ist
von Harnack?) bestimmt worden; es entsteht die weitere Frage nach
der gegenseitigen Lage der Kurvenriige in der Ebene. Was die Kurven
6ter Ordnung ang=ht, so habe ich mich — freilich auf einem yecht
umstindlichen Wege — davon tiberzeugt, dals die 11 Ziige, die sie nach
Harnack haben kann, keinesfalls simtlich aufserhalb von einander
verlanfen diirfen, sondern dafs ein Zug existieren muls, in dessén
Innerem ein Zag und in dessen Aufserem neun Zfige verlanfen oder um-
gekebrt, Eine grindliche Unlersuciumg der gegenseitigen Lage bei der
Mazimalzahl von gebrennten Ziigen scheint mir chenso sehr von Interesse
su sein, wie die entsprechende Untersuchung dber die Anzail, Gestall
und Lage der Bantel einer algebraischen Flache im Raume — ist doch
bisher nockh nicht einmal bekannt, wieviel Mintel eine Fliche 4 ter
Ordnung des dreidimensionalen- Baumes im Maximum wirklich besitzt )

E—

Im Anschlofs on.dieses rein algebrsische Problem mdehte ich
eine Frage anfwerfen, die sich, wie mir scheiut, mittelst der nimlichen
Methode der kontinuierlichen Koeffizienteninderung in Angriff nehinen
lifst, und deren Beaniwortung fir die Topologie der durch Differential-
gleicbungen definierten Kurvenscharen von entsprechender Bedeuntung
ist — ninlich die Frage nach der Afaximalzald wnd Lage der Poin-
cardschen Grenseyiden (eyeles limites) fir ewmc Differentialgleichung
crster Orduitsig wnd ersten Grades ~von der Form:

d by
dz . X°
wo X, T gunze rationale Funktionen u ten Grudes in z, g sind. oder in
homogener Schreibweise
- 3, PR *- A e ¥ o
XpF @)+ TER—ar) T2 F—r5) =0
wo X, ¥, Z gunze ratiouzle homogene Funittiouen i ten Grudes von
r, ¥, - bedenten und diese uls Funktonen des Parameters ! zu be-
. stimmen sind.

Figure 1: The original statement of Hilbert’s 16th problem, published in
Archiv der Mathematik und Physik (3) 1(1901) 213-237



1.1. HILBERT'S16TH PROBLEM 3

The marimum number of closed and scparale branches which a planc
algebraic curve of the nth order can have has been determined by Har-
nack. There arises the further question as to the relative position of the
branches in the plane. Ads to curves of the 6th order, | have satisficd
myself — by a complicated process. it is true - that of the eleven branches
which they can have according to Harnack, by no mcans all can lie ex-
ternal to one another. but that one branch must czist in whose interior
one branch and in whose exterior nine branches lie. or inversely. -
thorough investigation of the relative position of the scparate branchces
when their number is the mazimum seems fto me to be of very great
interest, and not less so the corresponding investigation as to the num-
ber, form, and position of the sheets of an algcbraic surface in space.
Tl now. indeed. it is not even known what is the martmum number of
sheets which a surface of the 4th order in three dimensional space can
really have.

In connection with this purely algcbraic problem, [ wish to bring for-
ward a question which, it secms to me. may be atlacked by the same
method of continuous variation of coefficients, and whose answer is of
the corresponding value for the topology of families of the curves de-
fined by differential equations. This is the question as to the mazimum
number and position of Poincaré’s boundary cycles (cycles limits) for

a differential cquation of the first order and degree of the form

dy Y

dr X’

where X and Y are rational integral functions of the nth degree in x

andy. ...

This problem remains unsolved. even for the simplest case. that of quadratic

svstems. l.e.

I = ag + a107 + o1y + axa? + ancy + agy® = P(x.y).

. Y ) (3)
¥ = boo + biot + bory + bax® + by + bo2y®? = Q. y).

where P(z.y) and Q(x.y) are relatively prime real polynomials. at least one of them

of degree two.
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Figure 2: Landis & Petrovskii’s result published in Matem. sbornik., Vol.
43, No. 2 (1957), 209-230

Extensive research on this problem started in the 1950’s. The first approach was
marked by the famous. unfortunately unreliable. paper by Petrovskii and Landis [41).
It claimed to have a solution to Hilbert’s 16th problem for quadratic systems (See
Figure 2). It reads: We can conclude the following theorem: Differential equation

& _ P

dz Q=
where P and Q= are quadratic polynomials, has no more than three limit cycles.
-Later-“refining™ the analysis by Petrovskii and Landis, Cherkas insisted or the same -
conclusion([7]).

It seems not much attention was paid to the details of the proof by Petrovskii
and Landis for quite some yvears. Not until the 1970's did some people review the
article and found that some erroneous arguments were used. People tried to correct
the argument. until counterexamples by Chen & Wang [6] (see 3) and Shi [33] (see
4) were given. According to the formula by Petrovskii and Landis. quadratic systems
have at most three limit cycles. But Chen & Wang [6], and independently Shi [53],

gave examples of quadratic systems which have at least four limit cvcles. Thus the

4 N



1.1. HILBERT'S |6TH PROBLEM 5

research for a gencral solution to Hilbert’s 16th problem was set back to the very
beginning.

On the other hand. the qualitative study of concrete quadratic systems continued
steadily. Assuming the work by Petrovskii and Landis. people further tried to give
a partition of the coefficient space of quadratic systems in /R'? and a complete de-
scription of the phase portraits for each coefficient region. Since the beginning of the
century, and especially since the fifties, much research has been done on the problem of
limit cycles in quadratic systems (see e.g. [6. 8. 9, 10, 25. 26, 33. 34. 48, 46. 47. 51. 52]
and references therein). A complete bibiography was edited by J.W. Reyn [42].
Though the results were far from achieving the goal, even for quadratic systems.
they provide important information. It was the research in this direction that led to
the counterexample by Chen & Wang ([6]) and Shi ([53]), that shows that quadratic
systems have at least four limit cycles. The research also indicated that the 16th
problem is a remarkably intractable question. The evidence derived seems to suggest
that quadratic systems have at most four limit cycles. Qualitative studies of cubic
systems have also been carried out. but no significant results have been obtained vet
toward Hilbert’s 16th problem. It was found that there exist examples of cubic sys-
tems., which have eleven limit cycles. So far there are no examples of cubic systems
with more limit cycles, but nobody knows whether the maximum number of limit
cycles is indeed eleven. As for polynomial systems of higher degrees, very little work
has been done. The most important results in this aspect are obtained by Lloyvd [36].
who studied small amplitude limit cycles. More precisely, he studied the number of
weak foci and the number of limit cycles that can bifurcate from it. for polynomial
systems of degree n.

In fact, it has only recently been firmly established that a given quadratic system
has at most finitely many limit cycles [2]. The result for general polynomial systems.
so-called Dulac Theorem. which was given by Dulac in 1950°s with an incomplete
proof. was finally proved a few years ago by [I'vashenko (See [28]). It states that any
given polynomial system has finite number of limit cycles. However. Dulac’s Theorem
is a weakened assertion compared to Hilbert's 16th problem. Note that the number
of limit cycles depends on the system. It does not imply the existence of a uniform
upper bound for polynomial system of degree n. It is still unknown whether or not
there exists a uniform upper bound for the number of limit cycles in the class of

quadratic systems, not to mention the general Hilbert’s 16th problem.
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Figure 3: Chen & Wang’s example of quadratic systems having (at least) 4
limit cycles, published in Acta Math. Sinica, Vol.22 (1979), 751-758.
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Figure 4: Shi’s example of quadratic svstems having (at least) 4 limit cycles.
published in Scientia Sinica. (Ser. A) Vol.23, No. 2. (1980), 153-158
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1.1. HILBERTS16TH PROBLEM

=D,

Figure 5: A four-limit-cycle configuration for a quadratic system

In the original statement of the 16th problem. the first part is about the number of
algebraic curve brauches. and the second part is about the number of limit cyles. It is
natural to wish that limit cycle bifurcations would be algebraic. as Hilbert expected.
But evidence from the Bogdanov-Takens bifurcation([4]) investigations suggests that
the bifurcation of limit cyvcles can be non-analytic. even for quadratic systems. This

brings a cloud for an algebraic approach.

Actually, there is no applicable method for estimating the number of limit cyvcles
of polynomial systems. In particular. there is no method yet to prove that there are
at most two or three limit cycles around a focus for a given system. The often used
methods are those of classical analyvsis. with which various uniqueness results have
been derived for quadratic systems. Mostly uniqueness theorems are formulated in
terms of the famous Liénard equation. Fortunately. a quadratic system can always
be brought into Liénard form and many interesting results about uniqueness of limit
cvcles have been obtained. For example. a quadratic system with an invariant straight
line has at most one limit cycle (see [32]). and a quadratic system with a degenerate

critical point has at most one limit cycle (see [10]).
The limitation of the methods forced people to seek weaker results.

Due to the difficulty to solve the Hilbert's 16th problem, Arnold posed the so-

called weakened Hilbert 16th problem: How many reals zeros does the function /(h)
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helow have?

I(h)= / P(x.y)dxdy.
H<h

H is a rcal polynomial of degrce n and P is a real polynomial of degree m. This
problem is related to. but not equivalent to. the following limit cvcle problem.

Let H(z.y) be a polynomial of degree n, and let Fi(x.y). F2(r.y) be polynomials
of degree m +1. What is the maximum number of limit cycles of the following system

when € is perturbed from zero?

r = %H(x,y)-i-éﬂ(x-.y)e (4)
y = —ZH(z.y)+eF(z.y).

The weakened Hilbert 16th problem is much simpler than the original 16th prob-
lem. Historically, it actually traces back to Poincaré. Poincaré studied the problem
of a limit cycle created from a system with the origin O as a center. For this sys-
tem. there is a family of closed orbits I, covering a simply connected region in R?
including the origin O. The boundary of this region may be a singular closed orbit
with critical points (including those at infinity). Each limit cvcle of the perturbed
system may take as its limit position either a closed orbit [, of the unperturbed
system. called Poincaré€ bifurcation; or the origin O of the unperturbed system. called
center bifurcation: or a singular closed orbit of the unperturbed system, called highly
degenerate homoclinic or heteroclinic bifurcation.

In particular. the weakened Hilbert 16th problem is conveniently dealt with by
small parameter perturbation analvsis. Still the problem is hard to solve. Very

often the analysis leads to estimation of elliptic integrals, which can never be given

explicitly.

1.2 Motivation

The traditional approaches to Hilbert’s 16th problem can be classified into two cat-
egories: algebraic theory based on algebraic geometry aud qualitative theory based
on classical analysis. The algebraic theory approach can be traced back to the orig-
inal statement of the 16th problem, but it achieved little, due to the non-algebraic
nature of the problem as apparent from Bogdanov-Takens bifurcation [{]. The qual-

itative theory approach has achieved interesting results. Actually most of the results
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Figure 6: An eleven-limit-cycle configuration for a cubic system

about Hilbert’s 16th problem are obtained by applying qualitative methods. But so
far, qualitative theory cannot determine the number of limit cycles for parameters
globally.

Given the difficulty to solve Hilbert’s 16th problem. and the limitation of tradi-
tional methods. we here propose a new approach to the study of limit cycles when
the number and ranges of the parameters are limited. say, for a system with 2 or 3
parameters which range in a finite interval. In the study of the 16th Problem. we
sometimes arrive at a normal form for a given class of quadratic systems with 2 or 3
parameters (see reference [16, 49]). It can be shown that there exist limit cycles only
for a small range of the parameters. But with qualitative theory, there is no way to
determine the number of limit cycles. Thus we explore the use of computer assisted
analysis to attack such problems. More precisely, we apply numerical methods that
use a parameter continuation technique.

With the parameter continuation method. we are able to trace limit cycle bifur-
cations of one-parameter systems. We also can trace folds of double limit cycles for
two-parameter systems. [n fact. we can trace cusps of triple limit cycles for three-
parameter systems. For quadratic systems, at most three limit cyvcles can bifurcate
from a Hopf bifurcation. Thus it is interesting to see how the cusps. which corre-
sponds to triple limit cycles, will evolve as the parameters change. The first goal of
this approach is to visualize the bifurcation diagram of periodic solutions and under-

stand the complexity. Further. we can do systematic computations for a normal form
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of quadratic systems. and even for cubic systems.

1.3 Contributions

In this thesis. we obtain results that make new contributions to Hilbert’s 16th prob-

lem. A concise summary is given below.

e We study quadratic systems with finite multiplicity two. It was conjectured
that these quadratic systems have at most two limit cycles. Our analysis sup-
ports this conjecture. Moreover, we show a scenario: a semistable limit cycle
originates from a second order weak focus and terminates at a homoclinic loop

(see Section 1 of Chapter 6).

e We study quadratic systems with finite multiplicity four, in particular. the
famous examples by Chen & Wang [6]. These examples demonstrate that
quadratic systems can have at least four limit cycles. Our analysis supports
that the Chen & Wang examples give at most four limit cvcles. A semistable
limit originates from the second order weak focus. It meets another limit cycle
to become a limit cycle of multiplicity three as parameters change. [t is no sur-
prise that there are no more than three limit cycles (counting the multiplicities)
surrounding a focus (see Section 2 of Chapter 6). The overall investigation pro-
vides more pieces of evidence to support that quadratic systems have at most

four limit cvcles.

e \We study a cubic Liénard system in Chapter 7. Such systems are extracted from
[15]. where they are derived from the analysis of codimension three bifurcations.
They are also related to Hilbert’s 16th problem. The study of these bifurcations
is partial. We obtain that in the focus/elliptic case a homoclinic loop can be
surrounded by a limit cvcle. We also obtain that in the saddle case there can

be two limit cycles.

e \We present a Java program QSY'S. which is used to visualize quadratic systems
(see Appendix A and B). It has a graphical user interface and allows easy viewing
of the phase portraits of a quadratic system. It has the necessary functionalities:
loading. saving. rescaling and printing. It is useful for people who are interested

in Hilbert's 16th problem for quadratic systems.
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1.4 Basic concepts

Consider a planar differential system

r = Plz.y).
y = Qlz.y).
where P(-,-).Q(-.-) are real differentiable functions on IR?, and "= d/di. The sys-
tem is independent of time t. so it is an autonomous system. We always assume
P(-.-).Q(-.-) € C'. The classical uniqueness theorem (see Theorem 1.1 in [57]) guar-
antees that the solutions of system (5) are unique with respect to a given initial value

problem.

Definition 1.1 If (z,y) = (z0,y0) is a solution of the system of algebraic equations

P(r.y)=0,Q(z.y) = 0. then (zo.yo) is called a stationary solution of system (3).

Definition 1.2 Suppose (z(t),y(t)) is a solution of system (3). If z(t).y(t) are pe-
riodic functions with the same period. say T, then we call (x(t).y(t)) a periodic

solution with period T.

Let (x(t).y(f)) be an arbitrary solution of system (5). Since the svstem (3) is
autonomous, we can drawn this solution in IR? without self-intersection, unless it is a
periodic solution. Moreover, all solutions of system (5) can be drawn in R* without
intersecting to each other. In particular. when being drawn in IR*. a periodic solution

of the system (3) is a simple closed curve.

Definition 1.3 Suppose (z(t),y(t)) is a solution of system (5). When we draw it in
IR, we say it is a orbit. When (2(t).y(t)) is a periodic solulion. we get a simple
closed curve geometrically. Such a geometrical configuration is called a closed orbit.
IWhen all the solutions of system (5) are drawn in IR*, a closed orbit is said fo be
an isolated closed orbit. if there is no other closed orbit in its neighborhood. An

wsolated closed orbitl. if exists. is called a limit cycle.

Definition 1.4 Suppose (v;(t).yi(t)),7 = 1.---.k are solutions of system (5) for
t € IR and suppose lthey are located in a finite part of the plane. If their end points
match together and they form a simple closed curve. then we say that (x;(t).yi(t)).i =

1.---.k.t € IR form a singular closed orbit.
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Definition 1.5 Let I be a limit cycle. We say T is exterior stable (inner stable).
if there is a ncighborhood outside (inside) I, such that any orbit with initial position
in the neighborhood approaches I' as t — +o0o. We say I is exterior unstable
(inner unstable). if there is a neighborhood outside (insidc) . such that any orbit

with initial position in the neighborhood approaches I asti — —oc.

The following theorem. the Poincaré-Bendixson Theorem, is well known (Sec The-

orem 1.6 in [52])

Theorem 1.1 Suppose Q is a bounded closed domain in IR® and it contains a finite
number of critical points of the system (3). If vt = {(&:(t).v:(t)) : t > to} is located

in Q). then its w limit set ~¥ = Ny>077 can be one of the following:
e a unique critical point;
e a unique closed orbit;
o a unique singular closed orbit.

For example, system dr/dt = —r — y.dy/dt = x — y has the origin {(0,0)} as its
w limit set; system dz/dt = z —y — x(2? + y?),dy/dt = ¢ +y — y(a? + y?) has the

unit circle {(z.y) : €2 + y2 = 1} as its « limit set.



Chapter 2

Multiparameter Vector Fields

The main purpose of this thesis is to study bifurcations of planar
differential equations or vector fields with multiple parameters.
So it is desirable to give an overview of what kind of bifurcations
can happen. In this chapter, we will give a brief description of
bifurcations for vector fields with multiple parameters. Emphasis
will be put on bifurcations with multiplicity-two limit cycles and
multiplicity-three limit cycles (Section 1) and those with a single

parameter under so-called rotated vector fields (Seclion 2).

2.1 Multiparameter vector fields in the plane

Consider the following planar dynamical system with parameters a = (ai,03.---.a,)
r = X(z.y.0).
: - (6)
gy = Y(r.y.a)

where we assume that X(-.-.-).Y(-.-.-) are analyvtic in the regions discussed below.
This is the general form of a planar dynamical system. In particular. if we use system
(6) to represent a polynomial system of degree m and a to represent the coefficients
of the polynomial system. then X (x.y.a).Y(r.y.a) are analytic in x.y. and even
linear with respect to a;.a,.---.a,..

However. the analysis of limit cycles with multiple parameters is not a simple

matter. even if we have very specific cases. such as quadratic systems or cubic systems.

13
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r P(r,a)

Figure 7: The Poincaré map P(r, a) and the displacement function d(r.a) for (6) and
lla —aol| < 1

Assume that system (6) has a limit cvcle Iy
Lo : (2. y) = (a(8). w(¢))

with period Ty for @ = ag € IR". Let [ be the straight line normal to [y at the
point pg = (&(0).¢(0)) and let r denote the coordinate along [ with r positive on
the exterior of 'y and negative on the interior. By the continuity of of the initial
value problem of differential equations. for fixed ag and small r. any orbit of system
(6) starting from a point on [ with distance r. will return to [, thus it defines a map
r — P(r.ao) for sufficiently small r. By the continuity of solutions of system (6)
with respect to parameters, the previous map can be extended for ||a — ay|] << 1.
Moreover, because the system is analytical, P(r.a) should also be analytical. In
other words, there exists a analytic function P(r,a) for |r| << 1 and |la — a¢}] << 1
with P(0.a¢) = 0. The map r — P(r.a) is called Poincaré map. The displacement

function for system (6), along the normal line [ to Iy is then defined as the function
d(r.a) = P(r,a) —r.

(See Figure 7)

In terms of the displacement function, the limit cycle 'y has multiplicity m iff

ad otm—tld
d(0.a0) = 5-(0.a0) = -+ = Zor(0.a0) = 0
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By the qualitative theory of differential equations. the multiplicity m is independent

(0. avg) 3 0.

of the choice of the point pg and the straight line / ([32]).

The following formulae, which determine the derivatives of the displacement func-

tion along [y are well-known ([532])

To ;- vy~ e
d.(0.ag) = cfo div(X. ¥ )(o(t). () .a0)dt _ 1.

and
Ts [
dy (0.00) = Ci/ eJo AX VMol e eodds (YT Y X Y(6(t). 0 (t). o) dL.
4]

for : =1.2.---.n, where

+1
= T [VRZ T 12(6(0). ¢(0). ao)]

and =1 is determined according to whether I'y is clockwise or anti-clockwise.

Theorem 2.2 Suppose that n > 2. and that for a = a9 € IR", the analytic system
(6) has a multiplicity-two limit cycle T'y. and d,, (0,a0) # 0. Then given € > 0,

there is a & > 0 and a unique function g(cz,---.c,) with g(o‘f’.---,oﬁf’)) = 0(10).
well-defined and analytic for |a, — o <8 lan — o0 < §.

Cy:aq =!/(02-."'-0n)

is an (n — 1)-dimensional. analytical bifurcalion surface with a multiplicity two limit

cycle passing through the point ag (See Figure 8).

Proof: Apply the implicit function theorem to the displacement function d(r.a). O

Theorem 2.3 Suppose that n > 3. and that for a = o® € IR". the analytic system
(6) has a multiplicity-three limit cycle To. and da,(0.a!9) # 0.dp0,(0.2%) # 0 and
for j=2.---n,

a(d.d,)

~ = 3lara,)

(07 QO) 7—£ 0.
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Figure 8: A bifurcation curve C» of multiplicity-two limit cycles of system (6)

Then given ¢ > 0. there is aé > 0 and constant oc; = £1 forj =2.---.n, and therc

exist unique functions hi(az,---.qn). halag,---.an) . gi(a2.- . an).g2(Qa. - - . a,)
. 0 0 0 0

with hi(af”,---.al?) = of”, ha(af.---.al?) = of”, gi(ay”.---.al?) = af”,

(20)’. L al®) = 0(10)’ where hy. ho are well defined and analytic for |as — ago)[ <

Jan—al®| < 8. and g,. g2 are well defined and continuous for0 < O'J-(Q-J—ago)) <

g2(a
5. ..
é.

. a1 = hi(aq.---.an),
C3 .
az = ha(@q. - . an)
is an (n —2)-dimensional. analytical. cusp bifurcation surface with a multiplicity three
limit cycle passing through the point aq.

27 rar = gia(@s. oL ag)

are two (n — l)-dimensional. analytical. fold bifurcation surfaces of multiplicity two

limit cycles, which intersect tn a cusp along C3. (See Figure 9)

Proof: Apply the implicit function theorem (page 44 in [17]) for the existence of &;

and ¢; ( see Theorem 2 in [39]). O

2.2 Rotated vector fields

Now we consider the case of planar systems with one parameter. \We rewrite the

above system as follows
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Figure 9: The bifurcation diagram of a multiplicity-three limit cycle for system (6)
with a € IR®. which has a cusp bifurcation at a!®

r = X(z.y.A),
.I] = Y.(I~y€ ’\)f
where X (r.y. A\).Y(z.y.A) are in CY{G x ), G is a domain in /R*. and [ is an interval

of IR.

Definition 2.6 Supposc that
i) for X € I, system (7) has its stalionary solution fired:

i) for points (x.,y) € G other than stationary solutions, and any Ay < A there
holds
X(z.y, A2). Yz y. M) = X(z.y. MY (2. y, A2) 2 0(<0).

but
{re )X (c.y. X)) Y (o y A ) = X (o y. M) Y (roy. A2) = 0 for any M. \»)
does not contain any closed orbit (periodic solution) of (7).
then we say that systein (7) forins a generalized vector field.
Here the condition (ii) can be strengthened as

XOY/OA = YOX/9A > 0(< 0)
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for those points that do not correspond to stationary and periodic solutions. The
term generalized vector field is given to refer to the first definition of a rotated vector
field defined by G.F. Duff, where more strict and slightly different conditions were

required. A simple example of generalized vector ficld is as follows

r = f(z.y),
y = g(z.y)+ Af(z.y),

where we assume that f(-,-) is differentiable in R? and {(x.y) : f(z.y) = 0} does

(8)

not contain any closed periodic solution of System (8).

In general, generalized vector fields have the following properties.

Theorem 2.4 Assume that system (7) forms a generalized vector field with respect
to the parameter A. Then for different A;. Ay, the pertodic solutions of system (7)y,

and (7)\, do not intersect.

Proof: Assume that I'; : @ = ¢;(t).y = ;(t) is a periodic solution of system (7),,.

Thus we have

ailt) = X(ou(t).en(t). M), ()
at) = Y(e(t),wa(t), A). '

By the definition of generalized vector field, we have that

S1 (1) X (61(t). w1(1). Aa) — v ()Y (o1 (L), ¥ (). Aa)

maintains a constant sign at the intersection points.

On the other hand. if the periodic solutions I'y and ['; are tangent at point
(61(t). w1 (1)). then o1 (t)X(61(t). vr(t). Aa) — €1 (£)Y (S1(2). ¥1(t). X2) = 0. But this
is impossible. If the periodic solutions [} and I’ intersect, then there must be at
least two intersection point: say. ['; exits ', at one point, and enters at the other
point. Thus c‘;l(t).‘{(,el(t).z."l(i).,\g) - Lzl(f))"-(dl(f). ¥1(t), A2) would have opposite

sign at these points. which is a contradiction. O

Theorem 2.5 Suppose System (7) forms a generalized vector field with respect to

parameter A. with for any Ay > Ay,

X(roy. M) Y (2ogo M) — X2y, A)Y (2.9, 40) <0
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Figure 10: Periodic solution 'y, and perturbation under a rotated vector field: I'y,:
anticlockwise and exterior stable periodic solution : I'y,: stable periodic solution,
where /\10 < /\0

in Condition 2. If for A = Ay the system (7) has a periodic solution which ts anti-
clockwise (clockwise) and exterior stable. then for sufficient small € > 0, and there
exists Ajg < Ao (Mo > Ao) such that in the e—neighborhood of I'y,. there exist an
exterior-stable and an interior-stable periodic solution (both may coincide). Further-
more. there crists a §—neighborhood of s, ( where é <€), filled with periodic solutions
[y of system (7)\. and for A < Ag. no periodic selution of (7)y extsts inside ['y,. (See
Figure 10)

Proof: The proof is similar to that of the previous theorem. O

Theorem 2.6 Suppose system (7) forms a generalized vector field with respect to the
parameter A. If for A = Ao. the system (7) has a periodic solution which s anticlock-
wise and inner stable, then for sufficient small ¢ > 0. there exists Ay > Ao such that
in the e—neighborhood of Ty,. there erist an exrterior-stable and an interior-stable
periodic solution (which may coincide). Furthermore. there exists a §—neighborhood
of Ty, (where é§ < ¢). filled with periodic solutions T'y of system (7)\. and for X\ < Ag.

no periodic solution of (7)\ erists outside T'y,.
Proof: The proof is similar to that of the previous theorem. O
Theorem 2.7 Suppose systein (7) forms a generalized vector field with respect to

parameter . Assume that A = Ag. the system has a semi-stable limit cycle Ty, . then

when \ changcs in one dircction from \g. Ty, bifurcated into two periodic solutions:
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S

‘,

| |
|

Ao Al

Figure 11: A semistable periodic solution bifurcation for a rotated vector field disap-
pears as A increases; and bifurcates into two periodic solutions as A decreases

one is inside I'y\,: the other is outside U'\,. If A changes in the other direction. from

Ao. the T'y, disappears.

Proof: The proof is similar to that for the previous theorem. See [52] for details. O

Combining the above theorems. we can give the following description: Suppose
svstem (7) forms a generalized vector field with respect to parameter A, and suppose
that there are two adjacent periodic solutions: one is stable; the other one is unstable.
Then. when A increases or decreases, depending on the situation. the two periodic
solutions will move closer and closer. and for some value of parameter A. say A = A;.
theyv coincide and become a semi-stable periodic solution. When A keeps changing
from A, in the same direction, then the semi-stable limit cycle disappears. (See Figure
11.)

The phenomenon described above can be viewed in another way: Draw a bifur-
cation diagram of periodic solutions, L, — norm vs A, as in Figure 11. For A = Aq.
system (7) has two periodic solutions: the outer is unstable and the inner is stable.
The two periodic solutions exist for A € (Ag.A;). But at A = A;. the two periodic
solutions coincide and become one semistable periodic solution. After A > A,. the
system has no periodic solutions. If we construct a straight line segment which is
transversal to the vector field, then we can define a return map of the vector field.
The two periodic solution can be represented as two fixed points of the map. Thus

we can describe the situation as follows: At A = Ag, the map has two fixed points.
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which exist for A € (Ag. A;). When we trace one of them from A = Ag. the fixed points
continue as A increases. At A = A;. there is a [old bifurcation. which corresponds to
a semistable limit cyvcle of the underlying vector field. At this point. the fixed point
turns back.

Often people have used rotated vector fields to describe the continuation of peri-
odic solutions as a parameter changes. There are always conjectures that at certain
parameter values. a system has a semistable periodic solution (limit cycle). But it is
not possible to show the existence of a semistable limit cycle analytically. The diffi-
culty is that a semistable periodic solution is a degenerate fixed point of the return
map, which is difficult to determine by qualitative methods.

In the study of quadratic syvstems. it is interesting to know when a class of
quadratic systems form a rotated vector field with a paramecter. How will the pe-
riodic solution evolve as the parameter changes? In fact. there is no way to predict
the behavior.

In the next chapter. we will introduce parameter continuation methods. which can
be used to obtain semistable periodic solutions and which describe how the periodic
solution changes as a parameter increases or decreases. We need parameter continua-
tion for differential equations. but we can always discretize the differential equations
and change them into algebraic equations. Therefore the following description will

be given in terms of algebraic equations only.
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Chapter 3

Parameter Continuation Methods

of Periodic Solutions

The main contribution in this thesis is to apply parameter con-
tinuation techniques lo the analysis of planar differential equa-
tions. In this chapter. we will give an introduction to parameler
continuation mcthods. We summarize some algorithms for com-
puting simple fized points, fold points of algebraic equations and
of periodic solutions of differential equations. We use AUTO for

computing bifurcations.
Consider the following C? onc-parameter equation

G(u. ) = 0.

where

w.G(-.-) € R*. X € R.

Let » = (u.A). Then the above equation can be written
G(z) =0. with G : R*"' — R™.
Note that in the parameter formulation, G(u, A) = 0, we have

Rank(G%) = Rank(G%|G}) =n

if and only if
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(1) G is nonsingular, or
(il) A(GO) = 1 and GS & R(G2).

Definition 3.7 A solution xq of (7(r) = 0 is regular. if G° = G (ry) has mazimal
rank. i.e. if Rank(GY) =n.

A solution vy of G(z) = 0 is a turning point or fold. if A (G2) = 1 and
G & R(GY).

Case i) can be dealt via a simple continuation method. which will be discussed in
section 3.1; case ii), i.e. the case of a turning pornt, will be refined below.

For a regular solution. we choose ¢ such that A (G%) = span{s}: and ¢ such that

AUGYY) = span{v).

Lemma 3.1 Lect xg = (ug, Ao) be a regular solution of G(x) = 0. Then. there exists
a neighborhood U of the fold zo in R™', such that G7H0) N U = {(\(s),u(s)) :
ls — so] < &}, where s € R.6 > 0. and A(-),u(-) are C*-mappings satisfying M(so) =

Ao- u(s0) = ug and |A'(s)f + {[u/(s)ll > 0 for every s and N(sg) = 0. u'(s0) = 0.

Definition 3.8 4 fold (ug. Ao) € IR x IR" s called a simple fold iff A"(sq) # 0: a
Jold (ug.\o) € IR x IR" is called a double fold iff \'(sq) = 0. X"(s0) # 0.

Lemma 3.2 /) A fold (ug. Ae) is simple iff

as = I;‘T(Guu(llo. /\O)OO) # 0'

2) A fold (ug, Ag) is double Iff
az = T (Guuluo. Ao)oo) = 0
and
az = (G uu(to- Ao)o0o + 3G, (up. Ag)d) 7 0.
where r = u"(so) ts the unique solution of
Glug. Ao)r = —Guu(uo. Ao)00.

Proof: By direct calculation.O

Note: A cusp point is a double fold. But the converse is not true. We need an
additional transversality condition. in order to define a cusp point as in catastrophe

theory.([17. 19, 50])
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3.1. SIMPLE PARAMETER CONTINUATION

3.1 Simple parameter continuation

To introduce paramneter continuation methods. we start with algebraic equations.

Suppose we have a solution (ug. Ag) of
Gilu.A) = 0.

as well as the direction vector ug. Here © = du/dA. We want to compute the solution

Uy at A E/\()-{-A/\.

Theorem 3.8 Let xo = (ug. Ao) be a regular solution of G(r) = 0. Then. near zg.

there exists a unique one-dimensional continuum of solution x(s) with z(0) = z¢.

Proof: By implicit function theorem.C

To find the solution u;, we use Newton's method
Gu(u({‘). A1 )_‘Xug“) = —G'(u(l“). A,

uguﬂ) = u([“) + Au(l“).
where 1 = 0,1.2.3... Take u(lo) = ug + AMo. If G,(uy. A1) is nonsingular and AA
sufficiently small then the convergence theory for Newton's method assures us that
this iteration will converge. After convergence, the new direction @; can be obtained

by solving
Gulup. A, = —=Ga(uy. Ap).

This equation follows from differentiating G/(w(A). A) = 0 with respect to A at A = A}

The simple parameter continuation method can trace a fixed point ouly when the
parameter monotonically changes. Thus. we can continue simple fixed points: but we
cannot pass a simple fold. For differential equations. we can trace a periodic solution
towards a semistable periodic solution. but we cannot pass the parameter value where
the semistable periodic solution exists. Keller's method. which allows continuation
through folds. will be discussed next.

Suppose we have a solution (ug. Ag) of G(u. A) = 0. as well as the direction vector
(1. /'\0) of the solution branch. Keller's continuation consists of solving the following
equations for (uy, Ay):

G(ul H /\l ) =

: 10
('ll]_ - uo)-l.lg -+ (/\1 — ,\0))\0 —As = ( )
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[

Ag A

Figure 12: Graphical interpretation of Keller’s continuation method

A graphical interpretation of Keller's method is given 1in Figure 12, where the first
equation is the original equation: the second equation corresponds an approximation
to the arc-length for parameter values between Ag and A;. To solve these equations,

we use Newton's method:

(G (G Al _ G(ul . AP
ug do A)\(I“) B (ug“) — ug) * ug + ()\(l“) —Xo)ho—As )

The next direction vector can be computed from the following equations

l-la 5\0 /-\1 1 )
The above approach lets the computation continue with respect to pseudo-arclength.

Thus. in principle. it allows the continuation pass a fold. Indeed, the above iteration

scheme converges at simple folds. For details, see [11]. We can state

Theorem 3.9 Lef xg = (ug- Ao) be @ regular solution or a simple fold of G(x) = 0.
Then. near xqo. the computation can continue uniquely forward or backward. by using

Neller's scheme.

3.2 Computation of fold points

In this section. we discuss how to trace a curve of simple folds, starting from a simple

fold solution (ug. Ag).
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According to the earlier definition. a regular solution rq = (ug. Ag) of G(u.A) =0

is called a simple fold if
dim A (G%) = 1 and G & R(G?).
Differentiating G/(u(s). AM(s)) = 0. we have
Goulu(s). Ms))u(s) + Ga(u(s). A(s))A(s).

In particular. we have
G?"L.LQ = —AOG?\.
At a fold we have G € R(G?). Thus we must have Ao = 0. Hence G%io = 0. and
since dim A (GY%) =1 . we have

AN(G?) = Span {uo}-

Differentiating again. we have

0 - RY Q0 - - Y2 0\
GUUO + CI_\«\O + C'uuUOUO - 2Cru'\(l0/\0 + C’,\,\’\U/\O = 0.

At a simple fold (ug, Ag). let 0 = ug then
A(G) = Span {o}.
and also there exists a vector v such that
A(G2)") = Span {¢}.
Multiply by v and use \¢ =0 and v L R(G?) to find
"GN\ + v GO 00 = 0.

Here v"G% # 0 since G € R(G?). thus we can solve

\ t"thtéé
,\0 - 0 0
yvrlay

To continue a fold. we need two free parameters. We use the extended system

Glu. A ) =
Gu(u. N\ u)o

0.0u -1

(11)
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[
oL

Here u is a second parameter in the equations. The vector ¢y belongs to a ‘refer-

ence solution” (ug. 0g. Ag- fig). The above system has the form
F(U.p)=0. U =(u.0.A). with F:R"*"' x R— R*.

It can be shown that for fixed p. Fr:(U. 1) 1s a non singular matrix. Thus the Newton
iteration technique applies to F(U'. i) = 0. Therefore. we can conclude that

A simple quadratic fold can be continued in two parameters.

3.3 Computation of periodic solutions of differ-
ential equations

Next we introduce methods to compute periodic solutions of differential equations.

Consider the following autonomous differential equation
i) = flu(t).)) (12)

where u(-). f(-.-) € R*. A € IR. We see a periodic solution of system (12} with period
T. Fix the interval of periodicity by the transformation ¢t — -}- Then the equation

becomes

u'(t) = T f(u(t). A). (13)

where u(-), f(-) € R".T. X € IR. Now seek solutions of period 1. i.e.

Assume that we have computed (ur—1(-). Tp—1. Ap—1). We want to compute
(uk(-). Tk, )‘L) = (ll(-). T. /\)

Equations (13) and (14) do not uniquely specify u and T'. since u(t) can be translated
freely in time. i.e.. if u(t) is a periodic solution. u(t + o) is also a periodic solution.

To specify a periodic solution for computation. we want the solution that minimizes
1 -~ a8
D(o) = / [|a(t + o) — wp—y(2)]]5dt.
0

This optimal solution u(t + &) satisfies the necessary condition D'(¢) = 0, i.e.

/Ol({(t + ) — upor () * & (t + G)dt = 0.
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Writing u(f) = u(t + 7) gives
1
/ (1) = wp_y (1)) * (L)t = 0.
0
[ntegration by parts. using periodicity. gives
fo u(t)*uj_,(t)dt = 0. (15)

To trace out a branch of periodic solution. we use pseudo-arclength coutinuation.
This allows calculation past folds along a branch of periodic solutions. Here the

pseudo-arclength equation is
fol(ll(l) —up_1(t)) * 'lli._l(f)d[ + (T — T,;-_[)Tk_.l + (A — Aoy )/.\;\._1 = As. (16)

Combining equations (13-16). we have a computational scheme that can be im-
plemented. So we can conclude:

Suppose that we have computed a periodic solution of system (12) for some A = Ag.
Then. combining cquations (13-16). we can implement an algorithm of parameter
continuation and trace out a branch of this periodic solution.

We have supposed that a periodic solution is given above. But this is not the
case in general. Thus, to implement the above method in practice. we can let the
computation start from a Hopf bifurcation.

Let (ug. Ag) be a Hopf bifurcation point of system (12). Assume that f,(ug-Ag)
has a simple conjugate pair of purely imaginary eigenvalue £iwg.wy # 0. and no
other cigenvalues on the imaginary axis. Also assume that the conjugate pair of roots
crosses the imaginary axis transversally with respect to A. By the Hopf bifurcation
Theorem. these conditions ensure the existence of a bifurcating branch of periodic
solutions.

In the vicinity of a Hopf bifurcation point. the system (12) can be approximated

by its linearization with constant coefficients

o'(t) = fuluo,Ag)o(1). (17)

To compute a first periodic solution

(u. Ty A1) = (u, T A).
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near a Hopf bifurcation (ug. Ag). we still have

'U,(f) = Tf('u(/)/\o).

u(0) = wu(l).

Initial estimates for Newton’s method are
uO(t) = ug + Aso(t), T = Ty. A = A,.
here o(!) is nonzero solution of the time-scaled. linearized equations

o'(t) = Tofuluo- Xo)o(t). o(0) = o(1).

that is.
o(t) = sin(27t)w, + cos(2xt)w,,

where (w;.w.) is null vector in

—wol. Sfultg. Ao) ws \ (0 o 2=
prm— 0 . ""0 — -i;-

fuluo. Ao). wol we

The null space is generally two dimensional since (—w.. w;s) is also a solution. For the
phase equation we align u = u; with o(t). i.e..
(20)

fou(t)*o'(t)dt = 0.

Since Ao = To = 0. the pseudo-arclength equation for the first step reduces to
(21)

[ (u(t) — uo(t)) * d(2)dt = As.

Now we can conclude that
The equations (18 — 21) can be used to compute a periodic solution of system (12)

in the vicinity of a Hopf bifurcation point.

3.4 Implementation in AUTO
The computations of bifurcation diagrams in this thesis are done mainly by using
software package AUTO. So it is desirable to know its interior algorithms. In this

section. we will outline the the implementation in AUTO.
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In last section. we have reduced ODE periodic solution problems to houndary value
problem. Without loss of generality. we keep two parameters: A.y in the ordinary

differential equations. Thus we have
u'(t) — flu(t).p.X) =0. t €]0.1].

where

u(-). f(-ye R*. A€ R. p € R™.
subject to boundary conditions

b(u(0),w(l).pz.A) =0, b(-) € R™.
and integral constraints

1
[ atuls).pNids = 0. () € R™,
[¢]

with

ny=ny+ng—n > 0.

Ve leave the parameter A to be free for continuation. Introduce a mesh
{0 =tg< .- <t = 1}. AJ' =t; —tj ., (1< < N).

Define
PP = {pn € C10.1] : pilps,_,.,) € P™}.

where P™ is the space of polynomials of degree < in.
The collocation method consists of finding py € P;*. 0 € IR™ such that

Pa() = Flpu(zr)op M) = Lo Ny i = Lo,

and such that p, satisfies the boundary and integral conditions. In each subinterval
[t:—1.1;] the collocation points =;; are the roots of the mth orthogonal polynomial.
Since each local polynomial is determined by (m+1)n coefficients. the local number

of degrees of freedom is (m + 1)n:\" + n;. This is matched by the total number of

equations:
e Collocation: mn .

e Continuity: (V — 1)n,
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e Constraints: ny + na(=n + ny).

If the solution u(t) is sufficiently smooth. then the global accuracy of this method

is known to be of order m. i.e..
llpn — ulle = O(A™).
At the main meshpoints ¢; we have superconvergence:
maz;|pa(t;) — u(t;)| = O(R*™).

The scalar variables u are also superconvergent.

For cach subinterval [t;-1.¢,] of the mesh. we introduce the Lagrange basis poly-

nomials
{cjl(t)}~ j:l_---’.)v’ i=071!".9m7
defined by
Lt —t: j/m ]
Lty =T, . i Ctigm =t — —At.
2i(t) =0.kzi t—ifm — btfm / b

The local polynomial can then be written

m

pi(t) =D L;i(t)tj—ifm.

=0

and the collocation equations are
p;-(:j_,-) = f(pi(z.)-pN), t=1,---m, j=1,--.N.
With the above choice of basis polynomials
u; = u(t;). and uj_im = w(tj_ijm)

where w«(t) is the solution of the continuous problem.
Based on the above. we can express the discrete boundary conditions. the integrals.
and the pseudo-arclength equation in terms of the u-values.

The discrete boundary conditions are
bi{ug,ux. . A) =0, ¢=0,---.n,.

The integrals can be discretized as
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N m

Z Z&:j.iqk('llj—i/m~/1A) =0. k=1,---.n3,

J=1:¢=0
where the «;; are the Lagrange quadrature coefficients.

The pseudo-arclength equation is
1 .
[ t) = wo()) ol t)dt + (4 = o) * o + (A = Do) o — As =0,

where

(‘U0~#o~ /\0)7

is the previous computed point on the solution branch and
(‘l-tO' ﬂ(h )\O)e

is the normalized direction of the branch at that point. The discretized pscudo-
arclength equation is
N m .
S> wiidujiym — (@) jmijm ) (00) jmism + (1 — p0) 0 + (A = Ao)Ao) — As = 0.
=0

=l

This completes the introduction to the implementation in AUTO.
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Chapter 4
Limit Cycles of Quadratic systems

Most of the work in literalure concerning Hilbert s 16th problem
15 on quadratic systems. In this chapler., we summarize some
interesting results about quadratic systems (Section 1). These
include that quadratic systems have at most two nests of limit
cycles, that quadratic systems with two invariant straight lines
have no limit cycles. and that quadratic systems may have four
lrmit cycles with (1.3) distribution. We will mention the im-
portant role played by uniqueness theorems of limit cycles in the
study of limit cycle and conjectures (Section 2). One important
conjecture. which is related to uniqueness theorems is that if a
quadratic system has two nests of limit cycles, then one of them
contains at most one limit cycle. We also address the algebraic

classification of quadratic systems (Scction 3).

4.1 General properties of quadratic systems

Consider a quadratic system of differential equations in the plane

o= doo + a0t + a1y + (l-_)g.’CQ +an vy + (102y2 = PQ(.I'. y). (_)__))
§ = boo + bior + bory + bao? + by + bo2y? = Qa(x.y).

where a;;.0;; € R and Ps(x.y) and @2(x,y) are relatively prime real polynomials of

degree at most two (i.e. both Pa(x.y) and @2(x.y) have no common factors). at least

one of them of degree two. Extensive research work on quadratic systems has been

35
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) ©)

(a) )

Figure 13: For a quadratic system. a limit cycle, if it exists. must contain a unique
stationary solution. (a) an example of a stable limit cycle; (b) two nests of limit
cvcles

carried out since 1950’s, in particular. by Chinese and Russian mathematicians. A
complete bibliography was edited by J.W. Reyvn ([42]).

Many interesting results have been obtained. We list a few of them below (see
[52]). A straight line [ : az + by + ¢ = 0 is called an invariant line of system 22. if any

solution of system 22 being initiated at [ remains on /.

Property 4.1 If a quadratic systern has two invariant straight lines. then it has no

limat cycle.

If a quadratic system has two invariant straight lines which are not parallel to each
other, then we can choose them to be z-axis and y-axis, respectively. The system will
then assume the following form

T = z(ag+ arx + azxy). (23)
y = ylbo+ brx + bay).
This system is of Volterra type. Detailed analysis in [52] shows that such a system

has no limit cycle.

Property 4.2 A quadratic system has at most two ncsts of limit cycles. each of them
surrounding at most one critical points. Furthermore. the stationary solution inside

a limit cycle must be focus.

A quadratic system has at most four stationary solutions in the finite part of the
plane. When there exists a limit cycle. it must have a unique stationary solution

inside (See Figure 13).
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For a system of differential equations, a stationary solution undergoes a Hopf hi-
furcation when the divergence is zero at the stationary solution. while the determinant
of the linearization is positive. In case of Hopf bifurcation. we can see either a family
of closed orbits around the the stationary solution or a spiral around it. In the first
case, we call the stationary solution a center; in the second case. we call such a Hopf
bifurcation a weak focus. The foci can still be classified further. depending on how
many limit cycles can bifurcate under generic perturbations. The maximum number

of limit cycles generated is called the order of the focus.

Property 4.3 A quadratic system can have weak foci up to order threec. [f a quadratic
system has a weak focus of order threc. it has at most one limil cycle. which surrounds

some other non-weak focus.

Property 4.3 follows from rather complicated analysis (See {52]). It implies that
for quadratic systems, at most three limit cycles can bifurcate from a weak focus. It
is expected that at most three limit cvcles can surround a focus. Combining this with
the fact that there are at most two nests of limit cyvcles. the maximum number of
limit cycles should be six. But this is higher than what has been found. The following

property follows from two famous papers ([6, 53]).

Property 4.4 There exist examples of quadratic systems. where four limit cycles ex-
ist which are distributed in two nests: one contains one limit cycle: the other contains
three limit cycles. [n these examples. the quadratic systems have two real critical

points and two compler conjugate critical points in the finite part of the plane.

So far. the four limit cycles given in both, Chen & Wang [6] and Shi [33]. is the
maximum. No quadratic system with more than four limit cvcles has been found.
Moreover. evidence derived from qualitative analysis. or from the above properties.
seems to suggest that there should be at most four limit cycles for any quadratic

system.
Conjecture 1: A quadratic system has at most four limit cycles.

The above properties also suggest that if a quadratic system has two nests of limit

cycles, then onc contains one limit cycle. while the other one contains at most three.
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Conjecture 2: [f a quadratic system has two nests of limit cycles. then onc of themn
coniains precisely one limit cycle.

Conjecture 2 has been partially confirmed in [55], namely. [or the case where the
quadratic system has four critical points. which form a concave quadrangle ({53]).
and that for the case of three critical points ([253]).

Furthermore. Conjecture 2 also implies that (1.3) is the only possible distribution
of four limit cvcles for quadratic systems and that there is no possibility for (2.2)

distribution of limit cyvcle. provided that Conjecture 1 is true.

4.2 Uniqueness of limit cycles of quadratic sys-
tems

To study the limit cycles of quadratic systems. people usually transformed them
into Liénard systems. Some very good uniqueness theorems have been formulated in
terms of Liénard systems. These are applicable to quadratic systems and give very
interesting results. Some are listed in the preceding section. To prove the uniqueness

of a limit cycle around one critical point. we consider the following Liénard system

r = —g(y),

24

Uniqueness Theorem: Suppose system (24) satisfies the following conditions:
(i} gly) € C* and F(y) € C? fory € (a.3), where a <0 < 3;

(ii) yg(y) >0 fory € {a.3) and y # 0:

(iti) there exists an a,. with a < a; < 0. such that f(y) > 0 fory € (a.a;) and
fly) <0 fory € (ay. 3). where fly) = F'(y):

(i) [fly)/g(y)) >0 for y € (a.a,) and y € (0. 3).

Then the system (24) has at most one limit cycle in the strip
Dy :={(z.y)|—x<r<c.a<y<p}

If it exists. the limit cycle must be stable. and it is hyperbolic.
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This is a typical uniqueness theorem for limit cycles. although some variations
have been given and applied. In the application of such a uniqueness result. the
use of classical analysis to verify the conditions is vital. Most of the analyvsis in the
literature concerns this aspect.

There are many applications of uniqueness theorems such as the above. e.g.. see
[5. 8. 21. 25, 55]. Fortunately. there exists a general transformation to change a
quadratic system into a Licnard system.

Consider the general quadratic system (22). Without loss of generality. we assume
that P,. (> have no common factors: otherwise. system (22) becomes a linear svstem.
By the theory of quadratic algebraic curves, there exists a rcal number A such that
([16])

APy(z.y) + Q2(x.y) =0

becomes a degenerate quadratic curve. Then by the transformation. r; = z.y; =

Ar + . we can change system (22) into

T = Pya.y) =P-_;(1'1-,.1/1) (25)
g1 = AP (r.y) + Qalz.y) = Q4z1. 1)
where Q%(z.y) = 0 either at one point in IR°. or has no real solution. or can be

factored as R, R, where R,. R, are either linear or constant. For the first two cases.
the system has no limit cvcles by a general nonexistence theorem. Otheriwise, we have
that R;. R, are linear and not constant simultaneously. Assume R, is not constant.

Let r1 = Ri.y1 = y + Az. Then we get the following system

= Pixi-y) (26)

g1 = zxi(az + by + ).

We can shift the coordinates so that O(0.0) is a critical point of the above system.

This gives

o= Pa(r.y) _

(27)
y = a(ar+by+c).

where Py = ajox + ag1y + asgz + a1 1y + ao2y>. This is the well known Ye form ([52]).

We can conclude
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Theorem 4.10 A/l quadratic systems having limit cycles can be transformed into a

system of Ye's form (27).

The System (27) can always be transformed into a Liénard type system. Thus we

can state

Theorem 4.11 All quadratic systems having limit cycles can be transformed into a

Lienard system.

Proof: See [52].

Problems remain, even though we can transform any quadratic systems having
limit cyvcles into a Liénard system. and apply its uniqueness theorems: The general
transformation given in [32] results in a rather complex expression for f(-) and g¢(-).
It is not easy to check the conditions in uniqueness theorems. In practice, we study
the uniqueness problem for some quadratic systems with specific properties. It is

always difficult to apply the uniqueness theorems. even though the methods used are

classical.

4.3 Algebraic classification of quadratic systems

Next we consider the algebraic classification of quadratic systems in coeflicient space.
A critical point in the finite part of the plane is a common zero of P(r.y) and Q(x.y).
which may be either real or complex. In general (22) has four finite critical points.
real or complex, coinciding or not. In all these cases. the sum of the multiplicities
of critical points, being the sum of the multiplicities of the common zeros of P(r.y)
and Q(x.y), is less than or equal to 4. We will call this sum the multiplicity my
of (22). Thus m; = 4 in the generic case. By means of a linear transformation,
thus vielding topologically equivalent phase portraits. the number of coefficients in
(22) may be reduced. The class my = 1 still contains a considerable number of
problems. By changing the coefficients appropriately, finite critical points can be sent
to infinity which results in lowering of the finite multiplicity my of (22). The ensuring
conditions lead to a further reduction of parameters. It seems natural for a systematic
classification of phase portraits to start with the classes with lowest finite multiplicity
and proceed to higher value of m ;. Such an approach enables us further isolate those

problems still to be solved for 16th Hilbert's problem of quadratic systems.
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In order to make further progress, one way to proceed is to give a classification
of all phase portraits of quadratic systems. thereby going systematically through
coefficient space to detect limit cycles. Another approach consists of studying the
behavior of limit cvcles in relation to certain properties of the systems. such as for
example the presence of a center point. a degenerate point. a straight line solution.
or other properties.

The presentation here involves both approaches. In classifving all possible phase
portraits of quadratic systems. it seems natural to start, as is usually done in the
analysis of a particular phase portrait. by investigating the possible number. location
and character 'of the (finite and infinite) critical points of all systems, and ordering
the various possible combinations of phase portraits and define classes of quadratic
systems ([43]).

If the number of critical points of a quadratic system is finite. it has at most four
finite critical points. Also, if some or all of them coincide or are complex, then the
sum of their multiplicities is equal to four. In our terminology. we will call this sum
the multiplicity ms of a quadratic system. Thus 0 < m; < 4. For mjy < 4. one
or more critical points “have gone to infinity”, and since there can he only up to
three locations of infinite critical points. these points will be of increasing complexity
and multiplicity (up to 7) for small values of m;. As a result. classes with a lower
value of my can be described by a smaller number of parameters and contain a small
number of phase portraits. In fact, the classification of phase portraits for my; = 0
was given by Reyn [43], and these systems contain no limit cycles. That for m; =1
was given by the same author [44], and these systems contain at most one limit cycle.
That for m; = 2 was given by Revn and Kooij [49]. In this case. the evidence is
very strong that there can be at most two limit cycles. Articles [25. 46] dealt with
the classification of phase portraits for my = 3. in particular, certain aspects of the
limit cycle problem. Further evidence was provided that there are at most three limit
cycles for a system in this class. It is interesting to mention that the examples of
(at least) four limit cycles only appear in the class of quadratic systems with finite
multiplicity four. This leads to a conjecture linking the maximum number of limit

cycles for a quadratic system to its finite multiplicity.

Conjecture 3: The marimum number of limit cycles for a given quadratic system

equals its finite multiplicity my.
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Chapter 5
Limit Cycles of Cubic Systems

There are very few resulls about cubic systems concerning
Hilbert's 16th problem. Efforts were made to find more limit
cycles for cubic systems. Also the studies of codimension-three
bifurcation lead to specific cubic Liénard systems [15]. In this
chapter. two topics of cubic systems are addressed. The first
topic is how eleven limit cycles arise in cubic systems (Section
1). The second topic is how qualitative theory ts applied to spe-
cific cases to show the cristence of at most two limit cycles. so
called cubic Liénard systems. and that limitations are encoun-
tered for general cases (Section 2). These systems appear when

codimension-three bifurcations are investigated ([15]).

The general cubic system is of the following form:

ro= Ziio Ligj=k aijl’iyj = P(x.y).
Y =Y heo Lirj=k bijziy? = Q(x,y),
where ¥ = d/dt” and «¢;;.b;; € R, and P(x,y) and Q(x,y) are relatively prime real
polynomials, at least one of them of degree three. The theory of algebraic curves

implies the following

Property 5.1 A cubic system has at most nine isolated critical points.

43
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Property 5.2 If a cubic system has an ellipse as its invariant curve. then this system

has at mostl one limit cycle.

Property 5.3 [f a cubic system has five real invariant straight lines. then it can not
have any limit cycle.
[t seems that the most interesting work for cubic svstems is in two directions: one

is to search for maximum number of limit cycles: the other is about limit cycles of

specific cases. e.g., the Liénard system

o= y— F(z).
y = G(z).

where F(z) and G(z) are real polynomials of x with degree three.

5.1 What is the maximum number of limit cycles
for cubic systems

An interesting question is: what is the maximum number of limit cycles for cubic sys-
tems? Cubic systems are relatively complicated: as vet there is insufficient evidence
for a conjecture. Some work has heen done to explore how many limit cycles can be
obtained for cubic systems. One result is given by Li & Huang [33]. who found eleven
limit cycles in a cubic system. This is the maximum number of limit cycles obtained
for cubic systems up to now.

Li & Huang considered the following cubic system

o= y(l—cy®) + pa(ma® +ny? - A). (30)

y = —a(l —ax?)+ py(nz® + ny* — A).

where ¢« > ¢ > 0,0 < ¢ << 1. m and n are fixed. and A is a free parameter. When

i = 0. system (30) has nine finite critical points. They are
0(0.0). A3(1/ Ve, 1/Vc), A3(-1/Va, 1/ V).

AY=1/Va. ~1//0), AYL/ Va, =1/ /o).
$9(0.1//2). 820, —1/ /<),
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5':(})(—1/\/(—1‘0)~ 5':(3)(1/\/5-0)-

where O, A9, A9. A3, A9 are centers: and SP.59.55..57 are saddle points. When 0 <

i << 1. the above nine critical points persist: we denote them as O. 4.5, (1 =

1.2.3.4). It is easy to see all these critical points are located on the curve

ar* + eyt — (22 +y?) =0.
To determine limit cyvcles. we consider the perturbing system (30) from p = 0. We
want to determine where Poincaré bifurcation exists. i.e.. how many of the family
of periodic solutions persist after p changes from 0. It has been shown that. when
a =2c=1m=1n = -3.A = .5.u = .003. by perturbing system (30) from
p = 0, we can get cubic systems which have 11 limit cycles (See Figure 14). The
phase diagram in Figure 14 is not clear enough. Actually. we can get eleven limit
cycles through careful analysis. There are two limit cycles around A{. A9, A3. and
A9, respectively. There is one limit cyvcle around group AJ, A and 59, one around
the group A9, A% and S9. And there is a large limit cycle aroud the group of all nine

critical points: O, 49, 49. 43, AS. 57.59.59 and 59

Open Problem: Can we get more than eleven limit cycles for Cubic systems?

5.2 Limit cycles of cubic Liénard systems

The Liénard svstem (29) appears when codimension-three bifurcations are investi-
gated ([15]). System (29) has three critical points whose r—coordinates are given by
the solution of G(x) = 0. They can be either three real solutions (counting multiplic-
ity) or one real solution and two conjugate complex solutions. If + = rg is a solution
of G(z) = 0, then (z.y) = (xo. F(xq)) is a critical solution of the Liénard system
(29). To investigate limit cycles of the Liénard system (29). we distinguish the cases
where a limit cycle contains either one critical point inside or more. For the case
that a limit cycle contains a unique critical point. we are only able to determine the
uniqueness of the limit cycle in some situations using. using the uniqueness theorem
stated earlier in this chapter.

For cubic Liénard systems, there are new tools to prove the existence of at most

two limit cycles. The following theorem to determine at most two limit cycles looks
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Figure 14: System (30) has eleven limit cycles for proper choice of pa-
rameters. Two limit cycles surround each of A49(1/v/2.1). 43(~1/v/2,1),
AY(—1/v/2,-1) and AY(1/v2,—1). One limit cycle surrounds each of the
groups A?. A9, 52(0,1) and AJ. A2, S2(0.—1). One limit cycle surrounds the
group of all nine stationary solutions.
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similar to well known uniqueness theorems. Unfortunately. quadratic systems never

meet its conditions.

Theorem 5.12 Consider the Li€nard system

r = .
. (31)
y = —flz)y—g(x).

or ils equivalent system

y = _g(I)v
where f(z) and g(z) are continuous for z € (a.b), —00o < b <0 < a < oc, and

F(z) = [F f(s)ds. Suppose there ezists =} € (b,0],z1 € [0,a) such that
e g(z7) = g(x1) =0,
o rg(z) >0 forz & [z, 11].
o f(z) SO0(Z) for x € (. x1) U {0}.

o functions f(z),g(x)/(x — 1) and (z — x,) f(z)/g(x) do not decrease in (z;.a).

o functions f(z),¢(z)/(x — }) and (z — 2}) f(x)/g(z) do not increase in (b.17}).

then system (31) has at most two limit cycles surrounding all critical points in (b.a) x
IR. If there are two limit cycles. then the exterior one is stable and inncr one (s

unstable.

Even though system (29) is a rather special cubic systeni. there is no general
result. Only a few specific cases of system (29) are well studied. The results for one

such specific case are given below. In particular. Theorem 5.12 is applicable to it.

l = y-—- (('1)3:1.'3 + ayr). (33)
y = —a{x®*—1)
Svstem (33) is integrable when a; = a3 = 0 and it has no closed orbit or singular

closed orbit when a,az > 0 and a? + a2 # 0. Hence we need only to consider the case
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o

ayas < 0. Without loss of generality. we assume a¢; < 0 < az. Now. O(0.0) is a saddle:
A(—=1.0). B(1.0) are stable (unstable) antisaddles when a; > —3az(a; < —3a3), and

they are unstable weak foci of order 1 when ¢; = —3as;.

Theorem 5.13 For as > 0. therc erxist functions ay = ay(a3) ay = aya{az). where
a, = ayi(az) corresponds to a double loop bifurcation, for which system (33) has
two singular closed orbits homoclinic to O and surrounding A, B. respectively: a; =
ay2(as) corresponds to a bifurcation of (large) limit cyele of multiplicity two with
—3Baz < a;; < —%(13 and ay; < a2 < —aas. As a; increases for fired azg > 0. the limit

cycle situation of system (33) is as follows

o Fora; € (—oc, —3as), there is no closed orbit around A and B alone, but there

is a unique large limit cycle T'y surrounding A, O, B and it is stable,

o For a; € (—3as.ay;). Ty is as above and there are eractly two limit cycles
[.4.TB bifurcated from A.B rcspectively. where ay = —3as corresponds to Hopf
bifurcation for both A and B (see Figure 13).

o 4s a; increases to some ay;. [ 1.1 g expand and meet O simultaneously, and
thus form two singular closed orbits (loops). while there exists a singular closed
orbit Ty surrounding Ty and 'g. For ay > a1, T'g breaks and bifurcates into a
stable limit cycle surrounding «ll three critical points. The system then has two

limit cycles surrounding all three critical points (see Figure 16},

o For a; = aya, I'1 and Ty coincide to form a semistable limit cycle. Thereafter

ay is greater than ayy and no limit cycle surrounds all three critical points.

Proof: The non-existence can be shown via a traditional Dulac function method.
We also can use the uniqueness theorem for Liénard systems to show the uniqueness
of the limit cycle here.
As for the conclusion concerning the existence of at most two limit cycles, we can
apply the above theorem.
Let
g(z) =22~ z. f(2) =3azx® + a1, F(x)=azr>+ ayx.
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Figure 15: System (33) with a; = —2.9,a3 = 1 has two limit cycles: one

surrounds the upper-antisaddle: the other surrounds the lower-antisaddle



Figure 16: System (33) with a; = —2.69,a3 = 1 has two limit cycles sur-
rounding the group all three stationary solutions
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The roots of F(x) =0 and f(x) =0 arc

a; ay
T = —|—— < Ig= 0 < Ip = -
ax \ (5}

B

and
a a
I = —'—l le 0 < I,= ——‘—l‘.
3(13 3([3
respectively. The roots of g(x) = 0 are —1,0, and 1. Since ¢; < —as. we have

ry < =1 <0 <1 < x5 and. clearly. 7y < —1. 7y > 1. for —x < a; < —3ay:
-1 < <0<z, <1 for =3a3 < a; < —a3. It is easy to see that {unctions

3aszz? + a4

3azz® + ay, r(z —1). (e = 1)

are monotonically decreasing for —>< < z < —1 and the functions

; 2
3&3.’1" + a;

3asz?® + a;. z(z +1).
r(zx+1)

are monotonically increasing for | < r < >¢. Therefore all conditions of the theorem
are satisfied.
Open Problem: What is the maximum number of limit cvcles for the Liénard

system (29)7
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Chapter 6

Bifurcations of Periodic Solutions

for Quadratic Systems

As we have seen. Hilbert’s 16th problem remains wide open. The
traditional approaches. both algebraic theory and qualitative the-
ory, have not been very successful. Thus it is natural to consider
an alternative approach. Here we consider computer-assisied
analysis. Conjecture 3 of Chapter | suggests that the marimum
number of limit cycles for a given quadratic system cquals its
finite multiplicity my. This implies that any quadratic system
has at most four limit cycles. in other words. H(2) < 1. But it
is difficult to prove this conjecture. In this chapter, we carry out
computer-assisted analysis for some interesting quadratic sys-

tems.
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In Scction 1. we study quadratic systems of finite multiplicity two
and find that a semistable limit cycle can originate from the sce-
ond ordcr weak focus and tcrminates at a homoclinic loop. This
supports thal this class of quadratic systems has at most two
limit cycles. If also shows that the homoclinic loop can bifurcate
two limit cycles. In Section 2. we study quadratic systems of
finite multiplicity four. We find that there are threc limit cycles
surrounding the origin for the famous Chen & Wang example. as
ezpected. The computational resulls show that a semistable limat
cycle of multiplicity two emanates from the origin, then meets
the outer limit cycle and constitutes a limit cycle of mulliplic-
ity three at some point. The computations indicate that Chen
& Wang example gives ezactly four limat cycles. Qur investiga-
tion therefore provides further evidence to support that quadratic

systems have at most four limit cycles.

Recall that a quadratic system is an autonomous system of ordinary differential
equations

T = agp + a1 + oy + as0z® + anry + agey® = P(z.y), (34)

§ = buo + bior + bory + baoz? + by + boay® = Q(z.y).

where = d/dt. a;;.b;; € R. and P(x.y). Q(r.y) are relatively prime real polynomials.
of degree at most two. which are not both linear. In a way. quadratic systems may
be considered to be the first class of systems away from linear svstems. In fact, in
the qualitative theory of ordinary differential equations. quadratic systems have been
given ample attention. which led to a large number of papers on this subject

As discussed in Chapter 4. we can classifv quadratic systems according to their
finite multiplicities m;. It seems natural for a systematic classification of phase
portraits to start with the classes of lowest finite multiplicity and proceed to higher
values of mj . This is also a useful procedure because it permits to obtain information
about a class of a higher finite multiplicity from that with a lower value of m; by
sending critical points back to the finite part of the plane and studying the bifurcation

problems resulting from it.
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-0.10 -0.05 0.00 0.05 0.10 0.15

Figure 17: Periodic solution diagram of system (35) with m = 1.5.{ = 1: Lj-norm
versus d. Label | corresponds to a Hopf bifurcation and label 2 corresponds to a
homoclinic loop

6.1 Quadratic systems of multiplicity two

Revn & Kooij studied the phase portraits of quadratic systems of finite multiplicity
two. They obtained 226 different phase portraits of nondegenerate quadratic systems
with finite multiplicity two, and a classification in the R'? coefficient space. It is
conjectured that in a quadratic system of this class there are at most two limit cycles.

A quadratic system with finite multiplicity two can have two real finite critical
points, among which at most one can be a focus. Therefore, there exists at most one

nest of limit cycles. Because we are only interested in limit cycles. we conclude the

following lemma from the analysis in [19].

Lemma 6.3 For a quadratic system of finite multiplicity two. if it has more than one

limit cycle, then it can be transformed in the following form

F = dr—y+Ilz*+mry
y = x(l+ux),

(35)

where d € R,l € R.m € (0, +o<).
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-0.10 -0.05 0.00 0..05 0.'10 0.15

Figure 18: Periodic solution diagram of system (35) with m = 2.0,/ = 1: L,-norm
versus d. Label 1 corresponds to a Hopf bifurcation and label 2 corresponds to a
homoclinic loop

The above system is in the famous Ye Yangian form, for which much work has
been done. In particular, the equation belongs to class (I[),=0([32]). It has been
shown that system (33) with 0 < m < 2 has at most one limit cvcle. Thus the
possible two-limit-cycle region is located in parameter space with m > 2. It remains
unclear whether system (35) has at most two limit cycles.

Computations have been done for a range of parameters l.m. For [ = 1.m = L.5.
the system has one stable limit cycle. where the diagram L,-norm versus parameter d
is given in Figure 17. For [ = l.m = 2.0. the system has one stable limit cycle, where
the diagram L.-norm versus parameter d is given in Figure 18 For [ = 1.m = 2.5. the
system has two limit cvcles for d € (—0.00538, —0.0): the inner one is unstable: the
outer one is stable ( Figure 19). For / = 1.m = 3.0. the system has two limit cycles
for d € (—0.016.0.006): the inner one is unstable; the outer one is stable (Figure 20).

Furthermore. we also obtained the bifurcation of semistable limit cycles, m vs. b
in Figure 21. Label 1. where b = 0 and m = 1.0, represents a weak focus of order
two. Label 2 represents a perodic solution. Label 3 represents a homoclinic loop (see

Figure 22). As expected. a limit cycle of multiplicity two emanates from a second



Ut
~1

6.1. QUADRATIC SYSTEMS OF MULTIPLICITY TWO

fe
[ %]
wun

H
Q
(@]

SRS R

(=]

~
N

|

1

0.00 pd ". ____________________________

-0.25
P i * . . i
-0.020 -0.015 -0.010 -0.0GS 0.00¢C 0.005 0.010 0.615

Figure 19: Periodic solution diagram of system (35) with m = 2.5./ = 1: L,-norm ver-
sus d. Label 2 corresponds to a Hopf bifurcation: label 3 corresponds to a semistable
limit cycle: and label 4 corresponds to a homoclinic loop
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Figure 20: Periodic solution diagram of system (33) with m = 3.0.[/ = [: Ly-norm ver-
sus d. Label 1 corresponds to a Hopf bifurcation: label 2 corresponds to a semistable
limit cycle; and label 3 corresponds to a homoclinic loop
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Figure 21: Bifurcation diagram of semistable limit cvcles of system (35) : m vs. b.
Label | represents a weak focus of order two. where b = 0 and m = 1.0. Label 3
represents the point where the system has a homoclinic loop

order weak focus. and continues in the two-parameter space m, b. finally approaching
a homoclinic loop.

Thus our numerical analysis supports that system (35) as at most two limit cycles.

6.2 Quadratic systems of multiplicity four

Quadratic systems with finite multiplicity four are more complex than the previous
cases. In fact, the examples of quadratic systems with four limit cyvcles are included
in this class (See [6] and [53]). It is not known if these systems have at most four
limit cycles. because the conclusion in {6] and [53] only suggest that these systems
have at least four limit cycles.

The examples of quadratic systems with at least four limit cvcles given by both
Chen & Wang [6] and Shi [33] have two complex aud two real critical points. [t
is conjectured that only quadratic systems with two complex and two real critical
points can have four limit cvcles. However, this conjecture is very difficult to prove.

Actually, it is as difficult as proving that any quadratic system has at most four limit
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cycles. Here we only conduct computer-assisted analysis for the tvpical case of four
limit cvcles. The evidence we present will offer further understanding of the limit

cvcle bifurcations.

25

20 . e |
: j
15._ . i

10.

Figure 24: Periodic solution diagram of system (36) around A(0.1): Lz-norm versus
52Z 51 = 0.01

Now we consider the examples of quadratic systems having four limit cycles.

Chen & Wang [6] consider the quadratic systems

o= —bar—y =322+ (1 — )y + 2 (36)

y = T+ %.l — 3ry.
They showed that for 0 < §; << & << 1. system (36) has four limit cycles. More
precisely. there are at least four limit cycles, since it was not proved that system (36)

has exactly four limit cycles.

Lemma 6.4 By choosing suitable small &,.65, System (36) can have at lcast four
limit cycles, distributed in two nests: one nest contains at least three limit cycles; the

other contains at least one. ([6])

The famous examples above are obtained by perturbing quadratic systems with a

second order weak focus. The estimate is given for small parameters.
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We first give a diagram of three limit cycles surrounding the origin of system (30).
Then we present its semistable limit cycle diagram. By parameter continuation.
fixing 6, = 0.01, we have a periodic solution diagram: L,—norm versus &, as shown
in Figures 23 and 24. where periodic solutions labeled 1.6.8 arc given in Figure
25. Qualitative analyvsis guarantees that there exists at least one limit cycle around
A(0.1). Figure 24 shows that this limit cycleis very large. We can not get a limit cycle
around A(0.1) numerically. But qualitative analysis. referring to Figure 26. shows
that A(0.1) is unstable and that the area bounded by y = % and upper half sphere
constitutes the region of attraction. Thus, by Bendixson’s theorem. there must be
at least one limit cycle around A(0.1). Our numerical analysis supports that system
(36) has four limit cyvcles for é; = 0.01 and 4, in a fine interval around 6, = 0. We also
obtained a global bifurcation diagram for periodic solutions. Moreover, Figures 27
and 28 give bifurcation diagrams of limit cycles with multiplicity two. Here we trace
the fold bifurcation in parameters 61, 6. i.e., the semistable limit cycle bifurcation of
system (36). The &, versus 8- diagram is given in Figures 27 and 28. We see a cusp
point at label 10 . which corresponds to a limit cycle of multiplicity three.

Again. these results are as expected. Only three limit cycles are found to surround
the focus. All three limit cycles surround the origin. then no more than one limit
cvcle surrounds the other focus.

In summary. our computer-assisted analysis supports that

The quadratic system (36) has at most four limit cycles.

Similarly. we can also explore limit cycle bifurcations for more general quadratic
svstems. With computer-assisted analysis. one can uncover information which can
not be obtained with qualitative theory. and one can obtain evidence towards an

answer to Hilbert’s 16th problem.
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Figure 27: Fold bifurcation diagram, i.e. semistable limit cycle bifurcation curve of
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with multiplicity three
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cvcle bifurcation starts from é; = 0.6+ = 0.
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Chapter 7

Bifurcations of Periodic Solutions

for Cubic Systems

Now we will turn away from the core of Hilbert’s 16th prob-
lem. because studies of cubic systems are far from solving thc
Hilbert 16th problem for n = 3. The cubic Liénard systems of
this chapter are derived when codimension-three bifurcations are
investigated ([15]). They are related to Hilbert's 16th problem in
the sense that we can see how bifurcations of limited cycles con-
tribute to the number of limit cycles. The study of these systems
is not completed. in particular. there is no full knowledge about
limit cycles when a cusp presents or when there are two saddles.
In this chapter. we study two cases of cubic Liénard systems
corresponding to the focus/elliptic case and the saddle case of
codimension-three bifurcations. which are extracted from ([13]).
The detailed analysis is omitted here. For the first case. the
cubic Liénard system has one cusp and one anti-saddle. The
compulations indicate that such a system can have a singular
closed orbit homoclinic to the cusp and a limit cycle surround-
ing it (Section 1). For the second case. the cubic Liénard system
has two saddles and one anti-saddle. The computation indicates
that this system can have two limit cycles for certain parameters
(Section 2).

We study the bifurcation of the cubic Liénard system

65



66 CHAPTER 7. BIFURCATIONS OF CUBIC SYSTEMS

r o= y.
y = Glr)+yf(r).

where F'(r) is real polynomial of x with degree three and f(z) is real polynomial of x

with degree two. It is easy to see that system (37) is equivalent to system (29). Recall

that we have studied the special case of system (37) in Chapter 5, which corresponds

to system (37) with G(xj = 2(1 — £?). and we have obtained very satisfactory results.

However. for general case. we are unable to achieve the similar results. Thus we have

to turn to other tools. A systematical numerical study is an option. With five free

parameters. this is a difficult task. Here we use parameter continuation to explore

some special bifurcations. We shall see that some of results obtained are beyvond the

current scope of qualitative theory.

(]

¢.70 G.73

Figure 29: Periodic solution diagram of syvstem (37) Ls-norm versus rs:

.8C 0.85 0.90 0.

Case [ with

rz3 = 1.0.ry = —.8. where label 2 corresponds to the Hopf bifurcation point and label

5 corresponds to a homoclinic loop through the cusp point
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7.1 The cubic Liénard system: case I
First we study system (37) with

G(z) = rax® — 22 f(z) = ryz + rszt.

This corresponds to the focus/elliptic case of codimension-three bifurcations in [13].
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Figure 30: Periodic solution diagram of system (37) y vs. z: Case [ withry =1.0.7y =
—.3, where label .5 correspond to those in Figure 29

Fixing r; = 1.0.r; = —.38. and letting r; be a free parameter. we get a system
having 0(0.0) as a cusp and .4(r;3.0) as a elementary critical point. when r3 = 0.
Numerical computations show the periodic solution curve vs. parameter 5, as given
in Figure 29. Selected periodic solutions are given in Figure 30. In particular. we
see that the system has a singular closed orbit passing through the cusp O(0,0).
Furthermore. phase diagrams show the following: 1) When r; = .9. system (37) is
globally asymptotically stable (see Figure 31). 2) When r; = .855. system (37) has
a singular closed orbit passing through the cusp O(0.0) and, in addition. a stable
periodic solution surrouuds this orbit (see Figure 32). 3) When r; = .75. the system
(37) has two limit cyvcles. the outer one is stable and the inner one is unstable (see

Figure 33).
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In System (37). let G(z) = rax? —2°. f(x) = ryr +r52?. Whenry =1.0.ry = =8,
and r5 is free. the periodic solution Ly-norm vs. parameler rs is given in Figure 29.
In particular, the system can have a singular closed orbit going through cusp: O(0.0)

and a limit cycle stmullancously.

7.2 The cubic Liénard system: case 11
Now we study system (37) with
G(r) = —z+ 1% f(z)=by +z + by’

This corresponds to the saddle case of codimension-three bifurcations in [15].

[t is easy to see that system (37) has three critical points: one node O(0.0) and
two saddles: A(—1.0). B(1.0).

We choose b, = .3 and let b; be free. We obtain the periodic solution vs. parameter
by. as given in Figure 34. Selected periodic solutions are given in Figure 36 and the
homoclinic loop through A(—1.0) is given in Figure 37.

[In Summary, we have the following

Let G(z) = —x + 23 f(x) = by + = + box® in System (37). When by = .3 and b,
free. the periodic solution vs. parameter by is given in Figure 3/. In particular. the
system can have a singular closed orbit passing through the saddle: A(—1.0). Label 2
corresponds to the Hopf bifurcation point. Label 6 corresponds to a heteroclinic cycle.

Label / and 5 correspond to by = —0.0433. s0 the system has two limit cycles.
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05 1.5

Figure 31: Phase diagram of system (37): Case [withr; =1.0.ry = —.8, 15 =
.9. The system is globally asymptotically stable.



Figure 32: Phase diagram of system (37): Case [ withrz =1.0,ry = —.8.75 =
.855. The system has a singular closed orbit going through the cusp O(0.0)
and. simultaneously. a limit cycle surrounding it.
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Figure 33: Phase diagram of system (37): Case I withrz =1.0,ry = —.8,75 =
.75. The systern has two limit cycles: the outer one is stable and the inner
one is unstable.
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Figure 34: Periodic solution diagram of system (37), Ls-norm versus by: Case II
with #, = .3. Label 2 corresponds to the Hopf bifurcation point. Labels 4 and 6
correspond two periodic solutions for ; = —0.0435. and Label 3 corresponds to a
semistable periodic solution. Label T corresponds to a heteroclinic cycle.
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Figure 33: An eunlarged view of Figure 34. Labels 4 and 6 correspond two periodic
solutions for §; = —0.0433. and Label 5 corresponds to a semistable periodic solution.
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.00

Figure 36: Periodic solution diagram of system (37): y vs. x. Case II with b, = .3.
where labels 4.6 correspond to those in Figure 34. This means that for b; = —0.0435

and b, = .3. the svstem has two limit cycles
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Figure 37: A semistable periodic solution of system (37): y vs. z.

b, = .3. where label 5 corresponds to those in Figure 34

Case II with



Appendix A

A Brief User Manual of QSYS
(Java 1.1)

QSYS is a Java program to visualize quadratic systems.
T = ago + @107 + a1y + @20 + anzy + aay?,
§ = boo + biox + bory + baor? + by + bo2y®.

QSYS provides an easy-to-use graphical user interface (GUI) (See Figure 38). The
window is divided into two parts: Entry Area (the up part of the interfacc) and
Graphics Area (the low part of the interface). Entry Area is used to enter values
of coefficients of quadratic systems and computing control variables. Graphics Area
is used to display orbits of a given quadratic system.

QSYS works as both applet and stand-alone applications under Java 1.1.

A.1 Getting Started with Stand-alone QSYS
1) Enter java QSYS in Unix prompt. The QSYS main window (see Figure 33)
will appear.

2) Input desired values for coefficients and control variables in Entry Area.

3) Select File—Start. This is to get the program ready and helps to verify the

equations.

4) Double-Click in Graphics Area to choose initial points of orbits. Select

Edit—Delete Last Orbit to remove the most recent orbit if desired.

-1
1]
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3) Select File—Print to produce a hard copy; or Select File—Save to save a

phase diagram into a QSY'S data file.

A.2 QSYS Commands

A.2.1 Mouse Commands

Double Click: By Double-Clicking in the Graphics Area, the program sets the

mouse current position as an initial point and draws an orbit from it in
(MinX, MazX) x (MinY, MazY).

A.2.2 Menu Commands

There are three menu bars: File, Edit, Screen and Help. File has five items:
Load, Save, Print, Clear and Quit. Edit has two items: Remove Last Orbit,
Start Over. Screen has two items: Clear Screen and Fresh Screen. Help has

only one item: About.

File — Start (Control-G): It is a start point of the program. When it is selected.

internal data will cleared and the system get ready to work.

— Load (Control-L): When it is selected. a file dialog window is poped up
and asks for a file name. This file must be a QSYS data file: otherwise. a
dialog wondow appears to give hints. When a QSYS data file is loaded.

the saved data is displayed graphically.

— Save (Control-S): When it is selected. a file dialog window is poped up
and asks for a file name. The system will save the QSYS data into this
file.

— Print (Control-P): When it is selected. a printing dialog window is poped
up. A user may choose either Print to Printcr or Print to File. When a
user clicks Prinfcr. he needs to enter a printing command of the operating
system. When a user clicks File. he needs to enter a file name, to which a

postscript file will be saved.

— Quit (Control-Q): When it is selected, the program quits.
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Edit — Delete Last Orbit (Control-R): When it is selected. the most recent orbit
is deleted.

— Delete All (Control-M): When it is selected. phase drawing is restarted.

Screen — Clear Screen (Control-K): When it is selected, the screen is cleaned and

the internal data remains.

— Fresh Screen (Control-F): When it is selected, the screen is updated

according to the internal data.

Help — About (Control-A): When it is selected. a message window is poped up

and information about this program is displaved.

A.2.3 Button Commands

1) Title button: Title "Quadratic System” is a start/clear button. When it is

pressed. the program is set to start or restart.

2} Delete Last Orbit button: When it is pressed. the last drawed or bit is deleted.

(It appears when the program works as applet only.)

A.3 Coefficients of Quadratic Systems

Equations of Quadratic Systems are given graphically with coefficients: agg. ayq,
Qoy: U20- A11-do2- boo- byg. boy. bag. byy- and bga. Theyv are defined as float numbers.
User can enter the desired coefficient values of the equation through Entry Area.

Their ranges are limited between —9999 and 9999.

A.4 QSYS Control Variables

Control variables are also given graphically. User can enter the desired values of
control variables through Entry Area.

Ranges can be adjusted by changing Minimum X, Maximum X, Minimum
Y. and Maximum Y. Horizontal ranges are between Minimum X and Maximum
X; vertical ranges are between Minimum Y and Maximum Y. They are defined

as Hoat numbers.
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Step Size defines the integral step. It can he either a positive floal number or a
negative one in (—.4..4). A user may adjust Step Size per orbit.

Step# defines the number of integral steps. It must be a posifive integer and
between 10 and 9999. Step# can be adjusted per orbit.

Note: 1) therc must hold that: Ainimum X is less than Marimum X . and
Minimum Y is less than Mazimum Y. 2) All of Minimum X. Marimum X. Minimum

Y. and Mazrtmum Y must be between —9999 and 9999.
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Appendix B

Java Source Code of QSYS

B.1 QSYS.java

L1117 770707 00777777 7777707707707770700777707077¢777777177177777777777177

//// Quadratic System phase drawing (under Java 1.1) /17177
/117 /1117
//// dx/dt=a_00 +a_10 x +a_01 y +a_20 xx+ a_11 xy +a_02 yy /1717
//// dy/dt=b_00 +b_10 x +b_01 y +b_20 xx+ b_1i1 xy +b_02 yy /1717
i /1177
/////By Xianhua Huang /1717
/////Nov. 6 1998 /1177
/////4t Concordia University /1777
///// Montreal /1177
///// Canada /1177
LITT1P01T117 70707777777 77777777777777777777777777777777777777777/77777/77777
//////Basic functions: /7117
/1717177 1) Double click: choose an initial (x, y) then draw an /1777
/1777 orbit from it /1177
/111717 2) coefficients, scales, step size and step number /1177
/7777 can be entered from the entry fields /1177
/1777 3) Menu functions: Start, Load, Save, Print, Quit, /1777
/177717 Clear Screen, Fresh Screen 1711/

LIITTITITII 717777770 07777 770077777777 777077777717717777077777777171177

Sl
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N

import java.applet.Applet;
import java.awt.*;

import java.awt.event.*;
import java.lang.*;
import java.util.*;

import java.io.*;

public class QSYS extends Applet implements Mouselistener, ActionListener {
private static Frame frm = new Frame("Quadratic System"); // Create a window

[ A KA KR K R KK KK kKR Ko o ok

/***main(): For stand alone applications***/

[ ke ko ok ok ek ook ok ok kR K Ko ok sk K sk K ok [

public static void main(String[] args) {
QSYS qds = new QSYS(); // Create the applet panel
frm.add(qds, “Center"); // Add applet to window
qds.init(Q); // Initialize the applet

[1771171777777777777777707777/77/777777777777777777
// Create a menubar and tell the frame about it//
MenuBar menubar = new MenuBar();

frm.setMenuBar (menubar) ;

[I11T7701777777777777777177777777777777777777777
// Create three pulldown menus for the menubar//
Menu file = new Menu("File');
Menu edit = new Menu("Edit");
Menu screen = new Menu("Screen");

Menu help = new Menu("Help");

// Add the menus to the bar, and treat Help menu specially.
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menubar.add(file);
menubar.add(edit);
menubar.add(screen) ;
menubar.add(help);
menubar . setHelpMenu (help) ;

// Add item "Start"
Menultem start = new Menultem("Start", new MenuShortcut(KeyEvent.VK_G));
start.addActionListener( qds); // Say who’s listening for the events
start.setActionCommand("start"); // A detail to go along with the events
file.add(start); // Add item to menu pane

// Add item "Open"
Menultem open = new Menultem("Load", new MenuShortcut(KeyEvent.VK_L));
open.addActionListener(qds); //Say who’s listening for the events
open.setActionCommand ("open") ; // A detail to go along with the events
file.add(open);

// Add item "save"
Menultem save = new Menultem("Save", new MenuShortcut(KeyEvent.VK_S));
save.addActionListener(qds); //Say who’s listening for the events
save.setActionCommand ("save"); // A detail to go along with the events

file.add(save);

// Add item "Print"
Menultem print = new Menultem("Print", new MenuShortcut (KeyEvent .VK_P)) ;
print.addActionListener(qds); //Say who’s listening for the events
print.setActionCommand("print"); // A detail to go along with the events
file.add(print);

//Add item "Quit"
Menultem quit = new MenuIltem("Quit", new MenuShortcut(KeyEvent.VK_Q));
quit.addActionListener( qds);

quit.setActionCommand ("quit");
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file.add(quit);

//Add items to Edit menu
Menultem removelast =new Menultem('Delete Last Orbit",
new MenuShortcut(KeyEvent.VK_R));
removelast.addActionListener( qds);
removelast.setActionCommand ("rmlast") ;

edit.add(removelast);

Menultem removeall =new Menultem("Delete All",
new MenuShortcut (KeyEvent.VK_M)) ;
removeall.addActionListener( gds);
removeall.setActionCommand ("rmall") ;

edit.add(removeall);

//Add items to Screen menu: Clear Screen, Fresh Screen
MenuItem clscreen =new Menultem("Clear Screen",
new MenuShortcut (KeyEvent.VK_K));
clscreen.addActionListener( qds); //Say who’s listening for the events

clscreen.setActionCommand ("' clearscreen");//A detail to go along with the event

screen.add(clscreen);

MenulItem frscreen =new Menultem("Fresh Screen",
new MenuShortcut (KeyEvent.VK_F));
frscreen.addActionListener( qds); // Say who’s listening for the events

frscreen.setActionCommand("fresh"); // A detail to go along with the events

screen.add(frscreen);

// Add items to the help menu,
Menultem about = new MenuItem("About", new MenuShortcut(KeyEvent.VK_A));

about.addActionListener( qds);

about.setActionCommand ("about");
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help.add(about) ;
//Define layout
frm.setSize (600, 760); // Set the size of the window
frm.setTitle("Quadratic System");
frm.show(); // Make the window visible

frm.addWindowListener (new WindowAdapter() {// Handle window close requests
public void windowClosing(WindowEvent e) { System.exit(0); }
B
}
/% 3k sk sk ok sk sk ok ok ok ok ke ok ok koK ok ok ok /
/**x**xEnd of main() ***x/

[ ok ko ok ok ok ok ok ok ok ok ok koK f

/*************************************************************************
* This is the convenience routine for adding menu items to a menu pane.
* It works for pulldown or popup menu panes, since PopupMenu extends Menu.
ke 3 e he e ke ke Sk S 36 ke e ke o ok e ok 4 S o ke e e o 3 3k 3 e 3k ok ok e e oK e 3K 3K ok o sk o e e 3 3k oK ok ke e ok o ke ke e e sk e sk ok ok ok ek ke ok ok ok f
protected static void createMenultems(Menu pane, ActionListener listener,
String[] labels, Stringl[] commands,
int[] shortcuts) {
for(int i = 0; 1 < labels.length; i++) {
Menultem mi = new Menultem(labels[i]);
mi.addActionListener(listener);
if ((commands != null) && (commands[i] != null))
mi.setActionCommand (commands[i]);
if ((shortcuts !'= null) && (shortcuts[i] != 0))
mi.setShortcut(new MenuShortcut (shortcuts[i]));

pane.add(mi);

/******************************************************************************

* This is the method defined by the ActionListener interface. All
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* the menu item commands are handled here because the applet was specified
* as the listener for all menu items. Note the use of getActionCommand()
* to determine the command string registered with the individual items.
*****************************************************************************/
public void actionPerformed(ActionEvent e) {
String cmd = e.getActionCommand();

if (cmd.equals("quit")) System.exit(0); // Don’t do this in an applet

else if (cmd.equals("open")) load() ; /*load from a filex/
else if (cmd.equals("save")) save() ; /*save to a filex/

else if (cmd.equals("print")) print(); /*make a hard copy*/
else if (cmd.equals("start")) startQSYS(Q); // defined below

else if (cmd.equals("rmlast")) rmlast();

else if (cmd.equals("rmall")) clear();

else if (cmd.equals("clearscreen")) clearscreen();

else if (cmd.equals("fresh")) freshScreen();

else if (cmd.equals("about")) about(); /* not yet implemented */ ;

private String equationx =new String(); //string of equation dx/dt=...
private String equationy =new String(); //string of equation dy/dt=...
[ 5k s e e s ok s ok o e ke o e ok ok ok ook sk ok ok sk ok ke sk sk ok ok ke sk okok f
/** compEqn() :assembly equations *x [

[ ok sk ok e ok o o sk ok e sk ok o sk ke ke o e ok ok ook ok ok skok ok ok f

protected void compEqn() {

String sl1= new String("dx/dt =");
if(par_a00!= (float) 0){
sl= si1+ par_a00;
}
if(par_al0!= (float) 0){
if(par_a10>(float) 0)
sl= si+"+"+ par_all0 +" x";

else
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sl= si+par_all +" x";
by
if(par_a0l!= (float) 0){
if (par_a0i>(float) 0)
sl= si+"+"+ par_alOl +" y";
else
sl= si+ par_a0l +" y";
¥
if(par_a20!= (float) 0){
if (par_a20>(float) 0)
sl= sl+"+"+ par_a20 +" x*x";
else
sl= si+ par_a20 +" x=*x";
}
if(par_alli= (float) 0){
if(par_al1> (float) 0)
sl= sl+"+"+ par_all +" x*xy";
else
sl= sl+par_all +" xx*y";
by
if(par_a02!= (float) 0){
if(par_a02> (float) 0)
sl= si+"+"+ par_al02 +" yxy";
else

sl= sl+ par_alC2 +" yxy";

String s2= new String(“"dy/dt =");
if (par_b00!= (float) 0){

s2= s2+ par_a00;

}

if(par_b10!= (float) 0){
if (par_b10> (float) 0)

s2= s2+"+"+ par_bl0 +" x';
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V4
04}

else
s2= s2+par_bi0 +" x";
}
if (par_b01'= (float) 0){
if (par_b01 > (float) 0)
s2= s2+"+"+ par_b01 +" y";
else
s2= s2+ par_b0l +" y";
}
if(par_b20!= (float) 0){
if(par_b20> (float) 0)
s2= s2+"+"+ par_b20 +" x*x";
else
s2= s2+ par_b20 +" x*x";
}
if(par_bili!= (float) 0){
if(par_bi1l > (float) 0)
s2= s2+"+"+ par_bll +" x*y";
else
s2
),
if(par_b02!= (float) 0){
if (par_b02 > (float) 0)
s2= s2+"+"+ par_b02 +" y*y";

H

s2+ par_bll +" x*y'";

else
s2= s2+ par_b02 +" y*y";
}
/**assign to the global variables**/
equationx =sl;

s2;

equationy

/**start():initialize a phase drawingx*/

protected void startQSYS() {
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clear();
compEqn() ;
InfoDialog d = new InfoDialog(frm, "Display Equatiomns",

"You are visualizing the quadratic system:\n"+"\n"+

equationx +"\n" + equationy+'\n");
d.setFont (font_small);
d.show();

[ ok ook ke ok e e o sk sk ke sk sk ok skl ok sk sk sk sk s skske ok sk sk ok ok
/***xxx1oad(): load from a file wkxk¥*/
protected void load() {

float flt, f1t1;

int tmpt , tmp_pointnum = 0;

String directory;

String tmpstr = new String();

new char[258];

char[] buffer
BufferedReader in;
FileDialog fi = new FileDialog(frm, “"Load File", FileDialog.LOAD) ;

File £f1;

pointnum=0;

try {
fi.show(); //Display dialog and wait for respomnse
directory = fi.getDirectory(); //Remember new default directory
fl = new File(directory, fi.getFile());

new BufferedReader(new FileReader(fl));

in

[I111177777777717171777777111177
/**x%x Read coefficients *xkk [

tmpstr = in.readLine();



APPENDIX B. JAVA SOURCE CODE OF QSYS

if (!'tmpstr.equals ("QDSDATA123.456")){
InfoDialog d = new InfoDialog(frm, "Wrong File",

"This is not a QDSSYS Data file!\n");
d.show();

return;

i

tmpstr = in.readLine();

par_a00= (float) Float.valueOf( tmpstr).floatValue();
a2_00.setText (tmpstr);

tmpstr = in.readLine();

par_all= (float) Float.valueOf( tmpstr).floatValue();
a_10.setText (tmpstr);

trrstr = in.readLine();

par_a0l= (float) Float.valueOf( tmpstr).floatValue();
a_01.setText (tmpstr);

tmpstr = in.readLine();

par_a20= (float) Float.valueOf( tmpstr).floatValue();
a_20.setText (tmpstr);

tmpstr = in.readLine();

par_all= (float) Float.valueOf( tmpstr).floatValue();
a_11.setText(tmpstr);

tmpstr = in.readLine();

par_a02= (float) Float.valueOf( tmpstr).floatValue();
a_02.setText(tmpstr);

tmpstr = in.readLine();

par_b00= (float) Float.valueOf( tmpstr).floatValue();
b_00.setText (tmpstr);

tmpstr = in.readLine();

par_b10= (float) Float.valueOf( tmpstr).floatValue();
b_10.setText (tmpstr);

tmpstr = in.readLine();

par_b01= (float) Float.valueOf( tmpstr).floatValue();
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b_01.setText(tmpstr);

tmpstr = in.readLine();

par_b20= (float) Float.valueOf( tmpstr).floatValue();
b_20.setText(tmpstr);

tmpstr = in.readLine();

par_bili= (float) Float.valueOf( tmpstr).floatValue();
b_11.setText(tmpstr);

tmpstr = in.readLine();

par_b02= (float) Float.valueOf( tmpstr).floatValue();
b_02.setText(tmpstr);

[I11771777777777077171771717117177777

/**** Read control parameters ¥**x/

tmpstr = in.readLine();
xmin = (float) Float.valueOf( tmpstr) .floatValue() ;

entry_xmin.setText (tmpstr) ;

tmpstr = in.readLine();
xmax = (float) Float.valueOf( tmpstr) .floatValue() ;

entry_xmax.setText(tmpstr);

tmpstr = in.readLine();
ymin = (float) Float.valueOf( tmpstr).floatValue() ;
entry_ymin.setText(tmpstr);

tmpstr = in.readLine();
ymax = (float) Float.valueOf( tmpstr) .floatValue() ;
entry_ymax.setText(tmpstr) ;

tmpstr = in.readLine();
pointnum = Integer.valueOf (tmpstr).intValue();
[17117117771770777777717777777771717717

/**x*¥ read all the initial data *%*x*/
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/**x*an orbit depends on initials*¥*/

/**position,step size,step numberix*/

for(int i=0; i <pointnum; i++){
tmpstr = in.readLine();
flt= (float) Float.valueOf( tmpstr).floatValue();
pointx[i] = new Float(flt);

tmpstr = in.readLine();

£1t= (float) Float.valueOf( tmpstr).floatValue();
pointy[il = new Float(flt);

tmpstr = in.readLine();

flt= (float) Float.valueOf( tmpstr).floatValue();
cur_step[i] = new Float(flt);

tmpstr = in.readLine();
tmpt= (int) Integer.valueOf( tmpstr).intValue();
cur_step_num[i] = new Integer(tmpt);
+
in.close(Q);
+
catch (I0Exception e) {
System.err.println(e);}
fi.dispose();

Graphics gc = this.getGraphics();
gc.setColor(this.getBackground());
gc.clearRect(xshift, yshift, w , w );
plotHead(gc);

allPaint(gc);

compEqn () ;
InfoDialog d = new InfoDialog(frm, "Display Equations",

"You are visualizing the quadratic system:\n"+"\n"+
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equationx +"\n" + equationy+"\n");
d.setFont (font_small);
d.show();

/****************************/
/***xsave(): save to a filexxx/
protected void save() {

float flt;

int tmpt, i1d = 0;

String tmps ;

char[] buffer = new char[258];

String directory;

FileDialog fi = new FileDialog(frm, "Save File", FileDialog.SAVE) ;

File £f1;

try {

fi.show(); // Display dialog and wait for response
directory = fi.getDirectory(); // Remember new default directory

fl = new File(directory, fi.getFile());

FileWriter w = new FileWriter(fl);

[1111771777771777717711777

/***%ksave coeffients*kx*x/

tmps = String.valueOf("QDSDATA123.456");

w.write(tmps.toCharArray()); w.write("\n");

tmps = String.valueOf(par_a00);
v.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf(par_ai10);

w.write(tmps.toCharArray()); w.write("\n");
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tmps = String.valueOf(par_a01);
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf(par_a20);
w.write(tmps.toCharArray());w.write("\n");
tmps = String.valueOf(par_ail);
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf(par_a02);
w.write(tmps.toCharArray()); w.write("\n");

tmps = String.valueOf(par_b00);
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf(par_b10);
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf(par_b01);
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf(par_b20);
w.write(tmps.toCharArray());w.write("\n");
tmps = String.valueOf(par_bl1l);
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf(par_b02);

w.write(tmps.toCharArray()); w.write("\n");

[I117777710777777717117717777177/

/***save control parameters¥**/

tmps = String.valueOf( xmin);
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.value0f( xmax);
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf( ymin);
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf( ymax);
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf(pointnum);

w.write(tmps.toCharArray()); w.write("\n");
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L1117 11777171777777177777777

/***save initial values***x/

for(int i=0; i <pointnum; i++){
tmps = String.valueOf(pointx[i].floatValue());
w.write(tmps.toCharArray()); w.write("\n");
tmps = String.valueOf(pointy[i].floatValue());
w.write(tmps.toCharArray());w.write("\n");
tmps = String-valueOf(cur_step[i].floatValué());
v.write(tmps.toCharArray());w.write("\n");
tmps = String.valueOf(cur_step_num[i].intValue());
w.write(tmps.toCharArray());w.write("\n");
}
w.flush();

w.close();

+
catch (IOException e) {
System.err.println(e) ;}
fi.dispose();

/3 sk ok sk o ke ke ok o ke ook o o ek k6 3K 3 e ook oK e ok sk ok ok
/** print(): print a hard copy**/
protected void print() {

int tmp_xprev, tmp_yprev;

double ttx, tty;
/**set x-axis and y-axis**/
to_xprev();

to_yprev();

PhaseWriter out = null;
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try { out = new PhaseWriter(frm, "Phase Portrait",10, 1.75, .75, 1.75, .75):}

catch (PhaseWriter.PrintCanceledException e) { System.exit(0); }
out.phasePlaneSetup("dx/dt=y", "dy/dt=-x");

// out.page.drawLine(0 + xshift, yorigin, w + xshift , yorigin);

// out.page.drawLine(xorigin, yshift , xorigin, w + yshift-1);

out.phaseDrawLine(0 + xshift, yorigin, w + xshift , yorigin);

out.phaseDrawLine(xorigin, yshift , xorigin, w + yshift-1);

for(int j=0; j<pointnum ; j++){

(float) pointx[j] .floatValue();
yprevi = (float) pointy[j].floatValue();
delta_t = (float) cur_step[j]l.floatValue();

xprevf

imex = (int) cur_step_num[j].intValue();

to_xprev();

to_yprev();

for (int 1 = 1; i <=imax; i++) {
tmp_xXprev = xprev;
tmp_yprev = yprev;
Runge_Kutta();
to_xprev();

to_yprev();

if (((xprev != tmp_xprev) || (yprev != tmp_yprev)) &&(yprev >yshift)
&&(tmp_yprev>yshift) &&(xprev >xshift) &% (tmp_xprev > xshift)&&
(xprev <w +xshift) && (tmp_xprev <w +xshift))
// out.page.drawLine(tmp_xprev, tmp_yprev, Xprev , yprev);
out.phaseDrawLine(tmp_xprev, tmp_yprev, Xxprev , yprev);
}
}
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[17177711177777711777/71777
/***design page head **x*/
tring s= new String("Quadratic System");

out.phaseDrawString(s, out.getUpperLeftX(), out.getUpperLeftY()+10);

compEqn() ;
out.phaseDrawString(equationx, out.getUpperLeftX() ,out.getUpperLeftY()+30);

out.phaseDrawString(equationy, out.getUpperLeftX(), out.getUpperLeftY()+40);

String s3= new String("Range: ");
s3= s3 + "Min X=" + xmin + ",Max X=" +xmax +";Min Y="+ymin+",MaxY='"+ymax;
out.page.drawString(s3, out.getUpperLeftX(), out.getUpperLeftY() +60);
out.close();

}

[ ks s o sk K K o o KR K K KR KKK R K ok ko [
/** clear(): clear internal data **/
/** Used by actionPerformed()**/
protected void clear() {
Graphics gc = this.getGraphics();
gc.setColor(this.getBackground());
gc.clearRect (xshift, yshift, w , w );
colorID =0;
pointnum = 0;

plotHead (gc) ;

[ ek sk sk ok sk ok ok sk o o A sk ok o oo ok e ok sk ke ok e e sk ke sk ke ke ok sk ok ok ok ke /
/**remove last orbit :Display the remaining**/

protected void rmlast() {

Graphics gc = this.getGraphics();
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if (pointnum>0) {

pointnum--;
gc.setColor(this.getBackground());
gc.clearRect(xshift, yshift, w , w );
plotHead(gc);

allPaint(gc);

}
by

[ Rk s ok ook ok Kok o o kKR KK Ko Kok ok
/**clearscreen() : Clear screen only **/
protected void clearscreen() {
Graphics gc = this.getGraphics();
gc.setColor(this.getBackground());
gc.clearRect (xshift, yshift, v , w );
plotHead(gc) ;

[ H Rk sk o o ok KR kK ok KRk KRk
/**freshScreen() :Display all intermnalx**/

protected void freshScreen() {
Graphics gc = this.getGraphics();

gc.setColor(this.getBackground());
gc.clearRect(xshift, yshift, w , w );
plotHead(gc);

allPaint(gc);

[ K 3 3 ke sk 3k o ke ke o sk ke o o ok ke o ok ok ok ke ok ok ok sk kok

/**about(): about this program***/
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protected void about() {

InfoDialog d = new InfoDialog(frm, "About",
"This Program was written by Xianhua Huang\n" +
"Copyright (c) 1998 Concordia University\n\n" +
"It is to visualize quadratic systems: \n"'+
"dx/dt=a_00 +a_10 x +a_01 y + a_20 x*x+ a_llx*y +a_02 y*y\n" +
"dy/dt=b_00 +b_10 x +b_01 y + b_20 x*x+ b_l1ix*y +b_02 y*y\n\n" +
"\nQSYS (Under Java 1.1)\n"+
“\n\n"+ "Usage:\n\n"+
"Double Click : choose an initial point and draw a orbit\n"+
"Menu Functions:\n"+
" File : \n"+
" Start: clear internal data and get the program ready to work\n
" Load: load a previous saved file\n"+
" Save: save current status to a file\n"+
" Print: produce a hard copy\n"+
" Quit: quit the program\n"+
" Edit : \n"+
" Delete Last Orbit: remove the most recent orbit\n"+
" Delete All: remove all the orbits and restart\n"+
" Screen : \n"+
" Clear Screen: clear screen and keep the internal data\n"+
" Fresh Screen: display all the intermnal data\n"+
" Help: \n" +
" About: information about this program\n\n\n"+
"Ranges:\n"+
" a_00, a_10, a_01, a_20, a_11, a_02, \n"+
" b_00, b_10, b_01, b_20, b_11, b_02 \n" +
*  Min X, Max X, Min Y, Max Y\n" +
" are defined between -9999 and 9999 by QSYS\n"+ "\n" +
“Constraint:\n"+
" Minimum X must be less than Maximum X; \n"+

" Minimum Y must be less than Maximum Y. \n"+
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" Step Size must be between -.4 and .4\n"+
" Step# must be between 10 and 9999\n");

d.show();

[ Ak sk sk ok ok e ke sk ke ok e ok ok ok sk ok sk ok ok sk ok ok skok ok Kok ke ke ok /
[*x**xxxInterface Definition***x**/
[ 3Kk ko ke ok e o sk ok sk ke ok sk o ok sk o e sk sk ok ok ke ke k ke keok
protected PopupMenu popup_file;
protected PopupMenu popup_edit;
protected PopupMenu popup_screen;

protected PopupMenu popup_help;

FloatTextField a_00 =new FloatTextField("0.0", (float)-9999.,(float)9999, 2);
FloatTextField a_10 =new FloatTextField("0.3", (float)-9999.,(float)9999, 3);
FloatTextField a_01 =new FloatTextField("-0.1", (float)-9929.,(flocat)9999, 3);
FloatTextField a_20 =new FloatTextField("-3.0", (float)-9999.,(float)9999, 3);
FloatTextField a_11 =new FloatTextField("0.0", (float)-9999.,(float)9999, 3);
FloatTextField a_02 =new FloatTextField("0.0", (float)=-9999.,(float)9999, 3);

FloatTextField b_00 = new FloatTextField("0.0",(float)-9999.,(float)9999, 2);
FloatTextField b_10 = new FloatTextField("1.0",(float)-9999.,(float)9999, 3);
FloatTextField b_01 = new FloatTextField("0.0",(float)-9999.,(float)9999, 3);
FloatTextField b_20 = new FloatTextField("2.2",(float)-9929.,(float)29999, 3);
FloatTextField b_11 = new FloatTextField("0.0",(float)-9999.,(float)2999, 3);
FloatTextField b_02 = new FloatTextField("0.0",(float)-9999.,(float)9999, 3);

FloatTextField entry_xmax=new FloatTextField("1.",(float)-9999, (flcat)9999,4);
FloatTextField entry_xmin=new FloatTextField("-1.",(float)-9999,(fl0at)9999,4);
FloatTextField entry_ymax=new FloatTextField("1.",(float)-2999, (float)9999,4);
FloatTextField entry_ymin=new FloatTextField("-1.",(float)-9999, (float)9999,4);
FloatTextField entry_delta_t =new FloatTextField("0.02", (float)-.4,(float) .4, 4
FloatTextField entry_stepNum =new FloatTextField("1500", (float) 10, (float) 9999,
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private
private
private
private
private
private

private

private
private
private
private
private
private
private

private

Label
Label
Label
Label
Label
Label
Label

Label
Label
Label
Label
Label
Label
Label
Label

x1;

XX,
Xy;
yys
dx;
plus;

dy;

dt;

plusb;

11111171717777177117777

[ x*

private Button button_head;

private Button button_delete_one; // in use when it’s applet

VAL
private
private
private
private
private
private
private
private
private
private

private

button

labels

Label
Label
Label
Label
Label
Label
Label
Panel
Panel
Panel

Panel

*x [

*% [

1b_scale;

lb_step;

lb_stepsize;

1b_xmax;

1b_xmin;

1b_ymax;

1b_ymin;

row_head;

rowl
row?;

row3;

3
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private Panel row4;

1117711717777771177177

/*xfont definition*x*/

private Font font;

private Font font_small;

[ % ok sk ke ok e ok S ke ke ke sk ok e ek s ok sk ok sk ok ok ok Kok ok

/**x%end of interface definitiom***/

[/ ek ke ok o ok e ke e bk ok ok ok o ok ok ok koK ok sk ko ok ok ok

[ sk sk ke ok ok e e ke ke sk ok ok e ok ok ok ok ok ok ok ok ok sk sk ok ko

[ FxEkkkxknkkVariableskikkskskkkkkkk /

[/ 40 5H 3Kk sk ok sk o sk sk Sk Ak ok ok ek ok koK ok ke sk ok ek ok ok okoke f

[ ks ok ok sk o o Sk ke sk sk e ok e sk ok sk ke sk ok o sk ok ok ok f

[*xxxkxkcoefficients

private
private
private
private
private
private
private
private
private
private
private

private

float
float
float
float
float
float
float
float
float
float
float
float

*ok Kk kk [
par_al0;
par_alol;
par_al1l;
par_a20;
par_all;
par_a02;
par_b0o0;
par_blo;
par_b01;
par_b20;
par_bilil;
par_b02;

[ k3K 3k e ok e sk ke ok o ok ok Kok ok o ok ke ok ok ok f

/***internal variables*x*/

private int yshift =

240;

private int xshift = 70;

private float xmax;
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private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private

private

private

private

float xmin;
float ymax;
float ymin;
float delta_t;
int stepNum;

int w = 450;
1;

int m
int imax = 1500; // maximum steps of iteratiom
int pointnum = O;

new Float[201];

new Float[201];

static Float cur_step[] = new Float[201];

static Float pointx[]

static Float pointy[]

static Integer cur_step_num[] = new Integer([201];
float xn;
int xorigin=w/2 +xshift; //Screen Location of R"2 origin
int yorigin=w/2 +yshift;
int xprev=w/2+xshift; //Initial point of an orbit in Screen
int yprev=w/2 +yshift;
float xprevf= (float) 0.0;//Initial point of an orbit in R"2
float yprevf= (float) 0.0;

int coloriD = 0;

Color[] colors_name ={Color.blue, Color.cyan, Color.gray,
Color.green, Color.red, Color.yellow, Color.pink,
Color.lightGray, Color.magenta, Color.orange};

[ ek sk e sk ke sk e ok oK ok koK sk ok ok ok e ok sk ok ok ok ke ek /

[*xxxxxkkxEnd of Variableskkkkkkkkk/

/3K 3k sk sk ok ek ok e e Ak ok ok sk ok ok ok 0k o skok sk ok ok

[ 3k sk e sk ke sk ok e ke o ek ke ok ok ok ok ok ok ook ok ke /

/**¥init ()

: entry of applets**/

[/ ek sk e ok e s ke ke ke ok s e ok ok ok ok ok ok ok oK ok ok e ok f

public void init() {
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// 1f we are not in a frame (i.e. we are an applet), create a popup menu
if (!'(this.getParent() instanceof Frame)) {
// Create the popup menu
popup_file = new PopupMenu("File");
popup_edit = new PopupMenu("Edit");
popup_screen = new PopupMenu("Screen'");

pOpup_help = new PopupMenu("Help");

// Add items to it using the convenience routine below
createMenultems(popup_file, this,
new String[] {“"Start", "Load", “Save", "Print", "Quit"},
new Stringl] {"clear",'"load", "save", "print", "quit"},
new int[] {KeyEvent.VK_G, KeyEvent.VK_L, KeyEvent.VK_S,
KeyEvent .VK_P, KeyEvent.VK_Q});

createMenulItems(popup_edit, this,
new String[] {"Delete Last Orbit", "“Delete All"},
new Stringl(] {"rmlast", "rmall"},
new int[] { KeyEvent.VK_R, KeyEvent.VK_M});

createMenultems(popup_screen, this,
new String(] {"Clear Screen", "Fresh Screen"},
new String(] {"clearscreen", "fresh"},

new int[] { KeyEvent.VK_K, KeyEvent.VK_F});

createMenultems(popup_help, this,
new Stringl[] {"About"},
new String(] { "about"},
new int[] { KeyEvent.VK_A});

// Add the popup menu to the component it will appear over.
this.add (popup_file);
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this
this
this

JELT T
/*%x*xxdes
FET T T2
11717711/
///Defin
row_
rowl
row?2
row3

rowd

row_

row_

.add (popup_edit);
.add (popup_screen);
.add (popup_help);

ok s s o sk sk ek ok ek Kk ke ok

ign interface ***x/

ke ek o ok ok ok ok K ok kR ok ok /

111711771117
e head /////
head

new Panel();
= new Panel();
= new Panel();
= new Panel();

= new Panel();

head.setBackground(Color.blue) ;

head.setForeground(Color.yellow);

font = new Font("Helvetica", Font.BOLD, 26);

font_small = new Font("Helvetica", Font.BOLD, 14);

button_head = new Button(" Quadratic System:
button_head.setBackground (Color.yellow) ;
button_head.setForeground(Color.blue);
button_head.setFont(font);
row_head.add(button_head);

this.add(row_head, "Center");

//////end of head /////
//////define dx/dt/////

dx =new Label("dx/dt=");
dx.setBackground(Color.green);
dx.setFont(font);
dx.setForeground(Color.red);

dx.setFont(font_small);

");
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plu

x1

XX

Xy

yy

s

n
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= new Label("+");
plus.setBackground(Color.white);
plus.setFont (font);
plus.setForeground(Color.red) ;
plus.setFont (font_small);

new Label ("x+");
x1.setBackground(Color.white) ;
x1.setFont(font);
x1.setForeground(Color.red) ;
x1.setFont(font_small);

ew Label("y+");
y1.setBackground(Color.white);
y1l.setFont(font);
y1.setForeground(Color.red) ;
yl.setFont(font_small);

new Label ("xx+");
xx.setBackground(Color.white) ;
¥x.setFont(font);
xx.setForeground(Color.red) ;
xx.setFont(font_small);

new Label("xy+");
xy .setBackground(Color.white);
xy.setFont(font);
xy .setForeground(Color.red) ;
xy.setFont(font_small);

new Label("yy");
yy - setBackground(Color.white);
yy.setFont(font);
yy .setForeground(Color.red) ;
yy.setFont(font_small);

rowi.add(dx); //dx/dt=
rowl.add(a_00); //a_00
rowl.add(plus); //+

rowl.add(a_10); //a_10
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rowl.add(x1); //x +
rowl.add(a_01); //a_01
rowl.add(yl); /ly +
rowl.add(a_20); //a_20
rowl.add (zx); //xx +
rowl.add(a_11); /la_11
rowl.add(xy); //xy +
rowl.add(a_02); //a_02
rowl.add(yy); //yy
this.add(rowl, "Center"); // bind row 1

//////end of dx/dt///////117

//////define dy/dt//////////

dy =new Label("dy/dt=");
dy.setBackground(Color.green);
dy.setFont(font);
dy.setForeground(Color.red);
dy.setFont(font_small);
new Label("+");

plusb.setBackground(Color.white);

plusb

plusb.setFont(font);
plusb.setForeground(Color.red);
plusb.setFont(font_small);

x1b = new Label ("x+");
x1b.setBackground(Color.white);
x1b.setFont (font) ;
x1b.setForeground(Color.red) ;
x1b.setFont (font_small);

¥1b= new Label("y+");
y1b.setBackground(Color.white);
yib.setFont (font);
yib.setForeground(Color.red) ;
yib.setFont(font_small);

xxb = new Label ("xx+%);
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xxb.setBackground(Color.white);
xxb.setFont (font) ;
xxb.setForeground(Color.red) ;
xxb.setFont (font_small);

new Label ("xy+");

™
<
o
i

xyb.setBackground (Color.white);
xyb.setFont (font) ;
xyb.setForeground(Color.red) ;
xyb.setFont (font_small);

yyb = new Label("yy");
yyb.setBackground (Color.white);
yyb.setFont (font) ;
yyb.setForeground(Color.red) ;

yyb.setFont (font_small) ;

row2.add(dy); //dy/dt=
row2.add (b_00) ; //b_00
row2.add (plusb); /] +
row2.add(b_10); //b_10
row2.add (xib); //x +
row2.add(b_01); //b_01
row2.add(yib); /ly +
row2.add(b_20); //b_20
row2.add (xxb) ; //xx +
row2.add(b_11); //b_11
row2.add (xyb); //xy +
row2.add(b_02); //b_02
row2.add (yyb); //yy
this.add (row2, "Center"); //bind row 2

///////end of dy/dt////////

///////define scales, step size, step numbexr////////
1b_scale = new Label("Ranges: "); //Ranges:--

1b_scale.setBackground(Color.green);



B.I. QSYS.JAVA

1b_scale.setFont(font);
1b_scale.setForeground(Color.red);
1b_scale.setFont(font_small);
row3.add (1b_scale);

1b_xmin = new Label("Min X");
1b_xmin.setBackground (Color.green);
1b_xmin.setFont(font) ;
1b_xmin.setForeground(Color.red) ;
1b_xmin.setFont(font_small);
row3.add(lb_xmin);

row3.add(entry_xmin) ;

1b_xmax = new Label('Max X");
1b_xmax.setBackground(Color.green) ;
1b_xmax.setFont (font) ;
1b_xmax.setForeground(Color.red);
1b_xmax.setFont (font_small);
row3.add(1b_xmax) ;

row3.add(entry_xmax) ;

1b_ymin = new Label("Min Y");
1b_ymin.setBackground(Color.green) ;
1b_ymin.setFont (font) ;
1b_ymin.setForeground(Color.red) ;
lb_ymin.setFont (font_small);
row3.add(1lb_ymin);

row3.add(entry_ymin);

lb_ymax = new Label("Max Y");
1b_ymax.setBackground(Color.green) ;
1b_ymax.setFont (font) ;
1b_ymax.setForeground(Color.red) ;

1b_ymax.setFont (font_small);

109

//Min X

//Max X

//Min Y

//Max Y



110 APPENDIX B. JAVA SOURCE CODE OF QSYS

row3.add(1b_ymax);
row3.add(entry_ymax) ;
this.add(row3, "Center");

lb_stepsize = new Label("Step Size"); // dt or (delta t)
lb_stepsize.setBackground(Color.green);
1b_stepsize.setFont(font);
1b_stepsize.setForeground(Color.red) ;
lb_stepsize.setFont(font_small);
row4.add(1b
row4.add (entry_delta_t);

stepsize) ;

lb_step = new Label("Step#"); //Step Number:
1lb_step.setBackground(Color.green) ;
lb_step.setFont(font_small);
1b_step.setForeground(Color.red) ;
1b_step.setFont(font_small);
row4.add (1b_step);
row4.add (entry_stepNum) ;

/*Set up a "Delete Last OrbitI" button, when it is an applet*/
if (!'(this.getParent() instanceof Frame)) {
button_delete_one = new Button('"Delete Last Orbit");
button_delete_one.setFont(font_small);
button_delete_one.setBackground(Color.yellow) ;
button_delete_one.setForeground(Color.red) ;
row4.add (button_delete_one);
}
this.add(row4, "Center");

///////end od scale definition//////

/***End of interface design***/

/] 3K 3K ke ke b sk sk ke sk ke e e ok sk ok 3 ok o ok sk ok ok sk sk ok ok sk ke f
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resize(w ,w+yshift+10 );

this.addMouselListener(this);

/**%xxEnd of init () #*x*x*x/

[ k3 e e ok e ke kb ke ok ke sk ok ok ok ok k

/**************************/

/***xxGraphics Functions#*xx*/

[ st sk sk sk sk e ke sk ok ke sk sk o ok ok sk koo /
public void paint(Graphics g) {
plotHead(g) ;

allPaint(g);
}

[ 4 3 e ke ok e e ek Sk ek ok e 3 ok ok ok ok K oKk o ok KoK oK ko ke ok
/***crespond to each double click***/

public void singlePaint(Graphics g) {

int tmp_xprev, tmp_yprev;
double ttx, tty;

g.setColor( colors_name[ colorID++ % 10] );

for (int i = 1; i <=stepNum; i++) {

tmp_xprev = Xprev;
tmp_yprev = yprev,;
Runge_Kutta();
to_xprev();

to_yprev();

111
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//To avoid duplicate drawing

if (((xprev !'= tmp_xprev) || (yprev !'= tmp_yprev)) &&(yprev >yshift)
&% (tmp_yprev>yshift)&&(yprev <yshift +w) &&(tmp_yprev<yshift+w)&&
(xprev >xshift) && (tmp_xprev >xshift)&&(xprev <w+xshift) &&
(tmp_xprev <w+xshift))

g.drawvLine(tmp_xprev, tmp_yprev, Xxprev , yprev);

}

}

[ ek sk sk sk sk sk s ook ok sk Ko oK KoK o sk ok [
V£ 23 for update *kkx [

public void allPaint(Graphics g) {

int tmp_xprev, tmp_yprev;

double ttx, tty;
plotHead(g);
colorID = 0;

for(int j=0; j<pointnum ; j++){

g.setColor( colors_name[ colorID++ ¥ 10] );

(float) pointx[j].floatValue();
yprevf = (float) pointy[j].flcatValue();
delta_t = (float) cur_step[j].floatValue();

xprevt

imax = (int) cur_step_num[j].intValuve();
to_xprev();

to_yprev();

for (int i = 1; i <=imax; i++) {

tmp_Xprev = Xprev;

tmp_yprev = yprev;
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Runge_Kutta() ;
to_xprev();

to_yprev();

//To avoid duplicate drawing
if (((zprev != tmp_xprev) || (yprev !'= tmp_yprev)) &&(yprev >yshift)
&& (tmp_yprev>yshift) &&(yprev <yshift+w) &&(tmp_yprev<yshift+w)&&
(xprev >xshift) && (tmp_xprev >xshift)&&(xprev <w+xshift) &&
(tmp_xprev <w +xshift))

g.drawLine(tmp_xprev, tmp_yprev, xprev , yprev);

[ %k ke ke ok ok ok ok sk sk o s 3k o ok 3K ok ok o o ok ok ok ok kol sk ok f
[ Fkxkk plot head Rk kK [

public void plotHead(Graphics g) {

par_a00 = a_00.getValue(Q);
par_al0 = a_10.getValue(Q);
par_a01l = a_01.getValue();
par_a20 = a_20.getValue();
a_11.getValue();

par_altl
par_a02 = a_02.getValue();

par_b00 = b_00.getValue();
par_bi0 = b_10.getValue();
par_b01 = b_01.getValue();
par_b20 = b_20.getValue();

par_bli = b_11.getValue();
par_b02 = b_02.getValue();
xmin =entry_xmin.getValue();
xmax =entry_xmax.getValue();

ymin =entry_ymin.getValue();



114 APPENDIX B. JAVA SOURCE CODE OF QSYS

ymax =entry_ymax.getValue();
delta_t =entry_delta_t.getValue();
stepNum = (int) entry_stepNum.getValue();
imax = (int) stepNum;
///draw boundary//////
g.setColor(Color.black);
g.drawLine(0 + xshift, yshift, w +xshift , yshift);
g.drawLine(0 + xshift , w+yshift , w +xshift, w + yshift);
g.drawLine(l + xshift , yshift, 1+xshift , w + yshift);
g.drawLine(w +xshift , yshift, w +xshift , w + yshift);
/////draw x-axis and y-axis//////
/**set x-axis and y-axis**/
to_xprev();
to_yprev();
g.setColor(Color.green);
g.drawLine(xshift, yorigin, w +xshift, yorigin);

g.drawLine(xorigin, yshift, xorigin, w + yshift-1);

1k ko ok sk sk ke ke ke ok sk ok ook e ok sk e e e sk ok ek ok sk ok sk sk sk ok /

/****End of Graphics Functions¥¥*x*/

/e sk sk o e sk ke o s sk ok ok ok ke ke o s sk ok sk ok ke sk e sk e sk ok ok f

[ Rk ok e sk e sk ok e e e ok sk ok e s ok ok oK oK K ke o sk ke oK e sk ok ok o sk sk ke ke /

/**Transformations between R"2 and Screen*x*/

[k ok ke ke ok ok sk ok ke oo e ok o sk ke ook ke skl ok ok sk ok o Kok sk ok ok ok o skok sk ok f

L1117 1177770777771777777777177

////From R°2 to Screen//////
private void to_xprev() {
xprev = xshift + (int) ((float) w* (xprevf- xmin)/(xmax - xmin));

xorigin = xshift + (int) ((float) w* (-xmin)/(xmax - xmin));

}
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private void to_yprev() {

yprev = yshift +w - (int) ((float) w* (yprevf-ymin)/(ymax - ymin));
yorigin = yshift +w - (int) ((float) w* (-ymin)/(ymax - ymin));

)y

[I1171711000711777777717777777
////From Screen to R~2//////
private void to_xprevi() {
xprevf = xmin + (float) (xprev-xshift)* (xmax - xmin)/(float) w;

¥

private void to_yprevi() {
yprevf = ymin - (float) (yprev - yshift -w) *(ymax- ymin)/ (float) w;
}

/**************************************/

/**Definition of Systems, Computation¥*/

[ Fokkokeok sk ok ok ok ok sk ks ko sk o ko ok ok oK ok ok
L1177 1717777770707711717717117777177
//////Definition of Systems/////////
public float dot_x(float x, float y) {
return (par_a00 +par_alO*x +par_all*y+par_a20% x*x

+par_all*x*y + par_a02 *y*y);

public float dot_y(float x, float y) {
return (par_b00 +par_bil0*x +par_bOl*y +par_b20%* x*x
+par_blil*x*y + par_b02 *y*y);
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[IT1077717707007177171177770777177711177
//////////Runge_Kutta integral ///////
/*** 4th order Runge Kutta Method **x*/

public void Runge_Kutta() {

float tmp_x1;
float tmp_yi;
float tmp_dotxl, tmp_dotx2, tmp_dotx3, tmp_dotx4;
float tmp_dotyl, tmp_doty2, tmp_doty3, tmp_doty4;

float ww;

tmp_dotxl = dot_x(xprevf, yprevf);

tmp_dotyl = dot_y(xprevf, yprevf);

(float) xprevf + (float) delta_t*(float) tmp_dotxl/(float) 2.0;

tmp_x1
(float) yprevf+ (float) delta_t*(float) tmp_dotyi/(float) 2.0;

tmp_y1
tmp_dotx2 =dot_x(tmp_x1, tmp_y1);
tmp_doty2 =dot_y(tmp_x1, tmp_y1l);

tmp_x1= (float)xprevf + (float)delta_t*(float) tmp_dotx2/(flecat) 2.0;
tmp_yl= (float)yprevf+ (float) delta_t*(float) tmp_doty2/(float) 2.0;
tmp_dotx3 =dot_x(tmp_x1, tmp_yl);
tmp_doty3 =dot_y(tmp_x1, tmp_y1);

tmp_xi= (float) xprevf + (float) delta_t*(float)tmp_dotx3;
tmp_yi= (float) yprevf + (float) delta_t*(float)tmp_doty3;
tmp_dotx4 =dot_x(tmp_x1, tmp_y1);
tmp_doty4 =dot_y(tmp_x1, tmp_yl);

xprevf += (tmp_dotxil +2.0*tmp_dotx2 +2.0* tmp_dotx3 +tmp_dotx4)* delta_t/6.0;
yprevf += (tmp_dotyl +2.0*tmp_doty2 +2.0* tmp_doty3 +tmp_doty4)* delta_t/6.0;

}

/] 3% 3 sk ke ke ke sk sk ke ke K ok sk ok Sk ok ok ok ok o sk ok ok e ke ke ke ok ek ok ok ok ok o sk sk e ke ok
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/**End Of Definition of Systems, Computation**/

/] 38 ok ke sk sk e s e sk ok o e ke sk ok ok ok S S e o ek ok oK oK o ok o oK oK ok ok sk keoke ok

/3 3k sk ek s ot ok o e ok ok ok o ok Sk K ok ok ok ok ok e ok ok ok ok o ok Kok ok ok f
/*Methods of the mouselistener interfacex/
/] ook 3k e e ek e ke e ok sk ke o ke ok ok ok 3 oK K oKk sk ok ok Sk Sk sk ok koK sk ok sk ek

public void mouseClicked(MouseEvent evt) {

Graphics tmp_g;

tmp_g = this.getGraphics();

if (evt.getClickCount() == 2) {
xprev = evt.getX();

yprev = evt.getY();

/* If click outside the graphics area, no action*/
if ({xprev< xshift +w) && (xprev> xshift ) &&
(yprev< yshift +w) && (yprev> yshift )) {
to_xprevi();

to_yprevi();

pointx[pointnum] = new Float(xprevi);

pointy[pointnum] = new Float(yprevf);

delta_t

]

entry_delta_t.getVaiue();

(int) entry_stepNum.getValue();

stepNum
cur_step[pointnum] = new Float(delta_t);
cur_step_num[pointnum] = new Integer(stepNum);

pointnum++;

if (all_valid()){
singlePaint(tmp_g); }
else

peintnum--;

by
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public void mousePressed(MouseEvent evt) { ; }
public void mouseReleased(MouseEvent evt) { ; }
public void mouseExited(MouseEvent evt) {;}
public void mouseEntered(MouseEvent evt) {;}

public void mouseDragged(MouseEvent evt) {;}

[ ek s ke ke e s o ke ke ok ok ek o sk ok ok ke ok Kok ok ok ek sk ek ok ok f

[ F*xA% Check entries *kxkk [

[ 4 e ke ke ke sk sk o e ok sk e ke sk oK Sk e kb ok sk i ok ok ok ok ok ko sk keok f

private boolean all_valid() {

InfoDialog d;

float tmp_xmin, tmp_xmax, tmp_ymin, tmp_ymax;
tmp_xmin= xmin;
tmp_xmax= xmax;
tmp_ymin= ymin;
tmp_ymax= ymax;

Graphics gc = this.getGraphics();
plotHead(gc) ;

if ((tmp_xmin!= xmin) | | (tmp_xmax!= xmax) | | (tmp_ymin!= ymin) | | (tmp_ymax!=ymax))

allPaint(gc);

if (! (entry_ymax.isValid()&& entry_ymin.isValid()
&&entry_xmax.isValid()&&entry_xmin.isValid()))
{ d = new InfoDialog(frm, "Hints",

"Note:" + "\D."+
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" One of Min X , Max X ,Min Y, Max Y in invalid.\n"+
" They must be float and between -9999 and 9999\n");

d.setFont (font_small);

d.show();
return false;
}
if ((xmin >= xzmax) || (ymin >= ymax) ){

d = new InfoDialog(frm, “"Hints",
"Note:" + “"\n"+

" Min X must be less than Max X \n"+
" Min Y must be less than Max Y\n");
d.setFont(font_small);

d.show();

return false;

‘v

if('entry_delta_t.isValid()) {
d = new InfoDialog(frm, "Hints",

"Note : " o4 u\nn+

" Entry Step Size is invalid: Wrong data type or too big!\n'+
" Tt must be a float number\n");

d.setFont(font_small) ;

d.show();

return false;

if ((delta_t<.00000001)&& (delta_t >-.00000001)) {
d = new InfoDialog(frm, "Hints",
"Note:" + “\n"+
" Step Size is too small.\n");
d.setFont (font_small);
d.show();

return false;
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if(lentry_stepNum.isValid()) {
d = new InfoDialog(frm, "Hints",
“"Note:" + "\n"+
" Step# 1is invalid: wrong data type or too large\n'"+
" It must be an integer number between 10 and 9999\n");
d.setFont(font_small) ;
d.show();

return false;

}

if (stepNum<10) {
d = new InfoDialog(frm, "Hints",
“Note:" + "\n"+
" Step# must be between 10 and 9999\n");
d.setFont(font_small);
d.show();

return false;

¥

if (a_00.isValid()&& a_10.isValid()&&a_01.isValid()&&a_20.isValid()&&
a_11.isValid()&& a_02.isValid()&& b_00.isValid()&& b_10.isValid()&&
b_01.isValid()&& b_20.isValid()&& b_11.isValid()&& b_02.isValid())
return true;
else {
d = new InfoDialog(frm, "Hints",
"Note:" + "\n"+
" Coefficients are invalid: wrong data type or too big\n"+
" They must be float numbers between -9999 and 9999\n");
d.show();

return false;

by
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7 3 sk ok ok o sk sk ke ok sk ok sk ke ke sk sk sk ok ok ok ok ok ok sk sk sk sk e sk ok sk ke sk sk o ke ek ok ok [

/*End of Methods of the mouselistener interfacex*/

/3 3k s e ke ke ke sk s ke sk sk sk sk k6 sk ke sk e sk sk sk ke sk ke s sk sk sk sk ke s sk ke sk sk ek ok sk ok [

/***********************************************/

[ **% Method used by applet *%%k [

[ ks o ek sk ks ok sk sk sk o ok Ko ook ek K sk o o ok K ok [
public boolean action(Event e, Object arg) {
Object target = e.target;
if (target == button_head) {
clear();

¥

else if (target == button_delete_one)

{
rmlast();

¥

return true;

B.2 PhaseWriter.java

[ Kk ke ok ok ke s ok e ke ok ok ok ok ks sk o sk ok sk e o sk sk ok sk sk sk kb ok sk ek ke sk ok ok ok ok ok ok ok o ok KoK ok ok
** PhaseWriter. java %k
** Produce a hard copy of phase portraits *%
** Modified from HardcopyWriter.java (http://www.oreilly.com *x

** Nov 5, 1998 *

******************************************************************/

/****************

Original Notice:
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****************/

// This example is from _Java Examples in a Nutshell_. (http://www.oreilly.com)

// Copyright (c) 1997 by David Flanagan

// This example is provided WITHOUT ANY WARRANTY either expressed or implied.

// You may study, use, modify, and distribute it for non-commercial purposes.

// For any commercial use, see http://www.davidflanagan.com/javaexamples

import java.
import java.
import java.
import java.

import java.

awt
awt

io.

X

.event.*;

3

text. *;

util.*;

/** A character output stream that sends output to a printer. **/

public class PhaseWriter extends Writer {

// These are the instance variables for the class

protected PrintJob job;

protected Graphics page;

protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected

String jobname;

int

fontsize;

String time;

Dimension pagesize;

int

pagedpi;

Font font, headerfont;

FontMetrics metrics;

FontMetrics headermetrics;

int
int
int
int
int
int
int

int

x0, yoO;

width, height;
headery;
charwidth;
lineheight;
lineascent;
chars_per_line;

lines_per_page;

//
//
//
//
//
/7
//
//
//
/!
//
//
//
//
//
//
//
/7

The PrintJob object in use
Graphics object for current page
The name of the print job

Point size of the font

Current time (appears in header)
Size of the page (in dots)

Page resolution in dots per inch
Body font and header font
Metrics for the body font
Metrics for the header font
Upper-left corner inside margin
Size (in dots) inside margins
Baseline of the page header

The width of each character

The height of each line

Offset of font baseline

Number of characters per line

Number of lines per page
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0, linenum = O; // Current column and line position

protected int charnum
protected int pagenum = 0; // Current page number
public Graphics phase;

// A field to save state between invocations of the write() method

private boolean last_char_was_return = false;

// A static variable that holds user preferences between print jobs

protected static Properties printprops = new Properties();

[ **
* The constructor for this class has a bunch of arguments:
* The frame argument is required for all printing in Java.
* The jobname appears left justified at the top of each printed page.
* The font size is specified in points, as on-screen font sizes are.
* The margins are specified in inches (or fractions of inches).
*% /
public PhaseWriter(Frame frame, String jobname, int fontsize,
double leftmargin, double rightmargin,
double topmargin, double bottommargin)

throws PhaseWriter.PrintCanceledException

// Get the PrintJob object with which we’ll do all the printing.
// The call is synchronized on the static printprops object, which
// means that only one print dialog can be popped up at a time.
// If the user clicks Cancel in the print dialog, throw an exception.
Toolkit toolkit = frame.getToolkit(); // get Toolkit from Frame
synchronized (printprops) {

job = toolkit.getPrintJob(frame, jobname, printprops);
}
if (job == null)

throw new PrintCanceledException("User cancelled print request");

pagesize = job.getPageDimension(); // query the page size

pagedpi = job.getPageResolution(); // query the page resolution
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// Bug Workaround:
// On windows, getPageDimension() and getPageResolution don’t work, so
// we’ve got to fake them.
if (System.getProperty(“"os.name").regionMatches(true,0,"windows",0,7)) {
// Use screen dpi, which is what the PrintJob tries to emulate, anyway
pagedpi = toolkit.getScreenResolution();
System.out.println(pagedpi);
// Assume a 8.5" x 11" page size. A4 paper users have to change this.
pagesize = new Dimension((int) (8.5 * pagedpi), 1ll*pagedpi);
System.out.println(pagesize);
// Ve also have to adjust the fontsize. It is specified in points,
// (1 point = 1/72 of an inch) but Windows measures it in pixels.
fontsize = fontsize * pagedpi / 72;
System.out.println(fontsize);

System.out.flush();

// Compute coordinates of the upper-left corner of the page.

// I.e. the coordinates of (leftmargin, topmargin). Also compute

// the width and height inside of the margins.

x0 = (int) (leftmargin * pagedpi);

yO = (int) (topmargin * pagedpi);

width = pagesize.width - (int) ((leftmargin + rightmargin) * pagedpi);
height = pagesize.height - (int)((topmargin + bottommargin) * pagedpi);

// Get body font and font size

font = new Font("Monospaced", Font.PLAIN, fontsize);
metrics = toolkit.getFontMetrics(font);

lineheight = metrics.getHeight();

lineascent = metrics.getAscent();

charwidth = metrics.charWidth(’0’); // Assumes a monospaced font!

// Now compute columns and lines will fit inside the margins
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chars_per_line = width / charwidth;

lines_per_page = height / lineheight;

// Get header font information

// And compute baseline of page header: 1/8" above the top margin
headerfont = new Font("SansSerif", Font.ITALIC, fontsize);
headermetrics = toolkit.getFontMetrics(headerfont);

headery = yO - (int)(0.125 * pagedpi) -

headermetrics.getHeight() + headermetrics.getAscent();

// Compute the date/time string to display in the page header

DateFormat df = DateFormat.getDateTimeInstance(DateFormat.LONG,
DateFormat .SHORT) ;

df .setTimeZone(TimeZone.getDefault()) ;

time = df.format(new Date());

this.jobname = jobname; // save name
this.fontsize = fontsize; // save font size
}
/*x*

* This is the write() method of the stream. All Writer subclasses
* implement this. All other versions of write() are variants of this one
*k [
public void write(char[] buffer, int index, int len) {
synchronized (this.lock) {
// Loop through all the characters passed to us
for(int i = index; i < index + len; i++) {
// If we haven’t begun a page (or a new page), do that now.

if (page == null) newpage();

// If the character is a line terminator, then begin new line,
// unless it is a \n immediately after a \r.

if (buffer[i] == ’\n’) {
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if (!last_char_was_return) newline();
continue;

}

if (buffer[i] == ’'\r’) {
newline();
last_char_was_return = true;
continue;

¥

else last_char_was_return = false;

// If it some other non-printing character, ignore it.
if (Character.isWhitespace(buffer[i]) &&
ICharacter.isSpaceChar(buffer[i]) && (buffer[i] !'= ’\t’)) continue;

// If no more characters will fit on the line, start a new line.
if (charnum >= chars_per_line) {
newline();

if (page == null) newpage(); // and start a new page, if necessary

// Now print the character:
// If it is a space, skip one space, without output.
// If it is a tab, skip the necessary number of spaces.
// Otherwise, print the character.
// It is inefficient to draw only one character at a time, but
// because our FontMetrics don’t match up exactly to what the
// printer uses we need to position each character individually.
if (Character.isSpaceChar(buffer[i])) charnum++;
else if (buffer[i] == ’\t’) charnum += 8 - (charnum % 8);
else {
page.drawChars(buffer, i, 1,
x0 + charnum * charwidth,
yO + (linenum*lineheight) + lineascent);

charnum++;
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+

/** This method is to set-up a phase plane. */

public void phasePlaneSetup(String stril, String str2) {

page = job.getGraphics(); // Begin the new page
phase = page;
linenum = 0; charnum = O; // Reset line and char number
pagenum++; // Increment page number
page.setFont (headerfont) ; // Set the header font.

+

/**This method is to draw a line on the phase portrait#*x/
public void phaseDrawLine(int x1, int yi, int x2, int y2) {

page.drawLine( x1, y1, x2, y2);
by

/**This method is to draw a string on a designed location**/
public void phaseDrawString(String str, int x, int y) {

page.drawString(str, x, y);
+

public void phaseDrawOval(int point_x, int point_y, int r) {

page.drawOval(point_x, point_y, r, r);

/**Get upper left coordinates of the phase plane¥*/
public int getUpperLeftX(){
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¥

return x0;

public int getUpperLeftY(){

¥

return yoO;

/*%

* This is the flush() method that all Writer subclasses must implement.
* There is no way to flush a PrintJob without prematurely printing the
* page, so we don’t do anything.

*% [/

public void flush() { /* do nothing */ }

VEL:
* This is the close() method that all Writer subclasses must implement.
* Print the pending page (if any) and terminate the PrintJob.
*/
public void close() {
synchronized(this.lock) {
if (page != null) page.dispose(); // Send page to the printer
job.end(); // Terminate the job

[ **
* Set the font style. The argument should be one of the font style
* constants defined by the java.awt.Font class. All subsequent output
* will be in that style. This method relies on all styles of the
* Monospaced font having the same metrics.
*x f
public void setFontStyle(int style) {
synchronized (this.lock) {

// Try to set a new font, but restore current one if it fails
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Font current = font;

try { font = new Font("Monospaced", style, fontsize); }

catch (Exception e) { font = current; }

// If a page is pending, set the new font. Otherwise newpage() will.

if (page != null) page.setFont(font);

/** End the current page. Subsequent output will be on a new page. */

public void pageBreak() { synchronized(this.lock) { newpage(); } }

/** Return the number of columns of characters that fit on the page */

public int getCharactersPerLine() { return this.chars_per_line; }

/** Return the number of lines that fit on a page */

public int getlinesPerPage() { return this.lines_per_page; }

/** This internal method begins a new line */
protected void newline() {
charnum = 0; // Reset character number to 0
linenum++; // Increment line number
if (linenum >= lines_per_page) { // If we’ve reached the end of the page
page.dispose(); // send page to printer

page = null; // but don’t start a new page yet.

/** This internal method begins a new page and prints the header. */

protected void newpage() {

page = job.getGraphics(); // Begin the new page
linenum = 0; charnum = 0; // Reset line and char number
pagenum++; // Increment page number
page.setFont (headerfont); // Set the header font.

page.drawString(jobname, x0, headery); // Print job name left justified
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String s = “- " + pagenum + " -"; // Print the page number centered.
int w = headermetrics.stringWidth(s);
page.drawString(s, x0 + (this.width - w)/2, headery);

w = headermetrics.stringWidth(time) ; // Print date right justified
page.drawString(time, x0 + width - w, headery);
// Draw a line beneath the header
int y = headery + headermetrics.getDescent() + 1;
page.drawLine(x0, y, xO+width, y);
// Set the basic monospaced font for the rest of the page.
page.setFont (font);
}
VEL:

* This 1s the exception class that the HardcopyWriter constructor
* throws when the user clicks "Cancel" in the print dialog box.

*% [

public static class PrintCanceledException extends Exception {

public PrintCanceledException(String msg) { super(msg); }
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