
 i

Partial Order Based Runtime Recovery

Intended For Highly Available

Distributed Applications

Ching Wei Su

A Thesis

In The Department of

Computer Science

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

June 2011

© Ching Wei Su, 2011

 ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ching Wei Su

Entitled: Partial Order Based Runtime Recovery Intended

For Highly Available Distributed Applications

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 Chair

 Examiner

 Examiner

 Supervisor

Approved by
 Chair of Department or Graduate Program Director

________2011 __
 Dean of Faculty

 iii

Abstract

Partial Order Based Runtime Recovery

Intended For Highly Available Distributed Applications

Ching Wei Su

This thesis develops a checkpoint based runtime rollback recovery technique

intended to be used with highly available distributed applications whose correct expected

behavior is specified by the application developer through a partially ordered multiset

(POMSET) of application events.

Checkpoint based rollback recovery techniques for distributed applications

typically store the state of all the application processes and application events (called the

global checkpoints) in persistent store at periodic time intervals. When a runtime failure

is detected, the application is rolled back to an appropriate correct past state in its

execution using the saves checkpoints. Such techniques do not know the correct

application behavior and hence have to store large amount of state requiring significant

amount of persistent storage and recovery time. The idea behind this thesis is that

knowing the correct expected behavior of the application, only the checkpoints necessary

to ensure runtime recovery of the application can be identified and stored thereby making

the recovery much more efficient.

The application developer specifies the correct expected behavior of the

distributed application through a POMSET of application events which is stored as a tree.

The developed runtime recovery technique identifies the nodes of the POMSET tree at

 iv

which a checkpoint must be taken to ensure recovery. In addition, instead of storing the

states of all the processes in the application (the global state), this technique only stores

the states of the processes that are necessary to recover from a potential failure as a

collection of local checkpoints (called group checkpoints). Furthermore, unnecessary

checkpoints are avoided by appropriate analysis of the POMSET tree before execution

(called static checkpoint reduction) and by predicting the necessary checkpoints for

iterative executions at runtime (called dynamic checkpoint reduction) based on past

execution.

A prototype implementation of the runtime recovery technique is developed and it

shows that the technique has very little performance impact on the application. The

technique is illustrated with a practical example application for online travel agency.

Experimental results from the prototype implementation on this example application

show that the developed technique saves about 65% of the persistent store to save the

checkpoints. Qualitative analysis of the developed technique shows that the required

recovery time is significantly reduced in comparison with the traditional recovery

technique.

 v

Acknowledgements

It is a pleasure to express my gratitude to many people who made this thesis

possible.

First, it is so difficult to overstate my gratitude to my master supervisor, Dr.

Jayakumar, for his enthusiasm, his inspiration, and his great efforts to help me in so many

ways. Throughout my thesis-writing period, he provided me great encouragement,

advice, and lots of good ideas. I would have been lost without him.

Also, I would like to thank my sweet family for providing a loving environment

for me. My boyfriend and my mom have been particularly supportive in these years. To

them I dedicate this thesis.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES .. xii

CHAPTER 1 : INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Contribution .. 4

1.3 Outline ... 5

CHAPTER 2 : PARTIAL ORDER MODEL AND CHECKPOINT BASED RECOVERY

... 7

2.1 Partial Order Model ... 7

2.2 Runtime Verification ... 16

2.3 Checkpoint Based Rollback Recovery .. 18

CHAPTER 3 : THE RUNTIME RECOVERY TECHNIQUE ... 23

3.1 Checkpoint Identification .. 24

3.2 Checkpoint Reduction Algorithms .. 39

3.2.1 Static Checkpoint Reduction .. 40

3.2.2 Dynamic Checkpoint Reduction ... 45

3.3 Summary ... 51

 vii

CHAPTER 4 : PROTOTYPE IMPLEMENTATION .. 53

4.1 Deployment Environment ... 53

4.2 Monitor Prototype ... 54

4.3 Configuration Manager ... 56

4.4 Event Manager .. 56

4.4.1 Event Type .. 56

4.4.2 Event Sender and Event Listener .. 59

4.5 POMSET Manager .. 60

4.5.1 Node Type .. 60

4.5.2 Operation Node Specification .. 61

4.5.3 Node Status ... 62

4.5.4 Checkpoint Evaluator ... 64

4.5.5 Static Checkpoint Reducer ... 65

4.5.6 Dynamic Checkpoint Reducer .. 65

4.5.7 Runtime Specification Verifier ... 66

4.6 Instrumented Program Codes .. 67

4.6.1 Message Manager ... 68

4.6.2 Checkpoint Manager... 69

4.7 Observation on the Online Travel Agent Application... 69

 viii

4.8 Summary ... 71

CHAPTER 5 : CONCLUSION AND FUTURE WORK ... 74

REFERENCES ... 78

 ix

LIST OF FIGURES

Figure 1: The POMSET tree of the online Travel Agent Application 16

Figure 2: Global Consistent System State .. 18

Figure 3: The Domino Effect .. 19

Figure 4: Atom Classification ... 24

Figure 5: Operation Node Classification .. 25

Figure 6: Potential Checkpoint Values of Atoms – True/False .. 26

Figure 7: Potential Checkpoint values of Alternation Operator – True/False/Unknown . 27

Figure 8: Potential Checkpoint Value of Concatenation Operator – True/False/Unknown

 ... 28

Figure 9: Potential Checkpoint Value of Concurrency Operator – True/False 29

Figure 10: Potential Checkpoint Value of Concurrency Operator – Unknown 30

Figure 11: Potential Checkpoint Value of Recurrence Operator – True/False 30

Figure 12: Potential Checkpoint Value of Recurrence Operator - Unknown 31

Figure 13: Potential Checkpoint Values for the Online Travel Agent Application 32

Figure 14: Checkpoints of Operators .. 32

Figure 15: Checkpoint of Concatenation Operator ... 34

Figure 16: Checkpoint of Recurrence Operator .. 34

Figure 17: Checkpoint Identification on Online Travel Agent Application 35

 x

Figure 18: Stages of an Atom ... 36

Figure 19: Local Checkpoints of an Atom .. 36

Figure 20: Group Checkpoint Example (A;(B||C)) as a POMSET Tree 37

Figure 21: Group Checkpoint Example (A;(B||C)) as Time Lines 37

Figure 22: Group Checkpoint Example (A;(B||C)) as Consistent Cuts 38

Figure 23: Group Checkpoint Example (A;(B||C)) – Messages On Delivery 39

Figure 24: Static Checkpoint Reduction Algorithm (Priority) on (A;(B||C)) 41

Figure 25: Static Checkpoint Reduction Algorithm (Priority) on (A;(B;C)*) 42

Figure 26: Static Reduction Rule – Depth .. 42

Figure 27: Static Checkpoint Reduction Algorithm on the Online Travel Agent

Application .. 45

Figure 28: Dynamic Checkpoint Reduction Algorithm on (A+B) 46

Figure 29: Dynamic Checkpoint Reduction Algorithm on ((A;B)+(C||D))* 47

Figure 30: Dynamic Checkpoint Reduction Algorithm on Online Travel Agent

Application Case 1... 48

Figure 31: Dynamic Checkpoint Reduction Algorithm on the Online Travel Agent

Application Case 2... 49

Figure 32: Dynamic Checkpoint Reduction Algorithm on the Online Travel Agent

Application Case 1 – Remembered Execution Paths .. 50

 xi

Figure 33: Dynamic Checkpoint Reduction Algorithm on the Online Travel Agent

Application Case 2 – Remembered Execution Paths .. 51

Figure 34: Deployment Environment ... 54

Figure 35: Monitor Prototype in Central Monitor .. 55

Figure 36: Monitor Prototype in Atoms.. 55

Figure 37: Event Type Relationship ... 57

Figure 38: Event Sender.. 59

Figure 39: POMSET Tree Structure ... 61

Figure 40: Operation Node Status Lifecycle .. 63

Figure 41: Atom Node Status ... 64

Figure 42: Runtime Manager for Instrumented Program Codes 67

Figure 43: Average Execution Time for Instrumented Program Codes 70

Figure 44: Average Recovery Time for Atoms .. 71

Figure 45: Issues to be solved – Group Checkpoint of Concurrent Operator 76

 xii

LIST OF TABLES

Table 1: Role List of the Online Travel Agent Application ... 9

Table 2: Atom List of Travel Agency ... 9

Table 3: Event Type .. 58

Table 4: POMSET Node List .. 62

Table 5: POMSET Node Status Type ... 63

Table 6: Runtime Manager for Instrumented Program Codes Function List 68

Table 7: Amount of Storage Space for Traditional Checkpoint Rollback Recovery 72

Table 8: Amount of Storage Space for Partial Order Based Runtintime Recovery.......... 73

 1

CHAPTER 1 : INTRODUCTION

The goal of this thesis is to develop a runtime rollback recovery technique to be

used with highly available distributed applications based on the partially ordered multi-

set model and a prototype implementation of the technique. This chapter motivates the

research and highlights the contributions.

1.1 Motivation

With the advent of the internet, distributed applications integrating a collection of

autonomous services (processes) running on geographically distributed hosts (computers)

into a single unified software system have become a practical reality. Such applications

should be highly available (with little or no down time) in order to be accessed and used

around the clock. Furthermore, these highly available distributed applications may not be

of any value if they cannot guarantee correct operation at all times without any human

intervention. Thus, approaches for the design and implementation of such reliable and

highly available distributed applications have significant practical importance.

Highly available distributed applications usually employ two approaches: failure

masking or failure recovery. An application employing failure masking is normally

designed to produce correct result in the presence of incorrect operation (failure) by

concurrently producing the result in multiple ways (using replicated processes) and then

selecting and returning the correct result (using a voting process) [RKSC06,

SMNTWB02, RR06, OFG07]. Thus, such applications require multiple replicas of the

application processes running in different hosts thereby increasing the resource

 2

requirements, cost and complexity of the application. On the other hand, an application

employing failure recovery is normally designed to detect the occurrence of an incorrect

result (failure) and correct the result by restoring the application to a previous correct

point (called checkpoint) in its execution and then replaying it by applying all the inputs

since that correct point [CR72, CR92, EX92, CY96, EA02]. Thus, such applications

need to keep track of the execution and maintain the checkpoints and the necessary

information for replay.

Failure detection and correction in distributed applications can be achieved by

properly modeling the correct execution of the application. Two commonly used such

models are the state space model [LHLL08] and the partially ordered multiset (POMSET)

model [AM94, MG03, RG04]. In the state space model, the execution of an application

is modeled by the state of the application (events that have happened) during the

execution. The size of such states (and hence the information maintained by the

application in persistent store) can grow exponentially in a distributed system leading to

the well-known state explosion problem [YUA88, BCMDH 90]. In the POMSET model,

on the other hand, the execution is modeled by the order in which events could happen in

the application. By properly defining the events of interest (for example, by grouping a

number of events that should all occur or none should occur into an atom of events), it is

possible to significantly reduce the amount of information necessary to be maintained

[LM07, LMG07] thereby alleviating the state explosion problem.

An approach for runtime verification of distributed applications based on the

POMSET model has recently been developed [GAO10]. In this approach, the correct

execution of the application is specified as a POMSET of atoms of events (atoms in

 3

short) that should happen within the processes. As the application is running, the

processes report the atoms happening within themselves (by properly modifying or

instrumenting the source code of the processes to do so) to a monitor that compares them

with the specified POMSET. When the monitor notices that an atom violates the given

specification, it flags it as a failure in that execution. This thesis extends that runtime

verification approach to a runtime recovery approach using the checkpoint recovery

mechanism.

Typical checkpoint based rollback recovery techniques take and maintain

checkpoints at periodic time intervals and the system is rolled back to the nearest correct

checkpoint when a failure is detected. Quite a few of these periodic checkpoints may not

be used during the recovery and maintaining them uses large amount of persistent

storage. The proposed runtime recovery approach, on the other hand, maintains only the

necessary checkpoints (that will be necessary for roll back) based on the POMSET

specification and restoring the application to the last checkpoint when a runtime failure

happens. This is done by first analyzing the correct expected behavior of the application

as modeled in the given POMSET specification and identifying all the required

checkpoints. As the application executes, only the necessary checkpoints (from the

identified set) are maintained so that if and when a runtime failure happens, the system is

rolled back to the last checkpoint and replayed with the necessary inputs to correct the

error. The number of such group checkpoints taken and maintained are further reduced

by avoiding some of the unnecessary ones based on the priorities of the operator nodes

and their positions in the POMSET tree (static checkpoint reduction) and by forecasting

whether a checkpoint is necessary or not in a future iteration based on what happened in

 4

the past iterations (dynamic checkpoint reduction). Thus, the proposed runtime recovery

approach is more efficient as it maintains only the necessary checkpoints (thereby

reducing the amount of persistent storage required) and easily performs the roll back to

the last checkpoint (thereby improving the roll back time).

The developed technique is implemented as a proof of concept prototype. The

design and implementation of the prototype will be presented in detail explaining many

of the issues and problems faced. The developed runtime recovery technique is also

highlighted using a highly available online travel agent application. This application will

be introduced in Chapter 2 and used throughout the thesis to illustrate the important

concepts, issues and their solutions.

1.2 Contribution

This thesis develops an automatic runtime recovery technique using the

checkpoint based rollback recovery technique. The developed technique is also

implemented as a proof of concept monitor that automatically handles the runtime

recovery. The major contributions of this thesis are as follows.

 First, since POMSET specifies the correct behavior of processes in the distributed

application, an approach is developed to analyze the POMSET specification and

identify the required checkpoints for the given application.

 Secondly, since not all the required checkpoints may be necessary, two algorithms

to identify and avoid the unnecessary checkpoints are developed – the static

checkpoint reduction algorithm and the dynamic checkpoint reduction algorithm.

 5

 Furthermore, a proof of concept implementation of the runtime recovery monitor

that follows the POMSET based model checking algorithm is developed. This

monitor verifies the ordering of atoms and the correctness of execution by

comparing the execution atoms received from the processes with the expected

execution specified in the POMSET specification. Once a failure is detected, the

runtime recovery monitor automatically and immediately rolls back the

application to the last checkpoint. In addition to reducing the size of the state

space to be searched in partial-ordered checking, the runtime monitor only allows

the last checkpoint to be kept by discarding previous checkpoints during

execution runs.

1.3 Outline

This thesis is organized as follows.

Chapter 2 discusses related previous works on rollback recovery protocols,

including checkpoint-based recovery and log-based recovery. It also describes the

runtime verification approach based on the partial-order model.

Chapter 3 explains the runtime recovery technique based on the POMSET model

and introduces the properties of operators in POMSET specification. It also presents the

static checkpoint reduction algorithm and the dynamic checkpoint reduction algorithm.

Chapter 4 shows an implementation of the runtime recovery technique, including

the deployment environment, the instrumented program, atoms, events, and status. It also

describes how to persistently store messages, checkpoints and execution runs. The

developed runtime recovery approach is illustrated using an online travel agency

 6

example. The various steps in the runtime recovery process are clearly described for this

highly available application.

Chapter 5 concludes the thesis by pointing out issues and future work to improve

the runtime recovery technique.

 7

CHAPTER 2 : PARTIAL ORDER MODEL AND

CHECKPOINT BASED RECOVERY

The objective of this chapter is to describe the partially ordered multi-set

(POMSET) specification of the correct behavior of distributed applications and the

runtime verification technique using that model. Traditional checkpoint based runtime

recovery approaches and their characteristics are also presented.

2.1 Partial Order Model

The execution of highly available distributed applications involves parallel/

concurrent processes that cooperate to perform assigned functionality. Due to the

concurrent execution, comprehensive specification and analysis of the correct behavior in

distributed applications consisting of multiple processes/threads is a challenge. While the

execution of sequential programs can be described by a vector of events, the correct

behavior of a concurrent distributed application should be properly presented using a

partially ordered set of events (the partial order model) [AM94, MG03, RG04], which is

adopted from the distributed event model and allows unrelated/independent events to

occur concurrently in distinct processes.

In the partial-ordered multi-set (POMSET) model [LM07, LMG07], an event is

an instance of action corresponding to a statement of execution and the low-level events

can be compressed into a fixed number of atoms corresponding to abstract events for

higher granularity. An atom consists of a set of events within a process that should occur

atomically (that is, all should occur or none should occur). The POMSET model specifies

 8

the partial order in which these atoms should occur during the execution of the distributed

application.

Consider an online travel agent application as an example. This is a highly

available distributed application that sells and provides information about travel,

transportation and accommodation and it can be treated as a virtual agent of multiple

flight, rail, coach companies, and accommodation agencies. Moreover, it is accessible by

multiple customers who are interested in all kinds of travel information about different

flights or buying tickets online.

There are four processes in the online travel agent application and each of them

represents one role as listed in Table 1. Each process in this application has its own role

functionality, such as users, virtual agent, hotel and transportation reservation services.

When a virtual agent receives a user request, it asks the hotel and the transportation

services for booking information, and gathers and reports this information as multiple

journey choices back to the user. When the user chooses one preferred journey from

among these choices, the virtual agent atomically performs the reservation of both hotel

and transportation, and then notifies the user the success/failure of the reservation.

A process may be divided into multiple atoms according to its functionality. All

primitive events in this travel agent application are grouped into 21 atoms (A to U) as

listed in Table 2. For instance, atom A sends a user request for journey choices, while

atom B represents a user already having a preferred journey so the virtual agent does not

need to gather booking information. Note that an atom is classified as a critical atom if it

computes and stores some information thereby changing the state of the application;

otherwise, it is a non-critical atom.

 9

Table 1: Role List of the Online Travel Agent Application

Roles Description

Customer A customer sends a booking request to the agency and waits for

response.

Agency An agency receives requests from a customer, gathers booking

information from the hotel and the transportation services, and

reserves/cancels booking.

Hotel There are two hotel services for reservation and cancellation –

H1 and H2.

Transportation There are two transportation services for reservation and

cancellation – T1 and T2.

Table 2: Atom List of Travel Agency

Atom Critical

Atom?

Role Description Input

Message

Output

Message

A No Customer A customer sends a

request for available

hotel and transportation

reservation

information.

N/A M1 –

Customer

request with

travel

information

 10

B No Agency An agency receives the

request and asks the

hotels and the

transportation services

for booking

information.

M1 M2, M3, M4,

M5 – Agency

requests with

customer travel

information

C No Hotel H1 Hotel services query

database and provide

current booking list.

M2 M6 – Hotel H1

booking list

D No Hotel H2 M3 M7 – Hotel H2

booking list

E No Transport

ation T1

Transportation services

query database and

provide current

booking list.

M4 M8 –

Transportation

T1 booking list

F No Transport

ation T2

M5 M9 –

Transportation

T1 booking list

G No Agency Gather all booking lists

from hotel and

transportation services

and return those to

customer as choices.

M6, M7, M8,

M9

M10 –

gathered

booking list

 11

H Yes Customer A customer chooses

one hotel with

transportation as travel

routines.

M10 M11 –

Customer‘s

choice of

hotels and

transportation

I No Customer A customer already has

preferred hotel with

transportation as travel

routines.

N/A M12 –

Customer‗s

preferred

choice of

hotels and

transportation

J Yes Agency An agency receives

customer‘s choice

tagged with one unique

number and records it

in database.

M11 or M12 M13 – booking

request for

hotel

M14 – booking

request for

transportation

K Yes Hotel H1 Hotel services book the

room for the customer

and returns the result of

booking.

M13 M15 – result of

booking (Yes

for success, No

for failure)

L Yes Hotel H2

 12

M Yes Transport

ation T1

Transportation services

book the vacancy for

the customer and

returns the result of

booking.

M14 M16 – result of

booking (Y for

success, N for

failure)

N Yes Transport

ation T2

O Yes Agency An agency receives the

results of booking from

hotel and transportation

services, and check

whether all bookings

for the customer are

done.

M15, M16 2 messages

(M13 and M14

to repeat

reservation) or

1 message

(M17 for

reservation

success) or 3

messages

(M18, M19,

M20 for

reservation

failure)

M17 –

reservation

successfully

 13

with

reservation

number

M18 –

reservation

failed with

failure

messages

M19 –

cancellation

request for

hotel

M20 –

cancellation

request for

transportation

P No Customer Notify Customer that

all travel routines,

including hotels and

transportation, have

done successfully. A

customer should

M17 N/A

 14

receive the unique

number of reservation.

Q No Customer Notify customer that

the travel routines,

including hotels and

transportation, have

failed of reservation

with fail messages.

M18 N/A

R Yes Hotel H1 Hotel services receive

cancellation messages

from agency, check

booking list, and cancel

the room, if that has

been booked for the

customer.

M19 N/A

S Yes Hotel H2

T Yes Transport

ation T1

Transportation services

receive cancellation

messages from agency,

check booking list, and

cancel the vacancy, if

that has been booked

for the customer.

M20 N/A

U Yes Transport

ation T1

 15

The correct behavior of this application can be specified by the regular expression

((A ; B ; (C || D || E || F) ; G ; H) + I) ; J ; (((K + L) || (M + N)) ; O) * ; (P + (Q

|| (R + S) || (T + U)) which is the partially ordered multiset (POMSET) of atoms. This

specification says that the customer first sends the request (A), the agency receives the

request (B), then the agency concurrently queries the hotel services (C, D) and the

transportation services (E, F), gathers the result and report to the customer (G) who then

selects a preferred choice (H), and so on. The POMSET specified in this regular

expression can be visually shown (and stored in memory at runtime) as the POMSET tree

illustrated in Figure 1. In the POMSET tree, an alphabetic node (a leaf node) is an

abstract event (atom); while an operation node (an internal node) specifies the ordering of

two/multiple atom sets. For example, a concatenation operation node (;) denotes the

partial order relationship between two atom sets: the left atom set must occur before the

right atom set. So A;B specifies that atom A should occur before atom B.

While the POMSET indicates the order in which atoms should occur at runtime,

the correctness of the computation performed by the individual atoms also needs to be

specified. This is typically done by specifying a program invariant (called a predicate) for

an atom, and the variables computed by the atom (called predicate variables) that are

needed to check the invariant. Thus, knowing the predicates of individual atoms, the

correctness of their computation can be verified at runtime using the predicate variables.

For example, if atom J does not receive the predicate variable (a preferred journey choice

containing hotel and transportation information) this behavior does not satisfy the global

correctness property.

 16

Figure 1: The POMSET tree of the online Travel Agent Application

2.2 Runtime Verification

The POMSET specification can be used to verify the correct execution of a

distributed application as it runs. This runtime verification is done by checking if all the

atoms occur according to the partial order specified by the POMSET. In order to do that,

the application processes should be modified (instrumented) by adding the necessary

program code to report the occurrence of the program events to a monitor which will

check them with the POMSET specification. For example, during a run of the travel

agent application, if atom J occurs before atom A or I, the runtime verification monitor

flags a failure. Also, if J does not receive a customer preference of journey (predicate

 17

variable), a failure would be detected because of the unsatisfied predicate. Thus, partial

order based runtime verification concerns two fundamental requirements – the ordering

among atoms and the correctness of computation performed by each atom. Notice that

the necessary state space of this partial order model based verification can be

dramatically reduced from the number of low-level program events to the number of

granular atoms.

This runtime verification approach has been recently introduced [LM07, LMG07]

and implemented as a partial order based runtime verification tool [GAO10]. In that tool,

the application programmers are required to specify the proper set of atoms, the

POMSET specification of the correct behavior of the application, the atom predicates and

predicate variables for checking compatible ordering among atoms and correct execution

of each atom. With sufficient data gathered from the instrumented program code, the tool

can compare the current execution of atom slices with the given specification and check

the atom properties using the predicate variables. The goal of this thesis is to extend this

partial order based runtime verification approach into a runtime recovery approach so that

when a failure (runtime error) is detected, the system can automatically correct itself

thereby guaranteeing application reliability and high availability. With the correct

behavior specified by a POMSET, this approach identifies the necessary set of

checkpoints formed by local checkpoints of atoms in the application. At runtime, it

avoids unnecessary checkpoints using appropriate reduction algorithms, and it only needs

to save the last global consistent state in persistent memory in order to reduce the

resources necessary for recovery.

 18

2.3 Checkpoint Based Rollback Recovery

The first fundamental issue for the partial order based runtime recovery falls on

approaches for taking and maintaining global consistent states in distributed applications.

A global consistent state, which is also called a global checkpoint, consists of a collection

of individual states of all participating processes and communication channels [LAMP78,

CL85, PAH08]. The occurrence of an event may change the global state. For example,

the consistent line/cut of process events illustrated in Figure 2 represents a global

consistent state in which message m1 has been sent through the channel of Process 1 and

is traveling in the network. In contrast, Process 3 in the inconsistent line/cut has delivered

the message m2 that has not yet been sent by Process 2.

Figure 2: Global Consistent System State

Rollback recovery protocols [CR72, CW92, EZ92, CY96, EA02] in highly

available distributed applications store/maintain consistent states of the application in a

persistent store during failure-free execution at periodic time points/intervals. When a

failure is detected at run time, the application can restart itself with an appropriate saved

consistent state (or rolled back) from the persistent store to reduce the loss of

 19

computation. Depending on the information being saved in the persistent store, these

protocols employ two different approaches: checkpoint based [KT87, EJZ92, BBHMR95,

EP04] or log based. The former only relies on periodic checkpoints to save the necessary

recovery information while the latter relies on the piecewise deterministic assumption

which identifies the nondeterministic events and logs the necessary information for

replay.

Moreover, based on how processes cooperate to take/maintain checkpoints,

checkpoint-based rollback recovery can be classified as: independent, coordinated, or

communication-induced. Every process in independent checkpoint-based rollback

recovery [BL88, TRI96] is allowed to take checkpoints independently. However, this

technique leads to the serious domino effect problem [RAN75, BCS84], which may result

in all the processes rolling back to their initial states thereby losing all the work they have

done because of message dependencies among them. As illustrated in Figure 3, Process 2

detects a failure after receiving message M5 and rolls back to checkpoint C23.

Meanwhile, this pushes Process 1to forget sending message M5 and to roll back to

checkpoint C12. As a consequence, both Process 1 and Process 2 eventually roll back to

their initial states.

Figure 3: The Domino Effect

 20

All the processes in coordinated checkpoint-based rollback recovery [BLKC03,

CLG05, LPN05, BGR06] are required to cooperate their local checkpoints in order to

form a global consistent state, thereby alleviating the domino effect problem. Moreover,

this technique allows each process in the application to maintain only one local

checkpoint to reduce storage overhead and the need for garbage collection.

In communication-induced checkpoint-based rollback recovery, there are two

kinds of checkpoints: local checkpoints and forced checkpoints [HMNR97, AER99,

BG00, BG01]. Each process can take local checkpoints while forced checkpoints must be

taken based on the information piggybacked on the application messages received from

other processes to guarantee a global consistent state. However, the number of

checkpoints is changeable depending on the number of messages passing through the

application. This technique incurs overhead in piggybacking the information, making it

difficult in practice.

In contrast to checkpoint-based rollback recovery, log-based rollback recovery

[JOH90, AHM95, ALV96, AM98, AV98] takes a piecewise deterministic approach

which assumes that all nondeterministic events can be identified and the necessary

information for replay can be properly logged. It guarantees that the processes of the

system are "orphan-free", where an orphan process‘s state depends on a nondeterministic

event and cannot be reproduced during recovery. According to how nondeterministic

events are logged, log-based rollback recovery can be classified as: pessimistic,

optimistic, or casual.

A process in pessimistic log-based rollback recovery [EZ92, BCHKLM03]

always logs a message before delivering it, so orphan processes are never created.

 21

Therefore, it is straightforward to reconstruct the state of a failed process. On the other

hand, log-based rollback recovery requires blocking a process for all messages it

receives, and as a consequence, system performance would be slowed down even when

no failure occurs.

Compared to pessimistic log-based rollback, optimistic log-based rollback

recovery [SY85, HW95] takes a smaller risk to have orphans for better system

performance, because it does not require the application to be blocked when receiving

messages. However, this advantage results in complicated recovery algorithms and

garbage collection.

Taking a balance between optimistic log-based rollback and pessimistic log-based

rollback, the causal log-based rollback recovery [AM96, BMA98, LPYC98, MG98,

BCHLC05] prevents orphans and allows simple failure recovery. Furthermore, it has

advantages of non-blocking run-time scheme and low failure-free overhead.

Like applications combining checkpoint-based and message logging recovery

techniques, such as coordinated checkpoints with sender-based message logging [RN08],

the partial order based runtime rollback recovery also takes both approaches from

checkpoint-based rollback recovery and message log-based recovery. This technique

allows each process in the application to make local checkpoints individually and

organizes these local checkpoints to form a global consistent state. In addition, this

technique also applies casual logging for all input/output messages through the channels,

allowing all processes in the application to be orphan-free.

In summary, using the POMSET specifying the correct behavior of the

application, runtime verification can detect failure occurrence by checking the ordering of

 22

atoms and their predicate properties thereby reducing the state space required. The

runtime rollback recovery is developed based on the runtime verification. By adding

some properties to the nodes of the POMSET tree, this technique can identify the

necessary checkpoints keeping only the last one in persistent storage and rollback the

system to that state when a failure occurs. All properties, rules and the checkpoint

reduction algorithms will be presented in Chapter 3 and illustrated using the example

travel agent application.

 23

CHAPTER 3 : THE RUNTIME RECOVERY TECHNIQUE

This chapter develops the partial order based runtime recovery technique that

restores a highly available distributed application using a limited number of checkpoints

(resources) upon a failure and continues its normal execution.

As described in Chapter 2, the traditional checkpoint-based recovery approaches

store checkpoints at periodic intervals. Also because the behavior of the distributed

application is unknown, the traditional approach needs to store the state of every process

in the application as the global consistent state (called global checkpoint), thereby using

significant resources (time for blocking system and space to store states of all processes).

The partial order based runtime recovery differs from the traditional checkpoint-based

approach in many ways. First of all, given a POMSET tree specifying the expected

behavior of the application, this runtime recovery technique identifies the nodes of the

POMSET tree (operators) at which a checkpoint must be taken to ensure recovery

(because they impact application execution). Secondly, instead of storing the states of all

the processes in the application to form a global consistent state (global checkpoint), this

technique only stores the states of the processes that are necessary to recover from a

potential failure as a collection of local checkpoints (called group checkpoint). This

collection of local checkpoints (that is, group checkpoint) represents the global consistent

state in the partial order based runtime recovery.

The approaches and algorithms for this partial order based runtime recovery

technique are presented in the following sections.

 24

3.1 Checkpoint Identification

In order to identify the necessary checkpoints from the POMSET specification

composed of atoms and operators, the first step is to find out which atoms should store

their local checkpoints to form a group checkpoint.

Atoms in processes compute their tasks and cooperate to perform the designed

functionality in a distributed application. A critical atom computes and changes the

value of a relevant variable that affects the correct progress of the execution, marked as

red in Figure 4. A non-critical atom, shown in blue, does not change the value of any

relevant variable and hence need not be restored. The computed variable value should be

saved so that a critical atom can restart itself with the recovered data if a failure occurs in

the future. In other words, those atoms that should avoid to be re-executed upon failures

are critical atoms.

Figure 4: Atom Classification

For the online travel agent example application listed in Table 2, most critical

atoms perform the following operations: reserving/cancelling a room, update vacancy

information (because the booking information for a hotel/transportation service should be

kept). When a failure occurs, the booking data should be restored and the services can

continue their normal execution.

 25

Besides atoms, operator nodes are also involved in checkpoint identification

because they specify the correct ordering among their sub-trees. As presented in Figure 5,

each operator node has its unique ordering requirement described in the following.

A concatenation operator ―;‖ denotes before–after relationship between two

children sub-trees. For example, (A;B) represents that atom A should occur before atom

B.

An alternation operator ―+‖ denotes the exclusive choice from more than one

possible execution paths (sub-trees). For example, (A+B) represents that only atom A or

atom B can occur, but never both in strictly partial ordered modeling.

A concurrency operator ―||‖ denotes the concurrency of more than one

execution paths (children sub-trees). For example, (A||B) represents that atom A and atom

B can occur without any ordering constraints.

A recurrence operator ―*‖ denotes the recurrence of the children sub-tree. For

example, (A)
*
 represents that atom A can occur zero or more times.

Figure 5: Operation Node Classification

Even with critical atoms and well-defined operator information, checkpoints

cannot be identified by intuition; but adding a property to the nodes of the POMSET tree

can help this process. This potential checkpoint property indicates the checkpoint

decisions for the nodes. The value of a potential checkpoint can be True, False, or

 26

Unknown. A True potential checkpoint implies that a checkpoint must be taken when the

execution is at the node; while a False potential checkpoint implies there is no need to

take a checkpoint when the execution is at that node. An Unknown potential checkpoint

is the special case with unpredictable execution paths that can be recognized only at

runtime.

For atoms, since their potential checkpoint values influence checkpoint decisions,

it is straightforward to set it as True for critical atoms to avoid re-execution and False for

non-critical atoms, as illustrated in Figure 6.

Figure 6: Potential Checkpoint Values of Atoms – True/False

The potential checkpoint value of an operator node represents the intention of

checkpoint taken at the last child/children nodes that will be invoked later. Different

operators have different potential checkpoint values according to the operator type and

the potential checkpoint values of its children nodes.

An alternation operator ―+‖ denotes multiple choices from more than one possible

execution paths (sub-trees), but there will be only one path to be executed at runtime. In

other words, the result of an executed path should be unpredictable until runtime.

Therefore, as Case 3 in Figure 7, the potential checkpoint value of an alternation operator

should be set as Unknown instead of True or False, because the real execution path

cannot be predicted until execution time. However, when all the children nodes have the

 27

same potential checkpoint values (any execution path results in the same intention for

checkpoints), an alternation operator has the potential checkpoint value other than

Unknown. In short, an alternation operator has total agreement of potential checkpoint

values among its children. For example, for the POMSET specification (A+B) in Figure

7, in Case 1 and Case 2 where atoms A and B have the same potential checkpoint values,

the alternation operator has total agreement of A and B – True and False, respectively. If

A and B both have True potential checkpoint values, potential checkpoint value of the

alternation operator should be set as True for representing necessary future checkpoint

taken for invocation of either A or B. However in Case 3 where atoms A and B have

different potential checkpoint values, the alternation operator has Unknown potential

checkpoint value because of unpredictable execution paths.

Figure 7: Potential Checkpoint values of Alternation Operator –

True/False/Unknown

A concatenation operator ―;‖ denotes the partial-order sequence of children nodes.

So its potential checkpoint value should be the same as its right child (since the left child

has already occurred in the execution) to represent the intention of checkpoint to be taken

at the last child (right node). Potential checkpoint property of the concatenation operator

 28

intends there exist a checkpoint that can be used for recovery, if a failure has occurred

after the last child invocation of the operator. As illustrated in Figure 8, for the POMSET

specification (A;B), in Case 1 where A and B are both critical atoms, the concatenation

operator has True potential checkpoint value. It may be the concatenation operator itself

or its upper operators with a checkpoint that can be used for recovery, so that B can be

rolled back instead of re-execution. In Case 2 where atom B is a non-critical atom, the

concatenation operator has False potential checkpoint value. However, under certain

conditions such as in (A;(B+C)), the concatenation operator sets its potential checkpoint

value as Unknown, because the last right child node has Unknown potential checkpoint

value.

Figure 8: Potential Checkpoint Value of Concatenation Operator –

True/False/Unknown

A concurrency operator denotes that more than one path can be run without any

ordering constraints, so its potential checkpoint value should represent the intention of

any checkpoint taken by the last children of each execution paths. Basically, if any of the

last children of the execution paths should take a checkpoint, this operator has True

potential checkpoint value; otherwise it should have False checkpoint value. Under some

 29

conditions where its operand children only have False and Unknown potential checkpoint

values, a concurrency operator node should set its potential checkpoint value as

Unknown instead of False for checkpoint decisions. If any last children of the

concurrently executing subtree have True/Unknown potential checkpoint properties that

will cause the concurrency operator itself or its ancestor operators taking a checkpoint

which can be used if a failure has occurred after invoking the last children of the

operator. Thus, for the POMSET specification (A||B) in Figure 9, in Case 1 and Case 2

where atom A has True potential checkpoint value, the concurrency operator should set

its potential checkpoint value as True. In Case 3 where atoms A and B have False

potential checkpoint values, the concurrency operator should set its potential checkpoint

value as False. Given another POMSET specification (A||(B+C)) illustrated in Figure 10,

the concurrency operator should set its potential checkpoint value as Unknown, because

its operand children only have False and Unknown potential checkpoints.

Figure 9: Potential Checkpoint Value of Concurrency Operator – True/False

 30

Figure 10: Potential Checkpoint Value of Concurrency Operator – Unknown

A recurrence operator denotes multiple iterations of its sub-tree; so its potential

checkpoint value should be judged by its only child, because the potential checkpoint

value of the child also represents the last child of the subtree of recurrence operator. For

the POMSET specification (A;B)* illustrated in

Figure 11, in Case 1 and Case 2, the recurrence operator has the same potential

checkpoint value as its only child – True/False, respectively. However, for another

POMSET specification ((A;B)+(C;D))* illustrated in Figure 12, the recurrence operator

sets its potential checkpoint value as Unknown because its child has Unknown potential

checkpoint value.

Figure 11: Potential Checkpoint Value of Recurrence Operator – True/False

 31

Figure 12: Potential Checkpoint Value of Recurrence Operator - Unknown

In most practical distributed applications, such as the online travel agent, there are

multiple alternation operators for multiple choices resulting in most nodes in the

POMSET tree with Unknown potential checkpoint values as illustrated in Figure 13.

With the potential checkpoint values, which show the intention of taking a

checkpoint, checkpoints of operator nodes presented in Figure 14 can be identified by the

following rules. In this thesis, a checkpoint taken by an operator represents that the

critical atoms controlled by the operator should participate in forming a group checkpoint

which is the global consistent state for the distributed application.

No checkpoint is taken when the execution is at an alternation, because this

operator denotes exclusive choice from more than one execution paths. In other words,

there is only one path that can be executed at runtime. Once the execution path is

selected, this operator has fulfilled its task, so it is not meaningful to take a checkpoint.

 32

Figure 13: Potential Checkpoint Values for the Online Travel Agent Application

Figure 14: Checkpoints of Operators

A checkpoint is taken at a concatenation operator if its left child has True/

Unknown potential checkpoint value. Because it denotes the before-after relationship

between the left sub-tree and the right sub-tree, if the left sub-tree has True potential

checkpoint value, a checkpoint should be taken when the execution is at that node in

order to avoid re-execution of the left sub-tree. Instead, if the left sub-tree has False

 33

potential checkpoint value, then a checkpoint need not be taken when the execution is at

that node. However, under some conditions where the left sub-tree has Unknown

potential checkpoint value, which can be confirmed only at runtime, a checkpoint must

be taken at the concatenation operator that may be avoided by later static or dynamic

checkpoint reduction analysis. For example, given the POMSET specification (A;B)

illustrated in Figure 15, in Case 1 where atom A has True potential checkpoint value, a

checkpoint is taken at the concatenation operator to avoid re-executing atom A. In case 2,

because atom A has False potential checkpoint value, a checkpoint is not taken at the

concatenation operator. In Case 3 where the left child of the concatenation operator has

Unknown potential checkpoint value, a checkpoint is still necessary.

A checkpoint is always taken at a concurrency operator. This operator denotes

concurrent execution of more than one execution paths. Before splitting one mainstream

execution into multiple concurrent executions, a checkpoint is taken to record the current

stages of system.

A checkpoint is taken at a recurrence operator if its only child node has

True/Unknown potential checkpoint value in order to avoid re-executing the only child.

However, under some conditions where the recurrence operator has a child with

Unknown potential checkpoint value, a checkpoint is still taken that may be avoided by

static or dynamic checkpoint reduction analysis. For the POMSET specification

(A;(B||C))* illustrated in Figure 16, in Case 1 where the child node of the recurrence

operator has True potential checkpoint value, a checkpoint is taken at the recurrence

operator. In Case 2, the child node has a False potential checkpoint value, so a checkpoint

is not taken at the recurrence operator. However, for the POMSET specification

 34

(A+(B||C)* in Case 3 where the recurrence operator has a child node with Unknown

potential checkpoint value, a checkpoint is still taken.

Figure 15: Checkpoint of Concatenation Operator

Figure 16: Checkpoint of Recurrence Operator

As illustrated in Figure 17, applying the checkpoint rules on the online travel

agent application identifies ten checkpoints for the given POMSET specification.

However, two of these checkpoints belong to the special cases caused by unpredictable

alternation operators that will be re-evaluated by checkpoint reduction analysis. In fact,

 35

the more alternation operators in the POMSET specification, the more special cases occur

in execution.

Unlike a global checkpoint in traditional checkpoint-based recovery (which is

formed by the local checkpoints of all the processes in the distributed application), the

partial order based runtime recovery only requires critical atoms in the processes to take

local checkpoints and organize these local checkpoints as a group checkpoint (a

collection of local checkpoints). This approach thereby reduces the time and space

required for a checkpoint. Note that checkpoints taken at the operators in the POMSET

tree mentioned above are group checkpoints.

Figure 17: Checkpoint Identification on Online Travel Agent Application

 36

As illustrated in Figure 18, a critical atom can be divided into three parts: message

receiving, atom execution, and message sending. First, an atom waits to be invoked by

receiving requests or messages from other atoms. Then, it performs its assigned

functionality during atom execution. At the last stage, it sends output messages to other

atoms. Hence, as illustrated in Figure 19, a critical atom takes local checkpoints to record

the different stages of its operation: LC1 for the initial stage, LC2 for the execution end

stage before sending messages, and LC3 for the end stage of the atom.

Figure 18: Stages of an Atom

Figure 19: Local Checkpoints of an Atom

Based on the POMSET tree, which specifies the correct behavior of the

distributed application, the partial order based runtime recovery approach decides

whether or not to take a group checkpoint (which is the collection of local checkpoints of

the executing critical atoms) at an operator node. For example, given the POMSET

 37

specification (A;(B||C)) illustrated in Figure 20 and Figure 21, a critical atom A sends a

messages m1 to a non-critical atom B and sends another message m2 to another critical

atom C. As illustrated in Figure 22, each consistent cut represents different stages in the

execution of the application: GC1 represents the initial stage in which all the atoms are

ready to receive input messages, GC2 represents that messages are on their way where A

sends the messages, but B and C have not received the messages yet, and GC3 represents

the end stage in which all the atoms complete their execution.

Figure 20: Group Checkpoint Example (A;(B||C)) as a POMSET Tree

Figure 21: Group Checkpoint Example (A;(B||C)) as Time Lines

 38

Figure 22: Group Checkpoint Example (A;(B||C)) as Consistent Cuts

Note that a group checkpoint represents a global consistent cut of execution.

Using the example (A;(B||C)) where A and C are critical atoms, GC1 representing the

initial stage of application execution can be organized as the combination of the initial

stages of all the atoms – A.LC1, B.LC1 and C.LC1. Similarly, GC3 representing the end

stage of application execution can be organized as the combination of the end stages of

all the atoms – A.LC3, B.LC3, and C.LC3. Note that all atoms in the distributed

application, including critical atoms and non-critical atoms, should participate in forming

initial and end stage checkpoint. During execution, while messages are on their way as

illustrated in Figure 23, GC2 can be organized as the combination A.LC3, B.LC1, and

C.LC1. If any failure happens after GC2 (but before GC3), the application should then be

rolled back to GC2 for recovery. Notice that atom B does not take a new local checkpoint

because it is a non-critical atom and no data needs to be kept for rollback recovery.

 39

Figure 23: Group Checkpoint Example (A;(B||C)) – Messages On Delivery

However, not all of the identified group checkpoints may be necessary. Global

checkpoints of the concatenation operator and the concurrency operator represent the

same group checkpoints (GC2). In addition, the alternation operator may result in group

checkpoints taken at its parent operators. To avoid such unnecessary checkpoints,

checkpoint reduction algorithms are developed next.

3.2 Checkpoint Reduction Algorithms

Given a POMSET tree specifying the correct behavior of a distributed application,

the partial order based runtime rollback recovery identifies the group checkpoints (a

collection of local checkpoints taken by the critical executing atoms) of operators in the

POMSET tree. However, some of these group checkpoints may be unnecessary and can

be avoided. In order to identify such avoidable group checkpoints, two checkpoint

 40

reduction algorithms are developed: the static checkpoint reduction algorithm and the

dynamic reduction algorithm.

3.2.1 Static Checkpoint Reduction

As illustrated for the specification (A;(B||C) in Figure 20, sometimes group

checkpoints are to be taken at two operators with overlapping sub-trees. In fact, these

group checkpoints mean that the same operation occurs upon the same sub-trees. In order

to solve this issue, the static checkpoint reduction algorithm is developed that reduces the

group checkpoints by (1) the priority of the operators and (2) the height/position of the

operator in the POMSET tree.

The priority of operators is one of the fundamental rules in checkpoint reduction

analysis. According to the coverage of atom sets by the operator, the priority of an

operator is set as: recurrence operator (*) = concurrency operator (||) > concatenation

operator (;) > alternation operator (+) as explained below.

An alternation operator has the lowest priority since no checkpoint is taken at that

node. A concatenation operator has lower priority compared to a concurrency operator

and a recurrence operator since it only denotes the partial-order sequence of two sub-

trees. Also, both the recurrence operator and the concurrency operator have the same

priority since they denote multiple iterations or split execution paths, respectively.

Applying these priority rules on the specification (A;(B||C)) in Figure 24, the

group checkpoints taken at both the concatenation operator and the concurrency operator

are avoided. The group checkpoint taken by the concatenation operator is evaluated as

unnecessary because the concurrency operator has higher priority. A similar condition

 41

occurs in another case (A;(B;C)*) illustrated in Figure 25 where the group checkpoint at

the concatenation operator is avoided because the recurrence operator has higher priority.

Figure 24: Static Checkpoint Reduction Algorithm (Priority) on (A;(B||C))

However, there is another issue that group checkpoints are taken at both the

recurrence operator and the concurrency operator. Avoiding the group checkpoints taken

at operators with the same priority also involves the static checkpoint reduction

algorithm. From the POMSET tree point of view, the group checkpoint taken at the

operator at higher position should be kept. For example, given the POMSET specification

(A||B)* illustrated in Figure 26, the group checkpoint taken by the concurrency operator

is identified as unnecessary because it is under the control of the recurrence operator.

That is, the recurrence operator‘s position is higher in the POMSET tree.

 42

Figure 25: Static Checkpoint Reduction Algorithm (Priority) on (A;(B;C)*)

Figure 26: Static Reduction Rule – Depth

The pseudo code of this static checkpoint reduction algorithm is presented below.

function setProperties (node, level)

 node.level := level

 if (node is a critical atom)

 node.potential_checkpoint := True

 else if (node is a non-critical atom)

 node.potential_checkpoint := False

 43

 else if (node is a concatenation operator)

 node.potential_checkpoint := node.rightchild.potential_checkpoint

 if (node.leftchild.potential_checkpoint = True)

 node.group_checkpoint := True

 node.priority := 1

 else if (node is an alternation operator)

 if (node‘s all children have the same potential checkpoint value)

 node.potential_checkpoint := node.firstchild.potential_checkpoint

 else

 node.potential_checkpoint := Unknown

 node.group_checkpoint := False

 node.priority := 0

 else if (node is a concurrency operator)

 if (node‘s any last child has True potential_checkpoint)

 node.potential_checkpoint := True

 else if (node‘s last child has Unknown potential_checkpoint)

 node.potential_checkpoint := Unknown

 else

 node.potential_checkpoint := False

 node.group_checkpoint := True

 node.priority := 2

 else if (node is a recurrence operator)

 node.potential_checkpoint := node.child.potential_checkpoint

 44

 if (node.child.potential_checkpoint is True or Unknow)

 node.global_checkpoint := True

 else

 node.global_checkpoint := False

 node.priority := 2

function reduceCheckpoint (node)

 if (both nodes have group_checkpoints and they control overlapped sub-trees)

 if (node.priority > node.child.priority)

 node.child.group_checkpoint := False

 else if (node.priority < node.child.priority)

 node.group_checkpoint := False

 else

 if (node.level > node.child.level)

 node.child.group_checkpoint := False

 else

 node.group_checkpoint := False

When applying the static checkpoint reduction algorithm on the online travel

agent application as illustrated in Figure 27, two group checkpoints are identified as

unnecessary. One is the checkpoint taken at the concatenation operator, because of its

lower priority than the recurrence operator. The other is the checkpoint taken by the

 45

concurrency operator, because its position is lower than the recurrence operator in the

POMSET tree.

Figure 27: Static Checkpoint Reduction Algorithm on the Online Travel Agent

Application

3.2.2 Dynamic Checkpoint Reduction

Like the operators controlling overlapping sub-trees, alternation operators with

unpredictable execution paths may result in unnecessary checkpoints in the POMSET

tree. During different iteration runs, the executed path of the alternation operator must be

 46

confirmed because the alternation operator denotes that exactly one path will be

executed. By remembering the confirmed executing path with relevant data events, next

few iterations of the execution can be forecasted according to what has happened in past.

Once the unpredictable execution paths caused by the alternation operator can be

forecasted, group checkpoints can be re-identified without Unknown potential checkpoint

values.

Figure 28: Dynamic Checkpoint Reduction Algorithm on (A+B)

Consider Case 2 in Figure 7 as an example. The execution paths happened in the

previous iterations can be presented as in Figure 28. In Execution 1, with the relevant

data event E1, the alternation operator has True potential checkpoint value because the

invoked atom A has True potential checkpoint value. Otherwise, with the relevant data

event E2, the alternation operator has False potential checkpoint value because the

invoked atom B has False potential checkpoint value. After two runs, this alternation

operator can be exactly forecasted– True for event E1, False for event E2.

 47

Figure 29: Dynamic Checkpoint Reduction Algorithm on ((A;B)+(C||D))*

Furthermore, forecasting the unpredictable execution paths of alternation

operators also helps confirm potential checkpoints of its ancestor operators. This

approach solves most exceptional cases for unpredictable paths. Consider Figure 12 as an

example. The two possible execution paths illustrated in Figure 29 include the sub-tree of

the alternation operator and its parent recurrence operator after two runs.

The pseudo code of the dynamic checkpoint reduction algorithm is presented in

the following.

(execution pool: a collection of execution paths with relevant data events)

function forecast (node, events)

 if (node is an alternation operator with Unknown potential checkpoint)

 if (received variant events map compatibly with events in execution pool)

 predicatedExecution := remembered execution in execution pool

 apply predicatedExecution into POMSET tree

 48

 for (node in predicatedExecution)

 setProperty(node)

 else

 add this execution path beginning from node into execution pool

 with received relevant data events

Figure 30: Dynamic Checkpoint Reduction Algorithm on Online Travel Agent

Application Case 1

Applying this dynamic checkpoint reduction algorithm on the online travel agent

application, it is obvious that the two alternation operators make most of their ancestor

nodes in the POMSET tree to have Unknown potential checkpoint values. One of the

 49

operators is in the left side of the POMSET tree, as illustrated in Figure 30, and a group

checkpoint is taken at its parent concatenation operator. The other operator is in the right

side of the POMSET tree as illustrated in Figure 31, and a group checkpoint us taken at

its parent recurrence operator (also the root of the POMSET tree).

Figure 31: Dynamic Checkpoint Reduction Algorithm on the Online Travel Agent

Application Case 2

In order to precisely forecast the execution paths in the former case, the two

execution paths would be remembered as illustrated in Figure 32. During the execution

runs, if event E1 occurs, the alternation operator with True potential checkpoint value

allows a group checkpoint to be kept at the concatenation operator. Otherwise, if event

 50

E2 occurs, the group checkpoint is discarded at the concatenation operator because the

alternation operator has False potential checkpoint value.

Figure 32: Dynamic Checkpoint Reduction Algorithm on the Online Travel Agent

Application Case 1 – Remembered Execution Paths

Similar to the previous example, another two execution paths should also be

remembered for the latter alternation operator as illustrated in Figure 33. If event E3

occurs, the alternation operator changes its potential checkpoint property and those of its

parent operator. At the end, it makes the root of the POMSET tree, the recurrence

operator, to discard the group checkpoint. Otherwise, if event E4 occurs, the alternation

operator changes the potential checkpoint value as True and a group checkpoint is still

taken at the recurrence operator. Moreover, because the concurrent operator has higher

priority than the concatenation operator, the group checkpoint of the upper concatenation

operator would be identified as unnecessary during the reduction.

 51

Figure 33: Dynamic Checkpoint Reduction Algorithm on the Online Travel Agent

Application Case 2 – Remembered Execution Paths

3.3 Summary

The partial order based runtime recovery approach, which extends the partial

order based runtime verification idea, identifies the necessary group checkpoints to be

taken at the operators in a POMSET tree that specifies the correct behavior of a given

distributed application. Unlike a global checkpoint in traditional checkpoint-based

approaches, a group checkpoint represents a collection of local checkpoints of only the

necessary executing critical atoms (not all processes), thereby reducing the amount of

time and storage space to maintain a global consistent state.

In addition, some unnecessary checkpoints can be avoided by the static and the

dynamic checkpoint reduction algorithms, thereby reducing the number of necessary

group checkpoints. During execution runs, only the last group checkpoint are kept for

rollback recovery, thereby reducing the required persistence space.

 52

A prototype implementation of all the approaches introduced in this chapter will

be presented in Chapter 4.

 53

CHAPTER 4 : PROTOTYPE IMPLEMENTATION

This chapter presents a prototype implementation of the partial order based

runtime recovery technique developed in Chapter 3. This prototype requires the

developer to specify the atoms within the processes by inserting appropriate statements in

(thereby instrumenting) the application program. This application-level instrumented

implementation [JLSU87, SG91, SBFMPS04] is similar to embedded codes [XR96] or

compiler-based programs [LF90]. The prototype implements a monitor that does the

following using the POMSET tree:

1. When the execution is at an operator node, identify whether a group checkpoint

should be taken at that node and instruct the participating (descendant) critical

atoms of that operator node to take a group checkpoint by calling the checkpoint()

function provided by the application developer.

2. Receive event information from the atoms in the instrumented application

program, compares the events with the POMSET specification of the correct

behavior to detect failures, and recovers the system when a failure happens by

calling the recover() function provided by the application developer.

Thus, the monitor handles most of the runtime recovery.

4.1 Deployment Environment

Processes in a highly available distributed application cooperate to perform their

assigned functionality and communicate with each other by messages, as illustrated in

Figure 34. Each such process is developed with instrumented code, which sends relevant

 54

events to a central monitor. These various events trigger the runtime monitor to verify the

behavior of application against the POMSET specification. When the runtime monitor

detects a failure, it automatically and immediately sends specific system level events to

the processes for checkpoint-based recovery.

Figure 34: Deployment Environment

4.2 Monitor Prototype

Given a POMSET specification, the runtime monitor identifies the necessary

group checkpoints to be taken at operator nodes in the POMSET tree and takes/maintains

these group checkpoints (consisting of the states of the involved critical atoms). To

achieve this goal, several managers are classified as: monitor side or atom side. As

illustrated in Figure 35 and Figure 36, according to their place of deployment, these

managers have different responsibilities. For example, the Event Manager in the monitor

side listens to atom level events and sends system level events. On the other hand, the

 55

Event Manager in the atom side listens to system level events designed for checkpoint

rollback recovery. All these details in the prototype design for managers will be described

in the following sections.

Figure 35: Monitor Prototype in Central Monitor

Figure 36: Monitor Prototype in Atoms

 56

4.3 Configuration Manager

The configuration Manager allows the central monitor and the instrumented codes

in the process to manage configurations without modifying programs, such as UI display

format, event storage link. etc.

4.4 Event Manager

The Event Manager is mainly developed to manage event sending, receiving and

remembering.

In the atom side, the Event Manager is responsible to send events corresponding

to execution in atoms, and to listen to system level events for rollback recovery

notification. In the monitor side, the Event Manager has an event storage that receives

events sent by atoms. It also allows the central monitor event listeners to receive

notification of atom level events. In fact, this event storage is assumed to be failure free

and there is no omission failure occurring on event delivery. In addition to the event

storage, this Event Manager sends specified system level events to instruct the

appropriate atoms in the application to recover in case of a failure.

Information about various events and listeners in the runtime monitor is described

in the following.

4.4.1 Event Type

Adopted from the distributed event model, the application consists of various

events. Based on where they happen, these events can be classified as: atom level event

or system level event, as listed in Table 3. As illustrated in Figure 37, all events extend

 57

from BasicEvent that implements Serializable allowing it to be delivered through the

network.

Figure 37: Event Type Relationship

In the atom side, each atom sends corresponding atom level events for predicate

variable (by variant event) or different stages. In the monitor side, when the central

monitor receives these atom level events, compares the current event slices (including the

received events) with the given POMSET specification and checks the correct execution

of the atoms by invariants. In execution runs, the runtime monitor sends system level

events for two purposes. One is to notify the atoms to take a global checkpoint. The other

is for failure notification, and the atoms should be recovered to the specified global

consistent state and continue their normal execution.

 58

Table 3: Event Type

Event Level Description

AtomStartEvent Atom The atom starts to receive message via

channels. This event contains local

checkpoint id.

AtomStartExecutionEvent Atom The atom starts to execute its tasks.

AtomMessagingEvent Atom The atom sends messages via channels.

This event contains local checkpoint id.

AtomEndEvent Atom The atom ends after sending messages.

This event contains local checkpoint id.

AtomVariantChangingEvent Atom Data variant changes in the atom.

SystemStartEvent System The system starts monitoring.

SystemEndEvent System The system ends monitoring.

SystemGlobalCheckpointEvent System The system confirms a global checkpoint

composed of local checkpoints id.

SystemRollbackEvent System The system rollbacks to specified global

checkpoint that composed of local

checkpoints id.

 59

4.4.2 Event Sender and Event Listener

In the atom side, the Event Sender sends atom level events corresponding to

different stages. As illustrated in Figure 38, an atom sends AtomStartEvent before

receiving messages via channels, AtomStartExecutionEvent to prepare tasks execution,

AtomMessagingEvent to start sending messages to channels and finally AtomEndEvent

for end status. In a critical atom, local checkpoints are stored with unique identifications.

And these local checkpoints might be discarded later or become part of a group

checkpoint.

The Event Listener looks for system level events for taking a group checkpoint or

for performing rollback recovery. When a critical atom is notified to form a group

checkpoint with its local checkpoint LC, it asks the Checkpoint Manager to discard all

previous local checkpoints LC’ taken before LC.

Figure 38: Event Sender

In the monitor side, when the Event Listener receives notification of atom level

events, it passes the atom status to the POMSET Manager for partial order based runtime

 60

verification. During checkpoint evaluation, if the POMSET Manager decides to take a

group checkpoint, the Event Sender sends SystemCheckpointEvent with local checkpoint

identifications of the involved critical atoms to discard previous local checkpoints. But

once the POMSET Manager detects a failure, the Event Manager sends a

SystemRollbackEvent with the last group checkpoint to notify those critical atoms to

recover the execution by rolling back.

4.5 POMSET Manager

The POMSET Manager is mainly responsible for managing the partial order

execution model in the monitor side, including runtime verification and runtime recovery.

It maintains the specification as the POMSET tree structure, identifies the necessary

checkpoints, verifies runtime failures and invokes rollback recovery, if necessary. In

other words, it plays the important role of runtime monitor.

4.5.1 Node Type

As illustrated in Figure 39, a POMSET specification that describes the correct

behavior of a given application consists of more than one nodes and each node represents

an atom or an ordering operator between multiple atom sets.

All nodes are listed in Table 4 with node type, representation character and

whether it can be shown in the POMSET tree. An atom node can be a critical node or a

non-critical node depending on whether it computes and updates relevant data variable,

but naming of atoms is required to be well defined. A critical atom should be named as

C_XXX while a non-critical atom as N_XXX for simple identification.

 61

Figure 39: POMSET Tree Structure

As for operators, naming is pre-defined. An operator node can be an alternation

node (+), concatenation node (;), concurrency node (||), or recurrence node (*). Most

nodes can be shown in the POMSET tree, except for parentheses that only are designed to

avoid ambiguity in the specification.

4.5.2 Operation Node Specification

Every operation node has its rules of specification that describe the partial-

ordered sequence among multiple atom sets. The specification beginning with an open

parenthesis ―(‖ should be closed with a close parenthesis ―)‖. A recurrence operation

node ―*‖ should only have one child node. A concatenation operation node ―;‖ should

have exactly two children nodes. An alternation operator ―+‖ and a concurrency operator

―||‖ should have more than one children node.

 62

Table 4: POMSET Node List

Node Inherited Node Char Show

CriticalAtomExpressionNode AtomExpressionNode C_XXX Yes

NonCriticalAtomExpressionNode AtomExpressionNode N_XXX Yes

AlternationOperationExpressionNode OperationExpressionNode + Yes

ConcatenationOperationExpressionNode OperationExpressionNode ; Yes

ConcurrencyOperationExpressionNode OperationExpressionNode || Yes

RecurrenceOperationExpressionNode OperationExpressionNode * Yes

OpenParentheseExpressionNode ParentheseExpression (No

CloseParentheseExpressionNode ParentheseExpression) No

4.5.3 Node Status

During the execution runs, every node changes its status to represent its current

stage. As listed in Table 5, each status has its meaning in the atom/operator.

For an operator, the beginning status is NOT_STARTED as illustrated in Figure

40. When it starts its own tasks, that is, the runtime monitor receives corresponding atom

level event and compare current execution with predication, then the status changes as

EXECUTING. After the tasks are completed (no failure/conflict occurs), the status

 63

changes as ENDED. However, during runtime executions, nodes may rollback to

previous statuses because of failures.

Table 5: POMSET Node Status Type

Status For Atom For

Operator

Description

NOT_STARTED Yes Yes The node does not start yet.

STARTED Yes No The node is ready for message receiving.

EXECUTING Yes Yes The node is executing its tasks.

MESSAGING Yes No The node sends messages to other atoms.

ENDED Yes Yes The node completes its tasks, including

message sending.

Figure 40: Operation Node Status Lifecycle

An atom has the beginning status NOT_STARTED as illustrated in Figure 41.

Later, when it is ready to receive messages, it sends an event to the monitor and changes

its status to STARTED. As an atom node can be divided into three parts—message

 64

receiving, execution, and message sending, it has different status to represent its progress.

When it receives messages and starts execution, the status should be changed to

EXECUTING. When it starts to sending message to other atoms, its status should be

changed to MESSAGING. Finally, the status changes to ENDED after sending messages.

However, during execution runs, nodes may rollback to STARTED (waiting for

messages) and MESSAGING (re-sending messages).

Figure 41: Atom Node Status

4.5.4 Checkpoint Evaluator

Given a POMSET specification, the Checkpoint Evaluator sets potential

checkpoint values of each node: a critical atom node as True, a non-critical atom node as

False, an operator node based on its operator definition and children atom sets. Then it

identifies group checkpoints of operator nodes according to potential checkpoints values.

Since some of the global checkpoints may not be necessary, the Static Checkpoint

Reducer identifies the unnecessary global checkpoints.

 65

4.5.5 Static Checkpoint Reducer

The Static Checkpoint Reducer implements the static checkpoint reduction

algorithm. This object identifies the unnecessary checkpoints by using the priorities of

the operators: recurrence operator ―*‖ = concurrency operator ―||‖ > concatenation

operator ―;‖ > alternation operator ―+‖. In addition, if two operation nodes with

overlapping atom sets both have global checkpoints, it compares the position of the two

operators in the POMSET tree and avoids taking the group checkpoint for the lower level

operator node. With this object, most unnecessary checkpoints can be avoided, except for

those caused by unpredictable execution paths.

4.5.6 Dynamic Checkpoint Reducer

The Dynamic Checkpoint Reducer is designed to solve issues of unpredictable

execution paths. In order to avoid those unnecessary group checkpoints that cannot be

identified by the Static Checkpoint Reducer, the Dynamic Checkpoint Reducer

implements the dynamic checkpoint reducing algorithm in two parts: remembering the

past execution paths and forecasting the future execution paths.

It is straightforward to forecast the execution of a future iteration by remembering

what happened in the past iterations. However, it costs significant resources and time to

remember the whole execution in a repository. Therefore, only partial execution paths

caused by alternation operators are remembered as logic rules rather than the whole

execution paths. This approach comes with advantages and disadvantages. It beneficially

reduces the amount of time and persistent storage, but it is difficult to identify the levels

of the partial execution paths to be remembered. For the online travel agent example,

 66

unnecessary group checkpoints are taken at two alternation operators in the POMSET

specification. One only affects its parent operator as illustrated in Figure 30. The other

affects the root of the POMSET tree as illustrated in Figure 31. The remembered partial

execution paths are of no use if they cannot sufficiently cover the subtree for forecasting.

This problem is solved by using a configuration parameter that specifies the maximum

level of the POMSET specification to remember.

The Dynamic Checkpoint Reducer forecasts the next possible iteration execution

according to what happened in past iteration executions. Once the execution paths are

confirmed, the Dynamic Checkpoint Reducer asks the Static Checkpoint Reducer to re-

evaluate the potential checkpoint values, and identify the necessary group checkpoints.

This time, all the identified group checkpoints should be necessary because of the

absence of unpredictable execution paths.

4.5.7 Runtime Specification Verifier

The Runtime Specification Verifier mainly implements the partial-ordered

verification and checks only two requirements: the ordering among atom sets and the

correct behavior of each atom. First, it maintains the current atom slices (including the

received atom events) and checks the compatibility between atom slices and the given

POMSET specification. Secondly, it compares the predicate variables with received

relevant data events from the atoms promising global property match. In case of

mismatch of any of the requirements, it flags a failure and asks the Checkpoint Manager

roll back to the last group checkpoint for recovery.

 67

4.6 Instrumented Program Codes

The runtime monitor provides a framework for instrumented program codes for

the atoms, and the application programmers are required to declare well-formed atoms as

in Figure 42. An atom implements the Execution interface and implements three

predefined functions: execute, checkpoint, and rollback. First, all tasks implementation

should be described in execute, necessary data to be recovered should be stored in a map

inside checkpoint, and rollback specifies how to roll back the atom to a previous correct

state.

Figure 42: Runtime Manager for Instrumented Program Codes

More than that, an atom has to be declared by a unique id and it activates its

message manager for receiving messages. In different execution stages, application

programmers have to command the Runtime Manager to do corresponding actions, such

as startAtom, startExecution, endExecution, endAtom described in Table 6..

 68

In brief, the instrumented program codes control background events/messages

handling by cooperating with the Event Manager and manage checkpoint instances with

the Checkpoint Manager.

Table 6: Runtime Manager for Instrumented Program Codes Function List

Function Description

startAtom Atom is ready for message receiving, and its status should be

changed from NOT_STARTED to STARTED

startExecution Atom starts executing its tasks described in execute(), and its status

should be changed from STARTED to EXECUTING

endExecution Atom completes tasks execution to send message via channels and its

status should be changed from EXECUTING to MESSAGING.

endAtom Atom ends with status changed from MESSAGING to ENDED.

4.6.1 Message Manager

The Message Manager is mainly responsible for message sending and receiving

via channels. All message types should implement Serializable for network transmission.

An atom can receive serialized objects from the other atoms and cast them into other

classes, because the Message Manager captures all sending and receiving messages with

checkpoint id by another thread handling system I/O despite the main thread. All message

life period depends on the checkpoint. If the local checkpoint is to be discarded, meaning

 69

that local checkpoint is no longer used, all messages with the local checkpoint id should

also be discarded. With this approach, the Message Manager can provide flexible object

message sending and receiving functions without affecting the main thread performance.

4.6.2 Checkpoint Manager

The Checkpoint Manager mainly controls the local checkpoints of the atoms,

including unique id and data mapping. First of all, when an atom is started, the

Checkpoint Manager makes an initial checkpoint as LC1. When the atom ends its

execution and starts to send messages, it makes another checkpoint LC2, and the final

checkpoint LC3 for the end stage. However, a group checkpoint is composed by local

checkpoints of the involved critical atoms. The local checkpoint is meaningful only when

it is part of the latest group checkpoint. In other words, when an atom is notified that

there is another group checkpoint G1 composed of LC2 by a SystemCheckpointEvent, the

Checkpoint Manager should discard all local checkpoints before LC2, such as LC1. The

Checkpoint Manager also provides rollback recovery invocation, when an atom is

notified to roll back to a specific local checkpoint; the Checkpoint Manager retrieves the

stored data map to the Runtime Manager for rollback recovery.

4.7 Observation on the Online Travel Agent Application

The runtime rollback monitor initially identifies 10 group checkpoints for the

online travel agent application as illustrated in Figure 17, and two of them are avoided

because they are identified as unnecessary by the static checkpoint reduction algorithm as

illustrated in Figure 27. Another two group checkpoints may be avoided by precise

forecasting by the dynamic checkpoint reduction algorithm during iteration runs as

 70

illustrated in Figure 30 and Figure 31. Most detail about how the static/dynamic

checkpoint reduction algorithms applied on the online travel agent application are

described in Chapter 3.

In addition, the performance penalty due to the instrumented program codes in the

atoms is acceptable. As illustrated in Figure 43, the difference between average execution

time without monitor (the blue line) and with monitor (the green line) is quite subtle.

Only atoms G and O have obvious but tolerable differences, because both of these atoms

rely on message inputs and outputs more than other atoms. The instrumented program

codes in these atoms require more time to recover a number of messages.

However, the average recovery time for critical atoms is tolerable but not perfect,

as illustrated in Figure 44. The recovery time not only depends on the size of restored

data but also on the number of messages.

Figure 43: Average Execution Time for Instrumented Program Codes

 71

Figure 44: Average Recovery Time for Atoms

From the discussions so far, it should be clear that the partial order based runtime

recovery technique significantly improves the recovery efficiency by reducing both the

amount of persistent store used and the time required for recovery. In comparison with

traditional checkpoint-based rollback recovery (assume taking a checkpoint per minute)

shown in Table 7, the partial order based runtime recovery reduces 65% of stored space

as listed in Table 8. This technique also reduces the recovery time because it can specify

which last checkpoint should be used for recovery without domino effect. Note that this

improvement is application dependent and it changes with the checkpoint frequency,

number and granularity of atoms, etc.

4.8 Summary

This chapter detailed a prototype implementation of the runtime recovery monitor

that extends the runtime verification for partial-ordered multi-set model and manages

events, status, and checkpoints for rollback recovery. Instrumented program codes in

 72

each atom/process send responsible relevant events to a central monitor, which compares

the received events with the expected execution specified by the POMSET tree. From the

correct behavior of a distributed application, the runtime monitor identifies the group

checkpoints to be taken by operators in the POMSET tree, and avoids unnecessary group

checkpoints by implementing the static checkpoint reduction algorithm and the dynamic

checkpoint reduction algorithm. This monitor also manages the local checkpoints of

critical atoms and keeps the last group checkpoint by discarding the previous ones. When

the runtime monitor detects a failure, it automatically and immediately rolls the system

back to the last stored state and continues the normal execution of system.

The operation of this prototype is also explained on the example highly available

distributed application – the online travel agent – along with the result of observation on

the runtime rollback recovery monitor.

Table 7: Amount of Storage Space for Traditional Checkpoint Rollback Recovery

Process Name Amount Of Storage Space For Checkpoint (mb)

User 0.2

Agent 5.3

Hotel Service 4.1

Transportation Service 4.6

Subtotal 14.2

Total Of 2 Checkpoints 28.4

 73

Table 8: Amount of Storage Space for Partial Order Based Runtime Recovery

Atom Name Amount Of Storage Space For Checkpoint (mb)

H 0.2

J 0.4

K 1.5

L 0

M 0

N 1.7

O 1.4

R 2.0

S 0

T 0

U 2.4

Total 9.6

 74

CHAPTER 5 : CONCLUSION AND FUTURE WORK

This thesis developed a partial order based runtime recovery technique that can be

used with highly available distributed applications. Given a partially ordered multiset

(POMSET) specifying the correct behavior of the distributed application, this technique

can identify at which operator nodes in the POMSET tree should group checkpoints

(global consistent states) be taken. First, the atoms in the distributed application are

categorized as critical atoms and non-critical atoms according to whether the atom

changes the invariant variable that impacts the progress of application. Based on the

potential checkpoint properties of operators, that indicates the intended checkpoint

decisions, this technique identifies when group checkpoints (the collection of local

checkpoints in atoms) should be taken. Furthermore, two algorithms are developed to

avoid unnecessary checkpoints – one by priority and position of operators (static

checkpoint reduction) and the other by predicting future execution paths according to

what has occurred in the past iteration runs (dynamic checkpoint reduction).

In the developed proof-of-concept prototype, the application developer specifies

the POMSET specification with program atoms (set of events) and the atom themselves

with instrumented code to send the application events to the runtime recovery system.

The runtime recovery system checks the occurrence of the events reported by the

program atoms with the POMSET specification (stored in memory as the POMSET tree)

and detects a failure when an event does not satisfy the specification and recovers the

application by rolling it back to a past correct execution point using the saved checkpoint.

The runtime recovery system only maintains the necessary checkpoints (instead of

 75

periodic checkpoints) and further reduces the number of checkpoints maintained by

avoiding unnecessary checkpoints using the developed static and dynamic checkpoint

reduction algorithms.

As explained in Chapter 3 and illustrated in Chapter 4, the partial order based

runtime recovery technique significantly improves the efficiency on the required storage

space (space efficiency) and the recovery time (time efficiency) while ensuring the

application is highly available. Unlike traditional checkpoint based rollback recovery

techniques, in which all processes participate to form a global consistent state (global

checkpoint), each group checkpoint in the runtime recovery is a collection of the local

checkpoints of only the necessary atoms. Given a POMSET tree specifying the correct

behavior of the application, this technique identifies the group checkpoints to be taken by

operator nodes. In addition, the two checkpoint reduction algorithms developed identify

and avoid the unnecessary checkpoints. The developed proof of concept prototype shows

that this technique does not impact the performance of the application in any significant

manner.

However, this technique can be further improved by solving the following issues

in the future. Given a POMSET specification, this technique can figure out the optimal

(the least) number of group checkpoints necessary. In order to find out the optimal

solution, appropriate algorithms/properties should be developed. For example, in Figure

45, if the concurrent operator contains all non-critical atoms, it is unnecessary to take a

 76

group checkpoint (now the concurrent operator always takes a group checkpoint).

Figure 45: Issues to be solved – Group Checkpoint of Concurrent Operator

In addition, the central runtime monitor used in the developed technique (that

extends the partial order based runtime verification into runtime recovery and manages

the checkpoints/messages/events) is supposed to be failure-free. If a failure occurs, it rolls

the monitored application back to the last stored group checkpoint so that the application

can continue its normal execution. If a prototype of this technique is implemented using a

distributed monitor, it can further improve the availability and reliability of the

application.

As described in Chapter 4, this technique relies on application programmers to

provide correct information in order to consider the distributed application as a black box.

 77

However, this requires that the application programmers have sufficient skills and

experience with the POMSET model and specification, and program instrumentation.

Therefore, developing techniques to automatically instrumenting the source code of the

target application, which can organize events as well-formed atoms and send data variant

events to the monitor by analyzing the original application code, will be more practical.

 78

REFERENCES

Replication

[SMNTWB02] D. Sames, B. Matt, B. Niebuhr, G. Tally, B. Whitmore and D.

Bakken, "Developing a heterogeneous intrusion tolerant CORBA

system," in Dependable Systems and Networks, 2002. DSN 2002.

Proceedings. International Conference on, 2002, pp. 239-248.

[RR06] L. Rodrigues and M. Raynal, "Atomic broadcast in asynchronous

crash-recovery distributed systems and its use in quorum-based

replication," Knowledge and Data Engineering, IEEE Transactions on,

vol. 15, pp. 1206-1217, 2003.

[RKSC06] K. Ravindran, K. A. Kwiat, A. Sabbir and B. Cao, "Replica voting: A

distributed middleware service for real-time dependable systems," in

Communication System Software and Middleware, 2006. Comsware

2006. First International Conference on, 2006, pp. 1-7.

[OFG07] J. Osrael, L. Froihofer and K. M. Goeschka, "Availability/Consistency

balancing replication model," in Parallel and Distributed Processing

Symposium, 2007. IPDPS 2007. IEEE International, 2007, pp. 1-8.

 79

State Space Explosion

[YUA88] M. C. Yuang, "Survey of protocol verification techniques based on

finite state machine models," in Computer Networking Symposium,

1988., Proceedings of the, 1988, pp. 164-172.

[BCMDH 90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill and L. J. Hwang,

"Symbolic model checking: 1020 states and beyond," in Logic in

Computer Science, 1990. LICS '90, Proceedings., Fifth Annual IEEE

Symposium on e, 1990, pp. 428-439.

State-Space Model

[LHLL08] Lixian Liu, Bingxin Han, Jinbo Li and Xinling Li, "A globally

optimized state-space model identification method," in Intelligent

Control and Automation, 2008. WCICA 2008. 7th World Congress on,

2008, pp. 4741-4744.

Partial-Order Model

[AM94] M. Ahuja and S. Mishra, "Units of computation in fault-tolerant

distributed systems," in Distributed Computing Systems, 1994.,

Proceedings of the 14th International Conference on, 1994, pp. 626-

633.

[MG03] N. Mittal and V. K. Garg, "Software fault tolerance of distributed

programs using computation slicing," in Distributed Computing

Systems, 2003. Proceedings. 23rd International Conference on, 2003,

pp. 105-113.

 80

[RG04] H. F. Li, J. Rilling and D. Goswami, "Granularity-Driven Dynamic

Predicate Slicing Algorithms for Message Passing Systems,"

Automated Software Engg., vol. 11, pp. 63-89, January, 2004.

[LM07] H. F. Li and E. Al Maghayreh, "Checking distributed programs with

partially ordered atoms," in Software Engineering Conference, 2007.

APSEC 2007. 14th Asia-Pacific, 2007, pp. 518-525.

[LMG07] H. F. Li, E. Al Maghayreh and D. Goswami, "Using atoms to simplify

distributed programs checking," in Dependable, Autonomic and

Secure Computing, 2007. DASC 2007. Third IEEE International

Symposium on, 2007, pp. 75-83.

[GAO10] Xiangyu Gao ―Design and Implementation of A Partial-Order

Semantics Based Runtime Verification Toolset for Distributed Java

Programs‖ Master Of Computer Science Department, 2010

Global Consistent State

[LAMP78] L. Lamport, "Time, clocks, and the ordering of events in a distributed

system," Commun ACM, vol. 21, pp. 558-565, 1978.

[CL85] K. M. Chandy and L. Lamport, "Distributed snapshots: determining

global states of distributed systems," ACM Trans.Comput.Syst., vol. 3,

pp. 63-75, 1985.

[PAH08] S. Pourmahmoud, S. Asbaghi and A. T. Haghighat, "A new way of

calculating the recovery line through eliminating useless checkpoints

 81

in distributed systems," in Computer and Information Sciences, 2008.

ISCIS '08. 23rd International Symposium on, 2008, pp. 1-4.

Domino Effect

[RAN75] B. Randell, "System structure for software fault tolerance," in

Proceedings of the International Conference on Reliable Software, Los

Angeles, California, 1975, pp. 437-449.

[BCS84] D. Briatico, Augusto Ciuffoletti, Luca Simoncini. A Distributed

Domino-Effect free recovery Algorithm. In Proceedings of

Symposium on Reliability in Distributed Software and Database

Systems'1984. pp.207~215.

Application Level Implementation

[JLSU87] J. Joyce, G. Lomow, K. Slind and B. Unger, "Monitoring distributed

systems," ACM Trans.Comput.Syst., vol. 5, pp. 121-150, 1987.

[SG91] L. Strigini and F. Di Giandomenico, "Flexible schemes for

application-level fault tolerance," in Reliable Distributed Systems,

1991. Proceedings., Tenth Symposium on, 1991, pp. 86-95.

[SBFMPS04] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali and

P. Stodghill, "Implementation and evaluation of a scalable application-

level checkpoint-recovery scheme for MPI programs," in SC '04:

Proceedings of the 2004 ACM/IEEE Conference on Supercomputing,

2004, pp. 38.

 82

Other Implementation

[XR96] Jie Xu and B. Randell, "Roll-forward error recovery in embedded real-

time systems," in Parallel and Distributed Systems, 1996.

Proceedings., 1996 International Conference on, 1996, pp. 414-421.

[LF90] C. -. J. Li and W. K. Fuchs, "CATCH-compiler-assisted techniques for

checkpointing," in Fault-Tolerant Computing, 1990. FTCS-20. Digest

of Papers., 20th International Symposium, 1990, pp. 74-81.

Rollback

[CR72] K. M. Chandy and C. V. Ramamoorthy, "Rollback and Recovery

Strategies for Computer Programs," Computers, IEEE Transactions

on, vol. C-21, pp. 546-556, 1972.

[CW92] J. Cao and K. C. Wang, "An abstract model of rollback recovery

control in distributed systems," SIGOPS Oper.Syst.Rev., vol. 26, pp.

62-76, 1992.

[EZ92] E. N. Elnozahy and W. Zwaenepoel, "Manetho: transparent roll back-

recovery with low overhead, limited rollback, and fast output commit,"

Computers, IEEE Transactions on, vol. 41, pp. 526-531, 1992.

[CY96] Ge-Ming Chiu and Cheng-Ru Young, "Efficient rollback-recovery

technique in distributed computing systems," Parallel and Distributed

Systems, IEEE Transactions on, vol. 7, pp. 565-577, 1996.

 83

[EA02] E. N. Elnozahy, L. Alvisi, Y. Wang and D. B. Johnson, "A survey of

rollback-recovery protocols in message-passing systems," ACM

Comput.Surv., vol. 34, pp. 375-408, 2002.

Checkpoint-Based Rollback

[KT87] R. Koo and S. Teoug, "Checkpointing and Rollback-Recovery for

Distributed Systems," Software Engineering, IEEE Transactions on,

vol. SE-13, pp. 23-31, 1987.

[EJZ92] E. N. Elnozahy, D. B. Johnson and W. Zwaenepoel, "The performance

of consistent checkpointing," in Reliable Distributed Systems, 1992.

Proceedings., 11th Symposium on, 1992, pp. 39-47.

[BBHMR95] R. Baldoni, J. Brzezinski, J. M. Helary, A. Mostefaoui and M. Raynal,

"Characterization of consistent global checkpoints in large-scale

distributed systems," in Distributed Computing Systems, 1995.,

Proceedings of the Fifth IEEE Computer Society Workshop on Future

Trends of, 1995, pp. 314-323.

[EP04] E. N. Elnozahy and J. S. Plank, "Checkpointing for peta-scale systems:

a look into the future of practical rollback-recovery," Dependable and

Secure Computing, IEEE Transactions on, vol. 1, pp. 97-108, 2004.

Independent Checkpoint Recovery

[BL88] B. Bhargava and Shu-Renn Lian, "Independent checkpointing and

concurrent rollback for recovery in distributed systems-an optimistic

 84

approach," in Reliable Distributed Systems, 1988. Proceedings.,

Seventh Symposium on, 1988, pp. 3-12.

[TRI96] P. Triantafiliou, "Independent recovery in large-scale distributed

systems," Software Engineering, IEEE Transactions on, vol. 22, pp.

812-826, 1996.

Coordinated Checkpoint Recovery

[BLKC03] A. Bouteiller, P. Lemarinier, K. Krawezik and F. Capello,

"Coordinated checkpoint versus message log for fault tolerant MPI," in

Cluster Computing, 2003. Proceedings. 2003 IEEE International

Conference on, 2003, pp. 242-250.

[CLG05] Jiannong Cao, Yinghao Li and Minyi Guo, "Process migration for MPI

applications based on coordinated checkpoint," in Parallel and

Distributed Systems, 2005. Proceedings. 11th International Conference

on, 2005, pp. 306-312 Vol. 1.

[LPN05] O. Laadan, D. Phung and J. Nieh, "Transparent checkpoint-restart of

distributed applications on commodity clusters," in Cluster

Computing, 2005. IEEE International, 2005, pp. 1-13.

[BGR06] X. Besseron, S. Jafar, T. Gautier and J. -. Roch, "CCK: An improved

coordinated Checkpoint/Rollback protocol for dataflow applications in

kaapi," in Information and Communication Technologies, 2006.

ICTTA '06. 2nd, 2006, pp. 3353-3358.

 85

Communication Induced Checkpoint Recovery

[HMNR97] J. -. Helary, A. Mostefaoui, R. H. B. Netzer and M. Raynal,

"Preventing useless checkpoints in distributed computations," in

Reliable Distributed Systems, 1997. Proceedings., the Sixteenth

Symposium on, 1997, pp. 183-190.

[AER99] L. Alvisi, E. Elnozahy, S. Rao, S. A. Husain and A. de Mel, "An

analysis of communication induced checkpointing," in Fault-Tolerant

Computing, 1999. Digest of Papers. Twenty-Ninth Annual

International Symposium on, 1999, pp. 242-249.

[BG00] R. Belhassine-Cherif and A. Ghedamsi, "Diagnostic tests for

communicating nondeterministic finite state machines," in Computers

and Communications, 2000. Proceedings. ISCC 2000. Fifth IEEE

Symposium on, 2000, pp. 424-429.

[BG01] R. Belhassine-Cherif and A. Ghedamsi, "Multiple fault diagnostics for

communicating nondeterministic finite state machines," in Computers

and Communications, 2001. Proceedings. Sixth IEEE Symposium on,

2001, pp. 661-666.

Message Logged-Based Rollback

[JOH90] D. B. Johnson, "Distributed system fault tolerance using message

logging and checkpointing," 1990.

[EZ94] E. N. Elnozahy and W. Zwaenepoel, "On the use and implementation

of message logging," in Fault-Tolerant Computing, 1994. FTCS-24.

 86

Digest of Papers., Twenty-Fourth International symposium on, 1994,

pp. 298-307.

[AHM95] L. Alvisi, B. Hoppe and K. Marzullo, "Nonblocking and orphan-free

message logging protocols," in Fault-Tolerant Computing, 1995, '

Highlights from Twenty-Five Years'., Twenty-Fifth International

Symposium on, 1995, pp. 229.

[ALV96] L. Alvisi, "Understanding the message logging paradigm for masking

process crashes," 1996.

[AM98] L. Alvisi and K. Marzullo, "Message logging: pessimistic, optimistic,

causal, and optimal," Software Engineering, IEEE Transactions on,

vol. 24, pp. 149-159, 1998.

[AV98] S. Rao, L. Alvisi and H. M. Vin, "The cost of recovery in message

logging protocols," in Reliable Distributed Systems, 1998.

Proceedings. Seventeenth IEEE Symposium on, 1998, pp. 10-18.

Optimistic Message Logging Recovery

[SY85] R. Strom and S. Yemini, "Optimistic recovery in distributed systems,"

ACM Trans.Comput.Syst., vol. 3, pp. 204-226, 1985.

[HW95] Yennun Huang and Yi-Min Wang, "Why optimistic message logging

has not been used in telecommunications systems," in Fault-Tolerant

Computing, 1995. FTCS-25. Digest of Papers., Twenty-Fifth

International Symposium on, 1995, pp. 459-463.

 87

Pessimistic Message Logging Recovery

[EZ92] E. N. Elnozahy and W. Zwaenepoel, "Manetho: transparent roll back-

recovery with low overhead, limited rollback, and fast output commit,"

Computers, IEEE Transactions on, vol. 41, pp. 526-531, 1992.

[BCHKLM03] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier and

F. Magniette, "MPICH-V2: A fault tolerant MPI for volatile nodes

based on pessimistic sender based message logging," in SC '03:

Proceedings of the 2003 ACM/IEEE Conference on Supercomputing,

2003, pp. 25.

Casual Message Logging Recovery

[AM96] L. Alvisi and K. Marzullo, "Trade-offs in implementing causal

message logging protocols," in PODC '96: Proceedings of the

Fifteenth Annual ACM Symposium on Principles of Distributed

Computing, Philadelphia, Pennsylvania, United States, 1996, pp. 58-

67.

[BMA98] K. Bhatia, K. Marzullo and L. Alvisi, "The relative overhead of

piggybacking in causal message logging protocols," in Reliable

Distributed Systems, 1998. Proceedings. Seventeenth IEEE

Symposium on, 1998, pp. 348-353.

[LPYC98] Byoungjoo Lee, Taesoon Park, H. Y. Yeom and Yookun Cho, "An

efficient algorithm for causal message logging," in Reliable

 88

Distributed Systems, 1998. Proceedings. Seventeenth IEEE

Symposium on, 1998, pp. 19-25.

[MG98] J. R. Mitchell and V. K. Garg, "A non-blocking recovery algorithm for

causal message logging," in Reliable Distributed Systems, 1998.

Proceedings. Seventeenth IEEE Symposium on, 1998, pp. 3-9.

[BCHLC05] A. Bouteiller, B. Collin, T. Herault, P. Lemarinier and F. Cappello,

"Impact of event logger on causal message logging protocols for fault

tolerant MPI," in Parallel and Distributed Processing Symposium,

2005. Proceedings. 19th IEEE International, 2005, pp. 97-97.

Combination of Checkpoint and Message Logging Example

[RN08] C. D. V. Rao and M. M. Naidu, "A new, efficient coordinated

checkpointing protocol combined with selective sender-based message

logging," in Computer Systems and Applications, 2008. AICCSA

2008. IEEE/ACS International Conference on, 2008, pp. 444-447.

