Using a Named Entity Tagger and a Syntactic Parser
to improve Web-based Answer FExtraction

Yasser Kamel

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91055-5
Our file Notre référence
ISBN: 0-612-91055-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

ABSTRACT

Yasser Kamel

The amount and the quality of the available information on the web make it an interesting
resource for seeking quick answers to simple questions. Question answering (QA)
systems have proven to be helpful to users because they can provide accurate answers
that do not require users to go through a large number of documents for an answer.
However, despite the recent advances in QA research, the accuracy of the extracted
answer is still an open domain that needs more investigation from the researchers to
achieve a high accuracy. In this project, we implemented Named-entity tagging (Gate-
NE) and Grammar Parsing (Link parser) as two different approaches to improve the
extracted answer accuracy of an existing web-QA system. TREC-8 (200 questions) was
used as a training set and a total of 1693 questions of TREC-9, 10, and 2002 were used
for the validation process. Our approach shows a 11% MRR increase, from 0.101 to
0.113, compared to the original system and a 9% increase in the number of correct
answers extracted, from 276 to 300. Although the increase is not as high as we had
hoped, we believe that our results are encouraging and this work should be considered a

base and starting point for future work to achieve more performance enhancements.

111

Acknowledgments

There are many people to whom I owe this project, and I would like to take this
opportunity to thank them.

First and foremost I would like to thank my supervisor, Prof. Leila Kosseim for her
continuous support, encouragement throughout the many phases of this project. The
various challenges during this work have been overcome with her constant support, She
is acknowledged in the NLP community, and I am grateful for her insight and wisdom
during our work.

I would like to express my sincere recognition to Concordia University, and to the
Computer Science Department Staff, where I found all kind of support during my work.
Finally I am grateful to my family, my wife Nehal and my two little boys Faddy and

Ryan, who encouraged me and gave me their emotional support during my work.

iv

Table of Contents

ABSTRACT I
ACKNOWLEDGMENTS v
LIST OF FIGURES . A% 11
LIST OF TABLES IX
1 INTRODUCTION 1
2 LITERATURE REVIEW 6
2.1 TREC COMPETITION 9
2.2 PREVIOUS WORK IN QA 10
2.2.1 START SYSEIM c..eeneiiiiiriieiieiiiiiiiiic ettt 10
222 QA-LASTE ..ottt ettt et e s s 10
2.2.3 QALC et 11
224 Selectivity REIAtioncccceeviiviiiiiiiiiiiiiiiiiiciccrect e 11
2.2.5 MICROSOFT Filteringccccevereeeirerieierienrreenieeecsieienie st sncessnaeseenees 12
2.2.6 PIQASSO SYSEIM . ureuieererieririerieerieeetesereneermnsesseese s ssnesaesasssesassnsssensnsansens 13
23 OVERVIEW OF THE CURRENT SYSTEM 13
2.3.1 QUESTION SETiiuveeieereierrereeeiursraeeessessinneesssesssesasessessesosneessrsnseesenesssessesnss 13
232 QUERY REFORMULATIONouvvirireereeeieeeeeeesaanrenresesassesaaaamsemeeereessesassasseseesss 14
233 SEARCH ENGINE ... e tetueeeeteeesesueaeseeaessensessesestssssassssasssssssssssssssessssssssssssnnesees 14
234 ANSWER EXTRACTION ...eeveeevemiieeeseeesseeserersenerrssssmessesssssssessesseesrsmnsasaseesasses 14
23.5 ANSWER RANKING ...eeveenereseeerrennaeseeennaaeeseseeeessesssenseassessssnnsessessesssmnsasseesees 15
2.3.6 SYSTEM EVALUATION ..cotoieeieiteetetieeeetnntsessseseesessrmsmssseseerersnsnasaeseessssssssnnnss 15

3 SYSTEM ARCHITECTURE 16
3.1 PROGRAMMING LANGUAGE 16
3.2 SYSTEM ORGANIZATION 16
33 SYSTEM MODULES.. 17
3.3.1 INFORMATION RETRIEVAL ..ceetviteieeiiiieeereeeeereeeerennssesesitmsisesesssesessssnessseeens 17
33.2 ANSWER EXTRACTION vvuueeteeeeetretereeeeisrareseisessesssennssesssesssssmossssssssrssnssnnes 17
34 QUESTION SETS 18
35 ANSWER RANKING 19
3.6 SYSTEM EVALUATION 19
4 GATE NAMED ENTITY IMPLEMENTATION. 21
4.1 INTRODUCTION 21
4.2 EXTRACTING ENTITIES 22
4.2.1 PERSON ENTITY ANALYSIS ..veieteteteeneieeerereeeresusssassassssesasesesassssssnenssssassess 22
42.2 DATE ENTITY ANALY SIS e irteieieettttieettneeereesinseesestsersssssessssseserssssessssnsessones 24

423 NUMBER ENTITY ANALYSIS «oevtutereerenreeeeensseenemnnens
424 ENTITY EXTRACTION LIMITATIONS ..cuveueieneeennnns

4.3 GATE SYSTEM EVALUATION

.......................................

5 LINK GRAMMAR PARSER IMPLEMENTATION

51 INTRODUCTION

5.2 PERL INTERFACE

5.3 ANALYSIS PROCESS

5.3.1 PERSONENTITY ANALYSIS ..titeeetteineaereereeeaereansersesseesnes
5.3.2 DATEENTITY ANALYSIS ..ooiteiieeieieoreeeeeeeesaeeseevrrreseseaens

5.3.3 NUMBER ENTITY ANALYSIS

54 ACCESSING THE LINK PARSER CONNECTORS
54.1 PERSON ENTITY IMPLEMENTATIONcooeveeeeenens
54.2 DATE ENTITY IMPLEMENTATIONccccvvvvvmeevnneenns
5.4.3 NUMBER ENTITY IMPLEMENTATIONcccovvvuruenenn.
544 ENTITY EXTTRACTION LIMITATIONcorvernrnenenn.
55 LINK PARSER SYSTEM EVALUATION

.......................................

.......................................

.......................................

.......................................

6 EXPERIMENTAL RESULTS.

6.1 EVALUATION OF THE DEVELOPMENT PROCESS
6.2 VALIDATION SET ENTITIES DIRTRIBUTION
6.3 EVALUATION OF THE SYSTEM VALIDATION PROCESS
6.4 SUMMARY
6.5 SYSTEM LIMITATION
7 CONCLUSION AND FUTURE WORK....c.ceeeenrnees

APPENDIX A: EXAMPLE OF INTERNAL RUNNING PROCESS

APPENDIX B: GATE SYSTEM FUNCTIONS

oooooooooooooooooooooooooooooo

oooooooooooooooooooooooo

APPENDIX C: LINK GRAMMAR PARSER FUNCTIONS
APPENDIX D: LINGUA::LINKPARSER PERL MODULE

BIBLIOGRAPHY

vi

30

30
31
31
32
33
34
34
35
36
36
37
38

39

39
40
41
43
44

48
51
53
63
69

List of figures

Figure 2.1 Typical QA system ArChiteCtureooevveureeeeeeeeeeeeeeeee oo seeeereres 7
Figure 3.1 Our Answer Extraction system FIOW Chart............c.c.oooeveveeeeeeeeriereeresernnn 18
Figure 4.1 Gate Interface PERSON entity EXtraction..............cocooveveeeeeeeeveeesesererrennnnn, 23
Figure 5.1 PERSON Entity Parsing TI€E ccocevevereveveirieiieieeeeeeeeeeeeeeeeee e, 32
Figure 5.2 DATE Entity Parsing TTEE.......coovuvuiuiviverecieieeeieeeeeeeneeeeeeeteeseeeeeese e veveressssas 33
Figure 5.3 NUMBER Entity Parsing TTEE ocoeveviriuieieieeireeeeeeeeeeseeeeeeeeeeeesereresensans 34
Figure 5.4 Extracting PERSON entities from Link Parser's outputcccccceeureene.... 35
Figure 5.5 Extracting DATE entities from Link Parser's outpt.............ccoeoeueveveeeeveennn. 36
Figure 5.6 Extracting NUMBER entities from Link Parser's outputccoevee..... 37
Figure 5.7 Link Parser DATE entity HMitation................oovveeeeeeeeneseeeeeeeeeeeeeeeeeesessnenans 37
Figure 6.1 System Performanceccoeicvieieieiiiiete e ee e, 44

vil

List of tables

Table 3-1 Distribution of TREC-8 named entitiesccocovevvimiiiiieniiniininieieeicns 19
Table 4.1 Gate Interface PERSON entity eXtraction.........cocoovevieviriiiiniiinneicnneiieiieenens 23
Table 4.2 Gate Interface DATE entity eXtraCtionccoeveveeiivieiiiniiiiininiesee e 24
Table 4.3 Our Gate Interface NUMBER entity eXtraction...........ccccoevveirieievinvieninieaeane. 26
Table 4.4 Gate Interface DATE entity mitation...........ccoocoviiiiniiinniiiniieiis 26
Table 4.5 Gate System eValuation........cc.ccecouiiuiiniiiieriiiei e 28
Table 4.6 Gate Time entity Performancecciveiinininiiiineneet e 28
Table 5.1 Link Parser time entity perfOormance.......c.ccoovvveviiniiiniieniieciiieeeiiee s 38
Table 6-1 Training set experiment reSults........coviiiiiiiiiiiiiiniiii s 39
Table 6-2 TREC-9 experiment validation resultscccoeiivieiiiniinninniinininnineeina, 40
Table 6-3 TREC-10 experiment validation reSultscccooooeiiiiniivieninniiniee, 41
Table 6-4 TREC-2002 experiment validation reSultsccccovvvevviiniinniiininiineieiiens 42
Table 6-5 Distribution of TREC-9, TREC-10, and TREC-2002 named entities............... 42
Table 6-6 System Performanceccocoveveeiriiniiciiniiiiiiie ittt 43
Table 6-7 Answer Ranking Redundancyc.cccceccevveviivciiniiniiniiniinincieceeieees 45

viii

Chapter 1

Introduction

While web search engines have made important strides in recent years, the problem of
efficiently locating information on the web is far from solved. Question answering (QA)
is one of many techniques that could be used to locate such information, and provide
direct answer to user questions. However the difficulty of Natural Language Processing
(NLP) had been one of the major QA challenges in the past few decades. Transforming a
natural language question into an efficient query, is a challenge by itself, but in QA
systems, this question should be transformed into a query and then an efficient and a
satisfactory answer should be found to this question. Recently, the continuous
improvement in the field of information technology and the tremendous growth in on-line
information have increased the demand for more automated, robust, and efficient QA
systems.

A typical QA system consists of the following four major components:

1- Question Analysis

2- Documents retrieval

3- Passage retrieval

4- Answer extraction

The goal of our project is to improve the accuracy of the answer extraction process of an
already existing question-answer system called QUANTUM ([Plamondon, Kosseim,
2002]. The original work used a rule-based approach to extract an answer. Although this

approach yields reasonable results, it is still suffering from some drawbacks. The

following two examples present some of the problems that limit the performance of the
original system:
1) Wrong semantic type association
Given the following "Where is Basque country located?" to the original system to find
an answer, the system will formulate a query and try to find a document containing one
of the following reformulation:

1- Basgque country located, LOCATION

2- Basque country 1is located LOCATION
One of the possible matches that could contain the correct answer is the following:
"Basque country is located in the north coast of Spain, close to the French border". The
original system is using a rule-based approach, and identifies a <LOCATION>
expression as the preposition IN followed by a City or a Country name. In the above
sentence, the LOCATION entity "in the north coast of Spain” will not be considered as a
valid location expression by the current system, and accordingly the system will not be
able to extract an answer.
2) Head of the noun phrase
Another problem with the original system was extracting an obviously wrong answer.
Given the following "Wheo is the current U.S. President?" to the original system to find
an answer, the system will formulate a query and try to find a document containing one
of the following reformulations:
1- the current U.S. President is PERSON
2- PERSON is the current U.S. President

One of the possible matches that could contain an answer is the following:

"the welcome letter from the current U.S. President is Boring". The original system is
using a rule-based approach, and uses latter capitalization to identify a <PERSON>
expression, and accordingly the system will extract "Boring" as the answer, regardless of
the fact that the subject of ‘this sentence is the letter not the U.S. President.

To avoid these two main problems, we decided to use a combination of the following
approaches:

- Named-Entity Tagging to solve the wrong semantic type problem

- Grammar Parsing to parse and ensure that the named entity answers are syntactically

correct and the sentence’s subject is the searched answer.

Named-entity tagging mainly associates a phrase or a word with its semantics. For
example, “Canada” is associated with “LOCATION”, “Peter” with “PERSON” and
“April 3, 2004” with “DATE”. Most of the named-entity taggers are trained on a tagged
corpus using statistical language processing techniques. A first attempt at Named Entity
tagging consists of using lists that include proper names, people, places, or any other
names. However, this approach cannot work well. First of all, the lists will be very huge,
million and millions of entries. Secondly, any list could be out of date as soon as it is
ready to be used, especially in the case of organizations and person names. Moreover,
there is still a problem of lists overlapping, such as "Washington", or "Paris" which can
refer to a Person, or Location or even an organization. To avoid these problems and other
issues, and to have an automated QA system, we decided to use one of the available
named-entity tagging tools, which comes with GATE (General Architecture for Text
Engineering). GATE is an architecture, development environment, and framework for

building systems that process human language. It has been in development at the

University of Sheffield since 1995, and has been used for many research projects,
including information extraction in multiple languages and media [Cunningham et al,
2002]. It is an open source system available in C++/TCL (version 1, 1995-1997) and in
Java (version 2, 1999-2002). The GATE-NE module will extract all the possible answers
that match a given semantic entity. This process does not and could not take into
consideration the syntactical structure of the sentence, and will limit our overall result
improvement. Although, we believe a NE tagger is a very useful tool for QA systems, we
also believe that a QA system should not rely too heavily on NE tagging. As the number
of new terms changes rapidly and the tagging process fails in many cases to associate
proper names with the PERSON entity, specially in the case of non-English names.
Therefore, we also have decided to use a syntactic parser, in addition to a named entity
tagging tool, to filter and improve the GATE-NE system answer extraction process. The
Parser takes the GATE-NE answer as input and evaluates and checks if this answer
represents the head of the given phrase or not. We have selected the Link Parser tool

[Temperley, Sleator, and Lafferty 1991] to be our system Parser based on Stratica's
experiments and evaluation [Stratica, 2002]. The following example shows how a parser

can improve our results. Given the following question " Who is Author of the Lord of the
Rings?", the following sentences are considered both valid and potential candidates for
the extraction process:

1- The author of the Lord of the Rings is <PERSON>.

2- The wife of the author of Lord of the Rings is <PERSON>.

3- <PERSON> is the author of the Lord of the Rings.

All person expressions will be extracted by the GATE-NE system as potential answers.
However, the syntactic parser will only extract the persons in sentences 1 and 3 because
the author is the head of the noun phrase in the subject position only in sentences 1 and 3.
Therefore, the PERSON in sentence 2, the author's wife, will be filtered out by our
system. Throughout this research we will present more examples to show how the

parser's approach improves our system.

After this brief introduction, chapter two will present a literature review in the Question-
Answering and Natural Language processing fields. Based on this review, we describe
how GATE and the Link Parser can fulfill our project's requirements. In chapter three, we
will present in detail our system architecture and approach and will give a brief overview
of the TREC competition and questions that will be used as training and validating set of
our experiments. In chapter four, we will explain the named entity design,
implementation, and limitations of the GATE-NE system; section 4.2 will present some
examples of how the system extracts the searched entities and how these extractions
represent the correct answers. In chapter five, we will describe the Link Parser approach
and its implementations and limitations. Section 5.3 will present how the system will be
or will not be able to filter the GATE-NE system answers of the same examples that were
presented in section 4.2. Chapter six will present our experimental results, system
evaluation, and performance and will present some of our system limitations. Finally, in
chapter seven, we will conclude our work and discuss future work

to be done.

Chapter 2

Literature Review

Question answering (QA) has become an important and widely researched area for
information access because of its ability to provide succinct answers to user's questions
without having him/her search through a large number of documents to find a simple
answer. Since the early days of artificial intelligence in the 60’s, researchers have been
occupied with answering natural language questions issues [Light et al. 2001]. However,
the difficulty of natural language processing (NLP) has limited the scope of QA to
domain-specific expert systems. In recent years, improvements in information retrieval
(IR) and NLP techniques have attracted researchers in a special class of QA systems that
answers natural language questions by consulting a repository of documents, many of
their systems are answering questions over the web. A QA system utilizing this resource
has the potential to answer questions of a wide variety of topics, and will constantly be
kept up-to-date with the web with minimum efforts. Most of the current question
answering systems can be decomposed into four components: Question analysis,
Document retrieval, Passage retrieval, and Answer extraction. Figure 2.1 shows a general
overview of a QA's system architecture. The question analysis component classifies
natural language questions by the expected answer entity and creates a "bag of word"
query from it. For example in "Where is the highest Dam in the world?"; the entity
searched for is a <LOCATION>. Typically, queries generated by this analysis are used
by the document retriever to find a set of potential documents from the document

collection (web, database, etc.).

Passage retrieval then searches in these potential documents and selects paragraph size
texts that are likely to contain the answer. These paragraphs are then passed to the
following Answer Extraction phase. Finally, the answer extraction component searches
the potential passages using one or a combination of several NLP techniques such as: Part
of Speech tagging (POS), word similarity, Named-entity tagging, and others to extract the

final and correct answer.

Figure 2.1 Typical QA system Architecture

These processes show that Natural Language Processing (NLP) represents one of the
major QA system components, and any improvements in the field of NLP will reflect on
the improvement on QA systems.

In this chapter will present the TREC competition, followed by a literature review of
previous QA work, and finally we will describe the current system that we are trying to

improve.

2.1 The TREC Competition

Over the past few years, and to support research within the information retrieval
community, providing the infrastructure necessary for large-scale evaluation of text
retrieval methodologies, the Text Retrieval Conference (TREC) - co-sponsored by the
National Institute of Standards and Technology (NIST) and the Defense Advanced
Research Projects Agency (DARPA)- was created. The TREC competitions [Voorhees,
2000, 2001, 2002] have brought formal and rigorous evaluation methodologies to bear on
the question-answering task. The evaluation process consists of measuring and
comparing QA systems MRR (Mean Reciprocal Rank) which is calculated by the

following equation:

n
MRR =} (1/rank) /N
i=1
Where: n = Total number of questions to be answered
rank = Ranking of the correct answer that is given by a system
N =Total number of questions to be answered

The higher MRR the system has, the better the results are.

2.2 Previous work in QA

We conducted research about the answer extraction techniques in some previous work,
and found that there is a variety of approaches. In 1993, Kupiec developed the MURAX
[Kupiec, 1993] using an on-line encyclopedia. His system used robust shallow parsing
but suffered from the lack of basic information extraction support. In fact, the most
significant answer extractions advance, namely Named Entity extraction, occurred after
Kupiec, thanks to the MUC program (MUC-7, 1998). In 1999, Srihari and Li [Srihari
and Li, 1999] used Textract 1.0, a simple Named Entity extractor approach, for the
TREC-8 QA and obtained a 66.0% tagging accuracy results. High-level answer
extraction technology beyond Named Entity has not been in the stage of possible
.application until recently. Harabagiu introduced a complex abductive inference approach
[Harabagiu et al., 2000], which has limited result improvements over the simplest tagging
systems.

AskJeeves launched a QA portal (www.askjeeves.com), which is equipped with a fairly

sophisticated natural language question parser. When it can find the exact answer, the
system gives it, but it does not provide direct answers to the asked questions. When no
answer can be found, it directs the user to the relevant web pages, just as a traditional
search engine does. The same concepts was used by Zheng [Zheng, 2002], who
introduced the AnswerBus system which uses word occurrence frequency to determine
the potential answers from different search engines on the Web.

In the following sections, we will look in more detail at some on-line and off-line QA
systems, and highlight their major components and their similarities or differences with

our system.

2.2.1 The START system

Boris Katz introduced the START system (SynTactic Analysis using Reversible
Transformation) that uses natural language annotation [Katz, 1990; Katz, 1997]. START
is a natural language question answering system that has been available on the World
Wide Web since December 1993, and can answer simple user questions concerning
geography, weather, movies and many other areas. The START system uses semantic
template-expressions for the question semantic parsing. Based on this parsing result, the
system decides where to find the answer on the Web. Although the system served
millions and millions of users in the last decade, maintaining and expending its

knowledge base is a time-consuming task that requires trained and experts engineers.

Our system is an automated, self-maintained system that doesn't need trained or expert

engineers to adopt or improve its current status.

2.2.2 The QA-LaSIE system

The QA-LaSIE system [Scott and Gaizauskas, 2001] finds answer to questions against
large collections of documents. The system uses a query to do passage retrieval from the
text collection (see Figure 2.1). The answer extraction system does partial syntactic and
semantic analysis on the top ranked passages from the IR system, along with the question
itself to identify the potential answers. The system uses Brill's tagger [Brill, 1992] to
assign part of speech tags to each token in the text that was retrieved by the passage
retrieval phase.

LaSIE was build on the top of Eric Brill's tagger, but our system integrates both GATE-

NE and Link Parser as a part of the QA system.

10

2.2.3 The QALC system

The QALC system at LIMSI [Ferret et al, 2001] is based on web searching. The system
uses its own named entity tagger, and takes advantage of the WordNet semantic database
in the answer extraction process, whenever the expected answer type is not a named
entity. The system achieves encouraging results where about 70 % of the answers were

ranked in the top five answers at the TREC-11 competition.

2.2.4 Selective Relation

Katz and Lin introduced and showed how syntactic processing can improve precision in
question answering [Katz and Lin, 2002]. They demonstrated that syntactic analysis
enables a question-answering system to successfully handle semantic symmetry and
ambiguous modification issues that all current question-answering systems are not able to
handle.

As per Katz's approach, we are using a syntactical tool (Link Parser) in our system.
2.2.5 The Microsoft system

Eric Brill and his colleagues [Brill et al, 2002] utilize the Google search engine to find
answers on the Web. Given a question, he formulates multiple queries to send to the
search engine. His system uses manual re-write rules with possible verb movement for
query reformulation. The system retrieves the best 100 matching pages for each question,
and then harvests the returned summaries for further processing. A set of potential
answers is extracted from the summary text, with each potential answer string weighted

by a number of factors, including how well it matches the expected answer type and how

11

often it occurred in the retrieved page summaries. Then, with the given set of possible
answers, the system performs answer tiling, which merges similar answers. For example,
if an answer includes 3 words "X Y Z" and another includes "W X Y", then they will be
merged into a single answer "W X Y Z". At the TREC-11 competition the system
obtained an MRR of 0.437 but 39.6 % of the questions were not answered.

As we will see in section 2.7, this MS approach is the most similar system to ours; it uses

manual re-write rules with possible verb movements for query reformulation.

2.2.6 The PiQASso QA system

PiQASso [Giuseppe, 2001] is based on a series of semantic filters for selecting texts
containing a justifiable answer. These filters are based on several NLP tools: a POS
tagger, a named-entity tagger, and a lexical database. The system performs question
keyword extraction and query formulation as a first step in the question answering
process. Then, a keyword search is performed for selecting candidate answer sentences
from the document collection. The sentences returned by the query are analyzed and
checked for the presence of entities of the proper answer type, as determined by question
analysis. Sentences are parsed and recognized entities are tagged and passed to the
relation matching filter, which performs a more semantic analysis, verifying that the
answer sentence contains words that have the same type and relation as the corresponding
words in the question. PiQASso only achieved a MRR of 0.271 in the TREC-2001 and
half of the questions (49%) had no answer found. The main reason of this poor

performance is due to both keyword extraction and the named-entity tagger failure to

12

identify the correct text and answer, they either do not return any results, or return too

many non relevant texts.

After this brief QA systems review, the following section presents an overall view of the

current system.

2.3 Overview of the Current System

As mentioned above, our system is an extension of an already existing system
[Guillemette, 2001] that uses a query reformulation approach similar to Microsoft
filtering approach (section 2.2.5). In this work we are trying to increase the answer
extraction accuracy by using named-entity tagging and syntactic parsing. The following

sections present the main parts of the original system.

2.3.1 Question Set
Since the TREC test data collections are available to researchers to evaluate their own

retrieval systems, the original system used TREC-8 and TREC-9 as training sets and

TREC-10, and TREC-11 for the validation.

2.3.2 Query Reformulation

Given the following question, "Where is Basque country located?", the system will
follow the typical architecture outlined in Figure 2.1. First, the question is classified into
one of several categories depending on the semantic type of the answer (ex, who, what,

where, etc.), each of which is mapped to a particular set of rewrite rules [Guillemette,

13

2001]. The rewrites generated by the system were simple string-based manipulations. For
instance, some question types involve query rewrites with possible verb movement; the
verb “is” in the above question should be moved in formulating the desired rewrite query.
A simple approach was taken in the verb's possible movements, by moving the verb to all
possible positions in the query. While such an approach results in many nonsensical
rewrites (e.g. “Basque country located is”, “Basque is country located"), this rarely
retrieves any document from the web. To be able to formulate a declarative sentence, the

system uses WordNet to transform verb simple tense to the main verb.

2.3.3 Search Engine

We know that the answer formulation could be in several forms, one of these forms will
be "Basque country is located <LOCATION>". Therefore, the system tries to perform an
on-line search for a string that matches this formulation and all other possible
formulations. The system used Yahoo and Google as the search engines, by passing the
formulation to the engine as a query and getting the question relevant documents as the

engine's output.

2.3.4 Answer Extraction

After retrieving the question relevant documents from the Web, the system identifies the
answer candidates by unification, and performs a simple semantic check, which is mainly

checking for letter capitalization, word's length, etc.

14

2.3.5 Answer Ranking

The first time the system extracts an answer, it initializes its ranking to 0.65 points and
for each subsequent occurrence of the same answer, the different to one divided by two is

added to the ranking as described in the following equation:
Answer Ranking=p + ((1- p)/2)
Where M is the current answer ranking point which is initialized to 0.65

The final answers are displayed in an output file that have question ID, ranking, and the

extracted answer for each given question.

2.7.6 System Evaluation

As mentioned above, all experiments were performed on both TREC-10 and TREC-11,
and the extracted answers were compared with the TREC answers. The ranking of each
corrected answer is identified, then the MRR (Mean Reciprocal Rank) is calculated for
each answer and for all the set as well by the MRR equations that was described in
section 2.1. The original system was able, with the question reformulation, to obtain a
correct answer for 24% of the total TREC questions compared to 20% without
reformulation. The best results were obtained for <PERSON> type-question, "who",
where there were about 100% increase from 16% without reformulation to 31% with

reformulation.

15

Chapter 3

System Architecture

3.1 Programming Language

The original system was built mostly in Scheme. However after analyzing the scope of
our work's requirements and studying the advantages and disadvantages of the
programming languages available, we decided to work with Perl for the design and
implementation. The main advantage of Perl over Scheme, beside its built-in features for
character and string parsing and manipulating which are extensively used in our system,
is its flexibility and its platform independence. Perl also is well known by many students
and researchers which will make our work easily adopted and used in any future related

work.

3.2 System Organization

We have used Gatelnterface (based on QUANTUM gate.pm Module) as an interface
between our modules and the GATE system. GATE had to be enhanced, since it doesn't
support all the searched entities that we need. These enhancements will be covered in
details in section 4.2. We have therefore created our own Gatelnterface object interface
for the missing entities. Our system uses the Gatelnfo module to access the Gatelnterface
output, which is stored as an object in this module. Appendix B describes all the Gatelnfo

functions and implementations.

16

3.3 System Modules

Our system consists of two major components:

3.3.1 Question analysis and retrieval process

These processes are part of the original Web-QA implementation and it is written in

Scheme, the following are the two main system modules:

- Patterns. scm manipulates the question and reformulation process.

- Get-text. scm search engine interface, and documents retrieval process.
Guillemette [Guillemette, 2001] describes the Scheme system architecture, files

installation and implementations.

3.3.2 Answer Extraction process

The answer extraction module was the emphasis of our work. It is written in Perl, and
the get-answer .pl is the main module in this process. This module is called with
several arguments as the following example:
"get-answer.pl -q question file -d directory -r results file -p"
where:
- Question file: It contains the questions id and text in the following format:
id question’s text. e.g., 122 Who is the best Hockey player this year?
- directory: parent of "rmp" directory where all retrieved documents are stored
- Results file: An output file with each question answer and its ranking value
-p 1if set, Link Grammar parser will be used to filter GATE output. If not, only
GATE-NE tagging will be used.
Chapters 4 and 5 will describe in details both GATE and Link Parser modules installation

and structure.

17

Figure 3.1 shows the answer extraction Data Flow.

From patterns.scm Module

4...-.._4

Pattern Reformulation

h 4
Pattern Matching

\ 4
Potential Answers Extraction

'

Named-Entity Tagging

'

Link Parser Answers Filtering

;

Answer Ranking

'

Answers Evaluation

Figure 3.1 Answer Extraction Flow Chart of our system

3.4 Question Sets

As mentioned in Chapter 2, since the TREC test data collections are available to the
researchers to evaluate their own retrieval systems, we used the TREC questions as our

system training and validating sets. TREC-8 is used as our training set to develop the

18

system. It consists of 200 questions. Table 3-1 shows the distribution of the named

entities searched in the TREC-8 questions:

Entity # of occurrences | Distribution | Question

type

PERSON 73 36.5 % | Who
LOCATION 38 19.0 % | Where
MEASUREMENT 32 16.0 % | How much,

(NUMBER) How far, etc.
TIME/DATE 30 15.0 % | When
OTHER 27 13.5 % | What, which
Total 200 100 %

Table 3.1 Distribution of TREC-8 named entities

Table 3-1 shows that over 80% of the 200 TREC-8 questions required PERSON,
LOCATION, MESUREMENT, TIME or DATE entities. Therefore, most of our

developments and implementations were mainly focused on supporting these entities.

3.5 Answer Ranking

Since, our system is an extension of an already existing system, we have used the same
ranking approach as per the original system (see section 2.3.6). Although, we prefer
having the ranking initialization value to be determined experimentally, we decided to

keep the same ranking process as per the original system for comparison reasons.

3.6 System Evaluation

As mentioned in chapter 2, we compared our extracted answers with the TREC answers.
The ranking of each corrected answer is identified, then the MRR (Mean Reciprocal

Rank) is calculated for each question and for all the questions set as well by the MRR

19

equation (see section 2.1). Since the current system and the original system do not have
the same number of questions that have an answer, we used the following two
comparison measures:
n
Actual MRR =}’ (1/rank) /M
i=1
Where: n = Total number of questions to be answered
M = Total number of questions that have an answer
Normalized MRR = (Actual MRR * M) / Total number of questions in the set
This evaluation process is done on both GATE-NE results only and the combined GATE-
NE and the Link Parser results. In each case, both actual and normalized MRR of our

system are compared to the original system. Chapter Six presents in full details our final

system results and evaluation.

20

Chapter 4

Named-Entity tagging (GATE-NE) Implementation

4.1 Introduction

Name Entity recognition involves processing a text and identifying certain occurrences of
words or expressions as belonging to particular categories of Named Entity (NE). NE
recognition software serves as an important preprocessing tool for tasks such as
information retrieval, information extraction and other text processing applications. To
improve our web-QA system, we decided to use the named entity module available
within GATE (General Architecture for Text Engineering) [Cuningham, 1996]. As
mentioned in chapter 1, GATE is an architecture, development environment, and
framework for building systems that process human language. It has been in development
at the University of Sheffield since 1995, and has been used for many research projects,
including information extraction in multiple languages and media. It is an open source
system available in C++/TCL (version 1, 1995-1997) and in Java (version 2 1999-2002).

We used the latest version of GATE 2.0 (released on March 2002), which was completely
written in Java and it was installed on our CLaC server in the Laboratory. (See Appendix

B for more details).

4.2 Extracting entities

GATE 2.0 is able to identify only the following entities: PERSON, PERCENT,

LOCATION, and DATE [Zhang et al, 2001]. Therefore, we had to create our own GATE

21

interface for the other useful named entities such as MEASUREMENT, DISTANCE, and
DURATION, which were all grouped under the same NUMBER entity. Our accessing and
returning object approach was the same as the original GATE interface, which facilitated
the implementation process. Section 4.2.3 gives an example of such entities identification
limitations. In the following sections, we present some of the entities and how the

GATE-NE system extracts them from a given sentence.

4.2.1 PERSON ENTITY

Given the question "Who is the new Prime Minister of Canada?", the system should
match "PERSON is the new Prime Minister of Canada", as it is given by our

reformulation process. Accordingly "Jean Paul declared that Paul Martin is the new

Prime Minister of Canada" will be considered as one of the potential matches. When

sending to GATE: Jean Paul declared that Paul Martin is the new Prime Minister of

Canada, GATE will identify all named entities in the given sentence and will return the

following:

1- Entity type, which represent the entity name as PERSON, LOCATION, etc.

2- Entities start position, which represents the first character position in the given
sentence.

3- Entity which represents the text that represent the identified entity

4- Entities stop position, which represents the last character position in the given

sentence.

22

Figure 4.1, shows an actual GATE-NE system output for the above sentence:

‘entitystop' => [
71,
Q'
135
I

‘entitytypes’ => [
'Location’,
'Person’,
'Person’

I

‘entitystart' => [
‘65,
0,
4"
I
‘entities’ => [
'‘Canada’,

'Jean Paul’',
'Paul Martin'

]

Figure 4.1 GATE system PERSON entities Extraction

Since the actual GATE-NE system doesn't have an elegant interface (as we see in figure

4.1), we will present the GATE-NE system's output in a table format as follows:

Table 4-1 GATE system PERSON entities Extraction

23

The GATE-NE system extracted all the possible entities in the given sentence but could
not identify the correct answer (Paul Martin). Section 5.3.1 will present how the Link

Parser could filter this answer extraction problem.

4.2.2 DATE (TIME) Entity

Given the question "When did Beethoven die?", the system will try to match "Beethoven
died TIME", as it is given by our reformulation process "Beethoven died on March 26 but
was declared dead on June 11" will be considered as one of the potential match. When
sending to GATE “Beethoven died on March 26 but was declared dead on June 11",
GATE will identify and return all possible entities. Table 4.2 presents the reformatted

GATE-NE system output for the above sentence:

Table 4-2 GATE system DATE entities Extraction

The GATE-NE system extracted all the possible entities in the given sentence including
June 11, which is not the correct answer. Section 5.3.2 will present how the Link Parser

could filter this answer extraction and only extract the correct answer.

24

4.2.3 NUMBER Entity

Assume that the question "How many people live in Tokyo?" will be analyzed by the
GATE-NE system. Then, we will try to match the query reformulation as "NUMBER
people live in Tokyo". The following sentence will be considered as one of the potential
matches: "Among 80 million, there are 12 million people living in Tokyo .

As mentioned above, the GATE-NE system interface cannot extract NUMBER entities.
Therefore, we had to create our own GATE interface for NUMBER entities to overcome

such limitation.

We have used regular expressions to identify any NUMBER representations in a given
text; we have created the following four representations:

1- Digital number representation, such as 1, 200, 3001, 3,200, etc.

2- Alphabetic representation such as: One, three, twenty, hundred, million, etc.

3- Compound representation such as: Three thousands five hundreds and twenty-two.

4- Measurement units such as: feet, meter, kilo, etc.

When sending to GATE: Among 80 million, there are 12 million people living in Tokyo.
our module will parse the given sentence and identify all NUMBER expressions and
output the results in the same format as the actual GATE-NE system does.

Table 4.3 presents the reformatted output of our system GATE-NE interface for the
above sentence:

Obviously, 12 million is the only valid answer in this question, but the GATE system

extracts all possible entities in a given sentence.

25

Table 4-3 Qur system Interface NUMBER entity Extraction

Section 5.3.3 will present how the Link Parser could filter this answer extraction.
4.2.4 Entity Extraction Limitation

The GATE system is able to recognize DATE entities, but only recognizes years in 4
characters format. Table 4.4 shows how GATE interpreted differently March 1420,
March 420 and March 0420. Table 4.4.a shows how the GATE-NE system recognizes

the 4-character year string (1420), when sending to GATE: March 1420.

Table 4-4.a GATE-NE system output for 4 characters year string

Table 4.4.b shows how the GATE-NE system was not able to recognize the 3 characters
year string (420), when sending to GATE: March 420. GATE-NE system will identify

the following:

Table 4-4.b GATE-NE system output for 3 characters year string

26

Table 4.4.c shows how the GATE system recognizes an invalid 4 characters year string

(0420), when sending to GATE: March 0420.

Table 4-4.c GATE-NE system output for invalid 4 characters year string

Our system did not address this issue, since it was never found in the training set, and it
was just observed lately. Actually, we did not even face it in the validation process either.

But definitely we consider it as a system deficiency and it should be eliminated.

4.3 GATE system Evaluation

Table 4-5 shows a summary of the testing results with all 1693 questions. The results
show an overall 6% MRR improvement and about 9% correct answer improvement in
our approach over the original system approach. The improvement is noticeable in each
category.

As shown in table 4.5, our system extracts at least one answer for 536 questions,
compared to 484 by the original system, which reflects a 10 % increase. Also the number

of correctly extracted answers is also increased by the same percentage.

27

Original | GATE-NE

System System
Total number of questions 1693 1693
of questions with no retrieved documents 583 583
of questions with at least one retrieved doc. 1100 1100]
of questions with no answer found 616 564
of questions with at least one extracted answer 484 536
of questions with wrong extracted answers 214 236]
of questions with correct extracted answers 270 300]

% of correct answer/total question number

16.30 % 17.70 %

% of correct answer /retrieved

24.54 % 27.27 %

> (1/answer ranking)

1694 186.52

Actual MRR

0.35 0.348

Normalized MRR/ 1693 questions

0.101 0.107

Table 4-5 GATE-NE system final result comparison to the original system

As we will see in chapter 6, the training set entities distribution is not well represented in
the validation set, and this could skew the system performance toward these entities that
are well represented in both training and validation sets.

Table 4.6 shows a significant improvement in the number of questions with at least one
extracted answer and number of questions with correctly extracted answer, when TIME

entity is the searched entity. Although, the actual MRR is slightly higher, normalized

MRR obtained a 80% increase compared to the original system.

Number of questions Original System | GATE-NE system
With at least one extracted answer 30 56
With correct extracted answer 18 37
Actual MRR 0.90 0.92
Normalized MRR 0.072 0.121

Table 4-6 TREC-9, TREC-10, and TREC-2002: TIME entity performance comparison

28

In view of these results, we believe that a NE tagger is very useful tool for QA systems.
But we also believe a QA system should not rely too heavily on NE tagging, as the
tagging process fails in many cases to associate the proper semantic type to expresstons.
For example, proper names with the PERSON entity, specially, in the case of non-
English names.

Therefore, we used a syntactical parser to improve the GATE-NE system. Chapter 5 will

present the Link Parser implementation and performance.

29

Chapter 5

Link Parser Implementation

5.1 Introduction

The Link Parser Grammar is a syntactic parser of English, based on link grammar, an
original theory of English syntax [Temperley, Sleator, and Lafferty, 1991]. The basic
idea is to assign a syntactic structure to a given sentence. The system is written in generic
C, and it can be compiled and run in any Platform with a C compiler.
The parser considers the words as blocks, which are connected through a set of pointers
(connectors). Each word will be connected to the following word by a right connector (-)
and to the previous word by a left connector (+). The pair of connectors between any two
words forms a link. A valid sentence is one in which all words are used in a way that
satisfies the following two types of rules:
- Word Rules: which are stored in a simple dictionary to identify different word
meanings in a sentence (see Appendix C).
- Global Rules: which do not allow cross links (planarity) and ensure connectivity
where all the words must be indirectly connected to each other.
The original version of the parser was designed around a standard interface, where the
user types in a sentence, and the parser displays all the existing linkages for the sentence.
This is fine for showing the result of the grammar and parser work, but in order to make
actual use of the information that the parser provides, it is necessary to have access to its
inner workings. The Link Parser API was written to give users flexibility in using the
parser in their applications. The API is written in ANSI C, and runs in both UNTX and

Windows environments

30

5.2 Perl Interface

The Link Grammar parser itself is a complex software that implements a complex theory
of language. Therefore, there is a need for an interface that can easily access the parser
APT and return the parser links for analysis. Dan Brian developed the Lingua::LinkParser
Module [Brian, 2000] that provides access to the parser API using Perl objects to easily
analyse the parser links and linkages. The module organises data returned from the parser
API into an object hierarchy consisting of, in order, sentence, linkage, sub-linkage, and
link. Appendix D shows some of the Module's basic functions and commands. The

current Perl implementation is based on version 4.0 of the Link Grammar parser APL

5.3 Analysis Process

We used the parser process in our implementation as a filter to the extracted answers
from the GATE-NE process. The main role of the parser is to try to verify if the extracted
answers from GATE-NE are the head of a noun phrase or not. Our system sends the
potential text to the Link Parser to extract the tokens, then tags them with parts-of-speech,
and identifies the syntactic constituents. The Link Parser often returns more than one
parse tree for a given sentence, along with a link cost "confidence level". In our
implementation we only process the lower link cost or "higher confidence level".

In the following sections, we present some of the entities and how the Link Parser

extracts them from a given sentence.

31

5.3.1 Person Entity

Figure 5.1 shows few possible trees that Link Parser creates for the sentence, "Jean Paul

declared that Paul Martin is the new Prime Minister of Canada" from section 4.2.1.

Fom e Ost----—------- +

| Fommmm Dg---—----- +

+--—-Cet----+ | | o A--—-——- +
+--G-+---8s-—+---TH---+ +--G-—+--Ss-+ | | et i

| | | | I I I |

Jean Paul declared.v that.c Paul Martin is.v the new.a prime.a minister
.n

Js—-+

of Canada

Figure 5.1.a PERSON entity parsing Tree (Linkage) # 1 and cost =21

o Ost----------- +

| dmmmmm— DS-—m-m—-=- +

+----Cet----+ | | dmmm A--om——- +
+--G~+-=--Ss--+---TH-~-+ +--G--+--Ss-+ | [+-——-AN---+--

l l | I | | Lo | | I

Jean Paul declared.v that.c Paul Martin is.v the new.a prime.n
minister.n of

Js~+

Canada

Figure 5.1.b PERSON entity parsing Tree (Linkage) # 2 and Cost =21

o Ost---------~-- +

(Fmmmm Ds---—----- +

+-—--Cet----+ | | Fmm—— A--——--- +
+--GN-+---Ss~~+~-=TH~~--+ +==G--+=-=~Ss~+ | | +--——AN---

+--Mp-

jean.n Paul declared.v that.c Paul Martin is.v the new prime.n miniter

—+-Js-+
! l

of Canada

Figure 5.1.c PERSON entity parsing Tree (Linkage) #4 and Cost =23

32

Figure 5.1.a. shows the higher confidence tree (lower cost), which is the only one
processed by our system.

By knowing that we are searching a PERSON and knowing that the Link Parser connects
proper nouns together in series by the "G" connector, then we could identify both Jean
Paul and Paul Martin as valid answers (the same as GATE-NE in section 4.2). But, the
Link Parser identifies the subject of the sentence as well, which is identified by the
connector "S", and it reflects the existence of a link (relation) between "Martin"” and "is
the new prime Minister of Canada". Therefore, only Paul Martin will be considered as

the correct extracted answer for this question.

5.3.2 DATE (Time) Entity

Figure 5.2 shows the possible trees that the Link Parser creates for the example in section
4.2.2, where the question was "When did Beethoven die?" And one of the sentences was
“Beethoven died on March 26 but was declared dead on June 11".
The subject of the sentence is Beethoven and "S" is its Parser connector, knowing one or
a combination of the following "TA, TD, TM, TW, TH, ON. or DT" is the TIME parser's
connectors. Then we could identify and extract the answer as "on March 26".

+ Ss +

+---88---+-MVp+-ON+-TM-+ +---Pvf--+----MVp----+-ON+-TM+

I I I I [| I I [

Beethoven died.v on March 26 but was.v declared.v [dead] on June 11

Figure 5.2 Date entity Parsing Tree (Linkage 1, Cost = 31)

33

5.3.3 Number Entity

Figure 5.4 shows one of the possible trees that the Link Parser creates for the example of
section 4.2.3, where the question was "How many people live in Tokyo?" and one of the
excepts was "Among 80 million, there are 12 million people living in Tokyo". Knowing
that we are looking for a NUMBER and the connectors that are used by the Link Parser
to identify NUMBER is one or a combination of the following "NN, NI, NF, or Dmcn ",
we can identify our MVp phrase then we could identify and extract the answer as "12

million".

+ _X_c— + |
+—-Jp—+ | | + Opt + +------MVp------+
I+ NN-+ | +-SFp-+ +-NN-+--Dmcn--+---Ma--+-MVp+-Js+ |
I I I I I
Among 80 million , there is.v 12 million people.p live.a in Tokyo alone.a

Figure 5.3 Number entity Parsing Tree (Linkage=1 cost=27)

The same concept has been used for all the other entities.
Perl could not parse any of the above-mentioned diagrams. The following section will

explain how we used pattern matching, to parse and implement our Link Parser approach.

5.4 Accessing the Link Parser Connectors

The Link Parser diagrams help the user understand the parse tree, but to use this
information within a program requires access to the links and sub-links themselves. The

Lingua Module [Brian, 2000] gives the possibility to overload the parser print command

34

to display the diagram as a string. Having the diagram as a string, helps users use pattern

matching to identify the links (connectors) between words.

5.4.1 PERSON Entity
Figure 5.4 shows how the example in section 5.3.1 (Figure 5.1.a) could be represented as
a string. Since we are looking for a PERSON entity (G or GN) and a Subject (S) then we

can use pattern matching to extract the required answer from the string.

Sentence
Jean Paul declared that Paul Martin is the new Prime Minister of Canada.
Parsing Tree

(("LEFT-WALL" RW:14:RIGHT-WALL Wd:2:Paul)

("Jean" G:2:Paul)

(Wd:0:LEFT-WALL G:1:Jean "Paul" Ss:3:declared.v G:6:Martin)
(Ss:2:Paul "declared.v" TH:4:that.c)

(TH:3:declared.v "that.c" Cet:6:Martin)

(Wd:0:LEFT-WALL G:1:Jean Ss:3:declared.v "Paul" G:6:Martin)
(Cet:4:that.c G:5:Paul "Martin" Ss:7:1s.v)

(Ss:6:Martin "is.v" Ost:11:Minister.n)

("the" Ds:11:Minister.n)("new.a" A:11:Minister.n)

("Prime.n" AN:11:Minister.n)

(Ost:7:is.v Ds:8:the A:9:new.a AN:10:Prime.n "Minister.n" Mp:12:0f)
(Mp:11:Minister.n "of" Js:13:Canada)(Js:12:0f "Canada")
(RW:0:LEFT-WALL "RIGHT-WALL"))

Matched string
(Cet:4:that.c G:5:Paul "Martin" Ss:7:is.v)
Extracted Answer:

Paul Martin

Figure 5.4 Extracting PERSON entities from the Link Parser's output

35

5.4.2 DATE (TIME) entity implementation

As mentioned above, we display the parsing tree as one full string. Then we use pattern
matching to match and "grep" the given sentence Subject connector (S), verb-phrase
connector (MV) and the related TIME connectors (Js, TM,). Figure 5.5 shows the
matched string in a given tree.

Sentence:

Beethoven died on March 26 but was declared dead on June 11.

Parsing Tree:

(("LEFT-WALL" RW:12:RIGHT-WALL Wd:1:Beethoven) Wd:0:LEFT-WALL
"Beethoven" Ss:2:died.v Ss:7:was.v)(Ss:1:Beethoven "died.v" MVp:3:on
YMVp:2:died.v "on" ON:4:March MVp:8:declared.v ON:10:June)(ON:3:on "March"
TM:5:26)(TM:4:March "26")("but")(Ss:1:Beethoven "was.v" Pvf:8:declared.v
J(Pvi:7:was.v "declared.v" MVp:9:on)(MVp:2:died.v ON:4:March MVp:8:declared.v
"on" ON:10:June)(ON:9:on "June" TM:11:11)}TM:10:June "11")}RW:0:LEFT-
WALL "RIGHT-WALL"))

Matched string (Ss:1:Beethoven "died.v" MVp:3:on)(ON:3:on TM:4:March "26")

Extracted Answer; March 26.

Figure5.5 Extracting DATE entities from the Link Parser's output

5.4.3 NUMBER entity implementation

Figure 5.6 shows how the example in section 5.3.3 (Figure 5.3) could be represented as a
string. Since we are looking for a NUMBER entity (NN, NI, NF, or Dmcn) and a Subject
(S), we can use pattern matching to extract the required answer from the string.

Sentence

Among 80 million, there are 12 million people living in Tokyo.

36

Parsing Tree

=(("LEFT-WALL" RW:13:RIGHT-WALL Wq:1:among }(Wq:0:LEFT-WALL
"among" PF:6:are.v Jp:3:million)("80" NN:3:million)(Jp:1:among NN:2:80 "million"
MXp:5:There Dmcn:9:people.p NN:7:12)("," Xd:5:There)(MXp:3:million Xd:4:,
"There")(PF:1:among "are.v" SIpx:9:people.p)("12" NN:8:million)(Jp: l:among
NN:2:80 MXp:5:There NN:7:12 "million" Dmcn:9:people.p)(SIpx:6:are.v
Dmcn:8:million "people.p” Mg:10:living.v }(Mg:9:people.p "living.v" MVp:11:in
YMVp:10:living.v "in" Js:12:Tokyo)(Js:11:in "Tokyo" }(RW:0:LEFT-WALL
"RIGHT-WALL"))

Matched string

(NN:7:12 "million" Dmcn:9:people.p)("12" NN:8:million)

Extracted Answer

12 million

Figure 5-6. Extracting NUMBER entities from the Link Parser's output

5.4.4 Entity Extraction Limitation

We have observed the same date entity extraction issue as in the GATE system. The Link
Parser could not recognize any 2 or 3 digit word that represents a year. Even any year
prior to 1900, will not be recognized as a DATE (year) by the Link Parser. This shown in

Figures 5.7.a and 5.7.b

Sentence
He died on March 1885.

Parsing Tree
+-Ss-+-MVp+-Js+

| I [

he died.v on March [1885]

Figure 5-7.a Link Parser System year string Limitations

37

Sentence
He died on March 85.

Parsing Tree

+-Ss-+-MVp+-Js+
I I [
he died.v on March [85]

Figure 5-7.b Link Parser System year string Limitations

5.5 The Link Parser system Evaluation

Chapter 6 will present a summary of the testing results with all 1693 questions. The

results show an overall 5% MRR improvement with the Link Parser approach compared

to the GATE-NE system only.

As per section 4.3, and due to the fact that the training set entities distribution is not well

representing the validation set, Table 5.1 shows a slight improvement in normalized

MRR compared to the GATE-NE.

Number of questions Original GATE-NE | GATE-NE and Link
System system Parser system
With at least one extracted answer 30 56 56
With correct extracted answer 18 37 37
Actual MRR 0.90 0.92 0.922
Normalized MRR 0.072 0.121 0.131

Table 5-1 TREC-9, TREC-10, and TREC-2002: TIME entity performance comparison

38

Chapter 6

Experiments

6.1 Evaluation

The GATE-NE and Link Parser Pert modules were developed on a test-set of 200
questions (TREC-8). In each TREC experiment, the results from the original Web-QA
system [Guillemette, 2001] were compared with our GATE-NE and Parser results. Our
analysis showed that over 80% of our TREC-8 200 questions were tagged as TIME or
DATE, PERSON, LOCATION, MEASUREMENT. Therefore, most of our
developments and implementations were mainly supporting these entities. Table 6-1
shows the results with the TREC-8 training set. Although, the original system has a
higher number of questions that have at least one extracted answer our approaches have a

higher extracted correct answers and accordingly higher MRR.

Original | GATE-NE | GATE-NE
System ONLY And
Parser

Total number of questions 200 200} 200}
of questions with no retrieved documents 44 44 44
of questions with at least one retrieved doc. 156 156 156
of questions with no Answer found 95 110} 110}
of questions with at least one extracted answer 61 46 46
of questions with wrong extracted answers 34 17 17
of correct extracted answers 27 29] 29
% of correct answer/total question number 13.43 % 14.43 % 14.43 %
% of correct answer /retrieved 44.26 % 63.04 % 63.04 %
> (1/answer ranking) 21.22 19.69] 21.76
Actual MRR 0.348 0.428 0.473
Normalize MRR/ 200 questions 0.105 0.100] 0.109]

Table 6-1 TREC-8 (Training set) Results analysis.

39

The low performance of the extracted relevant answer (14.43 %) is mainly due to quality
of the document retrieved by the IR process. Although, our goal is improving an answer
extraction process, a higher number of extracted documents would give more confidence
of the system overall.

6.2 Validation set Entities distribution

As Table 3-1 showed, more than 80% of the 200 TREC-8 questions required PERSON,
LOCATION, MEASUREMENT, and TIME or DATE entities. Therefore, most of our
developments and implementations were mainly supporting these entities.

Table 6-2 shows the distribution of the searched named entities for TREC-9, TREC-10

and TREC-2002, which were used in our validation process.

Entity TREC-9 | TREC-10 | TREC-2002 | TOTAL | Distribution
PERSON 230 100 105 435 26.0 %
LOCATION 115 70 62 247 14.5 %
MEASUREMENT 55 30 35 120 7.0 %
TIME/DATE 75 55 104 234 14.0 %
| Other 218 245 194 637 38.5 %
Total 693 500 500 1693 100 %

Table 6.2 Distribution of TREC-9, TREC-10, and TREC2002 entities

From the above table, we can conclude that the training set (TREC-8) entity distribution
(see Table 3.1) is not a good representation for the test set (TREC-9, TREC-10, and
TREC-2002). The best-represented entities are TIME/DATE, which represents about 15
% of the total searched entities in both training and evaluation questions sets, followed by
LOCATION and then PERSON entities. This representation was reflected in our system

performance as shown in Tables 4-6 and 5-1.

40

6.3 Evaluation of the test set

The system was validated on TREC-9 (693 questions), TREC-10 (500 questions), and
TREC-2002 (500 questions), for a total of 1693 questions. Appendix A presents an
example of the system internal process. Table 6-3 shows the result with the TREC-9
question set. The actual MRR of the original system is about 0.30 which is slightly higher

than the GATE-NE approach MRR, but the Parser results improved the overall MRR.

Original| GATE-NE | GATE-NE
System| ONLY And
Parser
Total number of questions 693 693 693
of questions with no retrieved documents 73 73 73
of questions with at least one retrieved doc. 620 620} 620}
of questions with no answer found 450 450] 450}
of questions with at least one extracted answer 170 170} 170
of questions with wrong extracted answers 97 93 93
of correct extracted answers 73 77 77
% of correct answer/total question number 10.53 % 11.11 % 11.11 %
% of correct answer /retrieved 42.94 %| 4529 %] 4529 %
(1/ answer ranking) 51 48.45 55.25
Actual MRR 0.3 0.285 0.325
Normalize MRR/ 693 questions 0.073 0.07 0.08

Table 6-3 TREC-9 Result.

Table 6-4 shows the result with TREC-10 question set. We consider TREC-10 as our best
test set, and this is mainly due to the higher percentage of extracted answers by all three
approaches. The improvement is noticeable in each category. Our system extracted 241
answers out of 301 available (80%) compared to 67% by the original system. We
extracted 144 correct answers with an actual MRR and normalize MRR of 0.322 and

0.155 respectively, compared to 0.311 and 0.125 for the original approach.

41

Original] GATE-NE | GATE-NE

System | ONLY And Parser
Total number of questions 500 500§ 500§
of questions with no retrieved documents 199 199 199
of questions with at least one retrieved doc. 301 301 301
of questions with no Answer found 100 60} 60}
of questions with at least one extracted answer 201 241 241
of questions with wrong extracted answers 78 93 93
of correct extracted answers 123 144 144
% of correct answer/total question number 24.60 % 28.80 % 28.80 %
% of correct answer /retrieved 61.19 %| 59.75 % 59.75 %
> (1/answer ranking) 62.51 76.88 77.6
Actual MRR 0.311 0.319) 0.322
Normalize MRR/ 500 questions 0.125 0.153 0.155

Table 6-4 TREC-10 Result.

Table 6-5 shows the results with TREC-2002 question set. The actual MRR of the
original system is about 0.50, which is slightly higher than our approach's MRR. But our
approach has a higher correct answer extraction. Again as with the TREC-9 set, the
number of the retrieved documents is very low and we could not fairly judge the system

with these results.

Original [GATE-NE |GATE-NE

System JONLY And Parser
Total number of questions 500 500) 500
of questions with no retrieved documents 321 321 321
of questions with at least one retrieved doc. 179 179 179
of questions with no Answer found 66 54 54
of questions with at least one extracted answer 113 125 125
of questions with wrong extracted answers 39 46 46
of correct extracted answers 74 79 79
% of correct answer/total question number 14.80 % 15.80 % 15.80 %
% of correct answer /retrieved 65.49 % 63.20 % 63.20 %
> (1/answer ranking) 57.6 57.87 59.0]
Actual MRR 0.509 0.463 0.472
Normalize MRR/ 500 questions 0.116 0.116 0.118

Table 6-5 TREC-2002 Result.

42

6.4 Summary of results

Table 6-6 shows a summary of the testing results with all 1693 questions.

Original | GATE-NE { GATE-NE

System ONLY | And Parser
Total number of questions 1693 1693 1693
of questions with no retrieved documents 583 583 583
of questions with at least one retrieved doc. 1100 11004 11001
of questions with no Answer found 616 564 564
of questions with extracted answers 484 536 536
of questions with wrong extracted answers 214 236 236
of correct extracted answers 270 300] 300]
% of correct answer/total question number 16.30 % 17.70 % 17.7 %
% of correct answer /retrieved 24.54 %) 27.27 % 27.27%
>, (1/answer ranking) 169.4 186.52 192.96
Actual MRR 0.35 0.348 0.36
Normalize MRR/ 1693 Questions 0.101 0.107 0.113

Table 6-6 Summary of the results with TREC-9, TREC-10, and TREC-2002.

The results show an overall 11% MRR improvement and about 9% correct answer
improvement in our approach over the original system approach. The improvement is
noticeable in each category. Our system extracted 536 answers out of 1100 available
question (~49%) compared to 44% extracted by the original system. Our approach's

correct answer extraction was about 27 % of the total retrieved documents, compared to

24.5% in the original system.

After the analysis of the results, we concluded that our approach is giving slightly higher

and better results than the original system and performs well with respect to our main

research objectives as shown in Figure 6.1.

43

1- Increase number of extracted answers

2- Increase answer extraction accuracy (MRR)

System Performance

40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

% of correct Actual MRR Normalized
extracted MRR
answer

[AOriginal System BIGATE-NE only
COGATE-NE and Parser

Figure 6-1. System Performance

6.5 Remaining Errors

Although, the MRR has improved slightly, many errors still remain. The following
sections will present some of these errors.

6.5.1 Entities Type

As mentioned above, our training set entities representation was skewed in favor of the
following entities, PERSON, TIME or DATE, LOCATION, and MEASUREMENT

(NUMBER). Therefore, most of our developments and implementations were mainly

44

supporting these entities, and less to some other as CLAUSE, ORGANIZATION, TITLE,
REASON, that accounted for 38.5% for the answers in the test questions (see Table 6.2)
compared to only 13.5% in the training questions (see Table 3.1). Having a training set
that is well representing the validation set would have helped us to fully and fairly judge

our system results.

6.5.2 Redundancy Answer Ranking

One of the issues that we addressed in the system is the repetitive answer ranking. We
increased the ranking of such a case by a percentage of the existing ranking. This
technique works most of the time, but we believe that there is still room for
improvements on such a technique. Question 945 (TREC-10) is a best example of this
where the question was "Who discovered x-rays?'. Table 6-7 presents our system's
extracted answers and their ranking. Although, all the answers are referring to the same
person, our system was dealing with each answer as a separate answer. This is mainly
due to the spelling and abbreviations mismatch. The correct answer was "Wilhelm

Conrad Roentgen" and was ranked second by our system.

Rank Score Answer

1 0.90000 Wilhelm Conrad Rontgen
2 0.80000 Wilhelm Conrad Roentgen
3 0.60000 Wilhelm Conrad Rontgen
4 0.60000 Wilhelm Rontgen

5 0.60000 Wilhelm Roentgen

6 0.60000 Wilhelm C. Roentgen

7 0.60000 Wilhelm Rontgen

Table 6.7 Effect of a simple string matching

45

Chapter 7

Conclusion and Future Work

The extraction techniques presented here show that using a named-entity tagger
combined with a syntactic parser can effectively increase the overall MRR of a QA
system. The improvement was very low for TREC-9 and TREC-2002, and relatively high
for TREC-10. Overall we have an average of 0.113 MRR compared to 0.101 for the
original system, and we were able to extract correct answers for 300 questions, 24 more
than the original system. One of the factors that effected our validation is the low recall
of the IR process (65%), only 1100 questions out of a total of 1693 questions have
retrieved documents. Although, our work should be measured relatively to the original
system, the low number of documents does not give an accurate evaluation of the system.
Therefore, we believe that we should re-evaluate this system with a higher number of
documents, to be able to fully and fairly judge this system. At the same time, we feel that
more improvements and actions are needed in our approach and should be considered in

future work. The following sections present some of these needed actions.

7.1 Co-reference Chains

As we mentioned in Section 6.5.2, using a simple string matching in answer redundancy
ranking will not be an effective technique all the time (see Table 6.7), therefore, we

suggest the use of co-reference chains to solve this issue.

46

7.2 Link Parser confidence level

As we mentioned in Chapter 5, the Link Parser usually creates more than one tree for a
given sentence. Each tree has a cost or level of confidence associated with it. We only
considered the lower cost tree, but we may want to consider all the possible trees. More
work is needed to validate this assumption. Another issue that is not solved in our
approach is the conjunction links, the Link Parser could create crossing links between

words due to the existence of "AND", "OR", "but", "either", or "neither".

7.3 Nature of the question

General questions like "Where can [find the best car in the Market?", or "Where can I
find more information about QA answer extraction?"” might be easier to answer by a
system based on a well-maintained database. Since our system is based on the processing
of the underlying documents, no correct answer can be provided if there is no such

answer (explicitly expressed in English) in the processed documents.

7.4 More than one correct answer

Some questions could have more than one correct answer, and these answers could be
divided over the text and not in the same sentence, or even over more than one document.
In the first case the system will only extract the first answer, and in the second the system

will have to choose the correct answer by the ranking approach.

47

Appendix A: System internal running process

This Appendix shows an example of an internal running process of our system. Given the
system the following three questions form TREC-9:

Questions

Question # 221:

Who killed Martin Luther King?
Question # 244:

Who invented baseball?
Question # 430:

Where is Basque country located?

System Results (output):

The following is the output of both the original and the current systems. The output is
formatted in three columns, which represent the following:

Question ID Answer Ranking Answer Extracted
1- Original System Qutput

221 0.9998046875 James Ray

221 0.9998046875 Prime Suspects Who
244 0.9998046875 Abner Doubleday
244 0.9998046875 The Man Who

244 0.9998046875 Who

244 0.999999999988358 Russians

2- GATE-NE output

221 0.987500 James Ray

221 0.900000 Isaac Clark Tele
221 0.999805 James Earl Ray An
244 0.999805 Abner Doubleday
244 0.999805 John Leos

244 0.987500 B Find

48

244 0.900000 Alexander Cartwright
244 0.987500 Mr. Spaulding

244 0.987500 Abner Graves

244 0.987500 Major Abner Doubleday
244 0.987500 Jim Becker

244 0.987500 Queen

430 0.999219 Spain

430 0.987500 France

430 0.800000 western Europe

3- Link Parser and GATE-NE output

221 0.987500 James Ray

244 0.900000 Invented

244 0.987500 Abner Doubleday

244 0.987500 The Man Who

430 0.950000 in the north coast

430 0.800000 Spain

430 0.950000 between France and Spain

Results evaluation

The following is the evaluation results compared to the actual TREC expected answers,
and the Mean Reciprocal Rank (MRR) over the total number of answers:

MRR =3}’ (1/rank) / Total number of questions

The output is formatted in three parts, which represent the following:
Question ID: Extracted answer, correct answer ranking

Mean reciprocal rank over Total questions question(s) is MRR

Number of questions had no answers found in top 5 responses

1- Original System Evaluation
Question 221: Correct answer James Ray, found at rank 2 (0.50).

Question 244: Correct answer Abner Doubleday , found at rank 4 (0.25).

49

Mean reciprocal rank over 2 question(s) is 0.375

0 questions had no answers found in top 5 responses

2- GATE-NE Evaluation

Question 221: Correct answer James Earl Ray , found at rank 1 (1.00).

- Question 244: Correct answer Abner Doubleday, found at rank 2 (0.50).
Question 430: Correct answer Spain, found at rank 1 (1.00).
MRR(Mean reciprocal rank) over 3 question(s) is 0.833

no answers found in top 5 responses.

3- Link Parser and GATE-NE Evaluation
Question 221: Correct answer James Earl Ray, found at rank 1 (1.00).
Question 244: Correct answer Abner Doubleday, found at rank 2 (0.50).

Question 430: Correct answer Spain, found at rank 1 (1.00).

MRR(Mean reciprocal rank) over 3 question(s) is 0.833

0 questions had no answers found in top 5 responses.

50

Appendix B: GATE SYSTEM FUNCTIONS

This Appendix presents the Gate system structure and its main modules and sub-
functions. It is based on Lavalée's Perl implementation paper [Lavalée, - 2003].

The Gatelnterface module represents our module interface to the GATE system.
ExtractNE is the Module's main function, it takes an input sentence string and returns
back a hash of arrays of all entities found in the given sentence:

- {entities}: is the array of entities' text

- {entitytypes}: is the array of entities' type such as (PERSON, ORGANIZATION,
LOCATION, MONEY, DATE, PERCENT, TIME)

- {entitypos}: is an array of entities' offset in the original text

Gatelnterface's returns Hash arrays are stored in Gateinfo's object. Gateinfo is an
encapsulation (i.e data structure) to store the GATE system output in a structured way.
The following are the main functions of this module:

getSentence: Returns original sentence that was sent to the GATE system for analysis

numElements: Returns the number of elements that have been tagged (0 or more)

hasEntity: Returns if there are entities in our sentence, and how many are there?
getText: Returns the text that represents the retrieved entity.

getType: Returns the entity type as PERSON, TIME

getRange: Returns the text position in the sentence, where it starts and stops.

51

The following is an example of a call to GATE functions, it is based on question # 945
(TREC-10): "Who discovered x-rays?" Possible match will be: Wilhelm Conrad

Roentgen discovered x-rays on November 8 1895. The following is the GATE output:

‘entitystart’ => [
10"
|7l,
'78',
|33|
]9

‘entitystop' => [
6.
11,
‘93",
56!

‘entitytypes' => [
"Person’,
'Date’,
Date’,
'"Person’

R
‘entities' => [
"Thomas',
'1965',
'November 8 1895',
'Wilhelm Conrad Roentgen']

52

Appendix C: LINK PARSER FUNCTIONS

This Appendix gives a brief description of all the link-types of the Link Parser. Please,

refer Link Grammar Parser 4.1 web site for more details [http://www .link.cs.cmu.edu]:

A connects pre-noun ("attributive") adjectives to following nouns: "The BIG DOG
chased me", "The BIG BLACK UGLY DOG chased me".

AA is used in the construction "How [adj] a [noun] was it?". It connects the adjective to
the following "a".

AF connects adjectives to verbs in cases where the adjective is fronted, such as questions
and indirect questions: "How BIG IS it?"

AL connects a few determiners like "all” or "both" to following determiners: "ALL THE
people are here".

AM connects "as" to "much" or "many": "I don't go out AS MUCH now".

AN connects noun-modifiers to following nouns: "The TAX PROPOSAL was rejected".
AZ connects the word "as" back to certain verbs that can take "[obj] as [adj]" as a
complement: "He VIEWED him AS stupid".

B serves various functions involving relative clauses and questions. It connects transitive
verbs back to their objects in relative clauses, questions, and indirect questions ("The
DOG we CHASED", "WHO did you SEE?"); it also connects the main noun to the finite
verb in subject-type relative clauses ("The DOG who CHASED me was black").

BI connects forms of the verb "be" to certain idiomatic expressions: for example, cases

like "He IS PRESIDENT of the company".

53

BT is used with time expressions acting as fronted objects: "How many YEARS did it
LAST?".

BW connects "what" to various verbs like "think", which are not really transitive but can
connect back to "what" in questions: "WHAT do you THINK?"

C links conjunctions to subjects of subordinate clauses ("He left WHEN HE saw me"). it
also links certain verbs to subjects of embedded clauses ("He SAID HE was sorry").

CC connects clauses to following coordinating conjunctions ("SHE left BUT we
stayed").

€O connects "openers” to subjects of clauses: "APPARENTLY / ON Tuesday , THEY
went to a movie".

CP connects paraphrasing or quoting verbs to the wall (and, indirectly, to the paraphrased
expression): "///// That is untrue, the spokesman SAID."

CQ connects to auxiliaries in comparative constructions involving s-v inversion: "SHE
has more money THAN DOES Joe".

CX is used in comparative constructions where the right half of the comparative contains
only an auxiliary: "She has more money THAN he DOES".

D connects determiners to nouns: "THE DOG chased A CAT and SOME BIRDS".

DD connects definite determiners ("the", "his") to certain things like number expressions
and adjectives acting as nouns: "THE POOR", "THE TWO he mentioned".

DG connects the word "The" with proper nouns: "the Riviera", "the Mississippi".

DP connects possessive determiners to gerunds: "YOUR TELLING John to leave was

stupid”.

54

DT connects determiners to nouns in idiomatic time expressions: "NEXT WEEK",
"NEXT THURSDAY™".

E is used for verb-modifying adverbs which precede the verb: "He is APPARENTLY
LEAVING".

EA connects adverbs‘ to adjectives: "She is a VERY GOOD player".

EB connects adverbs to forms of "be" before an object or prepositional phrase: "He IS
APPARENTLY a good programmer".

EC connects adverbs to comparative adjectives: "It is MUCH BIGGER"

EE connects adverbs to other adverbs: "He ran VERY QUICKLY™".

EF connects the word "enough" to preceding adjectives and adverbs: "He didn't run
QUICKLY ENOUGH".

EI connects a few adverbs to "after” and "before": "I left SOON AFTER I saw you".

EL connects certain words to the word "else": something / everything / anything /
nothing , somewhere (etc.), and someone (etc.).

EN connects certain adverbs to expressions of quantity: "The class has NEARLY FIFTY
students”.

1

ER is used the expression "The x-er..., the y-er...". it connects the two halfs of the
expression together, via the comparative words (e.g. "The FASTER it is, the MORE they
will like it").

EZ connects certain adverbs to the word "as", like "just" and "almost": "You're JUST AS

good as he is."

FL connects "for" to "long": "I didn't wait FOR LONG".

55

FM connects the preposition "from" to various other prepositions: "We heard a scream
FROM INSIDE the house".

G connects proper noun words together in series: "GEORGE HERBERT WALKER
BUSH is here."

GN (stage 2 only) connects a proper noun to a preceding common noun which introduces
it: "The ACTOR Eddie MURPHY attended the event".

H connects "how" to "much"” or "many": "HOW MUCH money do you have".

I connects infinitive verb forms to certain words such as modal verbs and "to": "You
MUST DO it", "I want TO DO it".

ID is a special class of link-types generated by the parser, with arbitrary four-letter names
(such as "IDBT"), to connect together words of idiomatic expressions such as "at_hand"
and "head_of state".

IN connects the preposition "in" to certain time expressions: "We did it IN
DECEMBER".

J connects prepositions to their objects: "The man WITH the HAT is here".

JG connects certain prepositions to proper-noun objects: "The Emir OF KUWAIT is
here".

JQ connects prepositions to question-word determiners in "prepositional questions": "IN
WHICH room were you sleeping?"

JT connects certain conjunctions to time-expressions like "last week": "UNTIL last

WEEK, I thought she liked me".
K connects certain verbs with particles like "in", "out", "up" and the like: "He STOOD

UP and WALKED OUT".

56

L connects certain determiners to superlative adjectives: "He has THE BIGGEST room".
LE is used in comparative constructions to connect an adjective to the second half of the
comparative expression beyond a complement phrase: "It is more LIKELY that Joe will
go THAN that Fred will go".

LI connects certain verbs to the preposition "like": "I FEEL LIKE a fool."

M connects nouns to various kinds of post-noun modifiers: prepositional phrases ("The
MAN WITH the hat"), participle modifiers ("The WOMAN CARRYING the box"),
prepositional relatives ("The MAN TO whom I was speaking"), and other kinds.

MEF is used in the expression "Many people were injured, SOME OF THEM children".
MG allows certain prepositions to modify proper nouns: "The EMIR OF Kuwait is here".
MY connects verbs and adjectives to modifying phrases that follow, like adverbs ("The
dog RAN QUICKLY"), prepositional phrases ("The dog RAN IN the yard"),
subordinating conjunctions ("He LEFT WHEN he saw me"), comparatives, participle
phrases with commas, and other things.

MX connects modifying phrases with commas to preceding nouns: "The DOG, a
POODLE, was black". "JOHN, IN a black suit, looked great".

N connects the word "not" to preceding auxiliaries: "He DID NOT go".

ND connects numbers with expressions that require numerical determiners: "I saw him
THREE WEEKS ago".

NF is used with NJ in idiomatic number expressions involving "of": "He lives two
THIRDS OF a mile from here".

NI is used in a few special idiomatic number phrases: "I have BETWEEN 5 AND 20

dogs".

57

NJ is used with NF in idiomatic number expressions involving "of": "He lives two thirds
OF a MILE from here".

NN connects number words together in series: "FOUR HUNDRED THOUSAND people
live here".

NO is used on words which have no normal linkage requirement, but need to be included
in the dictionary, such as "um" and "ah".

NR connects fraction words with superlatives: "It is the THIRD BIGGEST city in
China".

NS connects singular numbers (one, 1, a) to idiomatic expressions requiring number
determiners: "I saw him ONE WEEK ago".

NT connects "not" to "to": "I told you NOT TO come".

NW is used in idiomatic fraction expressions: "TWO THIRDS of the students were
women".

O connects transitive verbs to their objects, direct or indirect: "She SAW ME", "I GAVE
HIM the BOOK".

OD is used for verbs like "rise" and "fall" which can take expressions of distance as
complements: "It FELL five FEET".

OF connects certain verbs and adjectives to the word "of": "She ACCUSED him OF the
crime”, "I'm PROUD OF you".

ON connectors the word "on" to dates or days of the week in time expressions: "We saw
her again ON TUESDAY™.

OT is used for verbs like "last" which can take time expressions as objects: "It LASTED

five HOURS".

58

OX is an object connector, analogous to SF, used for special "filler" words like "it" and
"there" when used as objects: "That MAKES IT unlikely that she will come".

P connects forms of the verb "be" to various words that can be its complements:
prepositions, adjectives, and passive and progressive participles: "He WAS [ANGRY /
IN the yard / CHOSEN / RUNNING]".

PFK is used in certain questions with "be", when the complement need of "be" is satisfied
by a preceding question word: "WHERE are you?", "WHEN will it BE?"

PP connects forms of "have" with past participles: "He HAS GONE".

Q is used in questions. It connects the wall to the auxiliary in simple yes-no questions
("//1{// DID you go?"); it connects the question word to the auxiliary in where-when-how
questions ("WHERE DID you go").

QI connects certain verbs and adjectives to question-words, forming indirect questions:
"He WONDERED WHAT she would say".

R connects nouns to relative clauses. In subject-type relatives, it connects to the relative
pronoun (“The DOG WHO chased me was black"); in object-type relatives, it connects
either to the relative pronoun or to the subject of the relative clause ("The DOG THAT
we chased was black", "The DOG WE chased was black").

RS is used in subject-type relative clauses to connect the relative pronoun to the verb:
"The dog WHO CHASED me was black".

RW connects the right-wall to the left-wall in cases where the right-wall is not needed for
punctuation purposes.

S connects subject nouns to finite verbs: "The DOG CHASED the cat": "The DOG [IS

chasing / HAS chased / WILL chase] the cat".

59

SF is a special connector used to connect "filler" subjects like "it" and "there" to finite
verbs: "THERE IS a problem", "IT IS likely that he will go".

SFI connects "filler" subjects like "it" and "there" to verbs in cases with subject-verb
inversion: "IS THERE a problem?", "IS IT likely that he will go?"

SI connects subject nouns to finite verbs in cases of subject-verb inversion: "IS JOHN
coming?", "Who DID HE see?"

SX connects "I" to special first-person verbs lke "was" and "am".

SXI connects "I" to first-person verbs in cases of s-v inversion.

TA is used to connect adjectives like "late" to month names: "We did it in LATE
DECEMBER".

TD connects day-of-the-week words to time expressions like "morning": "We'll do it
MONDAY MORNING".

TH connects words that take "that [clause]” complements with the word "that". These
include verbs ("She TOLD him THAT..."), nouns ("The IDEA THAT..."), and adjectives
("We are CERTAIN THAT").

T1 is used for titles like "president”, which can be used in certain cirumstances without a
determiner: "AS PRESIDENT of the company, it is my decision".

XM is used to connect month names to day numbers: "It happened on JANUARY 21".
TO connects verbs and adjectives which take infinitival complements to the word "to":
"We TRIED TO start the car", "We are EAGER TO do it".

TQ is the determiner connector for time expressions acting as fronted objects: "How

MANY YEARS did it last".

60

TS connects certain verbs that can take subjunctive clauses as complements - "suggest",
"require" - to the word that: "We SUGGESTED THAT he go".

TW connects days of the week to dates in time expressions: "The meeting will be on
MONDAY, JANUARY 21".

TY is used for certain idiomatic usages of year numbers: "I saw him on January 21, 1990
". (In this case it connects the day number to the year number.)

U is a special connector on nouns, which is disjoined with both the determiner and
subject-object connectors. It is used in idiomatic expressions like "What KIND_OF DOG
did you buy?"

UN connects the words "until” and "since" to certain time phrases like "after [clause]":
"You should wait UNTIL AFTER you talk to me".

¥ connects various verbs to idiomatic expressions that may be non-adjacent: "We TOOK
him FOR_GRANTED", "We HELD her RESPONSIBLE".

W connects the subjects of main clauses to the wall, in ordinary declaratives, imperatives,
and most questions (except yes-no questions). It also connects coordinating conjunctions
to following clauses: "We left BUT SHE stayed".

WN connects the word "when" to time nouns like "year": "The YEAR WHEN we lived
in England was wonderful".

WR connects the word "where" to a few verbs like "put" in questions like "WHERE did
you PUT it?".

X is used with punctuation, to connect punctuation symbols either to words or to each
other. For example, in this case, POODLE connects to commas on either side: "The dog,

a POODLE , was black."

61

Y is used in certain idiomatic time and place expressions, to connect quantity expressions
to the head word of the expression: "He left three HOURS AGO", "She lives three
MILES FROM the station".

"

YP connects plural noun forms ending in s to in possessive constructions: "The

STUDENTS ' rooms are large".
YS connects nouns to the possessive suffix "'s": "JOHN 'S dog is black".

Z connects the preposition "as" to certain verbs: "AS we EXPECTED, he was late".

62

Appendix D: Lingua::LinkParser Perl Module

Requirements

To install Lingua::LinkParser you must have already downloaded, compiled and install
Link Parser package from http://www.link.cs.cmu.edu/link/.

This module has been compiled and tested with Perl 5.6 and 5.8 on Linux 2.2.13 &
2.2.14, and Perl 5.6 and 5.8 on OS X. Any incompatibilities *should* be the result of
lib issues within the Link Parser itself, but these seem very stable.

Installation

To begin installation type: perl Makefile.PL

This will ask you where your Link Parser package directory is located, and must
contain the distribution obj/, include/, and data/ directories, with obj/ containing
compiled object files. This might look something like "/home/username/system-
4.1/link-4.1".

Once the Makefile is written, you can build and test with:

make
make test

On Linux, the make displays several warnings about redefined macros, these messages

may be ignored. The test will load the parser dictionary files and parse a sample

sentence. If they do not, back up and figure out why before installation. To install:

make install

Documentation and help

Type perldoc linkparser.pm

63

Modules objects and commands

$parser = new Lingua::LinkParser(DictFile => 'PATH', KnowFile => 'PATH',
ConstFile => 'PATH', AffixFile => 'PATH")

This returns a new Lingua::LinkParser object, loads the specified dictionary files, and
sets basic configuration. If no dictionary files are specified, the parser will attempt to load
the files using the path in global $DATA_DIR. This is a change from the Link Parser 3.0
implementation, where defaults were stored in the C APL The hash passed may also
contain keys equivalent to the link parser options, in order to set these before a parser
object is returned.

opts(OPTION_NAME_=_OPTION_VALUE,_...)"$parser->opts (OPTION_NAME
=> OPTION_VALUE,...)

This sets the parser option OPTION_NAME to the value specified by OPTION_VALUE.
A list of these options is found in the Link Parser documentation.
create_sentence(TEXT)'' $sentence = $parser->create_sentence(TEXT)

Creates and assigns a sentence object (Lingua::LinkParser::Sentence) using the supplied
value. This object is used in subsequent creation and analysis of linkages.

length' $sentence->length

Returns the number of words in the tokenized sentence, including the boundary words
and punctuation.

num_linkages' $sentence->num_linkages

Returns the number of linkages found for $sentence.

num_valid_linkages" $sentence->num_valid_linkages

Returns the number of valid linkages for $sentence

64

num_linkages_post_processed''$sentence->num_linkages_post_processed
Returns the number of linkages that were post-processed.
null_count''$sentence->null_count

Returns the number of null links used in parsing the sentence.
num_violations'' $sentence->num_violations

Returns the number of post processing violations for $sentence.
get_word(NUM)''$sentence->get_word(NUM)

Returns the word (with original spelling) at position NUM.
linkage(NUM)"'$linkage = $sentence->linkage(NUM)

Assigns a linkage object (Lingua::LinkParser::Linkage) for linkage NUM of sentence
linkages' @linkages = $sentence->linkages

Assigns a list of linkage objects for all linkages of $sentence.

num_words' $linkage->num_words

Returns the number of words within $linkage.
get_words''$linkage->get_words

Returns a list of words within $linkage

words'' $linkage->words

Returns a list of ::Word objects for $linkage.
num_sublinkages''$linkage->num_sublinkages
Returns the number of sublinkages for linkage $linkage.
compute_union''$linkage->compute_union

Combines the sublinkages for $linkage into one, possibly with crossing links.

65

violation_name' $linkage->violation_name

Returns the name of a rule violated by post-processing of the linkage.
sublinkage(NUM)''$sublinkage = $linkage->sublinkage(NUM)

Assigns a sublinkage object (Lingua::LinkParser::Linkage::Sublinkage) for sublinkage
NUM of linkage $linkage.

sublinkages'' @sublinkages = $linkage->sublinkages

Assigns an array of sublinkage objects.

get_word(N UM)"$sublinkage->get_w0rd(N UM)
Returns the word for the sublinkage at position NUM.
words''$sublinkage->words

Returns a list of ::Word objects for $sublinkage.
num_links'' $sublinkage->num_links

Returns the number of links for sublinkage $sublinkage.
text" $word->text

Returns the post-parse word text.

position" $word->position

Returns the number for the word's position in a sentence.
links" @links = $word->links

Returns a list of link objects for the word.
link(NUM)"'$link = $sublinkage->link(NUM)

Assigns a link object (Lingua::LinkParser::Link) for link NUM of sublinkage

links" @links = $sublinkage->links

66

Assigns an array of link objects.

num_domains" $link->num_domains

Returns the number of domains for the sublinkage.
domain_names''$link->domain_names

Returns a list of the domain names for $link.
label' $link->label

Returns the "intersection" label for $link.

llabel'' $link->llabel

Returns the left label for $link.

rlabel'' $link->rlabel

Returns the right label for $link.
Iword''$link->lword

Returns the number of the left word for $link.
rword''$link->rword

Returns the number of the right word for $link.
length' $link->length

Returns the length of the link.

linklabel' $link->linklabel

Only for link objects created via a word object, this returns the label for the link from the
word object that created it.
linkword''$link->linkword

Only for link objects created via a word object, this returns the word text which the link

points *to* from the object that created it.

67

linkposition'' $link->linkposition

Only for link objects created via a word object, this returns the number of the word which
the link points *to* from the object that created it.

get_diagram($linkage)' $parser->get_diagram($linkage)

Returns an ASCII pretty-printed diagram of the specified linkage or sublinkage.
get_postscript($linkage, MODE)''$parser->get_postscript($linkage, MODE)
Returns Postscript code for a diagram of the specified linkage or sublinkage.
get_domains($linkage)''$parser->get_domains($linkage)

Returns formatted ASCII text showing the links and domains for the specified linkage or
sublinkage.

print_constituent_tree($linkage, MODE)" $parser-> print_constituent_tree
($linkage, MODE)

Returns an ASCII formatted tree displaying the constituent parse tree for $linkage.
MODE is an integer with the following meanings: 'l' will display the tree using a nested
Lisp format, 2' specifies that a flat tree is displayed with brackets, and '0' results in no

structure, a null string being returned

68

Bibliography

Brill, Eric. A Simple Rule-Based Part Of Speech Tagger. Proceedings of ANLP-92, 3rd
Conference on Applied Natural Language Processing. Trento, Italy. 1992. pages 152-
155.

Brill E, Lin J., Banko M., Dumais S. and Ng A., Data-Intensive Question Answering, In
Proceedings of the Eleventh Text Retrieval Conference. NIST, Gaithersburg, MD,
(TREC-2002), 2002.

Chalendar, G., T. Dalmas, F. Elkateb-Gara, O. Ferret, B. Grau, M. Hurault-Plantet,

G. Illouz, L. Monceaux, I. Robba, and A. Vilnat, The question answering system QALC
at LIMSI: experiments in using Web and WordNet, In Proceedings of the 11 " Text
Retrieval Conference. NIST, Gaithersburg, MD, (TREC-2002), 2002.

Cunningham, H., Y. Wilks, and R. Gaizauskas, GATE- a general Architecture for text
Engineering. In proceedings of the 16" International Conference on Computational
Linguistics (Coling-1996), Copenhagen, August, 1996. '

Cunningham, H., Maynard, D., and Bontcheva, K., and Tablen V, GATE: A framework
and graphical development environment for robust NLP tools and applications. In
proceedings of the 40' Anniversary meeting of the Association for Computational
Linguistics. 2002.

Dan, Brian. Parsing Natural Lnguage with Lingua::LinkParser - The Perl Journal, a
commercial publications, Volume 5, Number 3 (#19), Fall 2000.

Giuseppe A., Cisternino A., Formica F., Simi M., Tommasi A., PiQASso:Pisa Question
Answering system. Technical Report Dipartimento di Informatica, Universita di Pisa,
Italy, 2001

Harabagiu S., Pasca M. and Maiorano Experiments with open-domain textual question
answering, In proceedings of the 18" International Conference on Computational
Linguistics (Coling-2000), Saarbrucken, July 31°* to August 4™ 2000.

Hirschman, L. and R. Gaizauskas. Natural language question answering; The view from
here. Journal of Natural Language Egineering. Special Issue on Question Answering
Engineering, Fall-Winter 2001.

Katz, B. Using English for indexing and retrieving. In P.H. Winston and S.A. Shellard,
editors, Artificial Intelligence at MIT: Expanding Frontiers, volume 1. MIT Press. 1990.

Katz, B. Annotating the World Wide Web using natural language. In Proceedings of the

15" RIAO conference on Computer Assisted Information Searching on the Internet
(RIAO'97). Montreal, Canada, June 1997.

69

Kupiec, J. MURAX: A robust linguistic approach for question answering using an on-line
encyclopedia. In 16™ Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp 181-190, Pittsburgh, 1993.

Light, G. Mann, E. Riloff, and E. Breck. Analyses for elucidating current question
answering technology. Technical Report. Journal of Natural Language Engineering Fall-
Winter 2001.

Lin, J. and Katz, B. REXTOR: A System for Generating Relations from Natural
Language. MIT Artificial Intelligence Laboratory Cambridge MA. 2001.

Guillemette L. QUANTUM's Web-QA Component. Technical Report, Concordia
University, Montreal Canada, 2002.

MUC-7 (1998) Proceedings of the Seventh Message Understanding Conference (MUC-
7), published on the website _http://www.muc.saic.com/

Plamondon L, Kosseim L, Lapalme G. The QUANTUM Question-Answering System at
TREC-11. In Proceedings of the Eleventh Text Retrieval Conference (TREC-11). pp 670-
677. Gaithersburg, Maryland, 2002.

Robin L. Perl implementation of the QUANTUM's Web-QA Component. Technical
Report, Concordia University, Montreal Canada, August 2003.

Temperley, D., Sleator, D. and Lafferty, J. Parsing English with Link Grammar,
technical report CMU-CS-91-196, Department of Computer Science, Carnegie Mellon
University, 1991.

Scott, S. and Gaizauskas R. QA_LaSIE: A Natural Language QA system, Advances in
Artificial Intelligence, 14" Biennial Conference of the Canadian Society for
Computational Studies of Intelligence, Al 2001, Ottawa Canada, June 7-9, 2001. pp
172—182.

Srihari, R. and W. Li: Information extraction supported question answering. In
Proceedings of the Eight Test Retrieval Conference (TREC-8), NIST, 1999.

Stratica, N. A natural language processor for querying. Master’s thesis Concordia
University, Montreal, Canada 2002.

Voorhees, E. and D. M. Tice. Overview of the TREC-9 question answering track. In
proceedings of the Ninth Text Retrieval Conference. (TREC-9), pp 71—80, NIST,
Gaithersburg, MD, 2000.

Voorhees, E. Overview of the TREC-2001 question answering track. In Proceedings of

the Tenth Text Retrieval Conference. pp. 157--165, NIST, Gaithersburg, MD, (TREC-
2001), 2001.

70

Voorhees, E. Overview of the TREC-2002 question answering track. In Proceedings of
the Eleventh Text Retrieval Conference. pp. 57--66, NIST, Gaithersburg, MD, (TREC-
2002), 2002.

Zhang, H. ICT Experiments in TREC-11 QA Main Task, Institute of Computing
Technology, In Proceedings of the Tenth Text Retrieval Conference, NIST, Gaithersburg,
MD, (TREC-2001), 2001.

Zheng, Z. AnswerBus AnswerBus Question Answering System. Proceeding of HLT

Human Language Technology Conference (HLT 2002). San Diego, CA. March 24-27,
2002.

71

