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ABSTRACT 

 

  

Power Reduction Techniques in Clock Distribution Networks with Emphasis on LC 

Resonant Clocking 

 

Seyed Ebrahim Esmaeili, Ph.D. 

Concordia University, 2011 

 

      In this thesis we propose a set of independent techniques in the overall concept of LC 

resonant clocking where each technique reduces power consumption and improve system 

performance.  

     Low-power design is becoming a crucial design objective due to the growing demand 

on portable applications and the increasing difficulties in cooling and heat removal. The 

clock distribution network delivers the clock signal which acts as a reference to all 

sequential elements in the synchronous system. The clock distribution network consumes 

a considerable amount of power in synchronous digital systems. Resonant clocking is an 

emerging promising technique to reduce the power of the clock network. The inductor 

used in resonant clocking enables the conversion of the electric energy stored on the 

clock capacitance to magnetic energy in the inductor and vice versa. 

     In this thesis, the concept of the slack in the clock skew has been extended for an LC 

fully-resonant clock distribution network. This extra slack in comparison to standard 

clock distribution networks can be used to reduce routing complexity, achieve reduction 

in wire elongation, total wire length, and power consumption. Simulation results illustrate 

that by utilizing the proposed approach, an average reduction of 53% in the number of 

wire elongations and 11% reduction in total wire length can be achieved.  
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     A dual-edge clocking scheme introduced in the literature to enable the operation of the 

flip-flop at the rising- and falling edges of the clock has been modified. The interval by 

which the charging elements in the flip-flop are being switched-on was reduced causing a 

reduction in power consumption. Simulating the flip-flop in STMicroelectronics 90-nm 

technology shows correct functionality of the Sense Amplifier flip-flop with a resonant 

clock signal of 500 MHz and a throughput of 1 GHz under process, voltage, and 

temperature (PVT) variations. Modeling the resonant system with the proposed flip-flop 

illustrates that dual-edge compared to single-edge triggering can achieve up to 58% 

reduction in power consumption when the clock capacitance is the dominating factor.  

     The application of low-swing clocking to LC resonant clock distribution network has 

been investigated on-chip. The proposed low-swing resonant clocking scheme operates 

with one voltage supply and does not require an additional supply voltage. The 

Differential Conditional Capturing flip-flop introduced in the literature was modified to 

operate with a low-swing sinusoidal clock. Low-swing resonant clocking achieved 

around 5.8% reduction in total power with 5.7% area overhead.  Modeling the clock 

network with the proposed flip-flop illustrates that low-swing clocking can achieve up to 

58% reduction in the power consumption of the resonant clock. 

     An analytical approach was introduced to estimate the required driver strength in the 

clock generator. Using the proposed approach early in the design stage reduces area and 

power overhead by eliminating the need for programmable switches in the driving circuit. 
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Chapter 1      

Introduction 
 

 

1.1 Motivation 

      Microprocessor power consumption is increasing by approximately 20% per year [1]. 

In deep sub-micron technology, the substantial increase in power leads to additional 

difficulties in cooling and heat removal [2]. Furthermore, low-power design is becoming 

a crucial objective due to the increasing demand on portable applications [3].  

Approximately 30-50% of microprocessor power consumption is dissipated in the clock 

distribution network (CDN) which has the highest capacitance in the system and operates 

at high frequencies [4].   

     An attractive approach to reduce power is to scale down the supply voltage which has 

a quadratic effect on power consumption. However, scaling down the supply voltage 

would require decreasing the transistor threshold voltage level in order to maintain 

transistor driving capability. This leads to substantial increase in leakage power. In 

addition, decreasing the supply voltage would increase system susceptibility to variations 

[3]. As a result, there is an increasing demand for power reduction schemes that do not 

require a reduction in the supply voltage.  

    An emerging technique to reduce the power of the CDN is resonant clocking where 

low energy dissipation is achieved by recycling the energy stored on the clock 

capacitance [5]. From the three resonant clocking techniques offered to date, namely: 

standing-wave, rotary traveling-wave, and LC resonant clocking; LC resonant clocking 



2 
 

has proven to be the most convenient since it requires minimum change from 

conventional square-wave design and its practicality was verified on functional chips.  

     Clock skew and jitter in buffered clock distribution networks are proportional to clock 

latency which is increasing relative to clock cycle in recent microprocessors. Resonant 

clocking techniques in addition to their low-power consumption enable phase stability 

and low jitter due to resonance [6].   

     The traditional approach for LC resonant CDNs is to use the LC tank to drive the 

global clock distribution while the local clock is being delivered through conventional 

clock buffers. However, around 66% of clock power is being dissipated in the last buffer 

stage driving the flip-flops [7] leading to minor power savings in LC globally-resonant 

locally-square CDNs. In order to achieve maximum power savings, the LC tank should 

drive the entire clock network (both global and local) without using intermediate buffers 

(see Figure 2.8 in Chapter 2). 

     Power reduction techniques for LC resonant CDNs in which the entire network 

including the flip-flops is being driven with a resonant (sinusoidal) clock signal will be 

the focus of this dissertation. The schemes and techniques developed in this thesis are 

applicable to both square and resonant CDNs.  

 

1.2 Contributions 

     Given that the bulk of the CDN capacitance is in its leaves, the largest power 

advantage will come by extending the LC resonance down to the flip-flops. This would 

require understanding flip-flop performance with the sinusoidal characteristic of the clock 

signal generated in LC resonant networks. We have followed a similar approach to the 



3 
 

one proposed in [7] in which the clock buffers are removed to allow the clock energy to 

resonate between the inductor and the clock capacitance enabling maximum power 

savings.  

     Our goal is to further reduce the power of an LC fully-resonant CDN through 

manipulating and modifying the characteristics of flip-flops under a sinusoidal clock 

signal.  

  We have introduced a new type of slack in the skew that can be compensated for to 

reduce the CDN routing complexity and as a byproduct/substitute we can achieve 

reductions in wire elongations and total wire length as well as power consumption. The 

slack in the skew can also be used for incremental routing adjustments. The concept itself 

is applicable to both sine-wave resonant as well as conventional square-wave clocking if 

flip-flops of different delays are used. However, in our demonstration of the proposed 

technique, we took advantage of the slow rise time of the sinusoidal resonant clock signal 

and the different transistor threshold voltage levels available in the STMicroelectronics 

90-nm technology to generate different delays of the flip-flop with separate means. In 

order to further illustrate the concept, five clock tree benchmarks with nominal zero skew 

have been constructed using a Modified Differed Merge Embedding Algorithm that takes 

advantage of the skew slack introduced by the new technique to highlight its benefits and 

practicality.   

  We have also introduced a new Dual-Edge Sense Amplifier Flip-Flop (DE-SAFF) for 

LC fully-resonant CDNs using a modified clocking scheme that can be extended to 

enable dual-edge clocking in any dynamic CMOS logic circuit. In this work, the PMOS 

transistors used for precharging the nodes in the flip-flop are only switched on for a 
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portion of the clock cycle in order to reduce short circuit power. Correct operation of the 

proposed flip-flop was verified on the extracted circuit layout in STMicroelectonics 90-

nm technology under a sinusoidal clock at a frequency of 500 MHz. 

  The application of low-swing clocking on LC fully-resonant CDNs is investigated. The 

Differential Conditional Capturing Flip-Flop (DCCFF) was modified to operate with a 

low-swing sinusoidal clock. The proposed low-swing resonant clocking scheme operates 

with one voltage supply and does not require additional supply voltage. The feasibility of 

low-swing resonant clocking and the power advantages were investigated on-chip in 

TSMC 90-nm technology.  

  Though the main concentration of the dissertation is aimed at the flip-flop level, 

estimating the power savings achievable through dual-edge and low-swing resonant 

clocking required estimating the power of the clock driver. In doing so, an analytical 

approach was introduced to estimate the required driver strength in the resonant clock 

generator. Using the proposed approach early at the design stage eliminates the need for 

programmable switches in the driving circuit, thus reduces area and power overhead.  

     Although all proposed schemes have been simulated and tested under a sinusoidal 

clock signal assuming a fully-resonant LC CDN, the proposed techniques are equally 

applicable to conventional square-wave CDNs.  

 

 

1.3 Dissertation Overview 

     This dissertation is organized as follows. Chapter 2 introduces the main objectives and 

metrics of CDN design. Different resonant clocking techniques introduced in the 

literature are reviewed and their advantages in reducing clock skew, jitter, and power are 
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shown. The remainder of Chapter 2 is devoted to discussing LC resonant CDNs with the 

concentration on LC fully-resonant CDN. Sinusoidally clocked flip-flops are also 

presented at the end of this chapter. The skew compensation technique for LC resonant 

CDNs is discussed in Chapter 3. Lower skew bounds for the proposed technique, the 

Modified Differed Merge Embedding Algorithm, and the results obtained on five 

benchmark CDNs are then presented. In Chapter 4, the new dual-edge clocking scheme, 

the Dual-Edge Sense Amplifier Flip-Flop (DE-SAFF), timing characterization for the 

proposed scheme, and potential power savings achievable through dual-edge clocking are 

described. Chapter 5 presents the Low-Swing Differential Conditional Capturing Flip-

Flop (LS-DCCFF) modified to operate with a low-swing sinusoidal clock. Measured 

results from the test chip are also viewed.  The analytical approach used to estimate 

required driver strength in the clock generator is introduced in Chapter 6. Conclusion that 

has been drawn from this work and ideas for future extension of this thesis are presented 

in Chapter 7.  



6 
 

Chapter 2   

Background 
       

This chapter introduces the main design objectives for the clock distribution network. 

Different clock architectures are presented. Different resonant clocking schemes that 

have been proposed in the literature are reviewed and the promise in reducing clock 

skew, jitter, and power is shown. LC-based resonant clock distribution networks are 

examined in more detail. Challenges associated with LC resonant clocking are identified 

and sinusoidally clocked flip-flops are then discussed.  

 

2.1 Clock Distribution Network Design Objectives 

     CDNs in synchronous digital integrated circuits deliver the clock signal that controls 

the flow of data within the system. The input at each clock sink, i.e., flip-flop, is captured 

at the rising or falling clock edge (single-edge triggered flip-flops), or on both edges of 

the clock (dual-edge triggered flip-flops), or based on the voltage level of the clock 

(latches). The main objectives in the design of CDNs are to minimize skew, jitter, and 

power. 

 

2.1.1 Clock Skew 

     Clock skew is defined as the difference in the arrival time of the clock edges at 

different locations in the CDN. Skew is mainly caused by variations between clock 

buffers, interconnect widths, and loading at different clock paths. The main cause of skew 

in balanced well-designed CDN is the clock buffers [8].  It should be noted that skew is 



7 
 

only relevant in sequentially adjacent flip-flops.  Since it is highly unlikely for a signal in 

one clock cycle to propagate across the entire chip, the skew between different parts of 

the chip is not important. However, due to the complexity of controlling skew in 

complicated and condensed clock paths, any skew is undesirable.  

 

2.1.2 Clock Jitter 

     Clock jitter is defined as the difference in the arrival time of the clock edge at the 

same location in the CDN. Jitter can make the clock period shorter or longer than 

nominal period. Jitter is mainly caused by temperature variation, power supply noise, and 

the phase-locked loop (PLL). Since the design of PLLs has improved, the main source of 

jitter in today's microprocessors is the CDN [9].   

 

2.1.3 Clock Power 

     Low-power design is becoming a crucial design objective due to the increasing 

demand on portable applications and the increased cost of cooling. 40% of the power in 

the 200 MHz 21064 Alph microprocessor is dissipated in the CDN [10].  The CDN and 

latches dissipate around 70% of the IBM POWER4 1.3 GHZ microprocessor's power 

[11]. 

      The latest developments in integrated circuit design specifically in 3-D integration 

where multi-plane synchronization is required, lead us to believe that the power 

consumption of the CDN will remain at these high levels. Figure 2.1 shows the schematic 

of a 3-D clock tree. The clock driver as illustrated is on the second plane [12]. 
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Figure ‎2.1: Schematic of a 3-D clock tree [12] 

 

2.2 Clock Distribution Network Structure 

 

Figure ‎2.2: Common structures of clock distribution networks [8] 
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     Various clock distribution structures have been developed given that the routing area 

and complexity, speed, and power dissipation of the system are all factors affected by the 

clock network design. Figure 2.2 illustrates common CDN structures. An asymmetric 

buffered tree structure is shown in Figure 2.2(a). In this structure, the wire as well as the 

buffer delay is balance in each path in order to achieve zero skew at the clock leaves. 

When the clock sinks are uniformly distributed, a symmetrical tree structure is used such 

as the H- and X- tree structures shown in Figure 2.2(b), (c). Although the balanced trees 

shown in the figure are not buffered, buffers are usually inserted to drive different 

sections of the tree. Properly matched buffers and interconnect delays as well as loading 

capacitances in clock trees can achieve under ideal conditions zero skew. However, in 

reality some skew will certainly be present due to variations in interconnect parameters as 

well as mismatches in clock buffers. 

     Clock grid or mesh (Figure 2.2(d)) is another alternative to distribute the clock signal. 

The mesh actively reduces skew by connecting path resistances in parallel [8]. In the 

mesh structure, the skew is independent of unbalanced distribution of loading.  However, 

unlike clock trees, the mesh structure uses more wiring resources and consume more 

power. 

     The clock signal in modern microprocessors is distributed using a hierarchical 

approach in which a global distribution delivers the clock signal across the chip and a 

local distribution carries it to sequential elements. 

     In IBM microprocessors [13], the global clock distribution consists of a tree-driven 

grid (Figure 2.3). The clock signal is distributed across the chip using a balanced clock 

tree while a global grid is used to short the clock tree ends together.   
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Figure ‎2.3: Tree-driven grid global clock distribution [13] 

 

     In this scheme, low wiring resources by the balanced clock tree and load-independent 

minimum skew by the grid are achieved. The local clock is distributed by additional 

levels of buffers which deliver the clock signal to the circuits.   

 

2.3 Resonant Clocking Techniques  

     Resonant clocking reduces power dissipation in CDNs while enabling the generation 

of high frequency clock signals. There are three resonant clocking techniques offered to 

date [14]. The first one is the standing wave oscillation which generates a clock signal 

with varying amplitude and constant phase [15]. The second technique is the travelling 

rotary-wave oscillation which generates a clock signal with constant amplitude and 

varying phase making it suitable for non-zero clock skew systems. The third technique is 
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the LC oscillation which generates a clock signal with constant amplitude and phase and 

requires minimum change from conventional clock design [14]. 

 

2.3.1 Standing-Wave Resonant Clocking 

     The interaction of two identical waves of equal magnitude and frequency propagating 

in opposite directions forms a standing-wave [15]: 

                            (2.1) 

                            (2.2) 

where    and    are the forward and reverse travelling waves,    and    represent the 

amplitudes,   is the angular frequency,   is the time,   represents the phase constant, and 

  represents the position. Setting    =    and adding the two waves at location   and 

time   results in a standing wave [15]: 

                                                      (2.3) 

     Equation (2.3) illustrates that the phase shift in an ideal standing-wave is independent 

of position but the amplitude varies sinusoidally [15]. Within any region in which the 

sign of         or         does not change, the phase of the standing wave remains 

constant. However, this is not the case in traditional travelling-wave clocking where the 

phase changes linearly with position. In travelling-wave clock signals and in order to 

lower the skew, delay of the propagating signal from clock source to the sinks must be 

balanced.  

     In [16], on-chip design and operation of a 10-GHz global standing-wave clock 

distribution network using coupled oscillators is described. As illustrated in Figure 2.4, 

standing-wave oscillators (SWO) are coupled together to create a grid of standing waves.   
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Figure ‎2.4: Standing-wave clock distribution network [16] 
 

 

Figure ‎2.5: Clock buffer simulated performance [16] 

 

     Due to the large losses of on-chip interconnects, a clock buffer is used to convert the 

low-swing standing-wave clock signal to digital levels to enable the generation of a 

conventional digital clock at the clock sinks (Figure 2.5). 

 



13 
 

2.3.2 Rotary Traveling-Wave Resonant Clocking 

 

Figure ‎2.6: Basic rotary clock architecture. The "=" signs denote points with equal phase  

[19] 

 

Figure ‎2.7: Custom rotary clock architecture [19] 
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     Another technique of resonant clocking is the rotary traveling-wave CDN. In [17], an 

average of 63% power savings were reported for a rotary traveling-wave clock network 

compared to conventional clock tree in microprocessor design.  

     Transmission line rings are used to distribute the clock signal. A rotating multiphase 

(360°) square-wave within a closed-loop differential transmission line is driven by 

distributed anti-parallel CMOS inverter pairs as shown in Figure 2.6. Line losses are 

overcome and phase lock is achieved by the anti-parallel inverters [18].  The traveling 

wave is generated by turning ON the power supply. Afterwards, at least one set of anti-

parallel inverters are needed to overcome interconnect loss and maintain resonance. The 

clock frequency is determined by the length of the transmission line ring. 

      
 

      
           (2.4) 

where LT and CT are the total inductance and capacitance along the rotary signal path in 

the ring [19]. 

     Unlike the case in standing-wave resonant clocking where the clock signal has a 

sinusoidally varying amplitude, the amplitude of the rotary traveling-wave clock is 

constant. However, the phase of the rotary traveling clock changes with position. 

    As illustrated in Figure 2.6, the waveforms in the two signal lines at any point of the 

loop are 180° out of phase. To implement a zero skew synchronized circuit using rotary 

clocking, all synchronous elements need to be connected to the same location in the loop 

[14]. However, in [20], the feasibility of using rotary clocking as a zero clock skew 

synchronizing technology was proven.  

     In [19], a custom rotary clock router was introduced. Rotary oscillations can be 

sustained for non-regular custom structures like the one shown in Figure 2.7. Though 
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regular rectangular rings have advantages in terms of manufacturability, non-regular 

custom rings can easily be used in multi-core implementations where an independent core 

is synchronized by each ring. Custom ring topologies also reduce the tapping 

(connecting) wire lengths between the oscillatory ring and the registers.  

    In [19, 20], rotary traveling-wave CDNs with regular and custom structures were used 

to implement zero skew circuits by taking advantage of the delay associated with the 

tapping wire length used to connect the register to the ring at a particular tapping point 

with known phase.  For phase information, a point along the ring is chosen as a reference 

point with clock delay t = 0 and phase    . The clock delay t and phase    at any point 

on the ring can be obtained using 
 

   
 

 

 
 where T is the clock period. All synchronous 

elements can connect to the ring at specific nodes with known phase called tapping 

points. Each tapping point has two locations one on the inner line and the other on the 

outer line of the ring separated by 180°. The delay between registers connected to 

different tapping points is equalized by manipulating the tapping wire length and hence 

the delay associated with it.   

 

2.3.3 LC Resonant Clocking 

     Figure 2.8(a) illustrates a simplified balanced clock tree structure for a conventional  

square-wave based CDN.  Bufferes are used to drive different sections in the tree. As 

shown in the figure, the clock signal propagating in the global tree to the lower bracnhes 

which in turn feed the local clock and flip-flops is a square-wave clock signal.  A 

globally-resonant locally-square CDN is shown in Figure 2.8(b). An inductor is 

connected at the center of the H-tree in order to generate a resonanting clock signal at the  
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    (a) Square-Wave                  (b) Globally-resonant,            (c) Fully-resonant CDN 

              CDN                               locally-square CDN 
 

Figure ‎2.8: Simplified Square-wave, globally-, and fully-resonant CDNs 

 

fundamental ferquency of the clock node. Lower branches of the H-tree are driven by 

buffers which in turn convert the sinosodial clock to sqaure-wave signal feedign the flip-

flops. Design guidelines and methodology for globally-resonant H-tree are presented in 

[21]. The bufferes in globally-resonant locally-square CDN are removed in Figure 2.8(c) 

where the resonant clock signal is distributed all the way down to the flip-flop level.   

     LC resonant CDNs in addition to their low-power consumption have the advantage of 

generating a clock signal with uniform phase and amplitude. It also requires minimum 

change from conventional square-wave design. In the following, globally-resonant 

locally-square, and fully-resonant CDNs will be discussed.    

 

2.3.3.1 LC Globally-Resonant Locally-Square Clock Distribution Networks 

     In [22], the design of a resonant global CDN was introduced. In their approach, the 

traditional tree-driven grids are augmented with on-chip inductors to resonate the clock 
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capacitance at the fundamental frequency of the clock node as shown in Figure 2.9.  The 

energy resonates between electrical form in the clock capacitance and magnetic form in 

the inductor. As shown in the figure, at the center of the H-tree is the clock driver which 

consists of a buffer chain. One end in each spiral inductor is connected to the clock tree 

and the other end is connected to a large decoupling capacitance. This capacitance 

provides dc voltage around which the clock oscillates. 

     Resonance results in a reduced effective capacitance of the clock grid which in turn 

reduces clock latency. It also allows a reduction in the driving strength as well as the 

number of buffer stages required to drive the grid. This reduction in number of buffers 

leads to improvements in clock skew and jitter since the effect of power-supply noise on 

these buffers is reduced.  

     Simulation results using model extraction at a frequency of 1.1 GHz have shown a 

power reduction of over 80% as well as improved clock latency [22].  

     The resonant global clock distribution proposed in [22] was fabricated on chip using 

90  m 1 V ten-level Cu CMOS technology [23], [24], and 0.18 µm 1.8 V six-level Al 

mixed-signal CMOS technology, where on-chip measurements showed approximately 

20% of the energy being recovered and reused in each cycle. In addition, the ability to 

significantly scale down the required buffers in the global clock distribution allows total 

power savings of about 80%.  

     The natural band-pass characteristics of the resonant network along with buffer 

reduction, results in over 60% improvement in jitter [24]. A drawback in the resonant 

global clock distribution proposed in [22]-[24] is the requirement of large on-chip 

decoupling capacitance to serve as a charge reservoir. 
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(a) Global clock distribution with a resonant load – eight clock sectors  

 

(b) Components and topology of a resonant clock sector  

Figure ‎2.9: Globally-resonant locally-square clock distribution networks [24] 
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Figure ‎2.10: Distributed differential oscillator (DDO) global clock network [26] 

      

     Another resonant clock design with a distributed differential oscillator (DDO) global 

clock network is presented in Figure 2.10 [25], [26]. Here, the distribution is differential 

where spiral inductors and negative differential transconductors are placed between two 

clock phases. The negative differential transconductor acts as a gain element to maintain 

oscillation and overcome losses. Clock amplitude is controlled by the bias current in the 

gain element. The distribution network is injection-locked to an external reference. In this 

approach the need for large decoupling capacitors is eliminated. In addition, jitter and 

skew caused by process variation, power-supply noise, and common-mode noise sources 

are reduced due to differential detection at local clock buffers.  
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     The practicality of globally resonant clocking has been proven on an LC resonant 

clock in a fully-functional Cell Broadband Engine processor [27]. Hardware 

measurements show full functionality at 3.2 GHz and power savings of 25% in the global 

clock and 5% in total chip power at 4 GHz.  It should be noted that in [27], only the 

global clock tree was modified to enable resonant clocking where an additional metal 

layer was added on top of the conventional tree to attach the inductors and decoupling 

capacitors. The local clock sectors were buffered; hence the clock signal feeding the 

registers is a square signal and not a sinusoidal one.  

 

2.3.3.2 LC Fully-Resonant Clock Distribution Networks  

     In all of the resonant clocking techniques presented so far, the local clock signal 

feeding the flip-flops was a square-wave signal. In resonant clocking, the largest power 

advantage is achieved by extending the resonance all the way down to the flip-flop level 

given that the bulk of the capacitance is in the leaves of the clock tree [24]. In this 

approach, the clock buffers are removed to allow the clock energy to resonate between 

the inductor and the clock capacitance (Figure 2.8(c)). However, this would require more 

understanding of flip-flop performance with the sinusoidal clock characteristics of the LC 

fully-resonant CDNs.  

     In [7], a fully-resonant CDN was fabricated in an IBM 0.13 µm process. Though the 

target design frequency was in the gigahertz range using integrated inductors, external 

inductors were used instead due to startup difficulties and the chip was operational at the 

megahertz range. Test results show approximately 35% power savings compared to a 

conventional buffered CDN. 
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     Two 64×64 pipelined multipliers were fabricated on-chip in TSMC 0.25-µm CMOS 

process with LC fully-resonant CDN [28]. One was designed with resonantly clocked 

flip-flops and the other with conventional square-wave clocked flip-flops. Overall power 

savings of 25%-69% in the resonantly clocked multiplier were measured depending on 

data switching activity. 

     A two-phase fully-resonant LC CDN was used in ultra-low power hearing aid 

applications.  An experimental test chip with more than 2,500 resonantly clocked latches 

was fabricated and tested in 0.25µm process. Results show that compared to single-edge 

triggered one phase benchmark, resonant clocking dissipates less energy by 7.5% [29].     

 

2.4 Challenges Associated with LC Resonant Clocking  

     Despite the promising power savings achieved in resonant CDNs, resonant clocking 

presents several design challenges because of the dependency of the clock rise time on its 

frequency and the susceptibility to process variation due to the long rise time of the clock, 

the need for different inductor values to generate different frequencies, the additional 

chip area occupied by the inductor, and the difficulty in clock gating without affecting 

energy recovery.  

 

2.4.1 Dependency of the Sinusoidal Clock Rise Time on Its Frequency 

     The rise time of the conventional square-wave clock signal does not depend on clock 

frequency and is restricted to less than 10-15% of the clock period [30]. However, this is 

not the case in resonant clocking where the rise time of the sinusoidal clock signal 

depends on its frequency. Let the generated resonant clock signal be given by the  
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Figure ‎2.11: Rise time of resonant and square-wave clock signal with rise time of 33ps 

 

following equation: 

     
 

 
             

 

 
           (2.5) 

     Taking the rise time of the clock signal as the time difference between the 10-90% of 

the clock peak, the rise time of the sinusoidal clock signal would be given by the 

following equation: 

                     (2.6) 

where T is the clock period. 

    Equation (2.6) illustrates the dependency of the rise time of the sinusoidal clock signal 

on its frequency. It also shows that the clock rise time does not depend on its amplitude. 

Figure 2.11 illustrates the difference in rise time for the resonant clock signal as 

compared to a square wave clock with a constant rise time of 33.33 ps (10% of clock 

period at 3 GHz). 
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2.4.2 Area Occupied by the Inductor 
 

 
 

Figure ‎2.12: Spiral inductor with magnetic ring structure [31] 
 

 

     As was discussed in section 2.3.3.1, LC resonant CDNs require several inductors to be 

integrated and distributed across the chip. The difficulty of inductor on-chip integration 

and the large area occupied by the inductor complicates the design of LC resonant CDNs 

and limits their applications. 

     A promising technique to solve this problem is the use of magnetic inductors (Figure 

2.12) in LC resonant clocking. Magnetic inductors are compatible with CMOS process 

and occupy nearly 100× less area compared to conventional inductors. They can achieve 

for example inductance values of up to 4 nH and a quality-factor of 3 at 1 GHz [31]. 

Using magnetic inductors in LC resonant CDN reduces area overhead associated with 

distributed inductors. 
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2.4.3 Clock Gating 

     By using logic gates (NAND/NOR), clock gating in conventional square-wave CDNs 

is achieved by using an ENABLE signal that controls the clock feeding a specific sector. 

However, this approach is not desirable in LC resonant CDNs since it would reduce the 

energy being recovered from the remaining capacitance of that sector. In [28], a clock 

gating scheme was proposed for LC resonant CDN by adding a NOR gate with an 

ENABLE signal at the clock input of every resonantly clocked flip-flop. Simulation 

results show that clock gating would reduce the power consumption of the flip-flop by 

more than 1000× in the idle mode compared to the power consumed without clock gating 

for 50% data switching activity [28].  However, the extra routing resources and 

complexity of connecting the ENABLE signal to the input of each flip-flop as well as the 

power overhead associated with it was neglected.  

 

2.5 Sinusoidally Clocked Flip-Flops 

     LC resonant clocking needs the least modification from traditional CDN design due to 

the constant phase and amplitude of the generated clock signal. In addition, LC resonant 

clocking up to this date, is the most developed and practical resonant clocking technique. 

    The clocking scheme adopted and assumed in this dissertation from here on is the 

fully-resonant LC scheme. The clock signal feeding the flip-flops is assumed to be purely 

sinusoidal clock since extending the resonance down to the flip-flop level results in most 

power savings as discussed previously.   

     The long rise time of the sinusoidal clock signal compared to that of the square clock 

where the rise time is restricted to around 10-20% of the clock period affects the flip-flop 
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speed, power, and susceptibility to variations. In [32], the performance and power of six 

flip-flops in 130-nm process were analyzed under square and sinusoidal clocking at an 

operating frequency of 1GHz.  Simulation results show that the dominating effects are an 

increased flip-flop delay of 20-30% for a sinusoidal clock with a rise time 10× slower 

than that of the conventional clock. It is also illustrated that as the frequency increased 

from 1 to 3 GHz, the difference in rise time between sinusoidal and square clock reduced 

causing an improvement in flip-flop performance.   

     In [33], a study was conducted on the effect of clock slope on the energy and 

performance of fifteen flip-flops covering the pulsed, differential, and dual-edge triggered 

flip-flop classes in 65-nm CMOS technology. Smoother clock slope, i.e., longer rise time, 

increases flip-flop power due to the increase in short-circuit current between the pull-up 

and pull-down networks. Furthermore, as occurs in any CMOS logic circuit, longer rise 

time results in increased delay. Post-layout simulation illustrates that the increase in flip-

flop delay as the clock slope increase by 6× is modest and is less than 5.5%. Results also 

show that the flip-flop setup and hold times have low sensitivity to clock slope. 

Furthermore, flip-flops with negative setup time experience more negative setup time 

with increased clock slope since the transparency window expands with longer fall time 

due to the falling-edge of the clock being smoother. The flip-flop power increases by no 

more than 70% as the clock slope deccreases 6×. It should be noted that the increase in 

flip-flop power due to the long rise time of the sinusoidal clock compared to square-wave 

clock with 0.1T rise time would be much less than 70% since the ratio between the rise 

times is 2.9. 
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     Any flip-flop can operate at both square and/or sinusoidal clocks since a sine-wave 

can be considered as a square-wave with longer rise and fall times. In the following, a 

brief description of two flip-flops that were proposed in the literature as energy-recovery 

flip-flops that operate with a sinusoidal clock will be presented: these are; the Differential 

Conditional Capturing Flip-Flop (DCCFF) and the Single-Ended Conditional Capturing 

Flip-Flop (SCCFF) [5]. The Sense Amplifier Flip-Flop (SAFF) will be presented in 

Chapter 4. 

 

2.5.1 Differential Conditional Capturing Flip-Flop (DCCFF) 

VDD

R
E

S
E

T

S
E

T

MN2

CLK

D DB

QQB

MN1

SET

RESET

Q

QB

SET/RESET Latch

MN3 MN4

MP1 MP2

 

 

Figure ‎2.13: Differential Conditional Capturing Flip-Flop (DCCFF) 

 

    The DCCFF is shown in Figure 2.13. Conditional capturing is used to minimize flip-

flop power at low data switching activities by eliminating redundant internal transitions. 

The DCCFF operates in a precharge and evaluate fashion. Pull-up PMOS transistors are 

used for charging nodes SET and RESET.  The effect of charge sharing can be reduced by 
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ensuring a constant path to VDD. This is done by properly sizing the PMOS transistors. A 

short evaluation interval occurs after the rising edge of the clock when both the clock and 

inverted clock signals applied to transistors MN1/MN2 are above the threshold voltage 

level of the NMOS transistor. The DCCFF uses a NAND latch for storage. Using 

feedback from the output to control transistors MN3 and MN4 in the evaluation paths 

ensures conditional capturing. Therefore if the state of the input data is not changed, SET 

and RESET are not discharged. 

 

2.5.2 Single-Ended Conditional Capturing Flip-Flop (SCCFF).   
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Figure ‎2.14: Single-Ended Conditional Capturing Flip-Flop (SCCFF) 

 

     Figure 2.14 presents the SCCFF. The SCCFF is a single ended version of the DCCFF. 

Transistor MN3 controlled by the output QB, provides conditional capturing. The right-

hand-side evaluation path is static and does not require conditional capturing. If input D 
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was low and then goes high. Node QB would still be high from the previous state, thus 

pulling the gate of the PMOS transistor to ground and turning it on. The input node of the 

cross-coupled inverters will be pulled up to VDD, their output QB becomes low and Q 

becomes high. If the state of the input D remains the same, QB remains low, and 

transistor MN3 will be turned off and no discharging occurs since there is no path to 

ground. 

 

2.6 Conclusion 

     Reducing clock skew, jitter, and power are the main design objectives in CDNs. 

Though the main objective of the resonant clocking techniques is to reduce the clock 

power, they also enable reduction in clock skew and jitter as well. LC resonant clocking 

is still the most suitable low-power clocking scheme generating a clock signal with 

constant phase and amplitude and requires minimum change from conventional square-

wave clock design.  LC resonant clocking still, however, presents several design 

challenges associated with the long rise time of the sinusoidal clock, area occupied by the 

inductor, and clock gating. 
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Chapter 3   

Skew Compensation in LC Resonant 

Clock Distribution Networks 

 

In this chapter a new approach for skew compensation in LC fully-resonant CDNs is 

introduced by manipulating the operating speed of the flip-flops. The STMicroelectronics 

90-nm technology allows the use of devices with different threshold voltages, namely: 

HVT (High threshold voltage), SVT (Standard threshold voltage), and LVT (Low 

threshold voltage). Three types of flip-flops‎of‎equal‎ input‎ load:‎“fast”,‎“standard”,‎and‎

“slow”‎ are‎ used.‎ Timing‎ parameters‎ of‎ the‎ flip-flops are adjusted by manipulating the 

switching threshold of the clock port of the flip-flops. A fast/slow flip-flop has a 

shorter/longer TDQ delay, compared to a standard flip-flop for the same setup time 

(TDCLK). Distributing flip-flops according to their delay requirements would reduce the 

effect of the clock skew on the outputs of sequentially adjacent flip-flops. Due to the slow 

rise time of the sinusoidal clock signal generated in LC resonant CDNs compared to the 

conventional square-wave clock, the skew that can be compensated for in LC resonant 

CDNs using this approach would be much higher than in square-wave CDNs. This 

approach increases the skew bounds required by algorithms to balance the skew in the 

clock tree leading to reduced design complexity.  

     Theoretical analysis and simulation results using STMicroelectronics 90-nm 

technology at a clock frequency of 500 MHz show that this approach is feasible and 

effective where a skew of up to 6.2% of the clock period can be compensated for in the 

example used. In addition, constructing clock trees using the skew slack provided in the 
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proposed technique in a new modified Differed Merge Embedding (DME) algorithm on 

five benchmarks has shown that the proposed technique enables an average reduction of 

11.5% in total wire length and 53.2% reduction in the number of wire elongations. As an 

example of illustrating the proposed methodology, we have used the Elmore delay model 

with a selected sinusoidally clocked flip-flop to verify the practicality of the proposed 

scheme. The method can generally be applied to resonant or square-wave clocking if 

different flip-flops of various speeds are used.  

 

3.1 Lower Skew Bounds for the Proposed Technique   

     Figures 3.1 and 3.2 illustrate the effect of the slow rising time of the sinusoidal clock 

signal generated in LC fully-resonant CDN on the speed of the flip-flops. The data to 

output delay (TDQ) versus data to clock delay (TDCLK) is plotted for the slow, standard, 

and fast flip-flops as compared to a square-wave clock signal with short rise time. As 

shown in these figures, the increase in the required time for the sinusoidal signal to reach 

from one threshold voltage level to the next is reflected in the increase in the difference 

between the operating speeds of the flip-flops. The opposite is true for the square-wave, 

since the short time required for the square signal to reach from one threshold voltage 

level to the next causes small differences in the flip-flops operating speed. Here Vth refers 

to the threshold voltage of the NMOS transistors triggered by the clock. The beginning of 

the evaluation phase in each flip-flop starts when the clock voltage exceeds the threshold 

voltage. The fast, standard, and slow flip-flops are defined in the following: 
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(a) Clock long rise time                              (b) Flip-flop TDQ vs. TDCLK 
 

Figure ‎3.1: Effect of long rise time of the sinusoidal clock signal on the operating speed 

of the flip-flop 
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(a) Clock short rise time                            (b) Flip-flop TDQ vs. TDCLK 

 

Figure ‎3.2: Effect of short rise time of the square clock signal on the operating speed of 

the flip-flop 

 

1- Standard flip-flop: the threshold voltage of the NMOS devices triggered by the clock 

signal in the standard flip-flop is the standard threshold voltage for the technology 

(Vth_standard= 0.24 V).  



32 
 

2- Fast flip-flop: for the same setup time (TDCLK), a fast flip-flop will have a shorter TDQ 

delay as compared to the standard and slow versions of the flip-flop. This is due to the 

fact that the threshold voltage of the NMOS devices triggered by the clock signal in 

the fast flip-flop is lower (Vth_low= 0.18 V) than the threshold voltages for the same 

devices used in the standard and slow flip-flops. 

3- Slow flip-flop: for the same setup time (TDCLK), a slow flip-flop will have a longer TDQ 

delay as compared to the standard and fast versions of the flip-flop. This is because the 

the threshold voltage of the NMOS devices triggered by the clock signal in the slow 

flip-flop is higher (Vth_high= 0.32 V) than the threshold voltages for the same devices 

used in the standard and fast flip-flops.                                

     Note that all the transistors in the three versions of the flip-flop have the same size and 

present equal load to the CDN. Only the threshold voltage of the NMOS transistors 

connected to the clock signal changes from one flip-flop version to the other.   

     Due to the fact that the speed of the flip-flops is highly affected by the threshold 

voltages of the NMOS devices connected to the clock signal and in order to make sure 

that two versions cannot have the same speed of operation, the following two constraints 

must be fulfilled: 

                                    (3.1) 

                                   (3.2) 

where Vth_standard_max refers to the maximum value of the standard threshold voltage, 

Vth_high_min refers to the minimum value of the high threshold voltage, Vth_low_max refers to 

the maximum value of the low threshold voltage, and Vth_standard_min refers to the minimum 
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value of the standard threshold voltage of the NMOS devices used in each version of the 

flip-flop due to process and environmental effects.  

     In the following timing definitions, flip-flop equations, and lower skew bounds for 

implementing this technique will be presented. Let TDCLK be given by: 

                        (3.3) 

     The time difference between arrival of data and the edge of the clock due to the skew 

(Tsk) would affect the TDCLK time for each flip-flop. For a lagging clock signal by Tsk the 

             of the flip flop would be: 

                                              (3.4) 

and for a leading clock signal by Tsk: 

                                             (3.5)  

 

     The bar on the TDCLK  shown in equations 3.4 and 3.5 is used to distinguish between 

the nominal value of TDCLK  with a zero skewed clock signal and its value with a lagging 

or a leading clock signal. It should be noted that the deviation from the skew value Tsk 

due to process and environmental variations (     ) is assumed to be small compared to 

Tsk  and  is neglected to simplify the analysis.   
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Figure ‎3.3: Using one version of the flip-flop 
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     Figure 3.3(a) and (b) shows an illustration of the effect of different TDCLK on the 

difference between TDQ delays for a single flip-flop. Figure 3.4(a) and (b) shows an 

illustration of the effect of different TDCLK on the difference between TDQ delays for flip-

flops with different operating speeds. Note that Figures 3.3 and 3.4 have the same time 

scale. Assuming that the equations for the TDQ lines for the slow, standard, and fast flip-

flops are given by: 

                                          (3.6)  

                                         (3.7)  

                                        (3.8)  

 

where m is the slope of the TDQ(TDCLK) line, and BSL, BST, and BFA denote the intercepts on 

the TDQ axis for the slow, standard, and fast flip-flops, respectively. It should be noted 

that all the lines in Equations 3.6 to 3.8 are assumed to be parallel and have the same 

slope of m. Also, note that the equation of TDQ_STANDARD is also the one of the line of 

Figure 3.3(a). Equations 3.6 to 3.8 present the relationship between TDQ  and  TDCLK  in 

the linear operating region of the flip-flop.  

     As shown in Figure 3.3(a) and (b), the difference between the TDQ delay of a single 

standard flip-flop due to a  leading clock signal is referred to by    where: 

                                               

                                           

                                                                                  (3.9) 
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Figure ‎3.4: Using three versions of the flip-flop 
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     Figure 3.4(a), shows that the leading clock signal is fed to a slow flip-flop instead of 

the standard flip-flop. The difference between the TDQ delays of the standard and slow 

flip-flops is given by   : 

                                           

                                        

                                                                   (3.10)   

     In order to reduce the effects of the different arrival times of the clock signal on the 

TDQ delay of sequentially adjacent flip-flops by using flip-flops with different operating 

speeds as shown in Figure 3.4, we require that          . This implies that: 

    
       

  
           (3.11) 

Equation 3.11 gives a lower bound for the clock skew when          .   

     Using the same approach for    and    and in order for          , the following 

condition has to be satisfied: 

    
       

  
             (3.12) 

Equation 3.12 gives a lower bound for the clock skew when          . 

 

3.2 Skew Compensation in Short and Long Delay Paths  

     The main problem with a CDN usually occurs on the critical paths. Figure 3.5 

illustrates how the effect of clock skew on the generated output of the flip-flops can be 

eliminated. In this work, the CDN is balanced not to achieve a zero skew between two  
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Figure ‎3.5: Matched delay for short and long delay paths 
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sequentially adjacent flip-flops but rather to achieve a matched delay for short and long 

delay paths referred to as Tdelay_E  and Tdelay_L, respectively. As illustrated in this figure 

when leading clock signals in short delay paths are skewed by Tdelay_E and fed to a slow 

flip-flop while lagging clock signals in long delay paths are skewed by Tdelay_L and fed to 

a fast flip-flop, respectively, the TDQ delays of the flip-flops will balance out and the 

effect of the clock skew would be absorbed by the flip-flops.  

    In the following, we illustrate mathematically the proposed skew compensation 

technique and the skew slack that is introduced and can be used without affecting the 

minimum clock period. Figure 3.6 shows three sequentially adjacent flip-flops where in 

Figure 3.6(a), CLK2 and CLK3 feeding flip-flops R2 and R3 are lagging CLK1 feeding 

flip-flops R1. Figure 3.6(b) shows the opposite scenario where CLK2 and CLK3 lead 

CLK1. In order to find the matched delay for long delay paths with respect to the 

reference clock as shown in Figure 3.6(a) we require that T1=T2, where T1 is the 

minimum clock period for the data path starting from the input of R1 and ending at the 

input of R2 and T2 is the minimum clock period for the data path starting from the input 

of R2 and ending at the input of R3. The equation of the minimum clock period is given 

by [34]: 

                                             (3.13) 

Where:  

T = minimum clock period 

TCLKQ_Ri = clock to output delay of the first flip-flop 

TCLi = the time necessary to propagate through the logic and interconnect 

TSU_R(i+1) = set up time for the final register in the data path 
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Figure ‎3.6: Sequentially adjacent flip-flops 
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Tsk_CLK(i+1) = the skew affecting the clock signal feeding the last flip-flop in the path 

Equation 3.13 illustrates that skew can improve circuit performance by allowing a 

reduction in the clock period. However, increasing skew increases circuit susceptibility to 

race conditions [34]. Applying equation 3.13 on the data paths shown in Figure 3.6(a) 

and noting that: 

                                       (3.14) 

                                              (3.15) 

 

Using Equations 3.7 and 3.14 in 3.13 we get:  

                                 

                                            

                                                      

                                                  (3.16) 

and for T2 we get: 

                        

                                   

                                             

                                                                   

                                                         (3.17) 

       Generally, TCL1 doesn’t‎ equal‎ TCL2 which provides a data path slack that can be 

utilized for skew scheduling in the clock network design. However, in the following we 

will assume that TCL1 = TCL2 in order to highlight the methodology used for introducing a 

new type of slack. 
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Using T1=T2, and assuming that TSU_R2 = TSU_R3, we obtain: 

         
       

 
                                                            (3.18)       

     Equation 3.18 illustrates that when using the same type of flip-flops where BR1=BR2, 

the optimum skew that does not affect the clock period is Tsk_CLK=0. In the same time, 

Equation 3.18 illustrates that when using flip-flops with different operating speeds, i.e., 

BR1>BR2, a certain skew can be present in the clock path but has no effect on the 

minimum clock period since the different speed of operation of the flip-flops within the 

path absorbs this skew as illustrated in Figure 3.5(a) and (b). Thus the matched delay for 

a lagging clock signal in long delay paths with respect to the reference clock is noted as:  

         
       

 
           (3.19)  

where BST and BFA refer to the TDQ intercepts for the standard and fast flip-flops shown in 

Equations 3.7 and 3.8, respectively. 

     Using the same approach, the skew for a leading clock signal in short delay paths with 

respect to the reference clock can be compensated as shown: 

         
       

 
                                                 (3.20)  

where BSL and BST refer to the TDQ intercepts for the slow and standard flip-flops shown in 

Equations 3.6 and 3.7, respectively.  

     Also, the same approach can be used to balance the TDQ delay of the flip-flops for 

leading clock signals in short delay paths with respect to lagging clock signals in long 

delay paths by using slow and fast flip-flops in the data path, where the required matched 

delay in this case would be: 

                                     (3.21) 
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     Equations 3.19, 3.20, and 3.21 illustrate that this approach would reduce the need for 

designing a zero skew CDN to designing a bounded skew CDN where the skew bounds 

are restricted to the matched delay values.  This increase in the skew bounds would lead 

to reduced complexity in designing CDNs. 

     It should be noted that due to the change in the rise time of the sinusoidal clock signal 

generated in LC resonant CDNs with respect to its frequency, the matched delay values 

presented in Equations 3.19, 3.20, and 3.21 are frequency dependent. As the clock 

frequency decreases, the rise time increases and the differences between the TDQ 

intercepts of the different versions of the flip-flop increases causing an increase in the 

matched delay values.  

              

3.3 New Modified Differed Merge Embedding (DME) Algorithm
1
  

     In the previous sections we introduced a new skew compensation technique using flip-

flops with different operating speeds. The new technique provides timing slacks that 

could be used in a clock distribution algorithm in order to reduce the total wire length, 

routing complexity, and power. Traditionally to manage the clock skew in a clock 

network, clock distribution algorithms attempt to balance the delay from the source to all 

sinks. This is accomplished mainly through wire length adjustment, wire width sizing, 

and buffer insertion.  However, buffer insertion is not considered in LC fully-resonant 

CDNs because inserting a buffer in the clock path eliminates the energy recovery 

property. The clock distribution algorithm could take advantage of the new proposed 

skew compensation technique along with other traditional balancing approaches to get 

________________________________________________ 
1 The DME implementation was done by Mr. Ali Mohammadi Farhangi. 
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the desired skew in a clock network with less total wire length. Consequently clock 

network power consumption will be decreased. Additional benefits of the proposed 

compensation technique are the reduction in the number of wire elongations and the 

added flexibility in the distribution network layout.  

     The new compensation technique was incorporated into a Zero Skew Clock Tree 

router (ZST). A ZST is able to construct a clock tree that delivers the clock edges to all 

sinks with equal delay (nominal zero skew). The Differed Merge Embedding algorithm 

(DME) [35], was modified to accommodate the proposed skew compensation technique.  

     In order to use the new technique in any ZST, two major issues should be considered:  

1- Selecting which type of flip-flop to be used in every single location. 

2- Taking advantage of timing slacks provided by the new technique during bottom up 

tree construction in order to reduce total clock tree wire length.    

     Usually, a typical clock tree router is not aware of the underlying data-path and data 

flow dependency between the clock sinks.  This assumption indicates that, at first there is 

no preference among the clock sinks to guide the algorithm in order to select between 

different types of flip-flops.  In the proposed approach, the flip-flop have three operating 

speeds: standard, slow and fast. Initially all sinks are chosen from the standard type. The 

best choice for different types of flip-flop at the sinks will be identified while the clock 

tree is being constructed. This new algorithm is developed based on the observation that a 

zero skew merging segment obtained by the traditional DME can be shifted towards one 

of its children by changing the flip-flop type in its left and right sub-trees. The tuning of a 

merging segment by changing the flip-flop type is illustrated in Figure. 3.7.  
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Figure ‎3.7: Tuning a merging segment by changing the flip-flop type in left or right sub-

tree 

 

In Figure. 3.7, U and V are two sub-trees where their roots are embedded at location u 

and v, respectively. U and V are to be merged such that the new sub-tree W has zero skew 

and minimum wire length. The rectangle with u and v as opposite vertices encloses all 

minimum distance, Manhattan connections between u and v. ms(w) is the locus of the 

points (merging segment) that can merge two points, u and v with minimum wire length 

and zero skew. In Figure 3.7, ms1(w) is the merging segment that merged v and u, where 

sub-trees V and U both contain standard flip-flops. As illustrated in the figure, by 

changing the flip-flops operating speed in either U or V, the merging segment shifts either 

towards u or v. 

     For a pair of nodes (u,v), the algorithm considers up to seven different combinations 

of flip-flop operating speeds in u and v;  (ustandard, vstandard), (ustandard, vfast), (ustandard, vslow), 
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(ufast, vstandard), (ufast, vslow), (uslow, vstandard), and (uslow, vfast). There are two redundant 

combinations, (uslow, vslow) and (ufast, vfast). Both of these combinations result in the same 

merging segment as in (ustandard, vstandard). The algorithm does not consider the two 

redundant cases to compute the merging segment. 

     During the bottom-up phase, the algorithm computes the locus of the merging points 

(merging segment) where two sub-trees can join such that the new sub-tree has a zero 

skew. The new merging segment is computed for different combination of flip-flops in 

both sub-trees. Unlike the traditional DME, in the modified DME algorithm there is a set 

of merging segments corresponding to each node. Each merging segment is computed 

similarly to the DME, but the algorithm considers the proper matched delay for either left 

or right sub-tree. The three types of flip-flops enable the algorithm to use the matched 

delay values in order to compensate for the skew. 

     A greedy strategy was used to choose the types of flip-flops. This means that if the 

types of flip-flops in a set of leaves in a sub-tree have already been determined, the 

algorithm will not change it in later stage. For example in Figure 3.7, if the algorithm 

specifies the slow flip-flop for the leaves in the sub-tree rooted at v and the fast flip-flops 

for the leaves in the sub-tree rooted at u, this implies that the decision for the types of 

flip-flops in the sub-tree w is already made. Indeed to achieve more optimum results, one 

can defer the decision making to the upper levels, but this will increase the timing 

complexity of the algorithm.   

     Let s1, s2, s3 and s4 be four leaves or internal nodes in a clock tree. The nodes are to be 

merged corresponding to the topology shown in Figure 3.8(a), where s1 and s2 are 

children of node v and node u is the parent of s3 and s4. In the upper level of the tree, u  
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  (a) Clock tree topology           (b) Determining flip-flop type based on minimum wire  

                                                        length merging 

 

Figure ‎3.8: Modified DME 

 

and v are to be merged into node w.  Assume the flip-flop types in the sub-trees rooted at 

s1, s2, s3 and s4 have not been specified by the algorithm. The algorithm enumerates all 

seven different choices for the flips-flops in (s1, s2) and (s3, s4). The merging segments for 

node v and u are calculated for all combinations. ms(u) and ms(v) refer to the set of the 

merging segments for all different combinations for nodes u and v, respectively.  Two 

newly determined sub-trees rooted at v and u need to be merged into w. To compute the 

merging point for node w, the algorithm selects one merging segment from ms(u) and 

ms(v) which results in minimum wire length. 

     To reduce total wire length, a sub-tree needs to be merged to another sub-tree that is 

not only nearby but also minimizes wire elongation. Therefore a merging cost function to 

include distance and wire elongation in a unified form is proposed. This merging cost is 
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Procedure Modified_BottomUpTree_Contruction (A , B) 

Input: Two Sets of Merging Segments A and  B to be merged 

Output : A Set of merging segment V 

1- a‎,b‎←‎Greedy_merging_segment_selection (A , B ) 

2- If all leaves in the subtree rooted at a are normal FFs then 

            Compute    
    

   
       

       

3- If all leaves in the subtree rooted at b are normal FFs then 

            Compute    
    

   
       

       

4- For all  FFs operating speed in subtree a  (  
    

   
       

      )  do 

      For all FFs operating speed in subtree  b (  
    

   
       

         do 

            vi ←DME-Zero skew merging of a and b 

            Insert vi into set V 

5- Return V 
 

(a) Modified merging segment construction  using the new type of slack provided by our 

new compensation technique 

 

Procedure Greedy_merging_segmanet_selection (A, B) 

Input: Two Sets of Merging Segments A and b B be merged  

Output : One merging segment corresponding  to A and one merging segment    

                corresponding to B 

For each merging segment ai   A and bj   B  do 

Wiring( ai , bj )←‎Find‎distance‎of‎ai  and bj   + wire snaking needed to merge ai      

 and bj 

Select ai and bj such that Wiring( ai , bj ) is minimal 

Return ai and bj 
 

(b) Greedy merging selecting procedure 

Figure ‎3.9: Pseudo Code for modified DME algorithm 

 

the same as the Manhattan distance between the roots of two sub-trees if there was no 

elongation; otherwise the extra wire due to wire snaking is included in the merging cost. 

The algorithm uses the unified wire length cost function to determine which merging 

segments should be selected from each one of its children. The best possible choice 
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indicates the types of the flip-flops in s1, s2, s3 and s4 as shown in Figure 3.8(b). The 

pseudo code for the modified merging segment construction using the new type of slack 

provided by the proposed technique and the greedy merging selection procedure are 

presented in Figure 3.9(a) and (b), respectively.  

     It should be noted that the Elmore delay used to model the delay in square-wave based 

CDNs algorithms is valid for signals other than step signals and that the actual delay 

approaches the Elmore Delay as the input signal rise time increases [36]. This illustrates 

that the algorithms used to construct square-wave based CDNs can be extended and 

applied to construct LC CDNs with a sinusoidal clock signal.  

 

3.4 Simulation Results 

3.4.1 Matched Delay Values for the SCCFF  

     The Single-ended Conditional Capturing Flip-Flop (SCCFF) introduced previously in 

Chapter 2 in Figure 2.14 was modified in order to design a slow, standard, and fast 

versions of it. In this flip-flop, transistors MN1 and MN2 were replaced with high 

threshold voltage devices (HVT), standard threshold voltage devices (SVT), and low 

threshold voltage devices (LVT) in order to generate slow, standard, and fast flip-flops, 

respectively.  

    The three versions of the SCCFF have been simulated in STMicroelectronics 90-nm 

technology with a sinusoidal clock frequency of 500 MHz. These three flip-flops have 

different operating speeds, i.e., different TDQ  for a given TDCLK. The TDQ delays for the 

fast, standard, and slow flip-flops have been plotted for different setup times (TDCLK) and 

are shown in Figure 3.10. Note that in this figure a line equation of the TDQ delay is stated  
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Figure ‎3.10: TDQ vs. Tsetup (TDCLK) 

 

in the legend and plotted against the actual values obtained from simulation. The line 

equation was obtained by simply taking two points along the TDQ line and then 

computing the slope m and the TDQ intersection B. From this figure, the effect of the 

relatively slow rise time of the sinusoidal clock signal on the TDQ delay for different 

versions of the flip-flop appears in the gap between the TDQ lines or the difference 

between the points of intersection with the TDQ axis.  

The optimum setup time for the flip-flop is the TDCLK delay at which the minimum TDQ 

delay of the flip-flop occurs. TDCLK delays that are less than the optimum setup time 

would not lead to any further reduction in the TDQ delay of the flip-flop thus causing  
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Table ‎3.1  

Matched delay (ps) for a clock period of 2ns 

 

 

 

 

 

Figure ‎3.11: Slow, standard and fast flip-flop response with respect to a square clock 

signal 

 
 

Figure ‎3.12: Slow, standard and fast flip-flop response with respect to a sinusoidal clock 

signal 

Flip-Flop Tdelay_E Tdelay_L Tdelay_E_L 

SCCER 45 77 123 
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a deviation from the straight lines obtained from the equations in Figure 3.10. The flip-

flops‎are‎considered‎to‎be‎operating‎in‎the‎linear‎region,‎i.e.,‎Tsetup‎≥‎180 ps.  

     From the obtained line equations in Figure 3.10, equations 3.19, 3.20, and 3.21 were 

used to calculate the matched delay values for skew compensation which are shown in 

Table 3.1. The values of Tdelay_E, Tdelay_L, and Tdelay_E_L  presented in this table illustrate 

that a skew of 2.3%, 3.85%, and 6.2% of the clock period (2ns) can be compensated for, 

respectively. Note that in obtaining these values, the slope was considered to be equal to 

“1”‎ which‎ is‎ a‎ close‎ approximation.‎ Balancing‎ a CDN using the values in Table 3.1 

should be made with careful consideration. That is for the Tdelay_E  path, a slow and a 

standard flip-flop should be inserted, for the Tdelay_L path, a standard and a fast flip-flop 

should be inserted, and for the Tdelay_E_L a slow and a fast flip-flop should be inserted in 

the data path to eliminate any skew effects on the clock period.  

     Figure 3.11 presents the simulation results showing the difference in the flip-flop 

output TDQ for the standard, slow, and fast versions with response to a square-wave clock 

signal with a frequency of 500 MHz and a rise time of 10% of the clock period. Figure 

3.12 shows the same response but with 500 MHz sinusoidal clock signal. The large 

difference in the response time (TDQ) of the three flip-flop versions with a sinusoidal 

clock wave as compared to their response with a square-wave is clearly shown in these 

figures.   
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3.4.2 Comparing Data, Clock, and Flip-Flop Power Consumption for the Fast, 

Standard, and Slow Versions of the SCCFF 

 

     In this section, the difference in the data, clock, and flip-flop power consumption 

between the three versions of the SCCFF is investigated to show that there is no 

significant power increase in adopting this technique.  

     Power consumption of a circuit depends strongly on its structure and the statistics of 

the applied data. Thus power measurements should be conducted for the range of 

different data patterns comprising  worst and best cases [37]. In general, a pseudorandom 

sequence‎with‎equal‎probability‎of‎all‎transitions‎(with‎data‎activity‎rate‎α=0.5)‎shown‎in 

Figure 3.13 will result in the average internal power consumption under typical operation 

[37]. 

  

CLK

Data  

Figure ‎3.13: Pseudorandom Sequence 

 

     The circuit used to measure the data, clock, and flip-flop power based on square-wave 

clocking signal is shown in Figure 3.14. The role of this circuit is to provide 

measurement of power dissipated on switching of the clock and data inputs, the realistic 

data and clock signals, and the fan-out signal degradation from the previous stage to the 

succeeding one [37].  The local clock power in this circuit is calculated as the difference 

in power dissipation of the gray inverter when loaded with the flip-flop and when 

unloaded. The local data power dissipation is calculated as the difference in power  
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dissipation of the black inverter when loaded with the flip-flop and C1 and when loaded 

only with C1. 

     All power measurements were conducted for the 16 clock cycle data sequence 

presented in Figure 3.13 for the SCCFF operating at 500 MHz. In the circuit shown in 

Figure 3.14, the load capacitance for the data buffer (the black inverter) as well as the 

load capacitance at both outputs of the flip-flop was chosen to be 30 fF. The black 

inverter, the gray inverter, and each flip-flop were identified as sub-circuits and a 

.MEASURE average power statement in HSPICE was used to measure the power 

dissipation of interest in each of these sub-circuits. 

    Table 3.2 presents the power consumption in µW of data, clock, and flip-flop for the 

standard version in the SCCFF. The percentage increase in the power consumption for 

data, clock, and flip-flop for the slow and fast flip-flops are also presented in the table.   

     As shown in Table 3.2, the percentage increase in data power for the fast and slow 

flip-flop as compared to the standard one is less than 1%. As for the clock power, we 

notice that there is an increase in clock power for the fast flip-flop and a decrease in clock 

power for the slow flip-flop as compared to the standard flip-flop. However, the increase 

in clock power is less than 5%. As for the flip-flop power, we notice an insignificant 

increase in the power of the fast flip-flop which is less than 1%.  

    The percentage increase in power consumption shown in Table 3.2 illustrates that 

using this new approach for skew compensation would not affect the dynamic power 

consumption of the system since the standard, fast, and slow versions of the flip-flop 

would be placed with somewhat equal probabilities in the CDN and thus the dynamic  
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Figure ‎3.14: Power measurement circuit 

 

Table ‎3.2 

Power consumption (µW) 

 

 

 

 

 

power increase introduced by one version of the flip-flop will be eliminated by the power 

decrease introduced by the other. An approximation of the leakage power neglecting the 

stacking effect [38] and the fact that the transistors are switched on and off at every clock 

cycle, shows that lowering the threshold voltage in the fast flip-flop case would result in 

18% increase in leakage power whereas increasing the threshold voltage in the slow flip-

flop would result in 20% decrease in leakage power.  

  

  

  Data Clock FF 

SCCFF 

Standard 0.388 5.034 40.482 

Fast -0.72% 4.45% 0.00% 

Slow 0.80% -1.51% 0.63% 
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3.4.3 Effects of Process, Supply Voltage, and Temperature Variation on Flip-Flop 

Speed 
 

     Since manipulating the flip-flop speed in this chapter was done by mainly changing 

the threshold voltages of the NMOS devices being fed by the clock signal, the effect of 

variations in process, supply voltage, and temperature on the flip-flop speed was 

investigated to make sure that the generated slack remains valid and that the mean of the 

TDQ delays are separated and within tolerable range of the design slack. The three 

versions of the SCCFF were simulated using 200 runs of Monte-Carlo simulation under 

mismatch only (intradie variation) with a square clock and a sinusoidal clock signal 

feeding the three versions of the flip-flop at a frequency of 500 MHz. The TDQ delays for 

each version of the flip-flop under both clock signals were obtained for the 200 runs.  

     Figure 3.15(a) and (b) presents the TDQ histograms for the three versions of the 

SCCFF for square and sinusoidal clock signals, respectively. 

     Figure 3.15 show that although the spread of the TDQ delay for the fast, standard, and 

slow flip-flops under square wave clocking is less than the spread of the TDQ delay for the 

same flip-flops under sinusoidal clock, the TDQ delay of each version of the SCCFF under 

sinusoidal clock does not overlap with each other and that their delays are distinct. This 

illustrates that though the slow rise time of the sinusoidal clock can lead to a larger spread 

of the TDQ delays under process variation, it would also increase the gap between the TDQ 

delays for each version of the flip-flop thus eliminates the overlap between them. Figure 

3.15(b) also shows a mismatch induced skew of approximately 20 ps from the mean of 

the TDQ delay for each flip-flop. This would lead to a worst case mismatch induced skew 

for this data set of around 40 ps if the TDQ delay of the flip-flops deviate to the opposite 

extremes. 
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(a) TDQ with a square clock 

 

 

(b) TDQ with a sinusoidal clock 
 

Figure ‎3.15: Monte-Carlo simulation 
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Table ‎3.3 

Supply voltage effect on matched delay values 

 

 

 

 

Figure ‎3.16: Temperature effect on the TDQ delay 

 

     Table 3.3 illustrates the effect of static voltage increase or decrease in the power 

supply on the matched delay values obtained from the TDQ of the flip-flops. It shows that 

a 5% increase in the supply voltage feeding the flip-flops would cause less than 5% 

change in the matched delay values. This observation also holds with a 5% decrease in 

the supply voltage.      

     To investigate the temperature effect on the TDQ delays of the three versions of the 

flip-flop, the spatial temperature gradient used in [39] was adopted here at which the 

Supply 

voltage 

Percentage change in 

Tdelay_E Tdelay_L Tdelay_E_L 

VDD+5% 4% -4% 0% 

VDD-5% -4% 2% -1% 
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temperature changes from 25°C to 125°C in steps of 25°C. Figure 3.16 shows the 

temperature effect on flip-flop delays. As illustrated in the figure, the TDQ delay of the 

flip-flops decreases as temperature increase. This is mainly due to the decrease in the 

threshold voltage of the transistors as the temperature increase [40]. An increase in 

temperature from 25°C to 125°C causes a reduction in flip-flop delays by approximately 

5%. It is also observed in Figure 3.16 that although the TDQ delays of the flip-flop 

decrease with temperature, the TDQ lines of the three versions of the flip-flop remain 

parallel to one another. This means that the matched delay values between sequentially 

adjacent flip-flops would suffer minor changes assuming that these flip-flops are placed 

within close proximity to one another and experience the same variation in temperature.  

 

3.4.4 Clock Tree Construction Using the New Compensation Technique  

     The traditional DME and the new modified DME algorithms were implemented in 

C++ to construct the clock tree. The initial clock tree topology in both cases was obtained 

by the Method of Means and Medians (MMM) [41].   Both algorithms were run on a set 

of benchmarks (r1-r5) that contain from 267 up to 3,101 clock sinks. The clock sink 

distribution in the benchmarks is the same as the one in [42]. 

     By applying the proposed skew compensation technique, the total clock tree wire 

length has been reduced by an average of 11.5%. Reducing the total wire length leads to a 

reduction in the routing complexity as well as a reduction in the clock tree power 

consumption which is a major concern in CDN design. One of the drawbacks associated 

with the DME based clock routers is the fact that they introduce many wire elongations to  
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Table ‎3.4 

Comparison of MMM-DME and the new modified DME using the proposed skew 

compensation technique 

 

 

achieve a zero skew clock network. The elongation problem is exacerbated usually when 

the clock routers only consider the spatial proximity to find the best matching pairs.  

     The results obtained in Table 3.4 show a reduction of an average of 53.2% in the 

number of wire elongation. Wire elongation is a real burden in the detailed phase of 

routing, because they introduce unnecessary bends and vias. 

     The new algorithm is only a simple greedy heuristic that was developed to verify the 

advantages of using the new skew compensation technique. Indeed the algorithm is not 

guaranteed to get the best and optimal results. Nevertheless the results are encouraging.  

 

3.5 Conclusion  

     In this chapter a new approach for skew compensation in LC resonant CDNs is 

proposed. The method uses three different operating speeds of a flip-flop to achieve its 

goal. Three types of flip-flops:‎ “fast”,‎ “standard”,‎ and‎ “slow”‎ were simulated using 

devices with low, standard, and high threshold voltages, respectively, readily available as 

part of the technology. Distributing the flip-flops according to their delay requirements 

Benchmarks 
# 

Sinks 

MMM-DME New Modified DME Improvement 

Cost 

(µm) 

# wire 

elongation 

Cost 

(µm) 

# wire 

elongation 

Cost 

(%) 

# wire 

elongation (%) 

r1 267 1738292 10 1568484 7 9.7 30 

r2 598 3635828 38 3169582 18 12.8 52 

r3 862 4716032 71 4095191 24 13.1 66 

r4 1903 8906613 136 7995124 59 10.2 56 

r5 3101 13123125 324 11581785 123 11.7 62 
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reduces the effect of the clock skew on the outputs of sequentially adjacent flip-flops. 

The proposed approach adds a certain burden to the design of the CDN with respect to 

determining the appropriate placement of each type of flip-flop in the circuit. In addition, 

the dependency of the matched delay values on clock frequency should be taken into 

account. On the other hand, this approach also increases the skew bounds required by 

algorithms to balance the skew in CDNs leading to reduced design complexity and 

enhanced performance. Constructing five benchmark CDNs using a new modified DME 

algorithm tailored to accommodate the matched delay values introduced by the new 

technique has shown that the new approach would reduce total wire length by an average 

of 11.5% as well as achieve an average reduction of 53% in the number of wire 

elongations for the given example. 
2
 

     It should be noted that the adopted approach to manipulate the operating speed of the 

flip-flops in this chapter is not the only approach. Changing the driving capabilities of 

different transistors in the input and output stages of the flip-flop can also serve as a 

means of manipulating the flip-flop speed. In addition, different flip-flop types with 

different speed can also be used.  However, changing the flip-flop speed by manipulating 

the threshold voltages of the transistors fed by the clock signal has an advantage of 

enabling the use of regular flip-flop blocks of the same area and transistor size at 

different locations on the chip. Increasing the difference in the operating speeds of the 

three versions of the flip-flop by changing the driving capabilities can lead to maximizing 

the skew that can be absorbed by the flip-flops as well as increasing the feasibility of 

expanding this approach to square-wave based CDNs. 

________________________________________________ 
2 The DME implementation was done by Mr. Ali Mohammadi Farhangi 
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Chapter 4   

Dual-Edge Triggered Sense Amplifier 

Flip-Flop for LC Resonant Clock 

Distribution Networks 
 

In the previous chapter we took advantage of the long rise time of the sinusoidal clock 

signal in LC resonant CDNs and the availability of different threshold voltage levels in 

the technology to generate a new slack in the skew. In this chapter, we propose a Dual-

Edge Sense Amplifier Flip-Flop (DE-SAFF) for LC resonant CDNs. The clocking 

scheme used to enable dual-edge triggering in the proposed SAFF reduces short circuit 

power by allowing the precharging transistors to be switched on only for a portion of the 

clock period. The extracted circuit layout of the proposed DE-SAFF has been simulated 

in STMicroelectronics 90-nm technology with a sinusoidal clock signal at a frequency of 

500MHz. Simulation results show correct functionality of the flip-flop under process, 

voltage, and temperature (PVT) variations. Two low-power clocking techniques: the 

dual-edge triggering method and the emerging LC resonant (sinusoidal) clocking 

technique have been combined to enable further power reduction in the CDN. Modeling 

the resonant clock distribution system with the proposed flip-flop illustrates that dual-

edge triggering can achieve up to 58% reduction in the power consumption of LC 

resonant clock networks. 

 

4.1 Introduction 

     The Sense Amplifier Flip-Flop (SAFF) has been proposed in [5] as an energy recovery 
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flip-flop that operates with a single phase sinusoidal clock and consumes less power, 

delay, and area compared to the pass-gate energy recovery flip-flop introduced 

previously. The pass-gate energy recovery flip-flop requires four phase sinusoidal clocks 

which increases the complexity of clock signal generation as well as routing overhead. In 

addition, it suffers from long delay that uses a large portion of total cycle time thus 

significantly reducing the allowable time for combinational logic [5]. In [43], the 

Conditional Capturing Dual-edge Sense Amplifier Flip-Flop (CD-SAFF) and the 

Adaptive Clocking Dual-edge Sense Amplifier Flip-Flop (AC-SAFF) are presented. In 

these flip-flops, the PMOS transistors used to precharge nodes SET and RESET are 

always switched on since their gates are connected to ground causing short circuit power 

dissipation during evaluation.  

     The main contribution here is presenting a DE-SAFF for LC fully-resonant CDNs 

using a modified clocking scheme that can be extended to enable dual-edge clocking in 

any dynamic CMOS logic circuit. In this scheme, the PMOS transistors used for 

precharging nodes SET/RESET are only switched on for a portion of the clock cycle in 

order to reduce short circuit power.  

 

4.2 Dual-Edge Triggered Dynamic Logic 

     The clocking scheme used to enable dual-edge triggering in the Low-Swing Clock 

Double-Edge Flip-Flop (LSDFF) operating with a square-wave clock introduced in [44] 

was further modified to enable dual-edge triggering in CMOS dynamic logic circuits with 

precharge and evaluation phases. 
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(a) Precharging circuit              (b) Evaluation circuit 
 

Figure ‎4.1: Circuits used to enable precharging and evaluation at both clock transitions 
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Figure ‎4.2: Clocking scheme used to enable dual-edge triggering in CMOS dynamic logic 
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       The main circuits used in the pull-up and pull- down networks to enable precharge 

and evaluation at both edges of the clock are shown in Figure 4.1(a) and (b), respectively. 

The approach used to enable dual-edge triggering in CMOS dynamic logic circuits is 

presented in Figure 4.2. In this figure, an inverter chain is used to generate the clock 

signals CLK2, CLK3, CLK4, and CLK5.  

     In Figure 4.2, TP1/TP2 and TE2/TE1 intervals indicate the generated time intervals 

for precharging and evaluation, respectively, when the clock is low/high. As shown in 

Figure 4.1(a) and 4.2, the first precharge interval TP1 is defined and bounded by CLK5 

and CLK1. The falling edge of CLK5 determines the starting point of the precharging 

interval while the rising edge of CLK1 defines the end of precharging. These two signals 

are fed to the series PMOS transistors shown in Figure 4.1(a); namely MP1 and MP2. 

The second precharging interval TP2 is bounded by CLK4 and CLK2 as is shown in 

Figures 4.1(a) and 4.2. These signals are fed to the series transistors MP3 and MP4 

shown in Figure 4.1(a). The first evaluation interval TE1 is bounded by CLK1 and 

CLK4. The rising edge of CLK1 determines the start of evaluation while the falling edge 

of CLK4 defines its end. These two signals are fed to the series NMOS transistors shown 

in Figure 4.1(b), MN1 and MN2. The second evaluation interval TE2 is bounded by 

CLK2 and CLK5 which are fed to the series transistors MN3 and MN4 shown in Figure 

4.1(b). 

     Figure 4.3(a) and (b) present single- and dual-edge triggered dynamic logic circuits, 

respectively. In the single-edge triggered dynamic logic circuit shown in Figure 4.3(a), 

the output is precharged to VDD when the clock is low and either remains at VDD or is  
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                                                                                                      (b) Dual-edge 

Figure ‎4.3: Single and dual-edge triggered dynamic CMOS logic 

 

discharged to ground depending on the state of the inputs feeding the Pull-Down 

Network (PDN) during the evaluation phase. The same is true for the circuit in Figure 

4.3(b). However, in this circuit, two precharge and two evaluation intervals occur during 

one clock cycle. Though Figure 4.3 only shows dynamic logic with PDN, the proposed 

clocking scheme is equally applicable to CMOS dynamic logic circuits with Pull-Up-

Networks (PUNs). 

 

4.3 Dual-Edge Sense Amplifier Flip-Flop (DE-SAFF) 

     In this section, a brief description of the SAFF which is considered a representative 

high performance flip-flop is given [5], [37]. The schematic of the single-edge Sense  
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                    (a) Single-edge 
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Figure ‎4.4: Single-Edge Sense Amplifier Flip-Flop (SE-SAFF) 

 

Amplified Flip-Flip (SE-SAFF) is presented in Figure 4.4. This flip-flop has precharge 

and evaluation phases of operation. Evaluation occurs when the clock voltage exceeds the 

threshold voltage of the clock transistor (MN1). The difference between the differential 

data inputs (D and DB) is amplified during the evaluation phase and either SET or RESET 

is switched to low and is captured by the SET and RESET latch. The SET and RESET 

nodes are precharged high when the clock voltage falls below VDD-|Vtp|, where Vtp is the 

threshold voltage of the precharging transistors (MP1 and MP2). An overlap can occur 

between evaluation and precharge phases caused by the slow rising and falling transitions 

of the sinusoidal clock. This overlapping results in short-circuit current.  
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Figure ‎4.5: Dual-Edge Sense Amplifier Flip-Flop (DE-SAFF) 

 

     In order to reduce short-circuit current, we require that Vtn>VDD-|Vtp|. To minimize the 

right hand side, the magnitude of the threshold voltages of the precharging transistors 

should be increased [5]. In our implementation, we improve this design by using high 

threshold voltage devices (HVT) for MP1 and MP2 available in STMicroelectronics 90-

nm technology. One could also increase Vtn. However, this would decrease the speed of 
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operation of the flip-flop.  

     The modified dual-edge clocking scheme is applied to the SAFF with the same 

operating principles as that of dynamic CMOS logic circuits presented in Section 4.2. 

Figure 4.5 presents the dual-edge triggered version of the SAFF. The highlighted 

transistors in the figure are the extra transistors added to the single-edge version of the 

flip-flop to enable dual-edge triggering. Note that these transistors are the same as the 

transistors used in Figure 4.1 to enable dual-edge triggering in dynamic CMOS logic 

circuits. In order to reduce short circuit power, MP1 to MP8 were implemented with high 

threshold voltage devices.  

 

4.4 Timing Characterization of Dual-Edge Triggering 

     From Figure 4.2, the first evaluation interval TE1 is equal to the delay between the 

rising edge of CLK1 and the falling edge of CLK4 which equals the sum of the delays of 

the first three inverters in the inverter chain. The second precharging interval TP2 is 

equal to half the clock period minus the delay between the rising edge of CLK2 and 

CLK4 which equals the delay of the two inverters in the middle of the inverter chain. The 

second evaluation interval TE2 is equal to the delay between the falling edge of CLK5 

and the rising edge of CLK2 which equals the delay of the last three inverters in the 

inverter chain. Finally, the first precharging interval TP1 is equal to half the clock period 

minus the delay between the rising edge of CLK1 and CLK5 which is equal to the delay 

of the four inverters in the inverter chain.  Using these observations, the following 

equations for the generated precharge and evaluation time windows, TE and TP using the 

dual-edge triggering scheme are obtained: 
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                             (4.1) 

    
 

 
                      (4.2) 

                             (4.3) 

    
 

 
                                (4.4) 

where tinvA, tinvB, tinvC, and tinvD, are the delays of the first, second, third, and fourth 

inverters in the inverter chain, respectively, and T is the clock period.  

     As illustrated by these equations, for the same inverter delays, the two evaluation 

intervals TE1 and TE2 are equal to one another. However, the first precharging interval 

TP1 is shorter than the second precharging interval TP2 by two inverter delays. 

    Figure 4.6 presents the timing diagram of two sequentially adjacent flip-flops under 

dual-edge triggering.  The rising clock edge of CLK1 which defines the start of the first 

evaluation interval TE1 will be referred to as the positive clock edge and the rising edge 

of CLK2 which defines the start of the second evaluation interval TE2 will be referred to 

as the negative clock edge as illustrated in Figure 4.6. Neglecting clock uncertainties 

[45], the following relationships can be written: 

                        (4.5) 

                                   (4.6) 

                                   (4.7) 

where TCL is the combinational logic delay,         ,         , are the flip-flop clock to 

output delay and data to clock delay (Tsetup) at positive clock edge, respectively, and 

        ,          are the clock to output delay and data to clock delay at the negative 

clock edge, respectively. 
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Figure ‎4.6: Dual-edge triggering timing diagram 

 

 

 

4.5 Simulation Results 

     The sine-wave single- and dual-edge triggered flip-flops were designed using 

STMicroelectronics 90-nm process technology with a fan out of four (FO4) loading and a 

supply voltage of 1 V at a resonant clock frequency of 1 GHz and 500 MHz, respectively. 

At first, the transistor widths of the SE-SAFF were chosen to ensure correct operation at 

the specified frequency. Then the widths of the transistors in the DE-SAFF were chosen 

to be exactly the same as those in the single-edge flip-flop except in paths where two 

transistors are added in series. In this case, the transistor widths are doubled in order to 

maintain the same driving capability. The transistor sizes of the single- and dual-edge 

flip-flops are shown in Figures 4.4 and 4.5, respectively.  
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4.5.1 Dual-Edge Flip-Flop Response at Positive and Negative Clock Edges, 

Schematic vs. Post Layout Simulation 
 

     In this section we will illustrate the differences in the results for the TDQ response of 

the dual-edge triggered flip-flop at the positive and negative clock edges obtained from 

schematic and post-layout simulations. 

     The resonant sinusoidal clock signal becomes a square-wave clock when inverted 

using an inverter. The effect of the long rise time of the positive edge of the sinusoidal 

clock signal CLK1 which defines the start of the first evaluation interval TE1 compared 

to the effect of the short rise time of the inverted square signal CLK2 which defines the 

start of the second evaluation interval TE2 on the TDQ delay versus TDCLK delay (Tsetup) is 

investigated. As was illustrated in Chapter 2, the rise time of the sinusoidal clock signal 

CLK1 using equation (2.6) is 580 ps and the rise time of the square clock signal CLK2 

generated from the inverter chain in schematic simulation is 175 ps. This means that for 

this design, there is 405 ps time difference between the rise time of the positive and 

negative clock edges. The TDQ delay versus Tsetup is presented in Figure 4.7. As shown in 

Figure 4.7, the flip-flop experiences longer TDQ delay in the positive edge of the clock 

compared to the negative edge. This is mainly related to the sharp negative clock edge 

which has a rise time that is 70% shorter compared to the positive clock edge. To 

investigate this point further, the sinusoidal clock signal CLK1 was replaced with a 

square clock that has a rise time equal to that of CLK2. The response of the flip-flop in 

this case was symmetrical at positive and negative edges of the clock. When performing 

the same simulation on the extracted circuit, we found that the rise time of the square 
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Figure ‎4.7: TDQ delay vs. Tsetup (TDCLK), schematic simulation 

 

 

Figure ‎4.8: TDQ delay vs. Tsetup_time (TDCLK), post-layout simulation 
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Table ‎4.1 

Timing characteristics of the DE-SAFF – post layout simulation 

 

 Tsetup (ps)
*
 TDQ (ps) Thold (ps) 

+ve edge 10 245 60 

-ve edge 10 210 70 

                               * The setup time is TDCLK that results in minimum TDQ [5].    

 

clock signal CLK2 has risen to 300 ps with approximately 71% increase compared to its 

rise time obtained from schematic. This is due to the extra parasitic capacitances and 

resistances obtained from layout extraction. The TDQ delay versus Tsetup for post layout 

simulation is presented in Figure 4.8 which illustrates that for this design, dual-edge 

triggering in LC resonant CDN would result in a symmetrical behavior of the flip-flop at 

both negative and positive clock edges. Table 4.1 presents a summary of the timing 

characteristics of the proposed DE-SAFF. 

 
 

4.5.2 Effects of Process, Supply Voltage, and Temperature (PVT) Variations on the 

Generated Precharge and Evaluation Intervals 

 

     From here on, all simulation results are conducted on extracted circuit layout. For the 

DE-SAFF, the sizes of the transistors in the four inverters in the chain are Wp=Wn=2Wmin 

(Wmin=0.12 µm). In order to increase the width of the evaluation intervals, TE1 and TE2, 

a delay was added between the second and third inverters of the inverter chain. This delay 

is the delay of two minimum sized inverters, i.e., Wp=Wn=Wmin=0.12 µm. The generated 

precharge and evaluation intervals are equal to the following: TP1=554 ps, TE1=276 ps, 

TP2=946 ps, and TE2=225 ps.  Note that the evaluation and precharging intervals were 
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measured at the VDD/2 voltage level, i.e., at 0.5 V and transistor sizes in the flip-flop as 

well as the inverter chain were chosen to ensure correct precharging and evaluation.  

 

4.5.2.1 Corner Analysis 

Table ‎4.2 

DE-SAFF precharge and evaluation intervals obtained for different corners 

 

Corners 
Precharge and Evaluation Intervals (ps) 

TP1 TE1 TP2 TE2 

TT 554 276 946 225 

FF 655 179 998 168 

FS 586 185 1055 174 

SF 648 248 898 203 

SS 407 390 876 331 

 

     The extracted circuit was simulated for five corners; namely: Typical-Typical (TT), 

Fast-Fast (FF), Fast-Slow (FS), Slow-Fast (SF), and Slow-Slow (SS) with a sinusoidal 

clock signal of 500 MHz. The precharge and evaluation intervals were obtained for each 

corner as shown in Table 4.2. The table illustrates that in the FF corner, minimum 

evaluation intervals (TE1, TE2) occur since the inverters in the inverter chain experience 

minimum delays. The opposite is true for the SS corner where the inverters experience 

maximum delays thus resulting in minimum precharging intervals (TP1, TP2). The flip-

flop was simulated under each corner to make sure that minimum precharge intervals are  
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Table ‎4.3 

Combinational logic delay obtained for each corner at positive and negative clock edges 

 

Corners 
Combinational Logic Delay (ps) 

TCL (+ve) TCL (-ve) 

TT 977 534 

FF 932 713 

FS 995 550 

SF 901 641 

SS 1021 528 

 

long enough to guarantee correct functionality and that minimum evaluation intervals are 

long enough to ensure correct evaluation of the output. 

     Since variations in the precharge and evaluation intervals can affect the data path 

shown in Figure 4.6, Equations 4.6 and 4.7 were used to estimate the minimum 

combinational logic delay TCL at both positive and negative edges of the clock for each 

corner with the TDCLK+VE,-VE and TDQ+VE,-VE previously introduced in Table 4.1. Note that 

TCLKQ=TDQ-Tsetup. Table 4.3 presents the results obtained for the combinational logic 

delay at the positive and negative clock edges obtained for this design. As shown in Table 

4.3, the combinational logic delay obtained for each corner is greater than 500 ps. In 

order to ensure that the timing constraints of equations 4.6 and 4.7 are not violated under 

process variation and for the chosen values of Tsetup and TDQ, the maximum combinational 

logic delay TCL for this design should be restricted to less than or equal to approximately 

500 ps.  
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4.5.2.2 Supply Voltage  

Table ‎4.4 

Supply voltage effect on precharging and evaluation intervals 

 

Percentage change in supply 

voltage 

TP1 

(ps) 

TE1 

(ps) 

TP2 

(ps) 

TE2 

(ps) 

VDD+5% 586 274 910 230 

VDD-5% 496 283 978 243 

 

     Table 4.4 illustrates the effect of a static increase or decrease in the power supply on 

the generated precharge and evaluation intervals. It shows that as the supply voltage 

increases, the delay of the inverters in the inverter chain decreases causing TE1 and TE2 

to decrease and TP1 to increase. However, we notice that TP2 increases as the supply 

voltage decrease.  

     In order to explain why TP2 increases with decreased supply voltage, the generated 

clock signals of the inverter chain were plotted for a supply voltage of 1.2 V and 0.85 V 

as shown in Figure 4.9. These values for the supply voltage where chosen to better 

illustrate the behavior of the generated clock signals. The falling edge of CLK4 

determines the start of TP2 and the rising edge of CLK2 defines its end. As shown in the 

figure, lowering the supply voltage has a greater impact on the rising edge of the 

generated signal compared to the falling edge. This is due to the fact that the inverters in 

the chain are not matched; instead Wp was chosen to be equal to Wn in order to reduce the 

area of the inverter. Since the PMOS transistor is slower than the NMOS transistor, a 

longer delay is observed between the rising edges of CLK2 and CLK4 for different  



78 
 

 

Figure ‎4.9: Effect of supply voltage variation on TP2 

 

values of supply voltage while the falling edges of these signals coincide and experience 

virtually no delay. Hence, TP2 starts at approximately the same time with both values of 

the supply voltage (falling edge of CLK4) and ends with a delay in the lower supply 

voltage case (rising edge of CLK2), hence causing the increase in TP2 when lowering the 

supply voltage. 

 

4.5.2.3 Temperature Variation 

     The spatial temperature gradient used in [39] at which the temperature changes from 

25 to 125°C in steps of 25°C was adopted here to investigate the temperature effect on 

the generated precharging and evaluation intervals as shown in Figure 4.10. As illustrated 

in the figure, the precharging and evaluation intervals are independent of temperature  
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Figure ‎4.10: Temperature variation effect on precharging and evaluation intervals 

 

variation where less than 40ps difference in all the precharging and evaluation intervals 

was observed as the temperature increase from 25°C to 125°C. 

 

4.5.2.4 Extreme Case 

     The proposed DE-SAFF performance was also simulated under worst case scenario 

with a chosen high temperature of 125°C, a varying supply voltage of ±10%, and the FF, 

and SS corners. Simulation results show that the DE-SAFF functions correctly at this 

temperature with an increase in the supply voltage by 10% for the two corners. However, 

when the supply voltage decreases by 10%, only the FF corner functions correctly while 

the SS corner fail. This is because lowering VDD decreases the voltage swing of the 

generated clock signals. Hence the gate voltage of the NMOS transistors being fed by 
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CLK2, CLK4, and CLK5 is reduced causing the current flowing in these transistors to 

decrease thus the SET/RESET nodes cannot be pulled fully to ground. In addition, the 

precharge intervals are lowest at this corner. In order to ensure correct functionality of the 

DE-SAFF with the SS corner at 10% lower supply voltage, the gate width of the 

precharging PMOS transistors needs to be increased by 2.5Wmin and for the NMOS 

transistors (MN5, 6, 7, and 8 in Figure 4.5) by 0.5Wmin. 

     More accurate variability modeling can be achieved by accurately considering 

correlations through statistical treatment of variability. In fact, corner analysis increases 

design difficulty and results in overly pessimistic simulations since all parameters are 

assumed to be independent of each other [46].  

 

4.5.3 Sharing the Inverter Chain  

     The SAFF chosen to illustrate the modified dual-edge triggering scheme has two 

precharging paths, one for the SET and the other is for the RESET nodes. This leads to 

the addition of six extra transistors in the PUN instead of only three as is the case for the 

PDN (Figure 4.5), thus increasing DE-SAFF area compared to SE-SAFF. The same is 

true for power. Inverter chain sharing between several dual-edge triggered flip-flops has 

been proposed in the literature as a means of reducing area and power overhead [47], 

[48]. We have investigated the pros and cons of inverter chain sharing where the inverter 

chain was shared between four and eight DE-SAFFs separated by 50µm distance 

representing possible combinational logic between two sequentially adjacent flip-flops. 

Simulation results show that standard deviation of the precharge and evaluation intervals 

under process variation decreases with increased number of flip-flops sharing the inverter 
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chain. This is due to the larger transistor sizes used in the chain which reduces the effects 

of process variations [49], [50]. Sharing the inverter chain also reduces area overhead 

from double the area in the case of one DE-SAFF to 70% and 66% in the cases of sharing 

the inverter chain between four and eight flip-flops, respectively. However, sharing the 

inverter chain between four and eight flip-flops causes an increase in power by 44% and 

48% compared to the DE-SAFF with no sharing. The reason for this increase in power is 

the additional three wires carrying the CLK2, CLK4, and CLK5 signals to the remaining 

flip-flops in the array. The inverter chain used in sharing consisted of only four inverters 

with Wp=Wn=14Wmin, and Wp=Wn=30Wmin, in the four and eight flip-flops array cases, 

respectively.  

 

4.5.4 Comparing the DE-SAFF to Other Flip-Flops 

   

 Table ‎4.5  

Timing characteristics of the DE-SDFF, DE-DCCFF, and DE-SAFF at a clock frequency 

of 250MHz 

  Tsetup (ps) TDQ (ps) T_hold (ps) 

DE-SDFF -50 182 190 

DE-DCCFF 75 188 275 

Proposed DE-SAFF 225 351 205 

  

     The proposed DE-SAFF was compared to the Dual-Edge Static Differential Flip-Flop 

(DE-SDFF) and the Differential Conditional Capturing Flip-Flop (DE-DCCFF) presented 

in [5] operating with a sinusoidal clock signal. The flip-flops were simulated at a clock 
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Table ‎4.6 

Timing characteristics of the CD-SAFF, AC-SAFF, and DE-SAFF at a clock frequency 

of 500MHz 

 Tsetup (ps) TDQ (ps) T_hold (ps) 

CD-SAFF -20 166 260 

AC-SAFF 0 166 360 

Proposed DE-SAFF 10 210 70 

 

frequency of 250 MHz with throughput of 500 MHz at 50% data switching activity. The 

total transistor widths of the proposed DE-SAFF are 41% and 42% less than that of the 

DE-SDFF and DE-DCCFF flip-flops, respectively. In addition, the DE-SAFF consumes 

less power by 32% and 29% compared to DE-SDFF and DE-DCCFF. Table 4.5 presents 

a summary of the timing characteristics of the flip-flops.    

     In addition, the proposed DE-SAFF was also compared to two square-wave driven 

dual-edge triggered flip-flops with similar structure; namely: the Conditional Capturing 

Dual-edge Sense Amplifier flip-flop (CD-SAFF) and the Adaptive Clocking Dual-edge 

Sense Amplifier flip-flop (AC-SAFF) presented in [43] at a clock frequency of 500 MHz 

and throughput of 1 GHz. The proposed DE-SAFF flip-flop has total transistor widths 

that are equal to that of the CD-SAFF and 5% less than the total transistor widths of the 

CD-SAFF. It also consumes 1% and 5% less power compared to the CD-SAFF and AC-

SAFF, respectively. The timing characteristics of the flip-flops are given in Table 4.6. 

  

  



83 
 

4.5.5 Potential Power Savings Achievable Through Dual-Edge Clocking 

 

 

Figure ‎4.11: Dual-edge triggered flip-flop output 

 

     Several factors affect the power savings achieved through dual-edge clocking. Dual-

edge clocking power savings is a complex function of the type of the CDN, resistances 

and capacitances of the CDN, number of flip-flops as well as the design of the flip-flop. It  

is not possible to reach an exact estimation of power savings achieved through dual-edge 

triggering without the knowledge of the entire system, especially since modeling of the 

clock system is difficult as the number of flip-flops and the size of the CDN is dependent 

on each system [51]. 

     All flip-flop power measurements were conducted for the pseudorandom sequence 

with equal probability of all transitions comprising worst and best cases presented in [37], 

16 clock cycles for the single-edge and 8 clock cycles (16 positive and negative clock 
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transitions) for the dual-edge triggered flip-flop. Figure 4.11 illustrates the dual-edge 

triggered flip-flop output for the data sequence for 8 clock cycles. The 16 evaluation 

intervals at positive and negative clock edges are also illustrated in the figure. The power 

consumption of the dual-edge triggered flip-flop is 37 µW with 106% increase in power 

compared to the single-edge triggered flip-flop. 

     In order to estimate the percentage reduction in power achieved through dual-edge 

clocking, the power consumption of the resonant generator (presented in Chapter 6) and 

the clock tree is divided into two parts. The first part is the power of the progressively 

sized inverters driving the gates of transistors MP and MN and is given by: 

                   
  

 

   
          

  
 

   
      (4.8) 

where CgMP and CgMN are the gate capacitances of transistors MP and MN, respectively, f 

is the frequency of operation, VDD is the supply voltage, and n is the stage gain.  

     The second part is the power consumed in the resonant clock network being driven by 

transistors MP and MN which is derived as a first order estimation: 

          
    

 
                   

 
      (4.9) 

where Rclk is the resistance of the clock wires, Cclk is the loading capacitance of the clock 

tree, CFF is the loading capacitance of the flip-flop, N is the number of flip-flops loading 

the‎clock‎tree,‎and‎α‎is‎the‎factor‎by‎which‎the‎loading‎capacitance‎of‎the‎flip-flops at the 

clock leaves is reflected to the driver side.  

     Noting that the DE-SAFF consumes twice as much power compared to the SE-SAFF 

with approximately the same loading capacitance, the anticipated percentage reduction in 

power for the entire system through dual-edge clocking can be written as: 
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Percentage Reduction in Power = 

 

 
 

 
               

  
 

   
  

 

 
                       

 
      

               
  

 

   
  

 

 
                       

 
      

        (4.10) 

where CgM P and CgMN are the gate capacitances of transistors MP and MN, Rclk is the 

resistance of the clock wires, Cclk is the loading capacitance of the clock tree, CFF is the 

loading capacitance of the flip-flop,‎ and‎ α‎ is‎ the‎ factor‎ by‎ which‎ flip-flop loading 

capacitance is reflected to the driver side, f is the frequency of operation in the single 

edge case, VDD is the supply voltage, n is the stage gain, and PSE is the power of the SE-

SAFF. 

     The number of flip-flops and the size of the CDN are dependent on each system [5], 

[29], [51]. Figure 4.12 is a three dimensional plot of the percentage reduction in power 

achieved through dual-edge clocking as a function of the clock tree capacitance (Cclk) and 

the number of flip-flops (N). As shown in the figure, when the clock capacitance is the 

dominating factor, dual-edge clocking can achieve up to 58% reduction in power. It 

should be noted that in plotting Figure 4.12, the size of transistors MP and MN of the 

clock driver (refer to Chapter 6 for more details) was kept constant as the capacitance of 

the clock tree increases. Simulation results have also shown that dual-edge triggering 

allows up to 6× reduction in the width of transistors MP and MN in the clock generator. 

This corresponds to a reduction in the clock generator area of approximately 83%. 

Though Dual-edge triggering in resonant CDNs would require an inductor that is 4× 

bigger than the inductor in the single-edge case, the increase in area due to the larger 

inductor was neglected since active circuits can be used in the area under the inductor. 

 



86 
 

 

Figure ‎4.12: Dual-edge clocking percentage reduction in power 

 

 

4.6 Conclusion 

     In this chapter we have applied a modified clocking scheme to enable dual-edge 

clocking in the SAFF with a resonant clock. This scheme reduces short circuit power by 

allowing the precharging transistors to be switched on only for a portion of the clock 

period. The precharging and evaluation intervals generated using this scheme have been 

characterized. The transistor sizes in the inverter chain must be carefully chosen in order 

to ensure that minimum precharging and evaluation intervals are long enough to 

guarantee correct evaluation of the output. In addition, the effects of variations in process, 

supply voltage, and temperature (PVT) on the precharging and evaluation intervals and 
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consequently the operation of the flip-flop were investigated. Sharing the inverter chain 

between several flip-flops reduces area overhead as well as susceptibility to variations but 

causes an increase in power. Modeling the entire system of the CDN with the proposed 

flip-flop illustrates that dual-edge resonant clocking has the potential of achieving up to 

58% reduction in power when the clock capacitance is the dominating factor. The 

proposed flip-flop has lower total transistor width and power consumption compared to 

other dual-edge triggered flip-flops presented in the literature.  
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Chapter 5   

Application of Low-Swing Clocking to LC 

Resonant Clock Distribution Networks 

 
In the previous chapter, reducing clock frequency by half through dual-edge triggering 

was used to save power. In this chapter we reduce power through a reduction in clock 

swing by introducing a new flip-flop for use in a low-swing LC resonant clocking 

scheme. The proposed Low-Swing Differential Conditional Capturing Flip-Flop (LS-

DCCFF) operates with a low-swing sinusoidal clock through the utilization of reduced 

swing inverters at the clock port. The functionality of the proposed flip-flop was verified 

at extreme corners through simulations with parasitics extracted from layout. The LS-

DCCFF enables 6.5% reduction in power compared to the full-swing flip-flop with 19% 

area overhead. In addition, a frequency dependent delay associated with driving pulsed 

flip-flops with a low-swing sinusoidal clock has been characterized. The LS-DCCFF has 

870 ps longer data to output delay compared to the full-swing flip-flop at the same setup 

time for a 100 MHz sinusoidal clock. The functionality of the proposed flip-flop was 

tested and verified by using the LS-DCCFF in a dual-mode MAC unit fabricated in 

TSMC 90-nm CMOS technology. Low-swing resonant clocking achieved around 5.8% 

reduction in total power with 5.7% area overhead for the MAC.  Modeling the clock 

network with the proposed flip-flop illustrates that low-swing clocking can achieve up to 

58% reduction in the power consumption of the resonant clock. 
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5.1 Introduction 

     C. Kim et al. [44] demonstrated that a low-swing square-wave clock double-edge 

triggered flip-flop has enabled 78% power savings in the CDN.   Low-swing clocking 

would normally require two voltage levels, VDD and VDD-Low. These voltage levels can be 

generated using one of two schemes: (i) dual-supply voltages, and (ii) regular power 

supply. The first scheme adds circuit and extra area complexity to the overall chip design 

and layout. However, it leads to a reduction in the number of clock network transistors 

which improves power savings [52]. The second scheme uses circuit methods to achieve 

low-swing. However, the design of low-swing buffers becomes challenging in the 

absence of a second power supply [52]. 

     We have followed a similar approach to the one proposed in [7] in which the clock 

buffers are removed to allow the global and local clock energy to resonate between the 

inductor and entire clock capacitance enabling maximum power savings. In addition, 

removing the clock buffers simplifies LC low-swing clocking since only reduced swing 

buffers are used at the flip-flop gate and not in intermediate levels within the clock tree 

[53].   

      

5.2 Low-Swing LC Resonant Clocking 

5.2.1 Low-Swing Differential Conditional Capturing Flip-Flop (LS-DCCFF)  

     Figure 5.1 shows the proposed LS-DCCFF. Conditional capturing is used to minimize 

flip-flop power at low data switching activities by eliminating redundant internal 

transitions [28]. As shown in Figure 5.1, reduced swing inverters similar to the one 

presented in [53] are used at the node fed by the low-swing sinusoidal clock signal. This 

is done to reduce short circuit power by minimizing the interval at which both the PMOS  
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Figure ‎5.1: Low-Swing Differential Conditional Capturing Flip-Flop (LS-DCCFF) 

 

and NMOS of the inverter turn on simultaneously. The load PMOS transistor in the 

reduced swing inverters is always in saturation since        . It lowers the voltage at 

the source of the second PMOS in each inverter to approximately           thus 

turning it off when the low-swing sinusoidal clock signal reaches its peak voltage. The 

peak voltage for the low-swing clock was chosen to be equal to 0.65    since the 

threshold voltage of the PMOS transistor is approximately -0.34 V.  



91 
 

     From here on and for simplicity the term LS, FS refers to low-swing and full-swing, 

respectively. 

 

 

5.2.2 Delay Associated with Low-swing LC Resonant Clocking 

Vpeak=VDD

Vpeak=0.65VDD

Vpull_down

V(t)

T(s)T1 T2

Full-swing clock

Low-swing clock

      

Figure ‎5.2: Delay between the low- and full-swing resonant clock signals to reach 

Vpull_down 

 

     Vpull_down presented in Figure 5.2 is the voltage level at which transistor MN1 with the 

resonant clock signal applied to its gate (Figure 5.1) is able to pull down node 

SET/RESET to the low voltage level required to trigger the NAND latch.  Due to the time 

difference between the low- and full-swing sinusoidal clock signals to reach Vpull_down, the 

low-swing flip-flop experiences longer data to output delay (TDQ) compared to the full-

swing flip-flop for the same setup time (TDCLK).     
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     In the following, an analysis is conducted to estimate the delay in reaching Vpull_down 

for the low-swing resonant clock signal. Let the full- and low-swing clock signals be 

given by the following equations: 

               
 

 
            

 

 
  

 

 
        (5.1) 

              
    

 
            

 

 
  

    

 
          (5.2) 

where   is the clock frequency,     and 0.65    is the peak voltage for the full- and 

low-swing sinusoidal clock signals, respectively.  

     Depending on the input state, either node SET or RESET is pulled down to trigger the 

NAND latch when the clock signal reaches Vpull_down. Substituting this value in equation 

(5.1) and referring to Figure 5.2: 

           
 

 
             

 

 
  

 

 
          (5.3) 

from which: 

   
 

   
       

           

   
    

 

 
        (5.4) 

Using the same approach for the low-swing clock signal: 

   
 

   
       

           

       
    

 

 
        (5.5) 

      The time difference between the two clock signals to reach Vpull_down which defines 

the TDQ delay between the low- and full-swing flip-flops is given by: 

                
 

   
       

           

       
          

           

   
      (5.6) 
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     Equation (5.6) gives the delay between the full- and low-swing flip-flops. It illustrates 

that this delay is inversely proportional to clock frequency, i.e., at higher frequencies, the 

delay decreases.  

 

5.2.3 Power 

     Following the approach proposed in Chapters 4, the power dissipation of the resonant 

clock network is given by the following equation: 

 

                
    

 
                     

       (5.7) 

 

where Rclk, Cclk are the clock capacitance and resistance as seen by the driver,   and       

are the frequency and peak voltage of the generated clock signal,     is the loading 

capacitance of the flip-flop,   is the number of flip-flops, and    is the factor by which 

the loading capacitance of the flip-flop connected at clock leaves is reflected to the driver 

side. Equation (5.7) illustrates that generating a low-swing clock signal with       = 

0.65    results in around 58% power reduction in the clock network. 

 

 

5.3 Test Chip 

     To demonstrate the correct operation of the proposed LS-DCCFF and to highlight 

potential power savings enabled through low-swing clocking, a test chip with a MAC unit 

designed using the proposed flip-flop under low-swing sinusoidal clocking was fabricated 

in TSMC 90-nm CMOS technology.  
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Figure ‎5.3: Modification to enable full- and low-swing flip-flop clocking 

 

      The MAC unit in the test chip consists of a 16×16-bit multiplier, a 32-bit serial-in 

parallel-out shift register to load the multiplier and multiplicand, 32-bit full-adder array, 

two 32-bit parallel-in parallel-out registers at the adders input and output, and a 33-bit 

parallel-in serial-out shift register at the output stage. Since the multiplier itself was not 

pipelined, a clock frequency of 100 MHz was chosen for the test chip.  

     Due to the large inductor needed for clock generation and the limited area available, 

the clock generator was not implemented on-chip. The sinusoidal clock signal is fed by 

an external source through an analog pad. Furthermore, the DCCFF was modified to 

enable dual-mode of operation for the MAC unit under full- and low-swing clocking 

without significant area overhead.  As illustrated in Figure 5.3, the LS-DCCFF presented  
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Figure ‎5.4: Simplified floorplan of the test chip 
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Figure ‎5.5: Die photopgraph of the test chip 
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in Figure 5.1 was modified at node X to allow the operation under full- and low-swing 

clocking. When signal FULL_SWING is high, full-swing clocking is enabled and the 

inverted clock output of the normal inverters CLKD_FS is feeding transistor MN1. 

Whereas Low-swing clocking is enabled when signal FULL_SWING is low and the 

output of the reduced voltage swing inverters CLKD_LS  feeds transistor MN1. 

    A simplified floorplan and a die photo of our chip are shown in Figures 5.4 and 5.5, 

respectively. The chip covers an area of 1mm×1mm. Two separate instances of the full- 

and low-swing DCCFF were implemented at the lower portion of the chip for testing. 

Due to the large capacitance associated with the pads, all outputs were connected to the 

pads through a buffer stage consisting of four progressively sized inverters (Figure 5.4). 

 

5.4  Test Chip Extracted Simulation and Measurements 

     Figure 5.6 demonstrates the correct operation of the LS-DCCFF at a supply voltage of 

1 V with an operating frequency of 100 MHz and a low-swing sinusoidal clock. This 

figure shows the low-swing sinusoidal clock signal (channel 1, first signal from top), the 

inverted clock signal (channel 2, second from top), the input D (channel 3, third from 

top), and the output Q (channel 4).  

     HSPICE post-layout-simulation on extracted circuits verifies correct functionality of 

both flip-flops under best conditions of Fast-Fast (FF) corner at low temperature of -25° 

C, normal conditions of Typical-Typical (TT) corner at room temperature, and worst 

conditions of Slow-Slow (SS) corner at high temperature of 125° C. An average reduction 
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Figure ‎5.6: Measurement waveforms of the LS-DCCFF at 100MHz 

in the TDQ delay of 130 ps was observed in the FF corner whereas the SS corner resulted 

in 76 ps increase in delay compared to the TT corner. Furthermore, correct functionality 

of both flip-flops under low- and full-swing sinusoidal clocking with ±10% variation in 

the supply voltage was verified through measurements.   

     Post-layout-simulation results presented in Figure 5.7 illustrate that for the same setup 

time, the difference between the TDQ delays for the full- and low-swing flip-flops is 

approximately 870 ps. This confirms the accuracy of equation (5.6) with an error of 4% 

compared to simulation results for Vpull_down= 500 mV.  The measuremt results presented 

in the figure (limited by our experimental setup)
3
 are within close proximity to post-

layout-simulation. The extra delay associated with measurements can be related to the 

extra capacitance of the pads, package, wires, and test fixture.The response presented in 

Figure 5.7 was obtained at the  
 

 
    voltage level for the data D and output Q   

________________________________________________ 
3The function generator used for testing is AFG3101 which can generate sinusoidal and square signals with a maximum 

frequency of 100 MHz and 50 MHz, respectively. Since the generator has only one channel, the Reference Out of one 

generator was connected to the Reference In of the second generator for synchronization.  
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(a) FS-DCCFF  

 

 
 

(b) LS-DCCFF  

 
 

Figure ‎5.7: TDQ delay versus setup time for the full- and low-swing flip-flops 
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waveforms and at half of the clock peak for the sinusoidal clock signals, i.e., at 0.5 V and 

0.325 V for the full- and low-swing clock signals, respectively.   

    The behavior of the current flowing in node X, i.e., I_FS for the full-swing flip-flop 

and I_LS for the low-swing flip-flop in Figure 5.1 as well as the voltage level of nodes 

SET, Q, and QB for the two flip-flops at the same setup time of 950 ps is illustrated in 

Figure 5.8. As shown in the figure, the maximum current flowing from node X to ground 

in the full- and low-swing flip-flops occurs when the full swing clock CLK_FS and low-

swing clock signal CLK_LS at the gate of transistor MN1 reaches Vpull_down= 500 mV.  At 

this point, node SET is pulled down and the output Q of the NAND latch is pulled up to 

VDD. When QB is grounded, transistor MN3 turns off, thus cutting the flow of the current. 

     As illustrated in the Figure 5.7, the clock to output delay TDQ becomes independent 

from the TDCLK when data is applied on or after the point where the clock signal reaches 

or exceeds Vpull_down  since at this point transistors MN1/MN2 are  completely switched on 

and are able to directly sink node SET or RESET. This occurs in the full-swing case for a 

setup time less than or equal to 0 ps, i.e., when input D is applied at or after point T1 in 

equation 5.4. In the low-swing case, TDQ becomes independent from TDCLK when input D 

is applied at or after point T2 in equation 5.5, i.e., at a setup time less than or equal to -905 

ps which is the time difference between the  
    

 
    and Vpull_down for the low-swing 

sinusoidal clock signal. 

     Figure 5.7 also shows that the low-swing flip-flop can operate at a negative setup time 

of approximately -2000 ps whereas the full-swing flip-flop can only operate at a negative 

setup time of approximately -950 ps. This is because the reduced swing inverters in the 

low-swing flip-flop experience more delay than the normal inverters used in the full-  
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Figure ‎5.8: TDQ for the full- and low-swing flip-flops at the same setup time – extracted 

simulation 

 

 

swing flip-flop. Figure 5.9 presents the behavior of the full- and low- swing flip-flops 

with a negative setup time of -1,100 ps. As shown in the figure, at this setup time, the 

inverted clock signal in the full-swing flip-flop CLKD_FS has already reached ground 

thus turning off transistor MN2 and cutting the flow of current I_FS. Node SET is not 

pulled down and the full-swing flip-flop does not capture data. However, due to the long 

delay of the reduced swing inverters, the inverted low- swing clock signal CLKD_LS is 

still at VDD enabling the current I_LS to flow and pull down node SET to latch the output 

Q to VDD.    
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Figure ‎5.9: TDQ for the full- and low-swing flip-flops at a negative setup time of -1,100ps 

– extracted simulation 

 

     Table 5.1 gives area and power overhead of low-swing compared to full-swing 

resonant clocking. The area was estimated on gate level. As shown in the table, the LS-

DCCFF experiences 6.5% reduction in power compared to the full-swing flip-flop with 

area overhead of 19%. Static power consumption in the full-and low-swing flip-flops was 

assumed to be equal since the flip-flops have exactly the same transistor size except for 

the load PMOS in the reduced swing inverters. The table also illustrates that the 

application of low-swing clocking with the LS-DCCFFs causes 5.7% increase in total 

area and 5.8% reduction in total power consumption. 
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Table ‎5.1  

Area and power comparison between full- and low-swing clocking 

 

 
  LS-DCCFF MAC unit

* 

Area (µm
2
) 43 16,669 

% Increase in area compared to 

full-swing 
19 5.7 

Power (µW) 5.59 1,506 

% Decrease in power compared 

to full-swing 
6.5 5.8 

           * Including clock generator power 

 

      

    The clock distribution network capacitance was estimated by using Cadence's Calibre 

PEX extractor and then simulating the extracted netlist in Cadence's HSPICE simulator. 

Simulation results on the extracted network show that the clock net has a total 

capacitance of 8.48 pF.  The inductor needed to resonate the clock network at 100 MHz is 

approximately 0.32 µH. Such large inductor would normally be connected off-chip. 

Using the approach proposed in Chapter 6 to estimate required driver strength illustrates 

that to resonate the clock tree at 100 MHz with full-swing sinusoidal clock, the width of 

the PMOS transistor in the driver would be approximately 3.97 µm. To generate the low-

swing clock signal with a reduced peak voltage of 0.65VDD, the size of the transistor in 

the clock generator can be reduced by 66%. The scheme proposed in [54] to control the 

amplitude of the clock signal can be used to insure the integrity of the generated clock 

with the desired peak voltage. 
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Figure ‎5.10: Percentage reduction in power for the resonant clock network achievable 

through low-swing clocking 

 

     The percentage reduction in power achievable through low-swing clocking reported in 

Table I is based on the CDN and number of flip-flops for the MAC unit. However, the 

number of flip-flops and the size of the CDN and hence its capacitance is dependent on 

each system.  Figure 5.10 is a three dimensional plot of the percentage reduction in power 

of the CDN including the flip-flops achieved through low-swing clocking as a function of 

the clock capacitance and the number of flip-flops. As shown in the figure, low-swing 

clocking enables around 7% reduction in the power in the clock network for the MAC 

unit with 8.48 pF capacitance and 129 flip-flops. The figure also illustrates that when the 

clock capacitance is the dominating factor, low-swing clocking can achieve up to 58% 

reduction in clock power. 
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5.5 Conclusion 

     We have proposed a low-swing sinusoidally clocked flip-flop to obtain further power 

reduction in LC resonant CDNs. Low-swing resonant clocking in pulsed flip-flops results 

in a delayed flip-flop response. Theoretical analysis has been performed and the delay 

associated with low-swing sinusoidal clocking was characterized.  

     The functionality of the proposed flip-flop has been investigated through HSPICE 

simulation on extracted circuit layout at extreme corners and tested through on-chip 

measurements.  A MAC unit designed using the proposed flip-flop was tested on-chip 

where low-swing resonant clocking achieves around 5.8% reduction in total power with 

5.7% area overhead.  
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Chapter 6   

Estimating Required Driver Strength in 

the LC Resonant Clock Generator 
 

A detailed analytical approach is proposed to determine the required driver strength in the 

LC resonant clock generator. The proposed approach reduces area and power overhead 

by eliminating the need to have switches with programmable widths and reference pulses 

with programmable duty cycles. Simulation results show accurate estimation of the 

required driver strength at short pulse widths. However, as the pulse width increases, 

accuracy is reduced due to overestimation of the transistor driving capability. 

 

6.1 Introduction 

      The resonant clock generators presented in [55], [56] use different combinations of 

programmable switches and programmable duty cycles of the reference pulses to generate a 

resonant clock signal with minimum power dissipation (Figures 6.1 and 6.2). The approach 

used to determine the optimum combination of required driving strength and duty cycle 

leads to overhead in complexity and area needed to implement the programming circuitry.  

     While other authors have presented different LC resonant clock generators with 

programmable driver and reference pulses, none of them have addressed the need to 

estimate the required driver strength at an early stage of the design. In this chapter, an  
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Figure ‎6.1: Relative power savings as a function of driver transistor width (w) and 

reference signal pulse (d) [55] 

 

 
 

Figure ‎6.2: Clock generator with programmable delay [56] 
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analytical approach is proposed to estimate the required driving capability of the driver in 

the LC resonant clock generator. 

   

6.2 Estimating Required Driver Strength 

     The LC resonant clock generator used in [5] and shown in Figure 6.3 is adopted here. 

The VDD/2 voltage source was replaced by a decoupling capacitance (C_decap) following 

the approach used in [22]. The clock tree is modeled as an ideal RC network where Cclk, 

R_clk are the clock capacitance and resistance as seen by the driver. The generated 

sinusoidal clock signal is shown in Figure 6.4. Reference pulse (Vref_N) switches on the 

NMOS transistor and pulls-down the clock signal to    . The PMOS transistor receives a 

reference pulse (Vref_P) to pull-up the clock signal to    . The reference signals are 

inverted and are out of phase by 180 degrees. 

     The generated resonant clock signal shown in Figure 6.4 is given by the following 

equation: 

         
       

 
           

       

 
      (6.1) 

 

    and     are the highest and lowest voltage levels of the generated sinusoidal 

clock signal and wo is the resonant frequency. 

The current flowing in Rclk is equal to: 

         
     

  
   

       

 
                    (6.2) 
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Figure ‎6.3: LC resonant clock generator 

Vout(t)

t

VDD

VOH

VOL

PW

Vref_N Vref_P

PW

TT-PW

 

Figure ‎6.4: Generated sinusoidal clock signal 

 

The average power dissipated is given by: 

  
 

 
             

    

 
                 

 
      (6.3) 
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Using: 

  
 

   
 

 

 
          (6.4) 

 

where i is the average current and Q is the charge per cycle. 

The charge that needs to be supplied in each clock cycle in order to sustain oscillation is 

equal to: 

  
     

    
                 

 
        (6.5) 

     The transistor short channel model given in [57] is used to estimate the drain current 

(ID) of the PMOS transistor in the clock generator. Given that Wp is the gate width of the 

PMOS transistor, L is the gate length, µp is the holes mobility, Cox is the oxide gate 

capacitance, Vgs and Vds are the gate and drain voltages with respect to the source, Vth is 

the threshold voltage,    is the critical value of the electrical field at which carrie velocity 

saturates, PW is the pulse width of the reference signal (Vref_P), PWedge is the pulse 

width of Vref_P at which Vds=Vds_sat, i.e., at the edge of saturation, T is the clock priod, 

and β(t)=ID(t)/WP, the following equations are written: 

        
 

  
         

   

                    (6.6) 

       
 

  
      

                  

       
          (6.7) 

 

                     (6.8) 

 

 

For PW<PWedge: 

     
     

 
                 

      
 

 
  

 

  
      

   

     (6.9) 
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Figure ‎6.5: PMOS drain current during the application of Vref_P 

 

For PW>PWedge: 

     
     

 
                  

       
 

 
  

 

  
       
   

     (6.10) 

     In order to estimate the charge being supplied by the voltage source during the pulse 

width (PW) of signal Vref_P when the PMOS transistor is switched on, the voltage drop 

across Rclk is neglected and the drain voltage of the PMOS (node Vx in Figure 6.3) is 

assumed to be equal to vout(t). Hence Vds at the beginning of Vref_P is equal to: 

                          

                         
       

 
                

       

 
       (6.11) 

and at the end of Vref_P, Vds is equal to: 

                                (6.12) 

     

ID(t)

t
TT-PW

ID(T-PW)

ID(T)
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     The drain current of the PMOS transistor in the driver at the start and end of Vref_P is 

shown in Figure 6.5. The charge supplied during that interval is equal to the area under 

the curve of Figure 6.5 given by: 

           
 

 
                   

     
 

 
                          (6.13) 

 

Substituting (6.5) = (6.13), we obtain: 

   
     

     
 

                 
 

            
       (6.14) 

     Equation 6.14 gives the required width of the PMOS transistor in the driver needed to 

generate a resonant clock signal with a desired voltage swing given the frequency of 

operation, clock capacitance, resistance, as well as the pulse width (PW) of the applied 

reference signals. 

 

6.3 Simulation Results 

    Equations 6.8 to 6.10 were verified through simulations using Spectre on a 90nm 

STMicroelectronics minimum sized PMOS transistor as shown in Figure 6.6. Compared 

to simulation, the equations are accurate with an average error of 5%. 

     In Table 6.1, Equation 6.14 was used to estimate the required driver strength in the LC 

resonant clock generator at different pulse widths. The table illustrates that Equation 6.14 

is accurate with short pulse widths of the reference signals. It is also observed that the 

percentage error increases as the pulse width (PW) of Vref_P increase approaching 

PWedge, i.e., edge of saturation. 
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Figure ‎6.6: ID vs. VDS for PMOS with Wp=120 nm, L=100 nm 

      

Table ‎6.1 

Estimated driver strength at different pulse widths (PW) for Cclk=30 pF, Rclk=0.5‎Ω,‎f=1 

GHz, VDD=1 V, VOH=0.95 V, and VOL=0.05 V 

 

PW (ps) Wp (µm) 
Absolute error compared to 

VOH -VOL= 0.9 V 

100 402 3% 

150 191 0% 

200 109 11% 

250 75 12% 

300 58 17% 

 

     This is due to the fact that the current model used overestimates the transistor driving 

capability as shown in Figure 6.6 at longer PW, i.e., as we move closer to the saturation 

region where        = -0.69 V. As illustrated in Table 6.1, the PMOS and NMOS 
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transistors of the clock generator are large in size. Hence they are driven by progressively 

sized inverters [5]. Taking these inverters into account, an efficient approach in terms of 

minimizing total power is to use smaller transistors in the clock generator with longer 

pulse width for the reference signals.  

 

6.4 Conclusion 

      An analytical approach has been proposed to estimate the required driver strength in 

the LC resonant clock generator. Simulation results show that the derived equation is 

accurate compared to results obtained using Spectre. Using the proposed approach early 

in the design stage would save chip area and resources by replacing the need to have 

switches with programmable widths and reference pulses with programmable duty 

cycles. Although the mathematical derivation was illustrated on a specific LC resonant 

clock generator, it can be extended and used to estimate the required driving strength in 

other resonant clock generators. 
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Chapter 7   

  Conclusion 
 

7.1 Summary and Contributions 

     In this thesis various techniques are applied at the flip-flop level and different levels of 

clock generation and distribution, with the aim of reducing the power consumption. Each 

technique is individually evaluated and has been shown to be effective and produces the 

desired result. 

     Resonant clocking techniques have proven their ability to reduce the power of CDNs 

which consume the largest portion of total power in synchronous digital systems. From 

these techniques, the most practical is the LC resonant clocking which generates a clock 

signal with a constant phase and amplitude compared to a varying amplitude signal 

generated in standing-wave oscillation or varying phase signal in rotary traveling-wave 

oscillation. 

     The CDN assumed in this dissertation was that of an LC fully-resonant clock network. 

Extending the resonance all the way down to the local tree driving the flip-flops results in 

maximum power savings since the energy stored on the local clock capacitance which 

consumes around 2/3 of total clock power is being recycled.  

    We have introduced a new type of slack in the skew that can be compensated for to 

reduce the CDN routing complexity, wire elongations, total wire length, and power 

consumption. The slack in the skew can also be used for incremental routing adjustments. 

In our demonstration of the proposed technique, the slow rise time of the sinusoidal 

resonant clock signal and the different transistor threshold voltage levels available in the 

STMicroelectronics 90nm technology were used to generate different delays of the flip-
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flop with separate means. Lower skew bounds for the proposed technique have been 

identified. Matched delay values for short and long delay paths were derived to 

compensate for positive and negative clock skew. The effects of process, power supply, 

and temperature (PVT) variations on flip-flop delay were investigated. CDNs with 

nominal zero skew have been constructed using the Modified Differed Merge Embedding 

Algorithm that takes advantage of the skew slack introduced by the new technique.  

     A new dual-edge triggering scheme has been proposed. This scheme allows the 

extension of dual-edge triggering to any dynamic logic circuit with precharge and 

evaluation phases. The delay of every precharge and evaluation interval generated by the 

sinusoidal resonant clock at positive and negative edges was characterized. The proposed 

scheme was tested on the SAFF with precharge and evaluation phases and the flip-flop 

response at both edges of the sinusoidal clock was investigated.  In addition, the effects 

of (PVT) variations on the generated precharge and evaluation intervals were examined 

as well as the flip-flop behavior under worst case scenario. Furthermore, the pros and 

cons of inverter chain sharing were investigated and the potential power saving 

achievable through dual-edge clocking was highlighted.   

     Further reduction in LC fully-resonant CDN power consumption was achieved by 

reducing the clock swing. The DCCFF was modified to operate with a low-swing 

sinusoidal clock. The proposed low-swing LC fully-resonant clocking scheme operates 

with one voltage supply and does not require an additional supply voltage. The feasibility 

of low-swing resonant clocking and the power advantages are investigated on-chip. 

      

 



116 
 

7.2 Future Work 

1- Latest developments in 3-D integrated circuit design with multi-plane synchronization 

as was illustrated in Figure 2.1 show that the traditional approach of using clock trees will 

lead to significant increase in power and metal overhead. For example, at least six metal 

layers will be dedicated to the clock network if H-Trees were used to distribute the clock 

signal in each of the three planes. This means that in addition to the increase in power, 

routing complexity will also increase.  

     In [58], Globally Integrated Power and Clock (GIPAC) integrated network has been 

proposed as a means of eliminating the on-chip global clock distribution network. The 

clock and power signals are integrated in the GIPAC and then separated in the local 

power and local clock networks using passive filters as shown in Figure 7.1. The input 

signal to the splitter circuit is a sinusoidal wave with a DC component of 1.2 V and a 

sinusoidal voltage-swing of 0.1 V. Simulation results show the feasibility of the proposed 

scheme. However, the proposed approach does not eliminate the need for the local clock 

distribution network. 

     The proposed scheme can be improved by investigating the feasibility of eliminating 

the clock network (both local and global) by using only the power network to distribute 

both the power and clock signals. A sinusoidal power-clock signal with suitable DC 

voltage level and sinusoidal swing is distributed through the power grid directly to the 

VDD and the VDD/Clock ports of combinational and sequential circuits, respectively.  

Correct functionality of the circuits should be verified with the ripples in the power-clock 

signal considered as noise.  
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Figure ‎7.1: Globally integrated power and clock (GIPAC) distribution network [58] 

     For the sequential circuits, both the VDD and clock nodes in each circuit are connected 

to the power network. However, specially designed clock buffers like the one used in [16] 

need to be implemented at the clock node of each flip-flop to extract and generate a clock 

signal with suitable voltage levels from the power-clock signal. In this approach there 

will be no need for a clock network to distribute the clock signal leading to reduction in 

power consumption, metal overhead, and routing complexity. Correct functionality and 

feasibility of the proposed scheme can be verified through the fabrication and testing of a 

fully pipelined multiplier with only a power grid to distribute the power-clock signal. 

 

2- Field Programmable Gate Arrays (FPGAs) compared to Application Specific 

Integrated Circuits (ASICs) provide high programming flexibility at the expense of 

power and area overhead. However, the uniform structure of the FPGA as well as the 

uniform distribution of sequential elements within the FPGA encourages the investigation 
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of the feasibility of reducing the power of the CDN in the FPGA by applying resonant 

clocking techniques.  

       

3- The matched delay values for long and short delay paths derived in the skew 

compensation technique in Chapter 3 are restricted to only three. This is because we took 

advantage of the three different voltage levels available in the technology to generate 

three versions of the same flip-flop. 

     Choosing different types of flip-flops with different delays or varying the transistor 

sizes in one flip-flop to generate more than three versions of the same flip-flop would 

increase the number of matched delay values to more than just three, thus maximizing 

design flexibility, wire length reduction, and power savings. 

 

4- In the dual-edge triggering scheme, the interval by which the charging elements in the 

flip-flop are being switched on was reduced causing a reduction in power consumption. 

However, the proposed scheme requires three PMOS/NMOS transistors to be added in 

the pull-up/pull-down networks of the flip-flop in addition to the inverter chain. This 

causes an increase in area. The dual-edge triggering scheme can be further modified to 

reduce area overhead in such a way that the structure of the single-edge triggered flip-

flop is not affected. An external circuit that is independent of the flip-flop and is 

responsible for generating the evaluation and precharging pulses can be used.  

Furthermore, adding conditional capturing and low-swing clocking to the dual-edge 

triggering scheme are additional angles to be investigated. 
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Appendix A   
Multiply-Accumulate (MAC) Unit Design  

 
A.1 Multiply-Accumulate (MAC) Unit Design 

     Figure A.1 shows a simplified diagram of the MAC unit with a serial-in register at the 

input feeding the multiplier and multiplicand and a serial-out shift register at the output.  

 

Multiplier

Adder

32 serial input bits

(A & B)

33 serial output 

bits

Y

X

CLK

DCCFF

 

Figure ‎A.1: MAC unit 

 

A.1.1 Serial-In Parallel-Out Shift Register 

     The serial-in parallel-out shift register used to feed the 32-bits of multiplier and 

multiplicand is shown in Figure A.2.  As illustrated in the figure, the Differential  
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Figure ‎A.2: Serial-in parallel-out shift register 

 

Conditional Capturing Flip-Flop (DCCFF) under LC resonant clocking with dual modes 

of operation, i.e., full- and low-swing clocking is used.  When FULL_SWING signal is 

high, the flip-flop is operating in full-swing mode. When it is low, low-swing operation is 

enabled. As shown in the figure, the sinusoidal clock signal is fed to the flip-flops 

through a pass gate which is controlled by the LOAD_INPUT signal. When 

LOAD_INPUT is high, the clock is feeding the flip-flops and the 32 bits being fed by the 

first flip-flop are shifted to the next flip-flop in each positive clock edge. When 

LOAD_INPUT signal is low, the pass gate is off, the clock signal at the flip-flop input is 

grounded by the NMOS transistor, and the output at each flip-flop will maintain its 

current state with no change. At the same time, the pass gate at the output of each flip-

flop controlled by LOAD_INPUT will be turned on, allowing the flip-flops to feed the 

multiplier and multiplicand bits to the 16 x 16-bits multiplier.  

     Post-layout simulation on the shift register has shown that the transparency interval of 

the flip-flops under the resonant clock with 100 MHz frequency is long.  In that case, the 

input was not shifted properly between the flip-flops. The problem was fixed by adding a 

delay stage between the output of each flip-flop and the input of the next one.  
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A.1.2 Parallel-In Serial-Out Shift Register 
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Figure ‎A.3: Parallel-in serial-out shift register 

 

     Figure A.3 shows the 33 bits parallel-in/serial-out at the multiply and accumulate unit 

output. When SHIFT_LOADDB signal is low, the AND gates on the right side are on, and 

the outputs S0 to S32 are stored in each flip-flop. When the signal is high, the AND gates 

on the left side are active  

 

A.2 Test Chip 

A.2.1 Pad Description 

     Table A.1 describes the name of the pad, type, and the signal being fed through each 

pad.  
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Table ‎A.1 

Pad name, type, and description 

 

Pad Name Type Number of Pads Description 

VDD Input 4  Supply for the entire chip 

GND Input 5  Ground for the entire chip 

CLK Input 1  Clock signal 

D Input 1 
 Input to the serial-in/parallel-out register of the as well as the  

 two flip-flops 

FULL_SWING Input 1  Signal switch between full- and low-swing flip-flop operation 

LOAD_INPUT Input 1  Loading input to the serial-in/parallel-out register 

SHIFT_LOADDB Input 1  Loading input to the parallel-in/serial-out register 

CLK_FF Input 1  Clock feeding the two flip-flops  

CLKD_FS Output 1  Inverted clock in the full-swing flip-flop 

CLKD_LS Output 1  Inverted clock in the low-swing flip-flop 

Q_FS Output 1  Output of the full-swing flip-flop 

Q_LS Output 1  Output of the low-swing flip-flop 

S_OUT Output 1  Output of the serial register  

Total 20  

 

 

A.2.2 Chip Packaging and Test Fixture 

     The CFP80 package and the CFP80TF test fixture provided by CMC were chosen for 

the chip. The chip bonding diagram is shown in Figure A.4 and the test fixture is 

presented in Figure A.5 [59]. 
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Figure ‎A.4: Bonding diagram for the CFP80 package 

 

 

Figure ‎A.5: RF CFP80TF test fixture [59] 
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