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ABSTRACT

SIMULATION OF HYDROGEN RELEASE FROM A HIGH-
PRESSURE CHAMBER CONSIDERING REAL GAS EFFECTS

Kaveh Mohamed

Hydrogen release from a high-pressure chamber is modeled in this thesis. Two
approaches are developed to investigate the real gas effects at high pressures.
In the first method, an analytical model is developed to simulate time histories
of stagnation properties of hydrogen inside the chamber as well as sonic
properties of hydrogen at the orifice. Thermodynamic relations describing the
specific heats, internal energy, and speed of sound, are derived based on
Beattie-Bridgeman state equation. In the second approach, a 3-D unstructured
tetrahedral finite volume Euler solver is applied to numerically simulate the
hydrogen release. The solver is modified to take into account the real gas
effects. Modifications required to calculate the real gas Jacobian matrices and
eigenvectors as well as to obtain the Roe’s averaged convective fluxes are
described. Real gas effect is also modeled by the same state equation.
Numerical and analytical results are compared for ideal and real gas

conditions. An excellent agreement is reported.
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Chapter 1

INTRODUCTION

1.1 Hydrogen Scope as a Fuel

Today’s formidable environmental problems and the limitation of hydrocarbon fuel
resources oblige industries to substitute crude oil products, natural gas and coal with a
clean and recyclable energy source. Hydrogen has some advantageous features and can be
considered as a potential energy candidate in many systems. In particular, hydrogen can be
supplied as a motor vehicle fuel. It has an advantage that it undergoes a very efficient
combustion with air and produces low amount of pollution, especially when it is used in a
fuel cell to generate electricity.

The problem with using hydrogen as a fuel is its storage. Compared to natural gas,
hydrogen has smaller energy content per mole, and less moles of hydrogen can be stored in
a given volume at the same pressure; e.g., standard Compressed Natural Gas (CNG)
cylinders” filled with natural gas and hydrogen at a same pressure of 20.78 MPa contain
energy amounts that are respectively equivalent to 9.44 1 and 1.87 1 of gasoline, [1]. Real
gas behavior in hydrogen is associated with a reduction in the hydrogen tendency to occupy
smaller volumes at higher pressures. The deviation from the ideal gas law is quantified by
the compressibility factor. It is defined as,

_pPU

Z .
RT

(1.1)

" Lavefer N250W-30 filament wound ahuminum cylinder (113 em x 22.3 am OD, 23.4 ko).
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In an ideal gas, Z is always equal to one. The compressibility factor of hydrogen at 300° K
is plotted versus pressure in fig. 1.1, where densities are calculated based on the Beattie-
Bridgeman state equation. The compressibility factor monotonically increases to values
well above unity (ideal value) at high pressures. Therefore, the volume required for storing
a specific mass of hydrogen at a relatively high pressure is much larger than the volume the
ideal gas law predicts; e.g., at a pressure of 30 MPa the volume is 20% larger than the
prediction of the ideal gas law. For natural gas, on the contrary, the compressibility factor
decreases at first and reaches a minimum value as the pressure rises to above atmospheric
values; Z is equal to 0.75 at 20 MPa, [1]. Further pressure increases result in a monotonic
growth of the compressibility factor. The difference in compressibility factor implies that
hydrogen should be held at higher pressures compared to patural gas in order to store a

reasonable amount of fuel in a vehicle.

— - - =~ ldeal gas behavior

I

e Hydrogen, Real gas behavior i /
|
4 Natural Gas, Real gas behavior i

-
o
ER] EAE 31
1 1 i

—
FRAARE LAY LAEEE EARRS 1
~

D - ; dedmdecdoobid ) L Seendedikodidabd . [Ty |
§¢ 10" 10! 10
Absolute pressure (MPa)

Fig. 1.1: Compressibility factors of hydrogen and natural gas ot 300° K, the
real gas values for hydrogen are obtained from Beattie-Bridgman EOS.
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Hydrogen can be stored using different systems such as compressed gas cylinders, metal
hydrides, glass micro-spheres, cryogenic liquid and ammonia. These systems are
investigated in terms of their volumes, weights and energy contents in [2]. Among them,
gaseous hydrogen at high pressures is one form of storage that is seriously considered for
automotive applications. Hydrogen is presently stored at pressures up to 43.8 MPa and can
be delivered to vehicle tanks at settled pressures of 35.0 MPa. Ground storage at 87.5 MPa
for 70.0 MPa vehicle tank fills is being considered in the future and may become a standard
for transportation applications.

For safety issues, it is important to determine how the gas is released in case of failure.
The worst most probable failure is the separation of a fitting in a high-pressure tube or pipe,
which would result in a sudden release of hydrogen. The release of hydrogen into the air
yields a detonable cloud. The mixture of hydrogen and air is considered explosive if the
volumetric concentration of hydrogen lies between 4.0% and 77.0%, [3]. Important safety
considerations entail high precision models to describe the hydrogen release from a high-
pressure container. This crucial accuracy cannot be obtained unless an appropriate real gas

law is applied in development of analytical and numerical models.

1.2 Modeling of the Hydrogen Release: Objectives

In this study, unsteady release of hydrogen from a high-pressure chamber is analytically
and numerically simulated. Beattie-Bridgeman equation of state (EOS) is substituted for
the ideal gas law to take into account the real gas effects at high pressures. The chamber
considered as a model problem contains hydrogen at an initial pressure and temperature of

34.5 MPa and 300° K. The inside gas adiabatically exits the chamber through an orifice to
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the atmosphere. We investigate the real gas effects on different thermodynamic properties
of the gas inside the chamber and the gas crossing the throat. We calculate the mass flow
rate of hydrogen exiting the chamber and the exit velocity. These data can be used as
boundary conditions in later studies to investigate the diffusion of hydrogen into the
atmospheric air in order to minimize the risk of detonation, [3].

This thesis was initially started by an existing need from industry to simulate hydrogen
flow at high pressures, The problem is tackled by developing an analytical model for the
sample case described in the last paragraph and then bringing forth a more sophisticated
numerical simulation tool for real gas flows. The predictions of the analytical model are
used to validate the results of the numerical simulation.

User-friendly menus and robustness of commercial CFD sofiwares make them the first
choice in industrial simulation applications. Therefore, it was intended, at first, to use
FLUENT 6 to perform the real gas simulations. Since FLUENT 6 does not have any
specific module to deal with the real gas effects for hydrogen [4], the plan was to write user
defined adjust functions (UDF) and to run them at each FLUENT’s time iteration. The
UDF’s were supposed to do the required corrections on thermodynamic properties as well
as to extract primitive variables from recently calculated conservative variables, which are
direct solutions of the system of Euler equations. The problem of this approach is that
FLUENT transforms the system of Euler equations, which is originally in terms of the
conservative quantities, into a new form based on the primitive variables. The
transformation matrix is completely dependent on the ideal gas law. Therefore, FLUENT

restricts us to ideal gases as we cannot access the transformation matrix using any UDF’s.



Tntroduction 5

The next alternative was the extension of an existing in-house 3-D finite volume Euler
solver. This code uses an implicit first-order in time and second-order in space scheme.
Conservative fluxes are calculated using Roe’s averaging method. To predict the real gas
behavior, new flux Jacobians, conservative-primitive transformation matrices, left and right
eigenvector matrices are derived and applied to the code according to the real gas state
equation. The definitions of the averaged variables are modified in order to maintain unique

properties of Roe’s method for real gas conditions.

1.3 Review of Techniques for Real Gas Simulations

Several extensions of Roe’s averaging method to real gas flows exist in the literature. Most
of the work deals with the simulation of flows at high Mach numbers and high
temperatures, where the goal is to compute hypersonic flows in atmosphere reentries or
suborbital flights. The extensions of Roe’s scheme to the real gas flow can be classified

into two general categories. In the first category an equivalent y (ratio of specific heats) is

defined and appropriate assumptions are made to keep the conformity with the perfect gas
equation of state. Grossman et al. [5, 6] applied this technique to simulate high temperature
and high Mach number flows in 1, 2 and 3-D problems. The same approach is used in [7,
29] to develop a parabolized Navier-Stokes code to compute the three-dimensional
hypersonic external flow of the equilibrium air around various geometries.

A more thorough approach is utilized in the second category, where averaging
procedures are defined for pressure derivatives that appear in the Jacobian matrix. These
definitions are not unique. In addition, different thermodynamic properties may be selected

as independent variables in the state equation that explicitly describes the pressure. Each
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distinct selection requires specific definitions of the corresponding pressure derivatives;
e.g., if the density and the internal energy are selected as independent variables, averaged
values for derivatives of the pressure with respect to the density and the internal energy
should be defined. Different averaging relations have been presented in the literature.
Glaister [8] applied this method to numerically simulate the standard 1-D shock reflection
problem. In his work, pressure is given as a function of the density and the internal energy
in the state equation. Vinokur et al. [9] and Montagne et al. [28] presented different
averaging definitions for pressure derivatives using the same independent variables as those
in Glaister’s work. The averaging method developed by Liou et al. in [10] is applied fo
simulate 1-D unsteady shock tube and steady nozzle flows. The state equation they used
explicitly describes the pressure in terms of the density and internal energy with 20 basis
functions. An extension of the Roe’s averaging method to a mixture of perfect gases that
are in thermal and chemical equilibrium condition is introduced and applied to solve the 2-
D hypersonic flow around a simple ellipse in [11]. The density and the enthalpy are
selected as independent variables in the state equation in [12] and the corresponding
generalized definitions of Roe’s averaged values are used to simulate a 1-D two-phase flow
in a smooth pipe. Buffard et al. {13] developed an approximate Riemann solver to compute
Euler equations in terms of non-conservative variables using the real gas state equation.
They moditied an alternative to the Roe’s scheme called VFRoe in order to solve for non-
conservative variables. A review of several generalizations of the Roe’s scheme is given in
[14]. Numerical performances of these methods are compared together by simulating the

steady hypersonic flow around a 2-D blunt body.
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In this thesis, the method introduced by Glaister is applied to modify the convective
fluxes in a 3-D finite volume Euler solver. Hydrogen release from a high-pressure chamber
is simulated as a sample problem. The original aspect of this work is the development of 3-
D Jacobians, transformation matrices, and eigenvector matrices based on the Beattie-
Bridgeman EOS,

Analytical models describing the isentropic expansion of a real gas from a high-pressure
plenum are introduced in [15, 16]. Johnson [15] applied these models to tabulate sonic and
stagnation properties of nitrogen and helium at pressures up to 30 MPa. Iu this thesis, the
same algorithm is applied to a different EOS (Beattie-Bridgeman EOS) to derive the

thermodynamic relations and develop an analytical model.

1.4 Thesis OQutline

The rest of the thesis is as follows. Chapter 2 is devoted to the development of an analytical
model to describe the real gas release from a high-pressure chamber. Thermodynamic
relations are derived to calculate specific heats, internal energy, sound velocity and
isentropic expansion of a real gas based on the Beattie-Bridgeman state equation. A
numerical scheme is introduced, in Chapter 3, to simulate the real gas flow. The flux
Jacobian, transformation matrices, left and right eigenvector matrices as well as the
definitions of the Roe’s averaged variables for the real gas are detailed in this chapter.
Results of the analytical and numerical simulations are investigated and compared to the
ideal gas predictions in Chapter 4. Conclusions and recommendations for future work are

brought forth in Chapter 5.



Chapter 2

ANALYTICAL MODEL

In this chapter, an analytical model is developed to describe the hydrogen release from a
high-pressure chamber, whereby time histories of the stagnation and sonic properties are
calculated. Thermodynamic relations are derived based on a reference EOS in which the
pressure is explicitly given in terms of two independent thermodynamic properties. The
relations are used to calculate the specific heats, the internal energy, the speed of sound,

and the isentropic derivatives in terms of the independent thermodynamic properties.

2.1 Definition of the Problem

A chamber is assumed to store hydrogen initially at a high pressure. Hydrogen exits the
chamber through an orifice to atmospheric air. No heat transfer occurs between the gas
inside the chamber and its surrounding during the release. A control-volume approach is
applied in this section to develop a model that describes the hydrogen release. Time
histories of thermodynamic properties are sought at two locations: inside the chamber
where stagnation properties are calculated, and at the orifice where sonic properties are
obtained. The schematic diagram of the control volume of the problem is shown in fig. 2.1.
The thermodynamic behavior of a gas at high pressures deviates from what is described
by the ideal gas law, fig 1.1. In order to take into account this deviation, the analytical
model developed in this chapter is based on a real gas equation of state. Using the real gas

EOS, thermodynamic relations are derived to relate the specific heats, the internal energy,
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the speed of sound, and isentropic derivatives to the independent thermodynamic

propetties.

BOL,(0.0,0)
<fsnmmmnns PO, T,(t),v,(t)

Fig, 2.1: Schematic diagram of the control volume for analytical model.

2.2  Assumptions

The following assumptions have been made to simulate the gas release from a high-

pressure chamber:

1.

2.

Thermodynamic propetties are distributed uniformly throughout the chamber;

The hydrogen release is simulated at adiabatic conditions where no heat transfer occurs
between the gas inside the chamber and its surrounding container;

The orifice is at the critical condition (i.e., the velocity of the gas at the orifice is equal
to the local speed of sound);

The expansion of hydrogen from the stagnation state at the chamber to the critical state
at the orifice takes place at a small region near the orifice, and it is modeled by a quasi
one-dimensional isentropic flow;

Hydrogen is assumed to exist in gaseous phase through the whole chamber;
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6. The real gas behavior is modeled by the Beattie-Bridgeman state equation, equation
(2.1), which is considered as the reference equation in this thesis. All required constants

of the equation, 4,, B,, &, b, and ¢ are listed in table 1.1.

P=f(T,v)
- | ,, q @.1)
::52-+( cR +BQRTWA,,J-]-5+(«~ B”‘f - BJ)RT+aAC,)J—; 5 BbeR L
v \TI” v T v T v

Although the first and fourth assumptions seem contrary to each other, they will give
reasonable results for a large high-pressure chamber with a small orifice, [17]. If the total
time of the gas release is not a concern, the third assumption is acceptable. After the flow
reaches subsonic speeds at the orifice, pressure, density, and temperature-changes become
very small and negligible compared to corresponding values that exist when the flow is
sonic at the orifice.

In the following subsections, foregoing assumptions are applied to write the
conservations of mass and energy as well as to derive some real gas thermodynamic

relations.

Table 2.1: Constants of the Beattie-Bridgeman equation of state for hydrogen.

A4, 10%a  10%B, 10*h 107%¢
4.924 2.510 1.034 2162 2.500

2.3 Conservation Equations

Time derivatives of the stagnation specific volume and stagnation internal energy of the gas
inside the chamber can be calculated by balancing the mass and the energy for the control

volume shown in fig. 1.1. The conservation of mass is given by:
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Q(ﬁ:‘i}x _ayd, 2.2)
o\ v, v

n

The energy balance can be written as:

(i, )_ (n,+05a )a,4,
v, | )

ot U

H

(2.3)

Expanding the derivatives on the left hand sides of equations (2.2) and (2.3), we rewrite the

above equations as:
¥ v, a,A,

b e R (2.4)
v, Ot v,

Wi, Wi o (b, +o0. 5a,,},z,, A,

- 2.5
v, ot v/ or @3)

After substituting %%— from equation (2.4) into equation (2.5) and rearranging the above
C

equations, final forms of the conservation equations are obtained as:

au, v} v, a4, ’ (2.6)
a v v,

o _ h, +0.5a )a,, nm+1a,,An v @)
ot W v, Y v,

Thermodynamic properties of the flow crossing the orifice appear on the right hand
sides of conservation equations (2.6) and (2.7). In the following section, relations between
dependent and independent thermodynamic properties are defined and then an expression

that governs the isentropic expansion or compression is developed.
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2.4 Some Real Gas Thermodynamic Relations

In order to keep consistency with the state equation (2.1), temperature and specific volume
are selected as independent thermodynamic properties. Speed of sound, specific heats,
internal energy and enthalpy are calculated in terms of temperature and specific volume.
Mathematically, different relations between dependent and independent properties can be
obtained if another form of the state equation is utilized, [15].

For a pure substance, the following relations exist between changes in entropy,
temperature, pressure, and specific volume [18]:

dSva£+(w~w) duxc.‘:,,ﬂm(ﬁﬂ) dp. 2.8)
T ) 7 \er ),

In an isentropic process, entropy remains constant and equations (2.8) are reduced to the

following forms:

(é?_) ,_wf._(éfi), 29)
ov /., c,\or),

(QT_) :I_.(?ﬂ) (2.10)
epP), C,\or), .

2.4.1 Specific Heats

The specific heats of hydrogen at constant pressure are tabulated in [19] for the range of
temperature between 0° K to 6000° K. The table is given in Appendix A. These values
correspond to a reference pressure of 0.1 MPa. Hydrogen behaves like an ideal gas at this
reference pressure. These values should be modified at high pressures to allow for the real

gas effects.
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The following procedure is applied to modify the ideal value of the specific heat and to
calculate the corresponding real value at a desired state specified by temperature 7' and
specific volume v . The first step is to calculate the ideal value of the specific heat, C .
temperature 7 and for the reference pressure of 0.1 MPa. This is done by searching
through the data given in Appendix A and interpolating between values. The specific heat
at constant volume and the specific volume of hydrogen at the reference pressure and

temperature 7 can be obtained from the ideal gas relations as:

C (I =C,(T)~-R, 2.11)
RT ,

o RT 2.12

MRS @12)

In the second step, the value of the specific heat given by equation (2.11) is modified by
assuming a constant-temperature process through which the specific volume of hydrogen is

changed from v° to v. This modification can be formulated as:

C,(T,v)=C,(T)+ j(aa‘“) dv. (2.13)
RANEL2

T
In a pure substance, the derivative of the specific heat with respect to the specific volume

for constant temperature is given by, [18]:

L
(6:") :T(gf{;}. (2.14)
v T v

After substituting equation (2.14) into equation (2.13), the specific heat at constant volume

at temperature 7' and specific volume v is written as:

ad s ad K rrv} bl ¥ ra 82]3 ”:v( g ¥ ¥y Ja
C, (1) =C(I)+ [1 | do=C,(D+ [1f v, (2.15)

P
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The relation between the specific heat at constant volume and the specific heat at

constant pressure in a pure substance is given by [18]:

2 ,.} 2
C,«T,u)«cz,(zzv)n-—-T(—-’:'-’ﬁ) [53] =-~~T(f?ﬁ) (‘”’] , 2.16)
T j \0v J,; or ov ),

12
which can be rearranged into the following form to calculate the specific heat at constant

pressure:

C (T, 0)=C, (T,u)«T%%i%. 217

2.4.2 Speed of Sound

By definition, the sound velocity in a pure substance is given by [18]:

ey _ | afop) _ | .(er/av),
am\/(ap)xm\/ v (av)y“\/ Y @rjor),” (2.18)

The isentropic derivatives in equation (2.18) are replaced with their equivalent forms given

by equations (2.9) and (2.10). It leads to the following equation:

= ZQI’_M__ _ 29_&(“@5)
a——\/U C, (ev/or), ""\/ v c\a0), (2.19)

which is subsequently represented by:

a(T,v)= \/ ~v? %"J‘ o (T50). (220)

2.4.3  Internal Energy
The internal energy of a pure substance is generally a function of its temperature and
specific volume. The relation between changes in temperature and specific volume and the

corresponding change in internal energy is written as, [18]:
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di =C,dI" + {I(M) - P]du. 2.21)
ot J,

The internal energy of hydrogen at temperature 7" and specific volume v is obtained by
considering two successive processes. The first process occurs at a constant-pressure of 0.1
MPa, during which the temperature of hydrogen increases from 0° K (where the internal
energy is zero) to the final temperature of 7. Hydrogen is considered as an ideal gas at this
pressure; therefore, the bracket in equation (2.21) is always zero during the first process.

Using the data given in Appendix A, we can calculate the increase in the internal energy as:
,1‘ ol

A= [C,dT. (2.22)
4]

The specific volume of hydrogen at the end of the first process is equal to v°, which is
given by equation (2.12). In the second process, the specific volume of hydrogen changes
from v° to the final value of v while the temperature is kept constant. The corresponding

change in the internal energy is calculated from equation (2.21) as:

“ oP
Aji= ||T|=—| =P ldv. 2.23
2! UJ:[ (aT)u ] v (2.23)

Combining equations (2.22) and (2.23), we obtain a relation for the internal energy of

hydrogen as a real gas,
T v

i(r,0)= [C.1+ [[1f, (T,0) - f(T,0)}dv, (2.24)
0 v

and the enthalpy is given by definition as:

WT,0)=i(T,0)+uof (T,v). (2.25)
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2.4.4  Iseniropic Expansion

Hydrogen goes through an isentropic expansion from the stagnation state in the chamber to
the sonic state at the orifice. Properties of the isentropically expanded flow can be
determined by integrating the ordinary differential equation (2.9) with respect to the

specific volume.

dr = - @) 4 (2.26)
C,(T,v)

Equation (2.26) is integrated from the stagnation state inside the chamber to find
thermodynamic states hydrogen goes through during an isentropic expansion. The sonic
state of the flow at the throat is the state at which the following balance of energy is

satisfied:
iT,v)+u,f{,v)=il,,0,)+ v, f(T,.0,) +%a2(T,,,u,,). (2.27)

The last two equations are used to uniquely determine sonic properties of hydrogen at

the orifice. Analytical expressions for derivatives and integrals are given in table 2.2.

Table 2.2: Analytical expressions of integrals and derivatives of the state

equation.
S R (2R, prL (2R ppr 1 2BbR 1
v T v T v v
Jo e —(2}-?& B.RT - Af,)fqm(-— BeR _ pbRT + aA,,) 3 ”%1;;&3?
15 4 i L
e o GeR(1 1) 3BeR(1 13 2BbeR(T 1
vj Vo (T, 0}V " \v v° ™\ u? oWt v

e : 3R Y1 L\ (3BeR Y L 1) 3BER( 11
‘!-[HT(T,U) e f(? ,U)]CIU 1112‘ e T TZ a ‘ 20@‘,& 202 T.2 3’)05 303

i . GeR(1 1) 6B.cR( 1 1) GR.beR[ 1 1
T (7 o stvriia | s e m | o st | s S -

A T 7Y 200wt ™ Lt a!

i, 3¢R 1 3B.cR 1 3B.beR 1
e e A ot A s ad. o o e s
r v T v
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2.5 Computer Code

A computer program is developed to calculate time histories of stagnation and sonic
properties of hydrogen during the release from a high-pressure chamber. It is based on
relations developed in Sections 2.3 and 2.4. The program consists of two major steps,
isentropic expansion and adiabatic release. The flowchart of the program’s algorithm is

shown in fig. 2.2. Pyak is the atmospheric pressure to which hydrogen discharges.
D

2.5.1 Isentropic Expansion

This step involves the numerical integration of the ordinary differential equation (2.26).
The domain of integration consists of all expanded states hydrogen goes through, from the
stagnation state inside the chamber to the sonic state at the orifice. The initial condition is
determined from the current stagnation state inside the chamber, and the final condition is
reached once equality (2.27) is satistied. After each integration step, equation (2.27) is
checked. Its right hand side is evaluated at the most recently computed values of specific
volume and temperature. The integration is performed using the first-order Euler method.
The integration step is equal to 0.05% of the stagnation specific volume of the gas inside

the chamber.
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- Adiabatic
Isentropic Release

Expansion ]

Integrate Fgs. (2.6), o
2.7) one time step

Start from the
stagnation state
inside the chamber

A4

Save the new
- stagnation state of
Integrate equation the inside gas
(2.26) one step.

Equality
(227 is

held? Yes

Yes
Sonic propettics are

saved.

Terminate the
program

Fig. 2.2: Flowchart of the adiabatic gas release algorithm.

2.5.2 Adiabatic Release

In an adiabatic gas release, the system of ordinary differential equations (2.6) and (2.7) are
numerically solved. The initial condition is the initial stagnation state inside the chamber.
Numerical integration stops when the pressure at the throat reaches to the ambient pressure
Puack. Each integration step results in new values of specific volume and internal energy.
The corresponding new value of temperature is obtained through an iterative solution of
equation (2.24). Equations (2.6) and (2.7) are integrated using the first-order Euler method
with a time step of 10" sec. The secant method is applied to solve equation (2.24) for
temperature. The initial guesses are the temperature predicted by the ideal gas law and its

perturbed value by 1%.
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The analytical model developed in this chapter is applied to calculate time histories of
thermodynamic properties of hydrogen inside the chamber and at the orifice; ¢.g., time-
decays of stagnation and sonic pressures, temperatures and densities. In order to verify the
analytical model, we simulate the hydrogen release from a chamber for ideal gas condition
and compare the results to the exact solution given by [17}:

(-r)i2y
- 2% (%) ~1

@

f = (2.28)

v( 2 -1
(- PIRT. 4, “}E("?j:‘i“)

where P. and 7, represent initial pressure and temperature of the gas inside the chamber
and are equal to 34.5 MPa and 300 °K, respectively. The specific heats are assumed to be
constant throughout the release. ¥ is equal to 1.409. The volume of the chamber and the

surface area of the throat are denoted by W and 4,, and are equal to 2.7253x10% m® and

3.17x10° m® To obtain the analytical simulation for ideal gas condition, we set all
coefficients of Beattie-Bridgeman EOS (4., B., @, b, and ¢) equal to zero. The time-
decay of the stagnation pressure inside the chamber is shown in fig. 2.3, where the
simulation of the analytical model for ideal gas condition and the exact solution given by
equation (2.28) are compared to each other. A maximum relative error of 0.5% exists
between the exact solution and the analytical model. The relative error increases with time

and the maximum corresponds to the final simulation time.
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Fig, 2.3: Time histories of stagnation pressures inside the chamber calculated
from the analytical model and the exact solution for ideal gas condition;
hydrogen is released from a reservoir at initial pressure and temperature of
34.5 and 300 K.

In Chapter 3, a finite volume code is modified to take into account the real gas effects at

high pressures. Thermodynamic relations developed in Chapter 2 are applied in

modifications.



Chapter 3

NUMERICAL SIMULATION

3.1 Problem Definition

An existing Euler solver, [21], is modified to simulate the discharge of hydrogen from a
high-pressure chamber. The computational domain consists of a 60-degree wedge of an
axisymmetric chamber. This particular geometry allows us to generate a fine and high-
quality mesh at the throat and exit area without having a huge number of mesh nodes and
elements that slow down the numerical computatibn. Hydrogen is released adiabatically to
the atmospheric air. Viscosity is neglected and Euler equations are solved. The code is
based on an implicit scheme, which has an accuracy of the first and second orders in time
and space, respectively. Fluxes are calculated using Roe’s averaging method, [22, 23]. To
apply this code to simulate the real gas flows; transformation matrices, Jacobians, left and
right eigenvectors and the definitions of Roe’s averaged values are modified.

The computational domain is discretized into an unstructured tetrahedral mesh shown in
fig. 3.1. The mesh is generated by GAMBIT 2.0.4. [30].

In this chapter, the original solver is described at first. Then, transformation matrices,
Jacobians, eigenvectors, and Roe’s averaged values are derived both for the real and ideal
gas conditions. The treatment of the boundary conditions is discussed at the end of the

chapter.



Nitmerical Simulation 22

Fig. 3.1: The 60-degree Wedge of the cylindrical chamber with unstructured
tetrahedral mesh.

3.2 Implicit Euler Scheme

When the viscosity and heat conductivity effects are negligible, the flow can be modeled by
the Euler equations that represent the conservations of mass, momentum and energy. The
vector form of the system of Euler equations in the absence of any momentum and energy
sources can be written as:

%%{—+va“((i) =0, G.1)

.

where U is the vector of conservative variables in the contrast to () that represents the

primitive variables. The components of ¥ are the convective fluxes. All are given by:
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p] p [ e ] e
pu u ot 4+ P pvi owu
U= Py ,Q::-": v hﬁ' =| k= puv |, Bl vt P, b= oWy (3.2)
oW W Luw YW pwt + P
pE| | P Coputt || peH pwH |

E and H are total internal energy and total enthalpy, respectively, and can be written as:

Emi+é—(uz view?), H=E+L, (3.3)
P

Equation (3.1) is discretized using an implicit finite volume procedure,

Ut -uy

J

3 F™i AS . =0, (3.4)

£ 1 4
‘ 5rl érj &y
aver 8}

I}
Ty

where j goes from 1 to the number of control volumes (nodes) that exist in the domain of

computation. In our problem the mesh is fixed and the unit normal vectors 7, . and the
surface area of the boundary faces AS, . do not change with time.
i

Convective fluxes are nonlinear functions of conservative variables. The nonlinearity
makes the solution of equations given by (3.4) a cumbersome process. The implicit
convective fluxes are approximated by a linear Taylor expansion to avoid the solution of a

nonlinear system of equations. The expansion gives:

R

Font — Zon Q_Ii Frnel __frn
Fr = [ - v, (3.5)

oF

e is called the conservative flux-Jacobian and its structure depends on the EOS

describing the behavior of the gas. Substituting equation (3.5) in equation (3.4), we have:

%ﬁf + Y o Fig DS L‘sﬁ Mol SR i AS

A ey drf sef”
tver b} e aver e
] £ O

(3.6)
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Several schemes can be employed to evaluate the convective fluxes at the boundary
surfaces of the control volume, F,.. Roe’s averaging method applied herein is among the
/

most efficient schemes. The definition of Roe’s averaged values is dependent on the EOS.
We follow the method introduced by Glaister [8] to generalize Roe’s average definitions.
His work is based on a general EOS given by,

P =gp(p,i), (3.7)
where density and internal energy are considered as independent variables. In the Beattie-
Bridgeman EOS, which is already introduced as the reference EOS in this thesis, density
and temperature are considered as independent variables. All the transformation matrices,
Jacobians, eigenvectors, and Roe’s averaged values that are developed later on in this
chapter are based on the general EOS given by (3.7). The pressure derivatives F, and P,
that appear in these equations are subsequently evaluated in terms of the derivatives and

integrals of the Beattie-Bridgeman EOS to keep the compatibility with the analytical model

developed in Chapter 2.

An iterative algorithm, the GMRES method [26], is applied to solve equation (3.6) for
SU }’“. No preconditioner is used in the calculations. The iteration stops when the residual

is less than 10"6,

(3.62)

oary]- %(&?7“ y w(«fﬁ;’“)‘{ -

where & represents the number of iterations. After stopping the iterations, the values of the

conservative variables at the new time step are calculated from,

gt =01 + 30 (3.6b)
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At the new time step, the same procedure is repeated fo iterate equation (3.6) and calculate

conservative variables from (3.6b). This process continues until either a specified
simulation time limit is reached or the residual I"[U ;“'}is less than 10®, The solution

algorithm is explained with more details in [21]. The flowchart of this algorithm is shown

in fig. 3.2.

Set the initial
conditions

A4

Calculate
tune-step

A4

Compute
Jacobian

¥

Tterate
equation (3.6)

Is inequality
(3.6a) valid?

Yes '

No

No

Calculate {7 i

from (3 .6b)

I*[ﬁj‘lﬁ'l()‘“ or
the final time is
reached ?

Terminate the
prograto

Fig, 3.2: Flowchart of the solution algorithm of equations (3.6), and (3.6b).

3.3 Trapsformation Matrices

331

Before starting the development of transformation matrices, we prove the following

relation between the sound velocity and the pressure derivatives that is frequently referred

to in upcoming sections:

.
e

Speed of Sound and Pressure Derivatives
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, P
a- =
Yed

s

+P, (3.8)

”

I

We begin from the definition of sound velocity and expand the isentropic pressure

derivative according to equation (3.7),

, (P oP\(op\ (0PN ( & op opr\ ( &
@ = | = = = = = e (3.9)
dp ). \opj\op), \dij\op), \Op), \& /)\op),

To obtain the isentropic derivative of the internal energy with respect to the density, we can

write [18],

D
di = Tds — Pdv = Tds +--dp. (3.10)
pe

In an isentropic process,

diz;%dp::»[g:—;) m»%. (3.11)

Substituting (3.11) in (3.9), we have:

aQ-.-{%}i] +(%@) %ml’p+—%§~. (3.12)
p), \éi),p

3.3.2 Primitive-Conservative Transformations

The transformation matrices between the primitive and conservative variables, [M] and

[M -1 ], are defined so that,

[M]m[?g} [M‘]~[-@QJ [m]ar]=1. (3.13)

80 aty

[M] can be calculated by direct differentiation as,
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] 0 0 0 0
u g 0 0 0
[]\/ []:: v 0 p 0 0 . (3.14)
4 w 0 0 p 0 '
p(a) i o e w ,{3)
op ), 2 op ;]

Considering general EOS (3.7), we define the following pressure derivatives,

opP S ,
p=|2| =L, 3.15
' (917),, \ 0 J, G-
p [P (o0 (3.16)
=55 ) =5

The derivative of the internal energy with respect to the density that appeared in (3.14) is

rewritten as,

:
(?i] __\op), B (.17)
op Jp (

.‘?f_) 7
oi ),
According to the definition of the sound velocity in (3.12), we can write:
. 2
p(-éi) =~£~(a2 —»fgi):-i’9~+£. (3.18)
o), P P Fp

Substituting equations (3.15) and (3.18) in (3.14) and using the definition of the total

enthalpy given by (3.3), we get the final form of the transformation matrix,

1 0 0 0 O]
u p 0 0

[M] - [OU} - v (:) 2 0

0
au 01 (3.19)
o w 0 0 p 0

P
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Matrix lM '"‘] is obtained by following a similar procedure,

1 0 0 0 0
. 1 0 0 0
fe, Yol
-y 1
e 0 - 0 0
[pr1]= p P . (3.20)
- W 1
e 0 0 e 0
p 3 i} /:) 12 s
& +£~(V2 -~H) ~ub, -vF, —-wh P
L P P P P P

3.3.3  Real Gas Application
Matrices (3.19) and (3.20) are given based on the general EOS (3.7). To apply them to the
numerical simulation of hydrogen release in our problem, pressure derivatives F, and P,

should be evaluated in terms of the derivatives or integrals of the Beattie-Bridgeman EOS
(2.1). Considering density (specific volume) and temperature as the independent variables,

we write the following expansion for F,,

ORI e o T A
oi ), \op) \oi), \oTr)\¢i), \orj\aoi),

Using the notations introduced in Chapter 2,

p=I. (3.22)

i
where i, is obtained by differentiating equation (2.24) with respect to temperature at
constant density or specific volume. The analytical expression for i, is given in table 2.2.

Expanding similarly for the pressure derivative P, , we get:

3 o] 2] Ty &l g ,',)" F 1
op), \ap)\ap) \er)\ap) \op), \or)\op),
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The partial derivatives on the right hand side of equation (3.23) are recast into the
following forms so that they can be evaluated in terms of the expressions developed in

Chapter 2:

oP o OP
)42,

(3.25)

After substituting equations (3.25) and (3.24) into equation (3.23), the pressure derivative is

written as,
P, =0’ (_[gfzz,., £ (3.26)
i

where i, is given in table 2.2 and represents the derivative of equation (2.24) with respect
to specific volume while temperature is kept constant.

P, and P, should be replaced with equations (3.22) and (3.26) in the matrices and

vectors obtained in this chapter based on the general EOS (3.7).

3.3.4 Ideal Gas Application

To verify our derivations in this chapter, we evaluate matrices and vectors for ideal gas
conditions and compare the results to the corresponding relations in [22].

The ideal gas EOS can be written as:
P = p(y ~Di, (327
from which,

P, = p(y -1, (3.28)
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P, =(y—-Di.

30

(3.29)

The conservative-primitive transformation matrices for ideal gas condition are calculated

by substituting (3.28) and (3.29) for pressure derivatives in matrices (3.19) and (3.20),

r~ -y

1 0 0 0 0
u p 0 0 0
[M]z v 0 p 0 0
w 0 0 o |
Yoo oow -1
L2 y-1]
[ 0 0 0
. 1 0 0
P 1
-V
=Y 0 ~ 0
)= P |
v 0 0 1
’f p
Lovt —uy=1) =vy=D —wir=1) -1

Equations (3.30) and (3.31) are exactly the transformation matrices given in [22].

3.4 Flux Jacobian Matrices

3.4.1 Conservative Jacobian Matrices

0

(3.30)

(3.31)

According to the definition, conservative Jacobian matrices that appear in equation (3.5)

are the derivatives of the conservative fluxes with respect to the conservative variables. The

Jacobian matrices are obtained by direct differentiation of the flux vectors given by

equations (3.2) with respect to the conservative variables {7 . New independent variables

o, m, 0, and ¢ are defined for differentiations,
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m 7] {
- mop mo ml
P p p /
m mo o’ 0
; : - B B R IS - (3.32)
Us|lo | F=k=| P | &= P , h=| P ,
ml ol I?
isd s et P
. P o p
- (g P) [5 19) (& P)
my A [ R Il —
PP CAY-Y) B AV
From equation (3.3),
i=E (ot ) (3.33)
p 2p

Equation (3.7) can be written as,

P =g(p,i)=g(p,i(p,m,0,1,5)). (3.34)

The pressure derivatives are calculated from (3.33) and (3.34) by the use of the chain rule

of differentiations,

\ ; : |
GO
om \0p)\om oi ) ,\.Om Om p°

( [ i ;
._a_!.).z QE @_ + ..(?L‘). ﬁ):g(ﬂ)=~%R’ (3-36)
do \op)\do) \ 0i ),\0o do P

( « -
Z_{E| (%) ZE @):R[Q‘—)m%& (337
ol \op)\al ) \oi)\d ol P

. 202 g2

Q:Ii: or\ (o + Q]i ot =P + N__f{.,..’f’_._i‘.’.ri P, (3.38)
op \op)\op oi J \ Op P P

A A y . » " )
o_(a) (%), (@) () p(2)-2 639
oz \8p)\o&) \ 0i ) \og oe) p

Applying equations (3.35) to (3.39), we differentiate the components of the conservative

flux F to obtain the Jacobian matrices in all directions,
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£ P
- m{w«; e
pp [f’ + ‘6) _m p Hp
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which can be reduced to,
i 0 1 » 0 0
az . u2 ‘“'“'i'”(H‘ ’"_VZ) 2 _“1__1_ X{i W,PI
P P s 4
[A] = - Uy v U 0
- uw W 0 u
P, ip 4
ula? - 1)~ -v?) m-2h - wh —_wwh
L P P p P

The Jacobian matrix in the y-direction is:

|98
[B]“[aﬁ}

0 0 1
.o 2 m
) p? P P
o?
et P,
P _m 20'_&})
w[ﬂﬁf«f 1 :3;) A
: 3 3
P P
ol I
f g P
- fF .Nn.,“i‘\ ,4,. ..M,KZ,,,.
* e Ny (ff 4_!':).. o P
L, P‘m}«()zll2 5 gl \p p) P
[N » + f m,m,;,;wwm o ;)éﬂ‘ ﬂ

32

(3.40)

(3.41)

(3.42)



Numerical Simntation

or,
i 0 Y 1 0 0
- uv VP u OP ?’
P A ub, vE, wi Ly
PREERTCIE I B 4 b el eend 3.43
LBl = p( ) P p P PP G4
VW 0 W,, v 0
S : ve P 4 ]
R B TR L A AL .
| ol P P P P ]

The Jacobian matrix in the z-direction is given by:

- | O
[Cl= {m} = (3.44)
0 0 0 1 0
o L 0 m 0
P P P
oL 0 L o 0
P p p2
12
R q 1 P
'
f 2 2,2 _._“":p‘ ”‘!’)"'zf'ﬁ "“"””:F; - A
+P(»’—n Fo® +] "WEL“J Vo) P P
' P I
g P
-] 2+';"2“ ) »
P
: i (ﬁﬁ}-iﬂz (‘ m]
m’>+o’+1* & p ' p pr) P PP
==\ P, +F, T
P P P |
that is reduced to,
i 0 0 0 1 0 ]
- YW W 0 u 0
- VW 0 W v 0
_ v (3.45)
(€1= gy B(gops) _H W g, ¥h B
p P P P P
wlat - )Yy b g W, 0
L 0 P P Iy 2 ]

The Jacobian matrix in an arbitrary direction of ﬁ:(nx,nv,nz) is calculated from

equations (3.41), (3.43) and (3.45),
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(3.46)

where V-7 is the inner product of the velocity vector ¥ and the unit normal vector 7

given by,

.

V-a=un, +vn,+wn,

(3.47)

To apply Jacobian matrices (3.41), (3.43), (3.45) or (3.46) to our problem in which the

Beattie-Bridgeman EOS describes the behavior of the real gas, we have to replace pressure

derivatives with equations (3.22) and (3.26). If equations (3.28) and (3.29) are substituted

for the pressure derivatives, the Jacobians will be obtained for ideal gas condition, where

the Jacobians are reduced to:

0 1
—u* +f-'2-"«1V2 G-y
[A]s - Uy v
- UW W
i~ (17 ;ifﬂ’;l(rfwzuz)

0 0
~(r-Hv  —(y-Dw
u 0
0 u

(- Dyuy  ~(y ~Duw

0
(r-1
0
0

i

(3.48)
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i 0 0 1 0 0
o 1Y , ¥ u 0 0 3.49
[Bl=| ~V ISP -G @7 ~(r=w (-1, (3.49)
YW 0 W v 0
N () I e R W
) 0 0 0 1 0 ]
— UW w 0 u 0 ’
[C]= -~y 0 w 4] (3-50)
Bl I e I G-rw -n
el =~ 2]~ -Duw = (r—tyw yx-»”j;‘ 2wty w

Matrices (3.48) to (3.50) are exactly the conservative Jacobian matrices introduced in [22].
3.4.2  Primitive Jacobian Matrices

The primitive Jacobian matrices given by [4], [B] and [C] are defined as the derivatives
of the primitive fluxes with respect to the primitive variables. They can be directly

determined from the conservation equations written in terms of the primitive variables,

00 ~.00 5,00  ~ 00

“= 4 [A]-= +[B]==+[C]= =0. 3.51
at[]ax[]ay[laz (3.51)

The conservation equations in the absence of any internal sources are written as,

.47 -9p)e v 7 =0, (3.522)
4 7.v 0Ly (3.52b)
ot p

OE (5 =\ Ll [ ‘
g\ VE+-V VP )=0. 3.52¢
o+ ) (3520

The system of equations (3.52) cannot be rearranged into the format given by (3.51) unless
the last equation (3.52¢) is transformed to an equation for pressure. Following the

procedure described in [22] and Appendix B, we rewrite the energy equation as,
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T 7-9)p+ p (¥

s

V)=0.
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(3.52d)

Comparing the system of equations (3.52) with the equivalent vector form (3.51), we

obtain the primitive Jacobians in the x, y and z-directions as:

u p
0 u
[4]=10 O
0 0
0 pa
v 0
0 v
[Bl=]0 O
0 0
00
‘w0
0 w
[C]=10 0
0 0
0 0

¢ 0
0 0
u 0
0 u
0 0
p 0
0 0
v 0
0 v
pa’ 0
0 p
0 0
w 0
0 w
0 pa

0

p
0

(3.53)

(3.54)

(3.55)

The primitive Jacobian matrix in the direction of the arbitrary unit vector 7 (nx,n y,nz) is

calculated by combining equations (3.53) to (3.53),

0
0

<

"y 2 2
pa‘n. pan, pan,

on,
0

0
V.-i

0
n./p

nyﬁ,/p .

n/p

ke

Vi

(3.56)

The structures of the primitive Jacobians are simpler than the conservative ones. They

are directly determined from the conservation equations and no assumption has been made
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regarding the EOS. Therefore the same primitive Jacobian matrices are applied to the ideal
and the real gas conditions. In the next section, we use this property to calculate the
eigenvectors of the conservative Jacobians for real gas condition from the eigenvectors of

the primitive Jacobians (3.56).

3.5 Eigenvalues and Eigenvectors

3.5.1 FEigenvalues

In order to apply an upwind method, positive and negative fluxes should be determined.
This requires the knowledge of the eigenvalues and eigenvectors of the Jacobian matrices.
Having a simpler structure than that of the matrix (3.46), the primitive Jacobian matrix
(3.56) is applied to eigenvalue analysis. Then the relation between the primitive and the
conservative Jacobian matrices is obtained, which in tumn results in a relation between the
primitive and conservative eigenvectors.

Equation (3.1) can be rewritten as:

aU

ou . .oU
> [A]—-— [B]~5yw+[C]~a~—Z~m0. (3.57)

From the definition of the transformation matrices, we have:

o0 . .. 80 o0 ... 80
M= +JATMV= + [ BIM = +[CM]—==0. 3.58
[lﬁt[J[]ax[][]ﬁy[][]az (3.58)

Multiplying both sides of equation (3.58) by [M '],

a0 00

%QﬂM“‘)rAnMJ LM BIMIS

+W nc]{M]%g =0, (3.59)

Comparing equation (3.59) with equation (3.51), we can easily figure out the following

relations between the primitive and conservative Jacobian matrices:
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[4]=[M [ A)[M],
[Bl=[M"[Bl[M],
[Cl=[M"[CY[M],
[K]=[M"K][M].

(3.60)

Equations (3.60) imply that the conservative and primitive Jacobians [K'] and [K] are
connected together by a similarity transformation. It has been proved in linear algebra that
the similarity-transformed matrices have the same eigenvalues [25]. The eigenvalues of the
primitive Jacobian matrix [ K] are given in [22] as:

A=Ay =4y =un, +vn, +wn,
Ay =un, +vn, +wn, +d, 3.61)

As =un, +vn, +wn, —a,
which can be equivalently called as the eigenvalues of the conservative Jacobian [K] or the
wave characteristics.

3.5.2 Eigenvectors

The left eigenvectors of matrix [K] are denoted by ;j., where j goes from 1 to 5. They
are the solutions to the following system of equations,

TTR= 4,17, (3.62)
The right eigenvectors of the Jacobian matrix [K] are similarly defined and represented by
7 s

(K, = 4,7, (3.63)

Neither the left nor the right eigenvectors of the primitive Jacobian matrix are dependent on

the EOS. They are given in [22] by,
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i 1 h 2 O " ™ i 0 ] i 0 ]
Zm 0 N Fl; E R ?; e "-'Ik‘lx » z; i n." N 2; | n)' y (3.64)
0 3 ", - h;
-1 ™ 0 1 1
ey 0 0 N -
La ] - = - - ,,pam | Pa
) o el 2]
o 0 0 2a 2a
1 ~n, n, ny s
- 0 - - n,n, - _ I’lj + 1 R 7';2 . }‘12
F=l0LF= n, |7 = n, A R R e (3.65)
0 n} +n. nn, }22 ’12
0] n, n, 2 )
0] 0] Ll s
| 2 L 2 ]

Using equations (3.60), we can replace conservative Jacobians for primitive Jacobians in

equations (3.62) and (3.63),

By a7
zJMJmm@~Q§a (3.67)
[(MT[KIMTF, = A7,

or,

ITIM™[K)= AL M),

i . (3.68)
[K)IMTF, = 4,[MTF,.

Equation (3.68) implies that the following relations exist between the conservative and
primitive eigenvectors:

o . .

I =1"[M"], (3.69)

Fo=[MV. (3.70)
K J
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The left and right conservative eigenvectors are calculated through the matrix-vector
multiplications of the primitive eigenvectors and the transformation matrices as described
by (3.69) and (3.70).

The left eigenvector matrix [L] is constructed so that its rows are the left eigenvectors

of the conservative Jacobian given by (3.69). It is calculated as:

~P (o, ub, vP, wh, -P
Lm0 B o
pa pa pa pa m
wm, wn. My 0 Ry 0
PP p p
Tum, L vny By Ry 0 0
PP p p
-un, VA, wn, (3.71)
== "0 n_wn m_wn m, wn B
2 2 2 2
+_§l_+1:,(V2__H) p pla p pla p pa pa
p pla
uny | Vi | W
PP P -n, ub -n, vB -n wh F
2 2 pd 2
+g_+nlz (Vzm_H‘) p pa p pa p pa pa
o pla J

The columns of the right eigenvector matrix consist of the right eigenvectors of the

conservative Jacobian,

[R]= (3.72)
1 0 0 £ L
2a 2a
Cm om oz 2
prn ( 2 pn? . p W
v el I A e T B le'S
n, n, 2a 2 20 2
L, ) Py, peLp e pn
", A, 20 2 2a 2
- pun, ~ Ll pun,, - M PH  pun,  pH _pun,
[T B ’ n, 2 2 20 2
P, pw(ni + n:) pwn n, o, pwn, Py, pwn,
AN, SF A4 o e + —
n, n, 2 2 2 2
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In linear algebra [25], several properties have been proved for the left and the right
eigenvector matrices; e.g., the matrix of the right eigenvectors [R] is the inverse of the
matrix of the left eigenvectors [L] and vice versa; and the conservative Jacobian [K] can
be diagonalized by the use of [R] and [L] so that:
[]x][r]=[A]. (3.73)
where [A] is the diagonal matrix of eigenvalues (3.61).
The pressure derivatives £, and P, in matrices (3.71) and (3.72) should be replaced
with equations (3.22) and (3.26) to find the right and left eigenvector matrices that are
compatible with the Beattie-Bridgeman EOS, whereas in the ideal gas simulations,

equations (3.28) and (3.29) give the required pressure derivatives. The left and the right

eigenvector matrices for ideal gas condition are calculated as,

[L]= (3.74)
“(7’:1) v -H) ?4(?’2“1) f_(?’:'l) W(J’;]) { “‘27)
a” a a” a a
un,  wn, -1, 0 n, 0
p P p p
_.uny vnt _.’_1_;’_’_ .-nx 0 0
p P p P
—un, VA, wn,
PP P n,_wy-y m vy=D n_wy-) @-Dp
A )] (" - 1) P pa P pa P pa pa
P pa
un 2y W,
pop P ~n, uy-1) B, vy-1) -n wy-1) (-1
42, »(g;;})u(;,g N H) P pa o o P pa pa
L P pa |
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[R]= (B.75)
1 0 0 £ £
2a 2a
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3.6 Roe’s Approximate Riemann Solver

As it is explained in Section 3.2, Roe’s approximate Riemann solver is one of the most
efficient methods to evaluate fluxes at the boundaries. In this section, we introduce the
method for ideal gas condition. Then we explain the modifications introduced in [8] to

apply the method to the real gas condition.

3.6.1 Definition of the problem

We consider two adjacent control volumes denoted by ] and 77,

in fig 3.3. The unit
vector normal to the boundary surface between two control-volumes is given by
h‘:(nx,ny,n:). The conservative flux vector that goes from control volume j to control
volume j+1 is given by:

F=F, i (3.76)
The Roe’s scheme can be stated as the following problem: Find the Jacobian matrix

[K]=[R@ y ,(7\,_,, )] such that:
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IR (f}'j U ;)] is diagonalizable and has independent eigenvectors;

. For any arbitrary (7‘, and U 1 the following relation should be exactly satisfied:
P - B =R@,0,00,,~0,} (3.77)
XU, =0,,=U then [K(T,,U .))]=[K].

Equation (3.77) can be considered as a first order approximation if the conservative
Jacobian [K] is substituted for the matrix [1% ], and [K] is evaluated at node (j) or (+1).
But in Roe’s scheme, we seek the averaged values that when the Jacobian [K7] is evaluated
at, equation (3.77) becomes an exact equality. These averaged values are distinguished by a

hat sign (A). Once the averaged values are obtained, the conservative fluxes can be

determined from the following relation [22]:

T T TP .
R =2 (F, +F,ﬂ)~5[R][lAt.1[L](U,.” -0,) (3.78)

Iy j

Fig. 3.3: Schematic diagram of two adjacent conirol volumes and the flux
vector crossing between them.
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3.6.2 Ideal Gas Application

The problem defined in the previous subsection has a unique solution when the
thermodynamic properties of the flow are described by the ideal gas EOS. The solution is

the set of the averaged variables given by [22]:

ﬁ = pp[«%;a
glot ‘/‘/E—’H gy ;;\IF{;*' \/ﬁj{g_ﬁ{z{f“
o +p P, P
J—Tvl +\/p)ﬂ _]H l}
\F +\/ Pin
W = '\/—p‘:wj “‘"'\/{?{jl J+l &2 m(}"’*l) ﬁw’_fj‘}
\ﬁ’; + \/ P 2

Roe’s fluxes are calculated from equation (3.78), where the left and the right

i

(3.79)

I

]
a

nd

i

i +9 W,

eigenvector matrices, (3.74) and (3.75), as well as the diagonal eigenvalue matrix are

evaluated at average values given in (3.79).

3.6.3 Real Gas Application

For real gas condition, the problem stated in Section 3.6.1 may have more than one solution
or no solution at all. Several methods have been introduced in the literature [5-13]. The
most classical approaches lead to the definition of the averaged pressure derivatives that

satisty the following equations,

AP = BAi+ P Ap. (3.80)
These averaged derivatives are not unique, and different definitions can be found at
different works [5-12]. In this work we apply the definitions introduced by Glaister [8] that

are based on the EOS (3.7):
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The following averaged variables are defined similarly for real gas condition:
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(3.81)

(3.82)

(3.83)

(3.83)

where the averaged pressure is calculated in terms of the defined averaged enthalpy and

internal energy. The averaged sound velocity is obtained from equation (3.8).
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Fig. 3.4: The convex surface of the pressure as a function of the density and
the internal energy calculated firom Beattie-Bridgeman EOS.

The average values defined by equations (3.81) to (3.83) should be substituted in matrix
[K] given by equation (3.46) to calculate matrix [K]. The resulting matrix is a solution to

the problem stated in Section 3.6.1 if the real gas EOS given by equation (3.7) is convex,

[27]. The convexity of the Beattie-Bridgeman EOS is shown in fig. 3.4.

3.7 Boundary Conditions

Two types of boundary conditions are implemented to simulate the hydrogen release from
the 60-degree wedge shown in fig. 3.1: a free-slip boundary condition is applied to the
walls and the cutting surfaces of the 60-degree wedge, and the exit surface is described by a

supersonic outlet boundary condition.
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3.7.1 Free-Slip Boundary Condition

The component of the velocity, which is normal to the boundary face (V-i1), is equal to
zero when the boundary is described by the free-slip or non-penetrating condition. Both the
solid walls and the cutting surfaces are treated using this type of boundary condition. When

the normal velocity vanishes, the conservative flux vector crossing the boundary becomes,

o
. Pn,
F=F, -fi=|Pn, |, (3.84)
Pn,
N O -

and the corresponding Jacobian is reduced to:

prv -y

] 0 0 0 0 0

P, 2 P, P

(,ZPWL(H._VZ) n, LW . W}_’{L N W . —-n,
e | P P p P
‘ P P, P, P,

a’ ~—{)-'—(II-V2) n, «Fw»—’—ny mX&nv wmny ~Ln, |, (3:85)
Cp ] P p Y p T p
2 P P, P

azmﬁ(HwV‘) n, ——£‘l~lj’-;'zz Sl Xy, o n,

L P i P P P P
] 0 0 0 0 0 |

The schematic diagram of a control volume located at the boundary surface is shown in
fig. 3.5. No control volume or mesh node exists outside the boundary. Fluxes exiting the
boundary surfaces cannot be calculated using the Roe’s averaging method. The
conservative fluxes and Jacobians at the free-slip boundary surfaces are evaluated at the

corresponding boundary nodes (j).



Namerical Simnlation 48

Boundary surface

Fig. 3.5: Schematic diagram of the control volume located at the boundary
surface.

3.7.2  Supersonic-Outlet Boundary Condition

According to the definition, all the wave characteristics given by equation (3.61) exit a
supersonic-outlet boundary. This implies that no physical boundary condition is required
for the definition of a supersonic outlet. One of the methods proposed in [22, 24] for the
numerical treatment of this kind of boundaries is the extrapolation of conservative or
primitive variables at the boundary based on the interior nodes. Having applied this method
to simulate the hydrogen release in our problem, we were restricted to keep the CFL
numbers (aAt/Al) less than 80 in order to avoid numerical instabilities. Using an Intel
Pentium IV processor at 2.6GHz with 750MB memory, it took approximately five days to
simulate 5 seconds of the hydrogen release at a CFL number of 80 for the mesh with 2452
mesh nodes. Another method was required to treat the supersonic outlet boundary
condition.

As an alternative, the same method described in Section 3.7.1 is applied to the
supersonic-outlet boundary; whereas, the corresponding fluxes and Jacobians are calculated

from equations (3.2) and (3.46). Disregarding the Roe’s averaging method, we evaluate
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each flux-vector and Jacobian at the corresponding boundary node. The temporal

increments of conservative variables at the outlet-boundary nodes, SU™ | are determined
together with the interior nodes from equation (3.6). No CFL number instability restriction
is observed when this method is applied. The simulations are performed at CFL values up
to 4000. The total CPU time to simulate 5 seconds of hydrogen release is reduced to 40
hours when CFL number is equal to 1000.

Fig 3.6 shows the velocity vector plot for real gas condition four seconds after the start

of the release.

Fig. 3.6: Velocity vector plot at t=4 sec.; hydrogen is releasing from a
chamber, which was initially ai a pressure and temperature of 34.5 MPa and
300 K; real gas effects are considered.

The following modifications have been done to the original finite volume code: the

conservative Jacobians and eigenvector matrices are modified according to the Beattie-
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Bridgman EOS. A generalized Roe’s scheme is used to calculate the convective fluxes.
Two types of boundary conditions are defined and applied to the code. These boundary
conditions are exclusively defined and corrected to simulate the real gas release from a
high-pressure chamber. Other boundary conditions may be required when the code is
applied to simulate the real gas flow in different geometries. In the next chapter the
simulation results for the hydrogen release are compared to the predictions obtained from

the analytical model developed in Chapter 2.



Chapter 4

RESULTS

The results of the numerical simulations and predictions of the analytical model are

compared to each other for hydrogen release from a high-pressure reservoir.

4.1 Problem Specifications

4.1.1 Geometrical Specifications

The finite-volume code is run to simulate the hydrogen release from a high-pressure
cylinder. The flow accelerates through a converging part, a small diverging part and finally
exits to the atmosphere. The diameter of the chamber is equal to 3.0x 10" m. The entrance
to the converging part has the same diameter as the chamber. The throat and the exit
surface have areas of 3.17x10” m? and 3.73x10™ m? respectively. The axial length of the
diverging part is 3.45x1 0 m. The unstructured tetrahedral mesh is shown in fig. 3.1. There
are 2452 mesh points that construct 9712 tetrahedral elements. The total volume of the
elements is equal to 2.7253%10% m®. The same throat surface area and total volume are
applied to the analytical model to calculate the time histories of the stagnation and sonic
properties of the gas inside the chamber and at the throat. The results obtained from the
numerical simulation and the analytical model are compared together for ideal and real gas

conditions.
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4.1.2  Initial Conditions

The pressure and temperature of hydrogen are assumed to be initially uniform throughout
the chamber. The initial pressure and temperature are equal to 34.5 MPa and 300° K,
respectively. For the analytical model, the initial velocity of the flow is zero inside the
chamber except at the throat where the flow is initialized at the sonic velocity that
corresponds to the initial stagnation pressure and temperature of 34.5 MPa and 300° K. In
the numerical simulation, hydrogen has a zero initial velocity throughout the chamber
except for the exit surface that is initialized at an arbitrary supersonic velocity such as 1600
m/s. This arbitrary exit velocity is adjusted automatically after two or three time-iterations.
During the numerical and analytical simulations the pressure decreases with time
everywhere inside the chamber as well as at the exit surface. The simulation stops when the

flow pressure at the exit surface reaches the atmospheric back pressure.

4.1.3 Time Step Calculation Strategy

The analytical model developed in Chapter 2 involves two integration steps. The first one
includes the time integration of the conservation equations (2.6) and (2.7), and the second
one is the integration of the isentropic expansion equation (2.26) with respect to the
specific volume for calculation of the sonic temperature of hydrogen at the throat. Since the
predictions of the analytical model are used as a reference to validate the numerical
simulation, integration errors should be kept as small as possible. The first order Euler
method is applied to integrate foregoing equations. Using this low order method, we need
to have very small integration steps, such as A=10° sec. and Av=0.05%u,, to obtain the

required accuracy.
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The local time step in the numerical simulation is determined for each mesh tetrahedron

j from a predefined CFL number,

<Al @.1)

where a; and !V ,‘ are the speed of sound and the flow velocity at tetrahedron j,

respectively. Al represents the length scale corresponding to tetrahedron j. At each time

iteration, overall time step is the minimum of the local time steps given by equation (4.1).
Hydrogen has a small molecular weight (M=2.01588 gr.) and accelerates to velocities
much higher than that of the air during an isentropic expansion; e.g., the ideal value of the
speed of sound in hydrogen at a temperature of 300° K is about 1320 m/sec the
corresponding value for air is equal to 340 m/sec. The high sound velocities result in small
time-steps as calculated by equation (4.1). As a result, the unsteady simulation of the
hydrogen release takes a huge amount of the CPU time as explained in Section 3.7.2; e.g.,
it takes around 40 hours to simulate 5 seconds of the hydrogen release at a CFL number of
1000.

The simulation starts with an initial CFL number of one and it is kept constant during
the first 200 time-iterations. Then it is incremented with a constant rate of 10 units per
time-iteration to a final given value. The results presented in the next section have been

obtained using a final CFL number of 1000.

4.2 Simulation Results

The analytical and numerical simulation results are discussed in this section. The initial five

seconds of the release are compared for ideal and real gas conditions. In this laps of time,
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the total pressure drops from 34.5 MPa to less than 0.4 MPa, and 98.5% of the initial mass
inside the chamber is released meanwhile the throat and the exit surface always remain at
the sonic and supersonic conditions, respectively, for a back pressure of 0.1 MPa.

The velocity, pressure, temperature and density of the gas at the throat are depicted in
figs (4.1) to (4.4). The numerical and analytical results for ideal and real gas conditions are
compared together. For both the real and the ideal gas simulations, a maximum relative
error of 2% exists between the analytical and the numerical simulations. The maximum
relative error corresponds to the end of the release.

The initial values of the sound velocity predicted for real gas condition are higher than
the corresponding values for ideal gas condition, fig. (4.1). Internal energy of a real gas
includes not only the ideal part, which is related to the translational kinetic energies of
molecules, but also contributions of vibrational and rotational energies. As the gas
isentropically expands from stagnation state inside the chamber to the sonic state at the
orifice, pressure decreases and hydrogen approaches ideal gas behavior. Some parts of
energies that were already stored in the vibrational and rotational modes of internal energy
are transformed into the kinetic energy of the flow. Therefore, at the start of the release,
when the ideal and real gases expand from more and less the same stagnation states, the
throat velocity for real gas condition is higher than the throat velocity for ideal gas
condition. The sonic pressure decreases to lower values at the throat for real gas condition,

fig. (4.2), because the real gas flow at the throat accelerates to higher velocities.
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Fig. 4.1: Analytical and numerical simulations of the flow velocity ot the throat
as a_function of time for real and ideal gas conditions; hydrogen is released
from a reservoir at initial pressure and temperature of 34.5 MPa and 300 K.
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Fig. 4.2: Analytical and numerical simulations of the flow pressure at the
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released from a reservoir at initial pressure and temperature of 34.5 MPa and
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Fig. 4.3: Analytical and numerical simulations of the flow temperature at the
throat as a function of time for real and ideal gas conditions; hydrogen is
released from a reservoir at initial pressure and temperature of 34.5 MPa and
300 K.
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Fig. 4.4: Analytical and numerical simulations of the flow density ak the throat
as a function of time for real and ideal gas conditions; hydrogen is released
firom a reservoir at initial pressure and temperature of 34.5 MPa and 300 K.
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A lower critical pressure at the throat for real gas condition accompanies a lower critical
temperature and density, as compared to the ideal gas flow behavior at the throat, fig. (4.3)
and (4.4).

The stagnation pressure, temperature and density of the gas inside the chamber are
shown in figs. (4.5) to (4.7). Similar to the sonic properties, comparisons have been done
between analytical and numerical predictions for real and ideal gas conditions. A maximum
error of 1% exists between the analytical and the numerical simulations for both the real
and the ideal gas models. The relative error has its maximum value at the end of the release
simulation.

For real gas model, pressure, temperature and density decay more rapidly than those for
ideal gas model. The initial higher flow velocity at the throat, results in higher amounts of
mass and energy out-fluxes for real gas model, which in turn lead to rapid decays of

stagnation pressure, temperature and density.
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Fig. 4.5: Analytical and numerical simulations of stagnation pressure inside
the chamber as a function of time for real and ideal gas conditions; hydrogen
is released from a reservoir al initial pressure and temperature of 34.5 MPa
and 300 K.
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Fig. 4.6: Analytical and numerical simulations of stagnation temperature
inside the chamber as a function of time for real and ideal gas conditions;
hydrogen is released from a reservoir at initial pressure and temperature of
34.5 MPa and 300 K.
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Fig. 4.7: Analytical and numerical simulations of stagnation density inside the
chamber as a function of time for real and ideal gas conditions; hydrogen is
released from a reservoir ai initial pressure and temperature of 34.5 MPa and

300 K.
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A colder and less pressurized stagnant gas isentropically expands to lower sonic
velocities at the throat. As shown in fig. (4.1), the flow velocity at the throat for real gas
model is higher than the corresponding values for ideal gas model at the initial moments of
the release when both ideal and real gases are expanding from approximately the same
stagnation pressures and temperatures, figs. (4.5) to (4.7). After these initial moments,
when the real gas is expanding from significantly lower stagnation pressures and
temperatures, the throat velocity predicted by the real gas model decreases and becomes
less than the values predicted by the ideal gas model. The foregoing trend of the sonic
velocity affects the relative behavior of time histories of stagnation pressure, temperature
and density for real and ideal gas models, figs. (4.5) to (4.7). The curves of the real and
ideal gas models are diverging from each other at the beginning of the release. The
divergence rate decreases and curves start converging when the sonic velocity for real gas
model becomes less than the corresponding velocity for ideal gas model.
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Fig. 4.8: Analytical and numerical simulations of the mass flow rate exiting the
chamber for real and ideal gas modely as « function of time; hydrogen Is
released from a reservoir al initial pressure and temperature of 34.5 MPa and
300 K.
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The time history of the mass flow rate exiting the chamber is shown in fig. (4.8), where
the simulations for ideal and real conditions are performed based on the same initial total
pressures and temperatures. The density predicted by ideal gas law is larger than the
density real gas law predicts, fig. 1.1. Therefore, for ideal gas condition, the chamber
contains more mass of hydrogen than that for real gas condition. Although the sonic
velocity for real gas condition is higher than the corresponding value for ideal gas
condition, the high-density hydrogen flow predicted by the ideal gas model results m a
greater mass flow rate through out the release process. The time-integral of the mass flow
rate (the area between the curve of the mass flow rate and the time axis) represents the total
mass released from the chamber. The bigger area belongs to the ideal gas simulation.

Fig. 4.9 shows the mass flow rate exiting the chamber for ideal and the real gas
conditions obtained from the numerical simulations when the total mass inside the chamber
and the initial temperature are kept constant. The mass flow rates for real and ideal
conditions follow the same pattern as that of the sonic velocity. At the beginning of the

release the prediction of the real gas model is 20% greater than the ideal values.
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Fig. 4.9: Analytical and numerical simulations of the mass flow rate exiting the
chamber for real and ideal gas models as a function of time; hydrogen is

released from a reservoir at initial pressure and temperature of 34.5 MPa and
300 K.

Real gas effects are investigated in the adiabatic release of hydrogen from a high-
pressure chamber. The analytical and numerical simulations are in a very good agreement
with each other. The maximum relative error is less than 2%. The real gas behavior at high
pressures results in 14% and 20% increases, respectively in the throat sonic velocity and
the mass flow rate at initial moments of the release. Stagnation and sonic pressures and
temperatures for real gas condition are less than the corresponding ideal values throughout
the release. The reduced stagnation pressure and temperature slow down the initially higher
sonic velocity and mass flow rate to lower values, as compared to the predictions of the

ideal gas model.
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CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Hydrogen release from a high-pressure chamber is simulated using both an analytical and a

numerical method. The following remarks are made:
An analytical model is developed based on the Beattie-Bridgeman EOS to simulate
the hydrogen release from a high-pressure plenum;
An existing Euler solver is modified, and Jacobians, eigenvectors, and
transformation matrices are calculated based on the Beattie-Bridgeman EOS;
Free-slip and supetsonic-outlet boundary conditions are modified and applied to the
simulation of real gas flows;
The analytical and numerical results are in a very good agreement with each other.
The maximum relative error is less than 2% for the model problem;
The real gas behavior at high pressures results in 14% and 20% increases in the
sonic velocity at the throat and the mass flow rate exiting the chamber, respectively,
at the initial moment of the release;
The stagnation and sonic pressure, temperature and density predicted by the real gas
model are less than the corresponding ideal values throughout the release;
The reduced stagnation pressure, temperature and density, slow down the initially
higher sonic velocity and mass flow rate to lower values, as compared to the ideal

gas predictions for the rest of the release;
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The simulation of hydrogen release from a high pressure chamber requires a
substantially higher amount of CPU time compared to a similar simulation
performed for the air release;

No CFL instability restriction has been observed when the Jacobians and fluxes at
the supersonic outlet boundary were evaluated based on the corresponding node
values without any extrapolation;

For ideal gas behavior, the in house finite volume code is approximately three times
faster than the commercial FLUENT code to simulate hydrogen release from a
high-pressure chamber;

The in house finite volume code is a general simulation tool and can be applied to

simulate the real gas flows for different geometries.

5.2 Recommendations

Following Recommendation may be useful for future work:

The simulation can be performed based on a more specific EOS for hydrogen.
Beattie-Bridgeman equation is a general EOS, which can be applied to different
gasses by changing the coefficients of the equation. In order to obtain a more
accurate simulation, a more specific EOS should be applied to model the real gas
behaviors for hydrogen;

Developing a parallel version of the in house finite-volume code can speed up the
simulation process. By the use of a parallel code, we can avoid some limitations,

which currently exist in terms of the memory and simulation time;
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An appropriate preconditioner can accelerate the simulation process by reducing the
number of iterations required to solve equation (3.6);

In order to simulate the flow of a mixture of real gases that are in thermochemical
equilibrium, an appropriate EOS should be applied. Jacobians, eigenvectors and
Roe’s method should be modified according to this EOS, which takes into account
the chemical reactions between different species;

The existing in house finite-volume code can be applied to simulate the real gas
flow for different geometries. The code currently has subroutines to treat free-slip,
supersonic-outlet, and free-stream boundary conditions. New types of boundary
condition may be needed to simulate the flow for different geometries;

The in house finite volume code can be applied to design the valves required for
hydrogen supply;

The code can be modified to take into account the viscosity effects, which become

important for the flow of a real gas in long ducts.
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Appendix. A

SPECIFIC HEATS OF HYDROGEN AT CONSTANT PRESSURE, [19]

Appendix A

TK  CpJ(kg °K)" TK  CpJikg °K)’
0 0 2900 1882.8

100 13966.1 3000 183974
200 13615.4 3100 18508.5
250 14060.4 3200 18616.2

298.15 143044 3300 187214
300 143109 3400 18823.5
350 14426 3500 18924.2
400 14475.6 3600 19023
450 14499.4 3700 191202
500 14514.8 3800 19216.4
600 14548 3900 19310.7
700 14604.5 4000 19403.9
800 14695.3 4100 19495.7
900 14822.8 4200 19586.5
1000 149835 4300 196763
1100 15170 4400 19764.1
1200  15373.9 4500 19850.9
1300  15587.7 4600 19935.7
1400 15805 4700 20018.6
1500 160218 4800 20099.4
1600  16233.6 4900 20177.8
1700 16439 5000 20253.7
1800 166364 5100 20326.6
1900 168249 5200 20396.6
2000 17005 5300 20463.5
2100 171756 5400 20526.5
2200 173383 5500 20585.6
2300 174926 5600 20640.6
2400 176394 5700 20691.7
2500 177798 5800 20738.3
2600 179133 5900 20780
2700 180417 6000 20817.2
2800 18164.8
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Appendix B

ENERGY EQUATION IN TERMS OF PRESSURE

The conservation equations are recast to a final form in terms of the primitive variables.

This form is appropriate to calculate the primitive Jacobian matrices, Section 3.4.2.

We start by rewriting the conservation equations given in equations (3.52).

P17 -Tp)e o7 =0, ®B.1)
oV (5 =\ VP

Iy eso, ®2)
= +(V~§‘7)E+%€7-(171>)= 0. (B3)

The objective is to transform equation (B.3) to an equation for pressure. First, we obtain a
relation for the isentropic pressure derivative of internal energy. The following relations

exist between the change in enthalpy and internal energy of a pure substance, [18]:

Tds :dhmﬁfizdwpd(i} (B.4)
p p

In an isentropic process, (B.4) can be written as:

dh _ap di + pd(}m) = (). (B.5)
I v

Therefore, we have,
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Appendix B
oh 1 .
) . B.6
(ﬁl’l P 56)
and
. 2] »
(%) -2) -1 5(),
or), \oP), p p°\oP),

Substituting equation (B.6) and the definition of sound velocity given by equation (2.18)
into equation (B.7), we have,

(}?i) L
or), pd®

Second, we obtain the final from of equation (B.3). The scalar product of the

(B.8)

momentum equation (1B.2) by the velocity vector V can be written as:

%[%i)+(ﬁ.6)§+§%i =0, (B.9)
Equation (B.3) can be expanded to the following form:
oi (V) (5 e\ (5 o\ . Pls 5\, VPV
5+5;(—5~J+(V-V)+( -V}?+;(V-V)+-—-;-xo. (B.10)
Subtracting equation (B.10) from equation (B.9), we have

B.11)

I 9)+ L2 -7)=0.
ot P
The derivatives of internal energy can be replaced with the derivatives of pressure from

equation (B.8),
B.12)

Equation (B.12) is the equivalent form of the conservation of energy, which is given in

terms of pressure.



