INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor qQuality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
nght in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 8* x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

800-521-0600

A MULTIMEDIA AUTHORING TOOL FOR WEB BASED
LEARNING

THOTTAM RANGANATHAN SRIRAM

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

OCTOBER 1998
© THOTTAM RANGANATHAN SRIRAM, 1998

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your hie Votre reférence

Qur fle Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-43560-1

Canadi

Abstract

A Multimedia authoring tool for Web based Learning

Thottam Ranganathan Sriram

Internet is a nctwork infrastructure that connects millions of computers and users
worldwide. Increasing interest and access to the worldwide web have made the web
as a potentially suitable medium for Computer Aided Learning (CAL). A web based
presentation (courseware) is a collection of individual web pages having spatial and
temporal objects in it. Spatial objects need to be organised in a two dimensional
space, and temporal objects need to be sequenced. Qur aim in this thesis is to pro-
vide an authoring toolkit which supports the author as much as possible to think in
high-level domain oriented terms from which we generate a set of low-level spatial
and temporal constraints automatically.

A syntax-directed translation and a grammar are used for this purpose. We have
developed a grammar that is suitable for specifying the spatial and temporal con-
straints in a page. A Concept Graph Model, which is a directed acyclic graph is used
to organise a web based presentation of the courseware. The authoring and presen-
tation tool kits developed as part of this thesis work are evaluated by applying them
to a real life problem. In this application, the author has developed a courseware on
Assembly Language for a first year course in Computer Science. The input for the
authoring tool, in this case, were made available by the author as Microsoft Word
document and as slides in Microsoft Power Point. The authored material is used by
about twenty five students as a way of evaluation. The conclusions are, it is relatively
easy to develop courseware using our authoring toolkit and incremental development
of the courseware is simple. The authored courseware is found by students to be very

useful in Computer Aided Learning.

il

Acknowledgments

[wish to take this opportunity to thank all the people who have contributed in mak-

ing this dissertation possible.

Thanks are due to Dr. T Radhakrishnan and Dr. Manas Saksena who not only
helped supervise this dissertation, but were a constant source of help and encourage-
ment. [wish to thank Dr Rajaraman of Indian Institute of Science, Bangalore for his

helpful discussions on the Concept Graph Model.

I'wish to thank the monitors of Computer Science department, Concordia University
for their patience and valuable suggestions during my implementation. I would like to

thank Mr. Stan Swiercz for his valuable suggestions during the development process.

I would like to thank Ms. Toopana Pathmanathan for her untiring work in help-

ing to create the materials for the courseware and the presentation itself.

I would like to thank Monkiewicz Halina for her help as a graduate program sec-
retary; she made my life a lot easier in the last few months. Thanks are also due to

Bowen Edwina for her help.

I would like to thank my friends and colleagues in the multimedia lab for their use-
ful discussions and suggestions. Thanks are due to my colleagues and room mates

Bhaskar and Venkat for their support and understanding. I would like to take this

iv

oppurtunity to thank Vitaly Iourtchenko for his valuable suggestions through the dif-

ficult phases of implementation.

[appreciate the friendship of all Concordia students past and present for providing a
lively work place. My special thanks are due to my supervisors Dr T Radhak:ishnan
and Dr Manas Saksena for providing us with an excellent lab to make this research

possible.

[wish to thank my family and friends in India who have been very supportive of
my endeavours and have been a constant source of encouragement. Special thanks
are due to my parents who must have done it right for me to reach this position in life.
Finally, I thank my wife Mahima for her moral support, patience and understanding,

for her love. during the difficult phases of my life.

Contents

List of Figures
List of Tables

1 Introduction

L.l Motivation

L2 OurApproach
1.2.1 Authoring component
1.2.2 Presentation component

1.3 Contributions

l.4 Organisation.0 ...,

2 A summary of related work

2.1 Temporal model for interactive multimedia scenarios
2.2 Constraintsforthe Web
2.3 Grammar-based articulation for multimedia document design
2.4 Structured Multimedia Authoring
2.5 Presentation Support for Distributed Multimedia Applications .

2.6 Events in Interactive Multimedia Applications
2.7 Specifying Temporal Behaviour in Hyper-media Documents
2.8 Web-CT: An environment for Building WWW-Based Courses

29 Microsoft Scriplets
2.10 Dreamweavers dynamic HTML without scripting

ix

xi

~

2.11 Comparisontable 28

Authoring Model 29
31 Layoutmodel 30
3.1.1 Layoutgrammar 32
3.1.2 Anexamplelayout 36
32 Eventmodel 39
3.2.1 Intcraction definition - A grammar based approach 39
3.22 Anexampleinteraction 40
3.2.3 Interaction bottlenecks 44
3.3 Document Model 44
3.3.1 Planning, building and delivering 46
Implementation Design 48
4.1 Design of the web authoring tool 30
4.1.1 Architecture L L L L 50
4.1.2 Objectdesign 51
4.1.3 Dynamicmodelling 53
4.2 Dynamic HTML and Java Script 55
4.3 Implementation of the authoring tool 56
43.1 Pageauthoring 57
4.3.2 Document authoring 61
4.4 Implementation of Presentationtool 62
44.1 Pagepresentation 62
4.4.2 Document presentation 64
Application - A case study 66
5.1 Authoring the assembly language course 68
5.1.1 Slide show page definition 69
5.1.2 Slide show document definition 70

vii

5.1.3 Slide show presentation

5.2 A brief survey with end-users

9.2.1 The questionnaire given to students
5.2.2 The questionnaire given to authors

5.2.3 Evaluationresults.

8 Conclusion

6.1 Limitations and future work

......................

.......................

A Structure of our implementation

Bibliography

viii

......................

...............

...............

...................

84
85

88

89

List of Figures

(Sv]

L 2]

(=] (1]

-1

10
11
12
13
14
15
16
17
18
19
20

Layers in a presentation
Block diagram of physicallayer
Page layer, document layer, and application layer in presentation . .

Event processing architecture
Presentationtree
Layout segmentsofapage
Tree diagram for the layout in Figure8
Parallel alignment properties (2)Till Top (b)From Top (c)Till Center
(d)From Center (e)Till Bottom (f)From Bottom
Serial alignment properties (a)Till Left (b)From Left (c)Till Center
(d)From Center (e)Till Right (f)From Right
Centered properties (a)Parallel centered (b)Serial centered
BNF definition of the layout grammar
Changed layout with new specification
Client-Server structure of interaction
Example Client-Server interaction
Precedencerelation
Concept Graph
Architecture of authoringtool
Objectdiagram
Activitydiagram
Block diagram of page authoring

ix

Slide show page planning and building 67

Slide show document organisation and building 68
DHTML page of Web authoring tool 71
Graph editor of Web authoringtool 72
Document presentation 73
Page presentation,, 74
Evaluation of the authoring tool 80

List of Tables

xi

Chapter 1

Introduction

Making a multimedia presentation is a complex process. The main problem we are
concerned with is how to simplify the process of planning, building, delivering, and
maintaining an interactive multimedia presentation for Computer Aided Learning
(CAL). Authors from different domains. viz. authors who are experts in computer
programming, and authors who are not experts in computer programming, would
wish to present their material on the computer using the web. There should be
enough support given to authors irrespective of their domain expertise, to let them

create interactive multimedia prescntations with ease.

Authors think of a presentation in terms of a collection of concepts in a hierarchical
manner. There are two different ways in which presentations can be classified, firstly
as a collection of concepts in a hierarchical manner and which can then be refined as
individual concepts, or as individual concepts first and then group them as a collec-
tion of concepts in a hierarchical manner. These two approaches are called top-down

and bottom-up respectively.

It has been well recognised that interactive multimedia presentation is facilitated

through the use of low level web based programming language. As the web is a

widely used medium, it is unfair to expect non-computer expert authors to be cog-

nizant of the various computer primitives to deliver quality presentation on the web.

In this dissertation we address the problem of authoring a web based presentation.
Our first goal is to reduce the complexity in planning, building, delivering and main-
taining a multimedia presentation. Our second goal is to achieve highly interactive
multimedia presentation. The result of our research is a layout model, event model
and Concept Graph model of presenting a multimedia presentation. This approach
simplifies the process of authoring as much as possible, thus enabling non-expert

authors to create quality web based courseware.

1.1 Motivation

We consider the problem of reducing the complexity in developing Web based pre-
sentation. The problem of simplifying authoring web based presentation is motivated
by the need to enable both expert and non-expert authors to deliver and maintain
quality web based courseware. In the following sections, we address the motivating

forces behind our research.

Web pages were static in nature till the advent of dynamic HTML and Java. Highly
interactive web pages can be developed using Java applets and dynamic HTML, but
this would involve in-depth understanding of various underlying concepts and good
programming abilities. Resources should be laid out in a page in an organised man-
ner during presentation. In interactive pages, the contents of the page keep changing
regularly, thus affecting the layout of the page. It will be beneficial for authors if they
will be able to specify core aspects of the layout, and maintain them throughout the
presentation immaterial of the changes in content of the resources. The second issue
is interaction between resources in a page. An interactive presentation should be able

to react to user inputs dynamically,i.e., authors should be able to define events and

its corresponding actions easily.

Another issue is maintenance of these pages. Authors should be aided in maintaining
and incrementally developing the pages. This is an arduous task if done manually, as

the authors have to edit the code for the pages manually to realise the changes.

The final issue is making a structured and organised presentation. There should
be ways in which authors can collect the pages in an organised manner to make a
document. As documents refer to a collection of pages, there should be ways in which
users can interact with a document. Authors should be able to incrementally develop

a document. The choices to be made are,
¢ To select an effective medium where authors can present their presentation.

o To achieve separation of concerns, i.e., to let authors think and work mostly in
their domain of expertise, which we call the conceptual layer, and to develop
an authoring tool to do the translation from the conceptual layer to the syntax

layer.

¢ To devise methods to aid authors as much as possible to plan, build, deliver,

and maintain well structured and interactive presentations.

1.2 Our Approach

Figure 1 shows the various layers in making a multimedia presentation as a whole.
As shown in Figure 1 we choose the Internet as the medium for presentation. The
choice of Internet is evident, as it is a network infrastructure that connects millions of
computers worldwide representing millions of users. Apart from the above, its avail-
ability in different operating system environments, its level of penetration into all
walks of human kind, and its “exponential growth™ over the last years make Internet

the popular medium for presentation.

Compuier Aided Leaming
APPLICATION LAYER
/\\
“Froe thnking™of | LOGICAL LAYER
the suthor .,
Individual concepts
Concepts (or) 1 3 o
Chunks of Information [™*~., Cwﬁ"mnhmud
Concrpes organised/ '”H!lDﬂlMl.m
Concept Geaph Mode) p-.. .
(0r) Mentat mode! T Detivery mode}
A ..,-" delivery mode! is the pressntation applet
/',“4 ‘E_ that does the preseatation on the imernet
MULTIMEDIA o yonmeda s o=
RESOURCES]
Mental mode! maps 0 docusment.,
- J whichia » callection of pages PHYSICAL LAYER
PAGE o oimitmge oo 4
LAYER
Collevtion of DHTME pages
DOCUMENT "
LAYER "1 D Mode! p——r Pre Appiet

Figure 1: Layers in a presentation

The various tasks, the task of the author in his/her domain of expertise, the task
of the authoring tool, and the application are layered as shown in Figure 1 to achieve
separation of concerns. There are three different layers, viz. the Application layer, the
Logical layer, and the Physical layer. Authors operate in the logical layer where the
model that they operate on is called as the mental model. In this layer authors view a
presentation as concepts and collection of concepts linked by associations. Concepts
are chunks of information which have spatial and temporal property associated with
them. A presentation for Computer Aided Learning comprises of two parts, the au-
thoring part and presentation or delivery. In the physical layer, the mental model of
the author is transformed into computer operations and realised for delivery. There
should be ways in which the mental model of the author can be transformed and
represented in the physical layer. This mental model of the author in our case is

a graph structure, where nodes represent concepts and edges represent associations.

We transform the mental model of the author into another graph structure in the
physical layer which we call as the document model. The chunks of information or
concepts map to the physical layer as Dynamic HTML pages, and the collection of

concepts or the mental model of the author maps in to a Document.

In the presentation delivery part, we are concerned with the delivery of the docu-
ment as well as the Dynamic HTML pages. As one of the essential features of CAL
is interactivity, the presentation delivery has to be interactive. The delivery model in
the logical layer is mapped into the physical layer as a presentation Java applet, that

can do the presentation on the Internet.

E COLLECTION OF PAGES - DOCUMENT or CGM

Document delivery

|

)
' Document planning and buliding ,
]

+ PAGE or CONCEPT

spatial and temporal realization

? T

mem—-- *PAGE LAYER

Spatial and temporal planning

Figure 2: Block diagram of physical layer

As shown in Figure 3, a multimedia presentation consists of a page layer to let authors
specify the spatial and temporal aspects of individual concepts of a presentation and
a document layer to group these pages. Spatial aspects define the physical placement

and alignment of resources within a page, and temporal aspects define the dynamic

properties of the resources in a page. The page authoring model should be able to
interpret the definitions and requirements for the spatial layout of a page to gener-
ate the necessary low level code. As shown in Figure 3 various other commercially
available web authoring tools and HTML generating tools can be used to generate
HTML. We propose a spatial and temporal grammar for content independent layering

of resources and specifying the set of interactions between resources in a page.

The next hierarchical step in a presentation is to collect these concepts in an orderly
manner to form a document. As making a presentation and subsequent maintenance
of it are complicated and done manually, we propose a model based approach for
this purpose. We propose a Document Model which is a directed acyclic graph, where
nodes represent concepts and edges represent precedence relation. We provide a docu-
ment planning environment where authors can drag and drop the concepts, and define
edges between the concepts to plan a document. Once the document is planned. the
document building lool builds the appropriate code to realize the document, and the
document delivery tool delivers the document on the browser. The document delivery
tool presents the Document Model, which allows controlled and monitored navigation
for users. Individual concepts are supported by custom Java and Java Script libraries

at run-time to achieve spatial layering and desired temporal behaviour.

We consider an architecture consisting of two components, an authoring component
and a presentation component. The author uses the authoring component to create
the presentation from his/her logical model. The authoring component is further
divided into two parts, the page authoring and the document authoring. The page
authoring defines the spatial and temporal aspects of a page, and the document au-

thoring defines the relation and the hierarchy between the pages.

The presentation component comprises of two parts, the document presentation and

HIML] | ascu ~~q Animation lwwDuun-MNm;I
R > Microsoh Offce97
Page planning 100l

Plansung 00! - GU HTML for N concepes

Page Layer Concest
o Power point slides
Dynamic HTML . PR P N -==-= Microwtt Office-97

Code
HTML for N slides
too)
Document plarungioo) | ® CONCEPT GRAPH DEFINTTION MODULE
DOCUMENT]
MODEL
Document layer «——
D nibuildiog ool | - -ceseesoen- & CONCEPT GRAPH GENERATION MODULE
(Docunest delivery.s00l | -~ =--==e==ean & CONCEPT GRAPH PRESENTATION APPLET
BROWSER (
. Powered by Javascript
L AROWSER -1 Presemasion libeary for events snd actions
P l'. y
Application layer «— . Cancept
- \‘
' . o Powesed by server
Document oppiet obipct for event handling

C:—O Problems we address

Figure 3: Page layer, document layer, and application layer in presentation

the page presentation. The page presentation realises the spatial and temporal as-

pects of a page, and the document presentation realises the document.

In our design of the authoring component, we emphasis on simplifying the author-
ing process as much as possible. The page authoring comprises of three definitions,
the resource definition, the layout definition and the event definition. The resource
definition defines the nature and type of resource. The layout definition defines the
spatial aspects of a page, and the event definition defines the interaction between
the resources in a page. In the design of the document authoring, a graphical user
interface is developed to create, modify and maintain a concept graph. The nodes

of the graph represent the pages, and the edges the relation between the connecting

pages.

In the design of the presentation component, we emphasis on delivering an active
presentation. The page presentation uses concepts of dynamic HTML to layer the
resources in a page during presentation time. To achieve an interactive presentation
a client-server model of event handling is developed. The document presentation

realises the authored document on the web using a document presentation applet.

1.2.1 Authoring component

A web page is a collection of various multi-media resources. Traditionally, these re-
sources cannot be dynamically manipulated while or after loading of a page using
static HTML, making the web static in nature. But, the advent of Java, Java Script
and dynamic HTML have made the web more dynamic and interactive. Dynamic
HTML makes it possible to determine and change properties of resources during page
loading or during the course of a presentation. The code required to generate such
layout on a page is complex, usually written in Java and Java Script. This thesis
describes a grammar based approach for simplified specification of spatial layout of

resources in a page by non-computer expert authors.

Resources in a page can interact among themselves using dynamic HTML. Such in-
teractions can be used to achieve effective communication among resources in a page.
For example, a text display might be required to run in synchronisation with an audio
resource, changing the text display for every newly loaded audio. It would be highly
beneficial for authors, if they can define the interactions between the resources in a

page easily, rather than realizing the interactions using low level programming,

Static mark-up languages do not provide the designer the capability to control pre-
cisely the layout of the page when its parameters are modified. A solution to this
problem is to use constraints to specify the core aspects of the design layout. The
constraints capture the semantics of the design. An authoring tool takes as input a
set of constraints representing the plan for the presentation and automatically gener-

ates the corresponding output to realise the same.

Authors need supporting tools to plan, build, deliver, and maintain a full presen-
tation. Although most tools suggest various means and methods to assist authors in
developing individual concepts, it will be beneficial if authors can be given an author-
ing environment where they can organise, build and present a collection of concepts
as a document. The organisation of concepts can be done both in a top-down as well
as in a bottom-up approach, i.e., authors make concepts first and then organise them
to form a presentation, or make a skeleton presentation and fill the empty nodes with

concepts.

We suggest an approach called the Concept Graph Model (CGM) which is partic-
ularly suited for Computer Aided Learning. In CGM, nodes represent concepts and
edges represent precedence relation between the various concepts. For example, if

there is a forward edge from Node A to Node B, then Node A should be learnt before

Node B. Apart from the above, we also aim at simplifying the maintenance and mod-
ification of the presentation. In the current scenario, it is too difficult to maintain
a large collection of pages with multiple interconnecting links. The deletion of one
page affects the references to that page in all other pages and such references have to
be corrected manually. In our model, the authoring tool automatically takes care of

this and thus simplifies the maintenance of a document.

1.2.2 Presentation component

Once the presentation has been delivered, the presentation system generates events
that should be handled, evaluated, and executed. Figure 4 shows the event model
which describes three stages in event processing, viz. event handling, event evalua-
tion, and action execution. Events can be generated in two ways: by the user or by
the system. User-generated events occur when the user interacts with the browser
by moving the mouse, clicking a mouse button, or pressing keys on the keyboard.
System-generated events occur when the state of the system changes, such as an error
occurring after a specified time period or a page finishing loading. The event model
defines a handling module to realise events, and an evaluation module to evaluate
the event and the action, and action execution module to execute the corresponding

action.

Java applets are programs that run on the browser that bring interactivity in web
pages. It is possible to present a document model with the help of a Java applet, that
a person can use to interact with a presentation. The document presentation system
uses this Java applets to realise the authored document. It is very easy for casual
users to get lost or loose track of their relative location when browsing through a
presentation in the Internet. The document presentation system provides controlled
and well directed navigation for users. Each interaction with the graph could trigger

a web page displaying the content of the page.

10

Slide resource

=+ Multimedia presentation

ST

[Event handling H Event evaluation
Passed to event evaluation Passes the destination ~——— Event Model
which evaluates the event :s:um and corresponding
on
with the defined set of events

Figure 4: Event processing architecture
1.3 Contributions

The main contributions of the dissertation are itemised below:

e We propose a Web authoring tool that can be used to reduce the complexity

involved in generating and presenting interactive courseware.

o We present an approach using two models, the authoring model and the pre-
sentation model. We propose a grammar based approach for mapping from
a representation of the content and context of a presentation, to forms that

specify the media objects to be realised.

¢ We address spatial and temporal aspects of a presentation during authoring and
delivery. We have implemented a grammar that can be used to specify spatial

and temporal behaviour of a page.

o We have implemented a page authoring module to automatically generate low

level code to realise the specified spatial and temporal properties of a page.

e We develop a graph editor which is used to create a document. The graph

editor provides easy drag and drop environment for authors to create their

11

presentation.

® We develop a presentation applet that can be used to present a Concept Graph.
We demonstrate how the interactive applet can be used to achieve an interactive

multimedia presentation.

1.4 Organisation

In this thesis, in the page layer we suggest a grammar based approach for planning and
realization with respective to both spatial and temporal aspects of a page. In the doc-
ument layer, we propose a model based approach called as the Concept Graph Model
(CGM) to help authors plan, build, deliver, and maintain a presentation. Chapter
2 discusses related work in detail. In Chapter 3 we describe the grammar based ap-
proach in detail. We also specify ways of defining custom events besides the standard
events in order to achieve sophisticated interaction within a page. We analyse the
various issues involved in a multimedia presentation more in detail. In the page au-
thoring part we discuss the spatial and the temporal aspects of a presentation. In the
spatial aspects we go more in to detail and discuss about absolute positioning versus
relative positioning. In the temporal aspects of a presentation we discuss about static
multimedia, hyper media, passive multimedia, and active multimedia presentation.
In Chapter 4 we discuss about implementation of the authoring tool. In Chapter 5
we present a real-life example of a slide show for an undergraduate computer science
course in assembly language programming that has been developed using our tool.
Finally, we state the advantages of such an approach and the trade-offs that we make

in simplifying the existing complex structure.

12

Chapter 2

A summary of related work

In this chapter we present a summary of related work in the literature. We compare
the related work based on various aspects of 2 multimedia presentation like, spatial
and temporal planning, event architecture, methodology, interface support and in-
tended application. In the methodology, we look into support given to authors to
plan their presentation using both top-down and bottom-up techniques. A single
concept is considered to have associated spatial and temporal components with it. In
the temporal aspects of a presentation, we classify it further into static, hyper-media,
passive, and active multimedia type presentation depending on the type of events the
presentation supports. We discuss related work and compare our work on temporal
aspects of a presentation more in detail in the subsequent chapters. In the spatial
aspects of a presentation, we discuss layout of components using absolute positioning
and using relative positioning. We classify the contents of a page into two categories,
viz. static contents, contents that never change during the presentation (run-time)

and dynamic contents, contents that change during a presentation (at run-time).

We compare and contrast the various approaches taken by researchers to solving
the problem of making a multimedia presentation. We also discuss about the user in-
terface provided to aid authors in building their presentation. We discuss two modes

of interface, the opaque and the transparent interface. Though we propose a GUI

13

based user interface as our future work, we recommend a transparent interface as a
default support as it assists both types of authors, viz. expert authors and non-expert

authors.

2.1 Temporal model for interactive multimedia
scenarios

Hirzalla, Falchuk, and Karmouch [1] talks about the modes and methods of repre-
senting multimedia documents. Their paper does not focus on layout and quality of

presentation. Its main focus is on the temporal aspects of a presentation.

The model used in their approach is the enhanced time-line model. This paper clearly
shows the limitations in time-line model in expressing asynchronous events, as the
traditional time-line modecl requires a complete a priori specification of all temporal
relations. The author distinguishes between the hyper-media, passive multimedia
and active multimedia presentations. To summarise, Hyper-media implies store-and-
forward techniques where user actions such as mouse-selections on hot-spots, cause
the system to retrieve a new page of data which could be an image, text, video ectc.
Passive multimedia implies a fully synchronised document that “plays itself back” in
time, synchronising all media objects together. Active multi-media implies that there
are hyper-media-type choices presented to users during the playback of a multime-
dia document which allow the user’s interaction to “drive” the playback. Hirzalla
et.al [1] suggest a new type of media object called choice which has an associated
data structure with it. The fields associated with the object are : user_action, region
and destination_scenario_pointer using which good amount of interaction could be
achieved. The choice media objects can be placed directly on the traditional time-

line model there by giving choice points during presentation.

The paper also talks about passive multimedia and active multimedia. The author

14

concentrates on active multimedia presentations, with asynchronous user events. Sub-
sequently the paper discusses the enhanced temporal model where media on a time-
line is split into three units representing the start, body and the end of the media.
To incorporate asynchronous events the author suggests a time-line tree to define the
alternate paths of a presentation. An example presentation of a car is demonstrated

and is also later compared with other work.

The author clearly demonstrates the complexities of the previously reported (6] petri-
net model for large documents. The same holds for the Buchanan et.al [5] firefly
model and the representation becomes more difficult for active documents with the

use of the firefly model.

Evaluation : This approach [1] discusses new ways of using the traditional time-
line model to create active multimedia presentation. This research has two parts,
one which talks about the time-line tree and the other about the enhanced time-
line model. Though the enhanced model is an improvement to the time-line model,
it does not support fully active multimedia presentation. Also, the paper does not
address the spatial aspects of a presentation. The aspects discussed in the paper are
mostly towards events generated by time-dependent resources. Events generated by
resources during the course of a presentation are not discussed. These are unlike our

work, but we use some of the terminologies from this paper.

2.2 Constraints for the Web

Borning, Lin, and Marriott [2] suggests an architecture in which both the author
and the end-user (viewer) can impose page layout constraints. The final appearance
of the document is thus in effect the result of negotiation between the author and
the viewer. They discuss two types of negotiation models. In one model, both the
web-authors and the web viewer engage in solving run-time constraints. The author

uses a solver and the viewer uses a different solver to solve the constraints. In this

15

case a compact representation of the constraints, the contents of the page, additional
layout information and applets, are shipped over the network for each page. In the
second model, the web author again uses a powerful runtime constraint solver, but
the viewers role in constraint solving is restricted. The authoring tool compiles a Java
program representing a plan that satisfies the author’s constraints and the predeter-

mined kinds of constraints that the viewer may impose.

The paper discusses constraint-based page layout to specify the core aspects of the
design layout. As the authors mention, the constraints capture the “semantics” of
the design and those aspects that must hoid true for the layout to be aesthetically
appealing. An example constraint-based layout discussed is superior in performance
but is dependent upon the competence of the user. In other words the constraint is

opaque and is not well suited for both expert authors and non-expert authors.

The model as suggested by the author has three main components: the document
authoring model, the viewing tool and the constraint solver. The grammar based ap-
proach suggested by the author is very powerful in expressing the various la:youts.
The paper also addresses constraint-based applets about which not much detail is
furnished. The authoring tool is used by the designer to construct the constraint
style sheets and document contents. The viewing tool integrates constraints from
the designer with those of the viewer, to place the contents in the layout. The con-
straint solver is used by the author while laying out and testing the page, viewers use
the constraint system while viewing the page and interacting with constraint-based

applets.

Evaluation : The constraints discussed in this paper are intended for resizing the
browser or a frame, moving objects around in the window, and interacting with
applets. The paper proposes an elegant user interface as its future work. Though the

model is powerful in expressing various spatial layouts with the help of the document

16

authoring tool, the grammar focuses on finer details of layout, hence manual editing of
the generated code is too complex. The tool generates approximately 27 constraints
for an example layout presented in the paper. The same example could be expressed in
9 constraints using our model. Temporal aspects of a presentation are not addressed

in this paper.

2.3 Grammar-based articulation for multimedia
document design

The research described by Weitzman, and Wittenburg [3] focuses on the media real-
ization phase and describes a formalism called “Relational Grammars”, for encoding
design knowledge along with a methodology - parsing, syntax-directed translation.
and constraint resolution - as a realization procedure that may encode the same
content differently under different circumstances. The paper addresses graphic con-
straints (e.g., font specification), spatial constraints (e.g, relative positioning), and

temporal constraints (e.g, sequence of presentation).

The input to the parser is a set of content objects, as well as the domain-independent
relations that hold between them. A rule language used has forms for specifying
the primary elements of a rule and their types, the rule language has three kinds
of forms: relational constraints, attribute assignments, and OUT forms. The re-
lational constraint such as author-of element? element! is a requirement that the
object matching rule element2 must stand in the author-of relation to the object
matching rule elementl. Attribute assignments associate attributes of the left-hand
side of the rule with those of the right-hand side. The OUT forms serve the role of
style specification in the articulation process. Abstract specifications like fonts are

used here.

A variety of approaches and methods to model multimedia presentations have been

17

proposed in the literature. The interactive and spatial capability of these models are
often lacking or unsatisfactory. Weitzman et.al [3] suggests a parsing and syntax-
directed translation that uses relational grammars. Although their work deals with
the spatial aspects of a multimedia presentation, little support is provided to the
temporal aspects of a presentation. Qur ideas are similar to their ideas in the spatial
aspects of the presentation. This paper specifies spatial aspects of the presentation
based on the automatic layout generation from the specified relational constraints
between the objects. The model also provides ways in which authors can specify
fonts and other properties in the layout. The browser is capable of supporting dif-
ferent fonts, colors and other properties. In our model HTML files are treated as
resources that can be grouped to make pages. We use the existing features of HTML
for supporting different fonts, colors etc of the presentation. As the objects in our
model could be HTML documents, support of fonts and other presentation items are
encapsulated within the HTML domain. Unlike our work, this paper does not ad-
dress active temporal aspects of a presentation. On the contrary it suggests a simple
extension of the spatial constraints to support temporal aspect. The user interacts
with a bar on top of the page in order to control the presentation. The temporal

aspects of a presentation are given as an extension to the :OUT forms.

Evaluation : An interesting feature in this work is the relational-constraint between
objects. Though this feature was thought about in our initial phase of research, our
implementation issues forced us to deviate from this. We propose this in our future
work. We use a completely different event handling mechanism than in Weitzman
et.al [3]. Our approach can handle and support a rich composition of events. We
address events in a broader spectrum with User events, Intra-object events, Inter
-object events, application events and custom events. In contrast, in this paper
Weitzman et.al [3] concentrates only on one problem of a presentation, and does not
address all the issue of a presentation. In our model we suggest a Concept Graph

Model (CGM) approach for assembling the pieces of a presentation in order to make

18

a full presentation.

2.4 Structured Multimedia Authoring

Hardman, Rossum, and Bulterman (7] discusses a rich hyper-media document model
allowing structure-based composition of a multimedia presentation. The authoring
environment therein presents three main views namely, hierarchical view, channel
view and the player view. The hierarchical view allows the author to define the struc-
tural relations among media items making up the presentation. The channel view is
used to add synchronisation constraints between any two data nodes. The player view
maps the logical document to a particular presentation environment, and controls the
playing of a presentation making use of the other two views. The author clearly pin-
points the drawbacks of a time-line based model [10]. The paper talks about making
the implicit structure of multimedia documents explicit which is part of our goal also.
As mentioned by the author, an authoring environment should provide means for cre-
ating an empty structure which can later be filled. For example, a sequence structure
is created and then filled in with individual data nodes comprising dynamic or static
data, or from collections of nodes. Instead of this top down approach, the author may

also work bottom up, creating small clips and combining them into complex scenes.

An authoring environment for multimedia according to Hardman et.al [7] needs to
provide support for viewing and manipulating presentation via their structure, sup-
porting both top down and bottom up construction. Constraints between media
items should be defined directly between those items and not via a time-line or sep-
arate script. In the model suggested in this paper, a multimedia presentation has a
hierarchical structure whose leaf nodes are the data nodes which are played in the
presentation, and whose non-leaf nodes are composite nodes containing a collection
of other composite nodes and/or data nodes. The author explains the creation of a

hierarchical view, channel view and player with the help of an example.

19

Evaluation : The CMIF model presented in Hardman et.al [7] suggested a novel
approach of hierarchical view, channel view and player view. It offers traditional
time-line type of visualisation called the channel view. The CMIF model does not
address the active temporal events (user interactions) of a presentation, but talks

about passive events like start and end. This is in contrast to our work.

2.5 Presentation Support for Distributed Multi-
media Applications

Bates [11] discusses a variety of presentation aspects like presentational, compositional
and colloborational. The thesis describes a scripting language with object oriented
design for handling events, and supports a variety of media items and events. The

focus is on collaborative and distributed work.

The thesis work explains how event monitoring is achieved using firing invocation
and call-back module. There is an event monitoring module, firing module, invo-
cation module and call-back module. The event monitoring module gets the events
and passes it on to the firing module which executes the proper invocation and also
handles proper call-backs. In the event functions discussed in the thesis work, the au-
thor talks about Event registration, Event monitoring, and Event notification. Event
registration is used to inform an object of events to monitor for, Event monitoring
is the algorithm used to detect the events, and event notification is to inform inter-
ested clients when the events occur. This is very similar to the process of generation,

evaluation, and consumption of events discussed in our model.

Evaluation : Our presentation model for event handling resembles this work at the
architecture level, but we differ in our implementation and the choice of presentation
medium (WWW). The author, Bates [11], proposes a full fledged scripting language

which is powerful but complex to learn.

20

2.6 Events in Interactive Multimedia A pplications

Vazirgiannis, and Boll [12] suggests a similar approach based on events. That paper
suggests an event processing scheme for the execution of Interactive Multimedia Ap-
plications (IMAP). The model suggests an “event evaluation and detection” module,
that handles events delivered by the event generation module. For each event, the
event evaluation module checks for defined events and executes the action part of it,

if defined, and consumes it if not defined.

This approach introduces the notion of events in the specific context of Interactive
Multimedia Application (IMAP) as a means to represent the happenings that are
of interest to an IMAP. The author does an elaborate classification and modelling
of events : events caused by the interaction of a user with the IMAP, Intra-object
events, Inter-Object events, Application events, and User-defined events. The author
proposes an Object-oriented modelling of events. Apart from the above mentioned
classification of events, the author suggests the classifications of events into two layers
namely, the generic and application-specific events. Generic events are the template
events for the IMAP definition. The application-specific events are specialisation of
these generic events. These application-specific events are defined on the basis of
objects belonging to a specific IMAP. Application-specific events are defined during

authoring time by the application designer.

Events are not analysed with respect to their semantic aspects or their consumption
aspects, but are represented by a set of tuples so called scenario_tuples. Each tuple
represents a fundamental or autonomous functionality in the framework of an IMAP
and includes events that will trigger this functionality. The list of actions that will be
executed when this tuple is triggered are also provided as part of the scenario-tuple.
The event processing scheme for the execution of an IMAP presents the generation,

evaluation, and consumption of events. Even before an IMAP is executed the events

21

of the scenario tuples are announced to the presentation system. The event evaluation
and detection module evaluates the events delivered by the event generation module
and detects occurrences of IMAP application-specific events. For each events that is
received, the event evaluation checks if the event matches with any event expression
in the scenario tuples or if it was a part of a composite event. If one or more event

expression matches, the corresponding action executions are triggered.

Evaluation : Our approach to the temporal aspects of presentation mostly resemble
with that of theirs. On the contrary we propose a grammar based approach for event
definition and a client-server approach for event handling. Though very complex
events are discussed in this paper, we limit ourself to a simple class of events :user
events Vazirgiannis et.al [12], inter-object events, intra-object events and custom
events supported by the browser. We view the objects in a presentation as clients
and the event evaluation and detection module as the manager or server. Events are
dispatched to the server, which analyses, takes the necessary action and sends an
appropriate message to the corresponding client. A simple event definition grammar

is proposed in our work and its trade-offs are discussed.

2.7 Specifying Temporal Behaviour in Hyper-media
Documents

Buchanan, and Zellweger [5] addresses three main problems in multimedia authoring
tools: the difficulties in representing asynchronous behaviour, difficulties in creating
documents as per the author’s needs, and the difficulties in maintaining documents
over their lifetimes. The paper Buchanan et.al [5] proposes a system called the Fire-

fly, whose goals are to support rich synchronisation as well as asynchronous behaviour.

The Firefly document model of Buchanan et.al [5] consists of three parts: media

items, temporal synchronisation constraints, and operation lists. The media type

22

specifies the specific kind of medium the media item represents. Events, as defined
by Buchanan et.al (5], represent time-points at which the display of the media item
can be synchronised with other media items. Events are classified into synchronous
and asynchronous events. Synchronous events are those whose temporal placement
is known in advance, and asynchronous events are those whose time of occurrence
cannot be determined until the media item is displayed. It also defines a term called
procedures that operate on the media item and its events. The procedures allow
the underlying media items to participate in the firefly system. The procedures are
classified into user-interface procedures, analysis procedures, and control procedures.
User interface procedures support the creation and editing of media items and events.
Analysis procedures provide information such as the duration between two events or
the ordering of events. Control procedures affect the display behaviour of a media
item. All media items provide control procedures to start, end, pause, and resume
the display of a media item. Authors interact with existing media editors to create
and edit media items, and to mark points of interest, called events, within them. In
firefly’'s graph notation, square nodes represent the start and end-events, and circular
nodes represent the internal events. Edges represent the temporal adjacency of two
events; the length of the edge is proportional to the duration between the events.

Asynchronous media items float above the start node.

The firefly’s runtime architecture consists of three components: the viewtime sys-
tem, the event handler, and the media items in the document. The viewtime system
initiates the display of a document when it receives a schedule from the scheduler.
The view-time system registers the documents asynchronous events with the event
handler and starts the document clock. When the view-time system encounters a
Send-Message operation, it invokes the senders Generate-Message control procedure
to determine what message should be sent. Messages may be sent to specific media
items or broadcast to all active media items. When media items detect the occur-

rence of an asynchronous event, it notifies the EventHandler, which maintains a list

23

of active and inactive asynchronous cvents. If the event is inactive, it is ignored,
or else the Event-Handler notifies the View-time system, which merges the auxiliary

schedule for that event into the schedule.

Evaluation : The firefly model is a novel approach in multimedia synchronisation.
The model gets too complicated for large systems with lots of asynchronous events,
which is clearly demonstrated with an example in Bates [11], where an example

presentation is taken and the firefly model is compared with his Ph.D thesis work.

2.8 Web-CT: An environment for Building WWW.-
Based Courses

Goldberg, Salari, and Swoboda [15] describes Web-CT as an easy-to-use environment
for creating WWW-based courses that are otherwise beyond the ability of the non
computer programmers. Web-CT allows the course authors to create a course and
then to add a wide variety of tools and features to the authored course. Some exam-
ple tools are. bulletin-boards, student self-evaluation, navigation tools, timed quizzes,
electronic mail, and automatic index generation. As mentioned by the author, the
advantages to students in using the Internet and the World Wide Web to make course
material includes, location and time independent delivery of the course material, abil-
ity to serve a large number of students at a potentially reduced cost, and a simple and
familiar interface. The author says that the proliferation of WWW-based courses is
high in departments where there is high degree of technical familiarity. In contrast,
other departments that are less technologically focused are either not taking advan-
tage of the WWW or are not exploiting its full power. The other departments are
equally enthusiastic, but are limited without the technical expertise to use CGI’s to
create static web pages (no interactivity), or are forced to hire a consultant to do the

work for them.

24

The Web-CT presents an environment that allows educators, with or without techni-
cal expertise, to create sophisticasted WWW-based courses. WEB-CT uses the Web
as its GUI for both building and presenting WWW-based courses. The advantage is
that these servers will be maintained centrally in an organisation and will be used by

members of that organisation. WEB-CT addresses three aspects:

o Presentation tool - that allows course designers to determine the layout, colors,

text, counters etc for the course page.
e Student tools - tools that can be integrated into any course.

o Administrative tools - that aid delivery of a course.

Evaluation : Web-CT focuses mostly on the support tools that can aid authors to
present a variety of material on the Internet. The author describes a presentation
tool that lets authors build a presentation. Though this supports some features of
layout. it supports proto-typed layouts and does not give much options to the author.
The work clearly does not concentrate on HTML features and leaves it to external
authoring tools. The tool concentrates on other aspects of a presentation like, quizzes.

chat rooms, self-evaluation module etc which are not the focus of our work.

2.9 Microsoft Scriplets

Microsoft is also in its early alpha release for a set of object libraries called “scriplet”
Microsoft [18] to allow DHTML pages to be created as self-contained objects. The
scriplet provides effective communication between the objects in a page, which are
treated as controls. The scriplet also deals with standard events and custom events
handled by the event handler. It provides methods like raiseEvent(..) that lets au-
thors to raise a custom event, which could be handled in a customised way. The
above software product is in its early alpha and is supposed to go through revisions

before made ready for public use.

25

Scriplets as mentioned in [21] further enrich the Dynamic HTML object model, and
makes it interesting not only for web developers, but also to Visual Basic and Visual
C++ developers. Scriplets are simply HTML pages that contain client-side script,
which conforms to a standard scripting architecture. This architecture, similar to
Visual C++ and Visual Basic, defines what routines and variables are public (that is
exposed to the control’s container on the page) and private (hidden from the control’s
container). When a scriplet is loaded into memory, it is loaded into an instance of the
HTML parsing engine that is itself wrapped inside a COM container. This container
is placed inside the HTML parsing engine of the original HTML page that contains

the reference to the scriplet.

As mentioned in the reference [21] at present there are no authoring tools that fully
support Scriplets, though they are to be expected in future. Since Scriplets are more
like a full fledged Dynamic Object Library, our grammar based system could use

scriplets and become richer with the underlying support of Scriplet library.

Evaluation : One major disadvantage with that of scriplets Microsoft [18] is that it
is supported only on Internet Explorer 4.0. Scriplets do not aim at making authoring
easy and if it is released as a stable base, it could be used to improve the functionality
of our authoring environment by using the libraries provided by scriplets and thus

providing better service to authors.

2.10 Dreamweavers dynamic HTML without script-
ing
Dreamweaver is a visual Web authoring tool meant for professionals and it allows for

creating style sheets, absolute positioning, time-line animation, and Dynamic HTML

without coding or scripting. It provides full control of HTML code with real-time

26

display, easy drag-and-drop tables and frames, browser targeting/error reporting,
extensible behaviours, and server file-locking; automatically generates appropriate
HTML code and scripts for both Netscape and Internet Explorer. Dreamweaver is a

professional authoring tool for Web page creation, design and management.

Dreamweavers integrated Dynamic HTML, Java Script and Cascading Style Sheets
(CSS) features are expected to boost the productivity of web developers. The refer-
ence [20] points to six reasons as to why Dreamweaver is bound to revolutionise the
web development. Firstly, the author talks about “Round-trip IITML". By round-
trip HTML the author refers to opaque and transparent interface, meaning that
Dreamweaver imports and exports the HTML without modifying it and gives full
control over the underlying code. Dreamweaver provides a drag and drop for creating
the pages. Dreamweaver lets author create many great effects using advanced HTML

and Java Script without any programming needed.

Evaluation : Dreamweaver [20] suggests a time line based approach for dynamic
presentation. The product is still in its early alpha relcase. Qur approach is similar to
that of Dreamweavers in functionality. The design of dreamweaver’s event handling

is not known and kept as a trade secret.

27

2.11 Comparison table

Spatial and Event Grammar User Nlustration
Related research temporal architecture approach interface
papers planning classification
Temporal model for Passive Extended Model Opaque Prototyped
interactive multimedia temporal time-line based
Constraints for the Web Spatial Nil Grammar based Opaque Prototyped
Grammar-based Spatial &
articulation
for multimedia Passive Nil Grammar Opaque Protutyped
documents temporal
Structured multimedia Spatial &
Authoring Passive Time-line Model Opaque Real-life
temporal based
Presentation support Active &
for Distributed passive Good Scripting N/A N/A
muitimedia
Application temporal language
Events in Interactive Active & Client
multimedia application: passive Server N/A N/A N/A
Modelling and temporal Model
Implementation Design
Specifying Temporal Spatial &
Behaviour passive Firefly Firefly Opaque Real-life
in Hyper-media temporal model
documents
Web-CT Active & N/A N/A Web-based Real-life
passive
Microsoft Scriplets Active & 00 Scriplet N/A N/A
Passive Library Language
Dreamweaver dynamic passive Time-line N/A Transparent Prototyped
HTML temporal

without scripting

28

Chapter 3

Authoring Model

A web page is a collection of multimedia resources positioned in a two dimensional
space, according to the needs of the author. The tree diagram for a multimedia
presentation is as shown in Figure 5. These resources have to be interacting within
themselves and responding to user inputs in an active multimedia presentation. In this
chapter we formally describe the page layer and the document layer which facilitate
authors in planning, building, and realising a page and a document in a multimedia
presentation. The page layer assists the author in spatial and temporal planning and
realisation of a page. Subsequently, the document layer aids authors in planning,

building, and realising the document, which is an organised collection of pages.

We begin with a description of the layout model in Section 3.1 and demonstrate
a content independent layout of resources in a page. In Section 3.2 we present the
event model of the page layer to achieve an active multimedia presentation. In Section
3.3 we describe the document model which is used to present a document in an orderly

manner to accomplish an organised presentation.

29

Muhimedia presentation

] e))) B B &) (=

User evenes Intra-cbjgct evenss [Aplkda eventy Custom eventy

Figure 5: Presentation tree
3.1 Layout model
Authors should be provided enough support to achieve the following.

e to allow mental planning as easy as in using “pen and paper”

® to create resources using the software tools he/she is familiar with. Such tools
may include, Microsoft Word, Microsoft Power Point, Paint Brush, Imaging

tools, Audio tools etc.
¢ to edit and modify individual objects, but maintain the layout
¢ to organise and synchronise resources into a page
e to perform these tasks as easily as the author does in conventional medium

Resources in this context refers to primitive multimedia resources like images, au-
dio, HTML, etc. Authors should be provided support to align various multimedia
resources as per their needs and requirements to build a page. The contents of a page
can be aligned using two ways of positioning, viz. Absolute positioning and Relative
positioning. Absolute positioning uses hard-coded co-ordinate values to realise the
layout. Though this is an effective way of positioning resources, it has its disadvan-

tages. The layout generated using absolute positioning is specific to the contents of

30

a page and thus dynamic changes to the contents of the page disturb the layout con-
siderably. Most Window based applications that support drag and drop of resources

for layout, generate absolute positioning.

In the other form of layout using relative positioning, resources are aligned rela-
tive to the position of other resources. Though this poses some constraints in the
layout of resources, it is best suited in cases where the contents of the pages change
frequently and also dynamically. We choose relative positioning of resources in a page
as the contents of our pages change dynamically. The choice of relative positioning
along with the dynamic capabilities of dynamic HTML allow us to extract the core

layout features and maintain it irrespective of the content of the page.

For example, consider the layout where five resources have to be placed in a web

- o
Rl - Image E
[fr— R2-Text @
R3 - Image §
A G
. R4 - Text
U Sooerompomers —0
RS - Image

Figure 6: Layout segments of a page

page as shown in Figure 6. Though this layout can be achieved using a WYSWYG
authoring tool, it generates absolute positioning to place the resources accordingly.
This approach is highly Dis advantageous in a situation where the contents and sizes

of the resources keep changing frequently affecting the position of other resources. In

31

Figure 6 position of resource R2 is dependent on the size and position of resource
R1. Dynamic changes to R1 should reflect on the subsequent layout of R2 and other
dependent resources. Hence, we suggest authoring of relative positioning of resources
on a page using dynamic HTML and thus produce a content and size independent

layout of a page.

3.1.1 Layout grammar

Figure 7: Tree diagram for the layout in Figure8

We develop a grammar based approach to define relative positioning of resource in
a web page. The advantage of a layout grammar in contrast to absolute positioning
is that, it abstracts the relative positioning in a layout at a higher level where the
layout is maintained independent of the resources being layered. Thus, dynamic
changes to the resources do not affect the layout of the page. The layout grammar
defines the relative positions of the resources with respect to each other. An authoring
tool interprets the grammar specified by the author and generates the corresponding
dynamic HTML code. The proposed layout grammar is used to specify the physical
relation with regard to position between the resources in a web page. The grammar
is formed in a tree pattern, where the intermediate nodes represent relation between
the resources and leaf nodes represent the resources. Figure 7 describes the tree

for the layout shown in Figure 6. We define two types of alignments in our layout

32

grammar,viz.

o parallel - one after other in a left to right scan. Two resources R1 and R2 are

said to be in parallel (R1 + R2), if R1 appears to left of R2.

o serial - one below other in a top to bottom scan. Tow resources R1 and R2 are

said to be in serial (R1 * R2), if R1 appears on top of R2.

R2

Rl
Rl Rl

@ © ©

R1 Rl Rt
R2

(b}) N

Figure 8: Parallel alignment properties (a)Till Top (b)From Top (c)Till Center
(d)From Center (e)Till Bottom (f)From Bottom

Within the parallel and serial alignment, the resources can have different combina-
tions of alignment properties as shown in Figure 8, 9, 10. There should be some
balance between the complexity of the grammar provided and the functionality of
the layering. We consider some of the essential features of layout that will be useful
for authors in designing their web page. Various such essential alignments, and align-
ment properties of resources in a page are considered and a simple layout grammar

is suggested.

Components in a page are divided into two major types
¢ Atomic components - Defines a single component or resource

33

™ ©)

Rl RI RI
R2 R2 R2
R! Rl Rl
R2 R2 R2
®) @ i

Figure 9: Serial alignment properties (a)Till Left (b)From Left (¢)Till Center (d)From
Center (e)Till Right (f)From Right

RI
RI R2

R2

w)

Figure 10: Centered properties (a)Parallel centered (b)Serial centered

34

¢ Composite components - Defines a collection of atomic components based

on a gramiar

Atomic components can be visualised as indivisible multimedia resources. When
two atomic components are packed, it becomes a composite component. Figure 11
describes the BNF definition of the layout grammar. In Figure 11 panel name is the
destination panel. component! and component? can be either atomic or composite
components. Operator specifies the alignment between the participating components,
viz. parallel or serial. The alignment property parameter specifies the property of
alignment with reference to the reference panel/component. However, any atomic or
composite component can be specified as a reference and the alignment will be done

with reference to that panel/component.

Keyword desunation pane! name source component | type of alig tource comp 2 property of the alignment reference panel
PACK {(panet name) {component | } {operator) {component 2} {alignment property) {ref panel/comp }
valid operators

+ - two resources are said lo parallel, one after the other in a left (o right scan
- - two resources are said (o serial, one below the other in a top to bottom scan

valid parallel alignment properties valid serial alignment properties

TT - Till Top TL - Till Left

FT - From Top FL - From Left

TC - Till Center TC - Till Center
FC - From Center FC - From Center
TB - Till Bottom TR - Till Right

FB - From Bottom FR - From Right
PC - Panallel Centered SC - Serial Centered

Figure 11: BNF definition of the layout grammar

The BNF definition of the grammar can is as follows.

BNF := PACK <panel_definition>
<panel_definition> := START <name_of_resource> | <panel_name>

<panel_name> := <name_of_panel> <resource_namel>

35

<resource_namel> := <resource_name3d> <type_of_alignment>

<resource_name2>

<resource_name2> := <resource_name3> <alignment_property>
<resource_name3>

<resource_name3> := <name_of_panel> | <name_of_resource> |
default

<name_of_resource> := char[MAX];

<name_of_panel> := char [MAX]

<type_of_alignment> := ‘+’ | ‘s’

“TT’ | ‘FT’[‘TC’ | ‘FC’ | ‘TB’ | ‘FB’ | ‘PC’ |
“TL’ | ‘FL’ | *TC’ | ‘FC’ | ‘TR’ | ‘FR’| ‘SC’

<alignmnent_property> :

This grammar is used by authors to align resources in a page. For example, to align
two resources R1 and R2 in parallel, with the alignment property of R1 set to top of

R2, the author specifies
pack PANEL1 R1 + R2 FT Ri;

In the above syntax, pack is a keyword and PANELLI is the destination panel name. R1
and R2 are the two source resources, ‘+' is the type of alignment and FT (FromTop) is
the alignment property. The sixth entry R1 is the reference resource for the alignment.
This produces a result, where PANELLI is the encompassing object comprising the
two resources R1 and R2. Future references to R1 and R2 as a whole can be made

by means of the name PANELI.

3.1.2 An example layout

Let us consider a complex layout as shown in Figure 6. There are five resources R1,
R2, R3, R4, and R5. The corresponding spatial and temporal specification as per the

grammar for the layout will be defined as follows.

Pack START Ri

36

Pack Panell R1 * R3 FL default
Pack Panel2 Panell + R2 FC R1
Pack Panel3d R2 * R4 FL default
Pack Panel4 Panell + Panel3d FC R1
Pack Panel5 Panel4 * R5 PC default

The above mentioned specification as per the grammar generates the output as in
Figure 6 where FL means FromLeft, FC means FromCenter, FT means From Top and
PC means PageCenter (Figure 11). The first statement defines that R1 is at (0,0) the
left top of the screen. The second statement defines the relative position of R3. This
defines the relative position of R3 to be in serial with R1 and sets the aligned property
of RJ to the left of R1. The composite resource thus formed by combining both R1
and R3 is named Panell. Now, R2 and R4 are aligned in serial with the alignment
property of R+ set to the left of R2. These two atomic resources are combined into a
composite resource and named Panel3. As the syntax for Panel3 does not define the
X,y position of either Panel3, R2 or R4, we have to explicitly link Panell and Panel3
to identify the x,y position of R2 or R4, due to implementation constraints. We use
the second statement to establish this relation. In this we say that R2 is parallel with
Panell, to fix the position of the first resource in a composite resource. Then Panell
and Paneld are aligned in parallel with alignment property of Panel3 set to the center
of R1. The composite resource, Paneld comprising of two composite resources Panell

and Paneld is formed. RS is aligned in serial with this composite resource Paneld.

The same layout if specified as follows will generate a different result. For exam-

ple,

Pack START R1

Pack Panell R1 + R2 FC default
Pack Panel2 Panell * R3 FL default
Pack Panel3 R3 + R4 FT default
Pack Panel4 Panell * Panel3 FL R1

37

Pack PanelS Panel4 * R5 PC default

generates the output as in Figure 12

In the previous example, resources R1 and R3 were combined in serial to form a

‘ O
Ri-lmsge |:
; R2 - Text
R3 - Image E R4 - Text
........................ 13
RS - Image

4

Figure 12: Changed layout with new specification

panel called Panell. Subsequently, resources R2 and R4 were packed in serial to
obtain Paneld. Then Panell and Paneld were put together in parallel to generate
Panel4. The layout thus generated is shown in Figure 6. To demonstrate the flexi-
bility in positioning various resources, the layout is changed as shown above. Now,
resources R1 and R2 are combined in parallel to form Panell. Resources R3 and R4
are combined in parallel to form Panel3. Now, Panell and Panel3 are combined in

serial generating Panel4. The new layout thus generated is as shown in Figure 12.

38

3.2 Event model

Resources in a web page are independent of cach other. An event from one re-
source cannot have an effect on another resource using static H-TML. Though dynamic
HTML allows interaction between resources in a page, such interaction is achieved
with the help of Java Script and Java code. An event model is proposed to overcome
this static nature of web pages and to assist authors who may not be programming

experts to make more interactive web pages.

We propose an event model using which authors can easily define, build and deliver
active multimedia presentations on the web. We aim at supporting active multime-
dia presentations, with support to a variety of events. We also address the problem
of synchronising resources during the course of a multimedia presentation. Though
Hardman et.al [7] discuss about synchronisation of resources using multiple views,
they support synchronisation of time-independent resources with time dependent re-
sources. Most of the interaction models focus on the traditional time-line model [1]
for temporal aspects of a presentation. The primary disadvantage with the time line
model [1] is its inability to support active temporal aspects of presentation. There is a
necessity for an authoring tool to enable authors easily specify the various interactions

between the resources in a page and thus generate interactive web pages.

3.2.1 Interaction definition - A grammar based approach

Resources in a page have to be able to send as well as receive events. Events occur as
a result of user reactions. For example, clicking a button is an event as is moving the
mouse over a link. There are two types of events, viz. system generated events and
custom events. System generated events are click, focus, keydown, keyup, load, un-
load etc. Similarly, custom events are ChangeResource, PrevResource, ChangeColor,
Show, Hide etc. Appropriate event handlers should be defined to react to events.

In the existing structure, authors have to handle events themselves and also define

39

action for the corresponding events.

We propose a grammar based approach for event specification. The architecture
of such a design is as shown in Figure 13. Each resource on the page will have a client
object associated with it. Every page loads a manager object during load time of
a page. The manager object has the event table describing the interaction between
the client objects. The page realiser module displays the page and waits for event to
occur. On occurrence of events, the event handler handles the event and dispatches
it to the manager object. The manager object maps the event to its event table and
triggers the corresponding action. Each client object will report events and make use
of the manager methods which will eventually dispatch the events to the correspond-

ing destination client objects, thus impacting the resource controlled by it.

I

Manager Object attached to page]
R2 Client object2
Client object]

Ri
-R—3, R4 Client object3
[RS N Client objectS

Figure 13: Client-Server structure of interaction

3.2.2 An example interaction

To demonstrate the interaction between resources in a page, let us consider two but-
ton objects, a previous button and next button and an image object in a web page.
Let us assume that for every click of the button object the contents of the image ob-
ject has to change accordingly. This can be achieved using Java Script and dynamic

HTML concepts. On the contrary, for non-computer expert authors, the above task

40

is difficult as it requires deep programming skills in Java Script, understanding of

dynamic HTML etc.

The Java Script code required to realise the above mentioned presentation would

be as mentioned below.

<LAYER ID=Resource2 top=0 left=0>

<CENTER> </CENTER>
</LAYER>
<LAYER ID=Resource3 >

 </LAYER>
<LAYER ID=Resourcel src="imagel.jpg" width=600 HEIGHT=400>

 </LAYER>
<SCRIPT>
var list = new list();
list.Next = Next;
var i=Q;
list .HANDLE=new Array();
for(i=0;i<100;i++)
list .HANDLE([i]=null;
list .HANDLE["Resourcel"]=new Array(“imagel.jpg","image2.jpg",
"image3. jpg","image4.jpg" ,"image5. jpg") ;
list .HANDLE["Resourceicount"] = 0;
function Prev(n) {
if(list.HANDLE[n] != null) {
list .HANDLE[n+"count"]--;
if(list .HANDLE[n+"count"] < 0)

41

list.HANDLE[n+"count"]=1ist.HANDLE[n] .length-1;
document.layers(n].load(list.HANDLE[n] [1ist.HANDLE[n+"count"]?,
600); }
else
alert("Error: Resource not defined "+n);
}
function Next(n) {
if(list .HANDLE[n] !'= null) {
list .HANDLE [n+"count"]++;
if (1ist .HANDLE[n+"count"] > list.HANDLE[n].length-1)
list .HANDLE [n+"count"]=0;
document .layers[n] .load(1list.HANDLE[n] [1ist.HANDLE [n+"count"]],
600); }
else
alert("Error: Resource not defined "+n);
}
</SCRIPT>

The three layers define the three resources, viz. the previous button image, the next

button image, and the series of five images that are to be displayed one after the

other. These five images are stored in an array. Every click on the next or previous

button, makes a call to the corresponding function which displays the next or previ-

ous image from the list accordingly. Though this code is a brief version of the real

Java Script code, it is complicated.

To alleviate the author from the above task, we propose a grammar based approach

for easy definitions of interactions between the resources in a page. The specifications

as per the grammar shown below would automatically generate the Java Script code

shown above in order to achieve an interactive presentation.

% Resource name and the resource file and its properties

42

R1 <type of resource> <options> "previous.jpg" width=200
height=200

R2 <type of resource> <options> "next.jpg" width=default
height=default

R3 <type of resource> <options> "imagel.jpgkimage2.jpgt
image3. jpgkimage4 . jpgkimage5. jpg" width=300 height=300

% Event definition

4 Source resource - event - destination resource - action

R1 Click R3 PrevResource

R2 Click R3 NextResource

Resource ! f Resource 3)
Next extResource()
J
Server Obgct
InputEvent vent Destination
Rl Next NexiResource R3

Rl Previous PrevResource R3

Figure 14: Example Client-Server interaction

The interaction between the resources are specified along with the input in the speci-
fication file as per the grammar. The source resource generating the event is specified
first, and the event to generate in the destination resource is also specified. Once
this specification file is generated, corresponding event mechanism is generated by
the authoring tool to generate the events and also to capture the event at the des-
tination with the help of the client-server mechanism. A server applet loads itself
during load time of the page and updates itself of the various resources and the in-
teractions between them using the specifications as per the grammar for interaction.

A table for the interaction mechanism is created and the server waits for events to

43

happen. On occurrence of an event from a client the server consults its table and
triggers the destination event or action on the destination client. Figure 14 shows an
example where client object R1 fires an event Next to the server, which maps it in
its table and triggers the NextResource event on the resource R3. Since, the two way
communication between Java Script and Java is possible the above effect could be
easily realised by an authoring tool relieving the author of hazards of programming

and concentrate in his area of expertise.

3.2.3 Interaction bottlenecks

The availability of resources and the speed with which they can be down-loaded is
highly unpredictable in the Internet. This raises questions on the reliability of the
communication between resources in the event of failure or delay in the Internct.
Although the problem is beyond the scope of this thesis, we provide some discussion
of the interaction between the resources via the Internet. Resources invoke an event
and wait for an acknowledgement from the destination resource before they invoke the
appropriate action so that they can synchronise themselves with the other resource.
For example, in a slide show an audio applet at the end of first audio segment will
trigger a “NextResource” to the slide applet and will wait for an acknowledgement
from the slide applet before switching itself to the next audio file. This protocol
brings some amount of reliability and synchronisation in the interaction between the
resources. In case of a failure, the source resource waits for a defined amount of time
(time out), and proceeds after displaying a standard error message on the destination

resource.

3.3 Document Model

A presentation is a collection of concepts delivered in an organised manner. Presen-
tation on the web can be classified in to two main parts, viz. presenting individual

pages, and presenting a collection of pages called document. Individual pages refer to

44

Figure 15: Precedence relation

concepts, where each concept has its own temporal and spatial constraints. Authors
should be assisted in planning the collection of these pages to make an organised pre-
sentation. In this thesis, we propose a model which we call the “Document Model” to
realise a document. The document model uses a directed acyclic graph where nodes
represent pages and edges represent precedence relation between the pages. If there
is a directed edge going from node A to node B (Figure 24) then node A should be
covered before node B. An example concept graph is shown in Figure 16. The graph
contains eight nodes or concepts and relations between them. There are two ways in
which the user can read till node G: the path A,B,C,D,G or A,B,E.F.G. Navigation

of a concept graph is well structured and directed.

Figure 16: Concept Graph

45

3.3.1 Planning, building and delivering

The knowledge structure of the author could range from a simple linear structure
to a complex graph structure. This knowledge structure of the author should be
transformed into an appropriate computational structure by the document tool with
minimal intervention from the author. The tool should be able to store the complex
structure, build the equivalent document structure, and deliver the presentation as
viewed by the author in his mental model. The knowledge structure is a graph
structure that contains chunks of information linked by associations. The nodes
represent the concepts or chunks of information, and links refer to precedence relation
between the linked concepts. The various stages of a presentation as shown in F igure

5 can be mapped as follows,
¢ Planning - mapping of mental model to its equivalent document model
¢ Building - Adding semantics to the computer model
e Delivering - Realising the computer model in the form of a document

We consider this process of transforming the mental model of the author to the graph
structure as the planning stage of a presentation. Authors are assisted in both ap-
proaches, viz. top-down or bottom-up to plan a presentation. Authors could make

the concepts and plan the graph structure or else, make the graph structure and then

fill the concepts.

Once the mental model of the author has been transformed successfully into its equiv-
alent document model, the document building tools, interprets the grammar from the

planning phase and generate an equivalent web code.

Finally, the document delivery tool interprets the code generated by the build stage
and presents the document model as a multi-media presentation. Subsequent to this,

maintenance of the presentation is made easier using the Concept Graph Model, as

46

authors can easily drag and drop new pages into an existing presentation, or simply
delete existing nodes from a presentation. The building module reacts to the deletion

and reflects it on the delivery.

47

Chapter 4

Implementation Design

In this chapter we present the implementation of the web authoring tool. The au-
thoring part is a stand alone application that aids authors in planning and building
a presentation. The authored product is delivered as an interactive multimedia pre-

sentation. The browser is the medium over which the presentation is realised.

The requirement is to design a software to support authors irrespective of their do-
main knowledge to build interactive web pages. The software should be able to take
as input the knowledge structure of the author and create the necessary web pages
automatically. The author interacts with the software and specifies his requirements
for the layout of the resources and the interaction that is desired between the re-

sources also called objects in a web page.

In Chapter 3 we presented the grammar that specifies the layout of resources and
the interaction between the resources in a web page. The input to the page authoring

part is as follows:
¢ The resources that are to be displayed in the page

® The spatial and temporal specifications as per the grammar containing the

resource definition, layout definition and the event definition of the resources in

48

the page
The output from the page authoring part has the following,
¢ Dynamic HTML code required to display the page

o Java Script code to layout the resources as defined in the specification file as

per the grammar
o Java Script code and Java applets to handle events

As mentioned in Chapter 3, the next step is to collect these pages in an organised
manuner to form a document. We developed a graph editor with a drag and drop
user interface that can be used to create a document. The input to the document

authoring part consists of the following two parts:
1. HTML pages
2. Graph drawn using our graph editor

The output from the document authoring is a file that has a suitable representation

for the graph.
1. Representation of the graph as a graph file

This graph file can be interpreted by the document presentation module to display
the graph on the browser.

We organise this chapter as follows. Qur design of the authoring tool is presented
in Section 4.1. We have already described the grammar to author the pages and
documents in chapter 3. In this section we describe the process of converting the
page specifications into Java Script and dynamic HTML code, and the process of
translating a document representation to its presentation Java applet form. As the
implemented authoring tool generates Java Script and dynamic HTML code to dis-

play a page and a document on the browser, we present an introduction to dynamic

49

HTML and Java Script in Section 4.2. In Section 4.3 we describe the implementation
of the authoring tool. In this section we present the implementation of page-authoring
and document-authoring modules. In Section 4.4 we demonstrate the implementation

of the page presentation module and the document presentation module.

4.1 Design of the web authoring tool

We present the the architecture, object diagram and activity diagram of our design.
We describe the various subsystems in the architecture of our design. Subsequently,
we present the object diagramn explaining the various objects in our design. Finally,

we present our dynamic model with an activity diagram.

4.1.1 Architecture

Figure 17 shows the various subsystems and the interactions between them. In our
architecture we identify three main subsystems narely, Authoring part subsystem,
Presentation part subsystem, and the Presentation medium. The authoring part sub-
system is further subdivided in to the Graphical User Interface subsystem, Page sub-
system and the Document subsystem. The Page subsystem aids authors in planning
and building pages of a document. It includes a lezical analyser, syntar analyser,
semantic analyser, and code generator. The document subsystem consists of the
document generator and document representation. The document generator is the
graphical user interface that aids authors in defining the document. The document

representation stores the defined document in computer concepts.

The presentation subsystem is made up of two different subsystems, viz. presen-
tation content and Event handler. The presentation content is the material that is
displayed on the presentation medium. The presentation content can be page or a

document. To realise the presentation contents the presentation subsystem has an

50

event handler and Java Script library. The presentation part contains the represen-
tation of the page and the document respectively. With the help of custom libraries
and the event handler, the presentation part realises the presentation. The browser
generates events that are handled by the event handler. The events could be gener-

ated by the system or by the user interacting with the browser.

Authoring Part
Page Presentation Part
Graphical User Presentation Content
Laxical analyser
Page
Syntax Analyser
g Document
! Semantic Analyser
Dynamic ibruries
Document Event Handler
g - I
Documeat tor Presentstion Medium
g Browser
Document Representation
Users

Figure 17: Architecture of authoring tool

4.1.2 Object design

In this section we explain our object diagram. As shown in Figure 18, the graphical
user interface generates spatial and temporal specifications as per the grammar, for a
page and a document respectively. The document grammar defines a document. The
page specifications as per the grammar is used by the page authoring tool to generate
the code required to realise a page. The page authoring tool consists of a lexical

analyser, syntax analyser, semantic analyser, and a code generator. A document is a

31

Gul

Displays

Browser

Generates
Document Document Realiser
Grammar
Hasil
N
Page authoring Tool Page Page Realiser
Realises
Uses
Generates
Consists of Event handler
<> Consists of Displays
Generates
events
Event dispatcher
Lexical Analyser Semantic Analyser -<>
Notifles actions
Static/Dynamic HTML
Syntax Analyser Code Generator

Figure 18: Object diagram

52

collection of pages and so has a one to many relation with page. Each page consists
of an event handler, event dispatcher, and its dynamic HTML code. The document
realiser realises the document and displays it on the browser. Similarly, the page
realiser realises the page and displays it on the browser. The browser generates events
that are handled by the event handler in a page. The event dispatcher analyses the

event and notifies the necessary action to the browser.

4.1.3 Dynamic modelling

In this section we describe the dynamic model of the authoring tool. The dynamic
model shows the time-dependent behaviour of the system and the objects in it. We
consider some of the scenarios in this section. Let us consider the scenario where the
author wants to create a page and identify the various steps involved. The various

steps are as follows.

e the author specifies the spatial and temporal specifications as per the grammar

for the page

the file is checked for valid filename

the author inputs the options using the user interface

the specification file as per the grammar is read

¢ on success, it is checked for syntax

on success, the relevant data structures are created

generate dynamic HTML code for the specifications
o display the generated dynamic HTML code on the browser

The above mentioned scenario specifies the various steps in creating a page. Figure 19
explains the activity diagram for this scenario. We describe the scenario in creating

a document as follows. Figure 19 explains this scenario.

53

Open Main Window

Find selection
DHTML l Graph
C s |
Input grammar file Get selection
Invalid file ¢ Open new graph
Valid file Open existing graph
Input parse options File input dislog
¢ Cancel
ok
Read input grammar file Chech if valid graph file
<> Failure ¢ Invalid
Success Valid
Check grammar syntax Load or Read graph file
¢ Esror Failure
Success Success
Create data structures Create data structures Error Handling
Check parse options/ DEHTML Create Graphical User Interface Create Tree view
Do not generate dhiml
Generate dhml
Make dhtm! code Error Handling Display Graph Show Tree view
Check parser option/Browser Edit Graph
Do not display
Display on browser
Display or preview code Find user command
&&Vﬁl A Quit
n Save SaveAs Y
Save data structures (o file File dialog output filename
l
Save (o different filename
J

Figure 19: Activity diagram

54

e open input graph file

o check file for valid input files

e read input graph file

e create data structures from the file
e create the user interface

e display the graph

e allow user to edit the graph

e save the graph in a new file

4.2 Dynamic HTML and Java Script

Navigator version 4 from Netscape [19], which is part of the Communicator product
suite, includes three new areas of functionality that taken together constitute Dy-
namic HTML. The three components of Dynamic HTML are style sheets, content
positioning, and downloadable fonts. Used together, these three components give a

greater control to the author over the appearance, layout, and behaviour of web pages.

Style sheets allow specification of the stylistic attributes of the typographic elements
of a web page. With content positioning, we can ensure that pieces of content are
displayed on the page exactly where we want them to appear, and we can modify
their appearance and location after the page has been displayed. With down load-
able fonts, we can use the fonts of our choice to enhance the appearance of text. Then
we can package the fonts with the page so that the text is always displayed with the

chosen fonts.

Using content positioning, no longer are we constrained to use sequential content

55

laid out linearly in web pages. By specifying positions for blocks of HTML content,
we can decide what contents goes where on the page, instead of leaving it up to the
browser to lay it out for us. We could, for example, place one block of content at
the top-left corner of the page, and another block at the bottom-right corner. Blocks
of content can share space too, so images and text can overlap. We decide precisely
where each part of the content will appear, and Navigator 4 will lay our page out

exactly as we want.

Java Script [25] is Netscape’s cross-platform, object-based scripting language for client
and server applications. Java Script lets us create applications that run over the In-
ternet. Client applications run in a browser, such as Netscape Navigator, and server
applications run on a server, such as Netscape Enterprise Server. Using Java Script,

we can create dynamic HTML pages that process user input.

Using Java Script, we can change the layout of our page dynamically, and we can
modify the page in a variety of ways after the user has opened it. We can make
content vanish or appear, and we can change the color of individual parts of our
page. We can incorporate animation into our web pages by moving and modifying

individual parts of our HTML page on the fly.

Used together, content positioning and Java Script allow us to create web pages

that can be more interactive.

4.3 Implementation of the authoring tool

The implementation of the web authoring tool has two parts, the Authoring part and
the Presentation part. The authoring part is a stand alone Java program that takes
as input a spatial and temporal specification as per the grammar and generates the

corresponding web code, viz. “.html” file. These “.html” files are collected using the

56

authoring tools Graph Editor, which is a WYSWYG editor that supports full drag

and drop creation of a directed acyclic graph.

In the presentation part, the presentation applet delivers the presentation taking as
input the data file generated by the document authoring module. In the presentation
of a page, to achieve an interactive and dynamic presentation, the page presenta-
tion is powered by Java Script libraries and Java applets. The implementation of
the authoring tool is done using Java 1.1.6 and Swing 1.0.3 and requires Netscape
version 4. Swing 1.0.3 is used to develop the user interface. Apart from the above,

the implementation uses concepts of dynamic HTML, Java Script and JavaApplets.

4.3.1 Page authoring

JavaScngt layers for every
e resource

Resourcedefinition P=q=-=s+-ecmcceccccccncctccrcccccccceccccnscctccncvenocoancnnensrs

Each layers OnLosd propeny
set 10 ALignPanllel or
AlignSenal

Layoutdefmition po--scccccccoseccromm ettt ettt atoanctotienanane - o

Each layers OnClick.
OnMouseOver etc. sct to

Event definition e e L R Y YT 3

Figure 20: Block diagram of page authoring

In page authoring, a specification file as per the grammar is given as input to the
authoring tool and a dynamic HTML output file is automatically generated. Figure
20 shows the block diagram of the authoring process. As shown in Figure 20 the spec-
ification file has three types of definitions, viz. resource definition, layout definition,
and the event definition. The resource definition defines the type of the resource, its

properties etc. An example resource definition is a shown below.

57

% RESOURCE DEFINITION

NAME=Resourcel, TYPE=IMAGE, PROPERTY=inline, FILENAME=‘‘prev.gif’’,
WIDTH=default, HEIGHT=default, ALIGNMENT=PC;

NAME=Resource2, TYPE=IMAGE, PROPERTY=inline, FILENAME=‘next.gif’’,
WIDTH=default, HEIGHT=default, ALIGNMENT=default;

NAME=Resource3, TYPE=HTML, PROPERTY=inline, FILENAME='‘imagel.jpgt
image2. jpg&image3. jpghimage4. jpgkimage5.jpg’’,
WIDTH=600, HEIGHT=400, ALIGNMENT=PC;

In the above definition, The NAME parameter identifies the resource. The TYPE
specifies the type of the resource, viz. HTML, IMAGE, AUDIO, etc. The third
parameter defines the property of the resource as inline or as hyperlink. The FILE-
NAME defines the file for the corresponding resource. The other two parameters
define the WIDTH and the HEIGHT of the resource. This can be either set to de-
fault. in which case the natural height and width of the image will be assumed. The
last parameter defines the alignment of the resource in a page. This can be default.
in which case the resource will be alignment as per the layout definition, or page

centered in which case it will be always aligned at the center of the page.

This resource definition is passed through the lexical analyser, parser, semantic anal-
yser, and the code generator to generate the dynamic HTML code. The lexical anal-
yser segments the syntax in to tokens and passes the tokens to the syntax analyser.
The syntax analyser verifies the syntax and forms the data structures to store the
definitions. In our implementation, the semantic analysis part is done during code
generation. Hence, the code generates the corresponding code to realise the resources.

The code for the above mentioned example will be as follows.

<LAYER ID=Resourcel top=0 left=0>

<CENTER>

58

</CENTER>

</LAYER>
<LAYER ID=Resource2 onload=AlignParallel ("Resourcei",
"Resource2","FT", "Resourcei")>

</LAYER>
<LAYER ID=Resource3 src=imagel.jpg onload=AlignSerial(
"PANEL1","Resource3","FL","PANEL1") Width=600 HEIGHT=400 >
</LAYER>
<SCRIPT>
var list = new list();
list.Next = Next;
var i=0;
list .HANDLE=new Array();
for(i=0;i<100;i++)
list .HANDLE[i]=null;
list .HANDLE["Resource3"]=new Array(“imagel.jpg","image2.jpg",
"image3.jpg","image4.jpg", "image5. jpg") ;
list .HANDLE["Resource3count"] = 0;
</SCRIPT>

Following the resource definition, the spatial and temporal specification file contains
the layout definition for the various resources. The layout grammar is described in
Chapter 3. The layout grammar defines the serial and parallel relation between the

resources in a page. An example layout definition is as follows.

% LAYOUT DEFINITION
pack START Resourcel 11;

59

pack PANEL1 Resource!l + Resource2 FT Resourcel 2;

pack PANEL1 PANEL1 * Resource3 FL PANEL1 2#

The layout specification shown above passes through the various phases of the au-
thoring tool as shown in Figure 20. The code generator generates the code requied to
realise the layout of the resources. The code generated is as shown above. Each layer
has a OnLoad property which is executed during load time of that resource. This
property of dynamic HTML is used to change the various properties of the resource
during load time of that resource. In the code segment shown above, the layer def-
inition for Resource2 has its OnLoad function pointing to a custom library function
called AlignParallel. The Java Script function that does the alignment is as follows.
The code demonstrates the parallel alignment between two resources identified by

strl and str2 with the reference resource identified by str3..

The final entry in the spatial and temporal specification file is the event definition.
The event definition defines the interaction between the resources in a page. As a
continuation to the above mentioned example, let us assume that a click on the prev
button should take the image resource to its previous image and the nezt to its next
image. To achieve the above, the click event on the prev and nezt button image are
mapped to previous and next on the image resource. The specification as per the

grammar for the event definition is as follows.

% EVENT DEFINITION
Resourcel CLICK Resource3 Prev;

Resource2 CLICK Resource3 Next;

The code generated to achieve the interaction between the resources is a shown below.
The onclick event of the resources are caught and passed on to the event handler.
The event handler posts the events to the server applet of the page. The server applet

maps the event to its event table and executed the corresponding action.
<Layer Name="SERVER" visibility=hide>

60

<Applet NAME="SERVER" code="Server.class" height=50
width=200 MAYSCRIPT=true>

<Param Name=EventDefinition Value="Resource2 Next
Resourcel Next Resource2 Next Resource3 Hide
Resource2 Prev Resourcel Prev Resource2 Prev
Resource3 Show ">

</Applet>

</Layer>

In the code generated, every event might be a user generated event or a cascading
event. A cascading event implies one event generating another event. For example,
a hide event on once resource can generate a show event on another resource. The

server applet has the event table passed as a parameter during creation.

4.3.2 Document authoring

In this section we describe the document authoring system. The document authoring
system consists of a graphical user interface to create a simple data file for the presen-
tation tool to realise the document during presentation. A sample data file created
by the document authoring tool is as shown below. The string at the beginning of
the file identifies a specification file. The various nodes in the graph are defined and
the properties are specified. The last line in the file defines the edges between the
nodes in the graph. An entry <1,2> means that there is a directed edge from nodel

to node2.

GRAPH-FILE-VER1.0

1 First.html "First Node Heading" 289 23 RECTANGLE
2 Second.html "Second Node Heading" 212 95 CIRCLE

3 Third.html "Third Node Heading" 348 91 CIRCLE

4 Fourth.html “Fourth Node Heading" 150 137 CIRCLE

5 Fifth.html “Fifth Node Heading" 243 151 CIRCLE

61

6 Sixth.html "Sixth Node Heading" 398 148 CIRCLE
7 Seventh.html “"Seventh Node Heading" 309 149 CIRCLE
<1,2> <1,3> <2,4> <2,5> <3,6> <3,7>

4.4 Implementation of Presentation tool

The presentation tool realises the output of the authoring tool. There are two types
of presentation, viz. page presentation and document presentation. The page presen-
tation aims at achieving the dynamic layout of resource in a page, and the interaction
between the resources in a page. The document presentation presents the document

on the web.

4.4.1 Page presentation

The page presentation is done with the help of a custom Java Script library to han-
dle events and to layer the resources. As mentioned in page authoring, the onload
property of every resource is set to either “AlignParallel() or AlignSerial” depending
on the type of layout specified. This is a custom Java Script function that is used to

place to resources in the appropriate positions inorder to realise the layout.

The code below shows a brief example of the AlignParallel function. The function
takes as parameter two source panels that are to be aligned (strl and str2). It also
takes as input the alignment property and the reference resource. The functions
checks for valid resource names and then computes the left, top, right, bottom for
the second resource relative to the first resource. As this method is called every time
a new resource is loaded, the layout is computed dynamically every time there is a

change in the content of the resource.

function AlignParallel(strl,str2,align,str3) {
var resourcel = window.document.layers[stri];

var resource2 = window.document.layers[str2];

62

var reference = vindov.document.layers[strS];
if((resourcel!="undefined")&&(resource2!="undefined")&%
(reference!="undefined")) {
resource2.left=resourcel.clip.width+resourcel.left;
var padding=0;
switch(align) {
case "FT":
resource2.top=reference.top+padding;
break;
case "FC":
resource2.top=(reference.clip.height)/2+reference.top+padding;
break;
case "FB":
resource2.top=(reference.clip.height+reference.top)+padding;
break;
default:

resource2. top=reference.top+padding;

break; }
}
else
alert ("Error: Undefined panel/resource found in declaration...");
}

The above mentioned code is used to realise the layout of a page. To achieve inter-

action between the resource in a page, events generated on all resources are directed

to a “HANDLER()” function. The handler function takes as input the name of the

resource receiving the event and the event. After checking for valid resource name,

the action for the event is executed. After executing the action for the resource, the

event to generate in another resource is to be found. To do this, the name and the

resource and the event is passed to the server applet in the default option. the server

63

applet maps the event with its event table and triggers the corresponding action on

the destination resource.

function HANDLER (name,event) {
var resourcel = window.document.layers(name];
if(resourcel '= "undefined") {
switch(event) {
case "Next":
Next(name); break;
case "Prev":
Prev(name); break;
case "Show":
ShowLayer(name); break;
case "Hide":
HideLayer(name); break;
default:
document.layers["SERVER"] .document.applets["SERVER"].
PostMessageToServer(name,"CLICK");
break; } }
else

alert("Error: Panel/resource not found - “+name); }

In the current implementation, authors have to manually hand code custom events
and actions. Custom events can be added as a case statement in the switch case for
events in the HANDLER function. The required action can be defined in a JavaScript

function and should be called in case if the appropriate event occurs.

4.4.2 Document presentation

The document presentation applet takes as input the document data file created by

the document authoring tool. The data file is read by the applet and appropriate

64

data structures are formed. The document presentation tool then displays the graph
on the web browser. The graph presented is a directed acyclic graph, where the nodes
represent pages and the edges represent the precedence relation between the pages.

The code below shows the document presentation applet defined in a html file.

<APPLET code="ShowTutorial.class" width=800 height=500>
<param name=FileName value="main.gph">

</APPLET>

As the user interacts with the graph by clicking on the respective nodes, the applet

displays the contents of the node by opening another browser window.

65

Chapter 5

Application - A case study

In this chapter we demonstrate a real-life application of our web authoring tool in the
area of Computer Aided Learning (CAL). A web based presentation is developed for
the COMP 228 course taught at Concordia University for the first year undergraduate
students. COMP 228 is a course on Computer Organisation and Assembly Language
programming being taught at Concordia University. This is an introductory course

in assembly language programming. The two main objectives of the course are:

e To introduce a specific Computer System, and a small subset of its Assemnbly

Language features.

o To introduce the concepts of Computer Organisation in a generalised way giving

reference to the particular system learnt.

The course being taught at the University has almost 300 students registered in it.
The text-books followed in the course until June, 1998 are Assembly Language for
the IBM PC, K.R. [rvine and Computer Organisation and Architecture: Designing
for performance, W.Stallings. Apart from the text-books the course has abundant
material available on the web. Some of the useful links are given in the course outline
page in the departments home page at http://www.cs.concordia.ca/comp228/. Apart
from these material, the course also has a set of slides containing the course notes.

The slide show is non-interactive and is created laboriously every time when the

66

course material changes. To supplement the existing material with more user-friendly
presentation, the Web authoring tool developed as part of this thesis work is used to
develop an interactive slide show for the COMP 228 course. The slide show has eight
modules comprising approximately fifteen slides each. The inputs to authoring tool

are:
¢ slides for all the modules

e audio files corresponding to the modules

Using power point 97
Microsoft Power
. Converted to M HTML |
Point slides
generates
Maodule planming and favaSeripe and
" e DHTML code for
building ool
Using audio tools esch module
Audio for N slides A
C dto N audo files | .-
In cassette
Synchronized using the page module

Figure 21: Slide show page planning and building

The Web authoring tool comprises of an authoring part and a presentation part. The
assembly language part of COMP 228 is organised into eight modules. The eight
modules are General Introduction[6 slides in Power Point], Register structures and
Internals 17 slides|, Assembly Language Basics [14 slides}|, Four addressing modes [10
slides], Stacks [12 slides], Arrays and Arithmetic [10 slides]|, Subroutines [16 slides],
and Macros (8 slides]. The audio files explaining each slide contained in a module is
provided by the author along with the Microsoft Power Point slides. Using the facili-
ties available in Power Point, the slides are converted into HTML files and customised.
The audio for the whole presentation given by the author is split into smaller units
corresponding to each slide and saved in different files using suitable audio editors.
In our case, we use soundtool and gaintool available on SunOS. Once this is done, the
set of slides and audio are layered accordingly and sequenced as described in chapter
3, so that each slide is linked to its appropriate audio file using the authoring toal.
The authoring tool generates the necessary Java Script and DHTML code needed to

67

realise the page representing the corresponding module. Figure 21 shows the block
diagram of the page planning, building and realisation phase in a slide show presen-
tation.

Once the individual modules of the assembly language course have been developed,
they are organised and grouped as per the “Concept Graph”. Figure 22 shows the
block diagram of document planning and building. The collection of pages or modules
are linked using the Concept Graph Model and the document presentation applet is
generated. The applet does the interactive presentation on the browser for the indi-

vidual modules with audio and slides synchronised.

DHTML code D
Modue | N genenates
Slideshow presentation
Slideshow planmung and buiiding
Applet
DHTML. code s
Madule N " N modules grouped and organised

Figure 22: Slide show document organisation and building

We organise the rest of this chapter as follows. In section 5.1 we discuss the creation
and presentation of the course material for the assembly language part of COMP
228. Subsequently, in section 5.2 we evaluate the usefulness of the authoring tool and

presentation tool using real-life authors and users.

5.1 Authoring the assembly language course

We applied our newly developed tool in a specific example of Computer Aided Learn-
ing (CAL). The course material consists of an interactive slide show which is made
with the help of our authoring tool. Out of the eight modules used for teaching this
part of the course, slide show for four modules is used for evaluating the authoring
tool. The four selected modules are then presented to students with the help of our

presentation tool.

68

An example author who is a final year undergraduate student in Computer Science is
selected. The professor creates the raw material required for the presentation using
the tools and packaged the professor is familiar with. The example author uses the
materials created by the professor for the slide show. Selected students of the course
are requested to read the material presented with the help of the presentation tool and
are supplied with a questionnaire for evaluation. The performance of the students is
studied and their feedback is analysed and the authoring tool is incrementally refined
for better performance. The feedback from the author is studied and the authoring
tool gets fine tuned as per the requirements of the author. The following issues were

examined when the authoring tool was put to real-life use:

Versatility and feasibility of the authoring tool

o Ease of use by an author

Learning curve required to master the authoring tool

Incremental development, and maintenance of the authored material

¢ Usefulness on the authoring tool in producing a satisfactory end-product (course-

ware)

5.1.1 Slide show page definition

The material for presentation is created by the author. The slides are composed
using the material provided in Microsoft Power Point. The slides for each module
is converted to HTML files using the features provided in Microsoft Power Point.
Microsoft Power Point saves the slide as several HTML files, each corresponding to
one slide within a module. There are two versions of slide show that are generated
automatically by power point, namely graphical version and text version. Power Point
generates 2*N sets of HTML files for a single module comprising of N slides where,

one set is for the graphical version and the other set is for the text version. The

69

audio for each module is recorded in Digital Audio Tape (DAT) in the Audio/Visual
department, Concordia University using DAT recorder. The digital audio is played
using a digital audio player. This digital audio player is connected to the server and
the audio converted to audio files using suitable audio tools. The audio recording for
a module is further split into smaller units corresponding to cach slide and saved in
different files.

The specification file as per the grammar for the presentation is created using a text
editor. The resources are defined as per the syntax of the grammar and the layout
is specified accordingly. Using the event definition module of the grammar, the N
HTML-files corresponding to the N slides within a module are synchronised with the
N audio files so that the audio part starts after the corresponding slide is displayed.
Once the specification file as per the grammar has been created, the specification
file is fed as input to the authoring tool to generate the low level DHTML code to
realisc the presentation. Figure 27 shows the “screen shot” of the authoring tool
used to generate DHTML code from the input specification file as per the grammar.
The checkbox option in the GUI for generating DHTML code is checked and the
specification file as per the grammar is given as input. The GUI prompts the user to
input the destination file name. On entering the destination file name and the user
pressing the “ok” button, the authoring tool automatically generates the low level

DHTML code to realise the grammar based specifications.

5.1.2 Slide show document definition

Authors have to be provided enough support to collect the automatically generated
DHTML files to make a courseware. In the document definition phase authors are
provided with a graph editor to build their Concept Graph. The graph editor provides
a drag and drop environment for authors to build their Concept Graph. Authors can
freely drag and drop the various DHTML files in the graph editor and define a prece-
dence relation between them during the creation of a concept graph. The precedence

relation between dynamic HTML concepts (nodes) can be drawn as directed edges

70

Figure 23: DHTML page of Web authoring tool

using the graph editor. Figure 24 shows a screen shot of the graph editor’s output.
Once the concept graph has been drawn using the editor, it is saved as a “.gph” file
by the editor. A concept graph once created and saved can be reloaded and edited

freely at a later time.

5.1.3 Slide show presentation

The world wide web is used as the medium of presentation. The slide show presenta-

tion is two fold.
e concept graph presentation (document presentation)
e presentation of individual concepts (page presentation)

A presentation Java applet is used to deliver the concept graph on the world wide

web. The graph file (“.gph”) generated by the graph editor is used as input by the

71

Figure 24:

Graph editor of Web authoring tool

72

f
:
l

Figure 25: Document presentation

73

Whatis a stack?

Operations on a stack

Realization of stack in IBN PC!

Application of a stack

Figure 26: Page presentation

74

presentation applet. The applet reads the input graph file and displays it on the web.
A screen shot of the presentation generated by the applet is shown in Figure 25. The
presentation applet monitors the user action and reacts accordingly. A click on any
node lets the user to travel to the respective web page describing the specific concept.
The presentation applet also notifies the user of the pre-requisites that should have
been covered before reaching that concept in the courseware.

Each concept is presented in an interactive way with the help of custom written Java
Script and Java libraries, and using DHTML features. The definitions defined for
interaction in the slide show module definition is realised using the libraries. Figure

26 shows a screen shot of a page during presentation.

5.2 A brief survey with end-users

The assembly language course material presented on the web was put to real-life use
for an undergraduate coursc being taught at the department of Computer Science,

Concordia University. The term real-life implies the following:
o Real lessons
o Real students
e Significant quantity of material (not just one sample lesson)

For this application we have developed audio presentation for four out of the eight
modules. All the eight modules was presented on the web as slides and text, and
modules five, six, seven and eight were available with audio and slides.

To evaluate the performance of the authored product, a real-life author is asked to
use the authoring tool to prepare the lessons for the course. Once the course material
is made ready for presentation, real-life students were asked to use the presentation
and their feedback was analysed. In our case study, one real-life author and twenty
five real-life students are requested to evaluate the authoring tool and the authored

product. As part of the case study to evaluate the product, a questionnaire is given to

75

students and their feed back analysed. However, to evaluate the author, a structured

interview is carried out with the author and the feedback analysed.

5.2.1 The questionnaire given to students

A questionnaire is given to the set of students who are asked to use the authored
product and their feedback is analysed. The questions are prepared such that it can

conclude on three aspects of the authored product:

1. Usefulness of the courseware

[\)

. Availability of information in an organised manner

[

. Quality of material and presentation

In the list of questions given below, the first and the sixth questions provide informa-
tion on the usefulness of the authoring tool. Questions two and three help us conclude
on the availability and the organised way of presenting information. The questions

four and five are pertaining to the quality of the material and the presentation.

1. Was this new method of presenting information useful to you?

(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

2. Ease with which the presentation aspects could be changed or controlled

(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

3. Were you able to navigate through the presentation easily

(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

4. Was the audio presentation easily comprehensible

(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

5. Was the visual presentation easily comprehensible

(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

76

6. Was the material presented useful to you
(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

-1

Would you like to refer to slides while reading the text, and vice versa.

(a) Yes (b) No (c) No Comments

8. In following the material content of this module, how would you classify your

pre-requisite knowledge.

(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

9. Any other comment or suggestion that you would like to make

(Responses to this question are not included in the tabular summary)

5.2.2 The questionnaire given to authors

In the evaluation for the authoring tool we conduct a structured interview with one
example author. Author in this case is different from the professor. An interview
was conducted with the real-life author to evaluate the tool. In this interview the

following were examined:
o Feasibility and ease of using the authoring tool
¢ Learning curve required to master the authoring tool

¢ How easily incremental modifications and maintenance were made to the au-

thored end-product

Questions are asked to the author about the feasibility of the authoring tool. The
ease with which the authoring can be done is analysed and useful feedback taken for
improvements and modifications. A major difficulty in learning new tools is a steep
learning curve. Proper feedback is taken from the authors to evaluate the learning
curve in mastering the authoring tool. The author is asked to do incremental devel-

opment and also do maintenance of the courseware with changing input data. The

7

ease with which the maintenance and modifications could be done to the courseware

with the help of the authoring tool is evaluated.

1. Ease with which the presentation can be authored

(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

o

Use of Graphical User Interface for authoring

(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

3. Efficiency of the automatically generated dynamic HTML code
(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

4. Manual editing of the automatically generated dynamic HTML code
(a) Very Easy (b) Easy (c) Fair (d) Impossible

(41

. Pre-requisite knowledge required to learn the tool
(a) Excellent CS (b) Very Good CS (c) Good (d) Average CS (e) NO CS (CS:

Computer Science knowledge)

6. Has supported the author to achieve his goals
(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

7. Choice of grammar structure

(a) Very hard (b) Hard (c) Fair (d) Simple (e) Easy

8. Tool support provided to authors to make incremental changes and subsequent
maintenance

(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate

9. User friendliness of the authoring tool

(a) Excellent (b) Very Good (c) Good (d) Fair (e) Inadequate
10. Achieved stated objectives in a scale of 1-5 (1.excellent and 5.poor)

e 1. The authoring tool is easy to use

78

¢ 2. The learning curve required to master the authoring tool is minimum

e 3. Incremental modifications and maintenance is easy

11. Time taken to learn the authoring tool

12. Educational background of the author

13. Time taken to prepare module 5, 6, 7, and 8 in their final form

—
~
o—

. How easy was it to edit and correct an existing presentation?

5.2.3 Evaluation results

The results of the questionnaire based evaluation are summarised as follows. We draw
our conclusions from students feedback based on the relationship between questions
and conclusions as shown in Figure 27.

The conclusions of the evaluation are shown in a tabular column. Twenty five students

were asked to evaluate the presentation. The following conclusions were made:
o 98% of the students gave a feedback that the tool was very useful

o 84% of the students felt that it was an ezcellent way of presenting information
in an organised way. 14% felt that it was a good way of presenting information

in an organised manner.

o 90% of the students felt that the quality of the material was ezcellent. 10% of
the students felt that the quality of the material presented was good.

e 68% of the students didn’t have very good knowledge of the material presented.
32% of the students had very good back ground on the material presented.

79

Questions Conclusions

1. Was this new method of presenting information useful to you?,

-~

C-» Usefulness of the presentation tool

2. Was the material presented useful toyou? ...-----"

3. Were you able to navigate through the presentation easily? o)

eo

______ > Organised way of presenting
4. Ease with which the presentation aspects could be ...-----"~ information

controlled or changed

5. Was the oral presentation easily comprehensible?

.....

,,,,, -® Quality of the material and
6. Was the visual presentation easily comprehensible? ..----T~ presentation

7. In the following material content of this module, how would
you classify your pre-requisite knowledge =~ ... l.._.. -+ Type of user

Figure 27: Evaluation of the authoring tool

(This is because the topics of module 5, 6, 7, and 8 are not covered yet in all

sections of COMP 228)

o 72% of the students wanted to refer to slides when reading text, and to refer
to slides when reading text. 12% of the students didn’t want to refer to slides

when reading text, and vice versa. 16% had no comments.

Questions | Excellent l/ery Good Good Fair | Inadequate
1 17 B 8 o 0 0 0
2 9 15 1 0 0
3 11 12 1 1 0
4 14 5 6 0 0
5 12 11 2 0 0
6 12 10 3 0 0
7 18-Yes 3-No 4-No comments | 0 0
8 3 5 9 5 2

[7. Would you like to refer to text while reading slides and vice versa]

80

5.3 Interpretation of the survey results

In the preparation of courseware for COMP228 course, three types of people were

involved:

e Professor - who created the material for the text and slides, audio for the slides,

and also the concept graph

e Author - a senior undergraduate student who has taken this course before and

worked closely with the professor in preparing slides, text and the audio
e Student - the end-user of the authored presentation

The raw material for the presentation was provided by the professor to the author.
The raw materials in this case, included slides, audio files, and the text. The slide

show web pages were created by the author as follows:

Step 1 The author created a spatial and temporal specification file as per the gram-

mar using a text editor.

Step 2 The specification file was given as input to the page authoring tool to generate

the necessary low-level HTML code required to display the page.

Once the individual web pages have been created, the author creates a document

using the steps defined below:

Step 3 A graph editor is developed as a part of this thesis work. Using this graph
editor, the author drew the concept graph as structured by the professor. The

graph is saved in an output file.

Step 4 The author specifies the name of the output file from step 3 as input to the

document presentation applet.

Step 5 The presentation is viewed on the browser and tested.

81

In our case the author was provided with the raw materials for the presentation by
the professor. To prepare the raw materials, the author took approximately 10 hours
per module. Once the raw materials were prepared it took less than 30 minutes for
the author to generate the web pages for each module by following the steps given

above.

As part of our evaluation, only one author was considered to evaluate the author-
ing tool. Twenty five students were considered to evaluate the authored presentation.

A structured interview with the author lets us conclude the following:
o that the authoring tool was easy to use,
e very little pre-requisite knowledge was required,
e the authoring was versatile to achieve desired goals,

e incremental development and modifications of the authored material was easily

done.

The evaluation results from the end-users lets us conclude on the usefulness and
quality of the authored product. As mentioned in the previous section, 95% of the
students felt that the authored presentation was very useful. 90% of the students felt

that the quality of the authored product was very good.

The overall wvaluation of the case study lets us conclude the following:

1. It is relatively easy to develop courseware for an author using our authoring

toolkit.

2. Incremental development and modification of the courseware is simple using our

authoring tool kit.

3. The authored courseware is very useful.

82

In our case study due to non-availability of time on the part of the professor, the
role of the professor and the author was played by different persons. These two roles

could be played by a single person aswell.

Chapter 6

Conclusion

Increase in computer usc combined with a rapid expansion of Web access among
the student population and a significant development in associated technologies have
created a need for web-based instruction. Until the advent of dynamic HTML and
Java, Web pages were static in nature. Though dynamic HTML and Java have made
the Web more dynamic in nature, making use of the this feature is not easy for non-
computer expert authors. Another issue in using the Web as a medium of presentation
for learning lies in organising the courseware. As there is vast amount of material in
a typical courseware, different users would have varying needs to start or position at

different places in the navigation.

To achieve an organised presentation of the courseware, we have made use of a model
called the Concept Graph Model (CGM). The CGM is relatively easy for an expe-
rienced author to create a courseware. Using the CGM end-users will be able to

position themselves in a large presentation.

In this thesis, we describe a solution using which the authors can specify the spa-
tial and temporal constraints in organising a page using higher-level descriptions. We
have developed a grammar based approach using which the spatial and temporal con-

straints of a web page can be specified in a simple manner. Starting from this spatial

84

and temporal specification file as per the grammar as an input, the authoring toolkit

automatically generates the necessary low-level web code required to display the web

page.

We choose the widely accessible and available Internet as the medium for presen-
tation. The software (our Web authoring tool) was developed on a stand-alone Sun
sparc workstation (loon). The authored product (namely the four modules) are also
developed on the same machine. At the end, the authored product was easily ported
(in about 2 hrs) to the Internet platform. The portability of our software was thus
evident. The authoring tool was also designed for protability to Internet platform.
However, this porting is not done yet. If it were madc available, one could try col-

laborative authoring as well.

The authoring toolkit is evaluated by a recal-life author and the authoring toolkit
fine tuned. The authored courseware is evaluated by real-life users and their feedback

is analysed.

6.1 Limitations and future work

We suggest two ways for authors to create active courseware. In the first method,
authors themselves use low level programming languages to make their web pages.
In the second method, authors use higher-level descriptions and let an authoring tool
generate low-level web code. The advantage in the first method is increase in power
and the disadvantage is complexity and the learning curve. In the second method,
the advantage is simplicity in usage, but the disadvantage is reduced power due to

abstraction.

Most of the commercially available tools provide inbuilt support for the Web. Though

most of the tools automatically generate web code, the problem of integrating these

85

web code generated by the different tools still persists. We also face this problem in
our creation process. To generate HTML files from Microsoft Word and Microsoft
Power Point is simple, but it takes some more effort in order to port them to Unix

and access it as a resource in the authoring tool.

In the current version, the synchronisation between the audio and slides is course
grained. A click on the "Next” button starts the audio as well the next slide. Erratic
clicking on the next button of the audio can render the audio and the slides out of
phase. A hand shake mechanism can be provided between the audio and the slide to
achieve better synchronisation between them. Fine grained synchronisation between

audio and active resources would be a nice future work.

We are mostly concerned about events within a web page. It will be an interest-
ing work to explore the possibility of inter page events during a presentation. As an
example, during a slide show a next slide event can generate a event in another web

page requesting it to display the corresponding text material for that slide.

Though custom events and actions can be defined by the author, in the present
implementation it involves manual intervention of the author to write some low-level

code himself to define custom actions and events.

The concept graph model used in our document presentation does not cover all pos-
sible cases in a presentation. Though this model has its own weaknesses, it is useful
in our application. The limitations of the concept graph model are beyond the scope

of this thesis.

In our presentation user details are lost after an user navigates through the course-
ware. It will be great advantage to users in the presentation can have persistent

information. This feature will enable each user to start from the point he/she left the

86

presentation.
It will also be an excellent idea to add typical class-room type facilities to the soft-

ware. These facilities can include chat rooms, news groups, on-line quizzes, bulletin

boards etc.

87

Appendix A

Structure of our implementation

We present the list of files in our implementation and a brief description of their

functions.

e CMainFrame.java - Main window of the graphical user interface

~ CMainMenu.java - main menu definition
- dhtmlPanel.java - GUI for dynamic HTML creation
— graphPanel.java - GUI for document creation

~ treePanel.java - GUI to view the graph as a tree
e MainProgram.java - Input to parser and creation of data structures

- ResourceStructure.java - structure of Resource definition
— LayoutStructure.java - structure of Layout definition

— EventStructure.java - structure of Event definition
e CGraphAlgorithm.java - GUT used to draw a graph

— CGraph.java - reads an input graph file

~ GraphCanvas.java - holds the graph GUI

e ShowTutorial.java - to present the document on the web

88

— CNodelndex.java - structure of nodes in the graph
— CNodeToFile.java - Converts from node number to its corersponding URL
— CoordinateArea.class - allied class for GUI

— FramedArea.class - allied class for GUI
o Page presentation

— Tool.js - JavaScript support libraries
— Sound.java - sound applet

— Secrver.java - Server applet for event handling
o Parser files created by JavaCC

— Parser.java

— ParseException.java

- ParserConstants.java

— ParserTokenManager.java
- Ascii-charStream.java

- Token.java

— TokenMgrError.java
e Miscellenous files

- CGraphDialog.java - dialog for graph options

— Global.java - to maintain global variables

- MyFileDialog.java - customised file dialog

— GraphPopup.java - dialog box that to enter node options
- ExecuteCommand.java - JNI interface to invoke Netscape

- ExecuteCommand.c - JNI interface to invoke Netscape

89

Bibliography

[1] Nael Hirzalla, Ben Falchuk, Ahmed Karmouch, A temporal model for interactive
multimedia scenarios, IEEE Multimedia, vol.2 No.3, Fall 1995. pp.24-31

[2] Alan Borning, Richard Lin, and Kim Marriott, Constraints for the Web, ACM
Multimedia 97, Seattle Washington USA

[3] Louis Weitzman, Kent Wittenburg, Grammar-based articulation for multimedia

document design, Multimedia Systems (1996)4:99-111

[4] Louis Weitzman, Kent Wittenburg, Automatic Presentation of Multimedia Doc-
uments Using Relational Grammars, ACM Multimedia 1994, SanFrancisco, CA,
USA

[5] M.Buchanan and P.Zellweger, Specifying temporal behavior in hypermedia docu-
ments, Proceedings of the ACM Conference on Hypertezt, ACM Press, NY, Dec.
1992,pp.262-271

[6] T.D.C Little A. Ghafoor, Synchronization and storage Models for Multimedia
Objects, IEEE JSAC Vol.8, No.S,pp 413-427, Mar 1990

(7] Lynda Hardman, Guido van Rossum, Dick C.A.Bulterman, Structured Multime-
dia Authoring, CWI:Centrum voor Wiskunde en Informatica

(8] R.Rossum, J.Jansen, K. Mullender, D.Bulterman, CMIFed:A Presentation En-
vironment for Portable Hypermedia Documents, proc. of ACM Multimedia 98,
ACM press, CA, pp.189-188, August 1993.

90

[9] Dick C.A.Bulterman, and Lynda Hardman, Multimedia Authoring Tools: State of
the Art and Research Challenges, CWI: Centrum voor Wiskunde en Informatica,

Kruislaan, Amsterdam

[10] Director version 2.0, MacroMind 1990 (dynamic media authoring tool for the
Apple Macintosh)

[11] John Bates, Presentation Support for Distributed Multimedia Application, Uni-
versity of Cambridge

[12] Michael Vazirgiannis, and Susanne Boll, Events in Interactive Multimedia Ap-
plications: Modelling and Implementation Design, International Conference on
Multimedia Computing and Systems, June 8-6, 1997, Ottawa, Canada.pp 2{4-
251

(13] Michael Vazirgiannis, and T. Sellis, Event and Action Representation and Com-
position for Multimedia Application Scenario Modelling, ERCIM Workshop on
Interactive Distributed Multimedia Systems and Services, BERLIN, 3/1996

[L4] Michael Vazirgiannis, Y.Theodoridis, and T. Sellis, Spatio Temporal Composition
in Multimedia Application, In:Proc. of IEEE-ICSE 96 International Workshop
on Multimedia Software Development - BERLIN, 3/1996

[15] Murray W.Goldberg, Sasan Salari, and Paul Swoboda, World Wide Web- Course
Tool: An Environment for Building WWW-Based Courses, Fifth International
World Wide Web Conference, May 6-10, 1996, Paris, France

(16] Murray W.Goldberg, and Sasan Salari, An update on Web-CT - a tool for
the creation of Sophisticated Web-Based Learning Environment, Proceedings of
NAUWeb’97 - Current Practices in Web-Based Course Development, June 12-
15, 1997, Flagstaff, Arizona

91

(17] A.Kameas, and P.Pintelas, The Functional Architecture and Interaction Model
of a GENerator of Intelligent TutORing Applications, J.Systems Software,
1997:36;233-245

(18] Scriplet Technology, http://207.68.156.61/msdn/sdk/inetsdk/help/scriptlets

[19] Dynamic HTML in Netscape Communicator, http://developer.netscape.com
/docs/manuals/communicator/dynhtml/indez.htm

(20] Dynamic HTML without scripting,
[21] WROX Developer’s Journal Volume 2.3, hétp://www.wroz.com/

(22] James Rumbaugh, Michael Blaha, William Premerlani, Fredrick Eddy, and

William Lorensen, Object-oriented modelling and design, Prentice hall
[23] Alfred V. Aho, Jeffrey D. Ullman, Pronciples of Compiler Design, Addison Wiley
[24] UML Notation Guide, http://www.rational.com/uml/html/notation/

[25] Java Script Guide, http://developer.netscape.com/docs/manuals/communicator

/jsquided /indez.htm

92

