Fault Diagnosis in
Hierarchical Discrete-Event Systems

Abdolrasul Mohammadi Idghamishi

A Thesis
in
the Department
of
Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

January 2004

© Abdolrasul Mohammadi Idghamishi, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91087-3
Our file Notre référence
ISBN: 0-612-91087-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

ABSTRACT

Fault Diagnosis in Hierarchical Discrete-Event Systems

Abdolrasul Mohammadi Idghamishi

A framework for on-line passive fault diagnosis in hicrarchical discrete-event systems is
proposed. In this approach, the system model is broken to simpler substructures called D-
holons. A state based diagnoser is constructed for each D-holon. Fault diagnosis is
accomplished using the state estimates provided by the D-holon diagnosers. The
diagnosers may communicate among each other in order to update their state estimates.
At any given time, only a subset of the diagnosers are active, and as a result, instead of
the entire model of the system, only the models of the D-holons associated with the active
diagnosers are used. Therefore, only part of the system model needs to be stored in
computer Random Access Memory (RAM). This reduces RAM requirements and thus,
could be useful in complex multi-phase systems.

The concept of D-holon provides a suitable tool to study failure diagnosability in
cases where components are active in certain phases of operation and inactive in other
phases. This resulted in the introduction of the concept of phase-diagnosability. A set of
necessary and sufficient conditions for phase-diagnosability is obtained.

Furthermore, in order to reduce the computational complexity of the diagnosis

process, a set of sufficient conditions is provided under which the diagnosis process

i

becomes sermi-modular. It is shown that the computational complexity of constructing
(time) and storing (space) the transition systems required for diagnosis in the proposed
semi-modular approach is polynomial in the number of system components, whereas in

the original monolithic approach the computational complexity 1s exponential.

ACKNOWLEDGEMENT

I am deeply indebted to my supervisor, Dr. Shahin Hashtrudi Zad, for his constant
support and guidance throughout the work with this thesis. Without his help, this work
would not be possible.

I would like to thank the members of my thesis committee, Dr. Peyman Gohari, Dr.
Amir Aghdam and Dr. Rama Bhat , for their very helpful comments and suggestions.

Many thanks go to my friends in the Control and Robotic Group, in particular,
Mohammad Moosaei and Javad Mohammadpur, for useful discussions.

Lastly, I would like to thank my family, for all of their never-ending support they
have provided throughout my life.

I dedicate this thesis to my adorable wife, Tanaz, for all her love, support, patience,

and encouragement.

Contents

List Of FIZUIES 1uvvrvvermnnrecarernrsiessraneeiiirseranssssessennssssevarensssnmssesnsssaresosassre Vill
1 INtroductioncvevevirereierniianeanisriinesenvasessrusrrsasetorsscosreensroonsasnsnsnsaons 1
1.1- Background et e e et e et e 1
1.2~ Thesis QUIINE ..ovinii i et et 7

2- Background OVverview.....ccceiveiniiriinniecesinieciinesseresecsessarasosssssnsssrenesnss 10
2.1- Discrete-Event Systems (DES) ... et 10
2.1.1- Languages and Generatorsoovvviuiiiiiinniianaeann 10

2.1.2- Operations on Generators...........oooeeiivnino.n. s 12

2.2- Hierarchical Finite State Machines (HFSM) ... 16
2.2.1- Informal Description of HFSMci e 17

2.2.2- Formal Description of HFSM ... 25

3- Diagnosis in Flat DES ...c.ciiiiiiiiiiniiiciciniiiniiisecsscensnivinicasisescsncsnensess 34
31 Plant Model...oniiiii 35
3.2 Diagnoser Designoooooiiiiiiiiiiii i e 36
3.3 Diagnosability in flat FSM ... D . 39

4- D-holon and Diagnosis in HESM ..ccoiriiiriiiiiinininninneenn. 44
4.1- Concept of D-holon.........oooiiii i 45

4.2- Fault Diagnosis in HFSM.................... e £

Vi

4.2.1- Plamt Model..............cooil s U e e 54

4.2.2- Diagnoser Design................ PP SUUPROORR ¢
4.3- Diagnosability Using HFSM structure....... R N 77

5- Semi-Modular Fault Diagnosis in Modular Systems and AND D-holons 83

5.1- Semi-Modular Diagnosts in Flat DES............. dameens 84
5.2- Semi-Modular Diagnosis in HFSM with AND-states............ e 92
5.3~ Analysis of Computational Complexity...... ... veennn 94
5.4- Ilustrative Example: Ozone Generation Plant..................... RO ... 100
5.4.1- Overview and the Configuration of the Process e 100
5.4.2- Discrete-Event Model of the Process e 104
54.2.0- OSUModel ..o 104

542.2- OGUMoOdEl .covvviii e 106

5.4.2.3- Master-Controller Model e 112

5.4.3- Diagnoser Designc.o.oiiiiiiiiiiii e 113

6- ConClESION vc.ovvnrecnrrerarerrerieoninrsreessscnssassnsasessosesarsosnsosssnasercansasnases 117
0.1+ SUMIMALY. ..ot it ittt ettt e et s s st e e naea e enes 117

6.2- Future work e et e e e e 119

Bibliography .cciccceeesercimmnriisiiniosrersiisessisasissorssrsnsacsennssssesasascsnvasasses 121

Vil

List of Figures

2 1-

N

3.1-

4.1-

4.2-

Generators of Example 2.1 ... 15
syne and meet operations on systems in Example 2.1 ... e 15

An HFSM consisting of OR states and its equivalent flat state machine. 18

An HFSM consisting of an AND state and its equivalent (flat) state

TNACHINE. ..ttt e et e 20
The hicrarchy tree of the HFSM in Fig. 24.a.. ..o 21
The basic HFSM equivalent to the HFSM of Fig. 2.4.a.................ol. 24
The hierarchy tree of the equivalent basic HFSM.....................o.. 25
An HFSM with a non-FC-connected formoc 29

Adding dummy states and transitions to an HFSM in order to make it FC-

COMMNECIEA. .1ttt e et e et ca e 32
System and diagnoserot 37
The HFSM of Example 4.1 ... 48
The equivalent standard HFSM of the HFSM in Fig. 4.2 49

D-holons associated with the super states of the HFSM in Example 4.1 ... 50

D-holons associated with AND components S3 and S4 in Example 4.1..... 53
A neutralization Process ..o 56
A simplified (high-level) description of the neutralization process 58
A detailed HFSM of the neutralization processc.oovviiiiiiiiiian ., 58

viii

4.8- D-holons associated with the super states of the neutralization process..... 59

4.9~ Interaction of father and children on a diagnoser................... 62
4.10- Interaction among diagnosers inan HFSM.............. 63
4.11- The updating procedure in a D-holon diagnoser....................... 65

4.12- Example of a super state containing faulty states corresponding to a failure

event occurred previously in another super state............coooiiiin 69
4.13- High-level diagnoser (DG neuproe)- - v seeeeraiiene et aiaaeacanaaiins 73
414~ Low-level diagnosers. .. .o e 75

4.15- Diagram of the activation sequence of diagnosers in Example 4.1............ 76

4.16- A system consisting of two phases (super states).........oooeviiiiiviniinn 81
4.17- Modified system for diagnosability analysis.................oooiin, 81
5.1- The modular system of example S. 1. 89
5.2- The diagnoser designed for the system in Example 5.1................ .. 91
5.3- Conversions required for the alternating structurecoevennnnn. 95
54- The HESM M ..o e 96
5.5- A Basic Ozone Generation Element ... 100
5.6- Block diagram of a simplified water treatment plant......................... 101

5.7- Simplified Ozone Generator and Oxygen Supplicr units...................... 102
5.8- Ozone Plant Control System Architecture..............cooovoiiiiiiin. 103
59- Simplified HESM of the Ozone Generation Plant..................... 104

5.10~ The hierarchical discrete-event model of the Oxygen Supply Unit (OSU).. 105

5.11- Discrete-event model of the OGU componentscoovoviviiviiiiinn, 108
5.12- Interaction among the components inthe OGU ... 110

ix

Discrete-event model of the controllers inthe OGU . oo 111

Master-Controller ..o 12
High-level D-holoninthe OSU 114
Low-level D-holons in the OSU ... 115
Sequence of diagnoser activation in the Ozone Generation Plant 116

List of Tables

4.1- Example 4.2: Events in a simplified neutralization process 57
4.2- Example 4.2: RTS’s of the D-holons of the neutralization process 72
5.1- Example 5.1 RTS of the system ..o 90
5.2- Events and their descriptioninthe OSU........... 106

X1

Chapter 1

Introduction

Fault detection and isolation systems are very important in maintaining the performance
and enhancing the reliability of complex and sophisticated systems. Particularly, in
situations where human attendance for system modification and maintenance is difficult
or impossible, fault diagnosis becomes vital. Using systematic methods for designing
diagnosis systems not only increases the accuracy and reliability of diagnosis but also
reduces the future costs of system revisions and maintenance. In addition, human errors
are less likely in systematic diagnosis code generation than in manual code generation.
Fault diagnosis systems play a very important role in aerospace, manufacturing and
process industries. As a result, a large body of work has been done on fault diagnosis (see,

e.g., [HCK92], [1se97] and [Lev95]).

1.1 Background

In this thesis, we say a failure (fault) ' has occurred if the system behaviour deviates
from its normal operation for a bounded or unbounded period of time under certamn
operating conditions [Ise97]. Stuck-closed and stuck-open of valves are examples of
failures. A failure can be permanent or non-permanent. After the occurrence of a
permanent failure, the system stays in the faulty mode permanently. On the other hand,
after the occurrence of a non-permanent failure, the system may recover to the normal
condition. A broken valve can be an example of a permanent failure and a loose
connection in an electric circuit may be the source of a non-permanent failure.

In this thesis, we study fault diagnosis in systems that, for diagnostic purposes, can be
modelled as hierarchical discrete event systems (HDES). We assume that the system
under supervision is operational and the fault detection system only uses the observable
events generated in the system and no test inputs are used for diagnosing failures. Thus,
we only concentrate on on-line passive diagnosis.

In the following, we review some of the available techniques for fault diagnosis.

Hardware redundancy is one of the most commonly-used methods for fault diagnosis
and tolerance. In this approach, multiple sensors are used for measuring each plant
variable. Then, a voter compares their outputs and determines the final value. If one of
the sensors fails, the failure can be detected by comparing its value with other sensor
values. This approach is also employed in diagnosing software code errors in the form of
N-version programming. In N-version programming, multiple codes are provided for a

critical part of the system. Usually, these codes are written in different programming

"In this thesis, “failure” and “fault” mean the same and are used interchangeably.

[a)

languages by different programmers to avoid language, compiler and human related
errors. Although, these techniques are simple and fairly reliable, they impose an overhead
on the system, resulting in increase of implementation cost. Moreover, they are only
suitable for detecting sensor failures and programming errors. In addition, they are not
suitable for detecting common-cause failures,

Expert systems are also used for diagnosing failures. Expert systems are designed
based on the experience and knowledge of experts (stored as a set of rules) and use an
inference engine to diagnose failures. These systems are advantageous in cases that
obtaining a model for the plant is difficult. However, gathering the required expertise and
information for building an expert system can be a hard and time consuming task. In
addition, it may not be possible to evaluate the completeness of the expert data base.

Hardware and software redundancy and expert systems are examples of qualitative
techniques which perform diagnosis without utilizing a model of the plant and are
therefore, known as model-free methods. In addition to model-free methods, several
model-based techniques for fault diagnosis have been proposed in the literature. In a
model-based approach, the observed behaviour of the plant is compared against the plant
model, and the condition of the system (normal/faulty) is inferred from this comparison.
In the following, we discuss some of the model-based diagnosis techniques that use
discrete event models.

In [Lin94), F. Lin proposes a state-based approach for diagnosis failures in DES. In
state-based approaches, it is assumed that the state set of the system can be partitioned
according to the condition (failure status) of the system. The goal of the diagnosis process

is to determine the current state of the system (or at least the block of the normal/faults

partition the current state belongs to) using the available observations (sensor
measurements) and then to determine the current condition of the system. [Lin94]
addresses the problems of off-line and on-line active diagnosis. An algorithm is presented
for computing a sequence of test commands for diagnosing system failures. If the
algorithm converges the system will be on-line diagnosable.

In [SSL95] and [SSL.96], M. Sampath et al. present a systematic approach for passive
on-line fault diagnosis in finite state automata. In passive diagnosis, the diagnoser does
not generate any test inputs and relies on observations only. In [SSL95], an extended
observer for the system is used (diagnoser) to perform diagnosis. The issue of
diagnosability is also addressed. The approach in [SSL95] is event-based. In an event-
based method, inference is made about the occurrence of failure events based on the
observed events. It is assumed that a failure is the result of an (unobservable) failure
event. In [CP97], this framework has been extended to utilize information about the
timing of events. In [SLT98], active diagnosis of DES has been studied in the framework
of [SSL95].

In [LY96], algorithms for testing of finite state machines are reviewed. Although
testing algorithms are related to the problem of fault diagnosis, the framework used in
[LY96] is different: the finite state machines are usually assumed to be deterministic with
a fixed condition (failure status); also it is assumed that transitions can always be
observed even if they do not result in a change in output. These assumptions oflen do not
hold in fault diagnosis of control systems.

In [HKWO03], S. Hashtrudi Zad et al. study fault diagnosis in DES using a state-based

approach. They propose a passive on-line method for diagnosing failures in discrete event

systems and construct a fault detection system (diagnoser). In this framework, an output
(sensor’s signal) is associated with cach state of the system. Estimates for the current
state (or possible states) of the system is made based on the generated output sequence.
The issue of diagnosability is also studied. In this framework, the condition of the system
does not have to be known at the time that the diagnoser is started. Assuming a failure is
diagnosable if it occurs before the diagnoser initialization, the proposed diagnoser can
eventually detect and isolate the failure. A model reduction method has also been
introduced in [HKWO03] to reduce the number of states of the diagnoser and the
computational complexity of diagnoser design. This framework has been extended to
incorporate timing information in order to improve the accuracy of diagnosis [HKW99].
Moreover, fault diagnosis in hybrid systems is addressed in [HKWQ0].

In most of the approaches proposed for fault diagnosis in DES, the structure of the
system is assumed to be flat ((HKWO3], [HKW99], [Lin94], [SSL.95] and [SSL.96]). In
these techniques, no particular structure is assumed for the system and the entire model is
used at all times. This usually results in complex solutions for the diagnosis problem. The
design of these diagnosis systems (or the transition system required for diagnosis) is
computationally complex and the resulting solutions (usually in the form of transition
systems) are very large and require large amounts of computer memory for on-line
implementation.

One way of reducing complexity is to take advantage of the system structure. Many
complex systems possess a hierarchical structure. Hierarchy not only can be seen in
physical systems but also can be observed in many aspects of our life, For example, in

social systems, a human is a unit that belongs to a family. Family is a subset of a

community and the community itself is a part of a country. In many biological and
physical systems, we can see a hierarchy too. In this thesis, we study fault diagnosis in an
enhanced class of DES called hierarchical DES to overcome the aforementioned
shortcoming.

In [Har87], D. Harel introduces a visual tool for modeling complex discrete-event
systems called statecharts. Statecharts are useful for representing complicated systems.
They extend the conventional state-transition diagrams of DES by adding many useful
features such as hierarchy, concurrency, and communication.

The hierarchical model that we use in this thesis for describing the system is rooted in
statecharts. Since statecharts have more features than we need, we use a simplified
version of statecharts called the Hierarchical Finite State Machine (HFSM). HFSMs
extend finite state machines (FSM) only by adding hierarchy and concurrency features.
HFSMs have been used in [BH93] and [Wan95] for the supervisory control problem.

In this thesis, we propose a state-based approach for fault diagnosis in HFSMs. We
use the hierarchical structure to split the system into smaller subsystems called D-holons.
At any point in time, only the model of the D-holons needed in diagnosis are used and
thus, loaded into computer memory. Our approach reduces the memory requirements for
computer implementation of the diagnosis system. Moreover, because of the hierarchical
structure used in design, the diagnosis system is more organized and understandable.

Modular diagnosis in DES has also been the subject of research. In [DMO2], R.
Debouk et al. propose a method in which an individual diagnoser is designed for cach
component of the modular system assuming the components do not have common

failures. These diagnosers work concurrently when the system is executing its events.

6

Once a diagnoser detects a failure, a coordinator in the system becomes notified and
consequently, the failure is diagnosed. They also obtain a sufficient condition under
which the diagnosability of each component failure can be tested using the component
model only. No assumption is made on the interaction among the components. As a result,
the state estimate provided by the modular diagnosis becomes conservative (]lar.ger than
the estimate provided by the monolithic diagnoser). Therefore, a diagnosable failure may
become undiagnosable using their modular diagnoser. Moreover, in cases where a failure
is diagnosable using the modular diagnosis, the modular diagnoser may take longer to
detect and isolate the failure.

In this thesis, we propose a semi-modular approach for cases in which the system
components interact, but the interactions (shared events) are observable. The advantage
of our approach is that at each time a state estimate identical to the one provided by the
monolithic approach can be constructed for the (entire) system. Moreover, our semi-
modular approach can be easily used in our hierarchical framework.

In the following section, we discuss the outline of the thesis and review the thesis

contributions in more detail.

1.2 Thesis Outline

In chapter 2, we review the background material for the framework developed in this
thesis. First, we briefly review discrete-event models and then, we discuss statecharts and
hierarchical finite state machines. HFSM is a powerful tool for equipping discrete event
models with a top-down hierarchy. Chapter 3 presents a state-based fault diagnosis

approach adapted from [HKWO03]. In this thesis, we extend this approach to HFSMs. In

chapter 4, first, we will introduce the concept of D-holon. Intuitively, a D-holon is a
mathematical tool for describing a phase of operation in a system. D-holons are similar to
some extent in structure to holons in [Wan95]. We have, however, made some
modifications to make them more suitable for diagnostic purposes. We introduce a
diagnosis method which uses the hierarchical structure of the system. Here, instcad of
constructing a single, large diagnoser for the entire system, we design smaller diagnosers,
one for each D-holon, and refer to them as D-holon diagnosers. A D-holon diagnoser is
an observer that tracks possible system transitions in the D-holon. The diagnosers may
communicate among each other in order to update their state estimates. At any given time,
only a subset of the diagnosers are active and thus, instead of the entire model of the
system, only the models of the D-holons associated with the active diagnosers are used.
As a result, only part of the system model needs to be stored in computer Random Access
Memory (RAM). This reduces RAM requirements and thus, could be useful in complex
multi-phase systems. We will show that diagnosers can becore decoupled if certain
specific conditions on the structure of the system are satisfied. In systems with decoupled
D-holon diagnosers, diagnosers can be modeled as FSMs,

The concept of D-holon provides a suitable tool to study failure diagnosability in
cases where components are active in certain phases of operation and inactive in other
phases. This resulted in the introduction of the concept of phase-diagnosability. A set of
sufficient conditions for local-diagnosability is obtained.

In chapter 5, we propose a semi-modular approach in which the process of updating
state estimates in a diagnoser can be accomplished using the model of individual

components. Instead of the combined model for the system, we show that this can be

done if the interactions among components are observable. We call this method semi-
modular because we do not design separate diagnosers for each module even though, the
update process is based on individual component models. We also show how the semi-
modular diagnosis approach can be used in the construction of D-holon diagnosers for
fault diagnosis in hierarchical systems.

The main advantages of using a semi modular approach are the reduction in the
complexity of diagnoser design and reduction in the size of resulting transition systems
required for diagnosis. The issue of computational complexity is also investigated in
chapter 5. We show that the computational complexity of constructing and storing of the
transition systems required for diagnosis in the proposed semi-modular hierarchical
approach is polynomial in the number of system components, whereas in the original
monolithic approach, the computational complexity is exponential in the number of
system components.

As an illustrative example, we apply our framework to an ozone generation plant. We
show that the plant can be modeled as a HFSM, and then design a modular hierarchical

diagnosis system for the plant.

Chapter 2

Background Overview

2.1 Discrete Event Systems (DES)

A “Discrete Event System” is a system with discrete state space and is asynchronously
event driven. Automata theory provided one of the most comprehensive set of
mathematical tools for studying DES. Many of the other models such as Petri nets for
describing DES are rooted in automaton theory. In automaton models, system evolution
is represented by transitions from one state to another state. The reader is referred to
[RWS2], [RWS89] and [Won93] for details. In the following, we review some basic

definitions and operations in automata theory.

2.1.1 Languages and Generators

An alphabet 3 is a finite set of symbols. Symbols correspond to events in DES models.
A symbol sequence over 2. has the form 6102 ... o, for nz1, where o, € 2. with
1<i<n . 3" denotes the sct of all possible finite symbol sequences over 2.

St =g UL represents the set of all strings or words over 2. Here, ¢ denotes the

empty sequence (sequence with no symbols).

10

Definition 2.1: A language over alphabet 2. is any subset of P o

The empty language is shown by ¢.

A generator is a simple model for representing a DES.,

Definition 2.2: A (deterministic) generator G is a 4-tuple:
G=(X,2,0,x,)
in which, X is the non-empty state set. x, € X is the initial state. §: X' x 2 —» X is the

partial transition function. o

Note that, in general, at each statex & X', the transition function, &, may be defined
only for a subset of the elements of 2.,

Suppose s € 2" is a sequence of events. The transition function & can be extended to
sequences of events:

§:XxY > X
o(x,e)=x
5(x,50) = 5(8(x,),0) if 5(x,s) and 5(S(x,s),0) are define.

forall se" ,xeX and o€ 2.

A state x € X is reachable in G if there existss € 2" such that x = §(x,,s). The
reachable sub-gemerator of a generator G, Reh(G) , (s a generator

Rch(G) =@, =(X

roh

228, Xg), Where X, denotes the set of all reachable states that

reh

are reachable from xy and J,., the transition function, is the restriction of §to X, x 2..

11

Generator ¢ defined above is said to be deterministic because for any xe X and
o &y, if transition ¢ is defined at x, then the target state &(x,) is uniquely defined.
On the other hand, G is called wvondeterministic if it is not deterministic. In a
nondeterministic generator, the co domain of & is the power set of X in other
words & : X x X —» 2%,

We use the notation 8(x,s)! to indicate that d(x,s)is defined.

Definition 2.3: A generator G =(X,2.,d,x,) is called an automaton if the transition

function is a total function, i.e., §(x,0)! forany xe Xando € 2. O

In this thesis, we refer to discrete event systems which are modeled with automata (or
generators) as flat DES, emphasizing the fact that the system model does not have a

hierarchical structure.

2.1.2 Operations on Generators
In this section, we explain some important operations on generators.

Let G, =(X,,2,,9,,%,,) and G, =(X,,2,,5,,%,,) be two generators. The

synchronous product of Gy and G,, sync(Gy, Ga), is a generator in which the shared
events of two generators are synchronized. Specifically,

syne(Gy, Gy) = (X, 2.,0,%,)
where

X=X xX,

r=2,UZ,

12

Xy = (xo,wxo.z)
O= Xxy —» X

with

(8, (x,,0), 8,(x,,0)) if oe2,NX,and 8,(x,,0) and 5,(x,,0)!
not defined iff oe X, NE, and(not 8,(x,,0)! or not §,(x,,o)!)
(5,(x,,0),x,) if oel, ~%,and & (x,0)!
5((x,,x,), &)=
(x,,8,(x,,0)) ifoe,~2, and 6,(x,,0)!
not defined if oeX, —2.,and not 6,(x,,0)!
not defined if oeX,~2, and not 0,(x,,0)!

Note that usually the result of synchronous product is assumed to be a reachable
generator. However, we do not have this assumption in our work.

The synchronous product may be used to model the joint operation of two generators.

When the alphabets ¥; and X are disjoint (i.e., 2, N2, =¢), we refer to the
synchronous product as the shuffle product.

Another operation on two generators is meet. Consider G, = (X,,2,,6,,%,,) and
G, =(X,,2,,0,,%,,) to be two generators. The result of the meet operation of G; and
G, meet(Gy, G2) , is a reachable generator in which only the common events may occur
and in synchrony. Specifically,

meet(Gy, G3) = (X, 2.,0,x,)
where

X=X xX,

%y = (Xg 30 %2)
F=Xx2 > X

with

(5,(x,,00,8,(x,,0)) if 8,(x,,0) and 8,(x,,0)!
not defined otherwise

S(ein0)=
In meet(Gh, Ga) at a given state, event o can be generated il both generators can
generate o at their respective state.

Consider a generator G = (X, X,8,x,) and alphabet 2, with 2, N2 =¢ . The

selfloop operation, selfloop(G, Z,), constructs a new generator from G by attaching
transitions x = 8(x,0) forall o e Z, to every state x & X,

Note that sync and meet operations have commutative and associative propertics.
Therefore, the order of operands is not important and brackets can also be ignored. i.e.:
Commutative Property:

sync(Gh, Ga) = sync(Ga, Gh)
meet(G, () = meet(Gy, G1)
Associative property:
sync(Gy, sync(Ga,Gs)) = sync(sync(Gr,Gz), G3)
meet(Gy, meet(Gr,(3)) = meet(meet(Gh,Gr), G3)

Consider three generators G1, G2 and G3. The synchronous product of G1, G2 and

G3, syne(Gh, G2,Gy) , is defined as:

syne(G,Ga,G3) = sync(Gh, sync(Ga,Gy)) = syne(sync(Gy,Ga), G)

14

Similarly, meet operation on G1, G2 and (73 is defined as:
meel((41, Ga2,(3) = meel(((, meet((2,(3)) = meet(meet(G,Gr), G3)

sync and meet operations on more than three generators can be defined similarly.

Example 2.1:
Two generators, G1 and G2 are shown in Fig. 2.1. The synchronous product of G1 and

G2 is depicted in Fig, 2.2-a. Fig. 2.2-b illustrates meet(G1,G2).

G1 G2

b) M = meet(S1,52)

Figure 2.2: sync and meet operations on the systems in Example 2.1

15

X ={4,B,CD}y T ={a,b,c,d,e}
X5 = (EF.GH, I} % ={a,bd, [g}

X% o XS % X5 = {(4,E),(4,G), (A, H).(B, F),(C,D),(D,1),(C,G).(D,0),
(C,H),(D,H)}

2 = UL = {ab,e,dse, fog)
XM o X9 % X5 = (4, E), (A, H),(B,F),(C,D,(C,G)}

M =TNNEY = {a,b,d}

2.2 Hierarchical Finite State Machines (HFSM)

The finite state machines (generators) are used widely to model discrete event systems. In
various applications such as supervisory control, these models are easy to understand and
interpret. The main shortcoming of these models is that they are efficient only when the
system does not have a “large” state set. In real world systems, many components work
together simultaneously. Therefore, the number of system states, in the worst case, grows
exponentially in the number of components. This results in very large state sets. In these
situations, tools for handling complexity are necessary.

In [Har87], D. Harel introduced a visual framework for representing complex finite
state machines. In this visual formalism known as statechart, while preserving many vital
features of state machines, he improved their structure by adding powerful features such
as hierarchy (depth). Statecharts have become a powerful modeling tool for complex

systems.

16

Hierarchical Finite State Machines (HFSM) are a simplified version of statecharts
that enhance finite state machine models by adding hierarchy to the system (other
features of statecharts are not used). They can be applied for modeling of many complex
processes such as communication networks, traffic control systems and manufacturing
systems.

HFSMs have been the subject of extensive research. One of the pioneering works on
HFSMs is [BHY3], in which the authors investigate reachability in HFSMs. They study a
class of HFSMs, called asynchronous HFSMs (AHFSMs) and introduce an algorithm for
reachability test in systems within this class. They show that the complexity of their
method is polynomial in the number of system components while the complexity of the
method using the equivalent flat state machine is exponential in the number of

components. In the following, we present a brief description of HFSMs.

2.2.1 Informal Description of HFSM

In an HFSM, states are represented by boxes. A state (box) may contain other states. This
characteristic is used to model depth or hierarchy in the system .We call a state (box)
which includes other states a super state; otherwise, we refer to it as a basic state. The
states in each super state are called immediate sub-states. Sub-states can be either super
states or basic states. For instance, in Fig. 2.3.a, G is a super state and states A, F and E
are its immediate sub-states. B is a sub-state of G but it is not an immediate sub-state of
G. State F is also a super state but states A and E are basic states. States B, C and D are
basic states and the sub-states of F. It should be noted that we can consider a basic state

as a special case of a super state which includes no sub-state. In this thesis, basic states

17

are represented by circles or ellipses while super states are shown with rounded

rectangles.

a) An HFSM G consisting of OR states

b) The equivalent flat state machine of G

Figure 2.3: An HFSM consisting of OR states and its equivalent flat state machine

18

A label or an event is associated with each transition-path (edge or arrow between
states). The symbols ‘*a’, ‘b’, ‘¢’, ‘d’, ‘e’ and ‘f" in Fig. 2.3.a, represent the events in the
system, Arrows with no labels indicate the initial state of cach super state. A transition-
path to a box represents a transition-path to the initial state of the box (for example,
transition ‘a’ to super state F in Fig. 2.3.2). In fact, arrows attached to initial states
remove the need for continuing the event arrows beyond the boundary of the box. It is
obvious that if the box represents a basic state, then, the initial state will be the basic state
itself. A transition-path from a super state represents transitions from all of the states of
that super state. For example, trausition-path ‘e’ from the super state F to E in Fig. 2.3.a
represents transitions from B, C and D to E. Fig. 2.3.b shows the equivalent flat model of
the HFSM.

We call state F in Fig. 2.3 an OR-state since being in F is equivalent to being in B, C
or D, but not in more than one state at any time.

Concurrency is represented by AND states. A system can evolve concurrently in
different sub-states of an AND state. Consider Fig. 2.4.a. P is an AND state consisting of
two components, G and H. Being in P is equivalent to being in both G and H at the same
time. In other words, while in P, the state of the system is represented by a pair (x,y),
where x and y are states in G and H. Note that G and H are OR states themselves. The
tuples (B,D), (B,H), and (A) are called configurations of the HFSM in Fig. 2.4.a. A
configuration is a tuple of states. Specifically, the configurations represent sets of
concurrent states which the HFSM can occupy simultaneously. Elements of a

configuration can be either basic or super states.

19

~,,'\“"ﬂn‘u \
,M.M‘ | | d
/«‘ ,/~l oy ‘l\‘h

£ ’) @ \N \\X

// G : H \‘
/ |

l

’\\ '
\ '
N t,\\ .w-”': '
\ | i

~

b) The equivalent (flat) state machine of N

Fig 2.4: An HFSM consisting of an AND state and its equivalent (flat) state machine

20

A transition-path entering an AND-state, takes the system to the initial states of the
AND components. For example, transition ‘g’ in Fig. 2.4.a takes the system from F to
state (B,D), while ‘a’ takes the system from A to (C,D). We assume that the internal
transitions of AND-states are determined by the transition function of the synchronous
product of its immediate sub-states. The equivalent (flat) finite-state machine of N in Fig.
2.4.ais given in Fig. 2.4.b.

Figure 2.5 shows the hierarchical structure of the HFSM in Fig. 2.4.a. This diagram is

usually called the hierarchy tree of the system.

G (OR) H (OR)
B/ c D E
Figure 2.5: The hierarchy tree of the HFSM in Fig. 2.4.a

In general, a transition-path is defined between two configurations. For example, in
Fig. 2.4.a, a transition-path labelled ‘a’ can be represented by the triple ((A), a, (C,D)),
where (A) and (C,D) are the source and destination configurations of this transition-path,
respectively. If a configuration only consists of basic states, then it is called a basic
configuration (for example, configuration (B,D) is basic while (B,H) is not basic). A
transition-path from a basic configuration to a basic configuration is called a basic

transition-path.

21

Each transition-path ¢ is associated with a unique state of the HFSM. This state is the
smallest (in terms of its size) OR-state containing the source and destination
configurations of 7. For instance in Fig.2.4.4, the transition-path labelled ‘b’ belongs to
the state G and the transition-path labelled ‘a’ belongs to N.

As pointed out, each OR super state a has an initial immediate sub-state. Let p(a)
denote the initial immediate sub-state of a. We define the initial configuration as follows.
Definition 2.4 [BH93|: The initial (default) configuration of a state a, denoted as p(a),
is defined as the basic configuration obtained inductively as:

1. If a is an AND super state with immediate sub-states a;,--,a; ,
pa) = (pla), Aa,).

2. If a is an OR state with immediate sub-states a;,---,q,
play=pa) iff a =pa).

3. If a is a basic state, then p(a) = (a). O

In Fig. 2.4.a, p(P) = (p(G), p(H)) = (B, D).

Consider the transition-path ¢ = ((4),a,(C)) in Fig. 2.4.a. This transition-path takes

the system to (C,D). However, D is not specified in the destination configuration of z.

Therefore, (C,D) is the explicit destination configuration of z.

For studying an HFSM, it is more convenient to transform the system to an equivalent
HFSM in which all the transition-paths are basic with explicit destination configurations.

The resulting HFSM is said to be in canonical form.”

? In [BHO93], an HFSM is said to be in canonical form if it has an alternating structure. However, we assume
this for the system only in chapter 5 when discussing computational complexity.

In the following, we explain how a transition-path can be transformed to one with
explicit destination configuration [BH93].

Let ¢ = (u,o,v) be a transition-path belonging to a state a.

i. Backtrack from the elements of v along the hierarchy tree to the level of the state
a and mark the strict super states of elements of v.
ii. Add the initial configuration of every unmarked immediate sub-state of a marked
AND-state to v,
iii. The resultant tuple is called the explicit destination configuration of the transition-
path 7.

Since initial configurations are basic, explicit destination configurations are basic t0o.

For diagnosis purposes, it is easier to study systems having no AND super states. In
other words, all AND-states are substituted by the synchronous product of their
components. An HFSM in the canonical form with no AND super states is referred to as
a basic HFSM. Given an HFSM, we can transform it to the equivalent basic HFSM. In
the following, we explain how a system M, can be converted to a basic HFSM.

First, we convert the transitions-paths of M to the basic transition-paths with explicit
destination configurations (explained earlier). Then, on the hierarchy tree of M, we start
from the lowest level on a branch and go up and combine the components of all AND-
states on the branch (using the transition function of the synchronous product). We do
this for all the branches. In this way, AND-states are replaced with equivalent OR states.
Note that some of the OR-states (which are the sub-state of an AND-state of a higher
level) are also replaced by their sub-states. For example, if in Fig. 2.4.a, D was an OR-

state with basic states, we would replace it with its basic states. The AND states of the

23

highest level will become OR-states. The resulting system will be an HFSM equivalent to
M.

It should be noted that after all AND-states have been replaced by OR-states, the
basic states of the basic HFSM are the states of the equivalent flat system of M. In order
to differentiate these states from the original basic states of M, we call them simple states.

The equivalent basic HFSM of the HFSM in Fig. 2.4.a is shown in Fig. 2.6. Figure

2.7 shows the hierarchy tree of the system in Fig. 2.6,

- ~\
N
(p
.

_ W,

Figure 2.6: The basic HFSM equivalent to the HFSM of Fig. 2.4.a.

24

€D (CE BD) (BE

Figure 2.7: The hierarchy tree of the equivalent basic HFSM

2.2.2 Formal Definition of HFSM

In this section, we explain the formal definition of HFSMs. We assume that the HFSM is

in canonical form.

Definition 2.5 [BH93]: An HFSM is a 5-tuple M = (4,%,9Q,>,5) . Here, A is the finite
state set of M and is the disjoint union of three subsets: 4", the set of OR states of M, 4™,
the set of AND states of M, and A2 | the set of basic states of M. 2. is the set of event
symbols and is the disjoint union of an observable cvent set, 2., » and an unobservable

event set, 3., . Q is the set of transition-paths (edges) in the system. The function

uo

5: A" — A provides the initial state of OR-states. “> " is a binary relation representing

the hierarchical structure of M and is called the hierarchy relation (on A). The relation
‘i satisfies the following conditions:

1) There exists a unique state called the root state of M, denoted by r(M), such that

fornostateae A, av-r.

2) For every statea ¢ 4 and a # r, there exists a unique state b € 4 such that b a.
The state b is called the immediate super state of a, whereas « is an immediate
sub-state of b.

3) A state a € 4 has no immediate sub-state if and only if a is a basic state. In other
words, a statea € A4 is a super state if there exists a stateb € 4, such that a > b ;

otherwise « is a basic state, .

The pair (4,>) defines a tree calied the hierarchy tree of the HFSM.
The transitive closure of & , denoted as ", extends the hierarchy relation as follows.
Forevery a,be A, a>" b if b is a (not necessarily immediate) sub-state of «.

Now, we explain the configurations in the system.

Let ¢ be a tuple of basic states.

e A state a is a super state of ¢ if every element of ¢ is a sub-state of «. For
example, N and P are the super states of (B,D) in Fig. 2.4.a.

e A state @ is the lowest super state of ¢ if a is a super state of ¢ and for each super
state b of g, b>" a. The lowest super state of ¢ is denoted by LS(g). For example,
in Fig. 2.4.a, LS((B,D))=P.

e Two states g, and g, are called orthogonal if either g, = ¢, or, if neither is a

super state of the other and LS((¢,,g,)) € 4*. A tuple of states ¢ is orthogonal if
every pair of states in ¢ is orthogonal. For example, (B,D) is orthogonal but (B,A)
and (B,() are not orthogonal.

s An orthogonal tuple is called a configuration. In other words, a configuration is a

tuple of states in which all states can be taken simultaneously by the system.

26

e Let ¢ denote a configuration and « denote a super state of ¢, ¢ is a full
configuration of a if it cannot be extended through auvgmentation with further
orthogonal sub-states of a. In other words, for every be A, if ap" b, it can be
concluded that (g,b) is not orthogonal. A full configuration is called a simple
state of the system. If ¢ is not full, then it is a partial configuration of 4. For
example, in Fig. 2.4.a, (B) is a partial configuration of P, but (B,D) is a full
configuration of P. The set of all full configurations of a is denoted as O, .

e A transition-path ¢ e Q) is represented by a 3-tuple ¢ = (q,,0,¢,) , where g, and

g, are two configurations (partial or full) in the system and o e 2. ¢, is called

the source of t. ¢, is called the target of £. 0

Definition 2.6: Consider an HFSM M = (4,2.,,€,>, 7). We define the function level
LV : A — N as follows (NV is the set of natural numbers):
e The level of the root super state is zero: LV (r(M)) =0.

o Ifabedand bra then LV{(a)=LV(b)+1. 0

Consider an HFSM M =(4,2,Q,-,p) . The equivalent basic HFSM
H =(X,2,8,m,p) can be constructed from M as follows.

Replace all AND super states with their OR-state equivalents. In the resulting HFSM,
H, all basic states will be simple (full configuration).

In H, X is the set of finite states and is the disjoint union of two state sets: X " and
X*, where X*" is the set of simple states and X * is given by:

Xt =4, U At

Hop

27

where

A, =lae A" |Bbe At bt ay

A A

wo=lae At |Bbe AN b#a:br" a}.
Thus, X is the set of all OR-~states and AND-states in M that do not have an AND super

state in M. For example, for the HFSM in Fig, 2.4.a, 4} = {N} and 4

1oy o = AP}
Y is the event set. &: X xF > X9 denotes the transition function.
o X' —» X is a function which gives the initial state of an OR super state. Thus,
px) = p(x) for xe 4,,
p(x) = p(x) for xe A,
Note that / has OR super states only. “+>’ is a hierarchy relation on X, Relation
‘7 is defined as follows:
i, For x,ye X',xt+>y ifandonlyif xp y
i, ForxeX*,ye X" x5y ifandonlyif x=LS(y) . o
The initial state of the system is denoted by x, and is the initial state of the root (i.e.
%, = p(r(H))).
It should be noted that the transition function of H is the same as the transition

function of the equivalent flat system.

Definition 2.7: Consider a basic HFSM H = (X, 2.,8,+>, 0). Suppose for x,y € X' and
oy, v=38(x,0). Then the three tuple ¢ = (x,0,y) is called a transition of /. y is

called the target of ¢ . x is called the source of 7. o

28

<3
Transition ¢ = (x, o, y) sometimes is shown as: x-»y.

T denotes the set of all transitions in H.

Definition 2.8: Consider a basic HFSM M = (X, 2,8,+-, p). We define the function
level LV : X — N as follows (X is the set of natural numbers):
e The level of the root super state is zero: LV (r(H)) = 0.

e Ifx,yeXand y+>x thenLV(x)=LV(y)+1. .

Definition 2.9: Let x,ye X and x+> y. x is called the father of y and y is called a

child of x.

Definition 2.10; Consider a basic HFSM H = (X, 2.,8,+, p) . Suppose thatx, v,a,b € X,

ar>x,br> yando € Y. H is said to have a Father-Child connected (FC connected)

form if for any? = (x,0,), then eithera =b,or ar> b or b= a. 5]
S P
,(‘_\ /)
"
;
s1 _ / j . 82
‘st/ o o, o
o ' -
o T \\\ . va\‘\\
s s A
1’ l SEN o s
C o l*f ——t
; J e)

Figure 2.8: An HFSM with a non-FC-connected form

29

A super state of an FC-connected basic HFSM has only transitions to the states of its
children or its father. In our framework, we are concerned with HFSMs with an FC-
connected form. For instance, transitions labelled with ‘o, " and ‘¢, in Fig. 2.8 are not

allowed in our framework.

Theorem 2.1: A basic HFSM which is not FC-connected can be transformed to a basic

FC-connected HFSM.

Proof: Let ¢ = (x,0,v) € T" be a basic transition of H with x,y € X ™" a s x,b > y .
If a=b,ars b or b a, then consider other transitions of 7' . Otherwise, replace ¢
according to the following procedure. Let w, denote the first common “ancestor” of x
and y so that there exist super states w,, W, ,...,w,, w,,w;,...,w], with:

Wy B W, W B Wy, W,) X
and

Wy B> W, W, > W, W, Y

Note that since # is the common ancestor of all states of /4, a common “ancestor” w,

can always be found.

Add dummy states d,.d,,...,d,, 10 W,,W,...,w,, , respectively. Similarly, add

[
el

'
m~1?

dummy states d,...,d.,, to w|,...,w respectively. Clearly, no dummy states has to
be added to w, ifit is the father of x ory (i.e. w, = w, or w, =w,).

Add the following dummy transitions to the system.

30

f 1

x-3d, |

Fpol

~¥ dn wll

d

n-1

&y
d,—d,
o

J?
d,—>d]
o}

d ->d,

‘
Tinoi

d' . —d

ni-2 =}

Finally, add d’. >y .

el
If o is observable, then o, and o) are assumed observable for all / and j
(1si<n, 15 j<m);otherwise, they are assumed unobservable. We can see that all of
the above transitions satisfy the property mentioned in Definition 2.10.
After performing the aforementioned procedure forall teT 4 the HFSM will have

an FC-connected form. 0

Example 2.2

The HFSM shown in Fig. 2.9.a does not have an FC-connected form. After applying the
above procedure, the HFSM in Fig. 2.9.b is obtained which is FC-connected. In this
example, w, = A is the first common ancestor of x and y. w, = B,w| = C and w, = D

<

) Ty
Dummy states d, and d] along with the dummy transitions x->d, and d, —>d, are

added to the system.

31

" A
C

O Of— { ® O

a) An HFSM with a non-FC-connected form

-

[c ohato-Lo O

\.. S

b) An HFSM with an FC-connected form
Figure 2.9: Adding dummy states and transitions to an HFSM in order to make it

FC-connected.

An HFSM H =(Z,X,6,,p) is said to be reachable if every xe X% is

reachable from x, (the initial state of the system).

Definition 2.11: A basic HFSM H = (3, X, 5,3, p)is said to have a standard form if:

1) Hisreachable.

2) His FC-connected. o

From now on, all HFSM are standard unless otherwise specified.

In the next chapter, we will present diagnosis in flat DES. We will explain how the
diagnoser is constructed for a flat DES using a passive state-based approach. We also

review the concept of diagnosability,

33

Chapter 3

Diagnosis in Flat DES

Fault diagnosis is an important issue in complex systems. Many systematic approaches
have been introduced in literature to solve diagnosis problems. Some of these works
concentrate on diagnosis of the systems that can be modeled as DES. In this chapter, we
will explain a systematic method for designing the diagnoser in DES introduced in
[HKWO03]. We also discuss the diagnosability of a failure in this framework. It 1s
assumed that the system model does not include any hierarchy. In other words, the
system model is assumed to have a flat structure. In the following chapters of the thesis,
we will extend this approach to hierarchical and modular DES.

The method presented in [HKWO03] is simple and general. Moreover, the designed
diagnoser can be transformed into computer code and implemented easily. In [HKWO03],
outputs generated in the system are employed for diagnosis, but here, we modify the
approach so that the diagnoser uses observable events for diagnosis. We think that using
observable events simplifies the setup in hierarchical systems. Note that the resulting
diagnoser still provides estimates for the system condition and therefore, follows a state-

based approach for diagnosis.

34

In section 3.1, plant and faiture modeling are explained. In section 3.2, diagnoser

design is discussed. Section 3.3 explains failure diagnosability.

3.1 Plant Model

The plant studied in this chapter is assumed to be a nondeterministic finite state
automaton G = (X,%,8,x,), where X and 2. are the state and event sets respectively.
x, is the initial state,& : X x £ ~» 2% is the transition function (2% denotes the power set
of X). It is assumed that the event setY. can be partitioned to two disjoint subsets,
¥, and 2, (X ::XOU'XW), where 2 represents the observable event set and
Y., consists of unobservable events in the system.

The model describes the system’s behaviour in both normal (system functioning
properly) and faulty situations. Faulty situations are referred to as failure modes. Each
failure mode corresponds to some kind of failure or a set of such failures in the system.
Failure events represent transitions leading to failure modes. Thus, the event set

Y includes failure events. Hence, 2, can be considered as a disjoint union of failure
events and non-failure events (X =2, UZ,,f). We consider the more challenging case
where the failure events are unobservable (2 ;< 2.); diagnosing failures caused by
observable failure events would be very easy.

Suppose that there are p failure modes (F, , F, ,...,F,) in the system. First, the single

failure scenario is assumed in the system. It means that at most one of the failure modes

may oceur at a time. Therefore, the system’s condition can be either N (normal) or one of

the p failure modes: F} ,F, ,...,F, . It should be noted that the single failure scenario is

different from a single failure mode situation in which the system has only one failure
mode; i.e., p =1. Generalization of this approach to the case of simultaneous occurrence

of multiple failures is straightforward and will be discussed in Remark 3.1.

Let K = {N,F, ,F,,...,F, | be the condition set of the system. It is assumed that the
state set X can be partitioned according to the condition of the system:
X=X, UXF’ U---UX},,}] . The condition map «:X —» K is defined such that for
everyx e X, x(x) is the condition of the system at the state x:x(x) = N if xe X, and
kK(x)=F, if xe XF‘ (efl,...,ph.

The definition of xis also extended to the subsets of X :x(z) = {x(x)|x €z}, for
anyz g X .

In failure detection and isolation, given the observable event sequence (610203),

we want to find the condition of the system.

3.2 Diagnoser Design

A diagnoser is a system that detects and isolates failures. In our framework, it is a {inite
state machine that generates an estimate of the condition of the system as its output using
the observable event sequence generated by the system (6/03...0,) (Fig. 3.1). This is done
by calculating a set z, < X to which x must belong at the time that g, was observed,
k(z,) will be the estimate of the system condition. After ocourrence of the next

observable event (a,41), the diagnoser updates z,.

36

0107, - KKy e
Plant + > Diagnoser >
Controller (DES) , (DES) . X
Observable Estimate of
Event the system’s
Sequence Condition

Figure 3.1: System and diagnoser

Before going further, we introduce the concept of observation-adjacency, which we
will find useful in diagnoser design.
Definition 3.1: For any two states x,x' & X in a system, we say x” is observation-

<4
adjacent to x with respect to o e %, and write x => x' if x” can be reached from x using

a path along which o is the only observable event and o is the last event in the sequence.

In cases where the observable event is not important we show the observation adjacency

by x = x’. This means that x” is observation-adjacent to x with respect to some o € 2,0

We define the diagnoser to be a finite state Moore machine D =(Z,2.,,¢, ZO,K,K‘) s
where Z,¥. and K ¢ 2° - {g}are the state, event and output sets of D; z, € 2% {4} is
the initial state; Z < 2" —{¢g}, and £:Zx 3 — Z represents the transition function;

i: 7 — K denotes the output map. Each diagnoser state z is identified with a non-empty
subset of X .

The diagnoser state transition z,,, = £(z,,0,,,) is given by:

Za =x|xeX&@x' ez, X =)}, nzl,

37

z,,,will be the set of states which are observation-adjacent to some of the states
of z, with respect to g, i.¢., cach state of z,,, is reachable from a state in z, using a
path along which the only observable event is 0,41 and this event 1s the last event in the
sequence.

z, holds the information available about the state of the system at the time that the
diagnoser is started. If no information is available at that time, then z, = X . z; = X,
when the system is only known to be in normal condition at the time that the diagnoser is
started. The diagnoser is initialized with z, = {x,}if it starts at the same time as the
systermn.

Let z',z% € Z be two states of the diagnoser such that &(z',0) = z* for someo e 2.

. . 2 .
Suppose that z' is given. z° can be computed by calculating for everyx, & z', all x; such

[}
that x, => x, . Every x € X may belong to several states of D. Therefore, computing the

set of observation-adjacent states for every x € X could be an efficient way to decrease
the diagnosis computations. For each x € X a breadth-first search reachability analysis

can be done inO(| X | +|T|) time [CLR90], where | X |and | I"|denote the cardinalities
of X and T (the set of transitions of G). Hence, calculating the set of observation-adjacent
states for all states of X can be done in O(| X |> +| X || T']) time. |

The Reachability Transition System (corresponding to () is defined to be the

transition system (¢ = (X, R,%.), which has X, 2 and R as the state, event and transition

sets, respectively, R ¢ Xx 2, xX and (x,,0,%,) € Rif and only if x, :;>x2. The RTS

contains the information about the observation-adjacent states. The diagnoser can be

38

computed using the RTS. Reachability transition systems may also help in the on-line

implementation of diagnosis algorithms. We will discuss this in the following chapter.

3.3 Diagnosability in Flat FSM

Diagnosability of a failure mode F; in a diagnoser D is the answer to the question of
whether or not F; can always be detected and isolated by the diagnoser. For simplicity,
we assume that failure modes are permanent. We also concentrate on the single failure
scenario. It means that only one failure mode is possible to occur at a time. Simultaneous

occurrence of failures will be discussed later in this section.

Definition 3.2 [HKWO03]: A state z of a diagnoser, D, is called Fi-certain if from the

corresponding estimate of the system’s condition, x(z), it can be inferred that the failure

F; has occurred. 1
In a single failure scenario, z is Fi-certain iff x(z)= {Fi}.

Definition 3.3 [HKWO03]: A state z of a diagnoser, D, is called Firuncertain if

k(z)indicates that the failure F; might have occurred, but the occurrence of F; is not the

only possibility. 0

In a single failure scenario, z is Fr-uncertain iff F,e x(z) but x(z) = {F}} .For

example, if for some z, x(z) = {N, F;} then z is Fi-uncertain.

39

Definition 3.4 [HKWO03]: A permanent failure mode I is diagnosable in a system if £

can be detected and isolated following the occurrence of at most N; (N, 20) events in
the system after both the occurrence of the failure and initialization of the diagnoser. O
For diagnosability analysis in this framework, the diagnoser can be started either

before or after the occurrence of the failure. In other words, the system’s condition is

assumed to be unknown at the time that the diagnoser is initialized.

Definition 3.5: A path x, —t->-- D x withn 2 2 is a eycle if x; = x,. W

Definition 3.6: A cycle of F-uncertain states of the diagnoser is called an Fr-uncertain

cycle.]

Definition 3.7: A cycle z',--+,z" of Fruncertain states of a diagnoser D is called Fi-
indeterminate if there exist /2 1and x/,xJ,...,x/ €z/, for all j with 1< j<m such
that x{eX, for al j and k with 1<j<m , 1sk<l
and x!,x2,.. X", X3, s Xy ey X, 5.5, form a cycle in the Reachability Transition

System (RTS) of the system. The RTS cycle is called an underlying faulty cycle of the

Fi-indeterminate cycle. rl

Note that not every Fi-uncertain cycle is Fi-indeterminate [HKWO3]. Furthermore, the

diagnoser can get trapped in an Fi-uncertain cycle if the cycle is Fi-indeterminate.

Theorem 3.1: Assume a single failure scenario in the system and z, = X. Also assume

that there are no cycles of unobservable events or deadlocks in the system. A permanent

40

failure F; is diagnosable if and only if there are no Frindeterminate cycles in the

diagnoser.
We need the following lemma to prove Theorem 3.1,

ey

Lemma 3.1 [HKWO03]: Consider a path z, - 2, =P Iy U z,(n 2 1) in the diagnoser. For,

Tt
anyx, € z,, there exists x, € z,(1<i <n~1)suchthat x; =>x,, for 1 <i<n-1). [

Proof of Theorem 3.1 [HKWO03]: First, suppose the diagnoser does not have
indeterminate cycles. If F; occurs in the system and a new event is observed, the
diagnoser state will be either Fi-certain or Fi-uncertain. Since failures are assumed to be
permanent in the system, if the diagnoser state is Fi-certain, then it will remain Fi-certain
and F; is diagnosed. Now assume that the diagnoser state is Fj-uncertain. Clearly, the
number of Fi-uncertain states is bounded in the diagnoser. Therefore, assuming that there
are no cycles of unobservable events or deadlocks in the system, after observation of a
bounded number of events, the diagnoser will reach an Fi-certain state. This is because
the diagnoser gets trapped in a cycle of Fi-uncertain states only if the cycle is Fi-
indeterminate.

Converesely, if the diagnoser includes an Fi-indeterminate cycle, then there exists a

sequence of observable events ¢,,0,,...,0, that can take the diagnoser on a path
z, = 2, = z, —» z,, where z, belongs to the F-indeterminate cycle. Letx, & z, belong

to an underlying faulty cycle in the RTS. By lemma 3.1, there exist states x,,...,x,., such

Fray

that x, = x,,, for (0 <7< n-1). After reaching x,, the RTS may remain on the underlying

41

faulty cycle causing the diagnoser to stay on the Fi-indeterminate cycle indefinitely.
Therefore, there exists a trajectory for the system leading to states in X, such that the
corresponding observable event sequence throws the diagnoser into a cycle of /-

uncertain states and keeps it there indefinitely. Hence, F; is not diagnosable. 0

Remark 3.1: The results on single failure scenario can be extended to the case of
simultaneous failures. For simplicity, we consider a system with only two failure modes.
Generalization to any number of failure modes follows similarly.

Assuming two failure modes, there will be three failure scenarios in the system: F,
Fyand Fy,, where Fi; denotes the simultaneous occurrence of Fy and F3. The RTS and the
diagnoser are defined and constructed as in section 3.2. However, the condition set of the
system changes to K = {N,F,,F,,F,}. Therefore, the state set of the system can be
partitioned according to the system’s condition: X = X Ux A Ux 5, Ux £, - In addition,
the definition of the condition map «:X — K is modified: x(x)=N if xe X, ,
k(x)=F,if xe X, (ie{l2}), and k(x)=F, if xe X, .

The condition map can be extended to subsets of X according to k(z) = {k(x)| x € z}
forallz ¢ X.

Now, we discuss the diagnosability of the failure mode F,. Consider simultaneous
occurrence of the failure modes Fy and F in the system. According to Def. 3.4, a state z
of the diagnoser is Fi-certain iff x(z) = {F,} or x(z) = {F},} or x(z)={F,F,}. If z is

not Fi-certain and x(z)({F,,F,,} # ¢, then z is Fy-uncertain.

42

The definition of diagnosability is the same as before. The necessary and sufficient
condition for diagnosability of | is the same as that in the single failure scenario except

that the definition of F-indeterminate cycles has to be modified as follows.

Definition 3.10 [HKWO03): A cyele z',---,z" of Fi-uncertain states of a diagnoser DD is
called Fiy-indeterminate if there exist / = 1and x{,x],...,x/ € z/, for all 1< j <m such
that {x/|1sjsmlsksligcX, or {x/[1gjsml<hkshcX, and

L] ettt

alsox!,x7, . x Xy, XY, 0% .., X, form a cycle in the RTS of the system. [

43

Chapter 4

D-holon and Diagnosis in HFSM

In this chapter, we propose an approach for diagnosing failures in systems modeled as
hierarchical finite state machines (HFSM). HFSM can be used as a powerful tool for
modeling complex systems whose structure is organized in a top-down hierarchy. It may
be applied, particularly for diagnostic purposes, to many complex systems such as
aircrafts, spacecrafts, traffic control and manufacturing systems. We split a HFSM into
simpler structures called D-holons. In our approach, a diagnoser is designed for each D-
holon and these diagnosers work together to detect the failures in the system. In this way,
at any given time, the diagnoser needs only a subset of the transitions of the system. This
is particularly useful in the case of complex systems where the entire plant model is too
large to be stored in computer Random Access Memory (RAM). In this chapter, we
assume that all HFSMs are in the standard form unless otherwise stated. In other words,
all HFSMs are reachable, FC-connected with basic transitions. We introduce the concept
of D-holon in section 4.1. In section 4.2, first we discuss failure modeling and then we

introduce our method of fault diagnosis in HFSM. The problem of diagnosability in our

44

approach is addressed in section 4.3. We propose a method that uses the hicrarchical
structure of the system to investigate the diagnosability of a failure mode. We introduce
the concept of phase-diagnosability. The discussion in this chapter assumes that at most
one failure mode may occur at a time in the system. However, the results can be extended
to the case of simultaneous occurrence of two (or more) failure modes in a way similar to

that discussed in chapter 3 for flat DES.

4.1 Concept of D-holon

In complex systems, particularly, multi-phase operations, only part of the system model
(corresponding to the phase of operation) can perhaps be enough for supervision and
diagnosis. For example, in a multiple-phase system, the diagnosability of a specific
component failure may be examined only in phases of operation where the component is
active.

The HFSM model explained in chapter 2 provides a setup for studying a specific part
or level of the system in hierarchical systems. There, the super states describe a part of
the operation of the system in terms of the states and transitions among the states within
the super state. In this section, we introduce D-holon, a structure which represents a super
state with its internal transitions as well as its external transitions to other super states.
We will show that D-holon is an appropriate model for diagnostic purposes.

D-holon is a mathematical model for describing the dynamic of discrete event
systems. We associate a D-holon with each super state. The D-holon describes the
internal transitions of the super state along with its external transitions to higher and

lower levels in the HFSM.,

45

The word “holon” which comes from Arthur Koestlirs® 1967 book, “The Ghost in the
Machine”, was used in [Wan95] for the supervisory control of hierarchical DES. There,
the word holon refers to entities in the hierarchical structure which behave partly as
independent wholes but at the same time as subordinate parts. The term holon is a
combination of the Greek word holos (meaning whole) and the suffix —on (suggesting a
particle or part as in proton, neutron). This concept is also used in other works such as
[AEM94] and [GH1L.94] as a modeling tool for physical systems.

The D-holons introduced in this thesis are to some extent similar to the holons in
[Wan95]. We have, however, made some modifications to make them suitable for fault

diagnosis problems.

Definition 4.1: Consider HFSM H = (X, 2.,8,+, p). A D-holon DH associated with a
super state § in /1 is defined as a 4-tuple:
DHS - (XDHS ,Z,DHS ’51»13 ’X;)Hs)

where

o XPPsis the state set of DH. It is the disjoint union of X} and X7 ie.,
XPHs = x P (J x5 | where X' is the internal state set consisting of the simple
states of 8, i.e., X" = X", and X" is the external state set consisting of the
immediate simple states of higher and/or lower level super states (father and children
super states in HFSMs with an FC-connected form) which are the target of a
transition from a simple state of §

Xé)ilg - {y ' ye (‘Y,‘s‘z‘mple " ‘X;‘z‘mpla) & ('ﬂx e X:gimplﬂ LTE 2 Vi (X, o,),) & TH)}

46

Simple
..... 8

which are the target of a transition from a state of a higher level or a lower level super
state (father and children in HFSMs with an FC-connected form).

o %5 is the event set. It is the union of the boundary event set, 2.5, and the internal

e s o DH DI v < DH, : o
event set L% ie., L =TV UT0s 32 consists of the events associated

with transitions among internal states:

Db ¢ & .?impl@ vy

DHy e | e e X s v o= ¥ o f N o ol
2. ={oloer (Bx,,x, € X" v ={x,0,x,)&T" }}

¥ ™ includes the events associated with transitions from internal states to external
states:
YO — (oo e L &(Ax, € X5 x, € (X - XY = (x,0,x,) e T}
It should be noted that .77s and 5"+ are not necessarily disjoint.

o S xPHs 3Py x5 s the transition function. 5, and &, are defined as
restrictions of 8 to the internal events and the boundary events respectively, and
thus:

5.[[)”5 :X]DHS xzf)ﬁs “'")'X;)HS

DHy , 3 DHy DH v DH
O P X% = Xy

The following example illustrates the concept of D-holon.

Example 4.1:
Figure 4.1 shows an HFSM. The HFSM is not in the canonical form, because it has non-

basic transitions (transitions from basic states to super states). Figure 4.2, depicts an

47

equivalent HFSM in the standard form. There, all non-basic transitions have been
substituted by equivalent basic transitions and the AND state S; has been replaced by the
synchronous product of its components. The D-holons associated with the super states S,
Sy and S; are shown in Fig. 4.3. The dotted lines shown in D-holons separate the external

states from the internal states.

Figure 4.1: The HFSM of Example 4.1

48

Figure 4.2: The equivalent HFSM of the HFSM in Fig. 4.2

49

Figure 4.3: D-holons associated with the super states of the HFSM in Example 4.1

50

InDIH ¢
X PHs e ni, 4,C,D,0,P(E,K),(G,K)}
X s = A i, D,0, P}
T =g, f}
InDH
XV = {4 B C,D}
S =g, be,d}
XM =1{A4,C}

InDH,:

X P = ((E,K),(G,K),(G,M),(J,N),(H,M),(I,M),(H,K),(I,K),
(F,L),(H,N),(F,K),(H,L),(I,L),(I,N),0, P}

e = {hyi, jk,m,n, p}

X = [(E,K),(G,K)}

In a hierarchical DES, a D-holon DH can be considered as a part of the system that

can be studied (especially for diagnostic purposes) as a distinct system with some states
and transitions among the states (X 275,52, 5P}, and transitions connecting the D-
holon to the rest of the system model (X 2,227 5275}, The structure of a D-holon is

very similar to that of a generator. The only difference is that, in a D-holon DH, in

addition to the internal state set, the D-holon has an external state set consisting of those

simple states not in X+ that are the targets of transitions from the states in X" .

51

In our model, we do not consider transitions entering the D-holon as a part of the D-
holon structure because as we will see later, in fault diagnosis, we require only the
information about the target of outgoing transitions of the D-hbolon.

We observe that an HFSM can be completely defined by its D-holons and its initial
state(s). The D-holons describe an HFSM in an organized way and facilitate fault
diagnosis by breaking up the whole system model into several sub-models allowing the
diagnosis system to focus on the relevant sub-models. As a result, the implementation
becomes more efficient in computer memory usage. Later, we will explain this issue in

detail.

Definition 4.2: The level of a D-holon DH is defined to be equal to the level of the

corresponding super state. [

Definition 4.3: Let DH g, and DH g, be the D-holons associated with the super states S,
and S, of an HFSM. Suppose S, is the father of S;. Then, DH g is called the father of

DH ,, and DH g, the child of DH g, . 0

In example 4.1, DH ,is the father of D-holons DH g, and DH ,.

The following condition simplifies diagnoser design.

Condition 4.1: For any D-holon DH, boundary events are observable:

- i
PAIN ' |

X et gy

Typically, a D-holon describes a specific phase of operation. Thus, the boundary

transitions represent change of the phase of operation. Change of phase commands can

usually be assumed to be observable in an HDES. In fact, they act like bridges between

different levels of the hierarchy in the system.

Definition 4.4: We refer to a D-holon which satisfies condition 4.1 as a standard D-
holon. 0

In this thesis, we assume that all D-holons are standard unless otherwise indicated.

Remark 4.1: In the next chapter, the information of individual AND components is used
to diagnose failures in HFSMs. There, AND super states are not required to be replaced
by the synchronous product of their components. We can associate a D-holon with each
OR super state that is a component of an AND-state. The internal states are separated by
dashed lines to convey the idea that components are operating synchronously. Figure 4.4,

shows the D-holons associated with the AND components 83 and S4 of Example 4.1.

Figure 4.4: D-holons associated with AND components S3 and 54 in Example 4.1

53

InDH ¢, :
X P = (B F,GH,TLJ,0,P}
P =i, 7k, m}
X = (E,GY
InDH,:
X s = (K,L,M,N, P}
S Pss e th ik, n, p)

X2 =K} 0

In the following section we will explain how HFSMs and D-holons are utilized to

enhance fault diagnosis process.

4.2 Fault Diagnosis in HFSM

4. 2. 1 Plant Model
Consider an standard HFSM H =(X,Y,8,,p). We associate a D-holon with each

super state of the system. Suppose that DHj is the D-holon associated with the super state

S. As stated earlier, this D-holon is represented by a 4-

tuple DH , = (X ™, 3P4 §P1s | x PPy We partition the event set "™ to two disjoint
subsets, 177 and 27, i, NP = B YT | where T2 represents the set of

obscrvable events and 2" consists of the unobservable events of DHj.

54

Suppose there are P failure modes in the system: /7, , F, ..., F, . Each failure mode
corresponds (o some kind of failures or a set of such failures in the system, Failure events
may be present at all of the system levels. For instance, a failure in a sensor value (stuck-
closed or stuck-open) may occur in low levels of the system. On the other hand, software
breakdowns, planning failures and scheduling errors are some kind of failures which
usually happen in high levels of the system. The event set 325 includes failure events of
DHg. Tt can be considered as a disjoint union of failure events and non-failure
events: &7 =32 JE ' . Failure events represent those transitions which lead to
faulty situations in the system. We assume that failure events are not observable in the
systern:

£ ¢ T
In this chapter, we assume the single failure scenario in the system. This means that
the system can be in only one of the following P+1 conditions: N (normal),
F, ,F,,...F, . K={N,F ,F,,..F,} will be the condition set of the hierarchical
system.
In failure detection and isolation, given the observable event sequence (010203) we

want to find the condition of the overall system.

55

Vi Add Base V2

L3
L2

L1
Lo V3

i

Figure 4.5: Example 4.2. A neutralization Process

Example 4.2: Neutralization process
In a simplified neutralization process (Fig. 4.5), initially, all valves are closed and the
tank is almost empty. The process is performed in three phases: Add-Acid, Add-Base and
Draining. In Add-Acid phase, the controller generates a command to open valve V1 and
the reaction tank is filled up to level 2} with the chemical to be treated (here acid). When
the level changes from L1 to L2 this phase ends and the process enters Add-Base phase.
In this phase, V1 is closed and the neutralizer (base) is added by opening valve V2. When
the alkalinity (pH) of the solution reaches the normal range, the process moves to its last
phase (Draining). In Draining phase, V2 is closed and the tank contents are drained
through valve V3. After valve 3 is closed by the controller, the cycle of the process is
complete. The system goes to the initial state and following this a new cycle can begin.
The neutralization process can be considered as a two level hierarchical system in
which the controller generates appropriate commands in each level to guide the process.
Table 4.1 shows high and low level events. Sensor measurements are pH and level. pH
can be acid (), normal (n) or base (b), and level can be L0, L1 or 1.2. Sensor readings

and controller commands are observable and the failure events are assumed unobservable.

56

Here, we only consider one failure mode: valve V1 stuck-open (F). For simplicity, it is
assumed that V1 gets stuck-open only when it is open. In our graphs throughout this
thesis, failure events are shown with dashed lines.

Figure 4.6 shows a simplified model of neutralization process. A detailed version is
presented in Fig. 4.7. Fig. 4.8 shows the D-holons associated with the super states. It
should be noted that states AN, AF and B along with the events ‘a-added’ and ‘b-added’

are added to the model to make it FC-connected.

Level Event Task
Oi - Command open valve i
Ci Command close valve i

Low Level Lij Level change from Li to L
n2a pH change from normal to acid
a2n pH change from acid to normal
add-a Start Add-Acid phase
add-b Start Add-Base phase
drain Start Draining phase

High Level
a-added Phase Add-Acid ended
b-added Phase Add-Base ended
T-empty Tank 1s empty

Table 4.1: Example 4.2: Events in a simplified neutralization process

57

(" NeuProc h
T dda) 1 Add-b (T T
N el Adld-Acid ’ » Add-Base
T-wrnpty (Draining . drain
L e J

Figure 4.6: A simplified (high-level) description of the neutralization process

NeuProg
Add-Acid Add-Base
2 e
""'(4N\r-“gwéﬁ"\ saddyt o1 .‘\@_ﬂw "
LN LN e ~&
‘iLM \ ! Addb il :\ it
My AN AL 7N 0N w@
l ™ Adda o] ‘ ' s @
nt] b 5N 1\ i
. S| 1
] Py
N l ;|
b 2F e BF) !
‘ iLO‘ LD‘E I 1
\? 3. ,;;j‘lw*;uz.»iﬁF)w
Tamply e ’

Figure 4.7: A detailed HFSM of the neutralization process

DH

Nm 1o
(r@ (7\N\) AF (S‘,;;
Addha Addb Add-p drain

F R R R C O R

Cfi@

a) D['[Neu[’mu
(DMy g acia : p
)'3N> *~ (-3N - apdmd
b
[bW
{
A I i |
i i .
b A f !
i (2F; { :
\\ ELm LOIE / i)
\ v R o+
CaEn M aF A F ilafidad
L
b) DH gud-acid
(DH i \

Agd-Base

.

(-

Q) DH Add-Base

Dﬂ)m)nmg '

@@ @ 2@ =

.
Y

d) DH Draining

Figure 4.8: D-holons associated with the super states of the neutralization process

59

The state and event set of each D-holon is as follows,
I DH yeurroe.:
X = {Ini, AN, AF,BNIN,IN,TF 12N}
X, = {ni, AN, AF, BN}
2. = {add ~ a,add ~ b, drain}
In DH ggd.4cid:
X ={INIF2N2F3N3F 4N A4F 5N ,5F,6N,6F, AN, AF}
X, ={IN,1F}
> = {0, L0, L12,n2a,a - added }
In DH 4a4-Base:
X ={IN,7F 8N 8F 9N ION,11N,18F BN}
X, ={7N,7F}
Y. =1{02,C1,L23,a2n,b — added}
In DHpraining:

X = {12N,13N,14N 15N, 16N 17N, Ini}
X, = {12N}

Y ={03,C2,C3,121, L10,T — empty}

4.2.2 Diagnoser Design
Let H be an HFSM modeled by D-holons. Each super state of / is associated with a D-
holon describing a particular phase of the system. At the time that the diagnosing process

initiates (which may not necessarily be when £ starts its operation), a state estimate for

60

the state of H , 2, is assumed available. This information usually comes from the sensors
and data available in the system (in the worst case, when no information is available,
z, = X ¥™"). We say a D-holon is active if at least one of its internal states belong to z,.
After occurrence of an observable event, the state estimate of the system should be
updated. For diagnosis purposes, it may be simpler to use the structure of active D-holons
to update z,. Using the entire model of the system for updating z, requires a large
amount of memory. In our approach, instead of designing a diagnoser for the equivalent
flat system, a diagnoser is constructed for each D-holon of the HFSM. The state estimate
of the system will be calculated based on the state estimates provided by its D-holon
diagnosers. Initially, the diagnosers of active D-holons are started. The initial state of

these D-holon diagnosers is the set of internal states of the D-holon that are present in z,.

The state estimates of the rest of diagnosers will be empty. A D-holon diagnoser is called
active if its current estate estimate is non-empty. Otherwise, it is called inactive. Clearly,
several diagnosers may be active concurrently.

After the occurrence of an observable event, only the model of those D-holons whose
diagnoser is active is used for updating the state estimate. After the state estimate of a D-
holon diagnoser is updated, the new state estimate may include some external states.
These states are the internal states of other D-holon. Thus, the name of each external state
is passed to the diagnoser of its respective D-holon. This state will be added to the state
estimate of the receiving diagnoser. Also, the external state will be removed from the
state estimate of the sender diagnoser. If the state estimate provided by a diagnoser gets

empty, then it becomes inactive. We see that the state estimate of a diagnoser may be

6l

affected by other diagnosers, Thus, the D-holon diagnosers communicate with each other
in order to estimate the system’s state and condition.

The following definitions will be found useful.

Definition 4.5: Let DH; and DI be two D-holons with DG, and DG; as their
corresponding diagnosers. D@, is said to be the father of DG, if DH, is the father of DH..

In this situation, we refer to DG as the child of DG, i

Definition 4.6: The level of a D-holon diagnoser is defined to be equal to the level of

the corresponding D-holon. Il

In HFSMs with a standard form and standard D-holons, outgoing transitions from a
super state S are observable and enter the super state’s father or children only. These
transitions along with their target states are included in D-holon DHy associated with S.
Therefore, the diagnoser of DHs, DGs, communicates only with its father or its children

in order to update its state estimate. This interaction is shown in Fig. 4.9 by arrows.

| Father(DG) |

)

L Chil' (DG | CHIADG) e | ChitDGy) |

Fig. 4.9: Interaction of father and children on a diagnoser

Figure 4.10 displays a general diagram of the interaction among D-bolon diagnosers

in an HESM with an FC-connected form, The diagram is in the form of a tree.

{ Hightevel |
; Diagnaser

DG,
i l
E
’ |
L S X Y.
. { h i
i 5 | | |
DG, P DG, v 2 e e 2 x 8 s a9 DG, |
f ! { j
A o’ _— A - ‘
f
z ‘ |
§ ? 3 ! | \
It AR B | 5 { Yo { ® i P 4
LDB, | DG, % DG, | P DG, DS, t DG, | L DG, | | DG, ¢ DG, |
' / e p— T R * o Mginne’ R -~ :
A A A A A A A A A
: H ¢ H : H ! : :
: : : : : : H : H
: : i 3 H : : : :
H : H : H i : : :
h 4 b4 ¥) 4 ¥)4 ¥ ¥) 4

‘ Low Level Diagnosers

Figure 4.10: Interaction among diagnosers in an HFSM

In the following, we explain the diagnosis process in detail.

Let DHyg be a D-holon in the system and DGy the corresponding diagnoser. Based on
the observed event sequence up to g, DGs computes a set z°% < 27" (X is the

- DGy
n

internal state set of DHy). If zP% =@, the system canbe in X, . z7° will be updated

after observing o ,,, .

Definition 4.7: DGy is called active if its state estimate z” is not empty otherwise it is

called inactive, o

63

Let z2% be the current state estimate provided by DGy. After the occurrence of a new

e DGy
“a+l

observable evento,,, , in order to update the state estimate, a temporary state set z,7)* is

calculated as follows:

Fread

TP = (x| xe X & (A e 2" X = x) n20

“ael T

#P% contains those states of DGy which are observation-adjacent to the states

of 2% with respect to @, ; i.¢., the states that are reachable from the states in z, using
the path along which the only observable event is o, and this event is the last event in
the sequence. It is important to note that o,,, is the (n+1)th event observed in DH from

the time that the diagnosis is started (not the (n+1)th observable event generated by the

system).
e DGy fe : =~ DGy M ,,n(Nalel
7205 can be partitioned according to: Zp =z M Uz’ where 2,7 and

z ,ﬁif)as are calculated as follows,

DG _ DGy DH,
Z i T el ﬂ Xl

EDGy _ PGy XD"L"

24l Ml
zhP% includes those states of 7% that belong to the internal state set of DHy and

_ EDG

 EDGs
“

contains the states that belong to the external state set of DH. z," " is used to

calculate the states to be sent to other diagnosers. The state setz,,, passed by DUy to the

diagnoser of another D-holon DI, is calculated as follows,

Z(: - “l AN ﬂ X[DH,,

n+l a4l

64

z° is a part of the state estimate imported by DH,. The imported state estimate of a

~nl
diagnoser DG, is defined as the union of all states passed from the father and (or)
children of DG to DG, and it is denoted by 277 . Thus, the updated state estimate of DGy,

o PGy
“pe) 2

will be:

DGy _1.DGy | | = DGy
PR U 2

Figure 4.11, demonstrates graphically the updating procedure in a D-holon diagnoser,

DG. For simplicity, we have dropped the superscripts DG,

H i
L X
s To the father
‘ * __ and children of
(~ n | LB DGy
Zn i L Z A+l S
|
X, Ny
! P | :
L Zaa U L 2 ;
A i
L7
[BN !

Figure 4.11: The updating procedure in a D-holon diagnoser

Remark 4.2: Suppose that DI, is one of the D-holons whose diagnoser, DG}, becomes
active when the diagnosis process starts. The initial state of DG; will be caleulated as:

229 = X" Nz,. The “worst” case would be if z, = X*"" In this situation, all D-

65

holon diagnosers will be initiated with their corresponding D-holon internal state set as
the initial state (z2% = X). After the occurrence of the first observable event in the
system, only those diagnosers whose updated state estimate is not empty remain active.
Furthermore the updated state set of the others may become smaller. The opposite case is
when the system and the diagnosis process start simultaneously. In this case, zo will

contain the initial state of the system only. Therefore, only the diagnoser of the D-holon

containing x; as an internal state will be initiated in the system. 0

As explained in chapter 3, using the RTS of a DES is an economical way to compute
the diagnoser of a system. In our approach, we construct an RTS for each D-holon of the
system. At any given time, the RTS of the active diagnosers are stored in the memory and
used for state and condition estimation.

The RTS of a D-holon DHs is defined to be a three-tuple

GPPs = (X P [RPMs 35y, where X and 32" are the state and observable event

sets of DHg respectively; R™ o X s x TP x X s and (x,,0,%,) € R if and only
P

ifx, =x,.

Let H' =(X',%',8',x,)denote the equivalent flat system of A where X' = X *"*and
S'=Y are the state and event sets respectively; &1 X'x ' — X' represents the
transition function; x; is the initial state of the system. /' is obtained by removing the
hierarchical structure of H. There are P failure modes in the system. X' can be
partitioned according to the system’s condition: X' = X, Ux R U-Ux g« Let

DG =(Z,% & 2,,K,x) represent the diagnoser designed for H'

66

where Z ,2.! and Ko 2% - {#y are the state, event and output sets of DG,

z, < 2% ~{¢}is the initial state; Z 2" —~{g},and & 1 Z =X, > Z represents the

transition function; & : Z —» K denotes the output map of DG. Each diagnoser state z is
identified with a non-empty subset of X', z, < Z denotes the state estimate of DG after

the occurrence of the observable event o, .

Theorem 4.1: The state estimate provided by DG is equal to the union of the state
estimates of the D-holon diagnosers:

D6,

Z o= &
[d” ..4“ E}
=]

L3

J

where z f,’ IG’ denotes the state estimate provided by DG; after the occurrence of o, , and d

n?

is the total number of D-holons .

Proof: Here, we prove the theorem by induction.
Let zp be the initial state of the diagnoser. The diagnoser of those D-holons whose

internal state share common elements with zg becomes active. Assume that DG; 1s one of
the active diagnosers. Its initial state set is calculated as: z;% = X Nz,. The state
estimates of the inactive D-holon diagnosers will, of course, be empty. It is clear that

d d d

DG el DG e DG .

z, =| Jz,"* . Now, assume that: z, =| lza’ . We prove that: z ,, »—Uz . For this,
f=1 1) jusl

Doy

d
‘ DG,)
we show that: xez,,, <> xe Uzn " forevery xe X'
Lk
Jal

67

Letx e z,,, be a state of DG. We can conclude that there exist x" e z, such that

Tl
xe X and x is observation-adjacent to x' with respect to o, (x'=>x). Thus,
4 po ;
x'ez =|Jz, ' . Suppose that x' e zf)f'"‘f”‘ for some & « {l,...,d}. Since x is observation-
1

adjacent to x', we can say that after observing o, ,,, x either belongs to 2P0

o,y OF to the

state estimate of the father of D@, or to the state estimate of one of the children of DG,

DG,
[P

d
Therefore, x & U z
=t

d
DG, G,
Now, assume that X‘EU%,,,,f . Suppose that x e zf:":" for some me{l,....d} .
Ful

Tt

Therefore, there exist x' such that x’ = x and x’ either belongs to zf;’" or to the state

estimate of the father of DG, or to the state estimate of one of the children of DG,,. This

d

. . ! DG, . P .

implies that x" e Uzdn /", From the induction assumption, we can conclude thatx' € z,,.
=

Since x is observation-adjacent to x” with respect to o,,,, it can be inferred thatx € z

n+l *

It follows from the theorem that the condition of the system is:

d d

DG DG,

K‘(Z") = I((U Zy "/) = UK(Z” N)
=l Jul

68

Remark 4.3: A D-holon may contain faulty states while the corresponding failure event
could have appeared in another D-holon. For instance, in Fig. 4.12, the failure event f

occurs in super state S1. No failure event occurs in §2 but S2 contains faulty states. .

52

Figure 4.12: Example of a super state containing faulty states corresponding to a failure

event occurred previously in another super state.

In our approach, it is possible that several diagnosers be active at the same time in the
system. As a result, the state estimate of an active diagnoser may be affected by other
diagnosers. In other words, diagnosers in the system have interaction among each other
and are “coupled”. A diagnoser in a standard HFSM only may have interaction with its
father or (and) its children during the diagnosis process. Therefore, if a diagnoser is not
active simultaneously with its father or any of its children, then it never interacts unless
when it invokes its father or children after which it becomes inactive. This could happen
if at any given instant, all active diagnosers are in the same level. A set of sufficient

conditions for this is that all states in the initial state estimate z, belong to the same level

69

and each level of the hierarchy in the system has a unique event set, To clarify this, we

first define the event set of a hierarchy level.

Definition 4.8: The event set of a hierarchy level L is defined to be the set of the events
labelling the transitions among states of the D-holons at level L and transitions from
states at levels L+1 (one level down) and L-1 (one level up) to states at level L if L # 0,

and transitions from states at level L+1 to states at level LifL =0, [

In a system with levels 0,...,m, if event sets of the levels are disjoint, then the event
set of the system can be partitioned according to the level: ¥ =, UL, U---UX,, , where
2., (0 <i < m) denotes the event set of level .

Usually, in real systems, different levels have different physical components and
events labelling the transitions among the components are different in different levels.

Thus, assuming disjoint level event sets in a hierarchical system could be practically

reasonable.

Proposition 4.1: Assuming disjoint level sets in the system and that the states in z,
belong to the same level, at any given instant, all active diagnosers are from the same

level. 0

Note that it is possible to have multiple boundary transitions with the same label
event in a D-holon resulting in simultancous activation of multiple children diagnosers.
Since, diagnosers only affect the state estimate of their father or children (belonging to

different levels), diagnosers of the same level have no interaction among each other. Thus,

70

diagnosers can be decoupled while working simultancously provided that they belong to
the same level.

In systems with decoupled diagnosers, if a boundary event of a D-holon is observed,
the diagnoser of the D-holon becomes inactive and the diagnoser of the D-holon(s)
containing the target states as their internal states becomes active. In these cases, the D-

holon diagnoser becomes a FSM. This is illustrated in the following example.

Example 4.2: Neutralization Process (Contd.)
The RTS of each D-holon is given in table 4.2, In Fig. 4.13, the high level diagnoser is
shown. Fig. 4.14 illustrates the low level diagnosers. Since the D-holon diagnosers have
no interaction among each other during their operation, they can be represented by FSM
models.

It is assumed that the diagnosis process starts simultancously with the system (i.e.,
z, = {Ini}). Therefore, in D-holon diagnosers, the initial state of the diagnosers is a
subset of the D-holon’s initial state set. When the diagnosing process initializes, the high
level diagnoser (DGreurroc) becomes active with the initial state zé) b o {Ini}. In Fig.
4.13, we have shown five different diagnoser models each corresponding to different
initial state sets. Note that the initial state zp may be different each time the diagnoser
becomes active during the cycle of the system operation. Figure 4.15 demonstrates the

activation sequence of D-holon diagnosers in the system.

71

‘ Event Observation ’ ‘ Observation
D-Holon State . P Adjacent State Event (o) Adjacent
- (o States w.ad , o States wad . o
Ini add-a IN AF add-b T
lr)f{Naul"mc
AN add-b TN BN drain 12N
IN 01 2N AN 112 6N,6F
2N L0131 3INL3F 4F .12 oF
2N na 3N,5F SN Lo} 4N 4F
D ll{/{ def-Acid 2F LO 1 3F SF LO 1 4{”?
2F n2a 5F 6N a~added AN,AF
3N n2a 4N, 4F 6F a-added AF
3F n2a 4F
TN 02 ON,9F 9N Cl 10N, 10F
N C1 8N,8F 9F C2 10F
¥ 02 9F 10N azn 1IN
D H Add-Base
7F C1 8F 10F 1L.23 18F
8N 02 10N 1IN b-added BN
8F 02 10F
12N C2 13N 15N L10 16N
DHpraining 13N Q3 14N 16N C3 17N
14N 1.21 15N 17N | T-empty Ini

Table 4.2: Example 4.2: RTS’s of the D-holons of the neutralization process.

BN |

B 4

12N

drain

[6N,5F |
| NF

(3N,3F)
LNF

| 4N 4F
Ll

L1z

R SN
{’SN,GF
| NF

a-added

[ANAF 1
)

[NF

Figure 4.14.2) DG yua.4cia

N

73

s
[TNTE TN
WUNF) N
WE SR

02 ~—«J(~ c1

Vs

LNF) NF

M

C1 02

vy, Ty y
(ON9F} [BN,8F) ; 9F

b 4

'w
(10N, 10F)

L23

Figul‘e 4.14.‘)) DGA(]d—b(ISG

74

.z

ST

Lt
o
Z

'z

C) D GDr'm’m’ng

Figure 4.14: Low-level diagnosers

75

(2) DG, gacia
N S
. @
DGNequu Mwﬂmn»—- DGAM&B:\M
B A
B

(5) L/MW’T
(6) DGﬂmz‘nmg

Figure 4.15: Diagram of the activation sequence of diagnosers in Example 4.1

In Fig. 4.15, each box represents a D-holon diagnoser. Initially DGpeyproc becomes
active in the system with z, = {Jni} . After the occurrence of the boundary event ‘add-a’
DG yaa-scia becomes active with initial state estimate z, = {IN} and DGpeyproc becomes
inactive (transition (1) in Fig. 4.15). The activation sequence of diagnosers can be
followed according to the numbers shown on the diagram. After step (6), the sequence
starts from (1). Since, at each time only one diagnoser is active in the system, the

system’s state estimate is equal to the state estimate provided by the active diagnoser. (1

1t should be noted that the Neutralization Process is used as a simple illustrative
example. Add-Acid, Add-Base and Draining are too simple to be considered as separate
phases in real systems. The whole process might be considered as a phase in a large

complex system.

Remark 4.4: In our framework, each D-holon diagnoser can be automatically translated
into computer code. Under operating systems supporting multithreading, the computer
code of each diagnoser can be put in a thread. Hence, several diagnosers can be in

operation concurrently. The efficiency of our method depends on the amount of

76

communication among diagnosers. Frequent communication among the diagnosers is
undesirable. As pointed out earlier, if the event sets of the levels of the system hierarchy
are disjoint and all states in zy are at the same level, then the diagnoser will be decoupled
and there will be no communications among diagnosers except when a diagnoser invokes

another and becomes inactive itself.]

Remark 4.5: Assume all D-holon diagnosers are decoupled in the sense defined earlier.
In general, a D-holon diagnoser may become activated with various initial states. This
leads to several transition graphs for the diagnoser, each graph corresponding to an initial
state. On the other hand, all the information required for computing the diagnosers in the
systemn can be obtained from the RTS of the D-holons. Hence, in our approach, it is more
convenient to compute the RTS of D-holons and performing diagnostic computations on-
line (as opposed to computing several diagnosers off-line and storing them in computer
memory). However, in simple systems with small number of states and decoupled

diagnosers, the graphs of the diagnosers may be computed off-line and stored in

computer for diagnostic purposes (as in Example 4.2). o

4.3 Diagnosability Using HFSM Structure

In this section we would like to take advantage of the HFSM framework and D-holon
model to study the problem of diagnosability in a hierarchical DES.

Consider a component, say a valve, in a system. Suppose that this valve fails stuck-
closed while it is closed and no open commands are sent to the valve after the failure. In

this case, the diagnoser of the equivalent flat system would not be able to detect the

77

failure and according to the definition of diagnosability in Chapter 3 the failure is not
diagnosable. Since the stuck-closed failure has no effect on the performance of the
system, one may ignore the undiagnosability of the failure. However, if the valve is
going to be used in another cycle of the operation of the system, ignoring the
undiagnosability of the respective failure may cause problem.

The notion of I-diagnosability, introduced in [SS1.95], is used to address the above
problem. According to [SSL95], the valve failure should be considered undiagnosable
only if it cannot be diagnosed following an open command. Otherwise the failure is
considered I-diagnosable. Now, suppose that the valve fails stuck-closed while it is open
and no commands are issued afterwards. According to the notion of I-diagnosability, the
failure can still be considered (I-)diagnosable even if it cannot be detected by the
diagnoser. This does not seem to be suitable in practical systems,

The main issue here is that the definition of diagnosability (in Chapter 3) requires that
the failure be detected and isolated under all circumstances. However, in cases, where a
component becomes faulty while it is not active, it may be too restrictive to expect
diagnosability. Therefore, diagnosability requirement should be limited to the phases of
operation when the component is active. This leads us to the concept of “phase-
diagnosability”. The framework proposed in this chapter and in particular, the concept of
D-holon, provides a suitable setup for developing the notion of “phase-diagnosability”.

In the following, we explain the notion of phase-diagnosability of a failure mode. We
assume that the level event sets in the hierarchy are disjoint and therefore, the D-holon
diagnosers in the hierarchical systom are decoupled. This implies that D-holon diagnosers

can be modeled as FSMs. We also assume that we always know which D-holon the

78

current state of the system is in. In other words, for any »n =0, there exist ie {l,...,d}

such that z, ¢ X/

HoasR

. This can be assured if the initial state estimate z; satisfies

o LI
»30 g; JY,

'+ for some je{l,....d} and for all D-holons, all external transitions with
identical label (event) lead to a unique D-holon. These assumptions are not necessarily
very limiting. Because the D-holons used in the study of diagnosability describe a
complete phase of operation (details will be given later) and we usually know exactly
when a phase of operation starts. We also assume that failure modes are permanent. For
simplicity, we concentrate on the single failure scenario. The approach can be extended
to simultaneous occurrence of failures following a method similar to that explained in
chapter 3 for flat DES.

A permanent failure mode F; is phase-diagnosable with respect to a D-holon if F;

can always be detected and isolated before the system leaves the D-holon.

Definition 4.9: A permanent failure F; is phase-diagnosable with respect to a D-holon if
it can be detected and isolated by the diagnoser of the D-holon (with z, = X"') after the
occurrence of at most a bounded number of events following both the occurrence of the

failure and initialization of the diagnoser. o

Note that the definition implies that the failure must be diagnosed before the system

leaves the D-holon. In general, the initial state of the diagnoser, z, is a subset of X 0‘”’
and therefore, the condition z, = X" may seem restrictive. In practice, however, the

initial state or states of a phase of operation are generally few and the start of each phase

79

follows an observable event. Thus, z, = X typically holds and is a reasonable

condition.

Theorem 4.2: Consider a D-holon DH associated with a super state of an HFSM H.
Assume that there are no cycles of unobservable events or deadlocks in DfF (states belong
to the external state set of DH are not considered as deadlocks). Suppose single failure
scenario in the system. Let DG denote the diagnoser designed for DH. A permanent

failure £, is phase-diagnosable with respect to DH if and only if:
1- There are no F-indeterminate cycles in DG.

2- Every diagnoser state, z¢, containing external states (z”° ¢ X ") is not F-

uncertain.

Proof: Supposc that DG is initialized with z, and no boundary event occurs in the

system. In this case, diagnosability of a failure mode in a D-holon is similar to that of a
flat DES, because the internal structure of a D-holon is the same as that of a flat DES and
only DG is active in the system. Therefore, condition (1) is necessary and sufficient
condition for diagnosability according to the theorem 3.1. Now, assume that a boundary
event occurs. Since diagnosers are assumed to be decoupled, following this event, DG
becomes inactive and either its father or one (or some) of its children becomes active. It
means that F; is diagnosable if and only if the last state estimate provided by DG which

will be a subset of X" is not Fi-uncertain. o

Sometimes for a given component, the active phase of operation is described by a set

of super states (and the associated D-holons). In these cases, for the purpose of studying

80

phase-diagnosability, we should first merge the super states and then study diagnosability

with respect to the D-holon associated with the new (larger) super state.
Phase-diagnosability is a f{lexible definition and may allow the accommuodation of

operational assumptions in the study of diagnosability. For example, Fig. 4.16 shows a

system consisting of two phases (super states) S1 and S2.

A

-

Figure 4.16: A system consisting of two phases (super states)

\,

Suppose that we would like a failure mode F to be diagnosable if the system enters
phase S2. This means that as long as the system is in S1, we do not expect to detect and
isolate F. To examine diagnosability, we can construct the system in Fig. 4.17 which
behaves similar to the original system. Then, we study local diagnosability of the failure

with respect to the D-holon associated with H1.

HO

H1

IR e e B e T

¥

Figare 4.17: Modified system for diagnosability analysis

81

So far, we have agsumed that in the HFSM all AND-states have been replaced by OR
equivalent states. In the next chapter, we examine the cases in which the internal
transition of AND-stales can be expressed using the transition function of the
synchronous product of the components of the AND-state. We will show that under
certain conditions, the computational complexity of constructing the required RTS and

the requirements on computer memory for storing the RTS can be reduced significantly.

82

Chapter 5

Semi-Modular Fault Diagnosis in

Modular Systems and AND D-holons

In the previous chapter, we assumed that AND super-states of the system were
substituted with the synchronous product of their components. In other words, in order to
apply the diagnosing process discussed in chapter 4, the system with AND super states
was converted to its equivalent HDES containing only OR-states. Typically, the number
of states of the synchronous product of several FSMs is much larger than the sum of the
number of states of the individual FSMs. Therefore, exploiting approaches that, for
diagnosis purposes, use the models of individual components, rather than the
synchronous product, is usually very useful. This is particularly important where the
number of components in the system 1s very large.

In this chapter, we propose a semi-modular approach in which (if the interactions
among components are observable) the updating of the system estimate in the diagnoser
can be done using only the RTS of individual components. Therefore, instead of storing

the RTS of the combined system in the memory, the RTS of individual components may

83

be stored and used for diagnosis computations. We also will show that the complexity of
computing the required RTS in our approach is polynomial in the number of components,
while the complexity of calculating the RTS of the whole system in the conventional
method is exponential in the number of components. Furthermore, the sum of sizes of the
RTSs in our semi-modular approach will be polynomial in the number of components,
while in the conventional, monolithic approach it is exponential. We call our approach
semi-modular because we do not design individual diagnosers for each component. The
diagnoser that we construct for the total system, however, uses the information of the
RTS of individual components to update and compute the state estimate.

In section 5.1, we develop our semi-modular approach for a flat DES which can be
represented by the synchronous products of several generators. In section 5.2, we explain
how the results in section 5.1 can be applied to D-holon diagnosers in an HFSM. The

complexity issues will be discussed in section 5.3,

5.1 Semi-Modular Diagnosis in Flat DES

In this section, we develop a semi-modular approach for diagnoser design in a flat DES
which can be represented by the synchronous product of a number of generators.

The plant that we study in this section is a modular finite state
machine H = (X,2.,8,x,) , where > and X are the event and finite state sets respectively;
S8 X x Y — X represents the transition function and xo denotes the initial state of the

system. H consists of k(k 2 2) components. Each component can also be modeled as a

generator ' = (X', ¥ ,6",x}) (i € {l,...,k}), where L'and X'are the event and finite

84

state sets of the component H'; x. denotes the initial state of the module H' and
5 X% 3 > X' is the transition function of the component /.

The model of the whole system / can be obtained using the synchronous product of
the components. Hence, H can be represented as: H = Rch(H' ||| H), where ‘|’
denotes the synchronous product operator. Fach state of H is represented as a k-
tuple x = (x,,...,%,), wherex, € X'. The event set and the initial state of // can be
calculated as: £ =3 U UL! andx, =(x,....x;).

The event set of each component ¥ can be partitioned into two disjoint subsets ¥

foond 1y

and 3’

Ho

(SF =31 US!), where £/ is the set of observable events and X), the set of
unobservable events in the module H'.

The event set 3 includes the failure events in component H' (assuming H' has
some failure modes). It can also be partitioned into two disjoint sets Z‘} and Zf,f
(T =% UZ!,), where T, denotes the set of failure events and X, represents the set
of non-failure events in H'. It is assumed that ¥/, ¢ X! forany(i € {L,...,k}).

H describes the behaviour of the system in both normal and faulty situations. Suppose
that there are P failure modes in H: F, ,F,,...,F, . Let K={N,F ,F,,...,F, }be the
condition set of the system, It is assumed that the state set X' can be partitioned according
to the condition: X = X, UX 5 U--Ux 5, - &1 X = K denotes the condition map of H.

Similarly, it is assumed that the behaviour of each component can be described in

both normal and faulty situations. Considering £; failure modes in H E’ N ,.‘.,17',1; and

K’ = {N,F,F)....,F, tas the condition set of H', the state set X of each module can be
partitioned according to the condition of that module: X' =X UX}}l UU){}H .
x' X' —» K’ denotes the condition map of H' .

First let us assume there are two components (& = 2). Generalization to arbitrary
number of components will be discussed later.

The details of design were explained in chapter 3. Here, we quickly review the

notation.

Let DG = (Z,%.&,2,,K, &) be the diagnoser designed forH . Z,% and K ¢ 2 - {¢}
are the finite state, event and output sets of DG . z, < 2% ~ {#} is the initial state;
Z 2% —{gy; E:ZxT > Z represents the transition function; x:Z - K denotes the
output map. Each diagnoser state z is identified with a non-empty subset of X', z, ¢ Z

is the state estimate of DG after the occurrence of the observable event o, .

The diagnoser state transition z,,, = &(z,,0,,,) is given by:
. Tl .
2, = {02%,) | 36,0 2 (x,x3) € 2, and (x],x)) = (0, x,)} if o, € 2T NP
Tyad
Z,0 = 10x0,x) | 3x 1 (x],x,) € 2, and (x),%,)=(x,x,)} if o, € SHoye

L . . fqu o
z, =1(x,x,) | 3x] 1 (x,,x;) €z, and (x;,x)=>(x,x,)} it o, € hIRED

Proposition 5.1: Assume Y, N22 =4, then:

un

)

“ " a . F » o &
1. Foroe L' NE°: (x,,x,)=>(x],x,) if and only if x, =>x; and x, = x}.

[} o
2. For oe ¥ ~2% (x,x,)=>(x],x,) if and only if x =>x],

86

o a

3. For oe s~ (x,x,)=x(x,,~}) ifand only if x, =>x].
Proof: We prove part (1). The proof of (2) and (3) will be similar and are omitted for
brevity.

[23

Suppose that (x;,x,)=>(x{,x;) . This means that there exists a sequence of
events §=0,0,0,0 with 0,0,,.,0,€2, ad oceZ, such thal
S((x,,x,)5) = (x],x5) . This implies that &(x,,Ps)=x and 5(x,,Fs)=x,, where
P USH -2 and P, :(2'UE?) > £ are the natural projections on to wr

N , . o ‘ I3
and 2° , respectively. Therefore, x, = x; and x, =>x}.

48 o
Now, assume that x, = x, and x, = x’. Then, there are sequences s, = 0,0, 0,0

1 2 - : :
10301:0%5,.00, € 2.0 and o € 2., such that

and s, = o0 0,0 witho,0,,...,0, € 2.
S(x,,8,) = x; and &(x,,s,) = x;. Since modules have no common unobservable events,

the sequence, say s = 0,0, - 0,0,0 0,0, can take H from state (x,x,) to (x{,x;).

o
Therefore, (x,,x,)=>(x],x}). o

Assume 3. (1X. =¢. Then using proposition 5.1, the state transition function of
DG can be written as:

Dyl

. Fyal)) o
z,., = {05, %) 3,50 1 (x],x}) € 2, and x| = x, &xy = x,} if o, e 2N

Tyay

2, = {(x,x,) | 3 (xlx,) ez, and x{=>x) if o, e X' -X

dmnd

“
“

: R st v vy %) o
2= 00,1, | 3 1 (x, x) ez, and xy = x,) if o, e 27 -2

87

This means that to updatez,, instead of using the RTS of H| || H,, we can use the
RTS’s of H'and H?individually provided that they have no common unobservable
events. In systems with more than two modules, the assumption on obscrvable events
should be: X\ MY/ =¢ for all i, withi= j. In other words, unobservable events in
one component do not appear in the models of other components. This assumption could

be true in systems where the interactions among components are observable.

Failure events are assumed to be unobservable in the system. Therefore, the
assumption 3\ N/ =¢ (i # j) implies that the components have no common failure
mode.

Being able to use individual RTS’s in place of the RTS of the entire system could
reduce computer memory requirements. If each component H " has p states, the RTS of
H, in the worst case, will have p* states, whereas the sum of the states of individual
RTS’s in the worst case will be kp. In addition, the (time) complexity of computing the
RTS of the system in the worst case will be O(n’k) ? while the complexity of computing
individual RTS’s in the worst case will be O(nk®). Therefore, this method reduces both
the time complexity of computing the RTS and the memory requirement for on-line

implementation of the diagnosis algorithms.

Example 5.1
Figure 5.1 shows a modular system S consisting of two components S1 and S2. There are

two failure modes in the system: F1 and F2. The failure mode F1 is the consequence of

* Here, we have assumed the order of the number of transitions in the system is linear in the system states
k

P

88

the occurrence of faulty event f1 in $1. Stmilarly, the failure mode F2 in 82 is the result
of failure event £2. The events ‘e’ and ‘g’ are assumed to be unobservable. Unobservable
events are shown by dashed lines. Modules S1 and 32 have no common unobservable
events. Therefore, for updating the state estimate of the system (used in on-line
implementation of the diagnoser), we only need to store the RTS’s of the individual
components S1 and S2. Therefore, there is no need to store the RTS of S.

The modules’ RTSs are given in Table 5.1. The diagnoser of S is shown in Fig. 5.2. Tt

is assumed that the system and the diagnoser are initialized simultancously.

Figure 5.1: The modular system of example 5.1

89

Observation Observation
Module State ?t:i':)t ‘st:?é':fwc?tt : State :ﬁ«:::l,‘ ; St[:?ef; ::T(.
[Gy
A a E E d D
A b Bl H d D
B a CJ G b I
S B v AG I a J
C c K I C G
C d D J c K
E b H
L a O 0O m T
L b M,R P m T
M a T Q b R
S2
M b S R b S
M m L.Q R m Q
0 b P

Table 5.1: Example 5.1: RTS of the system

90

z LA
K{z, N
() b H i a
e W
(BM)(BR) :
(WM)L(LR)} (E0}
NF1F2 N
T o TT
g L d
(B,L).(B,Q) Pl {(AMY(AR), L
(.(l.L)}A(.Q)} 3 EM(GR)Y {H,P) ©.0) €
z NF1F2
NP2 - N N N
a B mi olb = g ;
‘ HCDLD: pemert mod : |
N by S : , im §
N,F1 ! {(A,L%(A,Q), o i) : I
{(C,01(3.00 : AR {(8.9),019)} . |
NF1 o | HONFRR F2 | !
d | & = CLb ¢ ; | r
| S -y KT ‘ } { d | ! ’
(0.0) KO) Fto| o {AS) (68}
m S

Figure 5.2: The diagnoser designed for the system in Example 5.1

It should be noted that S1 has 10 states and 16 transitions, and S2 has 8 states and 13

transitions. The synchronous product of S1 and S2 has 44 states and 91 transitions. This

shows that the diagnosis system using the RTS of the synchronous products of S1 and S2

requires larger amount of memory to store the RTS of sync(S1,52) in comparison with a

diagnoser which uses individual RTSs of S1 and S2. Real world systems, typically, have

a larger number of components and as a result, the size of the synchronous products of

the components would become very larger than the sum of the sizes of individual

components,

91

Remark 5.1: If &' (V%7 = ¢ for all i, j withi # j, then the system components do not
have any interaction. In this case, instead of a monolithic diagnoser, we can build &
diagnoser modules (one for each component) and z,, the system state estimate, can be
calculated as: z, =z! xz2 x---xz' , where z} is the state of the diagnoser module

DG’ designed for the module /. In this case, diagnosis is completely modular. »

Proposition 3.2: If z, is of the form z, =zyxzg x--xz5 (L), NEL, =¢ for all

ue

2

i, jwithi = j), where z) < X'then z, =z} xz} x---x z} , where z, is the state of the

diagnoser module DG’ designed for the module H' with z| as its initial state.
Proof: The Proof can be simply done by induction. (!

Note that Proposition 5.2 provides a set of sufficient conditions for fully modular
diagnosis.

As an example, consider Example 5.1, It was assumed that the diagnoser is initialized
at the same time with the system. Therefore, 2z, ={(xy,x)}={(L, 4)}

= {L}x {4} = {x,}x {x;} and one could design diagnoser modules for S1 and S2 and

calculate with z) = {x}} and z] = {x]} in place of the monolithic diagnoser in Fig. 5.2.

5.2 Semi-Modular Diagnosis in HFSM with AND-states

Qur approach for semi-modular fault diagnosis can be applied to the AND super-states of
a hierarchical FSM. In these systems, a D-holon describing the transition structure of the

component within the hierarchical system is associated with the AND component. For

92

simplicity, we consider an AND super state consisting of two components. Extension of
the results to AND super states with multiple components will be straight forward.

Let S be an AND super state having two components: 8 i« {1,2} . Suppose that
DH, = (X',Y,8%, X!)is the associated D-holon with §', where %, X' and X|represent
the event, the finite state and the initial state sets of DF; respectively;
6 X' x %' —» X denotes the transition function. The transition among the states of §
follows the transition law of the synchronous product

Let DGy denote the diagnoser designed for . Based on Proposition 5.1, if ST and $2
have no common unobservable events, we can use the RTS’s of S1 and 82, in place of
that of S, for updating the state estimates of S. Specifically, after the occurrence of the

observable event ¢,,, in the system, one can use the RTS of the individual modules to
obtainZ,,, as follows.

Tyl

- Tyt . . -
529 = {(x,,x,) | Ixl,xh 1 (¥, X)) €z, and x| = x, &x, = x,} if o, e 2 N2

Z;Ml

) . Cpat . .,
Z,ﬁf" ={(x,X,) | 3x 1 (x],x,) €z, and x| =x} if o, € DI

Tl

TP = {(x,,%,)|3x) 1 (x,,x3) ez, and xy = x,} if 0, e 2 -2

7[.1)(3'5 715,1)(\ wl)(u.
“prl P ad nH

and z % are calculated following the procedure discussed in
Chapter 4.

It should be noted that if the components of an AND-state include super states as their
sub-states, we do not build diagnosers for those super states. However, we use their
associated D-holons and construct RTS’s for them. In on-line diagnosis computations, the

RTS’s of these super states would be used (when necessary) for state estimate update.

5.3 Analysis of Computational Complexity

Continuing the discussion of the previous section, here, we compare the computational
complexity of calculating the RTS’s of the individual components with that of the entire
system. We show that the computational complexity of calculating RTS’s needed to
perform diagnosis in our semi-modular approach is polynomial in the number of
components of the AND-states, while that of the RTS of the entire system is exponential,

We assume that the HFSM has an alternating structure form defined in the following,

Definition 5.1 [BH93]: An HFSM is said to have an alternating structure if the
immediate sub-states of OR-states are either AND-states or basic states, and the

immediate sub-states of AND-states are OR states. .

In [BH93], alternating structure was assumed for HFSMs. There, it was shown that
alternating structures are generic structures in the sense that every HFSM that does not
have an alternating structure can be converted into an equivalent HFSM with an

alternating structure. Here, for completeness, we bring in the proof in [BH93].

Theorem 5.1 [BH93]: An HFSM which does not have an alternating structure can be

transformed to an equivalent HFSM with an alternating structure.

Proof: This can be accomplished using the transformations shown in Fig. 5.3. o

94

¥
e Nan S B : -
{1 i)
a8 | il 220 (e g a,
ool
§
¥

(le)

—
e |

a]e)

= |y
O e

TN
SN
Ay
T,
Nt

e cmom s o

-)

Figure 5.3: Conversions required for the alternating structure

We assume that our system is modeled as an HFSM M =(4,2,Q,>, p) with the

canonical form. We also assume that M has an alternating structure with depth of 2m +1

levels®, where AND states are at levels2j, 0< j<m—1, OR states are at levels2/+1,
0<j<m~1 and basic states are at levels 2j+1, 0<j<m-1 and 2m. Therefore,
a, <A™ and for 0 j<m-1, a,, ¢ A* and a,;, g A™* U A" (here a; denotes
states at level i). We also assume that each AND- state has k& immediate sub-states, and
each OR state contains & immediate AND states and p immediate basic states. We also

assume that the number of transitions in each OR-state is linear in the number of its

4 Gimilar to condition 4.1, it is assumed that events resulting in change of the level of the system are
observable

95

immediate sub-states, (i.e., 17‘”} = Ok + p),Sed). Figure 5.4 illustrates the top level
of M. Immediate basic states are denoted by ¢’,. Transitions are not depicted in the graph.

Each of AND super states b} has a structure similar to that of M.

7]

' . - i
b : h? : : N W
\ ! l']1 i b) l' | A & 1 1' ! }
o) el | PG AEd 1 b)) Jep e
R EPE T ! IS .
| | | —
o1 | A | | 5
*) ' ,,'2 ' M 13 __Ilz ' | - ¢ e‘ll. 0t
. ayjed | EN i v c.]«,,}] j4: i eveneens i . Pjeaf e
. b4 § . §--4 i : 1.8 8
: : I : | P :
: ! : ! ! :
@ @ ! ! :
Py rr—Tii l T
a,"zlz' SR CHN | T E RN CH i el get
i 11y 1.3 3 i i 8.8 L
\ S

Figure 5.4: The HFSM M

Proposition 5.3: Assume M is a HFSM in the canonical form with an alternating

structure. The complexity of calculating the RTS of the D-holons is

O(2nk? + Tnkp + 6np*) , where n=k*" . .

Proposition 5.4: Let M’ be the flat equivalent FSM of M with the state set J. The

complexity of calculating the RTS of M' is O(PR SO [

5To generalize the results, we may assume 17\{ = Ok + p)*)with @ = 1. The main result that the

computational complexity in the number of components in serai~-modular approach is polynomial as
opposed to exponential for flat DES, will still be valid.

96

Comparing the two propositions, one can conclude that the computational complexity
of calculating the individual RTS’s in our approach is polynomial in », while the
complexity of calculating the RTS of the flat system (i.e., the conventional approach) is
exponential in 7. n“ is the order of the total number of components in AND super states
(since as will be shown in Lemma 5.1.(i), the number of AND states is of order K2y,

Before proving the propositions, we need to establish two important properties of the
HFSM M.

Lemma 5.1: Let M be the aforementioned HFSM with parameters k, m and p. Then:

i) The number of AND states is‘ALt = Z':";k Y= QY.

fi) The number of OR states is|d"| = D" k* = O(k™").

Proof of lemma 5.1: 1) and ii) are inferred from the organization of AND/OR states in

the hierarchy.]

Lemma 5.2: Assuming the parameters &, m and p for the HFSM, a lower bound on the
size of Qs p" k"%, ie, 0] > i
Proof of Lemma 5.2: Let J;, denote the set of the full configurations of the super state
S in the level j (0= j<2m~-1). th(j)I can be calculated by the following recursive
relation:

For each OR state § of level 2m-1, |Q|= p(since each OR state has p immediate

basic states). At level 2m-2, for each AND-state S, QQS‘[= p*(since each AND state has k

97

immediate OR states of level 2m-1). Each OR-state at level 2m-3 has p immediate basic
states and k immediate AND states of level 2m-2. Thus,

QQS(?.W—B)! = kiQS(Zm.w'g) + P kpk +p o> kpk

For j=2m~4:
Osomn| = le(nr =(kp" +p)* > k¥ p*
We can see that :
o |05l =10sy| it is 0dd.

i iQSU)I = kiQS(,iwl){ + p ifj is even.

Therefore, for levels 2m-3 to 0, we have (with 3<7<2m):

2
ki It

¢ IQS(znwz)k}k = p*t iflis odd.

=2
KoL

® lQS(zm—-l)[>k pk2 if /is even.

It is clear that |Q] = , where r(M) is the root super-state of M, Since »(M) is an

Qr(M)

AND-state at level j =0 (/ =2m), [Q‘ can be calculated as:

e
T R
> E , .
o k2 - p J ”km'l } P . \// 1k /
!Qi :'QS(.Zm»-l) oo = Sopt =kT o pt o>kt pt =k p]

Proof of proposition 5.4: As we mentioned in chapter 3, the RTS of a DES can be

X

7)) . where

computed in O(X ‘ + X| and 7] denote the number of states and

transitions in the system respectively. We have assumed that ()({Tl) s ()((.XD; therefore,

98

the RTS of M' with (0 as its state set can be computed in ()(!Qz) > O 1r92"/;’7c2 "'{;;”‘).

Therefore, O(p>""k*"'*) is a lower bound for the complexity of calculating the RTS

of M'. I

Proof of proposition 5.3: Assume that DI is a D-holon associated with an OR-state of

M. DH has

X,|= p internal states and

X,

external states. Since |X,| < iT"”] and that
we have assumed that the number of transitions in each OR state is linear in the number
of its immediate sub-states, | X ;| = O(k + p). The computation of the DH’s RTS can be
done in

O, + X+ X T = O+ 200+ G296+)
=0k +kp+p*)

In the diagnosis process, we only use the RTS of D-holons associated with OR states
(diagnosis in an AND-state is achieved using the RTS’s of its components). Moreover,

according to the Lemma 5.1, the number of D-holons associated with OR states in M is

';:;k”“ = O(k*) = O(n). Thus, computing the RTS of all D-holons will be fulfilled

inOk?® +nkp +np*). 0

In the following we study practical aspect of our framework. We apply the semi-

modular method of fault diagnosis to a modular multi-phase ozone generation plant.

99

5.4 Mlustrative Example: Ozone Generation Plant

5.4.1 Overview and Configuration of the Process [Guo02]

Ozone is the second most powerful oxidant in nature. It is widely used in industry
particularly for water treatment. It is unstable under atmospheric temperature and
pressure and decomposes into oxygen easily. Therefore, it cannot be stored and must be
produced on site, just prior to use. Ozone is produced either from dry air or oxygen by a
high voltage AC power applied between two concentric electrodes separated by a narrow
air gap. The outer tube is stainless steel and the inner one is a glass tube with a thin
conducting coating. The oxygen gas passes through the gap and a high-energy discharge
produces ozone. A tube type ozone generation element is shown in Fig, 5.5.

The ozone-enriched gas produced by the ozone generation system is then brought
into contact with raw water to be treated in a bubble contact chamber. The presence of
contact off gas ozone residual is expected in order to make sure that sufficient ozone is
dosed to the raw water, Off-gas ozone residual must be decomposed to oxygen before

vented to atmosphere.

H A‘at
A I i .
\ ' » wwfywm»Electrode
i, —-Dielectiic
{" ‘\\M’)) s » Discha ge Ga [R O3
i E,.,,_V ,,,,,,,,, o Etacnvde
% i
Heéat

Figure 5.5: A Basic Ozone Generation Element

100

Oxygen needed for ozone generation can be produced from air on site or purchased
and delivered to the plant. The latter method which has only two major components,
Liquid Oxygen Storage tank and the Vaporizer, has gained popularity because of its
simplicity. Usually, multiple vaporizers arc used. In Fig. 5.6, we show the block diagram

of a simple water treatment plant with two vaporizers utilized for generating oxygen gas.

e Liquid 02 g
/ . q | Power Supply “ / OdGas 0 Ventto
/ , ™ ! Unit ; Atmosphere
[Vaporizert oy - : ’ |
/RN
ST A ! S,) s |
s v : / \ / ; | i . i
i Liquid Oxygen | ! ‘ | Owmone | § ? j { Ozore |
L Tank .+ Generator | ' A DestuatUnit
L Co /
fo ,,,i Va pori zar 2 S { ;
J / 0aGas !

ORGES ot
Figure 5.6: Block diagram of a simplified water treatment plant

The whole process of water treatment is very complicated and involves several
chemical reactions. In the following, we investigate a simplified ozone generation plant
consisting of only two units: Oxygen Supply Unit (OSU) and Ozone Generator Unit
(OGU). In order to produce ozone continuously, both units must function concurrently
during the normal operation of the system. The system contains both discrete event and
continuous variables. However, the continuous parts normally may be considered as
discrete at a higher level of abstraction. Figure 5.7 shows the OSU and OGU units of the

plant in Fig. 5.6 in more detail.

101

Master Controfier

L
Py
r’r»&mmimwmp I
: SOxylgeJ . R S : R T Ozone
i Supply Unit i) { | | Generator
! | QSU Diagnoser | b ' QGU Diagnoser ;
(OSU) | i | QGUDiagnoser - Unit (OGU)
H i
P E
TP’Pxilzz ,K‘ . 1 i ¥ {
| | Pus 7 ; Oxygen Supply Supendsor ; : Ozone Generator Superdsor
Generator y, ..., - (DES) | I (DES) ;
L ——— ftmlﬁ;mp H
Gormareng > :
! . | osucis ¢ 1 | ! N |
. v OpeaGhen v GO, .‘ ’ P ' .
' . lw‘wq * Pmaﬁ'ux;s ;mm.m v l :(‘}ﬂnﬂuwwmmnu
: . : ! | I i \
. «Opnine . , ¥ Openihan : fovcons Ruaang «
‘ Lcyn}vr%nd . . ° ' c"'_"‘:":‘.io Runkisp inmmnd - N
Sponhre Commng S M I ! ' l . - . : l !
w M . i o !
N l . . 1+ 1 PowerSupplyUnit ;¢
, ORI N T B T R
{2} Vo e A
: / : \ N T S LIRINYY
i ¢ o Vaporzert .0 ! § ! oy
! Y (Vept) | i Wy L
| o RN L T — f ‘ M G Oasn e
iTankOf Liquld : . ‘ { ' E Cnr\!ﬁctr)!_x{azf«
i Oxygen | (e 5 P ‘ '
- ¢ | Vapotizer2 ‘)
- CWholm

i

(Vap2)

VP2

Vi

ey

Figure 5.7: Simplified Ozone Generator and Oxygen Supplier units

OSU generates the required oxygen in the system. It consists of one liquid oxygen

tank, two vaporizers, two vaporizer outlet valves, a liquid oxygen inlet valve and a pulse

generator. During normal operation, one vaporizer is in duty and the other one in standby

mode. The vaporizers are rotated in or out of service by opening or closing the vaporizer

outlet valve (VPi, i € {1,2}), based on a time set-point. Pulse generator produces pulses
according to the time set-point. When a pulse is generated, the standby vaporizer is

switched on (its valve is opened), and then, the one previously in duty is switched to

102

standby (the corresponding valve 1s closed). The flow of liquid oxygen to the vaporizers
is controlled by the valve VT.

The OGU is in charge of producing ozone. It contains a Power Supply unit (PSU), a
cooling water valve (V1), an oxygen gas inlet valve (V2), an ozone gas outlet valve (V3)
and an ozone generation element (OZG).

The OGU is also equipped with several seunsors. An ozone concentration analyser
(OCA), marked as AM in Fig. 5.7, notifies the system of ozone concentration changes.
There are also two sensors measuring the pressure at P1 and P2, Sensor readings at P1 are
available to the OSU, the OGU and the master controller while readings at P2 are only
monitored in OGU.

Each unit can be modeled by a generator, under the supervision of a local supervisor
(controller). Local supervisors are in charge of sending appropriate commands
(Rur/Stop/Open/Close) to their unit components. There is also a master controller
(coordinator) responsible for generating synchronization events (commands) in the
system. It basically manages the interlock between the subsystems and the master plant

sequence. Figure 5.8 demonstrates the control architecture.

Master Controller

! |

Oxygen Supply Ozone Generator
Controller Confrolier

Figure 5.8: Ozone Plant Control System Architecture

103

In the next sub-section, we will develop a discrete cvent model for the OSU and OGU

units. Diagnoser design is discussed in sub-section 5.4.3,

5.4.2 Discrete-Event Model of the Process

The plant can be modeled as a hierarchical system with an AND super-state at the top
level. The components of the AND super-state are OSU, OGU and the master controller.
Moreover, the OSU has three operation modes. Each mode can be represented by an OR

super state. A simplified HFSM is presented in Fig, 5.9.

. Ozone-Generation-Plant |
(~ 1])
Qx-Sup . ;
v | |
Inifiatization + : . " "
\{ start Vaporizar 1 Vaporizer2 ! !
|
i ! Qz-Gen ! Mas-Ctrl
K |
~ | .
A |
Vaporizer 1 AN »
x) ! !
L i | J

Figure 5.9: Simplified HFSM of the Ozone Generation Plant

In the following sub-sections we explain the model of each unit in more detail.

5.4.2.1 OSU Model

In this unit, one failure mode is considered: Liquid Oxygen OQutlet Valve (VT) stuck-
closed (Fox). For simplicity, it is assumed that VT becomes stuck-closed only when it is
closed. An HFSM modeling the OSU is given in Fig. 5.10. Note that in Fig. 5.10, states
XN1, XN2, XF1 and XF2 are fictitious states that have been added to the model to make

it FC-connected. Event symbols and their description are given in Table 5.2,

104

(osu

-
it ([Vap2 A
N L B L FF "
}'\mo« PN ¥ N 0 NS - "”“,,(N, yei *zmo T
, M)Mx i‘nP'QX SW“Q’K Sbl?vox \ZNS bhp (% [‘3“’9 0 Sﬂpw;}l;; g
F y N U GO ‘ i
. 1 X > oot v \&f’wmy “ . yNWLC oseiPi Y poserrz, - X 5
AN N (N o g e (an e = v oy |
I / A A g PIHIL e T e e
| FTHZL ””“ﬂ ChsevPl m‘ A(}bie\/”(L L — '
o \Jot | i,?N?,’
| { ,lNQ ;Ng Pe ' I A)JZF?" ChesPl BFZ ’
: Seplx 7 Pise
‘ mx' '.L IF{) gpeng; !Fl '2:;‘ ! 4 Stop-On/
Pt o Sste, \ comovez Y e |
! \“ SW Sopx S x| ; ok W pia «?Fb A 26) (2R {273
’ Y Y ‘ ZFS A CioseVT S ChssPy ;
| G Cheeve : e :
I IF5 R e (R | LT)
i Fox \ ” puke Puse | i
Lo [Poszt | | § |
| ‘Fef ; TG i
i S0G i |
| by / Ouabpped | Pube
] L . i !
Nt I ™ ‘
T / Cpraypy - QpenVPL vapt | FEs
o f | nwz SN (N0 e v | XNg,
= : o gh . N8
| * ¥ / Stop-{ | | B mmu meVT
- e i
V T oyt e .m[f
\ TN Y ! |
\ . NN |
é L \ 1 12 g
o Fox ' R
| i 1§ ‘SWpO« 4
f (SepOx | ru:y puin ‘
el ¥ Cosavel b
: (1F3; 1F4 ,’ : \FS ey, COT MF&
L)
Ox-sloppod

Figure 5.10: The hierarchical discrete-event model of the Oxygen Supply Unit (OSU)

Fvent Description
Start-Ox Commiand start the OSU
Stop-0x Command stop the OSU
OpenVT Command open valve VT
CloseVT Command close valve VT
OpenVPi Command open valve VPi (i =1,2)
CloseVPi Command close valve VPi(i =1,2)
P1:L2H P1 changed from Low to High
P1:H2L P1 changed from High to Low
Pulse Pulse generator sent a pulse
Fox Valve VT stuck closed
Ox-Stopped The OSU stopped

Table 5.2: Events and their description in the OSU

5.4.2.2 OGU Model

In the OGU, one failure mode is considered: oxygen gas inlet valve (V2) stuck-closed
(Foz). In this unit we model components as simple generators. The model of the entire
unit can be obtained by combining the models of the components, the interaction among

the components, and the unit controller,

o Discrete-Event Model of the components
1) Cooling Water Valve: V1 (Fig. 5.11.a)

The cooling water valve has two events ‘CloseV1’ and ‘OpenV1’ representing the close
command and open command, There are two states VC1 and VOI corresponding to

normal-closed and normal-open.

2) Oxygen Gas Inlet Valve: V2 (Fig. 5.11.b)

106

The oxygen gas inlet valve has three events ‘CloseV2’, ‘OpenV2’ and ‘Foz’ (V2 stuck-
closed). There are three states VC2, VO2 and V2F corresponding to normal-closed,

normal-open and stuck-closed.
3) Ozone Gas QOutlet Valve: V3 (Fig. 5.11.¢)

Similar to V1, V3 has two events ‘CloseV3' and ‘OpenV3’ representing the close
command and open command. There are two states VC3 and VO3 corresponding to

normal-¢losed and normal-open,
4) Power Supply Unit: PSU (Fig. 5.11.d)

The PSU has two events ‘PSU-Run’ and ‘PSU-Stop’ representing the commands for

running and stopping the operation of PSU respectively. It has two states: Run and Stop.

5) Oxygen Pressure Sensor at P1 (Fig. 5.11.¢)

The oxygen pressure at P1 has two states: P1L (pressure low) and P1H (pressure high).

6) Oxygen Pressure Sensor at P2 (Fig. 5.11.1)

The oxygen pressure at P2 has two states: P2L (pressure low) and P2H (pressure high).

7) Ozone Generator: QzG (Fig. 5.11.g)

The model of the ozone generator has two states: O3L (ozone concentration low) and

O3H (ozone concentration high).

107

Closeva OpanV

\‘ i} Openva2 %G

{ V2C) Cltw&\f?w,g VZO \
Closev1 Openv ‘ . !qz
o ,
\AG Qpenvi ‘ ; e, « - /
e, Y ’ .
{ V2F)
(e wﬁi‘?ﬁfiﬁl.wv °) U"’
CloseVa
Qpanyv2
V1 V2
a) Cooling Water Valve b) Oxygen Gas Inlet Valve
CloseVvy OpenV 3
\G Openys G Swp-PSU Slartp $U
S, M B e
(V€| peers §V30) , \@\,m@
»»»»»»»» o e { Stop { Run)
e SepPsy s T
V3 PSU
¢) Ozone Gas Outlet Valve d) Power Supply Unit
\/ P1l2H
:\\F:‘Lz P1H2ZL ZP1H)
P1
e) Oxygen Pressure Sensor at P1
P21L2H O31L2H
"""""""" Sg—y \A : .
\!iiL &f?_.”_?}..,/{ lei{/ | 03" z‘;’ osraL___b. OsHJ
P2 0zG
f) Oxygen Pressure Sensor at P2 g) Ozone Generator

Figure 5.11: Discrete-event model of the OGU components

108

e Interaction among the Components in OGU

1) Interaction among the Oxygen Pressure at P2, the Oxygen Pressure at P1 and the state

of the Inlet Oxygen Gas Valve (V2) (Fig. 5.12.a)

The oxygen pressure at P2 changes from low to high if the oxygen pressure at P1 is high

and valve V2 is open (V2 is in state open).

2) Interaction among the Ozone Generator, the PSU and the Cooling Water Valve

Ozone generation is a continuous process described by continuous variable models.
However, at a higher level of abstraction, only two major factors count: the effects of the
power supply unit and the cooling water supply valve. The ozone concentration in the
ozone generator changes from low to high if pressure P2 is high, the power supply unit is
running (PSU is in Run state) and the cooling water valve is in open (V1 is in the open

state). Figure 5.12.b shows the discrete-event model of this interaction.

109

Foz ClosaV 2
GloseV R S OipanV i

PRM2RL. «"“ anv?‘ oy, BRI

NCHaSHINEE s

IN'M 2 IN12 i i > nma

PL2H R PrLam
PaH2L P2 P 2L
§ QpenV 2 e, s
. S
(" e 2w N4
e g Closeva > 'Nm >IN
R (Koparva A K
P22
Pzl (2 e o PaH2L
CloseVa COpenyv 2
Closavz

INT1
a) Interaction among the pressures at P1 and P2 and the Inlet Oxygen Gas Valve (V2)

ORHZL
Swop-PSU
OpanVi

A P2H2L
IN22 ™

P2:L2H

Run-P &y
O3H2ZL
Run-PS U

Stop-PSU OpenVi

Q3H2L

\‘(» lN.’;x Run-PSY - !
; Z lN23 [IN28)
S, EBFPET paian CloseVi g P

"&—PSU OpenV
REH2ZL by,
IN26 CloseV 1

o3HeL Run-PS
Stop-PSU
Closevt

Stop-PSU

Run-P &

Stop-PBU

IN24)
e QpanVt O3H2ZL

Swp-PSU
OpenVv

!N:z?“ i

INT2

b) Interaction among the Ozone Generator, the PSU, Cooling Water Valve and the
Oxygen Pressure at P2

Figure 5.12: Interaction among the components in the OGU

110

e OGU Controller

e QpanV 1 en, GIpEANV 2 — QponVd 7 puneP g
012 WM.,.‘_,«M.;.,Q (31 3 rm"wm"ﬁ' (314 ;m.,f:..'fwwp(“15/}mwiiﬁ2.l.,§i9_m,,(|¢5)

N,
§ e,

St c:)zI l‘ﬂcp ¥ um) -z 8 kape QX l&swp« Oz ﬁlop-(')?l

- C;"l'l Closaev ’01 16 > GlosevE » L?loww\lf?» {C"B\,‘{ Sop P s & 017 3
a) CTR1
B op-0x
\G Cpeny' i
T
CloseV2 (“~C:; L mﬂﬁ\??ﬂ)
Closav e
~M«~»—«-«* m— Clodevs [Pponvy Clonkvs [Openv3
{; Cnl"l W??g;‘ N ¥ ﬁpen\/? M B
(O%% b siomave £ 32
CTR2 CTR3
b) CTR2 ¢) CTR3

Figure 5.13: Discrete-event model of the controllers in the OGU

Figure 5.13.a shows the controller (CTR1) supervising the start-up and the shut-down
sequences of the ozone generator unit. Moreover, in practice, the ozone generator gas
valves must not be closed till the ozone concentration is low. This can be enforced by
CTR2 shown in Fig. 5.13.b. In addition, for the purpose of safety, the oxygen supply unit
can become shut-down if the ozone generator unit is already shut down. In other words,
both valves V2 and V3 have to be closed prior to issuing the command ‘Stop-Ox’ by the
master controller, CTR3 in Fig. 5.13.¢c models this requirement.

Finally, the controller for the ozone generator unit can be obtained by constructing the
synchronous product of the three controllers; L.e.:

CTR = sync (CTR1, CTR2, CTR3)

111

OGU can be constructed by the synchronous product of the component models,

interaction models and the controller.

o -

Starto, Stk Oz
(Mmz;—mi——»’i-—h Mcm\»n-wm—»»-(mcm»

—

Start-Flan B op- P lant $bp ~Plant Swp-Plant StartQz
o 3 R E R3] Q

oo o,

<Mc:11 e Mcm)wwm—\mc:m) Mczﬂ s (MC22)
MCtr1 MCtr2

a) MCitrl b) MCtr2

Start-Plant Start-Plant

*VG OpanVi *Q OpenvT
<~\&'EE§J‘@WM€E”?) "‘ﬁ?:”wm...ﬂ“"fi‘izf
MCtr3 MCtrd

¢) MCtr3 d) MCitrd

Figure 5.14: Master-Controller

5.4.2.3 Master-Controller Model

The master controller supervises the start-up and shut-down sequence in the plant and
synchronizes the shared events in the OSU and the OGU. Figure 5.14.a shows the start-
up and shut-down sequence in the plant (MCtrl). Furthermore, in practice, it is desirable
that the OGU start functioning if oxygen is ready in the form of the gas for conversion to
ozone. In other words, the OGU should become operational if the pressure of oxygen at
P1 is high. This requirement can be enforced by the controller MCtr2 shown in Fig.

5.14.b. Note that the plant should only be started when the OGU and the OSU are shut-

112

down. MCtr3 will insure that the ‘Start-Plant” command can only be enabled at the initial
state of the OGU. Moreover, MCtr2 will guarantee that the ‘Start-Plant’ command can
only be enabled when all of the phases of the OSU are shut-down. The master controller
can be obtained by forming the synchronous product of MCtrl, MCtr2, MCtr3 and

MCtr4.

5.4.3 Diagnoser Design

The plant can be considered as the synchronous product of three modules the OSU, the
OGU and Master-Controller. The unobservable event sets of these modules are {Fox}
and {Foz}. Note that the unobservable event sets of modules are pair-wise disjoint. We
also assume that the system and the diagnosis process are initialized simultaneously.
Therefore, according to Proposition 5.2, we can build fully modular diagnosers for the
system.

Since in this example, we have not considered the failure modes of the Master
Controller, we only have to design diagnosers for the OSU and the OGU. For designing
diagnoser for the OSU, a D-holon is associated with each super state of the OSU
describing a phase of the operation in the OSU. Then, a diagnoser is constructed for each
D-holon. Figure 5.15 shows the high level D-holon in the OSU. The low level D-holons

are shown in Fig. 5.16.

113

‘.‘(“\XN ; S tarkOx #“I(FINC)%}

A, ¥ . Blare Ox

RN e »(END)

Iy)“iF.z‘ Ve 2

Sz venz
Az"rcz“ vz

§
s+ o v G ¢ TR o GO + GEED S OFD v UED ¢ OER * FED - GHRD : G50 ¢ G ¢

Figure 5.15: High-level D-holon in the OSU

114

DH

4 g
ke l
B

Ox-stopped

Qp&n\i P v, p wise

§

o aun » Gum » WER £ EED 4+

610;»0& {
T, !
6

ﬁm H2L PAHRL Closevi
CloseV L e e
‘ /INQK AAAAAAAAAAA |N8 e y{iXF"‘)
B NG . i
Btop-Ox ;
(Sosevm Y.
e el 1F3)

Ox-slopped

%
%
* CUEE w WEEm o WD &

\. J
- ' “\
DHVam .
Pulse '
~~~~~~~~ CloseVP 2. Openy i Sy *
(NG AN e (INO S i
lfﬁnpuax l&bp O ] - P2, ?Jf\{a/) C"’“VT i
Ao, e, '“-NGJ) A R T LT XNQ’)
CloseVT A(TNN’/) P Hml :
_— Cme\/P ------ Opan\/PL oK
) gy e oo
el Téi 8w
Stap-Ox l mp -O% p-Qx l
o, OB Y P 2o ¥ Y. . P
1F3 ) ( 1 F4 ) NS 1 Fs\ C!O&&VF-‘} OX opped xxxFO 3
e cvoaevm - . i
! »{XF1)
Pulse v
. | )
3 ! ™\
DHV&pZ .
Ox-sopped ' “'"‘/“ﬁa
i i
5,
o, OpenV PE oo, g g\ P o J—
NO Y P(2NT ) p(2N2 e P AN2
(2Ng Swp-0x Tlop-Ox pr,@z’ i -
" PH2L s
;Clo:»a\,"( T ClagaV Pt 4
(2N9 ) 2N6 \4933 _Closevp2 /« (\’é?\l:a) |
g PIHRL '/& P .
Fm{ :V‘ZN?*‘L TlosaVT e '
bl \? _ClaseVP1 e M YR
AAAAAAAAAAAAAAAAAAAAAAAAA LTS . XF2
A 2 M P Y
\fahp O (5 bp«(.‘)x .
. C.AnwVF'L,Y Ciusevez Y. ‘
’, /MM?L (2;:6&4 JRZF*" irvemsveessinid 2?4 y M
(2r8 )‘ Shosout T L losevPT_ T '
On-smpped .
\. [ .

Figure 5.16: Low-level D-holons in the OSU

115



cer 18 the diagnoser for the

Figure 5.17 shows the designed modular diagnoser. DG, |

OGU. DG,y is the diagnoser for OSU. DG g, consists of four decoupled D-holon

Vap *

diagnosers, DG, g, DG,,0 DGy, and DG
Dotted line in Fig. 5.17 implies that diagnosers DGy, ., and DH g, function
and DH g, become

Gen

concurrently, When diagnosis process starts, diagnosers DG,

active, Diagnoser DG, ., remains active during the diagnosis process. After the

oceurrence of event ‘Start-Ox’, DG, becomes active and DG, ¢ . becomes inactive.

The events labeling the arcs in the graph represent transitions among D-holon diagnosers.

g A
DGO“ v Start ~ (Ox -
»
¥
Pulse,Ox—stopped D Glm'l
‘1 FP 12
DGO -8 w-—__—.—.l DG,’ A
% SUD |y Piglse, Ox — stopped Vap?
FP 2t
Pulse Ox - stopped D GVapI
ROGEOUNNOVPYACHONCUBDIONIRUDODEOOIDUADBATRODRANUEAYOROUNOTIORIREIGODADRY
D G(J:w(,?‘eu
J

\.
Figure 5.17: Sequence of diagnoser activation in the Ozone Generation Plant

116



Chapter 6

Conclusion

6.1 Summary

In this thesis, we study fault diagnosis in Hierarchical Finite State Machines (HFSM). A
HFSM is a simplified version of a statechart. HFSMs add depth (hierarchy) and
orthogonality (parallelism) features to finite state machines and therefore, are more useful
for modelling complex systems.

In our approach, we assume that the state set of the HFSM model of the system can
be partitioned according to the system’s condition (failure status). First, a HFSM is split
into a collection of simpler flat substructures called D-holons. Each D-holon describes a
phase or a stage of the operation of the system.

Instead of designing a single diagnoser for the entire system (to be more specific, the
equivalent flat system), we design simpler diagnosers for the D-holons of the system. A
state estimate for the system will be obtained using the state estimates provided by these
diagnosers. Using this state estimate, the system condition is determined. The cuirent

e

state estimate determines the D-holons the current state of the system could be in. These

D-holons and the corresponding diagnosers are considered active. At any instant,

117



therefore, only a subset of the diagnosers is needed. This reduces computer Random
Access Memory (RAM) requirements.

We also investigate failure diagnosability in HFSMs. In the standard defimtion of
diagnosability, failure diagnosability is required at all phases of the operation. This seems
too restrictive. We introduce the concept of phase-diagnosability in which diagnosability
of a failure in a component is examined only in the D-holons in which the component is
active. A set of necessary and sufficient conditions for phase-diagnosability is provided.

Furthermore, in order to reduce the computational complexity of the diagnosis
process, a set of sufficient conditions is provided under which the diagnosis process
becomes semi-modular. It is shown that the computational complexity of constructing
(time) and storing (space) the transition systems required for diagnosis in the proposed
semi-modular approach is polynomial in the number of system components, whereas in
the original monolithic approach, the computational complexity is exponential in the
number of system components.

We also illustrate our approach by applying our results to an ozone generator plant.

The result of our work can be applied in multi-phase systems with a hierarchical
structure and large number of components. For instance, they could be used for
systematic diagnosis in systems such as manufacturing systems, batch processes and
spacecrafts, which have complex multi-phase models. Certain limitations exist though. In

particular, the structure of these systems should meet certain conditions.

118



6.2 Future Work

The diagnosis process studied in our work uses the observable event sequence generated
in the system to detect and isolate failures. In many cases, however, a failure changes
only the timing of the observable event sequence (rather than the sequence). In other
cases, after the occurrence of a failure, no new observable event is generated in the
system. In these situations, using timing information can increase the accuracy and
efficiency of our approach. Hence, fault diagnosis in timed hierarchical finite state
machines would be an interesting area of research.

In conventional modular fault diagnosis, it is usually assumed that system
components are asynchronous, i.c., they do not have common events. In the semi-
modular method discussed in chapter 5, we do not make such assumption. There,
however, we assume that modular components have no common “unobservable” events.
This assumption may be limiting in complex systems whose components have strong
interaction among each other. It would be useful to have modular diagnosis design
techniques with less restrictive conditions on the structure of the components.

In our framework, the entire observable event sequence and the complete system
model are used for diagnosis of the failure modes. In many cases, failure events occurring
at a system level are different from those of other levels. In these situations a failure
mode at a certain level might be detected and isolated using only the system model at that
level. This may result in reduced computations. We have not addressed this issue.

In this thesis, we have assumed that transition leaving D-holons are observable. This
implies that transitions from level to level (or from phase to phase) are observable. This

assumption may be limiting in some systems and restrict the choice of D-holons. In

119



addition, if as a result of a sensor failure, a transition becomes unobservable, the change
from a phase to another may become unobservable in the system. Therefore, a more

relaxed condition on the boundary transitions of D-holons may be useful for diagnosis.

120



Bibliography

[AEM94] J.R. Agre, G. Elsley, D. McFarlane, J. Cheng, B. Gunn, “Holonic Control of a
Water Cooling System for a Steel Rod Mill,” Proc. 4" International Conf. on
Computer Integrated Manufacturing and Automation Technology, Oct. 10-12, 1994,
Rensselaer Polytechnic Institute, Troy, New York, pp 134 - 141.

[BH93] Y. Brave, M. Heymann, “Control of Discrete-Event Systems Modeled as
Hierarchical State Machine,” IEEE Trans. Automat. Contr., vol. 38, no. 12,
December, 1993, pp. 1803 - 1819.

[CP97] Y.L.Chen and G. Provan, “Modeling and Diagnosis of Timed Discrete Event
Systems-A  factory Automation Example,” Proc. American Contr. Conf. ,
Albuquerque, New Mexico USA, June, 1997, pp 31 - 36.

[CLR90] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms.
New York: McGraw-Hill, 1990.

[DMO02] R. Debouk and R. Malik, “A modular Architecture for Diagnosis of Discrete
Event Systems,” Proc. 4 1™ [EEE Conf. on Decision and Contr., Las Vegas, Nevada
USA, December, 2002, pp 417 - 422.

[Guo02] R. Guo, “Fault Diagnosis in a Water Treatment Plant Using Discrete-event
Models,” Master of Engineering Project Report, Concordia University, Montreal,

Canada, 2002.

121



[GHL94] L. Gou, T. Hasegawa, P.B. Luh, “Holonic Planning and Scheduling for a
Robotic Assembly Tesbed,” Proc. 4% International Conf. on Computer Integrated
Manufacturing  and  Auwtomation  Technology, Oct. 10-12, 1994, Rensselaer
Polytechnic Institute, Troy, New York, pp 142 - 149.

[HCK92] W. Hamscher, L. Console and J. de Kleer, Eds., Readings in Model-Based
Diagnosis. San Mateo, CA: Morgan Kaufmann, 1992.

[Har87] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of
Computer Programming, 8 , North, Holland, 1987, pp. 231 - 274.

[HKWO03] S. Hashtrudi Zad, R.H. Kwong, W.M. Wonham, “Fault Diagnosis in
Discrete-Event Systems: Framework and Model Reduction,” IEEE Trans. Automat.
Contr., vol. 48, no. 7, pp. 1199 — 1212, July 2003.

[HKW99] 8. Hashtrudi Zad, R.H. Kwong, W.M. Wonham, “Fault Diagnosis in Timed
Discrete-Event Systems,” Proc. 38" IEEE Conf. on Decision and Contr., Phoenix,
Arizona USA, December, 1999, pp 1756 — 1761.

[HKW00] S. Hashtrudi Zad, R.H. Kwong and W.M. Wonham, "Fault diagnosis and
consistency in hybrid systems", Proc. 38th Annual Allerton Conference on

Communication, Control, and Computing, University of Illinois at Urbana-
Champaign, October 2000, pp. 1135-1144

[1s¢97] R. Isermann, “Supervision, Fault-Detection and Fault Diagnosis Methods-An
Introduction,” Control Eng. Practice, vol. 5, no. 5, pp. 639-652, 1997,

[LY96] D. Lee and M. Yannakakis, “Principles and Methods of Testing Finite State

Machines - A Survey,” Proc. IEEE, vol. 84, no. 8, pp 1090 — 1123, 1996,



[Levos] N.G. Leveson, Software: System Safety and Computers. Reading, Mass.:
Addison-Wesley, 1995.

[Lin94]  F. Lin, “Diagnosability of Discrete Event Systems and lts Application,”
Discrete Event Dynamic systems, vol. 4, pp. 197-212, 1994,

[RWS2] P.J. Ramadge and W.M. Wonham, “Supervision of Discrete-Event Processes,”
Proc. 21" IEEE Conf. on Decision and Contr., pp 1228 — 1229, 1982,

[RW89] P.J. Ramadge and W.M. Wonham, “The Control of Discrete Event Systems,”
Proceedings of the I[EEE , vol. 77, no. 1, pp. 81-98, 1989.

[RF00]  S.L. Ricker, E. Fabre, “On the Construction of Modular Observers and
Diagnosers for Discrete-Event Systems,” Proc. 39" IEEE Conf. Decision and Contr.,
Sydney, Australia, December, 2000, pp 2240 - 2244,

[SSL95] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen and D. Teneketzis,
“Diagnosability of Discrete-Event Systems,” IEEE Trans. Automat. Contr., vol. 40,
no. 9, pp. 1555 - 1575, 1995.

[SSL96] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen and D. Teneketzis,

“Failure Diagnosis Using Discret-Event Models,” IEEE Trans. Contr. Syst. Technology,

vol. 4, no. 2, pp. 105 124, 1996.

[SLT98] M. Sampath, S. Lafortune and D. Tencketzis, “Active Diagnosis of Discrete-
Bvent Systems,” IEEE Trans. Automat. Contr., vol. 43, no. 7, pp. 908 - 929, 1998.
[Wan95] B. Wang, “Top-Down Design for RW Supervisory Control Theory,” Master’s

thesis, University of Toronto, Toronto, Canada, 1995,
[Won93] W.M. Wonham: Notes on Control of Discrete Event Systems, Dept. of

Electrical and Computer Engineering, University of Toronto, 2003.

123



