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ABSTRACT

Three Essays on Linear Asset Pricing Models
Hua (Helen) Shang, Ph.D.

Concordia University, 2011

This disertation includes three essays on linear asset pricing models.

The first chapter is concerned with the effects of including a low-variance factor
which leads to a small signal-to-noise ratio in an asset pricing model. We rely on local
asymptotics and define the low-variance as local-to-zero by being inversely related to
the sample size. When a low-variance factor is present, the commonly applied Fama-
Macbeth two-pass regression procedure yields misleading results. Local asymptotic
analysis and simulation evidence indicate that the beta of the low-variance factor, risk
premiums corresponding to all factors and the magnitude of associated variances are
all unreliably estimated. Moreover, - and F- statistics are unable to detect whether
risk premiums are significantly different from zero. Additional simulation results also
reveal that Kleibergen’s statistic has some ability to detect the usefulness of different
factors.

In the second chapter, I investigate the finite sample properties of the two-pass re-
gression, the t-statistic, statistics proposed by Kleibergen (2009) and the specification
tests when the first-pass regression slope coefficients — betas — are large, small and
zero. In particular, I explore the effect of the number of assets on the properties of
the statistics. The results reveal that most of the statistics tend to reach a conclusion
that the factor should be included in the model or the model is correct more often
that it should, especially when betas are small and the number of assets is large. The

diagnosis of the results shows that the source of the problem lies in the large bias
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of the estimated risk premiums and the poor estimation of the variance-covariance
matrix of the error terms in the first-pass regression.

The third chapter explores an economic explanation of commodity prices by con-
sidering the macro-economic exposure of commodity returns. Through estimating the
stochastic discount factor representation of the linear asset pricing model, I find that
investors are compensated for exchange-rate risk. The result is robust to different

estimation methods, to different data sets and over longer periods of time.
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Introduction

Asset pricing and portfolio management are the main building blocks of modern
finance theory. Understanding how an asset is priced and how optimal portfolios are
constructed has important practical implications for both policy makers and prac-
titioners. Asset pricing theories [e.g. the capital asset pricing model (CAPM), the
intertemporal CAPM and arbitrage pricing theory (APT)] typically suggest there is
a linear relation between expected returns and sensativity to some systematic factors
(e.g. macroeconomic or financial variables). However, until now, there is no con-
sensus on which factors should be included in an asset pricing model. Among the
possible reasons for dissatisfaction with the model are the estimation and inference
procedures used to evaluate it.

There are two representations of a linear asset pricing model: the beta repre-
sentation and the stochastic discount factor (SDF) representation. Under the beta
representation, expected returns are expressed as a linear function of systematic risks
(betas) and risk premiums, corresponding to some macroeconomic or financial fac-
tors. This reflects the fundamental principle that investors need to be compensated
for bearing more risks. The SDF representation characterizes the law of one price
which means that the expectation of discounted returns equals one. A linear asset
pricing model implies that the SDF is a linear function of the factors.

A common estimation methodology of the beta representation is called the Fama-
Macbeth (FM) two-pass regression proposed by Fama and Macbeth (1973). In the

first pass, the betas associated with the factors are estimated. In the second pass,



the corresponding risk premiums are estimated. One interesting question asked in
the asset pricing literature is whether the risk premiums are different from zero, or
equivalently, whether the factors are priced. Since the properties of the estimated risk
premiums depend on whether an asset pricing model is correctly specified, a model
specification test is also important.

In the empirical asset pricing literature, the covariance of the returns and a factor
included in a linear asset pricing model may be small. This implies that either the
betas are small or zero [e.g. Lustig and Verdelhan (2007)] or the relative variations
of the factors to the returns are very small (e.g. the default premium, consumption
and labor growth rate, etc).

The small covariance of the returns and factors may distort the properties of
both the finite sample and large sample properties of the estimated risk premiums
and the statistics used to test whether a factor is priced or whether the model is
correctly specified. Kan and Zhang (1999) are the first to address this problem. In
their paper, they investigate both the finite sample and large sample properties of
the student t-test when the factor included in the model has zero betas with the
returns and the model is misspecified. They show that the t-test tends to favor the
conclusion that the factor should be included in the model when actually it should
not. Kleibergen (2009) extends Kan and Zhang (1999) by including the cases when
betas are small. He finds that the asymptotic distributions of the estimated risk
premiums follow non-standard distributions when betas are small or zero under both
correctly specified and misspecified models. Kleibergen (2009) then constructs some
new statistics (FAR, FM-LM and GLS-LM) and argues that these new tests do not
depend on the magnitude of the betas.

In the first chapter, I further extend Kan and Zhang (1999) and Kleibergen (2009)

to the case when the variance of the factors is small. I rely on local asymptotics



and define the low-variance as local-to-zero by being inversely related to the sample
size. The large sample distributions of the estimated parameters in the two-pass
regression are derived assuming the error terms in the first pass are independent
and identically distributed both over time and across assets. I expect the results
under heteroskedasticity and autocorrelation to be similar to those derived in this
chapter. The results show that the estimated betas associated with high-variance
factors in the first pass have the same asymptotic distributions as those when there is
no low-variance factor in the model. All estimated parameters in the second pass are
inconsistent and have non-standard asymptotic distributions. Thus, the standard ¢-
and F-statistics, which rely on consistent and normally distributed estimates, become
invalid in this case. Furthermore, the asymptotic bias of these parameters depends on
the true values of the betas, the risk premium associated with the low-variance factor,
the localizing constant (which controls the variance of the factor) and the distribution
of estimated beta corresponding to the low-variance factor.

Next, I investigate the finite sample properties of the estimated parameters by
simulation. I provide results for a two-factor model with one low-variance factor
in both a simple simulation and a more realistic simulation. My results show that
the finite-sample behavior of the estimated parameters is close to their large-sample
behavior. The smaller the variance of the low-variance factor for a fixed sample size,
the larger the bias for the estimated second-pass parameters and the more severe size
distortion for the t- and the F-statistics. I also compare the behavior of F'-statistic
and Kleibergen’s (2009) factor Anderson-Rubin (FAR) statistic for testing whether
the estimated coefficients in the second-pass regression jointly equal their true values.
I find that the performance of the F-statistic is very similar to that of the ¢-statistic.

However, the FAR statistic has a small size distortion.



In the second chapter, I conduct a simulation study to compare the finite sample
behavior of the FM two-pass procedure, the t-statistic, the FM-LM, GLS-LM and
FAR statistics and three model specification tests when betas are large, small and
zero. The case when betas are zero and the model is misspecified is also included. In
particular, the effect of the number of assets on the properties of estimators and the
statistics is investigated. I also provide a diagnosis of the size distortion of the FAR,
GLS-LM statistics and two model specification tests. In order to screen other factors
which can affect the properties of the FM procedure and the associated statistics, I
fix the signal-to-noise ratio to be one. In addition, I assume the betas are generated
from a uniform distribution in order for the mean and variance of the betas to be the
same for different N's.

The finite sample behavior of the FM procedure and the associated statistics has
not received enough attention. When the betas are large, Shanken and Zhou (2007)
investigate through simulation the finite sample properties of the FM procedure, the
t-statistic and the modified model specification test by Shanken (1985). The results
show that the finite sample properties are close to their large sample properties. Kan
and Zhang (1999) provide both analytical and simulation results on the ¢-statistic for
the case when betas are zero and the model is misspecified. They reveal that the
t-statistic has a large size distortion. Chen and Kan (2005) analyze the finite sample
properties of the estimated risk premiums revealing that the unconditional mean of
the estimated risk premiums is a complicated function of the betas, dispersion of
the factors, dispersion of the error terms, 7" and N. However, how these variables
by themselves affect the estimated risk premiums has not been explored. Kleibergen
(2009) also provides simulation results on the estimated risk premiums when betas are
zero and the model is either correctly specified or misspecified. He further compares

the size and power of the Wald statistic and the statistics he proposed when betas



are small at N = 25 and T' = 143. However, he assumes the product of betas and the
sample means of the factors are independent of the factors in a small sample.

Our results show that when betas are small, the estimated risk premiums are
seriously biased. The bias seems to converge as the number of assets increases. The
FM-LM test has almost the correct size when the model is correctly-specified regard-
less of the number of assets, the sample size and magnitude of betas. None of the
tests behave well when the model is misspecified. Both the GLS-LM and the FAR
statistics are affected by the number of assets. However, the performance of the GLS-
LM statistic is much better than that of the FAR when the number of assets is large.
The inaccurate estimation of the variance covariance matrix of the error terms is one
of the main reasons for the poor performance of the FAR and GLS-LM when betas
are small and zero. The t-statistic has large size distortions when betas are small in
a small sample. The problem gets worse when the number of assets is large. It is
mainly due to the large bias of the estimated risk premiums as NN rises.

The specification test with Shanken’s correction has a very good size property
given the assets are independent both across assets and over time. The behavior
of the specification tests without Shanken (1985)’s correction is similar to the FAR
statistics. After correcting the variance covariance matrix of the error term, the size
distortion is reduced. However, there is still a size distortion when the number of
assets is large.

In the third chapter, I investigate how returns of long-only commodity portfolios
are determined in equilibrium. Or in other words, what kind of risks US investors are
compensated for through buying long-only commodity portfolios.

Historical evidence shows that long-only commodity portolios have average excess
returns which are similar to those of stocks [e.g. Bodie and Rosansky (1980), Erb

and Harvey (2006)]. Researchers tried to investigate whether asset pricing models



constructed for equities are applicable to commodities [e.g. Dusak (1973), Bodie
and Rosansky (1980), Jagannathan (1985), Bessembinder (1992) and Roache (2008)].
However, the results are mixed.

Based on the theory of storage and the theory of normal backwardation and in a
small open economy, I construct a 3-factor model including the stock market factor,
the real interest rate and the exchange rate. I find that exchange rate risk is priced.
The results are invariant to returns constructed by Standard and Poor (The SP-GSCI
mono-indices) and those constructed by the US commodity research bureau. They
are also robust to different estimation methods and under both correctly specified

and misspecified models.



CHAPTER 1

Inference in Asset Pricing Models with a Low-Variance

Factor

1.1. Introduction

Asset pricing and portfolio management are the main building blocks of modern
finance theory. Understanding how an asset is priced and how optimal portfolios are
constructed has important practical implications for both policy makers and practi-
tioners. Asset pricing theories typically model expected returns as a linear function
of systematic risks and risk premiums corresponding to some macroeconomic or fi-
nancial factors. An interesting aspect that emerges from the descriptive analysis of
factor models is that the variability of some macroeconomic factors (e.g. the default
premium, consumption and labor growth rate, etc) is very small compared to the
variability of asset returns. We refer to the small relative variability of the factors
as low signal-to-noise ratio (SNR). In Figure 1 we present two examples of relative
return variability of the Fama and French 10 portfolio formed on momentum and the
growth rate of per capita US labor income from July 1963 to December 1990. As it
can be observed even the return with a minimum variance is much more volatile than

the labor factor.

Figure 1.1. The relative variation of the returns of Fama and French
10 portfolio formed on momentum and the growth rate of per capita
US labor income from July 1963 to December 1990
sample/low beta/writings/disertation/LMJ3P200.wmf
Relative variation of the returns with minimum variance and the labor

sample/low beta/writings/disertation/LMJ3P201.wmf
Relative variation of the returns with maximum variance and the labor



The commonly applied methodologies for estimating the models is the Fama and
Macbeth procedure, proposed by Fama and Macbeth (1973). In the first pass, asset
returns are regressed on the factors to obtain the coefficients, betas. In the second
pass, the estimated betas become the regressors, and the corresponding coefficients,
the risk premiums, are calculated.

It has been documented that the large sample inference on the risk premiums is
valid given a correctly specified model. Over the last twenty years, researchers in
financial economics have been actively exploring properties of estimation and testing
asset pricing models under model misspecification, error-in-variable (EIV) and possi-
bly irrelevant factors. For example, the FM procedure treats the estimated betas as
the true betas in the second pass regression, which causes an EIV problem. Shanken
(1992) analyzes the asymptotic properties of the estimated risk premiums by taking
account of the EIV problem under conditional homoskedastic error terms. He argues
that the usual FM standard errors are incorrect and proposes the EIV-adjusted stan-
dard errors. Later, Jagannathan and Wang (1998) extend the properties to the case
of weakly stationary and ergodic errors. From a model misspecification perspective,
Kan & Zhang (1999) investigate the properties of the two-pass procedure when a
factor is independent of the asset returns. They argue that the t-statistic tends to
over-reject the null and lead to the conclusion that the factor is useful. Kleibergen
(2009) generalizes Kan and Zhang (1999) and argues that the ¢-statistic is unreliable
when the true betas associated with the factors are either zero or close to zero. He
also proposes some new test statistics, including the factor Anderson-Rubin statistic
(FAR).

There is little discussion about the effect on estimation and test statistics under
a low SNR. In a framework of predicting asset returns using an explanatory variable,

Torous and Valkanov (2000) argue that the low SNR renders unreliable estimation,



inference and forecasting. Gospodinov (2009) shows that the low relative variation of
the forward premium to the exchange rate returns creates a large bias and variability
of the estimated slope parameters in a differenced forward premium regression, and
leads to size distortions of the ¢ statistic. Chen and Kan (2005) point out that in a
one-factor linear asset pricing model, the magnitude of the finite sample percentage
biases of the estimated zero-beta rate and the risk premium by GLS, is an inverse
function of the relative variances of the true betas and that of the estimated betas.
To the best of our knowledge, this is the first paper which investigates the prop-
erties of the two-pass regression when a low-variance factor, which leads to a small
SNR, is present in an asset pricing model. We analyze the properties of the parame-
ters corresponding to both the low-variance factor and the other factors. Our first
contribution is that we derive the large sample distribution of the two-pass estima-
tor when a model includes a low-variance factor using local asymptotic analysis. In
order to account for the low variability of the factor, we parameterize its variance as
local-to-zero by being inversely related to the sample size. This also implies that the
information used to estimate the parameters associated with the low-variance factor
remains low when the sample size increases. The standard asymptotics assumes the
information increases as the sample size increases. Thus the estimates become less and
less volatile through time. In order to control other determinants, e.g. heteroskedas-
ticity and autocorrelation, which possibly influence the estimators, and concentrate
on the effect of the variance, we derive the asymptotic distributions of Fama-Macbeth
two-pass estimator assuming the error term is independent and identically distributed
(iid) across time and across assets. The distribution under heteroskedasticity and au-
tocorrelation can be derived in a similar fashion as in Shanken (1992) or Jagnnathan
and Wang (1998). We expect that the results are similar to those under the stronger

assumptions.



The finite sample properties of this estimator are then analyzed via simulation.
We also compare the performances of the t-statistic, F-statistic and Kleibergen’s
FAR statistic. The reason why we investigate the FAR statistic is because Kleiber-
gen (2009) also studies the problem that the returns and the factors have small or
zero covariances. The difference is that Kleibergen investigates the properties of the
estimator when the betas are small and zero, while, we are concerned about the small
variance of the factor.

Our theoretical results show that the asymptotic distributions of the estimated
betas associated with high-variance factors are the same as those when there is no
low-variance factor in the model. However, the distribution of the estimated beta
associated with the low-variance factor is inconsistent and converges to a normally
distributed random variable. The asymptotic variance increases as the SNR or the
variance of the low-variance factor decreases. This implies that if the variance of a
factor in an asset pricing model is very small, only the beta associated with that
factor is not consistently estimable.

Further, the estimated risk premiums and zero-beta rate in the second-pass re-
gression are inconsistent and their asymptotic distributions are non-standard and
depend on the magnitude of the risk premium corresponding to the low-variance fac-
tor. This implies that even though the asset pricing model is correct, the expected
return calculated from the model is not reliable. In the asset pricing literature, many
researchers are interested in testing whether a particular factor is or a group of fac-
tors are priced. Our results show that the conclusion might be erroneous if the model
includes a low-variance factor and is estimated by the FM procedure. This is because
the standard inference procedures, such as t-statistic and F-statistic, which are used
for these purposes and which require asymptotic normal distribution of estimators,

are no longer valid.
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The source of this problem is that the small variance of a factor leads to a large
volatility of the estimated beta associated with the low-variance factor. In the limit,
the dispersion of the estimated beta does not shrink to zero. Therefore, the inconsis-
tency of the estimated beta leads to the bias and non-standard distributions of the
estimated risk premiums. It thus leads to invalid ¢- and F-statistics.

By simulation, we demonstrate that, when the sample size is fixed, the asymptotic
biases of all parameters in the second-pass regression increases as the variance of the
low-variance factor decreases. The estimated parameters are not informative at all
when its variance is very small. Furthermore, the estimated zero-beta rate and the risk
premiums corresponding to the high-variance factors, possibly have larger asymptotic
biases than those associated with the low-variance factor. In addition, the t- and F-
statistics have large size distortions. They tend to over-reject the true values more
often than they should, especially when the varaince is very low. Compared to the
t-statistic and F-statistic, Kleibergen’s FAR statistic performs more adequately. The
empirical size is close to its nominal size.

The rest of the chapter is organized as follows. Section 1.2 reviews the models,
the FM two-pass methodology, the t-statistic, the F-statistic and Kleibergen’s FAR
statistic. Section 1.3 derives the asymptotic properties of the risk premium estimates
when the variance of an included factor in an asset pricing model is low. In section
1.4, we show the simulation results. A summary of the conclusions is presented in

Section 1.5.

1.2. The estimating and testing procedures

In this section, we first review the expected return-beta representation of a linear
factor model and then present the popular Fama-Macbeth two-pass estimation and

testing procedures.
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The notation we use in this chapter is the following:

Rll ng RlT

R21 R22 RZT .
For example, let R = denote a N by T matrix of returns

RNl RN2 cee RNT
on N test assets over T periods.

Whereupon, R; for i = 1,..., N is a column vector formed by the transpose of its

row 7; Ry for t = 1,...,T is a column vector representing the t*" column of R.
Juu fiz o fix
Jar feoo o fox . .
Also, let F = be a T' x K matrix of risk factors where f; for
Jri fra - frx
t=1,..,Tisa K x 1 column vector transposed from the t'h row of F.
Buu P2 - Pik
) Por Pa2 .. Dok ) i
Finally, let B = be a N by K matrix of beta coefficients
Byt Bn2 - Bk

associated with the risk factors, where 3; for i = 1, ..., N is a column vector from the
transpose of row i of B.
The notations of the population time series mean and sample time series average

of a matrix are E((e);) a ). For example, F(R;) denotes the population time

d (e
T
serie mean of R and R = %Z E(f;) means the population time series mean of F

_ T
and = 13/,
=1
The population time series mean and sample time series average for asset i is
denoted as E((e)!) and (e) . For example, the sample time series average of returns

. L i i
and the error term in a regression is R and €.

12



—

(e) represents the estimated value of (e), (e), indicates the demeaned value of
(o) and M) =1 — (e)((e)'(8)) ! (o) is a symmetric and idempotent matrix used to
project a vector onto the space orthogonal to (e). ¢y and (7 are N by 1 and T by
1 vectors of ones, respectively, and Oy denots an N by 1 vector of zeros. All the
covariance matrices are assumed to be positive definite and all the matrices except

Lo : d :
the projection matrices are assumed to have full rank. "—" means convergence in

n n

distribution. "%" indicates convergence in probability.

1.2.1. The model

We define R; as the returns from N assets at time ¢, f; as K systematic risk factors
at time ¢ of which a linear combination is able to explain the returns at time ¢,
B = [, Ps...0n] as a N by K matrix and §; for ¢ = 1,..., N as a K by 1 vector.

Therefore, the following relation holds
(1.1) Ri=a+Bf,+¢fort=1,..T,

where a is a N by 1 vector, B = cov(Ry, fi)var(f;)~* and ¢ is a N by 1 vector.

Let E(R;) denote the expectation of R;. The asset pricing theories suggest that
(1.2) E(Rt) = )\oLN—FB)\F,

where )\ is a scalar, called the zero-beta rate denoting the expected return when
all betas are zero; Ap = [\, A, ..., Ag|" is a K by 1 vector of risk premiums or the
prices of the risks corresponding to the factors; and ¢y is a N by 1 vector of ones.

The asset pricing model is designed to answer the question: why do different

assets have different expected returns? This representation implies that it is because

13



different assets are exposed to different systematic risks. In equilibrium, investors

need to be compensated with higher returns for holding riskier assets.

1.2.2. Fama-Macbeth Two-pass procedure

The most commonly used methodology in estimating linear asset pricing models is
the FM procedure, which includes a time series regression in the first pass and a
cross-sectional regression in the second pass. The following assumptions are imposed

in this section:

Assumption 1: Assume ¢; is indepedent and identically distributed with FE(e,|F) =
Oy and Var(e|F) =%, a N by N positive definite matriz.

Assumption 2: The factors F = [f1,..., fx]| are a T by K full column rank
matriz. Let f = %ift, pr = E(f;) and Xp = Var(fy). fi for t=1,..,T
15 weakly statz'onartg;l ergodic and asymptotically normally distributed with

\/T(T— {r) - N(0,Zp).

Let R; be a T by 1 vector of returns of asset ¢ for T" periods and F' be a T by K

matrix of K factors for T" periods. ; can be estimated from the following time series

regression:

(1.3) R, =cour+FB;+¢,fori=1,..,N.
Therefore,

(1.4) Bi = (FLF.)"'F/R;,

where F, = F — LTf/and vy is a T by 1 vector of ones.
In order to estimate the zero-beta rate and risk premiums, Fama and Macbeth

suggest calculating their values at each time ¢t first from a cross-sectional regression.

14



Define \g; as the zero-beta rate at time ¢, Ay = [A1g, Aoy, ..., Age]” as the risk premiums
at time t and A\, = [\t Npy)'. If B is known, the cross-sectional regression at each

time t is
(1.5) Ry = Aoety + BApy +uy, fort =1,....T,

where u, = B(f; — pr) + ¢ and VT <, N(0, BEpB' + ¥) under Assumptions 1
and 2.
Since B is unknown, the estimated beta Bis employed instead of B in empirical

analysis.

Let X = [ty B] and = [Xm /):’Ft]’ . Therefore,

(1.6) X = (X'X)"'X'R,.
{Xt}thl can be considered as drawn from the same distribution with mean A and

covariance V. Therefore, the estimated parameters A= [XO, X'F]' can be obtained as

1 X
1. A= — As.
(1.7) T;:lt

Let A = [Ao, \}7]". The estimated variance covariance matrix of the term v/7T (/):—/\),

can be calculated as

1

~ A~ o~

(1.8) V= i(At — N = A

el

The idea of this procedure is to treat {\;}_, as a random sample with mean A

and covariance V.
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The t-statistic can be used to test whether the risk premiums equal their true
values. Under Hy : A\, = Ay, for k =1, ..., K, the t-statistic is

B Ak — A0

(1.9) YA

yfork=1,..., K,

where 5, = [17%]%, which is the [k, k], element of the standard error of the estimated

covariance matrix for the risk premiums. The critical value is obtained from a t

distribution with degree of freedom 7" — 1 or from a standard normal distribution.
The F'-statistic can be applied to test the joint hypothesis that the risk premiums

equal their true values. For example, under Hy : A\p = Apg

(;\\F - )\F,0>/‘7_1(:\\F — Aro) d
k

(1.10) F= 4 F(k, N — k).

The drawback of the Fama and MacBeth procedure is that it treats B as the
true B. It thus ignores the estimation error in B. Black, Jensen and Scholes (1972)
create a method of grouping the stocks into portfolios to mitigate the error-in-variable
(EIV) problem. However, the grouping methods may neglect useful information in the
data. Shanken (1992) analyzes the asymptotic properties of the two-pass regression
methodology by taking account of the EIV problem and proposes the EIV-adjusted
variance.

Under Assumptions 1 and 2, B\Z is unbiased, v/T-consistent and follows an asymp-

totic normal distribution as
-~ d _
(1-11) \/T(ﬁz - 51') - N(0> 052}71%

where o2I7 is the variance of ¢; and X' is the inverse of the variance covariance

matrix of the factors.
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As suggested by Shanken (1992), the asymptotic covariance matrix of the risk

premiums is given by

(1.12) V= (14¢)Q+ 37},

0 O
where ¢ = NpX o' Ap, Q = AYXA, A= (X'X)"1X" and % =

0 Xp
After some derivations, we can find that V=V+ (), where V = Q + ¥7}.. The

term vT(X — A) can be represented as vVT(A — \) = (X'X)'X'VT(R — E(R,)) —
(X'X)"*X'V/T(B — B)Ap. Therefore, V is the asymptotic covariance matrix of the

first part and € is the asymptotic covariance matrix of the second part. !

1.2.3. FAR statistic

Kleibergen (2009) argues that when the elements of B are small or zero, Ar is not
VT consistent and normally distributed. Instead, it converges to a random vector
when the model is correct and diverges when the model is misspecified. The t-statistic
is not applicable under these circumstances. Kleibergen derived the statistic based
on GMM and the instrumental variable statistics. This statistic remains unaltered
asymptotically when the factors are nearly useless or the betas are low.

Assume the asset-pricing conditions [equation (1.2)] hold and the returns and

factors are generated from the following regressions:

(1.13) Ry = Xouy + B(ft — pur + A\p) + €

(114) ft = Uf + U,

where the covariance of ¢; and v; is zero.

IThis result can be inferred from Shanken (1992) or Jagannathan and Wang (1998).

17



_ _ T
Let fi=fi—f,es=¢+Bvandv = %th. After some transformation, equation
t=1

(1.13) can also be written as
(1.15) Ry = Moty + B(fi + A\p) + &

The asymptotic distributions of the statistics are derived under the following as-

sumptions:

Assumption 3: As the number of time series observations T becomes large,

T 1 — d PR
Z ® (R — Aotw — B(fe +Ar)) | —
t=1 i YB

S

Qu @ 1 1]
with (9 @) "N (0,0), ¥ = Qe and Q= | | = !

Qr1 Qrr pr Y+ ey
Let R; be the excess returns through subtracting the 1st to (n— 1) returns by the
n" returns and C be the excess beta. Thus, )¢ is removed from the model. Therefore,

the following conditions hold

cov(Ry, fi) = Covar(f;)

E(fi) = pr.
When an asset pricing model is correctly specified, under Hy : A\p = Apo, C can

. T _ T _ —
be estimated as C = ZRt(ft + /\F,O)[ (f] + )‘F,O)(fj + /\Fyg)l]il.
-1 =1

t

Lemma 2 in Kleibergen (2009): Under Hy : Ap = Apo, and Assumption

3,

/T R — CApp . g |

~

vec(C — C) Ve
where R is the time series mean of R. WUy and V¢ are independent and

asymptotically normally distributed random variables
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Ur ™ N(0,(1 = Neg(Ver + AroNeg) Aro) @ Xn-1),
We ™ N(O, (Vrr + ApoNpg) ® By-1),

, , Y11 Win
and ¥n_1 = X911 —LN-1W1n — Wnily_1 HIN-1Tnnly_q Jor £ =

Wn1 Wnn
Therefore, under Hy : A\p = Apo, the FAR statistic is

(1.16) FAR(Apo) = (R = CApo)S (R = CApg) > (N — 1),

1 — Noo@Ar) AR

where C3()\1%0) = 72 (fi + Apo)(fi + Aro)’ and

T

=1
5 = L3R - €+ Aro)) (B — €7 + Aro))'

This test is similar to the Anderson-Rubin (1949) statistic in the instrumental vari-

ables regression model and is proportional to the square of the Hansan-Jagannathan

(1997) distance when it is evaluated at App.

1.3. Properties of the estimators with a low-variance factor

When the variances of all the factors included in a linear asset pricing model are
large, the Fama-Macbeth two-pass estimator has an asymptotic normal distribution
and the t-statistic performs adequately. In this section, we show that if there is a
factor with a low variance which leads to a low SNR in a linear asset pricing model,
the betas associated with the low-variance factor are not trustworthy. All estimated
risk premiums and the zero-beta rate are unreliable. In particular, the estimated beta
associated with the low-variance factor in the first-pass regression is inconsistent. Its
asymptotic variance increases as the SNR decreases. The other estimated betas have
the same distributions as there is no low-variance factor in the model. The estimated
parameters in the second-pass regression are inconsistent. They are not normally

distributed as usual. Instead, they have non-standard distributions.
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For illustrative purposes, we derive the asymptotic distribution of the B and the
) in the second pass when the model includes only one low-variance factor.

Let FF = [Z fg]| and B = [T b], where Z = [f1...fx_1] are K — 1 factors with
large variances, fx is a factor with a small variance, I' = [y1, 79, ..., 7n|" and ~; for
1 =1,...,Nisa K —1 by 1 vector. Therefore, the specification of the first-step

regression can be written as’

If the model is correctly specified, the cross-sectional relation of the returns and

the betas is the following:

(1.18) E(R:) = Aoty +TA1 + bAk.
It can also be written in a compact format, which is

(1.19) E(R) = XA,

where X = [ty T 0] and A = [Ag A Ak’
Let My, =1 — fru(fiufrcs) i and M, =1 — Z,(Z.Z,)"'Z.. Then, the OLS

estimators of the risk parameters are given by
(1.20) 5 = (ZL My )" Z. My R,

2A more general case is that E(R) = Aoty + y0 + T'A1 + bAa, where y is some variable representing
firm characteristics which some researchers in empirical analysis use to test the validity of an asset
pricing model. If the risk parameters are sufficient to explain the cross-sectional variation of asset
returns, in other words, the cross-sectional relation of the expected returns and the risk parameters
are correct, @ is zero. The student t-statistic is used to test whether 6 is zero. An insignificant
t-statistic indicates that the proposed asset pricing model is valid. Jagannathan and Wang (1998)
provide an econometric analysis of the two-step regression when the second step includes a variable
representing firm characteristic. For example, Fama and French (1992) use the variable — firm size
— to test whether it is able to explain the variation of the cross section of returns besides the market
risk parameter.
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(1.21) bi = (freo Mz, fics) " fico Mz Ry

Assumption 4: The error term €; in the first-step regression for each asset
1 at each time t is independent and identically distributed across time and

across assets, conditional on F, with E(ey|F) =0 and Var(ey|F) = o

The advantage of the asymptotic analysis over the finite sample analysis is that we
do not need to assume the error terms follow specific distributions. In order to focus
on the effect of the small SNR on the estimating and testing asset pricing models,
we do not explicitely allow for heteroskedasticity and autocorrelation in our analysis
in this part. However, the properties of X under cross-sectional heteroskedasticity
and autocorrelation can be derived by following a similar procedure in deriving the

properties of the OLS estimator in models with iid errors.

Assumption 5: The SNR is T = UfTK = \/LT’ where oy, s the standard devia-

tion of the factor fx and a > 0 is some fixed constant.
Assumption 6: The factors Z are generated by a stationary and ergodic process

Z' 7. .. . . .
= = Xz a positive definite matriz and plim fp., fx. = a’o?.

with p lim
T—o0 T—o0

In Assumption 5, we parameterize the SNR as local-to-zero. The parameterization

provides a convenient tool for analyzing the large sample properties of the estimator,

when the variance of a factor in a linear asset pricing model is very small. This

implies that the variance of the factor is a small fraction of the variance of the noise

component O']%K = “27‘?2. The normalization factor 7'/2 is chosen to match the rate of
[e.e]

convergence of the estimated oy, from the regression fxy = pif, + afKZsz/t,j. 3
j=0

The SNR parameter a controls the departures of the ok from zero.

3Gospodinov (2009) applies the local-to-zero parameterization in explaining the forward premium
puzzle. Torous and Valkanov (2000) implement a similar method in analyzing the properties of
predictive regressions when the signal-to-noise ratio is low.
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The following theorem characterizes the properties of the estimated betas under

the previous three assumptions.

Theorem 1. Under Assumptions 4, 5 and 6, we have

!

(i) VT @i~ %) 5 N(0, (2, — w. gy, )" '0?),

where @t = [PRfcOh PhafcTf - Plx1fxOfk_.) and p is the correlation
coefficient.
AN d 1
(i) b; — b; = N(0, az(lfw;szzlwsz)).

Proof. See Appendix. O

Theorem 1 shows that under Assumptions 4, 5 and 6, only the estimated betas
associated with the low-variance factors are affected by the low variance. In particular,
Condition (i) demonstrates that the estimated betas associated with high-variance
factors are consistent and converge to the same normal distribution at rate v/T, as
those when there is no factor with a low variance in the regression. This implies that
the properties of the risk parameters, B, associated with the large-variance factors are
still standard. Condition (ii) shows that the estimated risk parameter corresponding
to the factor with a low variance is no longer consistent. While, it converges to
a normally distributed random variable, with the asymptotic mean being the true
b. The variance of the b does not decrease as T increases, and b is not consistently
estimable. Furthermore, the dispersion of the estimates increases as a decreases, since
the asymptotic variance of this parameter is inversely related to a.

In summary, this theorem shows that the estimated betas with high-variance
factors through the Fama-Macbeth procedure are still valid. However, the estimated
parameter associated with a low-variance factor is not consistently estimable and

highly volatile as the SNR is close to zero.
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Given the results in Theorem 1, we can derive the asymptotic distribution of the
estimated parameters in the second pass. From equation (1.17), (1.18) and (1.19), we

can obtain

(1.22) R=XA+B(f—pp)+e— (T =T)A — (b—b)Ax.
Let A = ()A( 'X )*1)? . Then, the estimated parameters in the second pass can be

expressed as follows:

(1.23) X=X+ AB(f — pp) + Ae — AT —T)A; — A(b — b)Ag,
1) ) (3) (4)

-~

where X = [LN,f, |. Since b—b= O,(1) from Theorem 1, all parts except the
last part of \in equation (1.23) converge in probability to zero. Therefore, the large
sample distribution of Py depends only on A\ — g(@— b)A k. We can further decompose

part (4) in equation (1.23) into three parts 7y, 71, Nk, corresponding respectively to

AN

Mo, A and Ag. Let D = [iy,T), My = I — D(D'D)™*D’ and M; = I —b(b'b)~"v.

Then

(1.24) 7o = (N My T/ MET — o METT Mty )~ (T MG Ty My — 0 METT M) A e

(1.25) 7 = (e Mgty T MGT — o METT Myt )™ (e Mty T M — T Moty T Myt v b) A i

(1.26) M = A — (' Mpb) ™0 MpbAx.
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Given the asymptotic distributions of the estimated betas, the limiting represen-

tation of [/):0, /):’1, /):K]’ has the form

(127) D()(Zb) = )\0 - 01)\](
(128) Dl(zb) = )\1 — Cg)\K
(129) DQ(Z(,) = )\K_>\K+03)\K-
where z, ~ N(ab L 1),

T (-wly, B gy )
M, =1 — z(z2) 2y and Mp =1 — D(D'D)"'D’,
Cy = (UM, nT' M, T — iy M, TT M, on )T/ M, Ten M, b — 1y M, TTY M, b),
Co = (en MU M, U—in M, TT M, on) ~H (en My en T M, b—T" M., .y T M., . nb),
Cs = a(z,Mpzy) 2, Mpb.
The following theorem establishes the asymptotic properties of the estimated zero-

beta rate and the risk premiums in the second pass under Assumptions 4, 5 and 6.

Theorem 2. Given Assumptions 4, 5 and 6, (X—)\) = 0,(1) and each component

is asymptotically non-degenerate.

Proof. See Appendix. O

Theorem 2 means that all estimated risk premiums and the estimated zero-beta
rate are inconsistent and do not converge to their true values as the sample size
increases. Compared with B, P\ converges to a non-standardly distributed random
vector. Therefore, their properties are very difficult to analyze. This implies that
standard inference on the estimated risk premiums and the zero-beta rate can be

highly unreliable. Furthermore, it is noteworthy that a low-variance factor not only
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renders its own estimated risk premium to be inconsistent, but it also contaminates
the properties of all the other parameters appearing in the second pass regression.’
Theorem 2 also implies that the t-statistic and F-statistic may be inappropriate to
test whether a particular factor or a group of factors is priced or not when the linear
asset pricing model includes a low-variance factor.’

Even though the asymptotic distribution of N is non-standard, the inspection of
the biases and standard errors reveals some useful information. From equation (1.27),
(1.28), and (1.29), we observe that the asymptotic biases of [Ag, N}, Ak’ are equal to
E(D(z)) — X =[E(Do(2)) — Ao, E(D1(2)") — Ny, E(D2(zp)) — Ag|. These expressions
suggest that the magnitude of the biases depends on the value of A\ given a certain
realization of z,. The larger the Ay, the larger the absolute value of the asymptotic
bias. Since the distribution of z;, is a function of a, which controls the the SNR, we
expect the bias of /):K also to depend on a.

We expect that the Fama-Macbeth standard errors and even the EIV-adjusted
standard errors are not applicable in a large sample when the variance of a factor
is small. From the previous analysis we know that the limiting distribution of P\
does not depend on the distribution of either of the factors, the error terms € or the
distribution of the betas associated with high-variance factors. It only depends on the
distribution of the estimated beta with the low-variance factor and the true values of
the risk premiums. Therefore, the usual Fama-Macbeth variance V is not informative
at all because it only accounts for the covariance of the first two parts in equation

(1.23). Though Shanken’s adjusted variance accounts for the variance of the last two

4If the second pass regression includes the firm characteristic factor y, the estimated parameter
associated with y also becomes inconsistent and has an asymptotic non-standard distribution. For
researchers who are interested in whether y is able explain the cross-sectional variation of the returns,
their decisions based on the t-statistic may not be reliable.

5The t-statistic has been shown to be invalid in testing linear asset pricing models with a useless
factor. Kan & Zhang (1999) argue that the t-statistic is not able to distinguish a useful factor and
a useless factor. Kleibergen (2009) demonstrates that the t-statistic is not appropriate when the
betas are low and the number of assets are large.

25



parts, it is not applicable either. The reason is that it is based on a consistent and
asymptotically normally distributed b. In practice, even when the variance of the
factor is not extremely small, these results give us an idea that as the variance of the
factor becomes smaller, the distribution of the estimated risk premiums and that of
the zero-beta rate is driven more by the distribution of the estimated beta associated
with the low-variance factor and its true risk premium, than those with high variance
factors. Furthermore, if A is big, the absolute values of the last part of Dy(z,) and
Dy (z) are large. Therefore, the asymptotic variances for the market factor and the
zero-beta rate are large. However, the number of assets has an opposite effect on the
variance of . The reason for this is that Mo, M1 and Nx — 1 can be regarded as OLS
estimators of a regression of b on X multiplied by Ag. As we know, as the sample
size increases, the variance of an OLS estimator decreases. Therefore, as N increases,
the variance of A decreases.

Therefore, the t-statistic and the F-statistic under the Fama-Macbeth standard
errors and the EIV-adjusted standard errors may be highly misleading. As can be
inferred from Theorem 1, if the variance of the factor is very small, the estimated
risk parameters are very imprecise, even when the sample size is large. The ¢- and
F-statistics using the Fama-Macbeth estimated variance, which do not account for
the estimation of the risk parameters can lead to a large size distortion due to the
high imprecision of the estimated betas. These statistics under Shanken’s correction
are possibly less size distorted since this correction accounts for the estimation error
of the betas. However, since the estimated risk parameters associated with the low
variance factor are inconsistent, the benefits of Shanken’s correction are limited. In
comparison, the limiting distributions of Kleibergen’s statistics are not affected by
the magnitude of betas and are expected to provide a better approximation in this

case.
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1.4. Simulation

To evaluate the finite sample properties of the Fama-Macbeth two-step procedure,
the t- and F-statistics and Kleibergen’s FAR statistic when the variance of a factor
is low, we provide a Monte Carlo simulation. First, we simulate a two-factor model
using a similar setup as that in our analytical part. After that, we generalize the
simulation to a more realistic two-factor model. The data we use in this section are
based on the Fama-French 10 portfolios formed on momentum, the Fama-French 25
portfolios formed on size and book-to-market, the value-weighted returns on all NYSE
and AMEX stocks (the market factor) and percentage change of US per capita labor

income. All these data are from July 1963 to December 1990.

1.4.1. Simulation I

Let R; be the return of the i** asset at time t. The data generating process is:
Ri=Xo+Bift —pr+Ap) +egfort=1,...,Tandi=1,...N
Jo = pr + v,

where v,"N(0,Xr), 8; = [V, bi|'s fi = [f1t, [xt]. The parameters ; are set to be the
estimated betas corresponding to the market factor from a regression of asset returns
on the market factor and the labor factor. b; is generated as five times the estimated
beta associated with the labor factor from the regression. Before multiplying by 5,
we modify the magnitude of beta to be 0.2 if its absolute value is less than 0.2.° By
adopting this transformation, we avoid the low beta problem. The error term ¢; is
drawn from a normal distribution with mean zero and variance o? = 10, which is
close to the average of the diagonal of the covariance matrix of the error term in the

regression with actual data. The factors f; are generated from a multivariate normal

6When N=10, no modification is needed for the betas. When N=25, there are only few betas less
than 0.2.
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distribution with pp = [0.447,0.571]"7, where 0.571 is the mean of the labor factor.
o2 = 29.8 is the variance of the excess value-weighted return, including all NYSE,

AMEX, and NASDAQ stocks from July 1926 to March 2008. 0% is set to 22 as in

Assumption 6. p = —0.1 is the correlation covariance of the market factor and the
labor factor. The zero-beta rate is Ay = 0.1 and the true risk premiums are A\p = pp.

In order to explore the effect of the magnitude of the SNR on the properties of
the estimators, we vary the sample size by letting 7' = 160, 330, 640 and a = 0.3, 1, 2.
We also vary the number of assets with N = 10,25. In the end, we calculate the
empirical size of the t-, F- and FAR statistics. The nominal sizes are set to be 5%
for all the statistics. The results are based on 5,000 Monte Carlo replications. Note
that the beta is fixed for all scenarios under a fixed N, but it is different when N is
different.
1.4.1.1. Results. Table 1.1 shows the SNR and the variance of the labor factor in
each scenario. The true variance of the labor factor is 0.118 when 7" = 330. Therefore,
the case in which T' = 330 and a = 2, is calibrated to match the true data. The largest
variance of the low-variance factor, we considered in this chapter, is 0.250. It arises
in the case when T' = 160 and a = 2. The lowest variance is 0.001 when 7" = 640 and
a = 0.3. Because we assume the variance of the error term is 10, the largest SNR in
our case is 0.158 and the lowest one is 0.012. When T" = 330 and a = 2, the SNR is
0.110.

In Table 1.2, we summarize the results of the mean bias, median bias and variance
of the average of the estimated betas.® The true average of the betas are [1.113, 4.164]

for N =10 and [1.133,2.528] for N = 25. From this table, we can observe that the

70.6667 is the historical monthly market risk premium since the historical annulized market risk
premium is 8%. We use 0.4467 here in order to be able to compare the results from the more
realistic simulation setup later.

8In this table, we do not report the statistics of each of the N estimated betas but only those of the
average of the N estimated betas. However, in our opinion, the distribution of each of the IV betas
may affect the properties of the estimated parameters in the second pass.
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mean bias and median bias of the average market beta and the labor beta are very
small, especially for the market beta. That is to say the mean and median for both
the market factor and the labor factor are very close to their true values. Further,
the variance of the market beta is tiny. It also decreases as T" increases and is nearly
constant as a changes. In comparison, the variance of the labor beta is much larger.
It remains almost constant as 7" increases but becomes larger as a decreases. These
observations are compatible with Theorem 1. The reason, why the variance is smaller
for N = 25 than for N = 10, is because we report the variance of the average estimated
betas and B — ]lvivjl@ LR N(%éﬂi, %Uar(gi)). In addition, the properties of the
estimated betas related to the sample size also imply that dependence on part (4) in
equation (1.23) becomes stronger as the sample size increases.

Table 1.3 presents the percentage biases of the estimated risk premiums and the
zero-beta rate. This shows that the biases increase as a decreases. From our analysis
in the previous section, we know that the asymptotic biases of the estimated para-
meters only depend on the distribution of z,. Note that a only appears in the mean
of the distribution. Therefore, as a decreases, the mean of z, decreases. This implies
that in equations (1.27) and (1.28), when the mean of z, decreases, the magnitude
of E(Do(z)) — Ao and E(D1(z)') — A} increases. Since the asymptotic bias of the
labor factor equals E(Dy(2)) — Ax = E(a(2;Mp2y) ™'z, Mpb) — Ak, the increase of
the magnitude of the bias may due to the joint effect of the decrease of a and the
decrease of the mean of z;, and a.

In addition, the magnitude of the percentage biases for the market factor and the
zero-beta rate is much larger than those for the labor factor. In other words, if an
asset pricing model includes a low-variance factor and the beta associated with the
low-variance factor is large, not only the estimate for the low-variance factor is poorly

behaved, the estimates for the high-variance factors are even more strongly affected.
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The simulation results show that |E(Cy)| > |E(Cy)| > |1 — E(Cs)|. Furthermore,
the percentage bias of the estimated parameters depends also on the true value of
the lambdas. The smaller the ’f\—fl( and %7 the smaller the percentage biases of the
market factor and the zero-beta rate. It is also worth noticing that under our setup,
the market factor has an upward bias; the zero-beta rate has a downward bias; and
the labor factor is biased toward zero. It is in agreement with our conjecture that the
E(Ci k) is positive and F(CyAf) is negative and E(C3\k) is greater than zero but
less than one. For N = 25, the properties of the estimated parameters are similar to
those when N = 10.

Table 1.4 provides the sample standard deviations, Fama-Macbeth standard er-
rors and Shanken’s EIV-adjusted standard errors in each scenario. We observe that
the difference between the Fama-Macbeth standard errors and the other two types
of standard errors is pretty large. This further explains that the last two terms in
equation (1.23) play an important role in determining the properties of \. Further-
more, the Fama-Macbeth standard errors for all the estimated parameters decrease
as the variance of the factor decreases, regardless of the reduction of a or the growth
of T'. The sample standard errors and Shanken’s EIV-adjusted standard errors tend
to increase and then decrease when a gets smaller. Moreover, all standard deviations
of the estimated parameters tend to decrease as T increases. This implies that the
estimated coefficients become more and more concentrated on some particular values,
as the sample size increases. However, based on our previous analysis, these values
may not be the same as the true values of the risk premiums and the zero-beta rate.
In addition, the fact that the standard errors decrease when N increases may partly
be due to more information included in estimation of ).

In Table 1.5, we present the means, medians and confidence intervals of the esti-

mated parameters in the second pass. As we have metioned before, the true values
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of the parameters in the second pass are A = [0.1,0.447,0.571]. By presenting these
results, we would like to emphasize the poor behavior of the estimated risk premiums
and the zero-beta rate. For all estimated parameters, the mean and median differ
from their true values, especially for the market factor and the zero-beta rate. The
difference increases as the variance of the labor factor decreases. At the same time,
the confidence intervals shift away from the true values, as a decreases. In the end,
when the variance of the labor factor is very small, the confidence intervals fail to
include the true values. This indicates that A are not informative about the true
values of the risk premiums and zero beta rate when the variance of the factor is very
small. It also conforms to our expectations that the estimated premiums center on
values which are different from their true values.

Table 1.6 summarizes the empirical size of the t-statistic with Fama-Macbeth
variance and t-statistic with Shanken’s adjusted variance. For all parameters, both
the t-statistic and the EIV-adujsted ¢ increase as a decreases and as the sample size
increases. The reason for this is that the bias increases faster when a decreases. For
example, when 7' = 330 and a decreases from 2 to 1, the percentage changes of the
biases for all estimated parameters are around 300%. Meanwhile, it is only around
30% for the EIV-adjusted standard errors. Further, when the variance of the labor
factor is smaller than or equal to 0.063, even the EIV-adjusted t-statistic has a size
distortion which is more than double of its true size. When a = 0.3, T" = 640 and
the variance of the labor factor is 0.001, the empirical size of both t-statistic is very
close to one. It is also noteworthy to mention that the empirical size of the t-statistic
for the labor factor tends to be larger than those for the other two variables, even
though the other two variables have large percentage biases. This indicates that it is

more likely for researchers to find the a low variance factor be priced even though it

31



is not. In addition, the over-rejections of the t-statistic also tend to be larger when
N = 25 compared to the case when N = 10.°

In Table 1.7, we compare the results of the F-statistic based on the Fama-Macbeth
variance, the F' based on the EIV-adjusted variance and Kleibergen’s FAR statistic.
All of these statistics jointly test the null that the risk premiums equal to their true
values under each scenario. Our results show that the performances of both F-statistic
are similar to those of the t-statistic. The empirical sizes are much larger than their
true sizes. Meanwhile, the FAR statistic performs more adequately. However, the

FAR tends to under-reject the null when the variance of the factor is small.

1.4.2. More Realistic Simulations

In this part, we investigate the properties of the Fama-Macbeth two-pass regression
under more realistic simulation setups. We consider the scenarios of T' = 160, 330
and N = 10,25. We employ a two-factor model. The setup is similar to the previous
simulation setup. However, there are a few modifications. Here, we use the true
market factor and the labor factor instead of generating the factors by matching their
mean and variances. When 7" = 160, the variance of the labor factor is modified by
multiplying the variance of labor for 7" = 330 by \/‘z’ﬂ%. This modification allows us
to compare the results with the previous section. The error terms are simulated by
boostrapping the error terms from the regression of the 10 portfolios on the factors
and of the 25 portfolios on the factors. By implementing the bootstrap method, we

avoid assuming any specific distributions for the returns. In addition, the betas are

the estimated betas without multiplying by 5.

9Even though, in our opinion, it is not appropriate to compare the magnitude of the bias and variance
of the estimated parameters for different number of assets, we think the comparison of the t-statistic
across assets make sense.
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In Table 1.8, we present the mean biases, median biases and sample variances
for the estimated betas; means, medians and confidence intervals for the estimated
lambdas; biases and standard errors of the estimated lambdas. The true beta is
[1.113,0.833] when N = 10 and [1.133,0.506] when N = 25. The true variance of
the labor factor is 0.118 when 7" = 330 and 0.244 when T" = 160. These scenarios
are pretty similar to those when a = 2 in the previous subsection. However, here a
is not 2 anymore since the variance of the error term ranges from 5.695 to 26.985 for
N = 10 and from 1.518 to 23.826 for N = 25. Furthermore, the betas for the labor
factor is much smaller here than those in the previous simulation.

In general, the results are very similar under this setup to those under the previous
setup. We only point out some interesting differences in the magnitude of the various
statistics. First, the variances of the average of betas for the labor factor are larger
than those in the case when a = 2 but smaller than those when a = 1 in the previous
subsection. Compared to the cases of T' = 160 and T' = 330 when a = 2 in the previous
setup, the percentage biases of the estimated lambdas here are larger, especially for
the labor factor. One possible reason is that the variances for the estimated betas are
larger than those in the simple simulation part. It thus results in a small SNR or a
small a given a fixed T. As we have discussed in the previous subsection, the smaller
the a, the larger the bias. The increase of the percentage bias of the estimated labor
premium may also be due to the fact that b is smaller than that in the previous cases.
The smaller b leads to a larger magnitude of the term E(Ds(zp)) — Ax. At the same
time, the standard errors of the estimated market risk premium and the estimated
zero-beta rate are smaller than those reported in the previous section. Therefore, the
confidence intervals for these two parameters are tighter than those under the previous

setup. This means that as the sample size increases and the variance of the factor
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decreases, the estimated market risk premium and the zero-beta rate concentrate on
values which are different from their true values.

Table 1.9 shows the Fama-Macbeth ¢- and F-statistics, the EIV-adjusted ¢- and F-
statistics and the Kleibergen’s FAR statistic. Compared to the results when a = 2, all
the t- and F-statistics have much larger size distortions, except for the zero-beta rate
and the market factor when 7" = 160 and N = 10. In particular, the size distortion
for the labor factor is very large. Therefore, in practice, when the SNR is very low,
researchers should be aware of the problem of the over-rejection of the t-statistic for
all the parameters included in the second pass regression. As compared to the F-
statistic, the FAR statistic has a size close to the nominal size and it is recommended
that this statistic be used in applied work when factors with low variance are included

in the model.

1.5. Conclusion

In this chapter, we provide analytical and simulation results on the properties
of the Fama-Macbeth two-pass procedure in estimating and testing an asset pricing
model when the model includes a low-variance risk factor. We derive the large sample
distribution of the estimated parameters in the two-pass regression assuming the error
term in the first pass is independent and identically distributed both across time and
across assets. Our results show that the estimated betas associated with high-variance
factors in the first pass have asymptotic distributions that are the same as those
when there is no low-variance factor in the model. All estimated parameters in the
second pass are inconsistent and have non-standard asymptotic distributions. Thus,
the standard t- and F'-statistics, which rely on consistent and normally distributed
estimates, become invalid in this case. Furthermore, the asymptotic bias of these

parameters depends on the true values of the betas, the risk premium associated with
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the low-variance factor, the SNR parameter and the distribution of the estimated
beta corresponding to the low-variance factor.

Furthermore, we investigate the finite sample properties of the estimated parame-
ters using simulation. We provide results of a two-factor model with one low-variance
factor in both a simple simulation and a more realistic simulation. Our results show
that the finite-sample behavior of the estimated parameters is close to the large-
sample approximations derived in the theoretical part. The smaller the variance of
the low-variance factor for a fixed sample size, the larger the bias for the estimated
second-pass parameters and the more severe the size distortions for the ¢- and the F-
statistics. We also compare the behavior of F-statistic and Kleibergen’s (2009) factor
Anderson-Rubin (FAR) statistic for jointly testing whether the estimated coefficients
in the second-pass regression equal their true values. We find that the performance
of the F-statistic is very similar to that of the t-statistic and is characterized by large
size distortions. By contrast, the FAR statistic has a small size distortion and appears

to be well behaved in the presence of a low-variance factor.
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1.6. Appendix

Proof of Theorem 1. By eliminating (5, in 1.17, we obtain

Riw = Zvi + frabi + €.

Multiplying both sides of A.1 by My, ., we get
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By multiplying both sides of A.1 by My, , we get
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Proof of Theorem 2. From equation (2.3), the time series average of asset i is
(A.5) R = Bo+ F B+,

and the expectation of R; for asset i is
(A.6) E(R;) = Bo + 1pBi

From (A.5) and (A.6), by getting rid of 5y, we obtain

(A7) R = ER)+ (f — pw) i + €
or

The estimator of A in equation (1.23) is obtained from this equation.
We can decompose part (4) in equation (1.23) as estimated parameters 77_x and
fix corresponding to [, N,] and Ax

using the regression

(/b\— b))\K = ﬁ?’]_K +/l;77K + v

~

Following similar arguments as in the deviation of [f, |, we obtain

~ ~

ik = (D'M;D) "' D' My(b — b) A

and

e = (' Mpb) "0 Mp(b— b) Ak
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We have that

(1) 20 for f 2 pp and (X'X) 1 X'B = 0,(1)
(3) % 0 for € % 0 and (X'X)1X' = 0,(1)
(4) %0 for T & T and (X'X)1X' = 0,(1).

Also

forﬁiDandgiN(b, prm— 12,1 )).
a*(l-wy Bz Wzfy

Therefore,

X =0,(1).
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Table 1.1. Signal-to-noise ratios and variances of the labor factor

N var F2 SNR

T 1a=03 a=1 a=2|a=03 a=1 a=2
160 | 0.006 0.063 0.250 | 0.024 0.079 0.158
330 | 0.003 0.030 0.121| 0.017 0.055 0.110
640 | 0.001 0.016 0.063 | 0.012 0.040 0.079

Notes: Var F2 denotes the variance of the labor factor in the model. SNR rep-

resents the SNR. "a" is the localizing constant.
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Table 1.2. Mean bias, median bias and variances of the average of the
estimated betas

T market labor | market labor | market labor
N =10

160 | mbias 0.000 0.009 | -0.000 -0.003| -0.000 -0.004
medbias | 0.000 -0.000| 0.000 -0.002| -0.000 -0.001
var 0.000 1.145| 0.000 0.102| 0.000 0.026
330 | mbias 0.000 0.015| -0.000 0.000| 0.000 -0.001
medbias | 0.000 0.015| 0.000 0.003| 0.000 -0.004
var 0.000 1.103| 0.000 0.100| 0.000 0.026
640 | mbias 0.000 -0.017| 0.000 0.002| 0.000 -0.000
medbias | 0.000 0.006 | -0.000 0.002| -0.000 -0.002
var 0.000 1.107| 0.000 0.103| 0.000 0.026
N =25
160 | mbias -0.000 -0.001 | -0.000 0.003 | -0.000 0.000
medbias | -0.000 0.004 | -0.000 0.005| -0.000 0.001
var 0.000 0.458 | 0.000 0.040| 0.000 0.010
330 | mbias -0.000 -0.006 | -0.000 0.001 | -0.000 -0.000
medbias | 0.000 -0.009 | -0.000 0.002| -0.000 -0.000
var 0.000 0.445| 0.000 0.040| 0.000 0.010
640 | mbias -0.000 -0.003 | -0.000 0.002| 0.000 -0.003
medbias | -0.000 -0.001| 0.000 0.001| 0.000 -0.003
var 0.000 0.464| 0.000 0.039| 0.000 0.011

Notes: The results in this table are for the cross-sectional average of the estimated
betas. mbias represents the mean bias. medbias denotes the median bias. var means

the variance.
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Table 1.3. Percentage biases of the parameters in the second pass

N T | zero-beta market labor
160 | -107.798 25.599 -0.821
a=0.3]330| -128.636 30.008 -0.868
640 | -138.649 32.143 -0.888
10 160 -30.748  7.373 -0.243
a=1 [330 -46.308 10.807 -0.312
640 -55.492 12.876 -0.359
160 -5.708  1.410 -0.055
a=2 |330 -11.532  2.733 -0.083
640 -15.837  3.694 -0.105

160 | -47.830 11.413 -0.692
a=03]330] -51.355 12.148 -0.698
640 | -53.577 12.591 -0.706
25 160 -9.205  2.242 -0.150
a=1 [330] -10.788  2.589 -0.156
640 | -11.854 2.801 -0.163
160 -1.597  0.413 -0.037
a=2 |330 -2.485  0.611 -0.041
640 -2.975  0.721 -0.043

Notes: In this table, we summarize the percentage bias of the second-pass esti-

martes.
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Table 1.4. Sample standard deviations, Fama-Macbeth standard errors
and Shanken’s EIV-adjusted standard errors

a=0.3 a=1 a=2
zbeta market labor | zbeta market labor | zbeta market labor
N =10,T =160
SVAR | 4.107 3.964 0.101 | 3.740 3.733 0.121|2.655 2.665 0.098
FM |1.168 1.190 0.027|1.555 1.614 0.055|1.639 1.706 0.069
EIV | 3.765 3.588 0.087 | 3.620 3.642 0.122 | 2.620 2.671 0.099
N =10,T = 330
SVAR | 3.569 3.442 0.087 | 3.753 3.746 0.116 | 2.679 2.694 0.088
FM | 0.877 0.884 0.019]1.258 1.293 0.041|1.383 1.424 0.049
EIV | 3.180 3.025 0.069 | 3.640 3.648 0.116 | 2.690 2.722 0.090
N =10,T = 640
SVAR | 3.169 3.073 0.080 | 3.751 3.748 0.113 | 2.666 2.686 0.085
FM |0.656 0.658 0.014]0.992 1.015 0.031|1.100 1.129 0.037
EIV |2.655 2.523 0.057|3.550 3.554 0.110 | 2.671 2.697 0.087
N =25,T =160
SVAR | 1.421 1.372 0.053 | 1.103 1.098 0.051| 0.761 0.809 0.053
FM |0.428 0.580 0.015|0.473 0.619 0.029 | 0.480 0.625 0.046
EIV | 1.237 1.206 0.039]| 1.067 1.094 0.053|0.729 0.813 0.053
N =25,T = 330
SVAR | 1.326 1.259 0.049 | 1.061 1.039 0.046 | 0.669 0.683 0.035
FM |0.308 0.411 0.010|0.345 0.442 0.018 | 0.350 0.447 0.025
EIV |1.163 1.100 0.036|1.041 1.025 0.047]0.664 0.696 0.036
N =25,T = 640
SVAR | 1.264 1.184 0.048 | 1.038 0.993 0.043 | 0.627 0.624 0.030
FM |0.224 0.297 0.007|0.251 0.320 0.012|0.257 0.325 0.015
EIV | 1.113 1.034 0.034|1.013 0.978 0.045|0.626 0.630 0.030

Notes: zbeta denotes the zero-beta rate. SVAR means the sample variance. It is

the variance of all the estimated parameters.
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Table 1.5. Means, medians and confidence intervals of the estimated

parameters in the second pass

a=0.3 a=1 a=2
T zbeta market labor | zbeta market labor | zbeta market labor
N =10

mu |-10.680 11.882 0.102| -2.975 3.740 0.433|-0.471 1.076 0.540

160 | med | -10.730 11.916 0.102 | -2.964  3.747 0.431 |-0.455 1.099 0.538
CI |-19.091 3.685 -0.101| -10.43 -3.625 0.199|-5.681 -4.253 0.348
-2.459 19.872 0.301 4.376 11.155 0.671| 4.901  6.455 0.741

mu |-12.764 13.851 0.075| -4.531  5.274 0.393 |-1.053  1.668 0.524

330 | med | -12.795 13.903 0.078 | -4.602  5.372 0.387 |-1.083  1.726 0.522
CI |-20.070 7.078 -0.110|-11.902 -2.510 0.181|-6.322 -3.727 0.358
-5.721  20.928 0.242 3.236 12.472 0.639| 4.280  6.969 0.704

mu |-13.765 14.805 0.064| -5.449 6.198 0.366 | -1.484  2.097 0.511

640 | med | -13.891 14.910 0.067 | -5.559  6.337 0.361 | -1.591  2.236 0.508
CI |-19.837 8467 -0.107 |-12.534 -1.583 0.159|-6.596 -3.507 0.354
-7.307 20.787 0.213| 2.391 13.355 0.605| 4.051  7.258 0.693

N =25

mu | -4.683 5.545 0.176 | -0.821 1.448 0.485|-0.060  0.631 0.550

160 | med | -4.717 5575 0.177| -0.856  1.472 0.482 |-0.065 0.641 0.549
CI | -7.379 2822 0.068 | -2.889 -0.808 0.394|-1.525 -0.974 0.451
-1.815 8136 0.278 1.461  3.553 0.595| 1.451  2.174 0.655

mu | -5.036 5.873 0.172| -0.979 1.603 0.482|-0.149 0.720 0.548

330 |med | -5.105 5.935 0.172| -0.993 1.634 0.480 |-0.147  0.731 0.547
CI | -7461 3.234 0.072| -3.062 -0.496 0.400 |-1.483 -0.616 0.480
-2.202 8196 0.270 1.159  3.573 0.580| 1.154  2.078 0.619

mu | -5.258  6.071 0.171| -1.085 1.698 0.478 |-0.197 0.769 0.547

640 | med | -5.356  6.156 0.172| -1.125 1.742 0.475]-0.193  0.768 0.546
CI | -7.516 3.537 0.075| -3.009 -0.353 0.404 |-1.409 -0.467 0.490
-2.537 8141 0.261 1.086 3.514 0.569| 1.063  1.956 0.609

Notes: zbeta denotes the zero-beta rate. mu represents the mean. med means the

median. CI represents the conference interval. The true parameters are [0.1, 0.447,

0.571].

44



Table 1.6. Empirical size of the t-statistics

a=0.3 a=1 a=2
T zbeta market labor | zbeta market labor | zbeta market labor
N =10

160 | ¢ 0976 0981 1.000|0.571 0.572 0.646 | 0.223 0.203 0.178
EIV | 0.827 0.866 0.961|0.166 0.189 0.281| 0.033 0.031 0.055
330 ¢t 10995 0998 0.999)|0.771 0.775 0.831]0.355 0.349 0.345
EIV 10936 0.951 0.987]0.336 0.355 0.442|0.067 0.070 0.093
640 | ¢t 0998 0.999 1.000|0.863 0.871 0.908|0.520 0.515 0.527
EIV | 0964 0971 0.993]0.454 0.472 0.555|0.114 0.120 0.152
N =25
160 | ¢ 10994 0995 1.000|0.561 0.455 0.728|0.227 0.145 0.116
EIV | 0910 0943 0.999|0.173 0.175 0.422|0.069 0.049 0.071
330 ¢t 10997 0999 1.000|0.694 0.636 0.885|0.335 0.231 0.260
EIV | 0945 0.968 1.000|0.218 0.243 0.505| 0.075 0.064 0.113
640 | ¢t 10999 0.999 1.000 | 0.800 0.774 0.936|0.464 0.373 0.481
EIV | 0.959 0.980 1.000|0.265 0.301 0.563 | 0.089 0.090 0.151

Notes: zbeta means the zero-beta rate. ¢ denotes the t-statistic with the Fama-
Macbeth variance. EIV represents the ¢-statistic with Shanken’s EIV-adjusted vari-

ance.
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Table 1.7. F-statistic and FAR

10 25

a=03 a=1 a=2|a=03 a=1 a=2
F 1.000 0.621 0.108 | 1.000 0.707 0.109
160 | EIV | 0.940 0.119 0.010| 1.000 0.309 0.041
FAR | 0.030 0.036 0.042 | 0.027 0.035 0.079

F 1.000 0.837 0.272| 1.000 0.900 0.271
330 | EIV | 0974 0.251 0.020 0.999 0.404 0.068
FAR | 0.031 0.032 0.036 | 0.032 0.033 0.044

F 1.000 0.944 0.521| 1.000 0.953 0.504
640 | EIV | 0.98 0.392 0.058 | 1.000 0.448 0.095
FAR | 0.025 0.033 0.034 | 0.033 0.041 0.042

N =

Notes: F' denotes the F'-statistic with the Fama-Macbeth variance. EIV represents
the F-statistic with Shanken’s EIV-adjusted variance. FAR is Kleibergen’s FAR

statistic.
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Table 1.8. Mean biases, median biases and sample variances for the
estimated betas means, medians and confidence intervals for the esti-
mated lambdas;

N 10 25
T zbeta market labor | zbeta market labor
mbias - 0.000 0.005 - 0.001 0.001
medbias - 0.000 0.003 - 0.001 0.001
var - 0.001  0.069 0.000 0.025

pbias -8.215  2.264 -0.781|-5.870  1.462 -0.732
160 | SVAR 1.714 1.612 0.219| 0.679  0.615 0.108

FM 1431 1.386 0.181| 0.588  0.633 0.100

EIV 1.764  1.692 0.222| 0.658 0.688 0.110
mulam | -0.722  1.458 0.125]-0.487 1.100 0.153
medlam | -0.680 1.424 0.127|-0.479  1.094 0.155
Cllam | -4.243 -1.651 -0.313|-1.830 -0.062 -0.051
2601 4.673 0.551| 0.776  2.333 0.373

mbias - 0.000 0.004 - 0.000 0.002
medbias - 0.000 0.003 - 0.000 0.627
var - 0.000 0.067 - 0.000 0.025
pbias |-15.675  4.479 -0.828 |-8.352  2.615 -0.744

330 | SVAR 1.528 1.435 0.167| 0.549  0.500 0.083
FM 1.185 1.136 0.127 | 0.445 0.472 0.067
EIV 1.563 1.483 0.166 | 0.529  0.538 0.079

mulam | -1.468  2.447 0.098 |-0.735  1.615 0.146

medlam | -1.434 2421 0.103|-0.727  1.609 0.145

Cllam | -4.595 -0.317 -0.240|-1.836  0.630 -0.019

1.479 5366 0421 0.322  2.619 0.312

Notes: zbeta denotes the zero-beta rate. mbias, medbias and var represent mean
bias, median bias and the variance of the average of the estimated betas respectively.
pbias, SVAR, FM and EIV denote the percentage bias, the sample variance, the Fama-
Macbeth variance and Shaken’s EIV-adjusted variance of the second-pass estimates.
mulam, medlam and Cllam represent the mean, the median and the confience interval

of the second-pass estimates. The true values of the second-pass estimates are [0.1,

0.447, 0.571].
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Table 1.9. T-statistic, F-statistic and FAR

N 10 25

T zbeta | market labor | zbeta | market labor
t 0.131| 0.151 0.688| 0.207 | 0.172 0.966

EIV | 0.026| 0.036 0.599| 0.149 | 0.124 0.939

160 F - 0.218 - 0.574
F_EIV - 0.127 - 0.495
FAR 0.058 0.064

t 0.315| 0.470 0.902|0.479 | 0.695 0.998
EIV |0.132] 0.280 0.819| 0.358 | 0.605 0.991

330 F - 0.837 - 0.997
F _EIV| - 0.665 - 0.981
FAR - 0.048 - 0.056

Notes: zbeta means the zero-beta rate. ¢ denotes the t-statistic with the Fama-
Macbeth variance. EIV represents the t-statistic with Shanken’s EIV-adjusted vari-
ance. I’ denotes the F-statistic with the Fama-Macbeth variance. /' _EIV represents
the F-statistic with Shanken’s EIV-adjusted variance. FAR is Kleibergen’s FAR sta-

tistic.

48



CHAPTER 2

Finite-Sample Properties of Alternative Tests on
Beta-Pricing Models in the Cases of Large, Small and Zero

Betas

2.1. Introduction

In empirical analysis of the asset pricing models, the correlation between a non-
traded factor and asset returns is typically small. For example, the true betas might
be very small or even zero [e.g. Lustig and Verdelhan (2007)]. The small or zero
betas might distort both the asymptotic and finite sample distributions of the risk
premiums. Kan and Zhang (1999) point out that when betas associated with a factor
are zero (or the factor is useless for all assets) and the model is misspecified, the
t-statistic, for testing whether the factor should be included in the model or not has a
size distortion. Asymptotically, the t-statistic tends to infinity with probability one.
These findings imply that a useless factor has a large possibility of being considered
as useful based on inferences drawn from the ¢-statistic. Kleibergen (2009) extends
the results from Kan and Zhang (1999). He derives the asymptotic distributions of
the estimated risk premiums in the cases of low betas and zero betas, under both a
correctly specified model and a misspecified model. However, his results are built on
the assumption that the covariance of the error terms and the regressors are zero in
a large sample. The results indicate that the estimated risk premiums converge to a
random variable instead of being v/T-consistent as is the case for correctly specified

models and diverge under misspecified models. Thus, the t-statistic does not follow
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student-t distributions under this setup. In other words, results based on the t-
statistic in these cases are unreliable. Kleibergen (2009) constructs some new statistics
[the Fama-Macbeth Lagrange Multiplier test (FM-LM), the Generalized Least Square
Lagrange Multiplier test (GLS-LM) and Factor Anderson-Rubin test (FAR)] and
shows that these statistics are asymptotically invariant to the magnitude of the betas.

The asymptotic properties of the FM procedure and these statistics have already
been analyzed in the literature. However, their finite sample properties and their
performance when the number of assets is large have not received enough attention.
Shanken and Zhou (2007) analyze by simulation the small sample properties of the FM
procedure and the t-statistic when betas are large. They observe that the estimated
risk premiums do not have a large bias and the t-test has a correct size in a small
sample. The bias is larger when the number of assets is larger. Chen and Kan (2005)
analyze the finite sample properties of the estimated risk premiums revealing that the
unconditional mean of the estimated risk premium is a complicated function of the
betas, dispersion of the factors, dispersion of the error terms, number of time series
observations and number of test assets. However, how these variables by themselves
affect the estimated risk premiums has not been explored. Kleibergen (2009) also
provides simulation results on the estimated risk premiums when betas are zero and
the model is either correctly specified and misspecified. He further compares the size
and power of the Wald statistic and the statistics he proposed when betas are small
with N = 25 and T' = 143. However, he assumes that the product of the betas and
the sample means of the factors are independent of the factors in a small sample.

In constructing an asset pricing model, it is also interesting to know whether the
model is correctly specified or not. One way to test such a hypothesis against a general
alternative is to check whether the pricing errors (the error term in the second-pass

regression) are significantly different from zero. This can be obtained by checking
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whether the square of the weighted pricing errors follows a central x? distribution.
The weights are the inverse of the covariance of the pricing errors’. Shanken (1985)
modifies the specification test based on GLS estimators and argues that the modified
version has better finite-sample behavior. An appealing feature of this statistic is that
it is similar to the HJ-distance? with the weighting matrix as the covariance of the
pricing errors in the stochastic discount factor (SDF) representation® of asset pricing
models. The pricing errors in the SDF representation are close to the pricing errors
in the two-pass regression. Zhou and Shanken (2007) investigate the finite sample
properties of Shanken’s modified specification tests when betas are large. We extend
their results to cases when betas are small or zero.

In this chapter, we mainly focus on the finite sample properties of the estimated
risk premiums, the FM procedure, the t-statistic, Kleibergen’s statistics and the spec-
ification tests when betas are large, small and zero. Further, we investigate the perfor-
mance of these statistics when the number of assets is large. In addition, we provide
diagnostics of the poor behavior of some statistics.

Our results show that the FM-LM statistic has nearly the correct size regard-
less of the magnitude of the betas, the sample size and the number of assets, when
the model is correctly specified. None of the tests behaves well when the model is
misspecified. Both the GLS-LM and the FAR statistics are affected by the number
of assets. However, the performance of the GLS-LM statistic is much better than
that of the FAR when the number of assets is large, under the assumption that the
returns are independent across assets and over time. Inaccurate estimation of the
variance-covariance matrix of the error terms is one of the main reasons for the poor

performance of the FAR and GLS-LM when betas are small and zero. The t-statistic

!Cochrane (2005) provides a detailed analysis of this statistic.
2See Hansen and Jagannathan (1997).
3We will introduce the SDF representation of the asset pricing models in Section 2.
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has large size distortions when betas are small in a small sample. The problem gets
worse when the number of assets is large. This is mainly due to the large bias of the
estimated risk premiums as /N increases.

The specification test with Shanken’s correction has a very good size property
when the assets are indepedent both across assets and over time. The behavior of the
specification tests without Shanken (1985) correction is similar to the FAR statistic.
After correcting the variance covariance matrix of the error term, the size distortion
is reduced. However, there is still a size distortion when the number of assets is large.

The rest of the chapter is organized as follows. Section 2.2 reviews the models,
pricing errors, the FM two-pass methodology, the t-statistic, Kleibergen’s statistics
and the specification tests. Section 2.3 introduces the simulation setup. Section 2.4
presents the simulation results and discusses the size properties of the statistics. A

summary of the main findings is provided in Section 2.5.

2.2. Estimation and Testing Procedures

The expected return-beta representation of a linear factor model is presented in
this section, along with the popular Fama-Macbeth two-pass procedure, t-statistic,
specification tests and Kleibergen’s statistics.

The notation we use in this chapter is the following:

Ry Ry ... Rir

Roy Ry ... Ror .
For example, let R = denote a N by T matrix of returns

RNI RN2 RNT
on N test assets over T periods.

Whereupon, R; for i =1, ..., N is a column vector formed by the transpose of its

tth

row 2; Ry for t =1,...,T is a column vector representing the ¢** column of R.
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Juu fiz o fix
Jor fo2 o for i )
Also, let F' = be a T' x K matrix of risk factors where f; for
Jri Jr2 - Jfri
t=1,..,Tisa K x 1 column vector transposed from the t'" row of F.
i Pz .. Bik
. Bor Pa2 . Pox ) )
Finally, let B = be a N by K matrix of beta coefficients
Byt By2 - Bk

associated with the risk factors, where 3; for i = 1, ..., N is a column vector from the
transpose of row i of B.
The notations of the population time series mean and sample time series average

of a matrix are F((e);) a ). For example, F(R;) denotes the population time

d (e
T
serie mean of R and R = %Z E(f:) means the population time series mean of F
and f = T;ft
(/o\) represents the estimated value of (e), (o), indicates the demeaned value of
(o) and M) =1 — (e)((e)'(8)) ! (o) is a symmetric and idempotent matrix used to
project a vector onto the space orthogonal to (e). ¢y and ¢ are N by 1 vector and
T by 1 vector of ones, respectively, and Oy denots an N by 1 vector of zeros. All
the covariances matrices are assumed to be positive definite and all the matrices are
n o nPon

assumed to have full rank. "—" means convergence in distribution. "=" indicates

convergence in probability.

2.2.1. The models and the pricing errors

There are two ways to represent a linear asset pricing model. One is the beta-

representation that we adopt in this chapter. The other is the stochastic discount
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factor (SDF) representation. It is more general than the beta-representation due
to its ability to incoporate both linear and nonlinear asset pricing models. We will
introduce it briefly in this section in order to form a link between the pricing errors
in these two formulations.

We define R; as the returns from N assets at time ¢, f; as K systematic risk
factors at time t of which a linear combination is able to explain the returns at time
t, B =[5, fa...0n] as a N by K matrix and 3; for i = 1,..., N as a K by 1 vector.

The following relation is assumed to hold

(21) Rt:Oé+Bft+€t fort:L...,T

where « is a N by 1 vector, B = cov(Ry, fi)var(f;)~! and € is a N by 1 vector.

Let E(R;) denotes expectation of R;. Asset pricing theories suggest that

(22) E(Rt> = )\0LN+B/\F.

where )\ is a scalar, called the zero-beta rate denoting the expected return when
all betas are zero; Ap = [A1, A, ..., Ax|" is a K by 1 vector of risk premiums or the
prices of the risks corresponding to the factors; and ¢y is a N by 1 vector of ones.

The asset pricing model is designed to answer the question: why do different
assets have different expected returns? This representation implies that it is because
different assets possess different systematic risks. In equilibrium, investors need to be
compensated with higher returns for holding riskier assets.

Let e = E(R;) — Aoty — BAp be the pricing errors. If an asset pricing model
is correct, e = Oy. Otherwise, e # Oy. This resembles the pricing errors in the
SDF formulation. The SDF representation postulates that the price of an asset is

determined by its future discounted payoffs. This implies that the discounted returns
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for all assets equal to 1 (Law of one price). Let m be the SDF. The SDF model can
be written as 1y = F(mR;). For a linear asset pricing model, m is a linear function
of the factors f;, e.g. m = a + V' f;, where a and b are unknown parameters. Thus,
the pricing error under the SDF formula is espr = E(mR;) — 1y.

The SDF m can take more general forms than m = a + V' f;. Since the risk-free
rate is also an asset, it also satisfies the equation 1 = E(mRy,). The SDF formula
can also be written as Oy = E(mRf) where Rf = R; — Ry Therefore, m can be
normalized to be m = 1+ d(f; — ur). In this case, espr = E(mR;) — On.

It can be shown that the beta representation implies the SDF representation. And
a SDF m, which is a linear function of f;, leads to a beta model. Cochrane (2005) have
detailed proofs under both m = a+ ' f; assuming pp = 0 and m = 1+d'(f; — ur) and
assuming E(R{) = BAr. The former case can be easily generalized without assuming
pr = 0. It can also be proved that espr = e in the latter case and espr equals e up

to a scale.

2.2.2. Fama-Macbeth Two-pass Procedure

The most commonly used methodology in estimating linear asset pricing models is
the FM procedure, which includes a time series regression in the first pass and a
cross-sectional regression in the second pass. The following assumptions are imposed

in this section:

Assumption 1: Assume ¢; is indepedent and identically distributed with FE(e,|F) =
On and Var(e|F) =% a positive definite matriz.

Assumption 2: The factors F = [fi,..., fx] is a T by K full column rank
matriz. Let f = %ilft, pur = E(f;) and Xp = Var(f,). fi for t =1,..,T
15 weakly statz’onartg; ergodic and asymptotically normally distributed with

\/T(T— {r) - N(0,Zp).
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Let R; be a T by 1 vector of returns of asset ¢ for T" periods and F' be a T by K

matrix of K factors for T" periods. ; can be estimated from the following time series

regression:

(2.3) Ri=caur+FpBi+e¢,fori=1,...,.N
as

(2.4) B; = (F'F,)"'F'R;.

where F, = F — LTf/and tr is a T by 1 vector of ones.

In order to estimate the zero-beta rate and risk premiums, Fama and Macbeth
suggest to calculate their values at each ¢ from a cross-sectional regression. Define
Ao¢ to be the zero-beta rate at time t, Apy = [A1g, Aoy, ..., Ake|” be the risk premiums at
time t and \; = [Ao; N]'. If B is known, the cross-sectional regression at each time

t is
(2.5) Ry = Aosty + BApy +uy, fort =1,...,T,

where u; = B(f; — ur) + ¢ and VT <, N(0, BEpB’' + %) under Assumptions 1
and 2.

Since B is unknown, B is employed instead of B in empirical analysis.

Let X = [ty B] and A, = [Aoy Ny,]’. Then,

(2.6) N = (X'X)'X'R,.
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{Xg}le can be considered as drawn from the same distribution with mean A and

covariance V. Therefore, the estimated parameters A = [Ag, A;]' are given by

1 X
2.7 A= — At.
(2.7) T;:lt

Let A = [Ao, N]". The estimated variance covariance matrix of vT'(A — \), can be

calculated as

~ A~ A~

S (e = A — A

t=1

(2.8) V=

S| =

The t-statistic can be used to test whether whether the risk premiums equal their
true values. Under Hj : A\ = Apo, for k =1, ..., K, the t-statistic is

B e = Mo

=—+> fork=1,.. K,

(2.9) ;

where 5, = [‘7%]1{1@, which is the [k, k], element of the standard error of the estimated
covariance matrix for the risk premiums. The critical value is obtained from a t
distribution with 7" — 1 degrees of freedom or from a standard normal distribution.

It is also interesting to test whether a particular model is correctly specified or
whether the pricing errors are jointly zero. The common practice in the empirical
asset pricing literature is to add firm-specific factors in the second-pass regression and
test whether the coefficients associated with these factors are significantly different
from zero. However, there are some alternative econometric methods which can also
accomplish this task.

From equations (2.1) and (2.2), it can be found that

R=X\+e
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— T —
where R = 73 Ry, X = iy B], €= Mx(B(f—pr)+€), Mx = Iy— X (X'X) X/,
t=1

T
Iy is a N by N identity matrix and € = %ZQ- Under Assumptions 1 and 2, it can
t=1

be proved® that ¢ has the following distribution:
(2.10) VTe % N(0, %)

where ¥z = M\ X My.

Therefore,
(2.11) Q, =Tes'e 5\,

Since B and Y are unknown, their estimated counterparts are used in practice.
Thus, € = R — X\, S¢ = MLEMg where Mg = Iy — X(X'X)7'X".

The drawback of the Fama and MacBeth procedure is that it treats B as the true
B. It thus ignores the estimation error in B. Black, Jensen and Scholes (1972) propose
a method of grouping the stocks into portfolios to mitigate the error-in-variable (EIV)
problem. However, the grouping methods may neglect useful information in the
data. Shanken (1992) analyzes the asymptotic properties of the two-pass regression
methodology by taking account of the EIV problem and proposes the EIV-adjusted
variance.

Under assumptions 1 and 2, BZ is unbiased, v/T-consistent and follows an asymp-

totic normal distribution
-~ d _
(2.12) VT(B; = 8;) 5 N(0,0755),

where 02I1 is the variance of ¢; and X' is the inverse of the variance covariance

matrix of the factors.

4See Shanken (1992) and Cochrane (2005).
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As suggested by Shanken (1992), the asymptotic covariance matrix of the risk

premiums is

(2.13) V= (14¢)Q+ 37},

0 O
where ¢ = NpX o' Ap, Q = AYXA, A= (X'X)"1X" and % =

0 Zp
After some derivation, it can be shown that V = V + €2, where V = Q + Y. Fur-

thermore, the term v7'(A— ) can be represented as VT (A—\) = (X' X)L X'VT(R—
E(Ry))— ()A( 'X )_1)? 'NT (E — B)Ap. Therefore, V' is the asymptotic covariance matrix
of the first part and {2 is the asymptotic covariance matrix of the second part. °

In this case, Sz = M ;?f]M +(14+7¢). We denote the modified specification test by
@se-

However, both @, and Q.. have x? distributions when the sample size is large.
Shanken (1985) proposes a similar test which reflects the small-sample properties of

the 3. The test has the form
Q. =TS e/(1+79),

where ¢ = R — X\ and \ = ()?’ifl)?)*l)?’fflﬁ. Then, it follows that Qr =
(I' = N +1)Q./T(N — K — 1) has an approximate F-distribution with degrees of
freedom N — K —1and T'— N + 1.
2.2.2.1. Kleibergen’s statistics. Kleibergen (2009) argues that when the elements
of B are small or zero, XF are not /T consistent and normally distributed. Instead,
they converge to random variables when the model is correct and diverge when the

model is misspecified. The t-statistic is not valid under these circumstances. He

proposes some new tests — the FM-LM, GLS-LM, FAR statistics — based on GMM

SThis result can be inferred from Shanken (1992) or Jagannathan and Wang (1998).
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and the instrumental variable statistics in weakly identified models. He argues that
these statistics are valid asymptotically regardless of the magnitude of the betas.
Assume the asset-pricing conditions [equation (2.2)] hold and the returns and

factors are generated from the following regressions:

(214) Rt = >\0LN+B(ft_,uF+)\F)+€t

(2.15) ft = pr + vy,

where covariance of ¢, and v, is zero.
o _ T
Let fi=fi—f,es=¢+Bvand v = %th. After some transformation, equation
t=1

(2.14) can also be written as
(2.16) Ry = Moty + B(fy + Ap) + &4

The asymptotic distributions of the statistics are derived under the following as-

sumption:

Assumption 3: Assume that as the number of time series observations T be-

comes large,

T 1 — d YR
Z ®<Rt—>\0LN—B(ft+)\F)) —

t=1 ft ¥YB

S

Qu @ 1 1]
with (¢ @)~ N0, W), U = Q@%, and Q= |~ | = !

Qr1 Qrr pr Xp+ prpe
Let R; be the excess returns through subtracting the 1st to (n— 1) returns by the

n'" returns and C be the excess beta. Thus, )\ is removed from the model. Therefore,

the following conditions hold
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cov(Ry, f;) = Cvar(f;)

E(ft) = HF-

When an asset pricing model is correctly specified, under Hy : A\p = Apo, C can

T T .
be estimated as C = Y R,(f; + Aro)[ D (f5 + Aro)(f; + Aro)] 1t
i=1 =1

Lemma 2 in Kleibergen (2009): Under Hy : A\p = Apo, and Assumption

3,

R — CA v
\/T F,O i} R :

~

vec(C — C) Ve
where R is the time series mean of R. Uy and V¢ are independent and

asymptotically normally distributed random variable

\IJR - N(O, (]_ - /\IF7O(VFF + AF,O)‘IF,O))\EO) X ZN—l)
and \IJ(C - N(O, (VFF + )\F,O)\/F,O) & EN—l)
! ! Z11 wln
where X1 = X211 —IN-1T1n—Tn1ly_1HIN-1Tnnty_q for X =
Wnl Wnn

Below we introduce several statistics that are constructed based on the

result in Lemma 2.

2.2.2.2. Fama-Macbeth LM statistic. The LM statistic is constructed using the
information included in the constrained model. This test builds on the estimated
pricing errors and the estimated betas. Under Hy : Ap = Apo and Assumption 3 and
conditional on @, R — @)\F,O)/@ —a N (0, (1 = Npo(VEr + AroNpo) Aro) @ @EN_l((A:)
and 3 No1 2 Sn_1. Note that (E — @)\F,O) and C are independent in large samples.

. _ T
Therefore, letting P = 300 o Arg

(2.17)  FM — LM(Aro) = P(R — CApo)C(C'Sy_1C) 'C' (R — CApo) > x2(k),

where G(Ar) = 232 (F; + A)(Fi + Ar)’ and

t=1
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Bt = e (B — O+ Aro)) ® — C(Fi+ Aro)'

The drawback of th;s test is that it is not invariant to transformations of the asset
returns.
2.2.2.3. GLS-LM statistic. In order to resolve the problem of the FM-LM test,
Kleibergen (2009) proposes the GLS-LM statistic. The only difference between these
two statistics is that the estimated pricing errors are standardized by i;,l_l with
ij_vl_l L 93t . Therefore,
(2.18)
GLS — LM (Apg) = P(R — CApo)' S35, C(C S, C) TSV (R — Chpo) 5 x2(k).

However, when the number of returns can be very large, for example 100 in Ja-
gannathen and Wang (1996), the variance covariance matrix ¥ ~N_1 can have a very
large dimension. The inverse of the matrix can be hard to calculate.
2.2.2.4. The FAR statistic. The FAR test is two times the difference between the

unrestricted and restricted criterion functions and is given by
(2.19) FAR(Apg) = P(R — Chpp) S3' 1 (R — Chpg) 2 3(N = 1),

It is similar to the Anderson-Rubin (1949) statistic in the instrumental variables
regression model and it is proportional to the square of the unconstrained Hansen-

Jagannathan (1997) distance when it is evaluated at App.

2.3. Simulation Setup

In this section, we investigate by simulation the finite sample properties of the
FM estimation procedure, the corresponding t-statistic, Kleibergen’s statistics and the
specification tests discussed in the previous section. We also explore the performance

of these statistics when the number of assets is large. The data we use in this section
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includes the Fama-French 6, 25 and 100 portfolios formed on size and book-to-market
and the excess market return proxied by the difference between the value-weighted
returns on all NYSE, AMEX, and NASDAQ stocks and the one-month T-bill rate.
All these data are obtained from Kenneth French’s data library®.

We start with a simple case where the model has only one factor and the returns
are independent and identically distributed. The factor is simulated by matching the
mean /i = 0.649 and variance 0% = 29.841 of the excess market factor. The returns
are generated from (2.14). ¢, is drawn independently from a normal distribution with
mean zero and covariance matrix given by the variance of the factor multiplyed by an
N by N identity matrix. Thus, we are able to maintain the SNR (defined as the ratio
of the standard deviation of the factor and that of the error term) to be 1. In the
first chapter of this dissertation, we show that when the signal-to-noise ratio is small,
the estimated risk premiums have a large bias and the t-statistic has a substantial
size distortion. The standard t-test tends to conclude that the factor priced, (or
equivalently, a significant risk premium) more often than it should. The smaller
the signal-to-noise ratio, the worse the size distortion. The zero-beta rate is set to
Ao = 0.3 which is close to the sample risk-free rate starting from June 1927 to present.
In order to detect the effect of different betas on the properties of the statistics, we
consider four scenarios. In the first scenario, 5; ~ U(1,2) for i = 1,..., N, which is
close to the estimated betas corresponding to a regression of the FM portfolios on the
market factor. In the second scenario, §; ~ U(0.01,0.1) for ¢ = 1,..., N. In the first
two scenarios, Ar = 3.89. In the third scenario, all 8s are zero. In the fourth scenario,

the returns are generated by matching the mean and variance of the returns in the

OWe are very grateful to Kenneth French for making the data available.
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7. This is a case similar to that considered in Kan and Zhang (1999).

first scenario
Since the factors are useless in the last two cases, it is reasonable to set A\p = 0.
The sample sizes are T' = 320,640 which are often used in the empirical asset
pricing literature. In order to explore the effects of the number of assets on the
properties of the FM procedure and various statistics, we vary the number of assets
by letting N = 6,25, 100. We compare the empirical sizes of the various statistics and

the nominal sizes which are set at 1%, 5% and 10%. All reported results are based

on J = 5,000 Monte Carlo replications.

2.4. Results
2.4.1. Parameter Estimates

In table 2.1, we present the percentage biases of the estimated risk premiums when
betas are large. The biases of the estimated risk premiums are very small (the mag-
nitude is less than 4%) and are negative in all cases. As N increases, the bias tends
to increase a little bit. For example, when N = 6 and T" = 320, the bias is -2.4%.
It then grows to -3.7% when N = 100. The bias tends to decrease a bit as T rises.
For example, it diminishes from -3.7% to -2.1% when N = 100 and T' goes from 320
to 640. These results are consistent with Shanken and Zhou (2007). In their paper,
they investigate the cases when N = 25 and 48 and 7" = 60 to 960.

Table 2.2 provides the percentage biases of the estimated risk premiums when
betas are small.® The biases are still negative. However, the magnitude of the esti-
mated risk premiums is more than 20 times larger than those when betas are large.
For example, the bias is -83.4% in the low beta case, while it is -2.5% in the high beta

case when N = 25 and 7" = 320. Even when the sample size rises from 320 to 640,

"We tried different values of the zero-beta rate. It does not seem to have a large effect on the
properties of the estimation and testing results.

SWhen N = 6, the sample mean of the bias is not stable. For example, we have tried several
experiments letting J = 100000 when T" = 320, the mean of the biases fluctuates from -0.72 to 0.95.
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the bias only falls to -74.6%. It implies that the standard large sample distribution
might not be able to approximate the finite sample distribution of the estimated risk
premium well. When N increases, the biases seem to converge to a number around
-82%.

Table 2.3 shows the biases of the estimated risk premiums when betas are zero.
Similar to the case when betas are large, all biases are small. However, the sign of
the bias is not always negative. For example, when 7' = 320 and N = 6, the bias is
-0.02. When T = 320 and N = 100, it is 0.01.°

Table 2.4 presents the biases of the estimated risk premiums when betas are zero
and the model is misspecified. Overall, the biases are larger than those in the case
when betas are zero and the model is correctly specifed. The sign can be either
positive or negative. When T increases, the magnitude of the biases tends to rise.
For example, when N = 6 and T" grows from 320 to 640, the magnitude of the bias
increases from 0.131 to 0.256. When N rises, the magnitude of the biases seem to
decrease. For example, when 7' = 320 and N increases from 6 to 100, the magnitude

of the bias decreases in absolute value from -0.131 to 0.

2.4.2. Tests on Risk Premiums

Table 2.5 shows the empirical sizes of the various tests of the hypothesis that the
risk premium equals its true value at 1%, 5% and 10% significance levels when betas
are large. All statistics have nearly correct sizes except for the FAR statistic and
the t-statistic which exhibit some size distortions. For example, when 7" = 320 and
N = 25 at the 5% level, the empirical sizes are 6.6% for the FM t-test (FM-t), 5.1%
for the ¢-test with Shanken’s correction (¢-SK), 8.3% for FAR, 5.8% for FM-LM and

6.2% for GLS-LM. The t-SK has better size properties than the FM-t test since it

9We have also tried J = 10000, the magnitude of the biases is still very small. However, the results
are not exactly the same as we report in Table 2.3.
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corrects the EIV problem in the estimated betas. The GLS-LM statistic performs a
little bit worse than the FM-LM statistic.

The sample size and number of assets do not seem to have strong effects on all
the tests except for the FAR test. The FAR statistic performs poorly when N is
large and/or T is small. For example, when N = 100 and 7' = 320 at the 5% level,
FAR has an empirical size of 51.1%. It decreases to 20.4% when T equals 640. Thus
sample size does seem to have a strong effect on correcting the size of FAR.

In Table 2.6, we provide the actual sizes of various statistics when betas are
small. Compared to the cases when betas are large, both the t-statistic and ¢-test
with Shanken’s correction have very poor size properties under small betas. When
the number of assets is large, the size distortions deteriorate. For example, when
T = 320 and N = 6 at 5% level, the actual sizes for FM-t and ¢t-SK are 28.7% and
25.9%, respectively. When N = 100, the sizes rise to 100% and 99.9%, respectively.
Increasing the sample size does not seem to improve the situation very much. For
N = 6 when T = 640 at 5%, the sizes decline to 25% for FM-t and 23% for ¢-SK. For
N =100, the results are almost the same for 7" = 320 and T" = 640. It confirms that
the finite sample distribution of the estimated risk premiums are quite different from
the standard asymptotic approximations when the betas are small.

Kleibergen’s statistics perform better than the t-statistic. The empirical size of
the FM-LM statistic is around the true size. The performance of the GLS-LM is very
close to FM-LM, especially when NN is small. The performance of FAR is very close
to that when betas are large. For example, when N = 100 and 7" = 320, the sizes
of FAR are 28.9% versus 28.9% at 1% level, 51.1% versus 53% at 5% level, 62.9%
versus 65.1% at 10% level. All these simulation results show that in small samples,

Kleibergen’s statistics are not significantly affected by the magnitude of the betas.
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In Table 2.7, we present the empirical sizes of the various statistics when betas
are zero. In other words, the factor is useless in explaning the time-series variation
of the returns. Therefore, the risk premium associated with the factor is supposed to
be zero. The results show that similar to the cases when betas are small, the FM-LM
statistic has the best size properties among all the other tests. The empirical sizes
are close to the nominal sizes regardless of the number of assets and the sample size.
However, GLS-LM does not behave as well as in the previous cases, especially when
N is large and T is small. This test is more likely to conclude that the factor is useful
when it is actually useless. For example, when N = 100 and 7' = 320 at 1%, 5% and
10%, the empirical sizes of GLS-LM are 6.5%, 16.1% and 24.5%, respectively. The
t-test behaves very well when N is small. For example, when N = 25 and T = 320
at the 5% level, the size is 4.5%. However, when N is large, it tends to under-reject
the null. Unlike the cases when betas are large and small, the ¢-SK has worse size
properties than the FM-¢ when the factor is useless. It under-rejects the null all the
time for various numbers of assets and sample sizes considered. The FAR has similar
properties as in the previous two cases. The only difference is that the size distortion
becomes even worse when N is large. For example, when N = 100 and 7" = 320 at
5% level, the sizes are 79.9% for zero beta, 53% for small beta and 51.1% for large
beta.

Table 2.8 provides the results of the various statistics when the factor is a useless
factor and the model is misspecified. It is a case similar to that considered in Kan

and Zhang (1999). The results show that all tests have very large size distortions.

2.4.3. Specification Tests

Table 2.9 shows the performance of the specification tests when betas are high. @,

is based on the FM procedure. Q),. is the statistic with Shanken’s correction. (s has
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severe size distortions for the sample sizes considered. The size distortions become
larger when the number of assets increases. For example, for Q, at 5% significance
level and T' = 320, the rejection rates are 19.3% when N = 6, 53.9% when N = 25
and 99.7% when N = 100. The size properties of Q,. are much better than that of Q,
in all cases. However, they are also over-sized when N is large. For example, when
T = 320 and the true size is 5%, the estimated sizes of Q. are 6% for N = 6, 10.7%
for N = 25 and 81.7% for N = 100. The sample size does not seem to have a large
effect on the size properties of the ), and ), when N is small. However, given 100
assets, the size of Q.. decreases relatively quickly. It reduces from 81.7% to 37.1%".
The specification test Qr proposed by Shanken (1985) seems to outperform all the
other tests, especially when N is large. Its size is close to the true size regardless of the
number of assets and the sample size. For example, when T" = 320 at 5% significance
level, the estimated sizes are 5.5% for N = 6, 5.7% for N = 25 and 6.7% for N = 100.
When N = 100 and T increases from 320 to 640, the empirical size decreases from
6.7% to 5.4%. Our results are consistent with Shanken and Zhou (2007) who find
that the Qr test performs well regardless of the sample size and number of assets
when betas are large.

Table 2.10 presents the specification tests when betas are small. Compared to the
cases when betas are large, () has smaller size distortions. However, there is still a
big chance to over-reject the null and conclude that the risk premium is significantly
different from zero. The size distortions of the (),. and ) seem to be larger than
those when betas are large, especially when N and T are large. For example, when
N =100, T = 640 at 5% level, Q, falls from 98.1% to 65.3%; Q.. rises from 37.1%
to 56.1%; and Qr grows from 5.4% to 13.9%. @Qr does show some size distortions

when betas are small and N is large. When N = 100 and 7" = 320, the sizes of Qr
0When the sample size is 1280, the estimated size further lowers to 16.82%.
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are almost twice as large as the true sizes. It is also interesting to notice that unlike
the case when betas are large, the size of () deteriorates with the sample size. For
example, it rises from 10.3% to 13.9% when N = 100 and T increases from 320 to
640. This might indicate that the distribution of QQr with small betas is different
from the F distribution.

In Table 2.11, we provide the results when betas are zero. Compared to the
previous two cases, both ), and (). have smaller sizes when betas are zero. For
example, when N = 25 and 7" = 320 at the 5% level, the sizes of @, and Q,. are
10.3% and 8.3% when betas are zero, while they are 53.9% and 10.7% when betas are
large and 16.6% and 13.2% when betas are small. However, when N is large and T is
small, there is still a serious size distortion. For example, when N = 100 and 7" = 320,
the sizes are 63%, 79.5% and 86.4% at 1%, 5% and 10% levels, respectively. Similar
to the case when betas are small, (Qr tends to increase when N rises. However, in
this case Qr under-rejects the null. For example, when N = 6 and T" = 320 at 5%

level, the size of Qr is 2.8%. When N = 100, it increases to 4.5%.

2.4.4. Source of the Size Distortions

In this part, we first show that the size distortions of the t-statistic are mainly due to
the biases of the estimated risk premiums and the result that the estimated risk pre-
miums may not follow a normal distribution. Then, we show that the size distortion
of Kleibergen’s statistics and the specification tests are mainly a result of the poor
estimation of the variance covariance of the estimated risk premiums.

The possible reasons for the size distortion of the t-statistic are the bias, the poor
estimation of the variance of the estimated risk premiums and the dependence of the

numerator and denominator of the t-statistic. It may also be due to the non-normal
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distribution of the estimated risk premiums in a finite sample especially when betas
are small.

Table 2.12 presents the empirical sizes of the t-statistic using the bias-corrected
risk premiums when betas are large and small. Compared to Table 2.5 and Table
2.6, the size distortion is smaller. When betas are small and N is large, for example,
N = 100 and T = 320, the empirical size of the t test without and with Shanken’s
correction decrease from 1 and 0.999 to 0.031 and 0.026. However, they are a bit
below the nominal size 5%. It is also interesting to notice that when betas are
small, Shanken’s correction seems to over-estimate the variance of the estimated risk
premiums. It might also imply that the estimated risk premiums are not normally
distributed when betas are small.

From section 2.2, we can derive that A = A+(X'X) "' X (R—E(R,))—(X'X)'X"(B—
B)Ap. It can further be shown that A=A+ ()?’)?)*1)?'6 + ()A(')A()*l)?’(? — Up) —
(X'X)"'X'(B — B)Ap where X = [ty B]. Note that B = B + \LﬁwB, where ¥
follows a normal distribution. When B is large, \/LT@DB can be ignored since as T
increases, \/%71#3 converges to zero based on standard asymptotics. However, when
B is very small or even zero, \/LTLD p shouldn’t be ignored especially in finite samples.
Therefore, the large sample distribution of h) using standard asymptotics may not
provide a good approximation to its finite sample distribution. It also implies that
the finite sample distribution of h\ might be different from a normal distribution.

There are several reasons for the size distortion of Kleibergen’s statistics and
the specification tests (), and Q. in finite samples. For example, the finite-sample
distribution of the pricing errors may be different from their large sample distribution.
The (R — @)‘F,O) and C may not be indepedent in finite samples. We show that the
poor estimation of the variance covariance matrix in finite samples is one of the main

reasons for the size distortion when betas are small and zero.
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Table 2.13 reports the empirical sizes of the Kleibergen’s statistics for different
magnitudes of betas when the estimated variance covariance matrix is substituted by
its true counterpart. As we can see, the empirical size of all the statistics are very
close to the true size 5%, regardless of the sample size and the number of assets. For
example, the empirical size of the FAR test was 52.1% when 7' = 320 and N = 100
and now it is 5.2%.

Table 2.14 presents the emprical sizes of the specification tests ), and Q),. with
the true variance covariance matrix of ¢;. The size distortion reduces a lot compared
to the results based on the estimated variance covariance matrix. For example, when
N =100 and T" = 320, the empirical sizes of the ), and Q. are 91.4% and 88.6% at
5% significance level with the estimated variance covariance matrix. They are reduced
to 18.4% and 14.1%. But even after correcting the variance covariance matrix, the
Qs and Q. still seem to be affected by the number of assets when betas are small.
The size distortion deteriorates when N rises. For example, when N increases from

6 to 100, and T = 640, @, increases from 12.8% to 25.7%.

2.5. Conclusion

In this paper, we provide some simulation results on the finite sample properties
of the Fama-Macbeth two-pass procedure, the t statistics and Kleibergen’s statistics
(FM-LM, GLS-LM and FAR) and the specification tests in estimating and testing
an asset pricing model when the magnitude of the betas is large, small and zero. In
particular, the effect of the number of assets on the estimation procedure and test
statistics are presented. We further provide a diagnosis on the poor size properties of
some statistics.

Our results are based on a one-factor model assuming error terms in the first-

pass regression are iid over time and across assets and follow normal distributions.
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The factor is also generated from an iid normal distribution. Four experiments are
conducted: a correctly specified model with high betas, small betas and zero betas
and a misspecified model with zero betas. The number of assets includes 6, 25 and
100. The sample sizes are 320 and 640.

Our results show that when betas are small, the estimated risk premiums are
seriously biased. The bias seems to converge as the number of assets increases. The
FM-LM test has almost correct sizes when the model is correctly-specified regardless
of the number of assets, the sample size and magnitude of betas. No tests behave well
when the model is misspecified. Both the GLS-LM and the FAR statistics are affected
by the number of assets. However, the performance of the GLS-LM statistic is much
better than that of the FAR when the number of assets is large. The inaccurate
estimation of the variance covariance matrix of the error terms is one of the main
reasons for the poor performance of the FAR and GLS-LM when betas are small and
zero. The two t-statistics have large size distortions when betas are small in a small
sample. The problem gets worse when the number of assets is large. This is mainly
due to the large bias of the estimated risk premiums as N rises.

The specification test with Shanken (1985)’s correction has a better size property,
compared to the other two specification tests. The behavior of the specification tests
without Shanken’s correction is similar to the FAR statistics. After correcting the
variance covariance matrix of the error term, the size distortion reduces. However,
there is still a size distortion when the number of assets is large.

We recommend the FM-LM statistic and the specification test with Shanken’s
correction in empirical analysis due to their better size properties in finite samples

regardless of the magnitude of the betas.
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Table 2.1. Percentage biases of the estimated risk premium when betas
are large

T |N |6 25 100
320 | Ap | -0.024 | -0.025 | -0.037
640 | Ar | -0.010 | -0.017 | -0.021

Note: beta ~ U(1,2), the true risk premium is Ap = 3.89.
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Table 2.2. Percentage biases of the estimated risk premium when betas
are small

T |N |6 25 100
320 | Ap | -0.728 | -0.834 | -0.820
640 | Ap | -0.607 | -0.746 | -0.744

Note: beta ~ U(0.01,0.1),the true risk premium is Ap = 3.89.
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Table 2.3. Biases of the estimated risk premium when betas are zero

T |N |6 25 100
320 | Ap | -0.020 | 0.003 | 0.010
640 | Ap | -0.042 | -0.008 | 0.010

Note: the true risk premium is A\p = 0
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Table 2.4. Biases of the estimated risk premium when betas are zero
and the model is misspecified

T |N |6 25 100
320 | Ap | -0.131 | -0.065 | -0.000
640 | Ap | -0.256 | 0.084 |-0.095

Note: the true risk premium is A\p = 0
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Table 2.5. Empirical sizes of the tests on whether the true risk premium
is significantly different from zero when betas are large

N 6 25 100

T 0.01 {0.05 |0.10 |0.01 [0.05 [0.10 [0.01 [0.05 |0.10
FM-t 0.029 | 0.090 | 0.157 | 0.015 | 0.066 | 0.122 | 0.015 | 0.070 | 0.133
t-SK 0.015 | 0.056 | 0.102 | 0.010 | 0.051 | 0.101 | 0.012 | 0.064 | 0.122
320 | FAR 0.015 | 0.058 | 0.114 | 0.020 | 0.083 | 0.140 | 0.289 | 0.511 | 0.629
FM-LM | 0.015 | 0.060 | 0.107 | 0.013 | 0.058 | 0.114 | 0.011 | 0.056 | 0.120
GLS-LM | 0.015 | 0.060 | 0.110 | 0.015 | 0.062 | 0.122 | 0.011 | 0.053 | 0.104
FM-t 0.026 | 0.096 | 0.164 | 0.022 | 0.081 | 0.140 | 0.014 | 0.066 | 0.122
t-SK 0.010 | 0.053 | 0.107 | 0.014 | 0.060 | 0.113 | 0.012 | 0.058 | 0.111
640 | FAR 0.012 | 0.053 | 0.113 | 0.018 | 0.069 | 0.135 | 0.070 | 0.204 | 0.310
FM-LM | 0.012 | 0.055 | 0.110 | 0.014 | 0.063 | 0.125 | 0.010 | 0.059 | 0.107
GLS-LM | 0.014 | 0.056 | 0.115 | 0.020 | 0.074 | 0.133 | 0.013 | 0.064 | 0.121

Note: beta ~ U(1,2). "FM-t" denotes the FM ¢ test. "t-SK" means the FM ¢ test

under Shanken’s EIV adjustment.
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Table 2.6. Empirical size of the tests on whether the true risk premium
is significantly different from zero when betas are small

N 6 25 100

T 0.01 |0.05 |0.10 {0.01 |0.05 [0.10 |0.01 |0.05 |0.10
FM-t 0.131 | 0.287 | 0.382 | 0.662 | 0.841 | 0.904 | 0.998 | 1.000 | 1.000
t-SK 0.100 | 0.259 | 0.360 | 0.647 | 0.825 | 0.887 | 0.997 | 0.999 | 1.000
320 | FAR 0.013 | 0.055 | 0.108 | 0.022 | 0.085 | 0.142 | 0.289 | 0.530 | 0.651
FM-LM | 0.009 | 0.053 | 0.107 | 0.009 | 0.046 | 0.095 | 0.010 | 0.049 | 0.104
GLS-LM | 0.011 | 0.053 | 0.108 | 0.013 | 0.058 | 0.118 | 0.026 | 0.096 | 0.160
FM-t 0.118 | 0.250 | 0.346 | 0.621 | 0.813 | 0.882 | 0.997 | 1.000 | 1.000
t-SK 0.097 | 0.230 | 0.326 | 0.602 | 0.788 | 0.862 | 0.995 | 1.000 | 1.000
640 | FAR 0.013 | 0.057 | 0.106 | 0.013 | 0.064 | 0.127 | 0.072 | 0.207 | 0.321
FM-LM | 0.008 | 0.045 | 0.092 | 0.011 | 0.050 | 0.095 | 0.011 | 0.050 | 0.096
GLS-LM | 0.009 | 0.046 | 0.093 | 0.010 | 0.058 | 0.112 | 0.016 | 0.069 | 0.132

Note: beta ~ U(0.01,0.1). "FM-t" denotes the FM ¢ test. "t-SK" means the FM

t test under Shanken’s EIV adjustment.
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Table 2.7. Empirical sizes of the tests on whether the true risk premium
is significantly different from zero when the betas are zero

N 6 25 100

T 0.01 |0.05 |0.10 {0.01 |0.05 [0.10 |0.01 |0.05 |0.10
FM-t 0.010 | 0.050 | 0.100 | 0.011 | 0.045 | 0.091 | 0.003 | 0.024 | 0.058
t-SK 0.000 | 0.002 | 0.015 | 0.003 | 0.027 | 0.071 | 0.002 | 0.021 | 0.056
320 | FAR 0.012 | 0.057 | 0.108 | 0.029 | 0.107 | 0.183 | 0.633 | 0.799 | 0.868
FM-LM | 0.012 | 0.057 | 0.106 | 0.010 | 0.053 | 0.103 | 0.009 | 0.050 | 0.101
GLS-LM | 0.011 | 0.055 | 0.108 | 0.019 | 0.071 | 0.135 | 0.065 | 0.161 | 0.245
FM-t 0.010 | 0.046 | 0.097 | 0.008 | 0.041 | 0.091 | 0.006 | 0.033 | 0.075
t-SK 0.000 | 0.002 | 0.017 | 0.001 | 0.024 | 0.071 | 0.005 | 0.030 | 0.070
640 | FAR 0.010 | 0.052 | 0.103 | 0.020 | 0.078 | 0.141 | 0.177 | 0.358 | 0.478
FM-LM | 0.010 | 0.051 | 0.104 | 0.010 | 0.057 | 0.113 | 0.010 | 0.048 | 0.096
GLS-LM | 0.012 | 0.051 | 0.102 | 0.012 | 0.057 | 0.110 | 0.027 | 0.095 | 0.163

Note: "FM-t" denotes the FM ¢ test. "t-SK" means the FM ¢ test under Shanken’s

EIV adjustment.
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Table 2.8. Empirical sizes of the tests on whether the true risk premium
is significantly different from zero when betas are zero

N 6 25 100

T 0.010 | 0.050 | 0.100 | 0.01 |0.05 |0.10 |0.01 |0.05 |0.10
FM-t 0.666 | 0.747 | 0.790 | 0.586 | 0.685 | 0.737 | 0.786 | 0.837 | 0.859
t-SK 0.071 | 0.296 | 0.474 | 0.503 | 0.652 | 0.722 | 0.777 | 0.832 | 0.857
320 | FAR 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
FM-LM | 0.911 | 0.935 | 0.947 | 0.650 | 0.781 | 0.831 | 0.313 | 0.425 | 0.499
GLS-LM | 0.581 | 0.680 | 0.734 | 0.291 | 0.429 | 0.510 | 0.258 | 0.383 | 0.460
FM-t 0.652 | 0.737 | 0.781 | 0.666 | 0.745 | 0.784 | 0.847 | 0.882 | 0.901
t-SK 0.056 | 0.271 | 0.443 | 0.588 | 0.720 | 0.771 | 0.841 | 0.880 | 0.899
640 | FAR 0.100 | 0.100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
FM-LM | 0.853 | 0.897 | 0.915 | 0.406 | 0.548 | 0.631 | 0.835 | 0.888 | 0.912
GLS-LM | 0.513 | 0.633 | 0.691 | 0.383 | 0.512 | 0.579 | 0.273 | 0.408 | 0.485

Note: "FM-t" denotes the FM ¢ test. "t-SK" means the FM ¢ test under Shanken’s

EIV adjustment.
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Table 2.9. Model specification tests when betas are large

N |6 25 100

T 1% | 5% |10% |1% |5% |10% |1% |5% | 10%
Qs [0.076 | 0.193 | 0.286 | 0.329 | 0.539 | 0.652 | 0.993 | 0.997 | 0.999
320 | Qs | 0.014 | 0.060 | 0.118 | 0.033 | 0.107 | 0.182 | 0.647 | 0.817 | 0.880
Qr | 0.013 | 0.055 | 0.110 | 0.012 | 0.057 | 0.105 | 0.013 | 0.067 | 0.128
Qs [0.075|0.186 | 0.274 | 0.285 | 0.496 | 0.624 | 0.944 | 0.981 | 0.990
640 | Qs | 0.012 | 0.055 | 0.107 | 0.020 | 0.081 | 0.147 | 0.180 | 0.371 | 0.498
Qr | 0.011 | 0.053 | 0.105 | 0.012 | 0.055 | 0.113 | 0.012 | 0.054 | 0.112

Note: beta ~ U(1,2). Qs represents the specification test; (),. denotes the specifi-
cation test after Shanken’s EIV adjustment; Q)5 is the specification test modified by

Shanken (1985).
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Table 2.10. Model specification tests when betas are small

N |6 25 100

T 1% | 5% |10% |1% |5% |10% |1% |5% | 10%
Qs [0.021 | 0.089 | 0.161 | 0.060 | 0.166 | 0.255 | 0.798 | 0.914 | 0.949
320 | Qs | 0.011 | 0.056 | 0.106 | 0.042 | 0.132 | 0.210 | 0.754 | 0.886 | 0.930
Qr [0.009 | 0.049 | 0.100 | 0.017 | 0.066 | 0.127 | 0.025 | 0.103 | 0.187
Qs [0.023 |1 0.096 | 0.172 | 0.057 | 0.159 | 0.253 | 0.439 | 0.653 | 0.757
640 | Qs | 0.014 | 0.063 | 0.114 | 0.039 | 0.118 | 0.195 | 0.337 | 0.561 | 0.666
Qr |0.013 | 0.062 | 0.109 | 0.024 | 0.088 | 0.152 | 0.037 | 0.139 | 0.236

Note: beta = U(0.01,0.1). Qs represents the specification test; Q5. denotes the
specification test after Shanken’s EIV adjustment; () is the specification test modi-

fied by Shanken (1985).

82



Table 2.11. Model specification tests when betas are zero

N |6 25 100

T 1% | 5% |10% |1% |5% |10% |1% |5% | 10%
Qs |0.011 | 0.053 | 0.105 | 0.027 | 0.103 | 0.177 | 0.630 | 0.795 | 0.864
320 | Qs | 0.006 | 0.033 | 0.067 | 0.020 | 0.083 | 0.144 | 0.607 | 0.781 | 0.851
Qr |0.005 | 0.028 | 0.060 | 0.006 | 0.036 | 0.081 | 0.008 | 0.045 | 0.087
Qs |0.010 | 0.053 | 0.102 | 0.018 | 0.076 | 0.143 | 0.175 | 0.356 | 0.480
640 | Qs | 0.004 | 0.028 | 0.064 | 0.014 | 0.057 | 0.114 | 0.159 | 0.334 | 0.457
Qr |0.004 | 0.027 | 0.059 | 0.009 | 0.038 | 0.078 | 0.010 | 0.043 | 0.087

Note: (s represents the specification test; () . denotes the specification test after

Shanken’s EIV adjustment; Qr is the specification test modified by Shanken (1985).
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Table 2.12. Empirical sizes of the bias corrected t tests

high low

T | N 6 25 100 |6 25 100
320 | FM-¢ | 0.090 | 0.055 | 0.047 | 0.060 | 0.046 | 0.031
t-SK | 0.047 | 0.042 | 0.044 | 0.011 | 0.032 | 0.026
640 | FM-¢ | 0.091 | 0.072 | 0.049 | 0.065 | 0.054 | 0.046
t-SK | 0.049 | 0.053 | 0.042 | 0.020 | 0.041 | 0.039

Note: "FM-t" denotes the FM ¢ test. "t-SK" means the FM ¢ test under Shanken’s

EIV adjustment. The significance level is 5%.
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Table 2.13. Kleibergen’s statistics with true error variance

N

high

low

Zero

6

25

100

6

25

100

6

25

100

320

FAR
FM-LM
GLS-LM

0.090
0.104
0.119

0.058
0.000
0.190

0.117
0.000
0.438

0.049
0.048
0.053

0.051
0.049
0.051

0.055
0.065
0.049

0.052
0.047
0.045

0.043
0.051
0.050

0.052
0.045
0.046

640

FAR
FM-LM
GLS-LM

0.068
0.081
0.091

0.062
0.000
0.228

0.099
0.000
0.407

0.057
0.045
0.047

0.048
0.051
0.053

0.048
0.055
0.053

0.047
0.049
0.050

0.051
0.054
0.056

0.054
0.054
0.053

Note: The significance level is 5%.
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Table 2.14. Model specification tests with true error variance

N | high low useless

T 6 25 100 |6 25 100 |6 25 100
Qs [0.175 | 0.435 | 0.863 | 0.059 | 0.093 | 0.184 | 0.051 | 0.045 | 0.052
320 | Qs | 0.053 | 0.054 | 0.066 | 0.037 | 0.070 | 0.141 | 0.029 | 0.033 | 0.046
Qs [0.178 1 0.446 | 0.862 | 0.077 | 0.128 | 0.257 | 0.053 | 0.051 | 0.053
640 | Qs | 0.049 | 0.047 | 0.060 | 0.046 | 0.090 | 0.165 | 0.033 | 0.037 | 0.045

Note: (), represents the specification test; (),. denotes the specification test after

Shanken’s EIV adjustment. The significance level is 5%.

86



CHAPTER 3

Macroeconomic Factors and the Cross-Section of Commodity

Returns

3.1. Introduction

The surge in commodity futures prices in recent years has engendered renewed
interest in commodities from investors, policy makers and financial economists. Since
the third quarter of 2007, the nominal prices of most commodities have reached record
highs. Now, commodities are considered an alternative asset class due to their excel-
lent ability to offer diversified benefits compared with other assets.! Understanding
how commodity prices are determined or why some commodities pay higher aver-
age returns than others, can help investors to grasp trading opportunities and guide
public and private project decisions.

Research has revealed that historical average returns of long-only portfolios of
commodity futures are similar to the average equity returns. For example, Bodie and
Rosansky (1980) form an equally-weighted portfolio of 23 commodities from December
1949 to December 1976. They find that the portfolio has an excess annual return of
9.77% which is close to that of common stocks at 9.42%. Erb and Harvey (2006)
obtain a comparable result using the Goldman Sacks Commodity Index (GSCI) from
December 1969 to May 2004. The annualized compound returns of the GSCI and
S&P 500 are 12.24% and 11.20%, respectively. A similar result emerges from the
empirical analysis in this chapter with the GSCI from January 1986 to July 2008.>

Commodities are also very heterogeneous. For example, from January 1986 to July

IFor example, Greer (2000).
2See Table 1.

87



2008, the historical annualized excess return of crude oil is 16.311% with a standard
deviation of 33.553, while the average return of cotton is 0.768% with a standard
deviation of 24.614.%

The historical evidence indicates that investors are able to obtain excess returns by
investing in commodity futures. However, some studies [Arnott and Bernstein (2002),
Erb and Harvey (2006)] point out that the performance of the future returns should
not be inferred from the past performance of returns. Forward-looking returns should
be based on an understanding of the fundamental determinants of assets returns.
Further, compared to stocks and bonds, which are determined by future cash flows
of companies, commodities are affected by demand and supply. This implies that
macroeconomic variables may play an important role in the price determination of
commodities. Therefore this chapter investigates the macroeconomic or fundamental
risks, faced by those US investors who employ a buy and hold strategy, from investing
in commodity futures.

The results reveal that investors are compensated on average for taking on ex-
change rate risk. If a commodity futures contract offers a low return when the US
dollar appreciates (or other currencies(y) depreciate(s)), investors in this contract,
expect to obtain an excess return in equilibrium. This is reasonable since, when
the dollar increases, for some commodities world demand decreases and foreign ex-
porters will be willing to export more commodities to the US. Thus, both the spot
prices and futures prices will decrease. Such commodities therefore offer low returns.
US investors who hold contracts in these commodities require compensation for the

exchange rate risk.

3See Table 2.
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There have been several studies investigating how commodity futures prices are
determined in equilibrium. Most of the research is based on the hypothesis that com-
modity futures are assets. Consequently, asset pricing models constructed for equities
should also apply to commodity futures. However, the results emerging from the ex-
isting studies are mixed until now. Dusak (1973) is the first to fit commodity futures
returns into a capital asset pricing model. She examines three commodity futures
contracts in the agricultural sector from 1952 to 1967. But she does not find that
the commodity futures are exposed to the stock market factor. Bodie and Rosansky
(1980) analyze the quarterly returns of 23 commodities from 1950 to 1976 and find a
significant negative market risk premium. Jagannathan (1985) tests the consumption-
based Intertemporal Capital Asset Pricing Model (ICAPM) using corn, wheat and
soybeans from January 1960 to December 1978. This specification is not supported by
the data. Bessembinder (1992) tests whether futures and equities have uniformity in
their risk and return relationships. Using both equity returns and 22 futures returns
from January 1967 to December 1989, he finds that the integration of the equities
and futures markets can not be rejected. The data include financial futures, agri-
culture futures, foreign currency futures and mineral futures. More recently, Roache
(2008) tests Merton (1973)’s ICAPM by using the Fama-Macbeth procedure with
time varying betas. He uses the percentage price change of 17 nearest-to-maturity
commodity futures contracts constructed by the Commodity Research Bureau (CRB)
from January 1973 to February 2008. He finds that investors are compensated for
bearing interest rate risk.

This chapter differs from the previous literature in several respects. First, the
potential factors included in the model are chosen based on theoretical arguments.
Second, these factors are widely believed to possess the ability to determine commod-

ity prices and have been found to be priced by equity returns. Third, the S&P GSCI
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returns used are known to be capable of reflecting the returns earned by investors
through holding commodity futures well. Fourth, the estimation method applied is
more conservative than the other available methods. Finally, the results are robust
to different estimation methods, different data sets and longer time series.

There are several methodologies used to estimate and test a linear asset pricing
model: for example, the Fama-Macbeth procedure, the Generalized Method of Mo-
ments Stochastic Discount Factor (GMM-SDF) method, etc. However, when macro-
economic variables are included in the model, many complications arise in the ap-
plication of these methods. These complications include inference problems arising
from weak identification, low variability of the factors and misspecified models. In
order to alleviate these problems, a conservative approach is employed by adopting a
recently proposed demeaned GMM-SDF method. This method has been argued to be
invariant to affine transformations of the factors, and to have better power in reject-
ing misspecified models when the factors have low correlation with returns [see, for
example, Cochrane (2005), Burnside (2007) and Kan and Robotti (2008)]. Most im-
portantly, in determining whether a factor is priced, possible model misspecification
is explicitly taken into account. This point is often ignored in the existing research.

The rest of the chapter is organized as follows. Section 3.2 explains the deter-
mination of commodity returns. Section 3.3 reviews the models and the demeaned
GMM-SDF methodology. Section 3.4 describes the properties of the data. Section
3.5 explains the empirical evidence and discusses the results. Section 3.6 discusses

the conclusions.

3.2. The determination of commodity returns

Unlike stock prices, which depend on the future cash flow of companies, com-

modities are affected by demand and supply. Gospodinov and Ng (2010) derive the
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determination of the expected spread of commodity prices. The model used in this
chapter follows their arguments. Let F}r denote time ¢ price of a futures contract
which matures at time 7. S; is the underlying commodity’s spot price at time ¢.
t;r is the nominal interest rate from time ¢ to 7. The theory of storage shows that
the futures price is determined by two components: 1) the gain forgone from buying
the commodity instead of investing in riskless assets, Sy(1 + i;7); 2) the marginal
convenience yield (net of storage cost) by holding a unit of commodity. Convenience
yield is the benefit from holding commodities. It varies with the supply and demand
of the commodities. For example, the convenience yield of a particular commodity
tends to be small when there are large supplies of the commodity. Gorton, Hayashi
and Rouwenhorst (2008) show that the convenience yield follows a decreasing, nonlin-
ear relationship with inventories. Bollinger and Kind (2010) extract the convenience
yield from the Schwartz (1997) three-factor futures pricing model using the Kalman
filter. They find risk premiums embeded in the convenience yield. The relation can

be formulated as:

(31) ‘Fth == St(l + it,T) - CY;’T.

The theory of storage implies that the nominal interest rate and the convenience
yield carry information about the determination of the futures price.

An alternative view of the determination of the futures prices is the theory of
normal backwardation. This theory reveals that a futures price is a biased predictor of
the expected future spot price. Keynes (1930) proposes that producers short contracts
in the futures market to hedge risks due to possible spot price decreases. Thus, they
transfer these risks to long-side investors of the contracts. Long-side investors should
be compensated with a risk premium. This indicates that the risk premium, or the

components of the risk premium (e.g. possibly some financial or macroeconomic
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variables), affect futures prices. Define U, 1 as the risk premium. Then,

(32) F’t,T - Et(ST) - \Ijt,T'

From the previous two equations, the expected spread of spot prices can be de-

rived, yielding

Ey(Sr — S;) = Siier — CYir + ¥y p.

Dividing throughout by S; and let Ry, = STS: = YT = C?;’T and 7 = \I}é—tT
gives
(3.3) Ey(Rir) =it — cyrr + Qo

Since i, = iy + EI;, where E1; is the expected inflation at time ¢, the expected

return can also be represented as

(34) Et(-Rt,T) == 'L.;;T + E]t - Cyt,T + (,Dt,T.

Equation (3.4) implies that the expected spot return from time ¢ to 7" is comprised
of four components: the real interest rate, expected inflation, the convenience yield
and the risk premium. From the theory of normal backwardation, ¢ includes
information on the futures price and the spot price, implying that it is not mutually

exclusive with the first three terms in the right hand side of the equation (3.4).
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3.3. Estimation and testing procedures

In this section, we first review the SDF representation of a linear factor model.
Then, we describe the demeaned GMM-SDF procedure. In the end, the statistics for

testing the slope parameters of the SDF model are presented.

3.3.1. The stochastic discount factor representation

The SDF representation of an asset pricing model explains directly how an asset is
priced. The price of an asset equals its expected discounted payoffs. Since the price

of the return of an asset is one, we obtain the following pricing formula

(3.5) E(mRy) = t,

where m; is the SDF, R, is a vector of gross returns on N test assets and ¢y is a
N by 1 vector of ones. The SDF form is a fundamental ingredient of all asset pricing
models. It encompasses, for example, linear asset pricing models and consumption-
based asset pricing models. It is also applicable to all assets, including stocks, bonds,
commodities, and so on. Different asset pricing models imply different SDFs. For a
linear asset pricing model, m; = a+ V' f;, where a and b are coefficients; f; is a K by 1
vector, representing K financial or macroeconomic factors at time ¢, from which the
return R; is generated.

In the empirical asset pricing literature, excess returns are more often used than
gross returns. Since the risk free rate also satisfies equation (3.5), it can be written

as

(3.6) E(mRy) = Oy,

where Ry = Ry — Ry, is the excess return and Oy is a vector of zeros.
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The left hand side of the equation (3.6) can be called the pricing error. We denote
it as e = E(myRY), that is the pricing error is zero when the SDF is in the set of
correct SDFs.

The idea of the linear asset pricing model is simple. However, until now, there is
no consensus about which model provides the best approximation despite the large
number of studies in the literature. Evidently what factors should be contained in

the model is a rather difficult question.

3.3.2. Estimation

3.3.2.1. The demeaned GMM-SDF method. The GMM-SDF method is used
in the literature to estimate the SDF parameters and testing the specification of linear
asset pricing models. Unfortunately, the SDF parameters in m; = a + b'f; are not
identifiable. For example, if @ = 0 and b = 0, the pricing errors are zero. The mean
of the SDF can not be identified either. For example, E(2 x m,RS) = E(m,Rf) = 0.
The common practice is to estimate a normalized version of the SDF, namely, m; =
1—=0"(fi — E(f:)) or my =1 —b"f;. The former is called the demeaned GMM-SDF
method. The latter is named the traditional GMM-SDF method.

Both the demeaned GMM-SDF method and the traditional GMM-SDF method
are reviewed in Cochrane (2005). The demeaned procedure can be viewed as a re-
gression of expected excess returns on the covariance of the returns and the factors.
In comparison, the traditional one can be considered a regression of expected returns
on the second moments of the returns and the factors. Kan & Robotti (2008) point
out that the demeaned procedure is invariant to affine transformations of the factors.
However, the traditional GMM is not. Thus, the traditional HJ-distance will possibly
provide incorrect model rankings if the mean of the SDF is not restricted to be the

same. For example, by modifying the mean of the factor, the GMM procedure could
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potentially favor a very poor model*. Kan and Robotti (2008) also provide a modified

HJ-distance for the demeaned method. The demeaned SDF is

(3.7) my =1 b"(f — pr),

where pp = E(F).
E(fi — 1r)

B{R{[1 = (fs — pr)'b"]}
The parameters 6 = [i/), b¥]' can be estimated by minimizing a quadratic function

The moment conditions of the GMM procedure are E(g;) =

Qn = QT(Q)/ATQT(Q),

T
9i7(9) T 72 (fi = 1r)
where gr(0) = = 2> a(0) = s =t is the
gor(0) = %;{Rﬂl — (fe — pp) 0%}
. . . gu(0)
sample counterpart of the previously metioned moment conditions, ¢;(0) = =
g2:(0)

Je— pr
, Ar is the prespecified weighting matrix represented as Ar =

Rl = (fi - por) V]

Ik Oxn y L pe_ ~ N~ L e
. s and VRF == TZ(Rt _ﬂR)(ft_NF) y LR = TZRt Let OKN and OKK
/ t=1 t=1
Oxx VipWs

denote K by N and K by K matrices of zeros respectively, [x be a K by K identity

matrix, W, be the weighting matrix in the quadratic form Qa, = gor(b?) Wagar(b?).

N T
In this chapter, we let Wy = Vi = [£ Y (RS — [ig)(Rf — [ig)'] !, which is the vari-
t=1

ance of the returns. This permits the calculation of the modified HJ-distance measure

which will be reviewed later. Therefore,
§ = arg min Q(0).

4Details can be found on page 818-819 in Kan and Robotti (2008).
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By solving the minimization problem, we obtain

1T
izzlft

and

(3.8) 6\ (VRFVR VRF) 1VRFVRR“R

The variance of § = [ bAd,]’ can be estimated by
~ 1 o~
(3.9) Q = —(Ar D7)~ ArVIAL (DT A7)~

4 —Ix  Okk
where D =

—~ ~ :
urb*  —Vgr
In order to account for possible serial correlation in the moment conditions, we

employ the Newey and West (1987) estimator which is consistent and ensures that

Ve is positive definite. It can be calculated as

(3.10) )+ zm:

Jj=1

where vd ngt gtﬂ . Since the sample size is only 271, m is set to 2.

When a model is mlsspec1ﬁed, the variance of § can be derived by the delta

method:

(3.11) Q, TZ th

where q,(0) = HVy Vi (Rs = fir) (1= G0) + H[(fy = fir) — Ve Vi (RS — i) iy + b
with H = (Vi VitVer) ™ G = 1 — b(f, — [ip), G = €, Vit (RS — ig) and &, =

fig — Vapb?.
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Kan & Robotti (2008) argue that the traditional HJ-distance is not appropriate
here since it measures the distance between the proposed SDF to the set of all correct
SDFs. In this case, the mean of the SDF has been restricted to be 1. A more suitable
HJ-distance will be the distance of the proposed SDF to the set of correct SDFs with
a unit mean.

The modified sample HJ-distance can be calculated as the following:

(3.12) HI@) = ) g (0) Vg (1),

~ T ~
where gor(b%) = 73 (R{(1 — (fi — fir)'0)).
t=1
The modified HJ-distance is asymptotically distributed as
N-K

(3.13) TIHI@) 5 3" Mu;as T — o,

=1

where {)\f}ij\;K are (N — K) nonzero eigenvalues of L? = X (Vgg)"/?*Vay(Vrr)'/?X
with X = []N - (VRR)1/2VRF(V}/{FVRRVRF)71V]I%F<VRR)1/2]7 (VRR)1/2 is the upper-
triangular matrix from the Cholesky decomposition of Vgr = E((R{ — pugr)(R{ — pir))
and pp = E(R¢) and {v;}" are N — K independent x(1) distributed random
variables.
N-K R
Let u = Z Mv;, where )\; is the sample counterpart of A\?. The empirical p-
i=1
value of the modified HJ-distance can be calculated by simulating different samples

of {u; };.]:1 and comparing them with the estimated T[H J (@\)]2 The empirical p-value

is defined as

(3.14) pus = 53010 = TIHIOP)
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where J being the number of simulations, /(-) is an indicator function with /(-)

= 1if @; > T[HJ(6))?, zero otherwise.”

3.4. Data Description
3.4.1. Commodity futures returns

The futures data used are components of S&P GSCI Excess Returns obtained from
Morningstar, Inc. All the commodities included in the GSCI are chosen due to its
liquidity. The returns are constructed from the prices of nearest-to-maturity and
second nearest-to-marturity futures contracts. The contracts are rolled to the next
nearest-to-maturity contracts on the fifth to ninth business days in the month before
the maturity month.® Ideally, all the 24 components should be included. However,
in order to have a long time series, only 14 commodities which can be dated back to
January 1986 are selected. Platinum is also included. The return series of platinum
is constructed the same way as the components of the GSCI Excess Return. So there
are 15 commodities starting from January 1986 to July 2008, or 271 data points. The
15 commodities belong to five sectors: 7 in agriculture (cocoa, coffee, corn, cotton,
soybean, sugar, wheat), 2 in livestock (lean hogs, live cattle), 2 in industrial metals
(copper, platinum), 2 in precious metals (gold, silver) and 2 in the energy sector

(crude oil and heating oil). The monthly returns are compounded on a daily basis.

3.4.2. The factors

From equation (3.4), expected spot returns are determined by the real interest rate,
the factors affecting convenience yield and components of risk premiums. The theory

of storage and the theory of normal backwardation suggest that the real interest rate

5The calculation of the empirical p-value of the modified HJ-distance is similar to that of the tradi-
tional HJ-distance described in Jagannathan and Wang (1996).

6The description of the data can be found in the following link:
http://www.standardandpoors.com/
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and components of the risk premiums comprise information on the determination of
futures prices. Erb and Harvey (2006) point out that futures returns (or the change of
the futures prices) are a combination of the spot returns and roll returns. Therefore,
there are reasons to believe that the real interest rate includes information about
futures returns. Further, the commodities are dollar denominated. The variation of
the exchange rate is widely believed to affect the supply and demand of commodities.
Therefore, exchange rate growth should be an important factor in the determination
of futures returns. In addition, we include stock market returns. There is no con-
sensus on the variables influencing the convenience yield and the components of the
risk premium. The stock market returns can be used as a proxy for all the other
information aside from the real interest rate and exchange rate growth. The factors
are described and our choices are elaborated upon in the following paragraphs.

The market factor is obtained from Kenneth R. French’s website. It is the value-
weighted return on all NYSE, AMEX, and NASDAQ stocks in excess of the one-month
T-bill rate. Market indices are included based on the following considerations. Ac-
cording to Chen, Roll, and Ross (1986), macroeconomic factors can not be expected
to possess all the information available to the market in a month. It is thus neces-
sary to include market indices since the stock prices are affected instantly by public
information. Furthermore, the theory of ICAPM demonstrates that market indices
represent stock market performance, while, macroeconomic factors represent invest-
ment opportunities. Investors make investment decisions based on these two criteria.
Ideally, the market factor should include all the assets available to investors. It should
thus include commodity futures. However, since the commodity futures are only a
small fraction in the market portfolios, it is reasonable to include stock returns alone.

The real interest rate is measured by subtracting expected inflation from the nom-

inal interest rate. The nominal interest rate is the three month T-bill rate obtained
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from Federal Reserve Bank of St.Louis. Frankel (2006) proposes an overshooting the-
ory to argue that commodity prices have an inverse relation with the real interest
rate. Specifically, high interest rates decrease the demand for storable commodities
and increase their supply. As the interest rate decreases, investors move their money
from equities into commodities. Therefore, commodities are expected to inversely
related to interest rate movements.

The real interest rate can be considered a proxy for the state of investment oppor-
tunities [e.g. Merton (1973) and Cox, Ingersoll and Ross (1985)]. It is the real interest
rate which affects consumers intertemporal consumption and investment decisions.

The exchange rate is the US effective exchange rate on major currencies. It is
constructed by the Federal Reserve with the object of inducing market pressure on
the US dollar. Commodities have a global market. Their price depends on global
supply and demand. Many commodities are denominated in US dollars. Therefore,
investors face a risk of exchange rate fluctuations. For example, both Mundell (2002)
and Frankel (2008) have documented a link between the commodity price cycle and
the dollar cycle.

The exchange rate variable is priced in international asset pricing models. The
idea is that world security markets can be viewed as one market. Investors from
different countries face different exchange rates. Investors demand higher expected
returns to be compensated for the exchange rate risk. The discussion of exchange

rate risk is included in Solnik (1974), Adler and Dumas (1983), among others.

3.4.3. Summary Statistics

3.4.3.1. Properties of the returns and the factors. In Table 3.1, commodity
returns are compared with other asset returns. Stock returns are represented by the

return on the SP 500 index. The bond is the Ibbotson US long term coporate bond.
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The compound annualized average is 8.047, which is similar to that of the stock
returns 7.206. Each is larger than the average of bond returns, 3.917. Commodities
have a standard deviation 18.848, which is 4 percentage points more than that for
stocks and 11.6 percentage points more than that for bonds. Commodities have the
lowest Sharpe ratio due to their high volatility.

Table 3.2 summarizes the statistical properties of individual commodity returns.
Most commodities have positive returns in this period. Energy and industrial metals
have larger average returns than other commodities. Compared to the sample period
in Erb and Harvey (2006), gold and silver perform much better in the sample period.
The returns increase from -4.81 and -5.30 to 1.037 and 2.712 for gold and silver
respectively. Agriculture and energy tend to have large standard deviations. The
risk premiums are significant for industrial metals and energy. All commodities have
positive skewness, except lean hogs and live cattle. The large excess kurtosis indicates
that many commodity futures returns have fatter tails than a normal distribution.
The first-order autocorrelations of commodity returns are very small, indicating that
these returns are not persistent.

Since it is typically believed that some commodities act as a hedge against infla-
tion, some unconditional correlations between these asset returns and inflation are
considered. Table 3.3 shows the correlation of excess returns and inflation in two
different sample periods. One is from January 1986 to July 2008, the other from June
2004 to July 2008. Commodity returns have negative correlations with both stocks
and bonds and a positive correlation with inflation. The magnitude of the correla-
tions is pretty small in the whole sample period. The correlations become larger in
the more recent sample period. For example, the correlation of the returns of stocks
and commodities is -0.116 for the more recent sample period compared to -0.070 for

the whole sample period.
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Table 3.4 presents the properties of the factors. The market factor has a monthly
average of 0.573 and nearly zero autocorrelation. It is the most volatile among the
three factors. The monthly average of the exchange rate growth is negative, with a
first-order autocorrelation 0.336. The real interest rate has an annualized average of
1.464 and is very persistent with an autocorrelation of 0.963.

Table 3.5 summarizes the correlations of the factors. All these factors have very
small correlations with each other.

Table 3.6 shows the estimated betas. Most commodities tend to have negative
betas associated with real interest rate. This is consistent with Frankel (2006) who
argues that a low real interest rate leads to high commodity prices. Gold and silver
have significantly negative relations with the real interest rate at the 5% significance
level. 'When the value of US dollar decreases, the price of commodities tends to
decrease. Gold and industrial metals show significant relations with the exchange
rate at the 5% significance level. Gold is the only commodity which has a significant
beta with market returns at the 5% significance level. This is consistent with the
argument that commodity futures do not have close relations with stocks.
3.4.3.2. Commodity Returns over the business cycles. Gorton and Rouwen-
horst (2006) argue that the negative correlation of commodity porfolio returns and
equity returns is due to the different behavior of the commodity index over the busi-
ness cycles. Their results are based on analyzing an equally weighted commodity
index from July 1959 to December 2004. They show that the commodity index earns
higher returns in the late expansion and early recession than those in their counter-
stages of the business cycles, on average.

In this part, we examine the performance of the GSCI excess index returns and
some individual commodity returns from the five sectors over the different stages

of business cycles on average. We also investigate their performance in the latest
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business cycle, which is the cycle from March 2001 to December 2007. The business
cycles are identified by the National Bureau of Economic Research. The commodity
returns are dated back to its earliest initiation time’. The data on the GSCI index,
the agriculture commodities and live cattle involve 6 expansions and 5 recessions.
Table 3.7 presents the averages of commodity returns at different stages of the
business cycles. The GSCI index behaves in a similar pattern as that reported by
Gorton and Rouwenhorst (2006). Most representative individual commodities have
positive returns during expansions. In particular, the return of the crude oil is 1.507,
which is the highest among all commodities. In the early expansion, the index return
is very small and all individual commodities show negative returns except for live
cattle and crude oil. The crude oil is very unique in the sense that it has much higher
returns in the early expansion than in the late expansion. It is also interesting to
notice that gold and silver have negative returns during all stages of the expansion.
Commodities do not seem to perform well in recessions on average. The index
and most of the commodities demonstrate negative returns. Even though crude oil
has a positive return, the magnitude is not large. Most individual commodities show
negative returns in early stages of recession on average. However, the index return
is positive. It is most probably due to the crude oil. It performs very well in early
expansion, with a return 7.182. Nevertheless, its return in the latest recession is -
6.294, far smaller than the other commodities. Gold and silver seem to be a very good
hedge against the late recessions on average. They have the best performances among
all the commodities. However, their returns in the early stage of the recessions are
the smallest among all commodites. It is also interesting to notice that even though

the index shows a higher return on average in the early recession than in the late

"The initiation date can be found at the bottom of the table.
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recession, most individual commodities deliver smaller returns than those in the late
recession.

Table 3.8 presents the results for the latest business cycle, from March 2001 to
December 2007. The GSCI provides a higher return in the early expansion than in
the late expansion, which is different from its average over multiple business cycles.
Most of the commodities show positive returns during all stages of expansion. Copper
has an exceptional performance with average returns above 2% at all stages. Further,
the behavior of the gold and silver are quite different from their averages. Both of
them have substantial positive returns.

In the latest recession, from March 2001 to November 2001, the GSCI index
performs much worse than its historical average, with a return 2.36% lower than the
average. Soybean and gold have positive returns. Crude oil performs much worse
than its average. Soybean has an exceptional return in the early recession, which is
5.33%. The index shows a smaller return in the early recession than that in the late
recession, which is consistent with the case in Table 6. But the four commodities in
the agricultural and live stock sectors perform better in the early recession than in
the late recession in this case.
3.4.3.3. Predictability of Commodity Returns. There is a strand of literature
analyzing the prediction of commodity returns using common predictors similar to
those predicting equity returns. Since commodity returns are also assets, the predic-
tion of commodity returns should have the same explanation as equities. One is due
to market inefficiency, which means prices deviate irrationally from fundamentals.
The other is due to the changing of equilibrium expected returns through time. If
some variables are able to predict commodity returns, it may imply that the asset
pricing model holds from time to time conditional on the information proxied by these

variables.
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In this part, the results of the predictive ability of three variables are presented:
the yield spread (YS), the dividend yield (DY) and the short rate (SR). The yield
spread and the dividend yield have been argued to be proxies for the business cycle
[see, for example, Fama and French (1989)]. Bessembinder and Chan (1992) analyze
12 futures markets from January 1975 to December 1989 and document that T-bill
yield, dividend yield and yield spread have the ability to predict commodity returns.
More recently Hong and Yogo (2009) construct an equally-weighted portfolio using
34 fully collaterized commodity futures and find that the short rate and yield spread
possess the ability to predict commodity returns in the sample period from January
1965 to December 2008.

The dividend yield is constructed using the value-weighted return including div-
idends and excluding dividends as described in Fama and French (1988). It is the
summation of the 12-month dividends over the price at the beginning of the period.
The yield spread is the difference between Moody’s seasoned Aaa corporate bond
yield and the 1-month T-bill rate following Fama and French (1989). The short rate
is the 1-month T-bill rate obtained from Kenneth R. French’s website. Table 3.9
presents the properties of the three information variables from December 1985 to
June 2008. The first-order autocorrelation of the dividend yield is 0.986, which is
the largest among all three variables. The yield spread is the least persistent, with
the autocorrelation 0.9051. Furthermore, the correlation of the yield spread and the
dividend yield is very small (-0.025). In comparison, the correlations of the short rate
with the dividend yield and the yield spread are much larger.

In Table 3.10, we report the regression of the commodity returns on the lagged
information variables as in Hong and Yogo (2009). The variables are detrended by
subtracting the previous 12-month moving average to guard against spurious regres-

sion bias as suggested by Ferson, Sarkissian, and Simin (2003). The results show that

105



these variables do not have statistically significant power to predict the GSCI index
in the sample period. For individual commodities, we observe that the dividend yield
is significant for copper and wheat at the 5% significance level. The yield spread and
the short rate exhibit some predictive power only for copper at the 5% significance
level and for crude oil at the 10% significance level.® The results are somehow consis-
tent with the results in Hong and Yogo (2009). They do not find that these variables
possess significant power in predicting commodity index returns in the sample period

from 1987 to 2008.

3.5. Empirical Evidence

3.5.1. Estimation Results

The results investigating the validity of CAPM are presented in panel A of Table 3.11.
The demeaned method shows that the t-value for the market factor is 1.506 assuming
a correctly specified model and 1.263 under a potentially misspecified model. This
result is consistent with Dusak (1973) and Bodie and Rosansky (1980). The HJ-
distance measure is not statistically different from zero at the 10% significance level.
This can be attributed to the very volatile nature of commodity returns.

The results from the three-factor model are shown in panel B of Table 3.11. The
demeaned method provides similar results under a correctly specified model and under
a misspecified model. This is expected since the HJ-distance is 0.214 with a p-value of
0.817. The pricing error is very small in this case. The t-values of the exchange rate
growth are -2.893 under a correctly specified model and -2.694 under a misspecified
model. Therefore, it can be concluded that exchange rate growth is priced but the

real interest rate is not. This indicates that investors are not compensated for the real

8We also experimented with combinations of two information variables out of these three in a condi-
tional asset pricing model with the market, real interest rate and exchange rate as the state variables.
We did not find any significant results.
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interest rate risk. This result is different from Roache (2008), who shows that the real
interest rate is priced for the period from January 1973 to February 2008. However,
based on the theory of storage and the theory of backwardation, the real interest
rate does affect commodity returns. Furthermore, from Table 3.5, we observe that its
correlation with the market factor and the exchange rate is very small. This implies
that it also brings extra information in explaining commodity returns. Therefore, the
3-factor model is favoured.

In order to compare different models visually, the scatter graphs of the estimated
expected returns versus realized average returns under different model specifications
are plotted. The lines in the graphs are 45-degree lines: the closer the scatter points
are to the line, the better the fit of the model. Figure 1 shows the plots of different
model specifications. From top to bottom, the models are CAPM with stock market
returns as the only factor and the three-factor model. The points in the first graph
spread out widely. The estimated expected returns of many commodities are very
different from the corresponding realized expected returns. This indicates that the
CAPM has a very poor fit. The second graph shows that, after including the exchange
rate and the real interest rate in the model, the estimated expected returns become
much closer to the corresponding realized returns. This reinforces the belief that the

three-factor model is much better than the CAPM.

3.5.2. Robustness Check

For a robustness check, we first apply the traditional GMM to estimate the above
models. The advantage of the traditional GMM-SDF to the demeaned method is
that the traditional method is a one-step method, while the demeaned method is
a two-stage procedure. In Table 3.12, the results for the 3-factor model estimated

by the traditional method are reported. The results are quite similar to the those
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estimated by the demeaned method in terms of both sign and statistical significance.
The exchange rate is more significant this time with a ¢-value -2.982.

We also tried the estimation using the Fama-Macbeth method to estimate the risk
premiums directly. Table 3.13 shows that the exchange rate is also priced by using
the method with and without Shanken’s correction [see Shanken (1992)].

In order to check whether the results hold in a long period, returns are constructed
using commodity data obtained from US Commodity Research Bureau (CRB). Since
CRB only has price data instead of return data, returns are constructed by adding
the percentage net basis to the percentage change of the commodity price. The
percentage net basis is defined as the ratio of the net convenience yield — marginal
convenience yield minus per-unit storage cost — to the previous period’s price. The
marginal convenience yield is obtained from the theory of storage. By using the same
15 commodities from April 1983 to July 2008, we find that the exchange rate is also
priced. Table 3.14 shows that the t-value is -3.724 assuming the model is correct and
-3.314 under a potentially misspecified model.

The high persistence of the real interest rate process poses some empirical chal-
lenges to the stationarity assumption that allows the inclusion of real interest rate
in the model in levels. Also, some experimentation with different real interest rate
processes are undertaken: for example, the real interest rate constructed by subtract-
ing the previous 12-month moving average and a process that subtracts the previous
3-year moving average. In all these cases, the exchange rate is found to be significant

at the 5% significance level.

3.5.3. Possible Economic Explanations

The result using the GSCI excess commodity futures from January 1986 to July

2008 indicates that, after controlling for real interest rate movements and the market
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returns, the risk premium of the exchange rate is significant and has a negative
sign. This means that commodities whose returns are negatively correlated with the
exchange rate should be expected to have higher returns, in equilibrium. For example,
as the US dollar appreciates or other currencies depreciate relative to the US dollar,
prices of some dollar-denominated commodities drop. The reason can be that the
world demand for these commodities decreases. It can also be due to the increased
supply of commodities. Foreign exporters, especially the suppliers of storable goods,
are willing to provide more commodities because the appreciation of the dollar offers
them higher returns. This is because the supply of storable commodities is able to
increase in the short term, given enough inventories. Therefore, the return to US
investors on these commodities decreases. They are expected to receive a reward for

bearing the risk in equilibrium.

3.6. Conclusion and Discussion

This study contributes to the empirical literature that explores the determination
of commodity futures prices in equilibrium. It also sheds some light on the current
debate on the profitability of investing in long-only portfolios of commodity futures
and the predictability of common futures returns.

In this study, macroeconomic determinants of the commodity returns in both
a static asset pricing model framework and by allowing the risk premiums to vary
over time, has been investigated. The macroeconomic factors included are the stock
market factor, the real interest rate and the exchange rate. These factors have been
argued to be the main determinants of commodity prices. They have also been found
to be priced by equity returns. This study also considers the predictability of the

commodity futures returns using three variables: the short rate, the dividend yield
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and the yield spread. The results show that these variables tend to have very weak
predictive power only for copper and wheat among all the 15 commodities.

The model is estimated in its SDF representation using the demeaned GMM-SDF
method. This method is invariant to linear transformations of the factors. It also
has some power to detect useless factors. We report both results under the correctly
specified model and under model misspecification. Since the GMM method we are
using is not an efficient GMM (because it uses a prespecified weighting matrix), the
standard errors obtained might be larger than those with the efficient GMM. This
could be one reason for statistical insignificance for the interest rate. On the other
hand, this method allows us to make objective comparisons across different SDF and
model specifications using a common weighting matrix.

The main result of the chapter is that exchange rate risk is priced. Specifically,
the commodities which are negatively related to the exchange rate provide higher
expected returns in equilibrium. A possible explanation could lie in the willingness
of commodity suppliers to provide more commodities and/or that the world demand
shrinks when the dollar value increases, or both. Thus, the prices of some commodities
fall. US investors are worse off and they ask for compensation for the exchange rate
risk they are bearing. The results are robust across different estimation methods and

different data sets and over a longer time period.
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Figure 3.1. Estimated expected returns versus realized expected returns
sample/lowbeta/writings/disertation/ LM J3P202.wm f

sample /lowbeta/writings/disertation/ LM J3P203.wm f

Note: The lines in the graphs are the 45-degree lines. The closer the scatter points
to the line, the better the fit of the model. The top graph is the plot of the CAPM.
The bottom graph is the plot of the 3-factor model including the market factor, the

real interest rate factor and the exchange rate factor.
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Table 3.1. Comparison of the commodity futures return and other asset returns

average | std Sharpe ratio
GSCI| 8.047 | 18.848 0.427
stock 7.206 | 14.825 0.486
bond 3.917 | 7.249 0.540

Note: the results in the table are compound annualized average returns, standard
deviation and Sharpe ratio calculated from monthly returns from January 1986 to July
2008. The "GSCI" is the Goldman Sacks Commodity Index. The "stock" represents
the SP 500 index. The "bond" is the Ibbotson US long term coporate bond. All

returns are excess returns.
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Table 3.2. Properties of commodity futures returns

average | std Sharpe ratio | t-stat | skewness | kurtosis | AR(1)
cocoa -4.976 | 28.567 -0.174 | -0.847 0.814 4.680 | -0.092
coffee -3.578 | 39.219 -0.091 | -0.441 1.001 5.553 | -0.006
corn -4.487 | 24.700 -0.182 | -0.882 0.976 9.198 | 0.002
cotton 0.768 | 24.614 0.031 | 0.148 0.513 3.989 | -0.037
soybean 4.868 | 22.346 0.218 | 1.013 0.119 4.361 | -0.078
sugar 7.753 | 33.056 0.235| 1.077 0.619 5.038 | 0.062
wheat -1.971 | 23.063 -0.085 | -0.410 0.263 3.218 | 0.010
lean hogs -0.868 | 24.673 -0.035 | -0.168 -0.044 3.881 | -0.070
live cattle 3.980 | 13.568 0.293 | 1.369 -0.523 5.987 | 0.010
copper 17.921 | 26.578 0.674 | 2.968 0.852 5.856 | 0.101
gold 1.037 | 13.707 0.076 | 0.358 0.518 3.814 | -0.017
silver 2.712 | 24.195 0.112 | 0.526 0.405 4.110 | -0.097
platinum 9.980 | 20.761 0.481 | 2.186 0.709 6.808 | -0.048
crude oil 16.311 | 33.553 0.486 | 2.154 0.125 7.160 | 0.111
heating oil | 13.695 | 33.704 0.406 | 1.819 0.532 4.313 | 0.030

Note: This table summarizes the compound annualized average, standard devia-
tion, Sharpe ratio, t-statistic, skewness, kurtosis and the first-order autocorrelation of
the individual commodity returns. The data series are monthly excess returns from

January 1986 to July 2008.
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Table 3.3. Correlation of stocks, bonds, commodity futures and inflation

\ GSCI \ stock \ bond
January 1986-July 2008
stock | -0.070 | - -
bond |-0.052 | 0.168 | -
inf 0.074 | -0.167 | -0.168

June 2004-July 2008

stock | -0.116 | -
bond | -0.087 | 0.006 | -
inf 0.134 | -0.279 | -0.378

Note: The results are correlations of the excess returns and inflation in two dif-
ferent sample periods. One is from January 1986 to July 2008. The other one is
from June 2004 to July 2008. The "GSCI" is the Goldman Sacks Commodity Index.
The "stock" represents the SP 500 index. The "bond" is the Ibborton US long term

coporate bond. The "inf" represents the inflation.
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Table 3.4. Properties of factors

market | rir ex
average | 0.573 | 1.464 | -0.198
std 4.332 | 1.720 | 1.665
AR(1) 0.047 1 0.963 | 0.336

Note: The table summarizes the average, standard deviation and first-order au-
tocorrelation of the factors. The "market" is the market factor, which is the value-
weighted return on all NYSE, AMEX, and NASDAQ stocks in excess of the one-month
T-bill rate. The "rir" represents the real interest rate measured by subtracting the
expected inflation (constructed by the survey research center of University of Michi-
gan) from the three month T-bill rate. The "ex" represents the US effective exchange

rate on major currencies. The data series are from January 1986 to July 2008.
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Table 3.5. Correlation of the factors

market | rir ex
market | 1 - -
rir 0.019 |1 -
ex -0.047 1 0.069 | 1

Note: The results are the correlations of the four factors. The "market" is the
market factor, which is the value-weighted return on all NYSE, AMEX, and NAS-
DAQ stocks in excess of the one-month T-bill rate. The "rir" represents the real
interest rate measured by subtracting the expected inflation (constructed by the sur-
vey research center of University of Michigan) from the three month T-bill rate. The
"ex" represents the US effective exchange rate on major currencies. The data series

are from January 1986 to July 2008.
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Table 3.6. Estimated betas

market rir ex R?
cocoa -0.183* | -0.605* | -0.293 0.030
coffee 0.135 -0.282 0.295 0.006
corn 0.110 -0.109 0.345 0.011
cotton 0.081 0.438 0.050 0.014
soybean 0.053 -0.483* | 0.106 0.018
sugar -0.018 0.190 -0.031 0.001
wheat 0.102 -0.198 0.102 0.007
lean hogs | 0.024 0.416* -0.042 0.010
live cattle | 0.071 0.099 -0.032 0.008
copper 0.132 0.143 -0.828** | 0.039
gold -0.142%F% | 0.277** | -0.483*%** | 0.081
silver 0.087 -0.570%** | -0.106 0.024
platinum | 0.120 -0.175 -0.528*** | 0.034
crude oil | -0.167 0.339 -0.547 0.016
heating oil | -0.125 0.155 -0.666* 0.016

Note: The results in this table are the estimated betas obtained from regressions
of the individual excess commodity returns on the four factors. * , **, and *** denote
significance at 10%, 5% and 1% levels, respectively. The standard errors are the robust
standard errors. The "market" is the market factor, which is the value-weighted
return on all NYSE, AMEX, and NASDAQ stocks in excess of the one-month T-bill
rate. The "rir" represents the real interest rate measured by subtracting the expected
inflation (constructed by the survey research center of University of Michigan) from
the three month T-bill rate. The "ex" represents the US effective exchange rate on

major currencies. The data series are from January 1986 to July 2008.
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Table 3.7. Commodity futures returns at different stages of business cycles

expansion | EE LE recession | ER LR
GSCI 0.602 | 0.090 | 1.114 -0.328 | 0.544 |-1.201
corn 0.000 | -0.553 | 0.554 -0.463 | -0.601 | -0.325
soybean 0.820 | -0.021 | 1.662 -0.198 | 0.479 | -0.876
wheat 0.348 | -0.577 | 1.272 -1.274 | -2.320 | -0.227
live cattle 0.468 | 0.223 | 0.713 -0.023 | -0.210 | 0.164
copper 0.655 | -0.270 | 1.580 -1.377 | -2.606 | -0.149
gold -0.573 | -0.928 | -0.219 -0.699 | -3.394 | 1.996
silver -0.272 | -0.464 | -0.080 -3.554 | -8.848 | 1.740
crudeoil 1.507 | 2.126 | 0.887 0.444 | 7.182|-6.294

Note: The table presents the monthly averages of excess commodity returns at
different stages of the business cycles. The "EE", "LE", "ER" and "LR" represent
early expansion, late expansion, early recession and late recession, respectively. The

"GSCI" is the Goldman Sacks Commodity Index.
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Table 3.8. Commodity futures returns at the most recent business cycle
from March 2001 to December 2007

expansion | EE LE recession | ER LR
GSCI 1.961 | 2.158 | 1.763 -2.691 | -1.221 | -4.162
corn -0.244 | -1.087 | 0.599 -1.178 | 0.143 | -2.499
soybean 1.652 | 1.777 | 1.528 0.756 | 5.331 | -3.818
wheat 0.521 | -0.708 | 1.750 -0.367 | 0.326 | -1.059
live cattle 0.348 | 0.913 | -0.218 -1.719 | -0.237 | -3.201
copper 2.616 | 2.156 | 3.077 -1.095 [ -3.139 | 0.950
gold 1.342 | 1.338 | 1.346 0.601 | 0.642| 0.561
silver 1.788 | 1.871| 1.704 -0.705 | -0.822 | -0.588
crudeoil 2.160 | 3.639 | 0.681 -3.954 | -0.534 | -7.374

Note: The table presents the monthly averages of excess commodity returns in
the latest business cycle, which is the cycle from March 2001 to December 2007. The
"EE", "LE", "ER" and "LR" represent early expansion, late expansion, early reces-
sion and late recession, respectively. The "GSCI" is the Goldman Sacks Commodity

Index.
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Table 3.9. Descriptive statistics for the information variables

variable | average | std deviation | AR(1) | correlation with
- - - - DY YS

DY 2.489 0.928 | 0.986 | - -

YS 0.244 0.116 | 0.905|-0.025 | -

SR 0.373 0.160 | 0.944 | 0.573 | -0.668

Note: The table shows the average, standard deviation, first-order autocorrelation
and correlations of the lagged information variables as in Hong and Yogo (2009). The
variables are detrended by subtracting the previous 12-month moving average to
guard against spurious regression bias as suggested by Ferson, Sarkissian, and Simin
(2003). The "YS", "DY" and "SR" denote the yield spread, the dividend yield and

the short rate. The sample period is from January 1965 to December 2008.
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Table 3.10. Descriptive statistics for the information variables

YS t-stat | DY t-stat | SR t-stat | R"2 | F-test | p-value
GSCI 8.064 | 1.03 2.044 |1.33 8.810 1.13 0.010 | 1.28 0.282
cocoa 9.127 | 0.67 | 4.524 [2.03 |-2.373**|-0.18 0.018 | 1.52 | 0.208
coffee 32.025 | 1.38 0.653 | 0.20 34.427 | 1.49 0.012 | 0.76 | 0.516
corn -6.826 |-0.68 |2.317 |1.22 |-7.595 |-0.72 0.007 | 0.70 | 0.551
cotton -15.531 [ -1.38 |0.480 |0.25 |-8.060 |-0.66 0.010 | 1.02 | 0.382
soybean 4.250 | 0.46 3.290 | 1.82* |-3.981 -0.42 0.016 | 1.16 0.325
sugar 4.232 1 0.20 |3.303 |1.34 11.656 | 0.55 0.011 | 1.04 |0.374
wheat -15.785 | -1.29 | 4.472 | 2.83*%%|-9.688 |-0.85 0.038 | 4.75 | 0.003**
lean hogs |-12.607 | -0.98 |-2.999 |-1.60 |-6.821 -0.53 0.011 | 1.02 | 0.382
live cattle 0.639 | 0.09 |-0.940 | -0.79 4.335 0.60 0.006 | 0.48 | 0.698
copper 40.374 | 2.53%* | 4.433 | 2.19%* | 50.977 | 3.13*** | 0.073 | 4.77 | 0.003**
gold -6.650 [-0.95 |0.834 |0.80 |-4.211 -0.61 0.008 | 0.84 |0.475
silver -16.237 | -1.50 | 0.441 | 0.24 -13.569 | -1.28 0.007 | 0.94 0.420
platinum |-16.203 | -1.50 | 1.074 | 0.58 |[-10.819 |-0.99 0.014 | 1.17 | 0.320
crude oil 25.433 | 1.95*% | 3.021 |1.00 28.740 1.94* 0.015| 1.91 0.128
heating oil | 20.706 | 1.11 2.805 | 0.97 19.468 | 1.12 0.009 | 0.69 | 0.559

Note: The table

shows the results from a regression of the excess commodity

returns on the lagged information variables as in Hong and Yogo (2009). The variables

are detrended by subtracting the previous 12-month moving average to guard against

spurious regression bias as suggested by Ferson, Sarkissian, and Simin (2003). The

"YS", "DY" and "SR" denote the yield spread, the dividend yield and the short rate.

The sample period is from January 1965 to December 2008.
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Table 3.11. Estimation results using demeaned SDF method

panel A
risk permiums | market | rir ex HJ-dist
estimates 0.075 | - - 0.295
t 1.506 | - - -

t mis 1.263 | - - -
p_value - - - 0.116
panel B
estimates 0.126 | 0.026 -0.419| 0.214

t 1.905 | 0.172 -2.893 | -
t mis 1.859 | 0.145 -2.694 | -
p_value - - - 0.817

Note: The table shows the estimation results from the CAPM and our four-factor
asset pricing model. They are estimated by the demeaned GMM/SDF method. The
"t mis" represents the ¢ value under a misspecified model. The "HJ-distance" is the
HJ-distance statistic. The "market" is the market factor, which is the value-weighted
return on all NYSE, AMEX, and NASDAQ stocks in excess of the one-month T-bill
rate. The "rir" represents the real interest rate measured by subtracting the expected
inflation (constructed by the survey research center of University of Michigan) from
the three month T-bill rate. The "ex" represents the US effective exchange rate on

major currencies. The data series are from January 1986 to July 2008.
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Table 3.12. Estimation results using traditional SDF method

risk permiums | market | rir ex HJ-dist
estimates 0.084 | 0.136 | -0.323 |  0.159
t 1.752 | 1.336 | -2.982 | -

p_value - - - 0.827

Note: The table shows the estimation results from the 3-factor asset pricing model.
It estimated by the traditional GMM/SDF method. The "HJ-distance" is the HJ-
distance statistic. The "market" is the market factor, which is the value-weighted
return on all NYSE, AMEX, and NASDAQ stocks in excess of the one-month T-bill
rate. The "rir" represents the real interest rate measured by subtracting the expected
inflation (constructed by the survey research center of University of Michigan) from
the three month T-bill rate. The "ex" represents the US effective exchange rate on

major currencies. The data series are from January 1986 to July 2008.
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Table 3.13. Estimation results using the Fama-Macbeth two-pass regression

risk permiums | market | rir ex

estimates 1.152 ] 0.463 | -1.348
t 0.899 | 1.245|-3.102
t-SK 0.714 | 0.918 | -2.356

Note: The table shows the estimation results from the 3-factor asset pricing model.
It estimated by the Fama-Macbeth method. The "market" is the market factor, which
is the value-weighted return on all NYSE, AMEX, and NASDAQ stocks in excess
of the one-month T-bill rate. The "rir" represents the real interest rate measured
by subtracting the expected inflation (constructed by the survey research center of
University of Michigan) from the three month T-bill rate. The "ex" represents the
US effective exchange rate on major currencies. The data series are from January

1986 to July 2008.
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Table 3.14. Estimation results using demeaned SDF method with CRB data

risk permiums | market | rir ex HJ-dist
estimates 0.207 [-0.032 | -0.711 | 0.325

t 2410 |-0.265 | -3.724 | -

t mis 2.318 |-0.222 | -3.314 | 0.669

Note: The table shows the estimation results from the 3-factor asset pricing model.

It estimated by the demeaned GMM/SDF method. The returns are constructed using

the prices from CRB. The "market" is the market factor, which is the value-weighted

return on all NYSE, AMEX, and NASDAQ stocks in excess of the one-month T-bill

rate. The "rir" represents the real interest rate measured by subtracting the expected

inflation (constructed by the survey research center of University of Michigan) from

the three month T-bill rate. The "ex" represents the US effective exchange rate on

major currencies. The data series are from April 1983 to July 2008.
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