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Abstract 

Partial Order Based Runtime Recovery 

Intended For Highly Available Distributed Applications 

Ching Wei Su 

 

This thesis develops a checkpoint based runtime rollback recovery technique 

intended to be used with highly available distributed applications whose correct expected 

behavior is specified by the application developer through a partially ordered multiset 

(POMSET) of application events. 

Checkpoint based rollback recovery techniques for distributed applications 

typically store the state of all the application processes and application events (called the 

global checkpoints) in persistent store at periodic time intervals.  When a runtime failure 

is detected, the application is rolled back to an appropriate correct past state in its 

execution using the saves checkpoints.  Such techniques do not know the correct 

application behavior and hence have to store large amount of state requiring significant 

amount of persistent storage and recovery time.  The idea behind this thesis is that 

knowing the correct expected behavior of the application, only the checkpoints necessary 

to ensure runtime recovery of the application can be identified and stored thereby making 

the recovery much more efficient. 

The application developer specifies the correct expected behavior of the 

distributed application through a POMSET of application events which is stored as a tree. 

The developed runtime recovery technique identifies the nodes of the POMSET tree at 
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which a checkpoint must be taken to ensure recovery. In addition, instead of storing the 

states of all the processes in the application (the global state), this technique only stores 

the states of the processes that are necessary to recover from a potential failure as a 

collection of local checkpoints (called group checkpoints).  Furthermore, unnecessary 

checkpoints are avoided by appropriate analysis of the POMSET tree before execution 

(called static checkpoint reduction) and by predicting the necessary checkpoints for 

iterative executions at runtime (called dynamic checkpoint reduction) based on past 

execution. 

A prototype implementation of the runtime recovery technique is developed and it 

shows that the technique has very little performance impact on the application.  The 

technique is illustrated with a practical example application for online travel agency. 

Experimental results from the prototype implementation on this example application 

show that the developed technique saves about 65% of the persistent store to save the 

checkpoints. Qualitative analysis of the developed technique shows that the required 

recovery time is significantly reduced in comparison with the traditional recovery 

technique.  
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CHAPTER 1 : INTRODUCTION 

The goal of this thesis is to develop a runtime rollback recovery technique to be 

used with highly available distributed applications based on the partially ordered multi-

set model and a prototype implementation of the technique.  This chapter motivates the 

research and highlights the contributions. 

1.1 Motivation 

With the advent of the internet, distributed applications integrating a collection of 

autonomous services (processes) running on geographically distributed hosts (computers) 

into a single unified software system have become a practical reality.  Such applications 

should be highly available (with little or no down time) in order to be accessed and used 

around the clock.  Furthermore, these highly available distributed applications may not be 

of any value if they cannot guarantee correct operation at all times without any human 

intervention.  Thus, approaches for the design and implementation of such reliable and 

highly available distributed applications have significant practical importance. 

Highly available distributed applications usually employ two approaches: failure 

masking or failure recovery.  An application employing failure masking is normally 

designed to produce correct result in the presence of incorrect operation (failure) by 

concurrently producing the result in multiple ways (using replicated processes) and then 

selecting and returning the correct result (using a voting process) [RKSC06, 

SMNTWB02, RR06, OFG07].  Thus, such applications require multiple replicas of the 

application processes running in different hosts thereby increasing the resource 
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requirements, cost and complexity of the application.  On the other hand, an application 

employing failure recovery is normally designed to detect the occurrence of an incorrect 

result (failure) and correct the result by restoring the application to a previous correct 

point (called checkpoint) in its execution and then replaying it by applying all the inputs 

since that correct point [CR72, CR92, EX92, CY96, EA02].  Thus, such applications 

need to keep track of the execution and maintain the checkpoints and the necessary 

information for replay. 

Failure detection and correction in distributed applications can be achieved by 

properly modeling the correct execution of the application.  Two commonly used such 

models are the state space model [LHLL08] and the partially ordered multiset (POMSET) 

model [AM94, MG03, RG04].  In the state space model, the execution of an application 

is modeled by the state of the application (events that have happened) during the 

execution.  The size of such states (and hence the information maintained by the 

application in persistent store) can grow exponentially in a distributed system leading to 

the well-known state explosion problem [YUA88, BCMDH 90].  In the POMSET model, 

on the other hand, the execution is modeled by the order in which events could happen in 

the application.  By properly defining the events of interest (for example, by grouping a 

number of events that should all occur or none should occur into an atom of events), it is 

possible to significantly reduce the amount of information necessary to be maintained 

[LM07, LMG07] thereby alleviating the state explosion problem. 

An approach for runtime verification of distributed applications based on the 

POMSET model has recently been developed [GAO10].  In this approach, the correct 

execution of the application is specified as a POMSET of atoms of events (atoms in 
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short) that should happen within the processes.  As the application is running, the 

processes report the atoms happening within themselves (by properly modifying or 

instrumenting the source code of the processes to do so) to a monitor that compares them 

with the specified POMSET.  When the monitor notices that an atom violates the given 

specification, it flags it as a failure in that execution.  This thesis extends that runtime 

verification approach to a runtime recovery approach using the checkpoint recovery 

mechanism. 

Typical checkpoint based rollback recovery techniques take and maintain 

checkpoints at periodic time intervals and the system is rolled back to the nearest correct 

checkpoint when a failure is detected. Quite a few of these periodic checkpoints may not 

be used during the recovery and maintaining them uses large amount of persistent 

storage. The proposed runtime recovery approach, on the other hand, maintains only the 

necessary checkpoints (that will be necessary for roll back) based on the POMSET 

specification and restoring the application to the last checkpoint when a runtime failure 

happens.   This is done by first analyzing the correct expected behavior of the application 

as modeled in the given POMSET specification and identifying all the required 

checkpoints.  As the application executes, only the necessary checkpoints (from the 

identified set) are maintained so that if and when a runtime failure happens, the system is 

rolled back to the last checkpoint and replayed with the necessary inputs to correct the 

error.  The number of such group checkpoints taken and maintained are further reduced 

by avoiding some of the unnecessary ones based on the priorities of the operator nodes 

and their positions in the POMSET tree (static checkpoint reduction) and by forecasting 

whether a checkpoint is necessary or not in a future iteration based on what happened in 
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the past iterations (dynamic checkpoint reduction). Thus, the proposed runtime recovery 

approach is more efficient as it maintains only the necessary checkpoints (thereby 

reducing the amount of persistent storage required) and easily performs the roll back to 

the last checkpoint (thereby improving the roll back time).  

The developed technique is implemented as a proof of concept prototype. The 

design and implementation of the prototype will be presented in detail explaining many 

of the issues and problems faced. The developed runtime recovery technique is also 

highlighted using a highly available online travel agent application.  This application will 

be introduced in Chapter 2 and used throughout the thesis to illustrate the important 

concepts, issues and their solutions. 

1.2 Contribution 

This thesis develops an automatic runtime recovery technique using the 

checkpoint based rollback recovery technique. The developed technique is also 

implemented as a proof of concept monitor that automatically handles the runtime 

recovery.  The major contributions of this thesis are as follows.  

 First, since POMSET specifies the correct behavior of processes in the distributed 

application, an approach is developed to analyze the POMSET specification and 

identify the required checkpoints for the given application.  

 Secondly, since not all the required checkpoints may be necessary, two algorithms 

to identify and avoid the unnecessary checkpoints are developed – the static 

checkpoint reduction algorithm and the dynamic checkpoint reduction algorithm.  
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 Furthermore, a proof of concept implementation of the runtime recovery monitor 

that follows the POMSET based model checking algorithm is developed.  This 

monitor verifies the ordering of atoms and the correctness of execution by 

comparing the execution atoms received from the processes with the expected 

execution specified in the POMSET specification. Once a failure is detected, the 

runtime recovery monitor automatically and immediately rolls back the 

application to the last checkpoint. In addition to reducing the size of the state 

space to be searched in partial-ordered checking, the runtime monitor only allows 

the last checkpoint to be kept by discarding previous checkpoints during 

execution runs.    

1.3 Outline 

This thesis is organized as follows.  

Chapter 2 discusses related previous works on rollback recovery protocols, 

including checkpoint-based recovery and log-based recovery. It also describes the 

runtime verification approach based on the partial-order model. 

Chapter 3 explains the runtime recovery technique based on the POMSET model 

and introduces the properties of operators in POMSET specification.  It also presents the 

static checkpoint reduction algorithm and the dynamic checkpoint reduction algorithm.  

Chapter 4 shows an implementation of the runtime recovery technique, including 

the deployment environment, the instrumented program, atoms, events, and status. It also 

describes how to persistently store messages, checkpoints and execution runs. The 

developed runtime recovery approach is illustrated using an online travel agency 
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example. The various steps in the runtime recovery process are clearly described for this 

highly available application. 

Chapter 5 concludes the thesis by pointing out issues and future work to improve 

the runtime recovery technique.   
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CHAPTER 2 : PARTIAL ORDER MODEL AND 

CHECKPOINT BASED RECOVERY 

The objective of this chapter is to describe the partially ordered multi-set 

(POMSET) specification of the correct behavior of distributed applications and the 

runtime verification technique using that model.  Traditional checkpoint based runtime 

recovery approaches and their characteristics are also presented. 

2.1 Partial Order Model 

The execution of highly available distributed applications involves parallel/ 

concurrent processes that cooperate to perform assigned functionality.  Due to the 

concurrent execution, comprehensive specification and analysis of the correct behavior in 

distributed applications consisting of multiple processes/threads is a challenge. While the 

execution of sequential programs can be described by a vector of events, the correct 

behavior of a concurrent distributed application should be properly presented using a 

partially ordered set of events (the partial order model)  [AM94, MG03, RG04], which is 

adopted from the distributed event model and allows unrelated/independent events to 

occur concurrently in distinct processes. 

In the partial-ordered multi-set (POMSET) model [LM07, LMG07], an event is 

an instance of action corresponding to a statement of execution and the low-level events 

can be compressed into a fixed number of atoms corresponding to abstract events for 

higher granularity. An atom consists of a set of events within a process that should occur 

atomically (that is, all should occur or none should occur). The POMSET model specifies 
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the partial order in which these atoms should occur during the execution of the distributed 

application.  

Consider an online travel agent application as an example. This is a highly 

available distributed application that sells and provides information about travel, 

transportation and accommodation and it can be treated as a virtual agent of multiple 

flight, rail, coach companies, and accommodation agencies. Moreover, it is accessible by 

multiple customers who are interested in all kinds of travel information about different 

flights or buying tickets online. 

There are four processes in the online travel agent application and each of them 

represents one role as listed in Table 1. Each process in this application has its own role 

functionality, such as users, virtual agent, hotel and transportation reservation services. 

When a virtual agent receives a user request, it asks the hotel and the transportation 

services for booking information, and gathers and reports this information as multiple 

journey choices back to the user. When the user chooses one preferred journey from 

among these choices, the virtual agent atomically performs the reservation of both hotel 

and transportation, and then notifies the user the success/failure of the reservation.  

A process may be divided into multiple atoms according to its functionality. All 

primitive events in this travel agent application are grouped into 21 atoms (A to U) as 

listed in Table 2.  For instance, atom A sends a user request for journey choices, while 

atom B represents a user already having a preferred journey so the virtual agent does not 

need to gather booking information. Note that an atom is classified as a critical atom if it 

computes and stores some information thereby changing the state of the application; 

otherwise, it is a non-critical atom. 
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Table 1: Role List of the Online Travel Agent Application 

Roles Description 

Customer A customer sends a booking request to the agency and waits for 

response. 

Agency An agency receives requests from a customer, gathers booking 

information from the hotel and the transportation services, and 

reserves/cancels booking. 

Hotel There are two hotel services for reservation and cancellation – 

H1 and H2. 

Transportation There are two transportation services for reservation and 

cancellation – T1 and T2. 

 

Table 2: Atom List of Travel Agency 

Atom Critical 

Atom? 

Role Description Input 

Message 

Output 

Message 

A No Customer A customer sends a 

request for available 

hotel and transportation 

reservation 

information. 

N/A M1 – 

Customer 

request with 

travel 

information  
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B No Agency An agency receives the 

request and asks the 

hotels and the 

transportation services 

for booking 

information. 

M1 M2, M3, M4, 

M5 – Agency 

requests with 

customer travel 

information 

C No Hotel H1 Hotel services query 

database and provide 

current booking list. 

M2 M6 – Hotel H1 

booking list 

D No Hotel H2 M3 M7 – Hotel H2 

booking list 

E No Transport

ation T1 

Transportation services 

query database and 

provide current 

booking list. 

M4 M8 – 

Transportation 

T1 booking list 

F No Transport

ation T2 

M5 M9 – 

Transportation 

T1 booking list 

G No Agency Gather all booking lists 

from hotel and 

transportation services 

and return those to 

customer as choices.  

M6, M7, M8, 

M9 

M10 – 

gathered 

booking list 
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H Yes Customer A customer chooses 

one hotel with 

transportation as travel 

routines. 

M10 M11 – 

Customer‘s 

choice of 

hotels and 

transportation 

I No Customer A customer already has 

preferred hotel with 

transportation as travel 

routines. 

N/A M12 – 

Customer‗s 

preferred 

choice of 

hotels and 

transportation 

J Yes Agency An agency receives 

customer‘s choice 

tagged with one unique 

number and records it 

in database.  

M11 or M12 M13 – booking 

request for 

hotel  

M14 – booking 

request for 

transportation 

K Yes Hotel H1 Hotel services book the 

room for the customer 

and returns the result of 

booking. 

M13 M15 – result of 

booking (Yes 

for success, No 

for failure) 

L Yes Hotel H2 
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M Yes Transport

ation T1 

Transportation services 

book the vacancy for 

the customer and 

returns the result of 

booking. 

M14 M16 – result of 

booking (Y for 

success, N for 

failure) 

N Yes Transport

ation T2 

O Yes Agency An agency receives the 

results of booking from 

hotel and transportation 

services, and check 

whether all bookings 

for the customer are 

done. 

M15, M16 2 messages 

(M13 and M14 

to repeat 

reservation) or 

1 message 

(M17 for 

reservation 

success) or 3 

messages 

(M18, M19, 

M20 for 

reservation 

failure) 

M17 – 

reservation 

successfully 



  13 

with 

reservation 

number 

M18 – 

reservation 

failed with 

failure 

messages 

M19 – 

cancellation 

request for 

hotel 

M20 – 

cancellation 

request for 

transportation 

P No Customer Notify Customer that 

all travel routines, 

including hotels and 

transportation, have 

done successfully. A 

customer should 

M17 N/A 
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receive the unique 

number of reservation. 

Q No Customer Notify customer that 

the travel routines, 

including hotels and 

transportation, have 

failed of reservation 

with fail messages. 

M18 N/A 

R Yes Hotel H1 Hotel services receive 

cancellation messages 

from agency, check 

booking list, and cancel 

the room, if that has 

been booked for the 

customer. 

M19 N/A 

S Yes Hotel H2 

T Yes Transport

ation T1 

Transportation services 

receive cancellation 

messages from agency, 

check booking list, and 

cancel the vacancy, if 

that has been booked 

for the customer. 

M20 N/A 

U Yes Transport

ation T1 
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The correct behavior of this application can be specified by the regular expression 

(( A ; B ; (C || D || E || F ) ; G ; H ) + I ) ; J ; ((( K + L ) || ( M + N )) ; O ) * ; ( P + ( Q 

|| ( R + S ) || ( T + U )) which is the partially ordered multiset (POMSET) of atoms. This 

specification says that the customer first sends the request (A), the agency receives the 

request (B), then the agency concurrently queries the hotel services (C, D) and the 

transportation services (E, F), gathers the result and report to the customer (G) who then 

selects a preferred choice (H), and so on. The POMSET specified in this regular 

expression can be visually shown (and stored in memory at runtime) as the POMSET tree 

illustrated in Figure 1. In the POMSET tree, an alphabetic node (a leaf node) is an 

abstract event (atom); while an operation node (an internal node) specifies the ordering of 

two/multiple atom sets. For example, a concatenation operation node (;) denotes the 

partial order relationship between two atom sets: the left atom set must occur before the 

right atom set. So A;B specifies that atom A should occur before atom B.  

While the POMSET indicates the order in which atoms should occur at runtime, 

the correctness of the computation performed by the individual atoms also needs to be 

specified. This is typically done by specifying a program invariant (called a predicate) for 

an atom, and the variables computed by the atom (called predicate variables) that are 

needed to check the invariant. Thus, knowing the predicates of individual atoms, the 

correctness of their computation can be verified at runtime using the predicate variables. 

For example, if atom J does not receive the predicate variable (a preferred journey choice 

containing hotel and transportation information) this behavior does not satisfy the global 

correctness property. 
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Figure 1: The POMSET tree of the online Travel Agent Application  

2.2 Runtime Verification 

The POMSET specification can be used to verify the correct execution of a 

distributed application as it runs.  This runtime verification is done by checking if all the 

atoms occur according to the partial order specified by the POMSET.  In order to do that, 

the application processes should be modified (instrumented) by adding the necessary 

program code to report the occurrence of the program events to a monitor which will 

check them with the POMSET specification. For example, during a run of the travel 

agent application, if atom J occurs before atom A or I, the runtime verification monitor 

flags a failure. Also, if J does not receive a customer preference of journey (predicate 
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variable), a failure would be detected because of the unsatisfied predicate.  Thus, partial 

order based runtime verification concerns two fundamental requirements – the ordering 

among atoms and the correctness of computation performed by each atom.  Notice that 

the necessary state space of this partial order model based verification can be 

dramatically reduced from the number of low-level program events to the number of 

granular atoms.  

This runtime verification approach has been recently introduced [LM07, LMG07] 

and implemented as a partial order based runtime verification tool [GAO10].  In that tool, 

the application programmers are required to specify the proper set of atoms, the 

POMSET specification of the correct behavior of the application, the atom predicates and 

predicate variables for checking compatible ordering among atoms and correct execution 

of each atom. With sufficient data gathered from the instrumented program code, the tool 

can compare the current execution of atom slices with the given specification and check 

the atom properties using the predicate variables.  The goal of this thesis is to extend this 

partial order based runtime verification approach into a runtime recovery approach so that 

when a failure (runtime error) is detected, the system can automatically correct itself 

thereby guaranteeing application reliability and high availability. With the correct 

behavior specified by a POMSET, this approach identifies the necessary set of 

checkpoints formed by local checkpoints of atoms in the application.  At runtime, it 

avoids unnecessary checkpoints using appropriate reduction algorithms, and it only needs 

to save the last global consistent state in persistent memory in order to reduce the 

resources necessary for recovery.    
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2.3 Checkpoint Based Rollback Recovery 

The first fundamental issue for the partial order based runtime recovery falls on 

approaches for taking and maintaining global consistent states in distributed applications. 

A global consistent state, which is also called a global checkpoint, consists of a collection 

of individual states of all participating processes and communication channels [LAMP78, 

CL85, PAH08]. The occurrence of an event may change the global state. For example, 

the consistent line/cut of process events illustrated in Figure 2 represents a global 

consistent state in which message m1 has been sent through the channel of Process 1 and 

is traveling in the network. In contrast, Process 3 in the inconsistent line/cut has delivered 

the message m2 that has not yet been sent by Process 2. 

 

Figure 2: Global Consistent System State 

Rollback recovery protocols [CR72, CW92, EZ92, CY96, EA02] in highly 

available distributed applications store/maintain consistent states of the application in a 

persistent store during failure-free execution at periodic time points/intervals. When a 

failure is detected at run time, the application can restart itself with an appropriate saved 

consistent state (or rolled back) from the persistent store to reduce the loss of 
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computation. Depending on the information being saved in the persistent store, these 

protocols employ two different approaches: checkpoint based [KT87, EJZ92, BBHMR95, 

EP04] or log based. The former only relies on periodic checkpoints to save the necessary 

recovery information while the latter relies on the piecewise deterministic assumption 

which identifies the nondeterministic events and logs the necessary information for 

replay. 

Moreover, based on how processes cooperate to take/maintain checkpoints, 

checkpoint-based rollback recovery can be classified as: independent, coordinated, or 

communication-induced.  Every process in independent checkpoint-based rollback 

recovery [BL88, TRI96] is allowed to take checkpoints independently.  However, this 

technique leads to the serious domino effect problem [RAN75, BCS84], which may result 

in all the processes rolling back to their initial states thereby losing all the work they have 

done because of message dependencies among them. As illustrated in Figure 3, Process 2 

detects a failure after receiving message M5 and rolls back to checkpoint C23. 

Meanwhile, this pushes Process 1to forget sending message M5 and to roll back to 

checkpoint C12. As a consequence, both Process 1 and Process 2 eventually roll back to 

their initial states. 

 

Figure 3: The Domino Effect 
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All the processes in coordinated checkpoint-based rollback recovery [BLKC03, 

CLG05, LPN05, BGR06] are required to cooperate their local checkpoints in order to 

form a global consistent state, thereby alleviating the domino effect problem. Moreover, 

this technique allows each process in the application to maintain only one local 

checkpoint to reduce storage overhead and the need for garbage collection.  

In communication-induced checkpoint-based rollback recovery, there are two 

kinds of checkpoints: local checkpoints and forced checkpoints [HMNR97, AER99, 

BG00, BG01]. Each process can take local checkpoints while forced checkpoints must be 

taken based on the information piggybacked on the application messages received from 

other processes to guarantee a global consistent state. However, the number of 

checkpoints is changeable depending on the number of messages passing through the 

application. This technique incurs overhead in piggybacking the information, making it 

difficult in practice. 

In contrast to checkpoint-based rollback recovery, log-based rollback recovery 

[JOH90, AHM95, ALV96, AM98, AV98] takes a piecewise deterministic approach 

which assumes that all nondeterministic events can be identified and the necessary 

information for replay can be properly logged. It guarantees that the processes of the 

system are "orphan-free", where an orphan process‘s state depends on a nondeterministic 

event and cannot be reproduced during recovery. According to how nondeterministic 

events are logged, log-based rollback recovery can be classified as: pessimistic, 

optimistic, or casual.  

A process in pessimistic log-based rollback recovery [EZ92, BCHKLM03] 

always logs a message before delivering it, so orphan processes are never created. 
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Therefore, it is straightforward to reconstruct the state of a failed process. On the other 

hand, log-based rollback recovery requires blocking a process for all messages it 

receives, and as a consequence, system performance would be slowed down even when 

no failure occurs.  

Compared to pessimistic log-based rollback, optimistic log-based rollback 

recovery [SY85, HW95] takes a smaller risk to have orphans for better system 

performance, because it does not require the application to be blocked when receiving 

messages. However, this advantage results in complicated recovery algorithms and 

garbage collection. 

Taking a balance between optimistic log-based rollback and pessimistic log-based 

rollback, the causal log-based rollback recovery [AM96, BMA98, LPYC98, MG98, 

BCHLC05] prevents orphans and allows simple failure recovery. Furthermore, it has 

advantages of non-blocking run-time scheme and low failure-free overhead. 

Like applications combining checkpoint-based and message logging recovery 

techniques, such as coordinated checkpoints with sender-based message logging [RN08], 

the partial order based runtime rollback recovery also takes both approaches from 

checkpoint-based rollback recovery and message log-based recovery. This technique 

allows each process in the application to make local checkpoints individually and 

organizes these local checkpoints to form a global consistent state. In addition, this 

technique also applies casual logging for all input/output messages through the channels, 

allowing all processes in the application to be orphan-free. 

In summary, using the POMSET specifying the correct behavior of the 

application, runtime verification can detect failure occurrence by checking the ordering of 
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atoms and their predicate properties thereby reducing the state space required. The 

runtime rollback recovery is developed based on the runtime verification. By adding 

some properties to the nodes of the POMSET tree, this technique can identify the 

necessary checkpoints keeping only the last one in persistent storage and rollback the 

system to that state when a failure occurs. All properties, rules and the checkpoint 

reduction algorithms will be presented in Chapter 3 and illustrated using the example 

travel agent application. 
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CHAPTER 3 : THE RUNTIME RECOVERY TECHNIQUE 

This chapter develops the partial order based runtime recovery technique that 

restores a highly available distributed application using a limited number of checkpoints 

(resources) upon a failure and continues its normal execution.  

As described in Chapter 2, the traditional checkpoint-based recovery approaches 

store checkpoints at periodic intervals. Also because the behavior of the distributed 

application is unknown, the traditional approach needs to store the state of every process 

in the application as the global consistent state (called global checkpoint), thereby using 

significant resources (time for blocking system and space to store states of all processes).   

The partial order based runtime recovery differs from the traditional checkpoint-based 

approach in many ways. First of all, given a POMSET tree specifying the expected 

behavior of the application, this runtime recovery technique identifies the nodes of the 

POMSET tree (operators) at which a checkpoint must be taken to ensure recovery 

(because they impact application execution). Secondly, instead of storing the states of all 

the processes in the application to form a global consistent state (global checkpoint), this 

technique only stores the states of the processes that are necessary to recover from a 

potential failure as a collection of local checkpoints (called group checkpoint). This 

collection of local checkpoints (that is, group checkpoint) represents the global consistent 

state in the partial order based runtime recovery.    

The approaches and algorithms for this partial order based runtime recovery 

technique are presented in the following sections.  
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3.1 Checkpoint Identification 

In order to identify the necessary checkpoints from the POMSET specification 

composed of atoms and operators, the first step is to find out which atoms should store 

their local checkpoints to form a group checkpoint.     

Atoms in processes compute their tasks and cooperate to perform the designed 

functionality in a distributed application. A critical atom computes and changes the 

value of a relevant variable that affects the correct progress of the execution, marked as 

red in Figure 4. A non-critical atom, shown in blue, does not change the value of any 

relevant variable and hence need not be restored. The computed variable value should be 

saved so that a critical atom can restart itself with the recovered data if a failure occurs in 

the future. In other words, those atoms that should avoid to be re-executed upon failures 

are critical atoms. 

 

Figure 4: Atom Classification 

For the online travel agent example application listed in Table 2, most critical 

atoms perform the following operations: reserving/cancelling a room, update vacancy 

information (because the booking information for a hotel/transportation service should be 

kept). When a failure occurs, the booking data should be restored and the services can 

continue their normal execution.  
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Besides atoms, operator nodes are also involved in checkpoint identification 

because they specify the correct ordering among their sub-trees. As presented in Figure 5, 

each operator node has its unique ordering requirement described in the following.  

A concatenation operator ―;‖ denotes before–after relationship between two 

children sub-trees. For example, (A;B) represents that atom A should occur before atom 

B.  

An alternation operator ―+‖ denotes the exclusive choice from more than one 

possible execution paths (sub-trees). For example, (A+B) represents that only atom A or 

atom B can occur, but never both in strictly partial ordered modeling. 

A concurrency operator ―||‖ denotes the concurrency of more than one 

execution paths (children sub-trees). For example, (A||B) represents that atom A and atom 

B can occur without any ordering constraints. 

A recurrence operator ―*‖ denotes the recurrence of the children sub-tree. For 

example, (A)
*
 represents that atom A can occur zero or more times. 

Figure 5: Operation Node Classification 

Even with critical atoms and well-defined operator information, checkpoints 

cannot be identified by intuition; but adding a property to the nodes of the POMSET tree 

can help this process. This potential checkpoint property indicates the checkpoint 

decisions for the nodes. The value of a potential checkpoint can be True, False, or 
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Unknown. A True potential checkpoint implies that a checkpoint must be taken when the 

execution is at the node; while a False potential checkpoint implies there is no need to 

take a checkpoint when the execution is at that node. An Unknown potential checkpoint 

is the special case with unpredictable execution paths that can be recognized only at 

runtime.  

For atoms, since their potential checkpoint values influence checkpoint decisions, 

it is straightforward to set it as True for critical atoms to avoid re-execution and False for 

non-critical atoms, as illustrated in Figure 6.  

 

Figure 6: Potential Checkpoint Values of Atoms – True/False 

The potential checkpoint value of an operator node represents the intention of 

checkpoint taken at the last child/children nodes that will be invoked later. Different 

operators have different potential checkpoint values according to the operator type and 

the potential checkpoint values of its children nodes. 

An alternation operator ―+‖ denotes multiple choices from more than one possible 

execution paths (sub-trees), but there will be only one path to be executed at runtime. In 

other words, the result of an executed path should be unpredictable until runtime. 

Therefore, as Case 3 in Figure 7, the potential checkpoint value of an alternation operator 

should be set as Unknown instead of True or False, because the real execution path 

cannot be predicted until execution time. However, when all the children nodes have the 
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same potential checkpoint values (any execution path results in the same intention for 

checkpoints), an alternation operator has the potential checkpoint value other than 

Unknown. In short, an alternation operator has total agreement of potential checkpoint 

values among its children. For example, for the POMSET specification (A+B) in Figure 

7, in Case 1 and Case 2 where atoms A and B have the same potential checkpoint values, 

the alternation operator has total agreement of A and B – True and False, respectively. If 

A and B both have True potential checkpoint values, potential checkpoint value of the 

alternation operator should be set as True for representing necessary future checkpoint 

taken for invocation of either A or B.  However in Case 3 where atoms A and B have 

different potential checkpoint values, the alternation operator has Unknown potential 

checkpoint value because of unpredictable execution paths.   

 

Figure 7: Potential Checkpoint values of Alternation Operator – 

True/False/Unknown   

A concatenation operator ―;‖ denotes the partial-order sequence of children nodes. 

So its potential checkpoint value should be the same as its right child (since the left child 

has already occurred in the execution) to represent the intention of checkpoint to be taken 

at the last child (right node). Potential checkpoint property of the concatenation operator 
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intends there exist a checkpoint that can be used for recovery, if a failure has occurred 

after the last child invocation of the operator.  As illustrated in Figure 8, for the POMSET 

specification (A;B), in Case 1 where A and B are both critical atoms, the concatenation 

operator has True potential checkpoint value. It may be the concatenation operator itself 

or its upper operators with a checkpoint that can be used for recovery, so that B can be 

rolled back instead of re-execution. In Case 2 where atom B is a non-critical atom, the 

concatenation operator has False potential checkpoint value. However, under certain 

conditions such as in (A;(B+C)), the concatenation operator sets its potential checkpoint 

value as Unknown, because the last right child node has Unknown potential checkpoint 

value. 

 

Figure 8: Potential Checkpoint Value of Concatenation Operator – 

True/False/Unknown 

A concurrency operator denotes that more than one path can be run without any 

ordering constraints, so its potential checkpoint value should represent the intention of 

any checkpoint taken by the last children of each execution paths. Basically, if any of the 

last children of the execution paths should take a checkpoint, this operator has True 

potential checkpoint value; otherwise it should have False checkpoint value. Under some 



  29 

conditions where its operand children only have False and Unknown potential checkpoint 

values, a concurrency operator node should set its potential checkpoint value as 

Unknown instead of False for checkpoint decisions. If any last children of the 

concurrently executing subtree have True/Unknown potential checkpoint properties that 

will cause the concurrency operator itself or its ancestor operators taking a checkpoint 

which can be used if a failure has occurred after invoking the last children of the 

operator. Thus, for the POMSET specification (A||B) in Figure 9, in Case 1 and Case 2 

where atom A has True potential checkpoint value, the concurrency operator should set 

its potential checkpoint value as True. In Case 3 where atoms A and B have False 

potential checkpoint values, the concurrency operator should set its potential checkpoint 

value as False. Given another POMSET specification (A||(B+C)) illustrated in Figure 10, 

the concurrency operator should set its potential checkpoint value as Unknown, because 

its operand children only have False and Unknown potential checkpoints. 

 

Figure 9: Potential Checkpoint Value of Concurrency Operator – True/False 
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Figure 10: Potential Checkpoint Value of Concurrency Operator – Unknown 

A recurrence operator denotes multiple iterations of its sub-tree; so its potential 

checkpoint value should be judged by its only child, because the potential checkpoint 

value of the child also represents the last child of the subtree of recurrence operator. For 

the POMSET specification (A;B)* illustrated in  

Figure 11, in Case 1 and Case 2, the recurrence operator has the same potential 

checkpoint value as its only child – True/False, respectively. However, for another 

POMSET specification ((A;B)+(C;D))* illustrated in Figure 12, the recurrence operator 

sets its potential checkpoint value as Unknown because its child has Unknown potential 

checkpoint value. 

   

Figure 11: Potential Checkpoint Value of Recurrence Operator – True/False 
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Figure 12: Potential Checkpoint Value of Recurrence Operator - Unknown  

 

In most practical distributed applications, such as the online travel agent, there are 

multiple alternation operators for multiple choices resulting in most nodes in the 

POMSET tree with Unknown potential checkpoint values as illustrated in Figure 13. 

With the potential checkpoint values, which show the intention of taking a 

checkpoint, checkpoints of operator nodes presented in Figure 14 can be identified by the 

following rules. In this thesis, a checkpoint taken by an operator represents that the 

critical atoms controlled by the operator should participate in forming a group checkpoint 

which is the global consistent state for the distributed application. 

No checkpoint is taken when the execution is at an alternation, because this 

operator denotes exclusive choice from more than one execution paths. In other words, 

there is only one path that can be executed at runtime. Once the execution path is 

selected, this operator has fulfilled its task, so it is not meaningful to take a checkpoint. 
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Figure 13: Potential Checkpoint Values for the Online Travel Agent Application 

 

   

Figure 14: Checkpoints of Operators 

 

A checkpoint is taken at a concatenation operator if its left child has True/ 

Unknown potential checkpoint value. Because it denotes the before-after relationship 

between the left sub-tree and the right sub-tree, if the left sub-tree has True potential 

checkpoint value, a checkpoint should be taken when the execution is at that node in 

order to avoid re-execution of the left sub-tree. Instead, if the left sub-tree has False 
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potential checkpoint value, then a checkpoint need not be taken when the execution is at 

that node. However, under some conditions where the left sub-tree has Unknown 

potential checkpoint value, which can be confirmed only at runtime, a checkpoint must 

be taken at the concatenation operator that may be avoided by later static or dynamic 

checkpoint reduction analysis. For example, given the POMSET specification (A;B) 

illustrated in Figure 15, in Case 1 where atom A has True potential checkpoint value, a 

checkpoint is taken at the concatenation operator to avoid re-executing atom A. In case 2, 

because atom A has False potential checkpoint value, a checkpoint is not taken at the 

concatenation operator. In Case 3 where the left child of the concatenation operator has 

Unknown potential checkpoint value, a checkpoint is still necessary.  

A checkpoint is always taken at a concurrency operator. This operator denotes 

concurrent execution of more than one execution paths. Before splitting one mainstream 

execution into multiple concurrent executions, a checkpoint is taken to record the current 

stages of system.  

A checkpoint is taken at a recurrence operator if its only child node has 

True/Unknown potential checkpoint value in order to avoid re-executing the only child. 

However, under some conditions where the recurrence operator has a child with 

Unknown potential checkpoint value, a checkpoint is still taken that may be avoided by 

static or dynamic checkpoint reduction analysis. For the POMSET specification 

(A;(B||C))* illustrated in Figure 16, in Case 1 where the child node of the recurrence 

operator has True potential checkpoint value, a checkpoint is taken at the recurrence 

operator. In Case 2, the child node has a False potential checkpoint value, so a checkpoint 

is not taken at the recurrence operator. However, for the POMSET specification 
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(A+(B||C)* in Case 3 where the recurrence operator has a child node with Unknown 

potential checkpoint value, a checkpoint is still taken. 

 

Figure 15: Checkpoint of Concatenation Operator 

 

Figure 16: Checkpoint of Recurrence Operator 

As illustrated in Figure 17, applying the checkpoint rules on the online travel 

agent application identifies ten checkpoints for the given POMSET specification. 

However, two of these checkpoints belong to the special cases caused by unpredictable 

alternation operators that will be re-evaluated by checkpoint reduction analysis. In fact, 
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the more alternation operators in the POMSET specification, the more special cases occur 

in execution.  

Unlike a global checkpoint in traditional checkpoint-based recovery (which is 

formed by the local checkpoints of all the processes in the distributed application), the 

partial order based runtime recovery only requires critical atoms in the processes to take 

local checkpoints and organize these local checkpoints as a group checkpoint (a 

collection of local checkpoints). This approach thereby reduces the time and space 

required for a checkpoint. Note that checkpoints taken at the operators in the POMSET 

tree mentioned above are group checkpoints.  

Figure 17: Checkpoint Identification on Online Travel Agent Application 
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As illustrated in Figure 18, a critical atom can be divided into three parts: message 

receiving, atom execution, and message sending. First, an atom waits to be invoked by 

receiving requests or messages from other atoms. Then, it performs its assigned 

functionality during atom execution. At the last stage, it sends output messages to other 

atoms. Hence, as illustrated in Figure 19, a critical atom takes local checkpoints to record 

the different stages of its operation: LC1 for the initial stage, LC2 for the execution end 

stage before sending messages, and LC3 for the end stage of the atom.  

 

 

Figure 18: Stages of an Atom 

 

Figure 19: Local Checkpoints of an Atom 

Based on the POMSET tree, which specifies the correct behavior of the 

distributed application, the partial order based runtime recovery approach decides 

whether or not to take a group checkpoint (which is the collection of local checkpoints of 

the executing critical atoms) at an operator node. For example, given the POMSET 
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specification (A;(B||C)) illustrated in Figure 20 and Figure 21, a critical atom A sends a 

messages m1 to a non-critical atom B and sends another message m2 to another critical 

atom C. As illustrated in Figure 22, each consistent cut represents different stages in the 

execution of the application: GC1 represents the initial stage in which all the atoms are 

ready to receive input messages, GC2 represents that messages are on their way where A 

sends the messages, but B and C have not received the messages yet, and GC3 represents 

the end stage in which all the atoms complete their execution. 

 

Figure 20: Group Checkpoint Example (A;(B||C)) as a POMSET Tree 

 

Figure 21: Group Checkpoint Example (A;(B||C)) as Time Lines 
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Figure 22: Group Checkpoint Example (A;(B||C)) as Consistent Cuts 

 

Note that a group checkpoint represents a global consistent cut of execution. 

Using the example (A;(B||C)) where A and C are critical atoms, GC1 representing the 

initial stage of application execution can be organized as the combination of the initial 

stages of all the atoms – A.LC1, B.LC1 and C.LC1. Similarly, GC3 representing the end 

stage of application execution can be organized as the combination of the end stages of 

all the atoms – A.LC3, B.LC3, and C.LC3. Note that all atoms in the distributed 

application, including critical atoms and non-critical atoms, should participate in forming 

initial and end stage checkpoint. During execution, while messages are on their way as 

illustrated in Figure 23, GC2 can be organized as the combination A.LC3, B.LC1, and 

C.LC1. If any failure happens after GC2 (but before GC3), the application should then be 

rolled back to GC2 for recovery. Notice that atom B does not take a new local checkpoint 

because it is a non-critical atom and no data needs to be kept for rollback recovery. 
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Figure 23: Group Checkpoint Example (A;(B||C)) – Messages On Delivery 

However, not all of the identified group checkpoints may be necessary. Global 

checkpoints of the concatenation operator and the concurrency operator represent the 

same group checkpoints (GC2). In addition, the alternation operator may result in group 

checkpoints taken at its parent operators. To avoid such unnecessary checkpoints, 

checkpoint reduction algorithms are developed next.   

3.2 Checkpoint Reduction Algorithms 

Given a POMSET tree specifying the correct behavior of a distributed application, 

the partial order based runtime rollback recovery identifies the group checkpoints (a 

collection of local checkpoints taken by the critical executing atoms) of operators in the 

POMSET tree. However, some of these group checkpoints may be unnecessary and can 

be avoided. In order to identify such avoidable group checkpoints, two checkpoint 
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reduction algorithms are developed: the static checkpoint reduction algorithm and the 

dynamic reduction algorithm. 

3.2.1 Static Checkpoint Reduction  

As illustrated for the specification (A;(B||C) in Figure 20, sometimes group 

checkpoints are to be taken at two operators with overlapping sub-trees. In fact, these 

group checkpoints mean that the same operation occurs upon the same sub-trees. In order 

to solve this issue, the static checkpoint reduction algorithm is developed that reduces the 

group checkpoints by (1) the priority of the operators and (2) the height/position of the 

operator in the POMSET tree.  

The priority of operators is one of the fundamental rules in checkpoint reduction 

analysis. According to the coverage of atom sets by the operator, the priority of an 

operator is set as: recurrence operator (*) = concurrency operator (||) > concatenation 

operator (;) > alternation operator (+) as explained below. 

An alternation operator has the lowest priority since no checkpoint is taken at that 

node. A concatenation operator has lower priority compared to a concurrency operator 

and a recurrence operator since it only denotes the partial-order sequence of two sub-

trees. Also, both the recurrence operator and the concurrency operator have the same 

priority since they denote multiple iterations or split execution paths, respectively. 

Applying these priority rules on the specification (A;(B||C)) in Figure 24, the 

group checkpoints taken at both the concatenation operator and the concurrency operator 

are avoided. The group checkpoint taken by the concatenation operator is evaluated as 

unnecessary because the concurrency operator has higher priority. A similar condition 



  41 

occurs in another case (A;(B;C)*) illustrated in Figure 25 where the group checkpoint at 

the concatenation operator is avoided because the recurrence operator has higher priority.  

 

Figure 24: Static Checkpoint Reduction Algorithm (Priority) on (A;(B||C)) 

However, there is another issue that group checkpoints are taken at both the 

recurrence operator and the concurrency operator. Avoiding the group checkpoints taken 

at operators with the same priority also involves the static checkpoint reduction 

algorithm. From the POMSET tree point of view, the group checkpoint taken at the 

operator at higher position should be kept. For example, given the POMSET specification 

(A||B)* illustrated in Figure 26, the group checkpoint taken by the concurrency operator 

is identified as unnecessary because it is under the control of the recurrence operator. 

That is, the recurrence operator‘s position is higher in the POMSET tree. 
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Figure 25: Static Checkpoint Reduction Algorithm (Priority) on (A;(B;C)*) 

 

 

Figure 26: Static Reduction Rule – Depth 

The pseudo code of this static checkpoint reduction algorithm is presented below.  

function setProperties (node, level) 

 node.level := level 

 if (node is a critical atom)  

  node.potential_checkpoint := True 

 else if (node is a non-critical atom)  

  node.potential_checkpoint := False 
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 else if (node is a concatenation operator )  

  node.potential_checkpoint := node.rightchild.potential_checkpoint 

  if (node.leftchild.potential_checkpoint = True) 

   node.group_checkpoint := True 

  node.priority := 1 

 else if (node is an alternation operator)  

  if (node‘s all children have the same potential checkpoint value)  

   node.potential_checkpoint := node.firstchild.potential_checkpoint  

  else 

   node.potential_checkpoint := Unknown 

  node.group_checkpoint := False 

  node.priority := 0 

 else if (node is a concurrency operator) 

  if (node‘s any last child has True potential_checkpoint) 

   node.potential_checkpoint := True 

  else if (node‘s last child has Unknown potential_checkpoint) 

   node.potential_checkpoint := Unknown 

  else  

   node.potential_checkpoint := False 

  node.group_checkpoint := True 

  node.priority := 2 

 else if (node is a recurrence operator) 

  node.potential_checkpoint := node.child.potential_checkpoint 
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  if (node.child.potential_checkpoint is True or Unknow) 

   node.global_checkpoint := True 

  else  

   node.global_checkpoint := False 

  node.priority := 2 

 

function reduceCheckpoint (node) 

 if (both nodes have group_checkpoints and they control overlapped sub-trees) 

  if (node.priority > node.child.priority) 

   node.child.group_checkpoint := False 

  else if (node.priority < node.child.priority) 

   node.group_checkpoint := False 

   else 

   if (node.level > node.child.level) 

    node.child.group_checkpoint := False 

   else 

    node.group_checkpoint := False  

 

When applying the static checkpoint reduction algorithm on the online travel 

agent application as illustrated in Figure 27, two group checkpoints are identified as 

unnecessary. One is the checkpoint taken at the concatenation operator, because of its 

lower priority than the recurrence operator. The other is the checkpoint taken by the 
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concurrency operator, because its position is lower than the recurrence operator in the 

POMSET tree. 

 

Figure 27: Static Checkpoint Reduction Algorithm on the Online Travel Agent 

Application 

 

3.2.2 Dynamic Checkpoint Reduction 

Like the operators controlling overlapping sub-trees, alternation operators with 

unpredictable execution paths may result in unnecessary checkpoints in the POMSET 

tree. During different iteration runs, the executed path of the alternation operator must be 
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confirmed because the alternation operator denotes that exactly one path will be 

executed. By remembering the confirmed executing path with relevant data events, next 

few iterations of the execution can be forecasted according to what has happened in past. 

Once the unpredictable execution paths caused by the alternation operator can be 

forecasted, group checkpoints can be re-identified without Unknown potential checkpoint 

values.  

 

Figure 28: Dynamic Checkpoint Reduction Algorithm on (A+B) 

Consider Case 2 in Figure 7 as an example. The execution paths happened in the 

previous iterations can be presented as in Figure 28. In Execution 1, with the relevant 

data event E1, the alternation operator has True potential checkpoint value because the 

invoked atom A has True potential checkpoint value. Otherwise, with the relevant data 

event E2, the alternation operator has False potential checkpoint value because the 

invoked atom B has False potential checkpoint value. After two runs, this alternation 

operator can be exactly forecasted– True for event E1, False for event E2.  
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Figure 29: Dynamic Checkpoint Reduction Algorithm on ((A;B)+(C||D))* 

Furthermore, forecasting the unpredictable execution paths of alternation 

operators also helps confirm potential checkpoints of its ancestor operators. This 

approach solves most exceptional cases for unpredictable paths. Consider Figure 12 as an 

example. The two possible execution paths illustrated in Figure 29 include the sub-tree of 

the alternation operator and its parent recurrence operator after two runs. 

The pseudo code of the dynamic checkpoint reduction algorithm is presented in 

the following.  

(execution pool: a collection of execution paths with relevant data events) 

function forecast (node, events) 

 if (node is an alternation operator with Unknown potential checkpoint) 

  if (received variant events map compatibly with events in execution pool) 

   predicatedExecution := remembered execution in execution pool 

   apply predicatedExecution into POMSET tree 
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   for (node in predicatedExecution) 

     setProperty(node) 

  else 

   add this execution path beginning from node into execution pool 

                                    with received relevant data events 

 

 

Figure 30: Dynamic Checkpoint Reduction Algorithm on Online Travel Agent 

Application Case 1 

Applying this dynamic checkpoint reduction algorithm on the online travel agent 

application, it is obvious that the two alternation operators make most of their ancestor 

nodes in the POMSET tree to have Unknown potential checkpoint values. One of the 
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operators is in the left side of the POMSET tree, as illustrated in Figure 30, and a group 

checkpoint is taken at its parent concatenation operator. The other operator is in the right 

side of the POMSET tree as illustrated in Figure 31, and a group checkpoint us taken at 

its parent recurrence operator (also the root of the POMSET tree). 

Figure 31: Dynamic Checkpoint Reduction Algorithm on the Online Travel Agent 

Application Case 2 

In order to precisely forecast the execution paths in the former case, the two 

execution paths would be remembered as illustrated in Figure 32. During the execution 

runs, if event E1 occurs, the alternation operator with True potential checkpoint value 

allows a group checkpoint to be kept at the concatenation operator. Otherwise, if event 
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E2 occurs, the group checkpoint is discarded at the concatenation operator because the 

alternation operator has False potential checkpoint value.  

 

Figure 32: Dynamic Checkpoint Reduction Algorithm on the Online Travel Agent 

Application Case 1 – Remembered Execution Paths 

Similar to the previous example, another two execution paths should also be 

remembered for the latter alternation operator as illustrated in Figure 33. If event E3 

occurs, the alternation operator changes its potential checkpoint property and those of its 

parent operator. At the end, it makes the root of the POMSET tree, the recurrence 

operator, to discard the group checkpoint. Otherwise, if event E4 occurs, the alternation 

operator changes the potential checkpoint value as True and a group checkpoint is still 

taken at the recurrence operator. Moreover, because the concurrent operator has higher 

priority than the concatenation operator, the group checkpoint of the upper concatenation 

operator would be identified as unnecessary during the reduction. 
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Figure 33: Dynamic Checkpoint Reduction Algorithm on the Online Travel Agent 

Application Case 2 – Remembered Execution Paths 

3.3 Summary 

The partial order based runtime recovery approach, which extends the partial 

order based runtime verification idea, identifies the necessary group checkpoints to be 

taken at the operators in a POMSET tree that specifies the correct behavior of a given 

distributed application. Unlike a global checkpoint in traditional checkpoint-based 

approaches, a group checkpoint represents a collection of local checkpoints of only the 

necessary executing critical atoms (not all processes), thereby reducing the amount of 

time and storage space to maintain a global consistent state.  

In addition, some unnecessary checkpoints can be avoided by the static and the 

dynamic checkpoint reduction algorithms, thereby reducing the number of necessary 

group checkpoints. During execution runs, only the last group checkpoint are kept for 

rollback recovery, thereby reducing the required persistence space. 
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A prototype implementation of all the approaches introduced in this chapter will 

be presented in Chapter 4. 
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CHAPTER 4 : PROTOTYPE IMPLEMENTATION 

This chapter presents a prototype implementation of the partial order based 

runtime recovery technique developed in Chapter 3.  This prototype requires the 

developer to specify the atoms within the processes by inserting appropriate statements in 

(thereby instrumenting) the application program.  This application-level instrumented 

implementation [JLSU87, SG91, SBFMPS04] is similar to embedded codes [XR96] or 

compiler-based programs [LF90].  The prototype implements a monitor that does the 

following using the POMSET tree:  

1. When the execution is at an operator node, identify whether a group checkpoint 

should be taken at that node and instruct the participating (descendant) critical 

atoms of that operator node to take a group checkpoint by calling the checkpoint() 

function provided by the application developer. 

2. Receive event information from the atoms in the instrumented application 

program, compares the events with the POMSET specification of the correct 

behavior to detect failures, and recovers the system when a failure happens by 

calling the recover() function provided by the application developer. 

Thus, the monitor handles most of the runtime recovery.  

4.1 Deployment Environment  

Processes in a highly available distributed application cooperate to perform their 

assigned functionality and communicate with each other by messages, as illustrated in 

Figure 34. Each such process is developed with instrumented code, which sends relevant 
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events to a central monitor. These various events trigger the runtime monitor to verify the 

behavior of application against the POMSET specification. When the runtime monitor 

detects a failure, it automatically and immediately sends specific system level events to 

the processes for checkpoint-based recovery.  

 

Figure 34: Deployment Environment  

4.2 Monitor Prototype 

Given a POMSET specification, the runtime monitor identifies the necessary 

group checkpoints to be taken at operator nodes in the POMSET tree and takes/maintains 

these group checkpoints (consisting of the states of the involved critical atoms). To 

achieve this goal, several managers are classified as: monitor side or atom side. As 

illustrated in Figure 35 and Figure 36, according to their place of deployment, these 

managers have different responsibilities. For example, the Event Manager in the monitor 

side listens to atom level events and sends system level events. On the other hand, the 
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Event Manager in the atom side listens to system level events designed for checkpoint 

rollback recovery. All these details in the prototype design for managers will be described 

in the following sections. 

 

Figure 35: Monitor Prototype in Central Monitor 

 

 

 

 

 

 

 

 

 

Figure 36: Monitor Prototype in Atoms 
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4.3 Configuration Manager 

The configuration Manager allows the central monitor and the instrumented codes 

in the process to manage configurations without modifying programs, such as UI display 

format, event storage link. etc.  

4.4 Event Manager 

The Event Manager is mainly developed to manage event sending, receiving and 

remembering.  

In the atom side, the Event Manager is responsible to send events corresponding 

to execution in atoms, and to listen to system level events for rollback recovery 

notification. In the monitor side, the Event Manager has an event storage that receives 

events sent by atoms. It also allows the central monitor event listeners to receive 

notification of atom level events. In fact, this event storage is assumed to be failure free 

and there is no omission failure occurring on event delivery. In addition to the event 

storage, this Event Manager sends specified system level events to instruct the 

appropriate atoms in the application to recover in case of a failure. 

Information about various events and listeners in the runtime monitor is described 

in the following.  

4.4.1 Event Type 

Adopted from the distributed event model, the application consists of various 

events. Based on where they happen, these events can be classified as: atom level event 

or system level event, as listed in Table 3. As illustrated in Figure 37, all events extend 
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from BasicEvent that implements Serializable allowing it to be delivered through the 

network.  

Figure 37: Event Type Relationship 

 

In the atom side, each atom sends corresponding atom level events for predicate 

variable (by variant event) or different stages. In the monitor side, when the central 

monitor receives these atom level events, compares the current event slices (including the 

received events) with the given POMSET specification and checks the correct execution 

of the atoms by invariants. In execution runs, the runtime monitor sends system level 

events for two purposes. One is to notify the atoms to take a global checkpoint. The other 

is for failure notification, and the atoms should be recovered to the specified global 

consistent state and continue their normal execution.    
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Table 3: Event Type 

Event Level Description 

AtomStartEvent Atom The atom starts to receive message via 

channels. This event contains local 

checkpoint id. 

AtomStartExecutionEvent Atom The atom starts to execute its tasks. 

AtomMessagingEvent Atom The atom sends messages via channels. 

This event contains local checkpoint id. 

AtomEndEvent Atom The atom ends after sending messages. 

This event contains local checkpoint id. 

AtomVariantChangingEvent Atom Data variant changes in the atom. 

SystemStartEvent System The system starts monitoring. 

SystemEndEvent System The system ends monitoring. 

SystemGlobalCheckpointEvent System The system confirms a global checkpoint 

composed of local checkpoints id. 

SystemRollbackEvent System The system rollbacks to specified global 

checkpoint that composed of local 

checkpoints id. 
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4.4.2 Event Sender and Event Listener 

In the atom side, the Event Sender sends atom level events corresponding to 

different stages. As illustrated in Figure 38, an atom sends AtomStartEvent before 

receiving messages via channels, AtomStartExecutionEvent to prepare tasks execution, 

AtomMessagingEvent to start sending messages to channels and finally AtomEndEvent 

for end status. In a critical atom, local checkpoints are stored with unique identifications. 

And these local checkpoints might be discarded later or become part of a group 

checkpoint.  

The Event Listener looks for system level events for taking a group checkpoint or 

for performing rollback recovery. When a critical atom is notified to form a group 

checkpoint with its local checkpoint LC, it asks the Checkpoint Manager to discard all 

previous local checkpoints LC’ taken before LC. 

 

Figure 38: Event Sender 

In the monitor side, when the Event Listener receives notification of atom level 

events, it passes the atom status to the POMSET Manager for partial order based runtime 
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verification. During checkpoint evaluation, if the POMSET Manager decides to take a 

group checkpoint, the Event Sender sends SystemCheckpointEvent with local checkpoint 

identifications of the involved critical atoms to discard previous local checkpoints. But 

once the POMSET Manager detects a failure, the Event Manager sends a 

SystemRollbackEvent with the last group checkpoint to notify those critical atoms to 

recover the execution by rolling back.  

4.5 POMSET Manager 

The POMSET Manager is mainly responsible for managing the partial order 

execution model in the monitor side, including runtime verification and runtime recovery. 

It maintains the specification as the POMSET tree structure, identifies the necessary 

checkpoints, verifies runtime failures and invokes rollback recovery, if necessary. In 

other words, it plays the important role of runtime monitor.  

4.5.1 Node Type 

As illustrated in Figure 39, a POMSET specification that describes the correct 

behavior of a given application consists of more than one nodes and each node represents 

an atom or an ordering operator between multiple atom sets.  

All nodes are listed in Table 4 with node type, representation character and 

whether it can be shown in the POMSET tree. An atom node can be a critical node or a 

non-critical node depending on whether it computes and updates relevant data variable, 

but naming of atoms is required to be well defined. A critical atom should be named as 

C_XXX while a non-critical atom as N_XXX for simple identification.  
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Figure 39: POMSET Tree Structure 

 

As for operators, naming is pre-defined. An operator node can be an alternation 

node (+), concatenation node (;), concurrency node (||), or recurrence node (*). Most 

nodes can be shown in the POMSET tree, except for parentheses that only are designed to 

avoid ambiguity in the specification.  

4.5.2 Operation Node Specification 

Every operation node has its rules of specification that describe the partial-

ordered sequence among multiple atom sets. The specification beginning with an open 

parenthesis ―(‖ should be closed with a close parenthesis ―)‖. A recurrence operation 

node ―*‖ should only have one child node. A concatenation operation node ―;‖ should 

have exactly two children nodes. An alternation operator ―+‖ and a concurrency operator 

―||‖ should have more than one children node. 
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Table 4: POMSET Node List 

Node Inherited Node Char Show 

CriticalAtomExpressionNode AtomExpressionNode C_XXX Yes 

NonCriticalAtomExpressionNode AtomExpressionNode N_XXX Yes 

AlternationOperationExpressionNode OperationExpressionNode + Yes 

ConcatenationOperationExpressionNode OperationExpressionNode ; Yes 

ConcurrencyOperationExpressionNode OperationExpressionNode || Yes 

RecurrenceOperationExpressionNode OperationExpressionNode * Yes 

OpenParentheseExpressionNode ParentheseExpression ( No 

CloseParentheseExpressionNode ParentheseExpression ) No 

 

4.5.3 Node Status 

During the execution runs, every node changes its status to represent its current 

stage. As listed in Table 5, each status has its meaning in the atom/operator. 

For an operator, the beginning status is NOT_STARTED as illustrated in Figure 

40. When it starts its own tasks, that is, the runtime monitor receives corresponding atom 

level event and compare current execution with predication, then the status changes as 

EXECUTING. After the tasks are completed (no failure/conflict occurs), the status 
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changes as ENDED. However, during runtime executions, nodes may rollback to 

previous statuses because of failures. 

 

Table 5: POMSET Node Status Type 

Status For Atom For 

Operator 

Description 

NOT_STARTED Yes Yes The node does not start yet. 

STARTED Yes No The node is ready for message receiving. 

EXECUTING Yes Yes The node is executing its tasks. 

MESSAGING Yes No The node sends messages to other atoms. 

ENDED Yes Yes The node completes its tasks, including 

message sending. 

 

 

Figure 40: Operation Node Status Lifecycle 

An atom has the beginning status NOT_STARTED as illustrated in Figure 41. 

Later, when it is ready to receive messages, it sends an event to the monitor and changes 

its status to STARTED. As an atom node can be divided into three parts—message 
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receiving, execution, and message sending, it has different status to represent its progress. 

When it receives messages and starts execution, the status should be changed to 

EXECUTING. When it starts to sending message to other atoms, its status should be 

changed to MESSAGING. Finally, the status changes to ENDED after sending messages.  

However, during execution runs, nodes may rollback to STARTED (waiting for 

messages) and MESSAGING (re-sending messages). 

 

Figure 41: Atom Node Status 

 

4.5.4 Checkpoint Evaluator 

Given a POMSET specification, the Checkpoint Evaluator sets potential 

checkpoint values of each node: a critical atom node as True, a non-critical atom node as 

False, an operator node based on its operator definition and children atom sets. Then it 

identifies group checkpoints of operator nodes according to potential checkpoints values. 

Since some of the global checkpoints may not be necessary, the Static Checkpoint 

Reducer identifies the unnecessary global checkpoints. 
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4.5.5 Static Checkpoint Reducer 

The Static Checkpoint Reducer implements the static checkpoint reduction 

algorithm. This object identifies the unnecessary checkpoints by using the priorities of 

the operators: recurrence operator ―*‖ = concurrency operator ―||‖ > concatenation 

operator ―;‖ > alternation operator ―+‖. In addition, if two operation nodes with 

overlapping atom sets both have global checkpoints, it compares the position of the two 

operators in the POMSET tree and avoids taking the group checkpoint for the lower level 

operator node. With this object, most unnecessary checkpoints can be avoided, except for 

those caused by unpredictable execution paths. 

4.5.6 Dynamic Checkpoint Reducer 

The Dynamic Checkpoint Reducer is designed to solve issues of unpredictable 

execution paths. In order to avoid those unnecessary group checkpoints that cannot be 

identified by the Static Checkpoint Reducer, the Dynamic Checkpoint Reducer 

implements the dynamic checkpoint reducing algorithm in two parts: remembering the 

past execution paths and forecasting the future execution paths. 

It is straightforward to forecast the execution of a future iteration by remembering 

what happened in the past iterations. However, it costs significant resources and time to 

remember the whole execution in a repository. Therefore, only partial execution paths 

caused by alternation operators are remembered as logic rules rather than the whole 

execution paths. This approach comes with advantages and disadvantages. It beneficially 

reduces the amount of time and persistent storage, but it is difficult to identify the levels 

of the partial execution paths to be remembered. For the online travel agent example, 
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unnecessary group checkpoints are taken at two alternation operators in the POMSET 

specification. One only affects its parent operator as illustrated in Figure 30. The other 

affects the root of the POMSET tree as illustrated in Figure 31. The remembered partial 

execution paths are of no use if they cannot sufficiently cover the subtree for forecasting. 

This problem is solved by using a configuration parameter that specifies the maximum 

level of the POMSET specification to remember.   

The Dynamic Checkpoint Reducer forecasts the next possible iteration execution 

according to what happened in past iteration executions. Once the execution paths are 

confirmed, the Dynamic Checkpoint Reducer asks the Static Checkpoint Reducer to re-

evaluate the potential checkpoint values, and identify the necessary group checkpoints. 

This time, all the identified group checkpoints should be necessary because of the 

absence of unpredictable execution paths. 

4.5.7 Runtime Specification Verifier 

The Runtime Specification Verifier mainly implements the partial-ordered 

verification and checks only two requirements: the ordering among atom sets and the 

correct behavior of each atom. First, it maintains the current atom slices (including the 

received atom events) and checks the compatibility between atom slices and the given 

POMSET specification. Secondly, it compares the predicate variables with received 

relevant data events from the atoms promising global property match. In case of 

mismatch of any of the requirements, it flags a failure and asks the Checkpoint Manager 

roll back to the last group checkpoint for recovery.  
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4.6 Instrumented Program Codes 

The runtime monitor provides a framework for instrumented program codes for 

the atoms, and the application programmers are required to declare well-formed atoms as 

in Figure 42. An atom implements the Execution interface and implements three 

predefined functions: execute, checkpoint, and rollback. First, all tasks implementation 

should be described in execute, necessary data to be recovered should be stored in a map 

inside checkpoint, and rollback specifies how to roll back the atom to a previous correct 

state. 

 

Figure 42: Runtime Manager for Instrumented Program Codes 

 

More than that, an atom has to be declared by a unique id and it activates its 

message manager for receiving messages. In different execution stages, application 

programmers have to command the Runtime Manager to do corresponding actions, such 

as startAtom, startExecution, endExecution, endAtom described in Table 6..   
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In brief, the instrumented program codes control background events/messages 

handling by cooperating with the Event Manager and manage checkpoint instances with 

the Checkpoint Manager.   

 

Table 6: Runtime Manager for Instrumented Program Codes Function List 

Function Description 

startAtom Atom is ready for message receiving, and its status should be 

changed from NOT_STARTED to STARTED  

startExecution Atom starts executing its tasks described in execute(), and its status 

should be changed from STARTED to EXECUTING 

endExecution Atom completes tasks execution to send message via channels and its 

status should be changed from EXECUTING to MESSAGING. 

endAtom Atom ends with status changed from MESSAGING to ENDED. 

 

4.6.1 Message Manager 

The Message Manager is mainly responsible for message sending and receiving 

via channels. All message types should implement Serializable for network transmission. 

An atom can receive serialized objects from the other atoms and cast them into other 

classes, because the Message Manager captures all sending and receiving messages with 

checkpoint id by another thread handling system I/O despite the main thread. All message 

life period depends on the checkpoint. If the local checkpoint is to be discarded, meaning 
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that local checkpoint is no longer used, all messages with the local checkpoint id should 

also be discarded. With this approach, the Message Manager can provide flexible object 

message sending and receiving functions without affecting the main thread performance.  

4.6.2 Checkpoint Manager 

The Checkpoint Manager mainly controls the local checkpoints of the atoms, 

including unique id and data mapping. First of all, when an atom is started, the 

Checkpoint Manager makes an initial checkpoint as LC1. When the atom ends its 

execution and starts to send messages, it makes another checkpoint LC2, and the final 

checkpoint LC3 for the end stage. However, a group checkpoint is composed by local 

checkpoints of the involved critical atoms. The local checkpoint is meaningful only when 

it is part of the latest group checkpoint. In other words, when an atom is notified that 

there is another group checkpoint G1 composed of LC2 by a SystemCheckpointEvent, the 

Checkpoint Manager should discard all local checkpoints before LC2, such as LC1. The 

Checkpoint Manager also provides rollback recovery invocation, when an atom is 

notified to roll back to a specific local checkpoint; the Checkpoint Manager retrieves the 

stored data map to the Runtime Manager for rollback recovery. 

4.7 Observation on the Online Travel Agent Application 

The runtime rollback monitor initially identifies 10 group checkpoints for the 

online travel agent application as illustrated in Figure 17, and two of them are avoided 

because they are identified as unnecessary by the static checkpoint reduction algorithm as 

illustrated in Figure 27. Another two group checkpoints may be avoided by precise 

forecasting by the dynamic checkpoint reduction algorithm during iteration runs as 
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illustrated in Figure 30 and Figure 31. Most detail about how the static/dynamic 

checkpoint reduction algorithms applied on the online travel agent application are 

described in Chapter 3.  

In addition, the performance penalty due to the instrumented program codes in the 

atoms is acceptable. As illustrated in Figure 43, the difference between average execution 

time without monitor (the blue line) and with monitor (the green line) is quite subtle. 

Only atoms G and O have obvious but tolerable differences, because both of these atoms 

rely on message inputs and outputs more than other atoms. The instrumented program 

codes in these atoms require more time to recover a number of messages. 

However, the average recovery time for critical atoms is tolerable but not perfect, 

as illustrated in Figure 44. The recovery time not only depends on the size of restored 

data but also on the number of messages. 

 

Figure 43: Average Execution Time for Instrumented Program Codes 
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Figure 44: Average Recovery Time for Atoms 

From the discussions so far, it should be clear that the partial order based runtime 

recovery technique significantly improves the recovery efficiency by reducing both the 

amount of persistent store used and the time required for recovery. In comparison with 

traditional checkpoint-based rollback recovery (assume taking a checkpoint per minute) 

shown in Table 7, the partial order based runtime recovery reduces 65% of stored space 

as listed in Table 8. This technique also reduces the recovery time because it can specify 

which last checkpoint should be used for recovery without domino effect. Note that this 

improvement is application dependent and it changes with the checkpoint frequency, 

number and granularity of atoms, etc.   

4.8 Summary 

This chapter detailed a prototype implementation of the runtime recovery monitor 

that extends the runtime verification for partial-ordered multi-set model and manages 

events, status, and checkpoints for rollback recovery. Instrumented program codes in 
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each atom/process send responsible relevant events to a central monitor, which compares 

the received events with the expected execution specified by the POMSET tree. From the 

correct behavior of a distributed application, the runtime monitor identifies the group 

checkpoints to be taken by operators in the POMSET tree, and avoids unnecessary group 

checkpoints by implementing the static checkpoint reduction algorithm and the dynamic 

checkpoint reduction algorithm. This monitor also manages the local checkpoints of 

critical atoms and keeps the last group checkpoint by discarding the previous ones. When 

the runtime monitor detects a failure, it automatically and immediately rolls the system 

back to the last stored state and continues the normal execution of system. 

The operation of this prototype is also explained on the example highly available 

distributed application – the online travel agent – along with the result of observation on 

the runtime rollback recovery monitor. 

 

Table 7: Amount of Storage Space for Traditional Checkpoint Rollback Recovery 

Process Name Amount Of Storage Space For Checkpoint (mb) 

User 0.2  

Agent 5.3 

Hotel Service 4.1 

Transportation Service 4.6 

Subtotal 14.2 

Total Of 2 Checkpoints 28.4 
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Table 8: Amount of Storage Space for Partial Order Based Runtime Recovery 

Atom Name Amount Of Storage Space For Checkpoint (mb) 

H 0.2 

J 0.4 

K 1.5 

L 0 

M 0 

N 1.7 

O 1.4 

R 2.0 

S 0 

T 0 

U 2.4 

Total 9.6 
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CHAPTER 5 : CONCLUSION AND FUTURE WORK 

This thesis developed a partial order based runtime recovery technique that can be 

used with highly available distributed applications. Given a partially ordered multiset 

(POMSET) specifying the correct behavior of the distributed application, this technique 

can identify at which operator nodes in the POMSET tree should group checkpoints 

(global consistent states) be taken. First, the atoms in the distributed application are 

categorized as critical atoms and non-critical atoms according to whether the atom 

changes the invariant variable that impacts the progress of application. Based on the 

potential checkpoint properties of operators, that indicates the intended checkpoint 

decisions, this technique identifies when group checkpoints (the collection of local 

checkpoints in atoms) should be taken. Furthermore, two algorithms are developed to 

avoid unnecessary checkpoints – one by priority and position of operators (static 

checkpoint reduction) and the other by predicting future execution paths according to 

what has occurred in the past iteration runs (dynamic checkpoint reduction).    

In the developed proof-of-concept prototype, the application developer specifies 

the POMSET specification with program atoms (set of events) and the atom themselves 

with instrumented code to send the application events to the runtime recovery system.  

The runtime recovery system checks the occurrence of the events reported by the 

program atoms with the POMSET specification (stored in memory as the POMSET tree) 

and detects a failure when an event does not satisfy the specification and recovers the 

application by rolling it back to a past correct execution point using the saved checkpoint.  

The runtime recovery system only maintains the necessary checkpoints (instead of 
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periodic checkpoints) and further reduces the number of checkpoints maintained by 

avoiding unnecessary checkpoints using the developed static and dynamic checkpoint 

reduction algorithms. 

As explained in Chapter 3 and illustrated in Chapter 4, the partial order based 

runtime recovery technique significantly improves the efficiency on the required storage 

space (space efficiency) and the recovery time (time efficiency) while ensuring the 

application is highly available. Unlike traditional checkpoint based rollback recovery 

techniques, in which all processes participate to form a global consistent state (global 

checkpoint), each group checkpoint in the runtime recovery is a collection of the local 

checkpoints of only the necessary atoms. Given a POMSET tree specifying the correct 

behavior of the application, this technique identifies the group checkpoints to be taken by 

operator nodes. In addition, the two checkpoint reduction algorithms developed identify 

and avoid the unnecessary checkpoints. The developed proof of concept prototype shows 

that this technique does not impact the performance of the application in any significant 

manner. 

However, this technique can be further improved by solving the following issues 

in the future. Given a POMSET specification, this technique can figure out the optimal 

(the least) number of group checkpoints necessary. In order to find out the optimal 

solution, appropriate algorithms/properties should be developed. For example, in Figure 

45, if the concurrent operator contains all non-critical atoms, it is unnecessary to take a 
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group checkpoint (now the concurrent operator always takes a group checkpoint). 

 

Figure 45: Issues to be solved – Group Checkpoint of Concurrent Operator 

In addition, the central runtime monitor used in the developed technique (that 

extends the partial order based runtime verification into runtime recovery and manages 

the checkpoints/messages/events) is supposed to be failure-free. If a failure occurs, it rolls 

the monitored application back to the last stored group checkpoint so that the application 

can continue its normal execution. If a prototype of this technique is implemented using a 

distributed monitor, it can further improve the availability and reliability of the 

application.  

As described in Chapter 4, this technique relies on application programmers to 

provide correct information in order to consider the distributed application as a black box. 
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However, this requires that the application programmers have sufficient skills and 

experience with the POMSET model and specification, and program instrumentation. 

Therefore, developing techniques to automatically instrumenting the source code of the 

target application, which can organize events as well-formed atoms and send data variant 

events to the monitor by analyzing the original application code, will be more practical.     
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