Floor Control for Multiparty Sessions in 3G Networks

Samer Hawwa

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requitements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

January 2004

© Samer Hawwa

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91039-3
Our file Notre référence
ISBN: 0-612-91039-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

11

ABSTRACT
Floor Control for Multiparty Sessions in 3G Networks

Samer Hawwa

Value-added services in telecommunication networks may be defined as anything that goes
beyond two-party voice calls. Today’s mobile networks primarily use citcuit switched networks
to deliver voice and data. Tomorrow’s networks, third generation (3G) networks, are built on
the foundation of IP technology capable of deliveting multimedia setvices over packet

switched networks.

This thests focuses on the floor control issue for multiparty sessions in tomotrow’s
telecommunication networks. Floor Control enables the control of media streams, e.g., who

can be seen and heard when more than one patty is exchanging media streams over a network.

Several conferencing scenarios have been studied, leading to a definition of the requitements
for a generic floor control mechanism. After defining the requitements, we surveyed the
related work in the literature (i.e., SIP and PARLAY) to identify whether they provide (or not)
the defined requirements. Based on this evaluation, we have proposed an architecture that
benefits from the available technologies and which also provides the missing patts in order to

achteve a complete solution.

We have identified that PARLAY as pet today’s specification does not fulfill all the
requirements for floor control. In addition, we have identified the need for a complete solution

for floor control integrating APIs with the protocols.

We propose new extensions for floor control to the PARLAY APIs. We identify the main
components for floor control and their role in a multiparty session. We describe how these
components interact with each other. We also propose an overall architecture for floor control

combining protocols with APIs.

We explored emerging technologies (i.e., Web Services) as one step further in our study. We
learned that the use of Web Setvices is suitable for floor control in multiparty sessions
applications development. A real Web setvice development envitonment (i.e., UDDI, WSDL,
and SOAP) could be offered. It provides a higher level of abstraction than the PARLAY API,
hiding the complexity of the telecommunication networks. It offers more flexibility with

application-to-application communication, and faster time for development and deployment.

We have built a video conferencing application as a proof of concept to demonstrate the new
interface for floor control as a Web Setvice, the proposed extensions for floor control in the

PARLAY APIs and the overall architecture combining the protocols with APIs.

v

ACKNOWLEDGMENTS

I thank my mom and dad for inspiring in me the commitment to make things happen with
enthusiasm. I thank them for their love, support, and encouragement for all that I do.

I thank my brothers, Tareq, Mazen, and Nader, for their undying suppott, and love.

I extend my sincere thanks to my cousin and sistet-in-law, Sawsan, for her love, and care. She
has shown care, and concern that could never be described.

I thank my cousin Johnny, for his encouragement to finish this project.

Thanks to all my friends for believing in me and showing excitement for my work. Special
thanks go to Mazen, Mounir, and Armine for always being there throughout this project.

I thank Dr. F. Khendek, my supervisor, and Dr. R. Giltho, my project leader, who taught me
what it takes to be a good researcher. I hope my work in general, and my thesis in particular,
shows that I clearly was the one who got the training.

I thank my co-supetvisor, Dr. J.W. Atwood, for his review and valuable comments.

I thank all the members in the SINTEL project at Ericsson Research. Special thanks go to
Robert Huie, Brian Liu, Kindy Sylla, Andre Poulin, Jean-Charles Beaudoin, Riad Hamadi, and
Clovis Muhugusa for their contributions and input in this project.

I thank my manager Denis Monette for believing in me, and for giving me the opportunity to

join his team and prove myself.

TABLE OF CONTENTS

ACKNOWIEAGIMENES ..vvvvecviiencicinierevitise e iees et saesesssessssecssesassssessssssesssbossasessssanes vi
TADlE Of CONENLS..rurviririeerrieiricteeeeie et be et as st st s s ebossasasssonosas vii
LSt OF FLGULES w..ouvuvmireinceciriieeniseceesicnntaeessisessnesssssestsessesassssssasessssssesansssnsssssssssssnsens vil
LSt Of ACLONYIMIS ccvvvivuimrntiscisscincisiisciicrtenesenseetsesssenssesisesssesssesssesstossssesssssssesssssnsssssssnons X
Chapter 1: INFOAUCHON wouvuccerierieiicrrerierenieineeeessessessesssessssissisessesssessssssssssssessssssssssssans 1
1T BaCKGIOUN ...ttt sse et ennens 1
2 Motivations and ODJECHVESc..oceirienenieneiiseiresssieseisersessssesessesssessssansens 3
3 Thesis CoOntrbUHONS ..ceiveriiirierirceirieitseeseseste b nesertstesesmseeseseseneesesesasssesessas 4
Chapter 2: Requirements and Related Work.........coccvecererenrioneencccrnerneceinersseciseenenes 5
1 Conferencing SCENALIOScocuivurureereeneerereseseesesssessessssesesssssssssssssssssssssssessens 5
2 CONLELENCE PORCIES ..coveeeereeeceeeeeetetet et esstoreceas s esessesesee st sesssseanenenen 9
3 Functional Requitements for Floot Control.......ccourrorernnrrnneennrisnernnnnns 9
4 SIP and related work from TETT ...t seeeen 11
5 PARLAY ettt bttt et b e eneanane 17
6 The ALEINALIVES «.couvvivirererereiireritsec e etstsse e seneeeses e seseseseneneseesasesiasasasenns 29
7 Discussion of Existing SOIIHONSeveevreerereerseneereensenssneesssssseesssanssenens. 30
Chapter 3: Proposed SOIUON.c.ceceriniereiecneirescirecirei st sstes s ses s 32
1 Enhancement to the Patlay APIs........cooiiicinincincinncrnennenneenecnecinnenes 32
2 Floor Control COMPONENLSuvueieeeeieereenscnsersersesciseesesssesssesssessesans 40
3 An Overall Architecture for Floor Controlcoieerereeceeerreeereseenns 42
Chapter 4: Use of Web Services for Floor Control.........eeonrnrcnriverenenssenniesinnes 45
1 Introduction to Web SEIVICES. ...ttt eesessesseeeeereesesesesens 46
2 HExposing Floot Control as a Web Setvicecwumeniermrrnrensrsresresssinssensonns 52
3 Enhanced Architecture with Web Services......ouivcrerivvierereeneresiseeeresnenn. 54
4 PARLAY MaPPING cturrrrtririnriinniisncsimmississsssscsssnsesissesssssssissssssssssssesssaasssnes 67
Chapter 5: IMPIeMENtAtION «..ouuvveueeeririsisisseeeesseeresesssesssesssessisesssssesssssessessssssssssssens 69
1 SOftwate ALCRILECTULE. .cuvviuieieitieeieteteecece ettt es s es et as s sese e eaen 69
2 Video Conferencing APPLCAHONc..ovueivececerereuereecrieinseirenseersresesssssnsnsinns 71
3 Graphical Uset INtELfACeocvcvcrrercrniercenirerescetsrneiecssssissssisssesissaesaessenens 75
4 THE INEEIFACE...ceeectieeeictee ettt ettt tos e e s e eae et s s serenen 78
5 TOOIS AN LADIATIES «...vvieeieeeeeeeeetete e eeesesesae e seneneessesesesssasssasanes 80
Chapter 6: CONCIUSIONSoucveeercurereereeeiceientresinesise s esssssss s sssssssssesssessassans 81
1T CONEDUHONS ..cvreeereeciceeeee et tasss st ssee st bestesese b e s eeae e e easesnnas 81
2 FULULEE WOLK ettt es e s e et aeeas e e e seseenen 82
REFERENCES ...ttt bttt s e eas e et e easss e seseonen 83
APPENDIX A (advanced video conferencing wsdl)coc.neveernerererereceereerecenecens 88

LIST OF FIGURES

Figure 1: A screen shot of the apPLCALONcieiiveeririreiisereerrseretssersesssesssssssssssissssesssssssseseses 6
Figure 2: Internet Protocols [19] ..iicrcernercsereeeseneneissesesetsssasesensssssisssssssssssssssssssssas 11
Figure 3: PARLAY business Model [24].......ccuimiiinimrncrneencneenrsnseecissesessessssessssnssssssssssneens 20
Figure 4: Parlay APIs ItErfaces [24]....cccociiniecnminererinieenecseesssnesesesssesssssssssssssssssnssssssssssssssens 23
Figure 5: Call Control Service Packages [24]........c...couveiermcemmnernernnernenneneessesecsssesesesesssssscsens 27
Figure 6: Internet Multimedia Conferencing Architectute [31]....ccoevivieerervernienernccrscscrnensenenenne 29
Figure 7: Centralized Conference using PARLAYcooviiiiniininnirececieenecnecirensessreecsnns 34
Figure 8: Proposed Method : teVOKeSPEaKEL()vrvuuivcuriimiiieniiiiiincieresesissiosensissiessensessesaseses 35
Figure 9: Sequence Diagram: 1eVOKeSPEaker()ccvuueemevmecuiernereinrererrerseieesseinsesesssesssessesessessnseans 36
Figure 10: Proposed Method : flootReleased().........coumivircenvnenreneneccinseserseinensessnessssssessssssenenns 38
Figure 11: Sequence Diagram: floorReleased()......ccovurvumiunrenecereincencrnieneierenenssssssissesessensssesnsens 39
Figure 12: FIOW Of EVENES ..coouuivtivirieitcciss i ces e saesaesssesasessss s et sossssssasesane 41
Figure 13: Overall ATCRIECTULEouvurueeieierceeiciereieicire sttt st ses st s st ssenas e sassans 42
Figure 14: Web Services MOdel........coiiiiiiiiecnieeeeiciseeenneiseseeseresessessesessesssssetsessssssssssssssssans 47
Figure 15: Web Service Conceptuial STACK ... cecsneesscessesesesessssssesenes 51
Figure 16: Floor Control in 2 Web Setvice FIamework......ccvenceninincneneecnrnnncissnssissssseninsins 53
Figure 17: Mapping SOAP request to PARLAY APT callcccvvuneecereeinnevccinnrinssisssinssesessssnsennes 54
Figure 18: Use of Web Setvices for Floot CONtrol.......unionrnrcnsnieessiessssssssssessees s seenens 55
Figure 19: Request a floor by a PALtiCIPANL.......cueiereeeueeerirnrerercenrireasessesesessensseasssssesssssssssssssssssssens 57
Figure 20: Grant a floot by a Chaitman ...t ssesssesssssesssssssssssssasessens 59
Figure 21: Grant a floor by the applcation IOICcuiereniineereeeseeiceeecessseisessssseesssssesssnsees 61
Figure 22: Revoke a floor by the applcation 1ogic.........cwceereenreneeneeniaseinseenssessesssessesssanesnns 63
Figure 23: Revoke a floor by a Chaltmanc.cveecvevneisererinnsnnesessinsse s sssessses s sansens 64
Figure 24: Release a floot by a PartiCiPant. ... iccmremerinincsimccsssenmssesimessessoesisnsessesssnssessnns 66
Figure 25: SOftware ALCHIEECIULE.cucvmrueercrereriierereisresseeseasssessesstsssssssssssssessesssssssssessassasssessassensens 71
Figure 26: Overall architecture of the Video Conferencing Application.........ecuueeeeeeeeecereccerenes 72
Figure 27: A screen shot of the Conference/Floor Manager Applicationcc.cceeeeeerceueeienees 75
Figure 28: A screen shot of the videoconference client application............c.eeeeeerrerseceecensnecenen. 77

3G:

3GPP:

CORBA:

IN:

MCU:

MMUSIC:

OSA:

RTCP:

RTP:

SAP:

SCCP:

SDP:

SIP:

TINA-C:

UA:

UAC:

UAS:

UDDI:

UML:

LIST OF ACRONYMS

Third Generation

Third Generation Partnership Project
Application Programming Interface
Common Object Request Broker
Intelligent Networks

Multiparty Control Unit

Multiparty Multimedia Session Control
Open Setvice Access

Real Time Control Protocol

Real Time Protocol

Session Announcement Protocol
Simple Conference Control Protocol
Session Description Protocol

Session Initiation Protocol

Telecommunication Information Network Architecture Consortium

User Agent
User Agent Client

User Agent Server

Universal Description Discovery and Integration

Unified Modelling Language

VHE:

WS:

WSDL:

WSFL:

XML:

Virtual Home Environment

Web Service

Web Service Desctiption Language
Web Service Flow Language

Extensible Markup Language.

CHAPTER 1: INTRODUCTION

1 Background

“Advanced services, or more simply services, can be defined as anything that goes beyond two
party voice calls. They are the raison detre of next generation networks. They are
differentiating factors and crucial to service providers’ survival and success. They are usually
grouped under two umbrellas: session related services and non-session related services. Session
related services interact with call session control while non-session related services do not
interact with session control. Examples of session related services are confetencing and session
torwarding and examples of non-session related setvices are location based setvices and

surfing the web.

Next generation networks, 3G networks and beyond, can be conceptually divided in three
separate networks: access netwotk, core netwotk, and service network. It is the service
network that deals with the value added services related issues. It includes: The applications,
which reside in application servers (A service is the end-user experience of an application) and
the application enablers, which ate the tools/environments/architectures, used to develop and

deploy applications™ [1].

Floot control enables the control of media, e.g., who can be seen and heard in a multiparty
session. By multiparty session, we mean more than one party exchanging mote than one media
stream (e.g., audio, video, and chat) over a netwotk. Floor control is one of the building blocks
of the Internet multimedia conferencing architecture. It is required in a traditional video

conferencing application as well as for multipatty session gaming.

The third generation partnership project (3GPP) [2] has selected the Session Initiation
Protocol (SIP) as the sole signalling protocol for its 3G networks. SIP [3] is a proposed
standard by IETF [4] published in RFC 2543. SIP initiates, modifies, and terminates
multimedia sessions. These multimedia sessions include multimedia conferences, distance
learning, Internet telephony and similar applications. SIP does not offer conference control
services such as floor control and does not prescribe how a confetence is to be managed.
However, SIP can be used in conjunction with other protocols to provide floot control
solutions. Multiparty Multimedia Session Control (MMUSIC) working group by IETF
introduces lately an IETF draft on the “Use of SIP and SOAP[5] for Floor Control” [6] and

there has been an expired draft on the “Simple Conference Control Protocol (SCCP)” [7] .

In addition to the IETF drafts, the PARLAY [8] forum aims at producing Application
Programming Interfaces (APIs) that allow third party setvice providers to access netwotk
capabilities in a controlled, communication technology independent fashion. The
telecommunications community has adopted these APIs in the context of 3GPP. The very
same telecommunications community that has adopted PARLAY has also adopted SIP. This
makes the exploration of venues of PARILAY and IETF related work worthwhile and relevant.
Several papers have been published on PARLAY and its use in SIP Networks [9-11].

2

2 Motivations and Objectives

The key motivation for a floor control mechanism is controlling media streams in
conferencing applications, for instance to identify which participant is allowed to send his
media stream, who can be seen or heard. Floor control can avoid chaotic situations when
everybody attempts to talk at the same time. In addition, flootr control is needed when

bandwidth restriction is a concern.

Today’s mobile networks primarily use circuit switching to deliver voice and data. Tomorrow’s
networks, 3G networks, are built on the foundation of IP technology, which is capable of

delivering multimedia services in a more efficient packet-switched manner.

The cutrent available technologies from PARLAY and IETF do not provide a complete
solution approach to implement a floot control mechanism. In this thesis, we will focus on a
centralized architecture. The first step in our wotk is to define the requitements for a floor
control mechanism, and then check if the cutrent technologies satisfy these requitements.
Based on this evaluation, we will propose an architecture that benefits from the available

technologies, and which also provide the missing patts in order to achieve a complete solution.

3 Thesis Contributions

The contributions of this thesis ate as follows:

1.

A set of requirements for floor control. We have used them as a basis for our

evaluation of the related work in PARILAY and IETF.

A set of proposed extensions for floor control to the current specification in
PARLAY. We have submitted these extensions to the 3GPP Open Setvice Access

(OSA) working group for standardization.

A novel architecture for floor control in SIP Networks integrating APIs with
protocols. We have presented the work at the International Conference on Intelligence

in Next Generation Networks, ICIN2003, Bordeaux, France [12].

A new mterface for floor control as a Web Setvice. We have investigated the suitability

of using Web Setvices as a step further in our study.

An advanced video conferencing application. We have designed and developed the

application from scratch as a proot-ot-concept.

CHAPTER 2: REQUIREMENTS AND RELATED WORK

Several conferencing scenarios have been studied, leading to a definition of the requitements
for a generic floor control mechanism. We present briefly a description of several confetencing
applications that we studied to extract the functional requitements for floor control. After
defining the requirements, we surveyed the related wotk on SIP [3] and PARLAY [8] to
identify whether they satisfy (ot not) the defined requirements. Our choice of PARLAY and
SIP is motivated by the key role these two technologies will play in 3G networks. SIP has been
selected as the sole signalling protocol in 3GPP. In addition, PARLAY has been selected as the

basis for its application development framework [24].

1 Conferencing Scenarios

In the following sections, we examine several complex scenatios for conferencing. These case
scenarios are used to define the requirements for a genetic floor control service that can be

used for different applications.

11 Video Conferencing Application

Our video conferencing application has been designed and developed from scratch with the
collaboration of the SITNEL project at Ericsson Research. The main goal of the application is

to show the use of session and floor control capabilities extensively.

The conference is initiated using a web page as shown in Figure 1. You can add, remove

participants from a conference or close the conference by clicking on the cotresponding

button. You can also set your conferencing policy, for example, chair controlled or first-ask-
first-served. You can allocate a time limit to hold the floot. You can assign a chairman to the

conference.

Create Conferencs

Ctuse Conference g ‘ shawwald

Figure 1: A screen shot of the application

Once the conference is started all participants are muted. People need first to request the floor

and be granted the floor befote speaking. Based on the conferencing policy the participant can

be granted (or not) the floor. An example, if the conferencing policy is chait controlled then
the chairman should be able to grant (or refuse to grant) the floor explicitly. Another example,
if the conferencing policy is first-ask-first-served then the floor will be granted automatically
based on the queue. If the time allocated to the participant expires, the floor will be revoked
automatically; he may continue talking but nobody will hear him. People can be notified when
the floor state changes. For instance, which participant has the floot, which has requested the

floor, and how long the floor holder can still hold the floor.

12 Multiparty Game Applications

“Guess What?” is the name of a multiplayer game. “Guess What?” is played over a computet
network. The objective of the game is to draw pictures on a canvas that everyone in the game
can see, and have members of one’s team guess what is drawn within a certain time limit.
Guesses are made by saying them out-loud, for all participants in the game to heat. The person
drawing cannot speak, but all other players on his team may guess, possibly at the same time.

Teams compete against each other in order to guess correctly mote often in fewer trials.

March 2002 is an adaptation of the Pictionary concept for a network environment. Players may
participate in the game from anywhere, using theit PC connected to the Internet. The March
2002 software system must therefore provide multimedia conferencing functionality with high

performance, at a low cost to the end-usets.

Fach user can be one of the four types: pictutist, guesset, pictutist-in-waiting, and listener.

There can be only one picturist, only one pictutist-in-waiting, but several guessers and listeners.

The picturist’s objective is to get his team to guess a secret wotd by drawing hints on a canvas
seen by all participants. The pictutist must be able to hear all guesses, but not be heard if he
tries to speak back to the guessers. The video stream sent to all participants in the game will
show the picturist. This will allow the picturist to use facial exptessions and gestures to help his

team in guessing.

The Guessers are all participants of the picturist’s team, excluding the picturist himself.
Guessers are the only game participants that do not know the secret word; hence they try to

guess it based on the picturist’s hints.

The listeners must be able to hear all guesses. If they speak while the guessers are guessing,
they must not be able to be heard. The ability to mute the audio output streams for each
listener is given to the “picturist-in-waiting”, the next picturist in the game, who is actually a

member of the listening team.

1.3 TV Show Scenatio

In a TV show scenario, for example a Talk Show, we can have two or mote usets participating
in a debate or discussion. Let us say we have the host (chaittman or moderator) and three
participants who are allowed to speak (we may have more patticipants as audience). In this
scenario the host is part of the conference, anybody who wants to speak and who wants his
video to be received by all participants has to request the floor and the host has to grant him
the floor, otherwise nobody can hear him or see him. It is possible to show on the screen of
each participant the image of more than one patticipant at the same time. In this example, the

videos are mixed and sent to all participants. At any time, a chaitman may decide to revoke the

8

floot from a participant, e.g., he exceeded the time limit to speak. A partictpant may wish to

release the floor if he has nothing more to add in the discussion.

14 Distance Learning Application

The Distance learning application enables a conference with a lecturer that presents a topic
and can allow questions from the participants. The lecturer needs to know who is requesting
the floor from the participants and to be able to give them the right to speak. The lecturer

should be able to revoke a floor from one or more participants who holds the floor.

2 Conference Policies

Conference policies are a set of parameters and rules (e.g., maximum number of participants,
need for a moderator or not, duration for speeches, etc.) that are defined at the creation of a
conference. Typically, conference policies would be specified by a conference creator and need

special privileges to be manipulated.

The conference policies contained in the previous section aid us to identify the floor control

functionalities needed for different applications.

3 Functional Requirements for Floor Control

Based on our study for the previous conferencing scenatios we extract and define the main

functional requirements for floor control.

® Request the floor: A participant should be able to request the floor.

¢ Grant the floot: The floor chair (or moderator) should be able to grant the floor to the
requesting participant. The granted participant can have access to send his media

streams.

® Release the floor: A participant should be able to release the floor and make it available

to others.

* Revoke the floor: The floor chair (or moderator) should be able to revoke the floor

from the participant holding the floor.

¢ Notification of the floor events: It should be possible to be notified about the changes

in the floor status.

Our feelings are these requirements provide the complete set of functional requitements for
floor control and they can fulfill any confetencing scenatio that needs a floor control

mechanism.

Floor control can be defined as a mechanism to control the access to the floot(s). Floot
control itself does not define which media streams are floor controlled and which user has the
privileges of floot chair (or moderatot). Instead, some external mechanism, such as conference
management is used for that. Typically, the conference owner decides which media streams are
floor controlled, appoints the floor chair, and sets the conference policy. The conference
ownet can remove the floor anytime (so that media stream is not floot controlled anymore), ot

change the floor chair or floor policy.

10

In the next sections, we provide an ovetrview on SIP and related wotk from IETF and

PARLAY APIs and we discuss whether these technologies fulfill (or not) our requirements.

4 SIP and related work from IETF

SIP [3] initiates, modifies, and terminates multimedia sessions. These multimedia sessions are
applicable in cases such as multimedia conferences, distance learning, Internet telephony, and
similar applications. SIP does not offer conference control services such as floor control and
does not prescribe how a conference is to be managed. However, SIP is used in conjunction
with the other IETF protocols as shown in Figure 2 such as Session Desctiption Protocol
(SDP)[16] for session description, the Real Time Protocol (RTP) {17] for media session, the
Session Announcement Protocol (SAP) [18] for session announcement. The MMUSIC has
been looking at the floor control problem lately and they published the IETF draft “Use SIP

and SOAP for conference floor control” [6].

sigrading grality of sl media tarsport

redi enpips.
(HE61, MPEG)

dsexan

RIP

ey avk
kemel

ik

hvicat

Figure 2: Internet Protocols [19]

11

41 SIP Ovetview

There are two components in a SIP environment: the User Agent (UA) and the network
servers. The UA is the end point system that acts on behalf of a user. It consists of two parts: a

client (UAC) as the caller, a server (UAS) as the called user. The UAC initiates the call and the

UAS receives requests and returns responses.

SIP defines three types of network setvers: the proxy, the redirect and the registrar servers.
The SIP proxy behaves as UAS and UAC. It receives the incoming request from UAC and
tforwards it to the next proxy or UAS. Additionally, the SIP proxy has the power and the
flexibility to fork incoming calls, i.e., one call can be routed to several destinations. The redirect
server does not forward the request to the next server; instead it sends the redirect response to
the client. The registrar server accepts registration requests. Usually it is co-located with the

proxy or redirect server and may offer location services.

A STP message consists of a request from a client to a server and a response from a setvet to a
client. In the core SIP, the methods that can be used as request are the following: REGISTER,
INVITE, ACK, CANCEL, BYE and OPTIONS. A SIP response consists of six response
codes: 1XX informational, 200 success, 3XX redirection, 4XX Client error, and 5XX Server
error, 6XX Global Failure. However, there are other extension methods for adding featutes to

SIP. These extensions are additional to the core SIP as specified in the SIP-telated drafts [19].

4.2 SIP Conferencing schemes

12

SIP suppotts fout confetence schemes: centralized, multicast, end point mixing, and full mesh

[20].

s Centralized scheme

It 1s quite similar to the scheme used today in telecommunication netwotks. It involves a
centralized server. This server handles both signalling and media streams. All participants are
connected to it. It should be stated that the signalling part and the media part of this server

could be physically separated.

o Multicast scheme

This scheme relies on a predefined multicast address and a predefined port. Patticipants can
join the conference by connecting to the address / port. Multicast toutets are used in the
network. SIP is used just to inform potential participants of the existence of the conference.

They can then join if they wish.

¢ End point mixing

The End point Mixing usually starts with a single call between two usets, for example, A and
B. At a later point during the call, user A invites others participants to join. New calls are
created for these invitations. The Call-Ids, and tags are different from the ones used in the call

with B.

13

User A handles both sighalling and media mixing and is the only one aware of the preseﬁce of
everybody. B and the new participants are aware of the presence of A only. However they can

use the Real Time Control Protocol (RTCP) repott from A to learn about each other.

o Full mesh

In this scheme, every participant has a signalling relationship to each and every other

participant. Furthermore every participant does his own media mixing.
4.3 A More Detailed Description of the Centralized Conference

The centralized conference model is based on a central setver usually called Multipatty Control
Unit (MCU) or Conference Bridge. In this scheme, each participant establishes a SIP session
with the central server. Between the participants, there is no signalling. The conference URL
identifies the conference within the server. It is composed by the conference ID and the

conference address, e.g., conferencel @centralsetver.com.

The media session can be managed in two ways:

¢ The central server can be the mixer for the session; it receives the streams from each
participant, mixes them and sends them out to the other participants [21]. The
conference server configuration is the same as a normal SIP UA that has the mixer and
the conference capabilities added. The participant UA does not requite any specific
capabilities. Each participant uses the information from the RTCP [22] packet to learn

about each other. The mixed stream contains the senders.

14

e The central server handles the signalling only. The participants have an RTP session
established between them. In this case, the participant SIP UA needs to have RTP
mixer capabilities added. To learn about others, each participant identifies every single

stream it receives.

In the centralized conference model, the participant has two ways to join. The central server

can be a dial-in server and/or a dial-out server.

o The Dial-In Conference

The Dial-in conference server allows the user to join the conference by dialling in to the
server, e.g., sending a SIP INVITE message to the conference setver. The confetence server
can accept the request or reject it for several reasons: authentication failed, conference is full.
Each participant who wants to join the conference initiates a different call with a different

caller ID.

o The Dial-Out Conference

In the dial-out conference, the central server invites the usets to join. Generally, the
participants of the conference call are known in advance. At the starting time, the conference
server initiates a different call with each participant. Usually, the model suppotts the dial-in

conference in case users already registered want to join after the conference starts up.

The advanced auto-conducted video conferencing application that we described previously

[Section 1.1] is an example of application that uses a dial-out setver.

15

4.4 SIP and SOAP for Floor Control

X. Wu et al. [6] defined an approach that uses the SIP event notification mechanism and

SOAP to perform the floor control functions for centralized conferencing.

They proposed to divide floor control messages into two categoties:

¢ A set of floor control events: These events are built upon SIP events’ architectute and

used to report the changes of the floor control status.

® A set of floor control commands: These commands are built using SOAP and used to

change the floor control status.

They proposed to use SOAP for exchanging commands since floot control commands are in
fact RPC calls and SOAP fits well for exchanging RPC calls. Nevertheless, SOAP does not
provide call back methods hence the authors proposed using an event package based on the

SIP Event architecture [23].

The floor control events package defines the following events:

floor_created()

floor_removed()

config_changed()

floor_changed ()

16

¢ queue_changed()

The floor control commands include:

¢ floor_create()

e floor_remove()

¢ change_config ()

¢ floor_claim()

¢ floor_release()

¢ floor_grant()

¢ floor_revoke()

¢ remove_claims()

¢ reorder_claims()

5 PARLAY

The PARLAY forum aims at producing application programming intetfaces (APIs) that allow
third party service providers to access netwotk capabilities in a controlled and communication
technology independent manner. The telecommunications community has adopted these APIs

in the context of 3GPP and they are now used as the basis for the OSA [24]. OSA is a toolkit

17

that can be used to realize the vittual home environment (VHE) [25], the service framework

being specified by 3GPP for 3G networks.

The PARLAY forum was created in 1998 as a closed forum by a handful of players from the
telecommunication and the information technology industries. It was extended to a few more
members in 1999, then became an open forum in 2000. Most key players of these two
industries are now members. The forum works closely with other industry groups such as
3GPP and the principal objective is the opening up of telecommunication networks in a secure

manner.

PARLAY APIs provide secure access to (and secure control of) a selected range of network
capabilities for application development purposes. They are open, signalling protocol neutral,
and object oriented. Unified Modelling Language (UML) {26], a technology independent
modelling language, is used for their specificaion. They can be deployed using either the
Object Management Group (OMG) Common Object Request Broker (CORBA) [27] or

Mictrosoft DCOM [28].

The business model behind them aims at allowing new players in the arena of service
provisioning including third parties in the realm of portable application development. The
section starts by introducing the model. After that we provide a general overview of the APIs,

tollowed by a more detailed description of the call control APIs.

The call control service exposes call control capabilities, which include floot control. We

describe it in more detail in the last section.

18

5.1 Introduction to the business model

The PARLAY business model is deeply rooted in the Telecommunication Infotmation
Network Architecture Consortium (TINA-C) business model. In TINA-C, there are five
business roles [29]: consumer, retailer, third party provider, connectivity provider and broker.

These roles are conceptual and the same entity can play several roles at the same time.

The consumer role is further divided in two roles: end-user and subscriber. In business
settings, employers usually play the role of subscribers by subscribing to telecommunications
services (e.g., conferencing, fax) while employees play the role of end-usets by consuming the

services. In private settings, the same entity plays both roles in most cases.

The retailer is the one stop shop whete the subscriber subscribes to all services. The retailer
does not necessarily produce the services it offers to the subscribers. It can get them from
third party providers. The connectivity provider owns the netwotk in which the setvices are
realized. The broker ensures that televant information is available to all actors and potential

actors.

In the PARLAY business model, the word "service" has a different meaning. Setvices ate no
longer value-added services consumed by end users. They ate netwotk capabilities exposed for
application development purposes. As in TINA-C, the same PARLAY entity can play several

roles at the same time. These roles are briefly introduced below.

® The client application: It is the consumer of PARLAY setvices and is the equivalent of

the end user in TINA-C.

19

¢ The enterprise operator: It is the entity that subscribes to PARLAY services and is the
equivalent of the subscriber in TINA-C. The services to which an enterprise has
subscribed can be used by several client applications. Both the client application and

the enterprise operator are consumers.

¢ The framework operator: The enterprise operator needs to subsctibe to the PARLAY
services, prior to the usage by its client applications. The framework operator is the
equivalent of the retailer in TINA-C. It makes the PARLAY services available for

subscription.

Enterprise Operator
(Subscriber)

(2) Service
Subscription
N Framework Operator

(Retailer)

(1) Service
¥ Registration

(3) Service

Client Application
(End User)

Figure 3: PARLAY business model {24]

Figure 3 illustrates how the business model wotks in practice:

20

e Tirst step - Service Registration: The PARLAY setvices register to the framework. This
step 1s needed because the services may not be in the framewotk domain. They may

belong to third parties.

® Second step - Service Subscription: This step is needed in otdet to allow the client
applications to access the services. It involves the enterprise operator who acts as

subscriber and the framework operator who acts as retailer.

¢ Third step - Service Usage: This step is needed in order to allow the client applications
to use the services. It includes authentication and involves the framework and the

client applications.

The connectivity provider and broker do not appear explicitly in the PARLAY model.
However, they are implicitly defined. The connectivity provider owns the network
capabilities that are exposed. As in TINA-C, the broker makes relevant information

available to all actors and potential actors.

Beyond opening up telephony networks in a secure mannet to third patties for application

development purposes, the model allows new players in the telecommunications wotld:

¢ An entity that does not own any network can establish itself as an enterprise
opetator; develop applications that it can make available as advanced services to

subscribers.

21

e An entity that does not own any network and that does not develop applications
can establish itself as a framework operator to act as a one stop shop towards

enterprise operators.

5.2 An overview of the APIs

The Parlay APIs offer a gateway/server side and an application/client side. The
gateway/setver exposes the netwotk capabilities and implements the interfaces the
application/client expects to find. The application/client side implements the call back
interfaces that allow the gateway/server to inform the application/client about what happens

in the network.

Synchronous and asynchronous modes of communications ate supported. The APIs are
grouped under two umbrellas: framework interfaces, and setvice interfaces. The framework
interfaces are the entry door to the network capabilities while the setvice intetfaces expose the
actual capabilities. Framework and service interfaces are successively introduced below. Figure

4 provides a graphical illustration.

22

Resources interfaces

Resource

Resource

Resource

Figure 4: Paslay APIs interfaces [24]

5.3 The framework intetfaces

The framework interfaces provide the capabilities necessaty to make the service interfaces

open, secure, and resilient. They consist of:

® Trust and Security management: It is the contact point through which a client
application gains access to the framework. It provides authentication and
authorization. The authentication model is peer to peer. The client application
must authenticate itself prior to the usage of services. However, it is up to the

client application to decide whether the framewotk should authenticate itself.

¢ Hvent Notification: It provides a notification mechanism allowing the framework's

events to be sent to applications. Notifications ate sent for instance when services

become available or unavailable.

¢ Service Discovery: It provides information on the services that are available. It also

provides search capabilities.

23

e Service Registration: It allows new services to register with the framework. The

framework will then notify the interested client applications.

e Service Subscription: It allows enterprise operators to subscribe to the registered

services.

o Integrity Management: It monitors and controls the events and operations that
may affect the network integrity. It offers features such as load management, fault

management, operation and maintenance.

5.4 The service interfaces

The service interfaces defined so far are the following:

e Call Control: It exposes the capabilities for call creation, manipulation and tear down.

It is the most relevant in SIP netwotks as already stated.

¢ User Interaction: It allows applications to interact with end-usets. Applications may
play files to specific users or record files from specific user(s). They can also petform

tCXt—tO—SPCCCh convetsion.

¢ Generic Messaging: It is used by client applications to teceive, send and store

messages. The message can be electronic mail ot voice mail.

24

Mobility: It provides a general geographic location setrvice. It offers capabilities to
allow client applications to obtain the geographical location and the status of fixed,

mobile and IP based telephony users

Terminal Capabilities: It enables applications to retrieve the capabilities of given
terminal(s). The terminal can be a mobile phone, a personal digital assistant (PDA), or

a computer connected to a network.

Connectivity Management: It provides tools for the enterprise operator or client
applications to set up a Provisioned Quality of Service (QOS) in the operator netwotk.
Client applications such as video conferencing can select the optimized QOS by
specifying the delay, loss, jitter and transfer rate between two endpoints in the

netwotk.

Account Management: It allows applications to enable or disable charging-related

event notifications and to query account balances.

Charging Service: It is used by applications to charge the end user for the usage of the

applications. For example, an application can charge a user for a streamed video.

Data Session Control: It provides a means to control data sessions between terminals
attached to a network. When a terminal requests the establishment of a data session
the application can reject the request, pursue the establishment as requested by the
terminal or pursue it but with a destination different from the one requested by the
terminal.

25

® DPresence and Availability Management: It allows the viewing and the management of
presence and availability information. It also allows the subscription to presence and

availability related events.

5,5 A More Detailed Description of The Call Control Service

The call control service exposes call control capabilities as alteady stated. A client application
can create and route a call through the network. It can also request notifications from a call
initiated in the network. The notifications are based on call-related events such as ANSWER,
and BUSY. We successively present the call model on which the call control service is based,

and the packages that make it.

o The call model

The Parlay call model is reminiscent of Intelligent Networks (IN) and citcuit switched
telephony. It is very close to the model used by the Java Telephony API [30]. This model is

composed of:

Call: It 1s an abstraction of the physical call in the network. It is used to establish the relation
between parties involved in a call. Several call objects can represent the same physical call, each

one of them exposing a different view.

Call Leg: It represents a logical association between the call and an address. The association is
made when the call is routed to a specific addtess. This object is similar to the connection

object of JTAPI.

26

Addtess: It tepresents a party in a call.

¢ The packages

The call control service defines four packages as shown by Figure 5.

v . Multiparty call control
Generic call control Multimedia call control

Conference calil

Figure 5: Call Control Service Packages [24]

There is a generic call control package, and three other packages that are tered from

multiparty to conferencing. The packages are succinctly inttoduced below.

The Generic Call Control Setvice: It provides basic call control capabilities and supportts only
two-party calls. It does not allow the manipulation of call legs and none of the three other

packages builds on it.

The Multiparty Call Control Service: It provides multiparty call telated functionality. Client
applications have access to call leg operations and can establish calls, where any given number

of legs can be simultancously connected.

The Multimedia Call Control Service: It enhances the multiparty call control service with

multimedia functionality. The media stteam concept is introduced. A media stream is a bi-

27

directional media connection associated with a leg and negotiated with the terminal used by the
end user. Basically, the media stream represents the different media types supported (e.g.,

audio, video).

The Conference Call Control Service: It enhances the multimedia call control service by adding

conferencing functionality.

5.6 Use of PARILLAY API for Floor Control

The PARALY APIs provide floor control functionalities as patt of the Conference Call
Control Service, which builds upon the multiparty call control service. The key goal of the
Conference Call Control Service is to enable applications to create centralized conferences and
to manipulate sub-conferences. The generic conference also gives the possibility for media

manipulation and resource reservation in addition to floor control.

Our goal is to determine how well PARLAY APIs can be used to provide access to floor
control functionalities. We will identify the PARLAY APIs methods for floor control that have

been specified and evaluate these methods with respect to our requitements.

The specified PARLAY methods that we have identified for floor control implementations

are:

¢ inspectVideo()

¢ inspectVideoCancel()

¢ appointSpeaker ()
28

¢ selectChair()

¢ changeConferencePolicy()

¢ chairSelection()

¢ floorRequest()

6 The Alternatives

IETF started the standardization of conference protocols in 1996. The Internet Multimedia
Conferencing Architecture [31] was proposed as a framework for the design of conferencing
applications for the Internet. Most of the proposed protocols of this framework as shown in

Figure 6 have been standardized and some are still in the standatdization process.

This proposal reflects the work that has been done and is cutrently ongoing in the IETF

working group MMUSIC as standardization for conference management and setup.

Harsd
: @ | Applications
SAP_|_SiP_| TP | SMTe RSVP |Distr. Cin| RTPIRYCP | Retiabla MC
uoe_| Tee | upP
1P | 1P Multicast

Figure 6: Internet Multimedia Conferencing Architecture [31]

29

Borman et al. proposed the Simple Conference Control Protocol for tightly coupled
conferences. They propose the same setvice as proposed for an H.323 [32] system, however,

with higher scalability.

SCCP provides the following floor control services:

grabFloor()

e inhibitFloor()

¢ releaseFloor()

¢ testFloor()

¢ askFloor()

e giveFloor()

¢ holderOfFloor()

7 Discussion of Existing Solutions

The proposed drafts from IETF met out defined requirements. However, one limitation of

the IETF drafts 1s the lack of an API that provides access to the protocol functionalities.

APIs provide major advantages such as a mechanism that allows isolating developets
(designers and programmers) wotking at different layers, which allows them to work

independently. In addition, APIs usually provide backward compatibility to older low-level
30

implementations and well as enabling a faster development path. With the lack of APIs, people
working at different levels will be dependent on each other, backward compatibility will not be

respected, and the development time will increase.

The specified methods in Parlay APIs for floor control have met three of our requirements
(tequest the floor, grant the floor, and notification of floot changes). The Parlay Conferencing

API did not specify any methods for releasing or revoking the floor.

A proposed enhancement to the current specification of the PARLAY API is needed by
proposing extensions for floor control. An overall architecture combining the SIP protocol

with the PARLLAY API is needed for a complete solution.

31

CHAPTER 3: PROPOSED SOLUTION

Through the literature review, we have learned that the SIP protocol can support several
conferencing schemes including the centralized conference. Furthermore, PARLAY call
control setvice is based on the centralized conference model. Both technologies provide floor
control functionalities. However, we have identified that PARLAY as per today’s specification
does not fulfill all the requirements for floor control defined in the previous chapter. In
addition, we have identified the need for a complete solution for floor control integrating APIs

with the protocols.

In this chapter, we introduce the proposed enhancement to the PARLAY APIs. We identify
the main components in a Floor Control mechanism and their role in a multipatty session. We
describe how these components interact with each other. We also propose an overall

architecture for floor control.

1 Enhancement to the Parlay APIs

Based on our evaluation of the current specification in 3GPP OSA/PARILAY APIs and the
defined requirements for floor control, we identified extensions for floor control to the current
specification. The proposed extensions have been submitted for standardization to the 3GPP

OSA working group.

The proposed methods are:

32

¢ revokeSpeaker() : This method revokes the floor from the participant in the

conference who has the floor. The participant is then muted.

¢ floorReleased() : This method is used to inform the application about the floor release

from the network.

As we mentioned before in the literature review, the Parlay APIs offer a gateway (server side)
and an application (client side). The gateway exposes the network capabilities and implements
the interfaces the application expects to find. The application implements the call back

interfaces that allow the gateway to inform the application about what happens in the network.

Generally, in a conferencing system, there are three components, the conference application,
the conference bridge and the terminals as shown in Figure 7. The conference bridge exposes
the network capabilities and implements the conference call control setvice APL The
conference application calls the methods that ate supported by the confetence call control
service and implements the call back intetfaces that allow the conference setver to inform the

application about what happens in the network.

33

PARLAY API

Figure 7: Centralized Conference using PARLAY

11 Proposed method in PARLAY API: revokeSpeaker()

Based on the floor control requirements defined in the previous chaptert it should be possible
to revoke a floor from a participant. This requirement proposes a new method as shown in
Figure 8 to be added to the SubConference Call Interface to allow applications to have the
ability to revoke the floor from the participant in the conference who has the floor. Whether
this method can be used depends on the selected conference policy. For instance, if the
application allocates a maximum speech time to participants, then when the time elapses the
application should be able to revoke the floor from the patticipant in the conference who has

the floor.

34

Figure 8: Proposed Method : revokeSpeaker()

The sequence diagram in Figure 9 illustrates the use of the revokeSpeaker() method in a
conference application. We show how an application can revoke 2 floot from a speaker when

the maximum speech time elapses. Once a floor is revoked from the speaker he cannot talk

anymore.

35

1- requestfloor(conf1
le——

2- requestfloor(conf1,P1

3- grantFloor(conf1,P1)

4- unMute()

5- sendMedia(conf1

6- sendMegdia(conf1,P1)

7- sendMedia{conf1,P1)

maximum speech
time elapses

8- revokeSpeaker(confl P

-

)

9- Mute()

Figure 9: Sequence Diagram: revokeSpeaker()

Pre-condition: The conference server has already established a conference among the parties
P1, P2, and P3. All participants are muted and they ate not allowed to speak unless they

request the floor and the floor is granted to them

1: P1 requests the floor from the conference setver.

2: The conference Setrver forwards the request to the application logic.

3: The application logic decides to grant the floor to P1. It sends the request to the conference

servert.

4: The conference server un-mutes P1.

36

5: P1 sends his media stream to the conference setver.

6-7: The conference server sends the media stream to P2, P3

8: The application logic decides to revoke the floor from P1 since the maximum time for the

speech elapses. It sends the request to the conference servet.

9: The conference server mutes P1. P1 is not allowed to send his media stream anymore.

12 Proposed method in PARLAY API: flootReleased()

Based on the floor control requirements defined in the previous chapter it should be possible
for a participant to release a floor and to send notification about the changes in the floor
status. These requirements propose a new method as shown in Figure 10 to be added to the
AppConference Call Interface to notify the application about the floor releases from the
network. Based on the confetencing policy the application can take the next action. For
instance, if the conferencing policy is first-ask-first-served the application logic could grant the

floor to the next one in the queue after being notified about the telease of the floot from the

floor holder.

37

Figure 10: Proposed Method : floorReleased()

The sequence diagram in Figure 11 illustrates the use of the floorReleased() method in a
conference application. We show how the conference setver notifies the application about the

releases of the floor from the network.

38

1- floorReleased(conf1
‘___—

2- floorReleased(conf1,H1)

3- Mute()

Check the
Conference policy

4- grantFloor(conf1,P2)]

5- unMule(}

¢ 8- sendMedia()
7- sendMedia(conf} P2)

8- sendMedia(conf1 JP2) >

Figure 11: Sequence Diagram: floorReleased()

Pre-condition: The conference server has already established a conference among the parties

P1, P2, and P3. P1 has the floor

1: P1 wishes to release the floor and he sends the request to the conference server.

2: The conference Server notifies the application about the telease from the network.

3: The conference Server mutes P1.

4: The application logic decides to grant the floor to P2 based on the logic. It sends the request

to the conference servet.

5: The conference server un-mutes P2.

39

6: P2 sends his media stream to the conference server.

7-8: The conference server sends the media stream to P1, P3

2 Floor Control Components

We decomposed the functionality of the floor control mechanism into three main

COI'IlpOIlel'ltSZ

Floor Requester: The Floor Requester requests services provided by the floor control

mechanism, e.g., request a floot, and/or release a floot.

Floor Manager: The Floor Manager makes decisions about the floor tequests according to

the policy and decides which streams can be seen or heard.

Floor Processot: The Floor Processor communicates with the Floor Requester/Manager to
realize the floor requests/responses and process the actions requited based on the decisions

taken by the Floor Manager, e.g., which streams are to be mixed together.

In Figure 12, we show the interactions among the main components of the floor control. The
conference setup is assumed to already exist among the three patticipants (P1, P2, and P3).

The floor policy for the scenario below is based on first-ask-first-served.

40

2- Raqugst Flosr (PL)
- Fleor Regaested (F1)
4. Plowy Grra 5]

F 3

|
]
]
i
I
]
]
I
|
! 5+ Floor Grareeli
I
[
)
1
|
1
{
I
1

Figure 12: Flow of Events
Desctiption of Events:
1. Participant 1 asks the Floor Requester to send a floot request.
2. The Floor Requester sends a floot request to the Flootr Processort.
3.The Floor Processor informs the Floor Manager about the request.
4. The Floor Manager grants the floor to the Patticipant and informs the Floor Processor.

5. The Floor Processor informs the participant the floor has been granted and petforms the

necessary actions for media processing.

In the next section, we show the overall architecture for the floot control. By dividing the floor
control into three components, we provide flexibility in locating the different components in

different entities.

41

3 An Overall Architecture for Floot Control

The overall architecture is given in Figure 13. The MCU acts as a bridge between the
Application Server and the SIP clients. The Media Part is the entity that receives, mixes, and
distributes all media streams in a conference. The resources in the media patt are conttrolled by
the Control Part entity. The Control Part performs the MCU signaling functionality. It is
responsible for conference call creation, routing, and management. It also gives the

applications the ability to manipulate conferences through the PARLAY APIs.

PARLAY API

SIP/SCLP,

Events

Figure 13: Overall Architecture

There exist different possible locations for the floot control components with respect to the
centralized conferencing model. Since the resources of the media are controlled in the Control

Part, we propose to locate the Floor Processor in the Control Part of the MCU, as this entity is
42

responsible for processing the media changes. This extends to be a logical placement especially

with the MCU acting as a bridge between the Application Setver and the clients.

As for the Floor Manager component, there are two options:

1. Co-locate the Floor Manager with the Floor Processor in the MCU, ot

2. Locate the Floor Manager in the Application Server.

With the first option, the messages between the MCU and application setver are reduced.
However, the second choice gives the flexibility to implement different floot control scenarios
if we consider that the MCU and the application setrver are two separate entities and these

entities can be located in different domains.

Lastly, the third component, Floor Requestet, can be located either in the Application Setver
or on the Client. Adding Floor Requester to the Client site adds the load on the end uset.
However, if we add the Floor Requester to the Application Setver, the server can provide the

Floor Requester as a remote application and hence reduce the load on the client site.

As for interfaces, the interface between the Applicaion Setver and MCU is

PARLAY/CORBA. The interface between the Control Part and Media Part is the MEGACO
based APIL. We use RTP to carry real-time media ovet IP between the Media Part and the

clients. We use SIP for signaling and the SIP Events to tepott changes about the floor status.

In conclusion, we can say that the SIP protocol can be used along with the PARLAY API and

other protocols to offer a complete solution for floor control. We have shown this in the

43

proposed architecture along with the proposed extensions for floor control in the PARLLAY

APL

CHAPTER 4: USE OF WEB SERVICES FOR FLOOR CONTROL

In the previous chapter, we proposed extensions to the PARLAY APIs. We identified the
main components in a Floor Control mechanism and their role in a multiparty session. We
described how these components interact with each other. We also proposed an overall

architecture for floor control combining protocols with APIs.

We have learned so far that PARLAY as per today’s specification is not easy to grasp by
developers without circuit switched telephony and IN background. The same developets may
also find the level of abstraction to be too low. These two issues motivate us to explore
emerging technologies (i.e., Web Setvices) as a step further in our study. We have investigated
the suitability of using Web Services to offer floor control functionalities with a higher level of

abstraction than the PARLAY APL

In this chapter, we start by an overview on Web Setvices framework and present our solution
tor a Floor Control solution in a Web Setvice framework. We undetline that this solution
complements the solution described in the previous chapter. We used the proposed
architecture in the previous chapter as a basis for the Web Service solution to provide a higher
level of abstraction than the PARLAY APIL and enable easy integration with other

applications.

45

1 Introduction to Web Setvices

Web Services are becoming the de facto framework for application-to-application interactions
on the Web. A Web service is an interface that desctibes a collection of operations that are
network accessible through standardized XML messaging. A web setvice is described using a
standard, formal XML notation, called its service description. It covers all the details necessaty
to interact with the service, including message formats, transpott protocols and location. The
interface hides the implementation details of the service, allowing it to be used independently
of the hardware or software platform on which it is implemented and also independently of
the programming language in which it is written. This allows Web Services-based applications
to be loosely coupled, component-otiented, ctoss-technology implementations. Web Services
tulfill a specific task or a set of tasks. They can be used alone or with other web setvices to

catry out a complex aggregation or a business transaction.

11 Web Services Model

The Web Setvices architecture is based up the interactions between three roles: service
provider, service registry and service requestor. The interactions involve the publish, find and
bind operations. In a typical scenario, a service provider hosts a network-accessible software
module (an implementation of a Web Service). The setvice provider defines a service
description of the Web Service and publishes it to a service requestor or setvice registry. The
service requestor uses the find operation to tetrieve the service description locally ot from the
service registry and uses the setvice description to bind with the setvice provider and invoke ot

interact with the Web Service implementation. Setvice provider and setvice requestor roles are

46

logical concepts and a setvice can exhibit charactetistics of both. In Figure 14 we illustrate

these operations, the components providing them and their interactions.

Figure 14: Web Services Model

1.2 Roles in a Web Setvice Architectute

e Service provider: From a business perspective, this is the owner of the service. From

an architecture perspective, this is the platform that hosts use to access the setvice.

® Service requestor: From a business perspective, this is the business that requires certain
functions to be satisfied. From an architecture perspective, this is the application that is
looking for and invoking or initiating an interaction with a setvice. The setvice
requestor role can be played by a browser driven by a person ot a program without a

user mnterface, for example another Web Service.

® Service registry : This is a searchable registry of service descriptions where service

providers publish their service descriptions. Service requestors find setvices and obtain

47

binding information (in the service descriptions) for services during development for

static binding or during execution for dynamic binding.

13 Operations in a Web Service Architecture

For an application to take advantage of Web Setvices, three behaviors must take place:
publication of service descriptions, lookup or finding of setvice descriptions, and binding or

invoking of services based on service description.

Publish: For a service to be accessible, a service desctiption needs to be published so that the

requestor can find it.

Find: In the find operation, the setvice requestor retrieves a setvice description directly or

queries the service registry for the type of service required.

Bind: In the bind operation the setvice requestor invokes or initiates an interaction with the
service at runtime using the binding details on the setvice description to locate, contact and

invoke the setvice

14 Artifacts of a Web Service

o Service: The implementation of a Web Setvice is the service. A service is a software
module deployed on network-accessible platforms provided by the service provider. It
exists to be invoked by or to be interact with a setrvice requestor. It also can function as

a requestor, using other Web Services in its implementation.

48

15

Service Description: The service description contains the details of the interface and
implementation of a service. This includes its data types, operations, binding
information and network location. It could also include categotization and other
metadata to facilitate discovery and utilization by setvice requestors. The service

description might be published to a service requestor or to a service registty.

Web Service Development Lifecycle

The Web Services development lifecycle includes the design, deployment, and runtime

requirements for each of the roles: service registry, setvice providet and setvice requestot.

Each role has specific requitements for each element of the development lifecycle.

The development lifecycle can have four phases:

Build: The build phase of the lifecycle includes development and testing of the Web
Service implementation, the definition of the service intetface description and the
definition of the service implementation description. Web Setvice implementations can
be provided by creating new Web Services, transforming existing applications into
Web Services, and composing new Web Services from other Web Services and

applications.

Deploy: The deploy phase includes the publication of the setvice interface and setvice,
implementation definition to a service requestor or service registry and deployment of
the executables for the Web Service into an execution environment, typically, a Web

application Setver.

49

¢ Run: During the run phase, the Web Setvice is available for invocation. At this point,
the Web Service is fully deployed, operational and network-accessible from the service

provider. Now the service requester can perform the find and bind operations.

® Manage: The manage phase covers ongoing management and administration of the
Web Service application, such as, security, petformance, quality of service and business

processes.

1.6 Web Service Conceptual Stack

Figure 15 depicts a conceptual Web Services Stack necessary to perform the publish, find and
bind operations in an interoperable way. The upper layers build upon the capabilities provided
by the lower layers. The vertical towers represent standard requirements that must be
addressed at every level of the stack. The text on the left represents standard technologies that

apply at that layer of the stack.

50

WSFL | Service Flow

WSDL

SOAP |

Figure 15: Web Service Conceptual Stack

The foundation of the Web Services stack is the network. Web Services must be network-
accessible to be invoked by a service requestor. Web Setvices that ate publicly available on the
Internet use commonly deployed network protocols. HTTP is the de facto network protocol

for Internet-available Web Services.

The next layer, XMI.-based messaging, represents the use of XML as the basis for the

messaging protocol. SOAP is the chosen XML messaging protocol for many reasons:

e It 1s a standardized enveloping mechanism for communicating document-centric

messages and remote procedure calls using XML.

e It is basically an HTTP POST with an XML envelope as payload.
51

e It is preferred over simple HTTP POST of XML because it defines a standard
mechanism to incorporate orthogonal extensions to the message using SOAP headers

and a standard encoding of operations or function.

® SOAP messages support the publish, find and bind operations in the Web Services

architecture.

The service description layer is actually a stack of description documents. First, WSDL is the
de facto standard of the XMIL-based service description. This is the minimum standard setvice
description necessaty to support interoperable Web Services. WSDL defines the interface and
mechanism of service interaction. The WSDL document can be complemented by other
service description documents to describe these higher level aspects of the Web Service. For
example, business context is described using UDDI data structures in addition to the WSDL

document. Setvice composition and flow are desctibed in a Web Setvices Flow Language

(WSFL) document.

2 Exposing Floor Control as a Web Setvice

In Figure 16, we show how a service provider hosting an implementation of the floot control
Web Service. The service provider defines the WSDL description of the Web Service and
publishes it in a service registry. The service requestor uses the find opetation to retrieve the
floor control WSDL file from the setvice registty and uses it to bind with the setvice provider

and invoke or interact with the floor control implementation.

52

Figure 16: Floor Control in a Web Service Framework

In Figure 17, we show a service requestor implements a floor control application using the
floor control WSDL file to bind with the setvice provider and invoke the methods supported
by the floor control Web Service. In this case the floor control invokes the grantFloor() SOAP
message which translates internally to a PARLAY API call to connect to the MCU over

CORBA. The MCU sends the corresponding SIP messages to the clients.

53

Media SIP Glue

Parlay server

OAP message

Service Requestor grantFloor(

Figure 17: Mapping SOAP request to PARLAY API call

3 Enhanced Architecture with Web Services

In Figure 18, we show an advanced conference/floor manager application in the Intetnet
domain, which uses the advanced video conferencing application web setrvice published by the
operator in the UDDI registry. The advanced conference/floot manager application is capable
of calling the methods that are specified in the WSDL of the Web Setvice. The advanced video
conferencing application web service implements floor control capabilities in a conferencing

scenario. The floor control capabilities are briefly discussed below:

¢ requestFloor(): This method is used by a participant to request the floot.

e grantFloor(): This method is used to grant the floor to the participant requesting the
floor. Whether this method is used by a participant (acting as a chairman) or not
depends on the conferencing policy. Once the floor is granted the participant can have

access to send his media streams.

54

e releaseFloor(): This method is used by a participant to release the floor and make it
available to others. Once the floor is released the participant has no access to send his

media streams anymore.

¢ revokeFloor(): This method is used to force a release from the floor holder. Whether
this method is used by a participant (acting as a chairman) or not depends on the
conferencing policy. Once the floot is revoked the participant who was holding the

floor has no access to send his media streams anymore, even if he talks nobody can

hear him.

¢ subscribeEvents(): This method is used to subscribe to the floor control events and be
notified of the changes in the floot. For example, the changes in the list of the floor

holders and the floor requests.

XML/SOAP

Parlay / CORBA

Figure 18: Use of Web Services for Floor Control

55

Each method desctibed in the advanced video conferencing application web setrvice is
specified by a line or so of XML and transported over SOAP to the Web technology
application server. The Web technology setver analyses it then maps onto the appropriate
PARLAY API calls and sends it to the MCU using CORBA. MCU executes the call and sends
the appropriate requests to Video Conference Clients over SIP. The Video Conference Clients
are capable of sending floor control commands over HTTP towards the Conference Manager

application and also are notified about the changes in the floor status.

Scenario 1: Request a Floor by a participant

In Figure 19, we show the interaction between the main components. The conference setup is

assumed to already exist among the three participants (P1, P2, and P3).

56

1- requiest floor{conf1)

2} requestFloor(confljp1)

3t requestFloor(conf{,p1)

4- add request
to the Queue
5- floor{ event (Queue: P1)
- floor event {Queue: P1)

7- floorjevent (Queug: P1)

Figure 19: Request a floor by a participant

Description of Events:

1. Participant 1 sends an HTTP POST to request a floot from the Conference/Floot Manager

Application

2. The Conference/Floor Manager Application maps the request to XML format and sends

the request to the Video Conferencing Application Web Service

3. The Video Conferencing Application WS send the data using SOAP to the Web

Technology Application Setver

57

4. The Web Technology Application Setver (implements the advanced video conferencing

application WS) analyses the message and adds the request to the queue.

5-7. The Web Technology Application Server notifies all participants with an update about the

list of the floor requests.

Scenario 2: Grant a Floor by a chairman

In Figure 20, we show the sequence diagram for granting a floor to a participant by a
chaitman. The conference setup is assumed to already exist among the three participants (P1,
P2, and P3), participant 1 has requested the floor, participant 2 has the role of a chairman (or
floor manager) and has the right to grant (or not) the floor to all parties requesting the floot.

The floor control policy is assumed to be chair-controlled.

58

(conft, P1)
2- grant floor requgest (conf1, P1)

1- grant floor requeg

3- grant fioor reqiest (conft, P1)

4- grant floor(conf1,|P1)

;| 5- unMute (P2)

6- update floor
request queue

7- update floor
holder list

8- floor event (Floor holders: P1)
9- floor event (Floor holders: Pt)

10-rloor event (Floor holders: P1)

Figure 20: Grant a floor by a chairman

Description of Events:

1. Participant 1 sends an HT'TP POST to tequest a floot from the Conference/Floor Manager

Application.

2. The Conference/Floor Manager Application maps the request to XML format and sends

the request to the video conferencing application web setvice.

3. The Video Conferencing Application WS sends the data using SOAP to the Web

Technology Application Servet.

59

4. The Web Technology Application Setver (implements the advanced video conferencing
application WS) analyses the message and decides to grant the floor to participant 1 based on
the chairman’s request, maps it to a PARLAY API call, and sends it to the MCU using

CORBA.

5. The MCU, internally, asks the media manager to un-mute participant 2.

6-7. The Web Technology Application Server updates the floor requests and floor holders’

lists.

8-10. The Web Technology Application Server notifies all participants with an update to the

floor requests and floor holders’ lists.

Scenario 3: Grant a Floor by the application logic

In Figure 21, we show the sequence diagram for granting a floor to a participant by the
application logic. The conference setup is assumed to already exist among the three
participants (P1, P2, and P3), participant 1 has requested the floor. The floor control policy is
assumed to be first-ask-first-served. The application logic checks the queue and grants the

floor to participant 1 based on the queue.

60

1- check request
Queue

2- grant floor(conf1,|P1)

;| 2-un-mute(P1)

4- update request
Queue

5~ update floor
Holder list
6- floor event (Floor holflers: P1)
7- floor event (Floor holders: Pj)

floor event (Figor holders: P1)

8

Figure 21: Grant a floor by the application logic

Description of Events:

1. The Web Technology Application Server (implements the advanced video conferencing

application WS) checks the floor requests queue.

2. The Web Technology Application Server decides to grant the floor to participant 1 based on
the application logic. It maps the action to a PARLAY API call, and sends 1t to the MCU using

CORBA.

3. The MCU, internally, asks the media manager to un-mute participant 1.

61

4-5. The Web Technology Application Setver updates the floor requests and floot holders’

lists.

6-8. The Web Technology Application Server notifies all participants with an update to the

floor requests and floor holders’ lists.

Scenario 4: Revoke a Floor by the application logic

In Figure 22, we show an application logic revoking a floor from a participant. The conference
setup 1is assumed to already exist among the three participants (P1, P2, and P3), and participant
1 holds the floot. The floor control policy 1s assumed to be a maximum time limit for holding
the floor. The application logic checks that the time elapses and decides to revoke the floor

from participant 1.

62

1- check the timgr
for P1

2- revoke floor{conffl, P1)

] 3- Mute (P2)

4- update floor
Holder list

5- floor event (Floor holflers: nuil)
_6- floor event (Floorholders:ngill} |

7- floor event (Figor holders: null)

Figure 22: Revoke a floor by the application logic

Description of Events:

1. The Web Technology Application Server (implements the advanced video conferencing

application WS) checks the timer.

2. The Web Technology Application Server decides to revoke the floor from participant 1
since the time limit for holding the floor elapses. It maps the action to a PARLAY API call,

and sends it to the MCU using CORBA.

3. The MCU, internally, asks the media manager to mute participant 1.

4. The Web Technology Application Server updates the floor holders’ list.

63

5-7. The Web Technology Application Setver notifies all participants with an update to the

floor holders’ list.

Scenario 5: Revoke a Floor by a chairman

In Figure 23, we show the sequence diagram for revoking a floor from a participant by a
chairman. The conference setup is assumed to already exist among the three participants (P1,
P2, and P3), participant 1 holds the floot, patticipant 2 has the role of a chairman (or floor
managet) and has the rights to revoke the floor to any party holding the floor. The floor

control policy is assumed to be chair-controlled.

1- revake floor(conf], P1)

2- revoke floor(cqnf1, P1)

3- revoke floor{canf1, P1)

4- revoke floor(conffl, P1)

] 5- Mute (P2)

8- update fioor
Holder list

7-floor event {Floor holfiers: null)
8- ¢ (Floor hoiders: nill)

9- floor event (Figor holders: null)

Figure 23: Revoke a floor by a chairman

64

Description of Events:

1. Participant 2 (chaitman) sends an HTTP POST to the Conference/Floor Manager

Application to revoke a floor from participant 1.

2. The Conference/Floor Manager Application maps the request to XML format and sends

the request to the video conferencing application web service

3. The Video Conferencing Application WS sends the data using SOAP to the Web

Technology Application Server.

4. The Web Technology Application Server (implements the advanced video conferencing
application WS) analyses the message and decides to revoke the floor from participant 1 based
on the chairman’s request, maps it to a PARLAY API call, and sends 1t to the MCU using

CORBA.

5. The MCU, intetnally, asks the media managet to mute partictpant 1.

6. The Web Technology Application Server updates the floor holders’ list.

7-9. The Web Technology Application Server notifies all participants with an update to the

floor requests and floor holders’ lists.

Scenario 6: Release a Floor by a participant

65

In Figure 24, we show the interaction among the main components. The conference setup is
assumed to already exist among the three participants (P1, P2, and P3). Participant 1 holds the

floor.

1- re|ease flogr(conf1)

2- release floor(copf1, P1)

3- release floor{cpnf1, P1)

4- release floor(conf1, P1)

;| 5- Mute (P1)

6- update floor
Holder list

7- floor event (Floor holglers: null)

8- floor event (Floor holders: null

floor event (Figor holders: nufl)

9

Figure 24: Release a floor by a participant

Description of Events:

1. Participant 1 sends an HTTP POST to the Conference Manager Application to release the

floot.

2. The Conference/Floor Manager Application maps the request to XML format and sends

the request to the video conferencing application web setvice.

66

3. The Video Confetencing Application WS sends the data using SOAP to the Web

Technology Application Server.

4. The Web Technology Application Server (implements the advanced video conferencing
application WS) analyses the message, and maps it to a PARLAY API call, and sends it to the

MCU using CORBA.

5. The MCU, internally, asks the media manager to mute participant 1.

6. The Web Technology Application Server updates the floor holders’ list.

7-9. The Web Technology Application Server notifies all participants with an update to the

floor requests and floor holders’ lists.

4 PARLAY Mapping
Our goal 15 to identify the PARLAY API methods needed for the interaction between the
Web Technology Application Setver and the MCU and to find out if the mapping with the

proposed extensions (p. 32) fits well in our proposed architecture.

67

Web Technology Application Servet MCU
(Web Service interface) (PARLAY API methods)
requestFloor() floorRequest()
releaseFloor() floorReleased()
grantFloor() appointSpeaker()/inspectVideo()
revokeFloor() revokeSpeaker() /inspectVideoCancel()

We identify one-to-one mapping between the Web Service interface and the PARLAY API for
the requestFloor() and releaseFloor() methods. However, we identify one-to-many mapping
between Web Setvice interface and the PARLAY API for the grantFloot() and revokeFloor()
methods. In addition, usir;g the Web Service interface we can support additional methods
without the need for a mapping operation to the PARLAY API if it does not need any

manipulation for the media streams.

In conclusion, we can say that the use of Web Setrvices for floor control offers more
advantages compared to the PARLAY API. It provides a higher level of abstraction than the
PARLAY API without the need for telecommunication background. It also enables more
flexibility for implementing conferencing applications with less time for development and

deployment. In the next chapter, we demonstrate our realizations through prototyping.

68

CHAPTER 5: IMPLEMENTATION

In the previous chapter, we proposed our solution for floor control in a Web Service
framework. We mapped the floor control functionalities exposed by the floor control Web
Setvice into PARLAY call control service. We have learned that the use of Web Services was
suitable for providing a higher level of abstraction than the PARLAY API, and enables easy

integration with other applications and faster time for development and deployment.

In this chapter, we present the software architecture and the video conferencing application we
have built based on the proposed architecture described in Chapter 3 and the use of Web

Services expressed in Chapter 4.

1 Software Architecture

The key components in the implementation of the floor control are the web technology

application server and the multiparty control unit as shown in Figure 25.

The web technology application server hosts the floor control web setvice (WS), the
WS/ patlay glue and the patlay client. The floor control WS provides the interface for the floor
control functionalities. The WS/Parlay Glue implements the floor control WS interface and
maps the WS methods onto the appropriate PARLAY API calls and sends then to the MCU

using CORBA through the PARLAY client. The PARLAY client calls the methods that are

69

suppotted by the MCU and implements the call back intetfaces that allow the PARLAY client

to inform the client about what happens in the network.

The multiparty control unit is made of two units: the conference control unit and the
multimedia control unit. The control unit performs signaling and management while the media

unit provides media processing functionality. The two units communicate via Megaco /H.245.

The control unit is made of the following software modules: the PARLAY conference handler,
the PARLAY SIP glue and the SIP handler. The PARLAY conference handler interacts with
the application. It receives the PARLAY requests from the application on the one hand, and
sends responses/events to the application on the other hand. It also interacts with the media
management module. The PARLAY/SIP glue does the actual mapping and the SIP handler

interacts with the SIP stack.

The media unit is made of the media manager module and the media handlers. The media
manger module interacts with the PARLAY conference handler module and defines the rules
to be applied to each media. There is a media handler for each type of media supported. This

handler mixes the media by implementing the rules set by the media manager module.

70

=

Floor Control WS

WS/PARLAY. Glue

j Parlay Client

=

Parlay/CORBA

I SPriander [Vesecoff Meda Honders
I |

S TR

Figure 25: Software Architecture

2 Video Conferencing Application

In this section, we show our video conferencing application. The aim of this application is to
show the floor control functionalities extensively in a conferencing scenario based on the
proposed architecture we defined in Chapter 3 and the use of the web service framework

described in Chapter 4.

The prototype, advanced auto-conducted video conferencing application, combines floor
control functionalities with conferencing and presence capabilities into one application. Each
action specified by a line or so of XML and transported over SOAP to the Web technology

application server. The Web technology server analyses it then maps onto the appropriate

71

PARLAY API calls and sends to the MCU using CORBA. The MCU executes the call and
sends the appropriate requests to Video Conference Clients over SIP. The Video Conference
Clients is capable of sending floor control commands over HTTP towards the Conference

Manager application.

Figure 26 depicts the overall architecture of the prototype.

HTTP / SOAP

Parlay/
Corba

SIP
Events

Video Conf.
Client App. 1 Video Conf.
Client App. 2 Video Conf,

Client App. 2

Figure 26: Overall architecture of the Video Conferencing

Application

72

The Main Components

MCU

The MCU acts as a bridge between the Web technology Server and the SIP clients. It is
composed of two parts: the Control Unit and Media Unit. The Media Part is the entity that
receives, mixes, and distributes all media streams to all participants using RTP. The resources
in the media part are controlled by the Control Part entity. The Control Part performs the
MCU signaling functionality using SIP. It is responsible for conference call creation, routing,

and management. It also gives the applications the ability to manipulate conferences through

PARLAY APIs.

Web Technology Server

The Web technology server analyses the messages coming from the auto-conducted video
conferencing web service and then maps onto the appropriate PARLAY API calls and sends
then to the MCU using CORBA. The video conferencing application web service 1s

implemented and hosted in the Web technology server.

Auto-Conducted Video Conferencing Web Service

The auto-conducted video conferencing web setvice provides floor control functionalities with
conferencing and presence capabilities. Each action in the advanced video conferencing web
setvice is specified by a line or so of XML and sent using SOAP to the Web technology

application server.

73

Conference/Floot Manager Application

The Conference/Floor Manager application as shown in Figure 27 uses the auto-conducted
video conferencing web setrvice to implement a conferencing management application that

benefits from the network functionalities that ate exposed by the Web Service.

Video Conference Client Application

The video conference client application as shown in Figure 28 is built on top of the SINTEL
User agent, it shows the floor control functionalities on the client. The moderator and the
patticipant can have access to the floor control functionalities depending on their role. For
instance, a moderator can grant ot revoke a floor from a participant and a participant can

request or release the floor.

74

3 Graphical User Interface

Conference Manage < Mickasaft ntarhét Ex;ilargr

Seting

Conferences ¢

Address Book :

Figure 27: A screen shot of the Conference/Floor Manager

Application

First, you must enter a conference name or identifier in the text field then click on Add. This

will result in your conference ID being displayed in the Conferences list.

75

Next, highlight a conference ID from the Confetence list, and also highlight the partictpants
you wish to be part of the confetence from the Address Book list (you may hold down the

shift key to select mote than one participant). Then click on "Create Conference".

To end the conference, highlight the conference ID you wish to end, then click on "Close

Conference".

To add/remove a participant to a confetence, highlight the Conference ID that you wish to
add/remove a participant to/from. Then highlight the patticipant to add/remove. Then click

on "Add Patticipant” / "Remove Participant”.

If you want to appoint one of the participants as the chairman or moderator, highlight the
conference ID and the participant who is to be the chairperson then click on "Appoint Chair".
The Grant and Revoke buttons on that participant's video conference client will now be
enabled. Alternatively, the chairperson could be someone other than an active participant. The
chaitperson can grant and revoke the floor through the web page by highlighting the

conference ID and then clicking on "Floor manager”.

76

Current Session - shawwa@! 32.205.3.3

shawwa@132.205.3,

Subject @ Internet Telephony

MediaType . Audio

Mumber of participants : 2

ERICSSON 2

PN SR

Figure 28: A screen shot of the videoconference client application

If floot control is used, then the clients that are invited are muted by default untl the
patticipant is granted the floor, that is, a participant cannot be heard by the other participants
of the conference until the participant is granted the floor. Before the participant is granted the
floor, the participant must request the floor by clicking on "Request Floot". This will result in
the participant being entered into the request queue. The chairperson can select a participant

from the request queue and grant that participant the floor by highlighting the participant's
77

address in the request queue list and then clicking on "Grant". To revoke the floor, the
chaitpetson can highlight a participant in the floor holders’ list and then click on "Revoke".

More than one patticipant can hold the floor at one time.

To show video on the video conference clients, highlight the video camera stream you wish to

see and then click on either "Display 1" or "Display 2".

4 The Interface

The methods implemented for the conferencing/floor control web service are the following:

e createConference(): This method is used to create a new conference. It takes as mnput
patameters the list of the participants, the floor control policy, e.g., first-ask-first-
setved ot chair-controlled, and the presence quorum to start the conference, and the

time duration to hold the floor. It gives as output the identifier of the conference.

¢ endConference(): This method is used to terminate a conference. It takes as input the
identifier of the conference. It gives as output a boolean to indicate if the conference

has been successfully terminated or not.

e isConfStarted(): This method is used to check if the conference has started or not. It

takes as input the identifier of the conference.

e addParticipant(): This method is used to add a new participant to a conference.

e removeParticipant (): This method is used to remove a participant from a conference.

78

appointChair(): This method is used to appoint one of the patticipants as the chairman

ot floor manager of the conference.

getChair(): This method is used to know if there 1s a chairman for the conference.

getActiveParticipants(): This method is used to get the list of active participants in the

conference.

getRequestQueue(): This method is used to get the list of participants requesting the

floor.

getFloorHolders(): This method is used to get the list of participants holding the floor.

grantFloor(): This method is used to assign the floor to one of the participants.

revokeFloot(): This method is used to force the release of the floor from one of the

participants.

requestFloor(): This method is used to request a floor.

releaseFloor() This method is used to release a floor.

subscribeEvents(): This method is used to inform the web service where to send the

SIP NOTIFY events to.

getEvent(): This method is used to get the list of events, e.g., list of the floor holders

and list of the floor requests.

79

5 'Tools and Libraries

The prototype is implemented in JAVA. For the media part, we used the JavaSound [36]
libraties, which provide low-level support for audio operations such as audio mixing, and

audio capturing. As for sending and receiving RTP streams with various audio codecs, we used

the JAVA Media Framework [37]

We used WASP Systinet tools [13] for generating the WSDL for Floor control and to generate
and send SOAP messages over HI'TP. As for deployment, we used the UDDI Service registry

from Systinet to register the floor control WSDL description.

80

CHAPTER 6: CONCLUSIONS

1 Contributions

In this thesis, we defined the requirements of floor control for a generic conferencing
application. In addition, we provided an overview of related work in IETF and PARLAY.
Based on our evaluation, we proposed new extensions for floot control to the PARLAY API,
we desctibed the main components for floor control, and we proposed a new architecture

integrating APIs with the protocols.

We have learned that PARLAY APIs and SIP related protocols offer a complete solution for
floor control. We demonstrate it by proposing an overall architecture that combines the APIs
with the protocols. We believe the use of an API can achieve backward compatibility with
older low-level implementations, hide the complexity of the protocol specification, and enable

a faster development process.

We have learned that PARLAY as per today’s specification is not easy to grasp by developers
without circuit switched telephony and IN background. The same developers may also find the
level of abstractions to be too low. These two issues motivate us to explore the emerging
technologies (i.e., Web Services) as a step further in our study and investigate more on its

suitability to offer floor control.

We undetline that there was no previous wotk on the use of Web Services for floor control.

Based on our study, we conclude that the use of Web Services is suitable for floor control n

81

multiparty sessions applications development. A real Web service development environment
(ie., UDDI, WSDL, and SOAP) could be offered. It provides a higher level of abstraction
than the PARLAY API, hiding the complexity of the telecommunication networks. It offers
more flexibility with application-to-application communication, and faster time for
development and deployment. We experienced this through the development of the video

confetencing application.

2 Future Work

Today’s specification for telecommunication networks focuses on the centralized conferencing
schema. An interesting work item could be carried out in future work addressing the floor

control issue in a non-centralized conferencing model.

We petformed preliminary tests to measure the performance for floor control operations using
Web Setvices. The total titne for processing each floor control operation 1s between tens to
hundreds of milliseconds. This means that the time for encoding and decoding SOAP
messages is small compared to the total time perceived by the user. More advanced and precise
measurements could be tackled in future wotk to compare the performance of the two

solutions for floor control, with or without Web Setvices.

82

Ut

REFERENCES

R. H. Glitho, Advanced Setvice Architectures for Internet Telephony: A Critical

Ovetview, IEEE Network Magazine, July/August 2000, Vol.14 No.4, pp. 38-44.

Third Generation Partnership Project (3GPP), http:/ /www.3gpp.otg/

M. Handley, H. Schulzinne, E. Schoolet,]. Rosenbetg, “SIP: Session Initiation
Protocol”, Request for Comments 2543, Internet Engineering Task Force, March

1999.

Internet Engineering Task Force: http://www.ietf.org

Simple Object Access Protocol (SOAP), http:/ /www.w3.01g/2000/xp

X. Wu et al.,, “Use SIP and SOAP for conference floor control”, Internet Draft, Work

in Progtess, draft-wu-sipping-floor-control-05.txt, November 2003.

C. Botmann, SCCP: Simple Conference Control Protocol, Internet Draft (Expired),

draft-ietf-mmusic-sccp-02.txt, April 2002.

PARLAY forum: http://www.patlay.otg

83

9. S.Desrochers, R. H. Glitho and K. Sylla, Expetimenting with PARLAY in a SIP
environment: Early Results, IP Telecommunications Services (IPTS) conference,

Atlanta, September 2000.

10. R. Glitho, A. Poulin, K. Sylla and O. Chetkaoui, Using PARLAY for Centralized
Conferences in SIP Envitonment, 7th International Conference on Intelligence in

Next Generation Netwotks (ICIN 2001), Bordeaux, July 2001.

11. R. H. Glitho, A. Poulin and F. Khendek, A High Level Service Creation Environment
for PARLAY, IEEE International Communications Conference (ICC2002), New

York, April 2002.

12. S. Hawwa, ¥, Khendek and R. Glitho, A Novel Architectute for Conference Floor
Control in SIP Environment, Intelligence in Next Generation Networks (ICIN 2003),

Bordeaux, France, March 31- April 3, 2003.

13. Systinet http://www.systinet.com

14. H. Schulzrinne and]. Rosenbetg, The Session Initiation Protocol: Internet Centric
Signaling, IEEE Communications Magazine, October 2000, Vol. 38, No10, pp. 134 —

141.

15. G. Camatillo, SIP Demystified, McGraw-Hill Professional Book Group, 2001. ISBN

0-0713734.

84

16.

17.

18.

19.

20.

21.

22,

23.

24.

M. Handley and V. Jacobson, "SDP: session desctiption protocol," Request for

Comments 2327, Internet Engineering Task Force, April 1998.

H. Schulzrinne, S. Casner, R. Fredetick, and V. Jacobson, "RTP: a transport protocol
for real-time applications," Request for Comments 1889, Internet Engineering Task

Force, January 1996.

M. Handley, C. Petkins, E. Whelan, "Session Announcement Protocol", Request for

Comments 2974, Internet Engineering Task Force, October 2000.

SIP related drafts - http:/ /www.cs.columbia.edu/sip/

J. Rosenberg and H. Schulzinne, “Models for multi party conferencing in SIP”,

Internet Draft (Expired), draft-ietf-sipping-conferencing-models-01.txt, July 2002.

S. Hawwa, Audio Mixing for Centralized Conferences in a SIP Environment, IEEE
International Conference on Multimedia and Expo (ICME 2002), Lausanne,

Switzerland, August 2002.

H. Schulzinne, “RTP profile for audio and video conferences with minimal control”,

Request for Comments 1890, Internet Engineering Task Force, January 1996.

A. Roch, “Session Initiation Protocol (SIP)-Specific Event Notification”, Request for

Comments 3265, Internet Engineering Task Force, June 2002.

3GPP, Open Services Access, Application Programming Interface, Technical

specification 29.998, http:/ /www.3gpp.otg
85

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

3GPP, The Virtual Home Envitonment, Technical specification 22-21,

http:/ /www.3gpp.org

UML. - The Unified Modelling LanguageUML , http://www.omg.otg/uml/

CORBA - The Common Object Request Broker Architecture,

http://www.omg.org/ gettingstarted/ cotbafaq.htm

Distributed Common Object Model (DCOM),

http:/ /www.microsoft.com/com/tech/DCOM.asp

TINA-C, Business Model and Reference Points, Version 4. 0, http:/ /www. tinac.

com/

Java Telephony API (JTAPI), Version 1.3, http://java.sun.com/products/jtapi/

M. Handley, J. Crowcroft, C. Bormann, . Ott, “The Internet Multimedta Conferencing

Atrchitecture”, Internet Draft (Expired), draft-ietf-mmusic-confarch-01, February 2001.

ITU-T: Visual Telephone Systems and Equipment for Local Area Networks, ITU-T

Recommendation H323, 1995.

F. Cutbera et al,, Unraveling the Web services: An Introduction to SOAP, WSDL and

UDDI, IEEE Internet Computing, Vol. 6, No2, March-April 2002, pp. 86-93.

Web Services Description Language (WSDL), http:/ /www.w3.0tg/ TR /wsdlLhtml

Universal Description, Discovery, and Integration (UDDI): http://www.uddi.otg/

86

36. Java Sound API : http://java.sun.com/ products/ java-media/sound/

37. Java Media Framework : http://java.sun.com/products/java-media/jmf/

87

APPENDIX A (ADVANCED VIDEO CONFERENCING WSDL)

<?xml version='1.0'?>
<wsdl:definitions
name='sge.ericsson.lmc.sintel.confServer.ConfServerWsImpl'’
targetNamespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl
t
xmlns:wsdl="'http://schemas.xmlsoap.org/wsdl/"'
xmlns:xsd="http://www.w3.0org/2001/XMLSchema'
xmlns:tns='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'
xmlns:http='http://schemas.xmlsoap.org/wsdl/http/’
xmlns:xsi='http://www.w3.0rg/2001/XMLSchema-instance'’
xmlns:mime='http://schemas.xmlsoap.org/wsdl/mime/ "’
xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:SOAP~ENC='http://schemas.xmlsoap.org/soap/encoding/' >
<wsdl:types xXmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<xsd:schema
targetNamespace="urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl
II>
<xsd:complexType name="ArrayOfstring'"s>
<xsd:complexContents>
<xgd:restriction base="SOAP-ENC:Array">
<xsd:sequence>
<xsd:element name="item"
type="xsgd:string"/>
</xsd:sequence>
<xsd:attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:string[]"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
</xsd:schema>
</wsdl:types>
<wgdl :message name='ConfServerWsImpl appointChair Response's>
<wsdl:part name='response' type='xsd:boolean'/>
</wsdl :message>
<wgdl :message name='ConfServerWsImpl removeParticipant Request's>
<wsdl:part name='p0' type='xsd:string'/>
<wsdl:part name='pl' type='xsd:string'/>
</wsdl :message>
<wsdl :message name='ConfServerWsImpl getChair Response's>
<wsdl :part name='response' type='xsd:string'/>

88

</wedl :megsage>

<wsdl :message name='ConfServerWsImpl createConference Response'>
<wsdl:part name='response' type='xsd:string'/>

</wgdl :message>

<wgdl :message name='ConfServerWsImpl grantFloor Request'>
<wsdl:part name='p0' type='xsd:string'/>
<wsdl :part name='pl' type='tns:ArrayOfstring'/>

</wsdl :message>

<wsdl :message

name='ConfServerWsImpl getActiveParticipants_Request'>

<wsdl:part name='p0' type='xsd:string'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl getRequestQueue Request'>
<wsdl :part name='p0' type='xsd:string'/>

</wsdl:message>

<wsdl:message name='ConfServerWsImpl isConfStarted Response’>
<wgdl :part name='response' type='xsd:boolean'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl getFloorHolders_ Response'>
<wsdl :part name='response' type='tns:ArrayOfstring'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl revokeFloor Request'>
<wsdl :part name='p0' type='xsd:string'/>
<wsdl:part name='pl' type='tns:ArrayOfstring'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl removeParticipant Response'>
<wsdl :part name='response' type='xsd:boolean'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl addParticipant_ Request's>
<wsdl:part name='p0' type='xsd:string'/>
<wsdl :part name='pl' type='xsd:string'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl revokeFloor Response'>
<wsdl :part name='response' type='xsd:boolean'/>

</wsdl:message>

<wsdl :message name='ConfServerWsImpl_ grantFloor_Response'>
<wsdl :part name='response' type='xsd:boolean'/>

</wsdl:message>

<wsdl:message name='ConfServerWsImpl subscribeEvents_Response'>
<wsdl:part name='response' type='xsd:boolean'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl getEvent Request'>
<wsdl :part name='p0' type='xsd:string'/>

</wsdl:message>

<wsdl :message name='ConfServerWsImpl releaseFloor Request'>
<wsdl :part name='p0' type='xsd:string'/>
<wgdl:part name='pl' type='xsd:string'/>

</wsdl:message>

<wsdl:message name='ConfServerWsImpl isConfStarted Request'>
<wsdl :part name='p0' type='xsd:string'/>

</wsdl :message>

<wsdl:message name='ConfServerWsImpl addParticipant_ Response'>
<wsdl :part name='response' type='xsd:boolean'/s>

</wsdl:message>

89

<wsdl:message name='ConfServerWsImpl endConference Request'>
<wsdl:part name='p0' type='xsd:string'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl releaseFloor Response'>
<wsdl :part name='response' type='xsd:booclean'/>

</wsdl :message>

<wsdl:message name='ConfServerWsImpl endConference_Response’>
<wsdl :part name='response' type='xsd:boolean'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl getChair Request'>
<wsdl:part name='p0' type='xsd:string'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl getFloorHolders Request'>
<wsdl:part name='p0' type='xsd:string'/>

</wsdl :message>

<wsdl:message name='ConfServerWsImpl requestFloor_ Request'>
<wsdl:part name='p0' type='xsd:string'/>
<wgdl :part name='pl' type='xsd:string'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl getRequestQueue Response'>
<wgdl :part name='response' type='tns:ArrayOfstring'/>

</wsdl :message>

<wsdl:message name='ConfServerWsImpl appointChair Request'>
<wsdl :part name='p0' type='xsd:string'/>
<wsdl :part name='pl' type='xsd:string'/>

</wsdl:message>

<wsdl:message name='ConfServerWsImpl subscribeEvents Request'>
<wsdl:part name='p0' type='xsd:string'/>
<wsdl:part name='pl' type='xsd:string'/>
<wsdl:part name='p2' type='xsd:int'/>

</wsdl :message>

<wsdl :megsgage

name='ConfServerWsImpl getActiveParticipants_Response'>

<wsdl:part name='response' type='tns:ArrayOfstring'/>

</wsdl :message>

<wsdl :message name='ConfServerWsImpl_ requestFloor Response'>
<wsdl:part name='response' type='xsd:boolean'/>

</wsdl :megsage>

<wsdl :message name='ConfServerWsImpl createConference Request'>
<wsdl :part name='p0' type='tns:ArrayOfstring'/>
<wsdl :part name='pl' type='xsd:boolean'/>
<wsdl:part name='p2' type='xsd:int'/>
<wsdl:part name='p3' type='xsd:boolean'/>
<wsdl:part name='p4' type='xsd:int'/>
<wsdl:part name='p5' type='xsd:boolean'/>
<wsdl:part name='pé6' type='xsd:int'/>
<wsdl :part name='p7' type='xsd:boolean'/>

</wsdl:message>

<wsdl :message name='ConfServerWsImpl getEvent Response'>
<wsdl :part name='response' type='tns:ArrayOfstring'/>

</wsdl :message>

<wsdl :portType name='ConfServerWsImpl'>
<wsdl:operation name='revokeFloor' parameterOrder='p0 pl'>

90

<wedl : input name='revokeFloor'
message='tns:ConfServerWsImpl revokeFloor_Request'/>
<wsdl:output name='revokeFloor'
message='tns:ConfServerWsImpl revokeFloor Response'/>
</wsdl:operation>
<wsdl:operation name='getActiveParticipants'
parameterOrder="p0'>
<wsdl:input name='getActiveParticipants'
message='tns:ConfServerWsImpl getActiveParticipants_Request'/>
<wsdl:output name='getActiveParticipants'
message='tns:ConfServerWsImpl getActiveParticipants_Response'/>
</wsdl:operation>
<wsdl :operation name='subscribeEvents' parameterOrder='p0 pl
p2'>
<wsdl:input name='subscribeEvents’
message='tns:ConfServerWsImpl subscribeEvents Request'/>
<wsdl:output name='subscribeEvents'
message='tns:ConfServerWsImpl subscribeEvents_Response'/>
</wsdl:operation>
<wsdl :operation name='getRequestQueue' parameterOrder='p0'>
<wsdl:input name='getRequestQueue’
message='tns:ConfServerWsImpl getRequestQueue_Request'/>
<wsdl :output name='getRequestQueue'
message:'tns:ConfServerWsImpl_getRequestQueue_Response’/>
</wsdl:operation>
<wsdl:operation name='getChair' parameterOrder='p0'>
<wsdl:input name=‘'getChair’
message='tns:ConfServerWsImpl getChair Request'/>
<wsdl:output name='getChair’
message='tns:ConfServerWsImpl getChair Response'/>
</wsdl:operations
<wsdl:operation name='createConference' parameterOrder='p0 pl
P2 p3 p4 p5 pé6 p7'>
<wsdl:input name='createConference’
message='tns:ConfServerWsImpl createConference Request'/>
<wsdl :output name='createConference'’
message='tns:ConfServerWsImpl createConference Response'/>
</wsdl :operation>
<wsdl:operation name='removeParticipant' parameterOrder='p0
pl'>
<wsdl:input name='removeParticipant’
message='tns:ConfServerWsImpl removeParticipant Request'/>
<wsdl:output name='removeParticipant'
message='tns:ConfServerWsImpl removeParticipant Response'/>
</wsdl:operations>
<wsdl :operation name='appointChair' parameterOrder='p0 pl'>
<wsdl:input name='appointChair’
message='tns:ConfServerWsImpl appointChair Request'/>
<wsdl:output name='appointChair’
message='tns:ConfServerWsImpl appointChair Response'/>
</wsdl:operation>
<wgdl:operation name='getEvent' parameterOrder='p0'>
<wsdl:input name='getEvent'
message='tns:ConfServerWsImpl getEvent_ Request'/>

91

<wgdl :output name='getEvent'
message='tns:ConfServerWsImpl getEvent Response'/>
</wsdl:operation>
<wsdl:operation name='requestFloor' parameterOrder='p0 pl'>
<wsdl:input name='requestFloor'
message='tns:ConfServerWsImpl reqguestFloor_Request'/>
<wsdl:output name='requestFloor'
message='tng:ConfServerWsImpl requestFloor_Response'/>
</wsdl :operation>
<wsdl:operation name='getFloorHolders' parameterOrder='p0'>
<wsdl:input name='getFloorHolders'
message="'tns:ConfServerWsImpl getFloorHolders Request'/>
<wsdl:output name='getFloorHolders'
message='tns:ConfServerWsImpl getFloorHolders_Response'/>
</wsdl:operation>
<wsdl:operation name='isConfStarted' parameterOrder='p0'>
<wsdl:input name='isConfStarted!'
message="'tns:ConfServerWsImpl isConfStarted Request'/>
<wsdl:output name='isConfStarted’
message='tns:ConfServerWsImpl isConfStarted Response'/>
</wsdl:operation>
<wgdl:operation name='grantFloor' parameterOrder='p0 pl'>
<wsdl:input name='grantFloor'
message='tns:ConfServerWsImpl grantFloor_ Request'/>
<wsdl :output name='grantFloor'
message="'tns:ConfServerWsImpl grantFloor Response'/>
</wsdl :operation>
<wsdl:operation name='endConference' parameterOrder='p0'>
<wsdl:input name='endConference'
message="'tns:ConfServerWsImpl endConference Request'/>
<wsgdl:output name='endConference'
message='tns:ConfServerWsImpl endConference Response'/>
</wsdl:operation>
<wsdl:operation name='addParticipant' parameterOrder='p0 pl'>
<wsdl: input name='addParticipant’
message="'tns:ConfServerWsImpl addParticipant Request'/>
<wsdl:output name='addParticipant’
message='tns:ConfServerWsImpl addParticipant Response'/>
</wsdl :operation>
<wsdl:operation name='releaseFloor' parameterOrder='p0 pl'>
<wsdl:input name='releaseFloor'
message='tns:ConfServerWsImpl releaseFloor_ Request'/>
<wsdl:output name='releaseFloor'
message='tns:ConfServerWsImpl releaseFloor Response'/>
</wsdl:operation>
</wsdl:portType>
<wsdl :binding name='ConfServerWsImplSOAPBinding0’
type='tns:ConfServerWsImpl'>
<soap:binding transport='http://schemas.xmlsoap.org/soap/http’
style='rpc'/>
<wsdl:operation name='revokeFloor'>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='revokeFloor's>

92

<soap:body use='encoded’
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:input>
<wsdl:output name='revokeFloor'>
<soap:body use='encoded’
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output >
</wsdl:operation>
<wgdl:operation name='getActiveParticipants's>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='getActiveParticipants'>
<goap:body use='encoded'
encodingStyle="'http://schemas.xmlsoap.org/soap/encoding/"'
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:input>
<wsdl:output name='getActiveParticipants'>
<soap:body use='encoded'
encodingStyle="'http://schemas.xmlsoap.org/soap/encoding/"
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wgdl:operations
<wsdl :operation name='subscribeEvents'>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='subscribeEvents'>
<soap:body use='encoded’
encodingStyle="'http://schemas.xmlsoap.org/soap/encoding/"'
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:input>
<wsdl :output name='subscribeEvents's>
<soap:body use='encoded’
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"'
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl:operation>
<wsdl :operation name='getRequestQueue'>
<soap:operation soapAction='' style='rpc'/>
<wsdl :input name='getRequestQueue'>
<soap:body use='encoded’
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl: input>
<wsdl :output name='getRequestQueue'>
<goap:body use='encoded'
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"'
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl :operation>
<wsdl:operation name='getChair'>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='getChair'>

93

<gsoap:body use='encoded'
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:input>
<wsdl:output name='getChair'>
<soap:body use='encoded'
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace:'urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name='createConference'>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='createConference's>
<soap:body use='encoded'
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:input>
<wsdl:output name='createConference'>
<soap:body use='encoded'
encodingStyle="'http://schemas.xmlsoap.org/soap/encoding/"
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl :operation>
<wsdl:operation name='removeParticipant's>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='removeParticipant'>
<soap:body use='encoded'
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"’
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:input>
<wsdl:output name='removeParticipant's>
<soap:body use='encoded'
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl:operation>
<wsdl :operation name='appointChair's>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='appointChair'>
<soap:body use='encoded'
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"'
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:inputs>
<wsdl:output name='appointChair's
<goap:body use='encoded’
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/ "'
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl :operation>
<wsdl:operation name='requestFloor's>
<goap:operation soapAction='' style='rpc'/>
<wsgdl:input name='requestFloor'>

94

<soap:body use='encoded'
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"'
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:input>
<wsdl :output name='requestFloor'>
<soap:body use='encoded'
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"
namespace:'urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name='getEvent'>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='getEvent'>
<goap:body use='encoded'
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"’
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl' />
</wsdl:input>
<wsdl:output name='getEvent'>
<soap:body use='encoded'
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"'
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl:operations>
<wsdl:operation name='getFloorHolders'>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='getFloorHolders'>
<goap:body use='encoded'
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/’
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:input>
<wsdl:output name='getFloorHolders'>
<soap:body use='encoded’
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/’
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWwsImpl'/>
</wsdl:output>
</wgdl :operations>
<wsdl :operation name='grantFloor'>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='grantFloor's>
<gsoap:body use='encoded'
encodingStyle="http://schemas.xmlsoap.org/socap/encoding/"'
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:input>
<wsdl:output name=‘'grantFloor'>
<soap:body use='encoded'
encodingStyle='http://schemas.xmlsoap.org/socap/encoding/"'
namespace='urn:se.ericsgson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl:operation>
<wsdl :operation name='isConfStarted's>
<soap:operation soapAction='' style='rpc'/>
<wsdl : input name='isConfStarted'>

95

<goap:body use='encoded’
encodingStyle='http://schemas.xmlsoap.org/socap/encoding/"'
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl: input>
<wsdl:output name='isConfStarted's>
<soap:body use='encoded’
encodingStyle="'http://schemas.xmlgoap.org/socap/encoding/"
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output >
</wsdl:operation>
<wsdl:operation name='addParticipant'>
<soap:operation soapAction='' style='rpc'/>
<wsgdl:input name='addParticipant'>
<soap:body use='encoded'
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"’
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:input>
<wsdl:output name='addParticipant'>
<soap:body use='encoded'
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/’
namespace='urn:sge.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl:operation>
<wsdl :operation name='endConference'>
<soap:operation soapAction='' style='rpc'/>
<wsdl:input name='endConference's>
<soap:body use='encoded'
encodingStyle="'http://schemas.xmlsoap.org/socap/encoding/’
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wgdl:input>
<wsdl :output name='endConference'>
<soap:body use='encoded'
encodingStyle="'http://schemas.xmlsoap.org/soap/encoding/"’
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl:operation>
<wsdl :operation name='releaseFloor's>
<soap:operation soapAction='"' style='rpc'/>
<wsdl:input name='releaseFloor'>
<goap:body use='encoded'
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"’
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl: input>
<wsdl:output name='releaseFloor'>
<soap:body use='encoded'
encodingStyle="http://schemas.xmlsocap.org/soap/encoding/’
namespace='urn:se.ericsson.lmc.sintel.confServer.ConfServerWsImpl'/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl :sexrvice name='ConfServerWsImpl'>
<wsdl:port name='ConfServerWsImpl'
binding='tns:ConfServerWsImplSOAPBinding0'>

96

<goap:address
location="'http://localhost:6060/ConfServerWsImpl/'/>
</wsdl:port>
</wsdl:service>
</wsdl:definition>

97

