Joint Interleaver Design for Multiple Turbo Codes

Neda Ehtiati

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

March 2004

© Neda Ehtiati, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91022-9
Our file Notre référence
ISBN: 0-612-91022-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

il

ABSTRACT

Joint Interleaver Design for Multiple Turbo Codes

Neda Ehtiati

The outstanding performance of turbo codes at low signal-to-noise ratio is
deteriorated in the error-floor region, due to the low values of the free distance of
turbo codes. Interleaver design for turbo codes can improve the minimum distance
of the code, by eliminating low-weight input sequences that result in low-weight
codewords. Interleaver can also be designed to improve the performance of the
sub-optimal iterative decoding methods. While the relating criteria to satisfy these
conditions are known, we are not able to find an interleaver that fulfills all these
conditions in reasonable time.

In this thesis, we have proposed a Joint interleaver design methods, for multi-
ple turbo codes, where we have at least three constituent codes and two interleavers
to design. In our proposed methods each interleaver is designed to satisfy some of
the conditions and the other conditions are satisfied by the other interleaver. This
will decrease the load on one interleaver to satisfy all the conditions at the same
time and enable us to satisfy tougher conditions.

It is shown that the proposed Sequential joint interleaver design converges

very fast and can satisfy very tough conditions, which means better performance at

error-floor region of the turbo code.

1l

Dedicated to my parents, my sister and my husband

iv

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude and thanks to my super-
visor Dr. Mohammad Reza Soleymani for his generous help and constant support.
I appreciate the way Dr. Soleymani devoted his precious time to discuss with me
the details of my research, which was both encouraging and inspiring. His goal has
always been to keep the research environment friendly and stress free.

My heartfelt thanks to my parents and my sister, who supported me with their
love and understanding. Special thanks to my beloved husbanded who has been in-
volved in every aspect of this research, without his support none of this would have
been possible.

I would like to thanks Dr.Hamid Reza Sadjapour and Dr. Daruish Divsalar
for their valuable advice at various stages of this research and from Dr. Daruish
Divsalar for offering suggestions specially with multiple turbo code simulation and
results of density evolution for multiple turbo codes.

I would like to thank Ms. Shirin Esfandiari and Mr. Mohsen Ghotbi and all
of my friends at Wireless and Communication Laboratory of their valuable advice
and suggestions.

I also extend my thanks to the faculty and staff of Electrical and Computer

Engineering department and to my defence committee.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES e e

1 Introduction
1.1 Fundamentals oL
1.2 Turbo Coding
1.3 Analysis and Design of Turbo Codes
1.4 Multiple Turbo coding

1.6 Thesis Outline

1.5 Interleaver Design for Multiple Turbo Codes

2 Turbo Codes
2.1 A Turbo Encoder
22 ATurboDecoder.
2.2.1 Log-Likelihood Algebra

2.2.2 Optimal and Suboptimal Algorithms
2.2.3 Iterative Decoding Algorithm

2.3 Trellis Termination,

24 Interleaving

2.5 Multiple Turbo Codes
2.5.1 Decoding Configurations for Multiple turbo Codes
2.5.2 Iterative Decoding for Multiple Turbo Codes

2.6 Summary

3 Performance of Parallel Concatenated Codes

3.1 Block Codes

3.1.1 Weight Distribution of Block Codes

vi

10
10
11
12
13
19
21
22
23
24
25
28

3.1.2 Performance Upper Bounds for Block Codes 32

3.2 Comnvolutional Codes 36
3.2.1 Weight Enumerators for Convolutional Codes 37
3.3 Parallel Concatenated Codes 39
3.3.1 Weight Enumerators for Concatenated Codes 39
3.3.2 Performance Upper bound for Concatenated Codes 40
3.4 Turbo Codes Design, .. 43
3.4.1 Recursive Constituent Codes 43
3.4.2 Free Distance and Performance at High SNR 44
3.4.3 Spectral Thinning and Performance at Low SNR 46
3.5 Summary ... 46
Interleaver Design 47
4.1 Interleaving 47
4.1.1 Effect of Interleaver Structure on Distance Spectrum 48
4.1.2 Effect of Interleaver Structure on Iterative Decoding 49
4.2 Blockinterleaver 53
4.3 Odd-Even Block Interleavers 53
4.4 S-random Interleaver 54
4.5 Code-Matched Interleavers 56
4.5.1 Code-Matched Interleaver Design 58
4.5.2 Design of Code Matched Interleaver for 3SGPP 63
4.6 summary 72
Joint Interleaver Design for Multiple Turbo Codes 73
51 Multiple Turbo Codeso 74
5.2 Performance Analysis of Multiple Turbo Codes 83
5.2.1 Performance Analysis in Error-Floor Region 83
5.2.2 Design Criteria for Multiple Turbo Codes 86

vii

5.3 An Algorithm for Interleaver Design 95

5.4 Joint Interleaver Design for Multiple Turbo Codes 97
5.5 Parallel Joint Interleaver Design Method 98
5.5.1 Dividing Criterion 98

5.5.2 Convergence Analysis of Parallel Joint Interleaver Design Method 102

5.6 Sequential Joint Design Method 105
5.6.1 An Algorithm for Sequential Joint Interleaver Design 106

5.6.2 Performance Analysis of Sequential Joint Deign Method . . . 109

5.7 Summary 109

6 Conclusion 115
References 118

Viil

1.1
1.2
1.3
14
1.5

2.1
2.2

2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3

3.4

4.1
4.2
4.3
4.4

LIST OF FIGURES

A Typical Digital Communication System 2
A Typical Turbo Encoder 3
A Typical Turbo Decoder 4
Performance of Turbo Codes 5
Decoding configurations for Multiple turbo codes 7
Standard Turbo Encoder with Two RSC Encoders 11
Trellis Structure of Systematic Convolutional Codes with Feedback

Encoders 14
Soft-in/Soft-out Decoder 20
Iterative Turbo Decoding 21
Trellis Termination 22
Multiple Turbo Encoder 24
Decoding Configurations for Multiple Turbo Codes 25
Multiple Turbo Decoder, 29
Coded System Model 32
Recursive systematic Encoder for Code Generator (13,17) 36
How to obtain Codewords of the equivalent Block Code from Error

events of the Convolutional Code, 38
Parallel Concatenated Code 40
Rate 1/3 Turbocode 49
Structure of Iterative Decoder 50
Correlation for Extrinsic Information of Second Encoder 51
Design Criterion for S-random Interleaver. 55

4.1
4.2
4.3
4.4

9.1

LIST OF TABLES

Odd positioned coded bits of the first encoder 54
Even positioned coded bits of the second encoder 54
Information bits and multiplexed bits for an ‘odd-even’ interleaver . . 54
Relative Contribution Integral 69
Examined Design Criteria 103

ix

4.5 A weight-2 input sequence is mapped to a sequence with the same
pattern

4.6 A weight-4 input sequence is mapped to a sequence with the same
patterno

4.7 3GPP Encoder N = 1440
4.8 Relative Contribution to Bit Error Rate N = 1440

4.9 Bit Error Rate for the 3GPP system, N = 1440 , number of iterations
=15

4.10 Frame Error Rate for the 3GPP system, N = 1440 , number of iter-

ations =15

5.1 Multiple Turbo Code with constituent encoder (2)(5,7)oct (b)(7,5)0ct
5.2 Frame Error Rate of Multiple Turbo Codes Simulation (N = 4096 ,

r=1/4, S-random interleaver S=31)

5.3 Bit Error Rate of Multiple Turbo Codes Simulation (N = 4096 ,

r=1/4, S-random interleaver S=31)

5.4 Analysis of Turbo Decoding as a Nonlinear Dynamic System with
Feedback Using Density Evolution

5.5 Iterations and Convergence of a Turbo Decoder
5.6 Density evolution for Multiple Turbo Code Cj;
(N=4096, r=1/4, E,/Ny = —0.3dB)
5.7 Density evolution for Multiple Turbo Code Cy;
(N=4096, r=1/4, E;/Ny = —0.5dB)

5.8 Bit Error Rate for Multiple Turbo Code with N=256, Rate=1/4, S-

random interleaver S=14
5.9 Frame Error Rate for Multiple Turbo Code with N=256, Rate=1/4,
S-random interleaver S=14

5.10 Relative Contribution to Bit Error Rate code Cs7, rate= 1/4, N=256
5.11 Contribution to Lower Bound for Code Cs;, rate= 1/4, N=256

xi

87
88

5.12
5.13
5.14
5.15
5.16

5.17

5.18
5.19

5.20
5.21
5.22
9.23
5.24

Relative Contribution to Bit Error Rate Crs, rate= 1/4, N=256 . . . 89

Contribution to Lower Bound for Code Cys, rate= 1/4, N=256 90
Scatter Plot for S-random interleaver S=14, Max. distance=256 . . . 93
Scatter Plot for S-random interleaver S=14, Max. distance=50 94

Checked and Ignored Patterns for the First Dividing Criterion Based
on the Position in the Original Sequence 99

Checked and Ignored Patterns for Second Dividing Criterion Based

on the Position in the Original Sequence 100
Convergence Comparison between Two Interleavers 101
Checked and Ignored Patterns for Third Dividing Criterion Based on

the Position in the Original Sequence 103
Convergence for Different Dividing Critera 104
Relative Contribution to Bit Error Rate code Csy, rate= 1/4, N=256 110
Contribution to Lower Bound for Code Cs;, rate= 1/4, N=256 111
Scatter Plot for Designed interleaver Max. distance =256 112
Scatter Plot for Designed interleaver Max. distance =50 113

xii

Chapter 1

Introduction

1.1 Fundamentals

Channel coding has become an indispensable tool in modern communication systems
dominated by power and bandwidth constraints. In a digital transmission system,
error control is achieved by the use of a channel encoder at the transmitter and
a corresponding decoder at the receiver, as depicted in Fig. 1.1. As made clear
by Shannon back in 1948 [1], large coding gains (defined as the difference in the
signal energy between the uncoded and coded systems required to achieve a given
error probability) for a given spectral efficiency can be obtained by encoding the
information sequence in long blocks. The largest possible coding gain for a given
rate and very long blocks corresponds to the capacity limit derived by Shannon.
However, the optimal decoding complexity increases exponentially with the block
length, up to a point where decoding becomes physically unmanageable. For about
five decades, the goal of coding theorists has been to develop codes that have large
equivalent block lengths, yet contain enough structure that practical decoding is
possible. From this unsuccessful search stems the folk theorem: all codes are good,

ezcept those that we know how to decode |2].

Digital Source Channel
SOHI’CQ Encoder Encoder I\/IOdulatOI‘
\
Noise Channel
Digital Source Channel
Sink Decoder Decoder Demodulator

Fig. 1.1: A Typical Digital Communication System

In order to break this barrier methods such as sequential decoding and concate-
nated coding using Viterbi and Reed-Solomon decoders [3]were introduced. Iterative
decoding schemes with “soft-in/soft-out” decoders were proposed in [4], [5]. An im-
portant step in the right direction was made by Forney with his thesis work on
concatenated codes [6]. Instead of making the code more and more complex in the
search for larger gains, he proposed to cascade relatively simple codes (in practise,
two codes, inner and outer) to obtain a powerful overall code for which the decoding
complexity increased only algebraically with the block size.

Unprecedented results very close to Shannon limit (0.5 dB) were presented
in |7]. Berrou et al. introduced for the first time a structure called turbo code in
which two encoders and one interleaver were organized as the parallel concatenated

convolutional code (PCCC) shown in Fig. 1.2.

1.2 Turbo Coding

A Turbo code is constructed as shown in Fig. 1.2. In the general case, a codeword

consists of two parts: the uncoded information bits or systematic bits and a set of

RSC 1

Puncturing

Interleaver —

Mechanism
l————> RSC 2

Fig. 1.2: A Typical Turbo Encoder

parity bits. Typically, the encoders used are Recursive Systematic Convolutional
(RSC) encoders, also in most Turbo codes the encoders used are the same (making
the Turbo code symmetric). Two sets of parity bits are used, one which is generated
from the non-interleaved data sequence and another generated from an interleaved
sequence. The parity bits are usually punctured in order to raise the code rate
to desired values. The two encoders are generally terminated (i.e., transformed
into block codes) by appending a suitable number of dummy bits at the end of
the information word to drive the encoder trellis to a known state, e.g., the zero
state. Decoding of turbo codes is performed, by breaking this large complexity by
means of a local decoding algorithm working on each individual encoder and by
letting each decoder to take advantage of the progress made by the other through
the recirculation of an enhanced reliability measure about the information symbols
(called eztrinsic information). This issue raise the need for an algorithm that is
capable of accepting “soft” input values (called a priori values) and compute “soft”
outputs (called a posteriori probability).

An algorithm like this was already available [8], waiting since 1974 for practical
application. It is the BCJR (acronym from the authors names “Bahl, Cocke, Jelinek
and Raviv”) algorithm, which computes the a posteriori probability (APP) of code
and information symbols through two recursions on the code trellis, one in the

forward and the other in the backward direction. The computational complexity for

a priori information Extrinsic information

|

Interleaver

Decoder Interleavey Decoder

-
1 2
L

Hard

Received e- | Hard
Interleaverf ~|decision

symbols

Decoded bits

Fig. 1.3: A Typical Turbo Decoder

BCJR algorithm increases linearly with the number of number of trellis states. For
the typical two-component Turbo code of Fig. 1.2, the standard iterative decoder is

shown in a simplified format in Fig. 1.3.

1.3 Analysis and Design of Turbo Codes

The error probability performance of concatenated codes with interleavers under
iterative decoding is represented in general by curves like those depicted in Fig. 1.4.
There are three distinctive regions when Ej,/Nj is increased. The first one is the non
convergence region, where the error probability keeps high nearly constant values.
At a certain point, the curves start a rather steep descent to medium-low values
of the error probability (the waterfall region). Finally, in the third region (the
error floor region), the slope of the curves decreases significantly and as a result,
performance improvement is achieved at the expense of significant additional energy.
The waterfall region is dominated by the interleaver gain whereas the error floor
region is dictated by the minimum distance of the code. In the first region, the
interleaver acts mainly through its size, whereas in the second the kind of interleaver
plays a dominant role.

The effect of interleaver on the performance can be examined by studying the

Non convergence Waterfall Error floor
A region region region

§ Ey/No(dB)
N B

Fig. 1.4: Performance of Turbo Codes

lower bound for error probabilities. The two most important performance measures
of a code, the Word Error Probability (WEP) the average probability that the
decoder chooses a code word different from the transmitted one, only depends on
the code, whereas the Bit Error Probability (BEP), the average probability that the
decoder makes a mistake in decoding an information bit, depends on the encoder. A
complete description of an (n, k) encoder (k being the size of the input information
word and n the code word size) is given by coefficients A, 4, which is number of
codewords with Hamming weight d, generated by input words of weight w. Upper
bounds to the BEP, like the union bound, are based on the input-output coefficients.
In particular, for the case of an additive white Gaussian noise channel, binary anti-

podal modulation and ML soft decoding, the union bound is

k n
P12 Y Auy 0 (1)

w=1d=dmin

where 7 is the code rate and E},/Nj is the signal-to-noise ratio.
Traditionally a good code had been defined as a code with a set of large weights

d and in particular, with a large minimum distance dp;, (the lowest Hamming

weight of possible codewords excluding the all-zero codeword), which determines the
asymptotic performance for large E,/N,;. So one way to improve the performance
at “error-floor” region is to increase the minimum Hamming weight of the code.
Looking at Equation (1.1) we see that the bit error probability can be reduced, even
in the presence of a small minimum distance, by acting on the coefficients 4,, 4. This
1s precisely what concatenated codes with interleavers do at “waterfall” region (we
will see the details in the following chapters).

"To upper bound the BEP for Turbo codes according to Equation (1.1) we need
to know its input-output coefficients, assuming the knowledge of those of the con-
stituent encoders. For large interleavers such as those used in practise, computing
the input-output coefficients of the overall encoder is a task with overwhelming com-
plexity. We can substitute the interleaver with the theoretical “uniform interleaver”,
which maps a given input to its all possible combinations with eqﬁal probability, in
the calculation of BEP [9)].

In a concatenated code with interleaver, the role of the interleaver is:

* To improve the code strength by increasing the Hamming weight of the code
words. As an example, for the information word that generate low weight
codewords at the output of the first encoder. Interleaver should be able to
permute such information word, to a sequence that at the output of the second
encoder, it generates high weights. In this respect, the interleaver improves

the performance, which depends on the code weight spectrum.

o Interleaver can decrease the correlation between the input of two decoders.

This, as will be discussed later, will improve the behaviour of the iterative

decoding algorithm.

The mathematical analysis in [9] shows that indeed the BEP decreases with
the input block size as 1/N, a phenomenon known as the interleaving gain, provided

that both encoders are recursive. We also learn that the most likely error events in

turbo codes will be codewords generated by information words of low weight. As a
consequence, the choice of the code and interleaver must be aimed at maximizing

the weights of the code words generated, by information words with weight w =

2,3, 4, ...

1.4 Multiple Turbo coding

Multiple Turbo Codes (MTC), are parallel concatenation of three or more con-
stituent codes. The advantage of using three or more codes is that the correspond-
ing two or more interleavers have a better chance to break the undesired low-weight
input sequences that were not broken by other interleavers. This will improve the
performance, as we discussed in the previous section. The disadvantage of multiple‘
turbo codes is that the overall code rate of the system is increased, and in order to
get code rate equal to a conventional turbo code we have to puncture more, resulting
in weaker constituent codes [10]. Unlike turbo codes where exchange of information
between decoders can be done in one way, in the case of MT C, information can
be exchanged in different ways between decoders, some of the possible ways to ex-
change information are shown in Fig. 1.5. Different configurations differ on: first,
how many decoders exchange information with a certain decoder and second, when
the extrinsic information is updated, i.e., after each decoder finishes its decoding,
or after each iteration. In serial(S) method, each decoder receives extrinsic informa-

tion from only one decoder and this is done after the decoder finishes its operation.

(b)Extended serial (ES) (c)Parallel (P)

Fig. 1.5: Decoding configurations for Multiple turbo codes

In parallel(P) method, each decoder receives extrinsic information from all other
decoders and information is updated after a whole iteration is done. In extended se-
rial(ES) method, each decoder receives extrinsic information from all other decoders
and information is updated after each decoder finishes its operation. It is shown in
[11] that the extended serial(ES) method has the best performance and serial(S)

method has the poorest performance.

1.5 Interleaver Design for Multiple Turbo Codes

As we discussed earlier the outstanding performance of turbo codes at low SNR is
deteriorated in error-floor region, due to the low values of free distance of turbo
codes. As we will see in Chapter 4, improving the minimum distance of the turbo
codes, require to eliminate certain patterns that generate low-weight outputs, from
the input of encoders. Breaking up the low-weight input sequences and also other
criteria for improving the performance of the iterative decoding, can be summarized
in certain conditions that need to be satisfied while we are designing the interleaver.
While these criteria are known, the fact that holds us from designing a good inter-
leaver is convergence issue. Usually for a given length, the interleaver that satisfy
all the conditions, will not converge. In these cases we have to loosen the condi-
tions in order that interleaver can converge, which will result in deteriorating the
performance.

In case of Multiple Turbo Codes, where we have three or more constituent codes
and we have at least two interleavers. Each interleaver can be designed to eliminate
some of the patterns and other patterns are eliminated by the other interleaver.
This will decrease the burden on one interleaver to satisfy all the conditions at the
same time and enable us to satisfy tougher conditions.

The joint design of interleaver can be done in two different approaches. In the

first approach, we can design the interleavers in parallel, this requires that before

designing we decide on which patterns or which conditions will be satisfied by the
first interleaver and which ones by the second interleaver. In the second approach we
will design the one interleaver first, ignoring the patterns that we can not satisfy and

the second interleaver we apply the conditions that the first one have not satisfied.

1.6 Thesis Outline

Chapter 2 introduces the concept of Turbo coding and gives a detailed description of
encoding and decoding algorithms. In addition, Multiple Turbo Codes will also be
presented, together with different decoding configurations and decoding algorithms.
In Chapter 3, we will review the performance bounds for block and convolutional
codes, which we will use later to find the performance bounds for turbo codes. We
will also analyze the behaviour of turbo codes in different SNR regions and determine
the parameter that dominates the performance in each region.

In Chapter 4, the interleaver design criteria will be introduced. These crite-
ria usually aim at improving the distance spectrum of the code or improving the
performance of iterative decoding. We also present some existing interleaver design
methods. Next we will introduce the simulation results for code-matched interleaver
design for 3GPP system as an example of how a proper design of interleaver can
effect the performance.

In Chapter 5, we will introduce the idea of joint interleaver design for Multiple
turbo codes. The simulation results for Multiple Turbo codes will be given. Parallel
and sequential design methods for joint interleaver design will be introduced in
detail. Comprehensive comparison between two methods and existing methods will
also be given.

Finally, in Chapter 6, we summarize our comments and conclusions and suggest

some directions for future work.

Chapter 2

Turbo Codes

Turbo codes, first presented in 1993 [7], have performance close to the Shannon
limit. The turbo encoder is built using a parallel concatenation of two constituent
codes and proper use of an interleaver between encoders. Decoding is done by using
an iterative decoding method such as mazimum a posteriori(MAP) and exchanging
information between component decoders.

In this chapter, we present encoding and decoding of Turbo Codes with two
constituent codes in detail. Later, we show how this method can be extended to

"Turbo codes with more than two component codes i.e. Multiple Turbo Codes.

2.1 A Turbo Encoder

A Turbo encoder is formed by parallel concatenation of two or more encoders sep-
arated by an interleaver. The first encoder operates directly on the information
sequence. Then the information sequence will be passed through an interleaver,
which has the duty of scrambling the input data. Thus, the second encoder uses
the interleaved version of the information sequence. The constituent encoders can
be either block codes or convolutional codes. In this thesis we use turbo encoders

with recursive systematic convolutional (RCS) encoders as constituent encoders

10

Y

= RSC 1 -

\

Puncturing

Interleaver >
Mechanism

] > RSC 2

Fig. 2.1: Standard Turbo Encoder with Two RSC Encoders

as depicted in Fig. 2.1. The parity sequence can be punctured in order to get the

desired code rate.

2.2 A Turbo Decoder

An iterative Turbo decoder consists of two or more component decoders, connected
via an interleaver. Any soft-in/soft-out decoder can be used as a component de-
coder. These decoders accept soft inputs —including a priori values— and deliver
soft outputs —a posteriori information— at their output [12]. In each iteration, the
soft output of the previous step is used as an input to the decoder for generating the
new soft output. A convolutional encoder with certain memory can be modelled as
a finite-state Markov process. The Mazimum a posteriori Probability (MAP) algo-
rithm is used to estimate the a posteriori probabilities of the states and transitions
of a Markov source observed through a discrete memoryless channel [8]. In the fol-

lowing we will discuss MAP decoder and how it is used in iterative decoding of the

Turbo codes.

11

2.2.1 Log-Likelihood Algebra

Let U be in GF(2) with the elements {41, —1}. The log-likelihood ratio of a binary

random variable U, Ly (u), is defined as

The log-likelihood ratio Ly (u) is the “soft” value of the random variable U. The sign
of the soft value is the hard decision and the magnitude {Ly(u)| is the reliability of
this decision.

If the binary random variable U is conditioned on a different random variable

or vector Y, then we have a conditioned log-likelihood ratio Lyy (uly) with

_ g Plu=+1jy)
Lyy(uly) = In Plu=_1ly)
I pyIU(y|u = +1) PU(U = +1)
= P orelu=-1) T PU@= 1)
= Ly(u) + Lyw(ylu) (2.2)

If we transmit information bit x over a binary symmetric channel (BSC) or a Gaus-
sian/fading channel we can calculate the log-likelihood ratio of x conditioned on the

matched filter output y

L(zly) = mingﬂﬁ
_ oy, (Plz=+1) Pl =+1)
= 1 plylz = ~1) P(.T — _1)) (2.3)
we obtain
SRR -0 | Pl =)
L(zly) = 1 exp(—%-;(y o) +In Plo = 1)

12

with L. = 4a- f[—; For a fading channel, a denotes the fading amplitude whereas for

a Gaussian channel we set @ = 1. L. is called the reliability value of the channel.

2.2.2 Optimal and Suboptimal Algorithms

BCJR algorithm presented by Bahl et al. in [8], computes a posterior: probabilities
of code, through two recursions on the code trellis, one in the forward and the other
in the backward direction. The estimate result from MAP algorithm is optimal, how-
ever, MAP algorithm is not suitable for implementation because of high complexity.
In practice usually suboptimal algorithms such as Log-MAP or Max-Log-MAP are

used.

2.2.2.1 MAP algorithm

The trellis of a binary feedback convolutional encoder has the structure shown in
Fig. 2.2 [12]. Where sy is the encoder state at time k. u; is the symbol transmitted
from time k — 1 to k. The trellis states at level K — 1 and at level k are indexed
by the integer s’ and s, respectively. The goal of MAP algorithm is to calculate the

a posteriori values for all bits of information given the received sequence y

Plup = +1]y)
Pluy = —1ly)
S0 (s, s, y)
S p(s,8,y)

L) = In

= In

(2.5)

The summations are over all existing transitions from state s’ to s, with ux = +1 and

ur = —1, respectively. Assuming a memoryless channel we can separate p(s’, s,y)

13

gt S

states Si_; 1 states S,
with forward : with backward
probabilities ak_l(é’:S probabilities gy (s)
U = +1 O
O o N B @

Fig. 2.2: Trellis Structure of Systematic Convolutional Codes with Feedback En-
coders

into three independent probabilities

p(s,s,y) = p(s,yj<k): psyels) p(yisk]|s)

= p(s',¥5<k) - P(s15) - plyals',s) - (3o | 8)

~ <\ i
v~ v N

= ap(s) - (s, 5) -« Br(s) (2.6)

Here y;«4 is the sequence of received symbols y; from the beginning of the trellis
up to time k — 1 and y;- is the sequence of symbols from time k£ + 1 up to the end

of the frame.

ag(s) and Px-1(s") can be calculated using the following recursive algorithm:

a(s) = Z'yk(s’, s) - ax_1(s") (2.7)
with initial conditions

ap(0) =1 and au(s#0)=0 (2.8)

14

These conditions assume that the encoder has started from state zero.

Br-1(Z’Yk (s',8) - Be(s (2.9)

with boundary conditions

Bn(0) =1 and By(s#0)=0 (2.10)

These conditions assume that the encoder has terminated in state zero, which can be
done using trellis termination methods. Branch transition probabilities for existing

transitions between s’ and s are given by

Ve(s', 8) = P(yelur) - Plug) (2.11)

Using the log-likelihood, the a priori probability P(u;) can be written as [13]

£L(uy) Lluy) .
P(Uk::i:].) = ¢ = €’ -eL(2)
1+ exL(ue) 1+ e L(ur)
L(u)u
= A-e (2.12)

and in a similar way, the conditional probability p(y|ux) for systematic convolu-

tional codes can be written as [13]

P(yilur) = Pykalux) - (HP ykv|$ku>

1
= Bk'eXp(ch Yk,1 * Uk) (He‘{p c yk,v'xk,u))

v=2

1
= Bi-exp (ch Yk U+ 5 Z Le Yrw- IL‘k,v) (2.13)

v=2

15

—L(ug)y., gk
where By = (P(ykzﬁffmk)i};‘;k)) and wuy is the sent information bit and the

coded bits are z;, for v =2,... ,n and y,; for i = 1,... ,n are received bits.

Therefore, the branch transition operation reduces to the expression

(s',8) = P(yxlux) - Plug)

1 1 ¢
gle k1wt g Y L Yk Thw)

= By - exp(
2 v=2

1
Ay - eXP((iuk - L(u)))
= A,-B (1L U +1§_:L
= k Lk €Xp 5 e Yk, - Uk 211—2 ¢ " Yew Tk

e L) (2.14)

Substituting form Equation (2.6) in Equation (2.5) we will have

L Zn (s, 5) - e (s) - Bi(s)
zii 2 (s, 5) - k1 (s)) - Bels)

L(uy) = (2.15)
The terms Ay and By in Equation (2.14) are equal for all transitions from level
k —1 to level k and hence will cancel out in the ratio of Equation (2.15). Therefore,
the branch transition operation to be used in Equation (2.7) and Equation (2.9), is

reduced to the expression

1
exp(sun(Le - yka + L(ur)) - 475",) (2.16)
with
O 1<
71(c)(5 ’ S) = exp(§ Z Lc “Ykw xk,v) (217)

v=2

16

Thus, the log-likelihood ratio becomes

SUD NN, 8) - i (S) - Bils)
S (s,) - (81) - Bils)
= L, Yk, + L(Uk) + Le(?,ljk) (218)

L(dk) = L, Yk + L(uk) +In

where

S (s, 8) - () - Bils)

Lo(tiy) = In =2
) ank:)—ﬂ;(:)(,8) - ak—1(8") - Br(s)

(2.19)

According to Equation (2.18), the soft output for any random information bit can
be represented in three additive terms, where L.(uy) is eztrinsic information and
Lc -y, is the channel values and L(uy) is the a priori values. Using Equation (2.18)
and Equation (2.19), MAP algorithm can calculate a posteriori information for all

symbols.

2.2.2.2 Log-MAP and MAX-Log-MAP algorithm

MAP decoding algorithm discussed in Section 2.2.2.1, requires large memory and a
large number of operations involving exponentiations and multiplications. This issue
makes it very complex for implementation in many communication systems.This
algorithm can be simplified using logarithms of ax(s), (',), Be(s) [13]. Using the

logarithms we will have

(s, s) = Iny(s,s)

1 1 — 1
= §Lc'ylc,1'uk+§ch'yk,v'Ik,v+_

v=2

17

ak(s) = Inag(s)

= In (Z ei(s’s) eak—l(s)>
sl
= ln (Z eﬂ(s',s)*’ak—l(s)) (2.21)
s/
with the initial conditions

@(0) =0 and @(s#0)=- (2.22)

Bk—l () = In Br(s)

= In (Z) eﬁkm)
3

= In (Z eﬂ(S’,SHEk(S’)) (2.23)
S

with boundary conditions

By(0)=0 and By(s#0)=-c0 - (2.24)

Therefor, the log-likelihood ratio can be expressed as

Z(s %) 1 er(S',s) . ea—k‘l(sl) . eﬁk(s)

L(dk) = ELS’\ 3+ _
Zuk =1 eTk(s"ss) . gar-1(s)-eﬁk(s)
Xty A R
Z(s__ €Tk(s") 481 ()48, (s)
(s',8)
= In Z T 9)+Tk 1 () 4B (5)
(s'8)
_ln Z e-"7k(5',$)+ak_1(s')+ﬁk(s) (225)
uk=_1

18

It is known that

E(z,y) = In(e® +¢eY)

= maz(z,y) + In(1 4+ ele¥h (2.26)

which can be extended to general form of

k
E(xy,29,...,2%) = lng e
1=1

k
= maz(z;) +In Z e%i—max(zi) (2.27)
i=1
So whenever we have to calculate the sum of exponentials we can use Equation (2.27)
instead. The Equation (2.27) can be used to simplify the calculation for log-
likelihood ratio of Equation (2.25) and forward /backward recursion of Equation (2.21)
and Equation (2.23). These calculations can be further simplified if instead of Equa-

tion (2.27) we use the following approximation

E(z,y) =In(e” + €¥) ~ maz(z,y) (2.28)
k
E(z1,29,... ,24) = lnz e” ~ maz(z;) (2.29)

=1

This approximation will result in a sub-optimal method which is called MAX-Log-MAP

algorithm.

2.2.3 Iterative Decoding Algorithm

Iterative decoders, usually use a “Soft-in/Soft-out” (SISO) decoder, such as a MAP
decoders depicted in Fig. 2.3. As we have seen in Section 2.2.2, the output of the

19

a priori values for /“\ SN extrinsic values for
——!] . . .
all information bits L(w) } | Soft-In ! 1 L) Al information bits
1 t
L Soft-Out o
1 i
V! Decoder V! ..
channel values for . L+ aposteriori values for
all code bits Lcy \ / \\/ L(i) all information bits
input log-likelihoods output log-likelihoods

Fig. 2.3: Soft-in/Soft-out Decoder

MAP decoder will be the soft output L(@) and extrinsic information L,() for all
information bits. The input to the SISO decoder is a priori values L(u) for all
information bits and also the channel value L. - y. The output of the SISO decoder
is extrinsic information for all information bits. Extrinsic information contains the
soft output information from all the other coded bits in the code sequence but does
not contain the information in L(u) and L.-y. For systematic codes, the soft output

for the information bit u will be represented as the sum of three terms
L(d) =L -y + L(u) + Le(2) (2.30)

This shows that there are three independent estimates for the log-likelihood ratio
of the information bits: the channel values L. -y, the a priori vales L(u) and the
values L.(4) extrinsic information generated using the code constraint.

The procedure of iterative decoding with two component SISO decoders is
shown in Fig. 2.4. For the first iteration, assuming equally likely information bits,
the a prior: information L(u) = 0 is initialized to zero, then the extrinsic information

at the output of first decoder is
Li(a) = LY(4) — [L. -y + L(u)] (2.31)

This extrinsic information from first decoder is passed to the second decoder, which

uses Ly(4) as the a priori value in place of L(u) to compute L2(d). Hence, the

20

& feedback for the next iteration

L(u)=0 (Vb Li(a) L3(a)1
E Soft-In/ Soft-In/ |
Soft-Out Soft-Out
ey | Decoder for | 11y Decoder for | ;.. L(a)
: first code second code ———
h \at the final
H Ley ! iteration
Fig. 2.4: Iterative Turbo Decoding
extrinsic information value computed by the second decoder is
L;(a) = L*(@) — [L. - y + Ly(d)] (2.32)

This value will be used by first decoder, in the next lteration, as a prior: value.
This procedure is repeated for each iteration, until the improvement through the
iterations becomes marginal. The final soft decision output is a combination of the

last two extrinsic values with the received values, as follow

L(a) = LI(a) + L2(4) + L, - y (2.33)

2.3 Trellis Termination

A turbo encoder operating on each block of information bits can be regarded as a
block code. Each block, will start from zero state and will be driven to zero state
by means of trellis termination. For a non-recursive encoder, a tail of zero bits
would terminate the encoder, whereas for recursive encoders, the required tail bits
for trellis termination depends on the state of the encoder.

The circuit in Fig. 2.5 can be used for trellis termination for recursive encoders.

21

V)
T\

D
TN

———
w

oL

U

(N
3

f b
"

Fig. 2.5: Trellis Termination

For normal operation the switch is in position A, and for the last v bits (v is the

memory of the encoder) the switch is in position B.

2.4 Interleaving

As it was shown in Section 2.1, parallel concatenation of codes is possible using an
interleaver between the two encoders. Interleaver will scramble the input data or in
other words change the order of the elements in the sequence. The basic role of the
interleaver is to construct a long random code.

Design of interleaver has a remarkable effect on the performance of the code.
‘There are two major criteria involved in the design of the interleaver: first, the dis-
tance spectrum properties of the code and second, the correlation between the output
of each decoder corresponding to its information and extrinsic input sequences.

As we will see in Chapter 3, performance of the turbo codes specially at
error-floor region depends on their distance spectrum. Interleaver has a vital role in
the shaping of the distance spectrum of the code. Interleaver can be used to improve
the performance of turbo codes by increasing the minimum Hamming distance of
the code.

Performance of iterative decoding is dependent on the quality of the extrinsic
information, which is the information exchanged between the constituent encoders.
When an output is highly correlated to a few positions of input sequence, it becomes

very sensitive to channel noise at these positions. The choice of the interleaver affects

22

the degree of correlation between extrinsic inputs and thereby the performance of
iterative decoding.

Many interleaving strategies have been proposed including block interleavers,
Odd-Even block interleavers, Random and S-random interleavers and Code matched
interleavers. We will introduce these methods in Chapter 4 in detail and study their

effect on the performance of turbo codes.

2.5 Multiple Turbo Codes

Turbo codes discussed in previous section, mostly consist of two constituent codes.
In this section, we discuss multiple turbo codes (MTC) where we have three or more
constituent codes. In general, the advantage of using three or more constituent
codes is that the corresponding two or more interleavers have a better chance of
breaking the undesired low weight input sequences that were not broken by other
interleavers. The disadvantage is that, for an overall desired code rate, each code
must be punctured more, resulting in weaker constituent codes [10].

Encoders for multiple turbo code are similar to those of turbo codes with
two constituent codes. As shown in Fig. 2.6, for a multiple turbo code with three
constituent codes, we need two interleavers (7, 7,) and the output codeword contain
the systematic sequence and three sets of parities for each information block. The
parity bits can be punctured if needed.

Unlike turbo codes with two constituent codes, where there is one way to
exchange information between two decoders, in multiple turbo codes there are dif-
ferent configurations for exchanging information between decoders. The choice of
proper configurations becomes a design issue and some configurations perform bet-
ter than others [11]. Different configurations are presented in Section 2.5.1 and in

Section 2.5.2 the iterative decoding for multiple turbo codes is discussed.

23

noise
U Lo
N Yo

Encoder 1 ﬂ—%— U1
noise

I1, 22 Encoder 2 ﬂ-ﬁ}—o Y2
noise

I1, -3 Encoder 3 ﬂ‘oﬁ}— Y3
noise

Fig. 2.6: Multiple Turbo Encoder

2.5.1 Decoding Configurations for Multiple turbo Codes

The superior performance of turbo codes, is mainly the result of information ex-
change between decoders. In turbo codes with two constituent codes there is just
one possible configuration for exchanging the information but in multiple turbo codes
different configurations are possible.

Each decoder exchanges information with some or all of other decoders and
extrinsic information can be updated after each decoder finishes one decoding cycle,
or after one whole iteration. Possible configurations have been presented in [11],
as depicted in Fig. 2.7. Some commonly used configurations are Parallel(P), where
decoder receive information from all decoders after each iteration and Extended se-
rial(ES) configuration where each decoder again receives information from all other
decoders but this is done after each decoder finishes its operation. Simulation results
show that choice of configuration can have a huge effect on the performance. Results
in [11] shows that Extended serial (ES), Extended master-slave (EMS) and Paral-
lel (P) configurations have the best and the Extended parallel 1 (EP1) configuration
has the worst performance among all configurations.

The choice of configuration also affects the Ej /Ny threshold value above which
the decoding procedure will converge. Let Th, denote the Fy/Ny threshold value

above which iterative decoding converges for decoding configuration z. In [11] it is

24

T
------ @@

(e)Extended serial (ES)

(a)Serial (S)

& &
SN =y

(f)Master-slave (MS)

(g)Extended master-slave (EMS)

@ TGO
@W@ """

(d)Extended parallel (EP2) (h)Round-robin master-slave (RRMS)
Fig. 2.7: Decoding Configurations for Multiple Turbo Codes

shown that

Thes = Thgys = Thp < Theps, Thus, Thrrms < Thep, = Ths (2.34)

2.5.2 Tterative Decoding for Multiple Turbo Codes

In this section, we review decoding algorithm for multiple turbo codes. Information
sequence is transmitted through an Additive White Gaussian Noise (AWGN) channel
with zero-mean, unit variance and p = \/2rE,/N,, where E, /Np is the signal to noise

ratio (SNR). The combination of the permuter and the encoder can be considered as

25

a block code with input u and outputs x;, i = 1,2,3 (xo = u) and the corresponding

received sequences y;, ¢ = 0,1,2,3. As shown in Fig. 2.6.
yi = p(2x; — 1) + (2.35)

The optimum bit decision metric on each bit is (for data with uniform a priori

probabilities) [14]

2 uuy=1 P(yolu) P(y1[u) P(yz|u) Pysfu)

el Plyol) Py [P(yalw) Blyalw)

(2.36)

In practice, Equation (2.36) can not be computed for large N because the permuta-
tions 7, , 73 imply that y; and y; are no longer simple convolutional encoding of u.

In order to evaluate Equation (2.36), we will use the following approximation [15]

N
P(uly:) ~ [Pi(w) (2.37)
k=1
Note that P(uly;) is not separable in general. However, for i = 0, P(uly,) is
separable. Using Bayes’ rule we have
P(uly:) P(y:)
P(yilu) ——5ra
P(u)
_ L4 Ao P(ys)
Plu (2.38)
Defining Lir which is the a priort information, we have
P eukz/ik
; = — 2.39
() T i (2.39)

26

substitute Equation (2.39) in Equation (2.38), we get

N upLlip

P(u)

P(yilu) =

(2.40)

It we expand P(y;|u) for i = 0,2,3 in Equation (2.36), using Equation (2.40) the

value P(y;) for i = 0,2,3 will cancel out in the ratio and P(u) will also cancel out

because we have assumed data with uniform a priori probabilities. Equation (2.36)

will simplify to

Zwukzl P(y1|u) Hj euj(£0j+i2j+[:3j)
= Lok + Lok + Lax + f(y1, Lo, L, Ls)

where

oo o) — tog Szt P T et
1, 3 y 43) —

Zu:ukzo P(Y1|u) H];ék jeuj(LOj‘i'sz-f-l-,;;j)

and z()k = 2pyk/0'2.

Similarly for ¢ = 0,1, 3 we have
Ly = Log + L + Loy, + f(y2, Lo, Ly, Ls)
and for ¢ = 0,2, 3 we have

Li = Log + Lyg + Lo + f(y3, Lo, Ly, L)

27

(2.41)

(2.42)

(2.43)

(2.44)

A solution to satisfy Equations (2.41), (2.43) and (2.44) is

Ly, = f(y1,Lo, Ly, Ls)
Ly = f(y2,Lo,Lq, L)
L3k = f(y37f’07ilai2)

(2.45)

for k=1,2,---) N. The final decision is then based on
L = Z,ok + Zlk + ff?k + Z/3k (2.46)

which is passed through a hard limiter with zero threshold. The decoder structure is
shown in Fig. 2.8, f(.) is computed using the MAP algorithm with initial condition
f,(lo) = I:(ZO) = I]go) = Lo. At the input of each decoder we add the appropriate
extrinsic information from other decoders. After the final iteration the hard decision

can be made, based on the value of L, computed using Equation (2.46).

2.6 Summary

In this chapter, the encoder and decoder structure for turbo codes has been de-
scribed. Iterative decoding method (BCJR Algorithm) for decoding of turbo codes
was presented in detail. We also extend, these methods for multiple turbo codes

and discuss the different decoding configurations possible for decoding in this case.

28

 |—

Yo
- L g
Lo ! :
! DELAY 1 .
| 1
\ ! Ly : L
Wa ! _ L D L
—\P : MAP decoder 1 D
: |
_______________________________ 1
0N
:_ ______________________________ 1
§
! ~ DELAY 2 :
. i
\ ! Vo
| L 'L
~q> ——= II, = MAP decoder 2 |-= I} 2‘{5 =
1 z |
R R .
Y2
- - i i --__---------———C
| 1
|
: ~ DELAY3 :
1 !
\ ! - F
oL 'L
{P E = Il = MAP decoder 3 |-~ II;!=2 —d) =2
R :
Y3
- 5 L

Fig. 2.8: Multiple Turbo Decoder

29

Chapter 3

Performance of Parallel

Concatenated Codes

In this chapter, we evaluate the performance of turbo codes based on their weight
distribution. Lower bounds for error probability can be derived for the case of
block codes, which can also be applied to the terminated convolutional turbo codes.
In order to find the lower bounds we need to know the weight distribution of the
code. Weight distribution of a concatenated code can be calculated provided that the
weight distribution of the constituent code is known. We find the weight distribution
of convolutional codes, which enables us to calculate that of the concatenated codes.
Later on, based on a lower bound, we analyze the performance of turbo codes and the

parameters that affect their performance for different Signal-to-Noise Ratios(SNR).

3.1 Block Codes

An (n, k) block encoder, generates a codeword of length n from a sequence of k
input bits. The output of the block encoder depends on the current k-bit input
sequence and not on the previous input sequences. Since in an (n, k) block code

there is one-to-one correspondence between the input sequences and the codewords,

30

from the 2" possible codewords only 2* of them are used.

3.1.1 Weight Distribution of Block Codes

The weight distribution of a code enable us to compute the probability of unde-
tected error and upper bounds of the word error probability, which are useful in
computing probabilities of undetected or uncorrected error [16]. In this section we
find the weight enumerating functions for block codes and later use this information
to calculate word and bit error probability bounds for an Additive White Gaussian
Noise (AWGN) channel.

Given an (n, k) linear systematic block code, its weight enumerating function

(WEF) is
AC(X) = i AX? (3.1)

where A; is the number of codewords with Hamming weight (number of ones) and X
is a dummy variable. The WEF is used to calculate the word error probability of the
code. The WEF of a code does not show the contributions of the input information
bits to the total Hamming codeword weigh. For systematic block codes, a more

detailed weight profile of a code is given by input-redundancy weight enumerating

function (IRWEF)

ACW,Z) = Ay, W2 (3.2)

w,2
where A, , is the number of codewords generated by an input information sequence
of Hamming weight w and the parity check sequence of Hamming weight z, so
the total weight of codeword is w + z. For each term of WEF, the IRWEF shows
the separate contribution of the information and the parity check bits to the total

Hamming weight of the codewords, thus it can be used to calculate the bit error

31

c Channel v X
| Encoder > Modulator
b
& Ch 1
¢ D e - Demodulator !
ecoder

Fig. 3.1: Coded System Model

probability of the code [17].
The conditional weight enumerating function AS(Z) describes the parity

check weights of the codewords generated by information sequence of weight w. It

can be obtained from the IRWEF as

1 9"A°(W,Z2)

w! oWww (3.3)

AS(Z) =D Auw:Z =

Ww=0

and the inverse relation is
AC(W,Z2) =Y WvAS(Z) (3.4)

3.1.2 Performance Upper Bounds for Block Codes

Using the weight enumerating functions introduced in previous section, we can cal-
culate the word error probability and bit error probability for a code. Assume
a communication system with an (n, k) block code and binary phase shift keying
(BPSK) modulation where the modulated signals are transmitted over an AWGN
channel. The system model is shown in Fig. 3.1.

The signal in the channel is corrupted by additive white Gaussian noise. The

32

received signal, at the time 4, can be represented by
T, =X -+ n; (35)

where n; is a sample of a Gaussian noise with zero mean and variance o2. For this

channel conditional probability P(r|v) is

1 (ri=z)*
P(rlv) = H e 2
i=0

e~z dEX) (3.6)

where
d%(l‘, X) = (Ti - l'i)Q (37)

represents the FBuclidean distance between the received sequence and the modulated
codeword. For Maximum Likelihood Decoding algorithm, the decoder computes
the Euclidean distance of the received sequence with all modulated codewords and
chooses the one that has the minimum Euclidean distance as the estimate of the
transmitted codeword. An error event occur when the received sequence is closer
in Euclidean distance to a code sequence ¥ # v. The probability that the decoder
makes a wrong decision by selecting an erroneous sequence is called the pairwise
error probability [18].

For code sequence ¥, X represents the modulated signal. The pairwise error

33

probability is given by

n—1 n—1
Pd = Pr{ |Tz—xi|22 ’Tz_j‘z|2}
i=o0 1=0
n—1 1
- Pr iAi 1 >_'Az— 12
{;n(x x)_2|:1: xl}
1

= P,- {n— n,(f, — l'i) Z 2d} (38)

Where d is the Hamming distance of two codewords. Since n; is a zero mean Gaussian
. - . -1 ~ . . .
noise sample with variance o2, the term Y n;(#; — ;) is also a Gaussian variable

with zero mean with variance equal to 4do?. Thus the pairwise error probability

will be [19]

where r = k/n is the code rate, Ej is the signal energy per bit, Ny is the single sided

power spectral density of the Gaussian noise .

3.1.2.1 Word Error Probability for Block Codes

For linear codes, we assume that the all-zero codeword is transmitted, so the prob-
ability of an error event of distance d is given by pairwise error probability. The
number of such errors will be the number of codewords of weight d that can be
obtained from the code WEF of Equation (3.1). The word error probability union
bound is given by [18]

d~dmm.
= > AQ ,/2(17«5”- (3.10)
d=dmin No

34

where d,i, is the minimum Hamming distance of the code and Ay is the number of

error events with weight d.

3.1.2.2 Bit Error Probability for Block Codes

The bit error probability of an (n, k) block code can be upper bounded by a union

bound as

d=dmin
= > B4Q ,/zdr—E—" (3.11)
d=din NO

where By is the average number of bits in error caused by transition between all-zero
codeword and codewords with weight d, which can be obtained from IRWEF of the
code, Equation (3.2) [9]

Bi= Y %’Aw,z (3.12)

w+z=d
considering the Q-function bound

2

Q(r) <1/2e"7 >0 (3.13)

the bit error probability upper bound can be given by

E,
Pye) < Y 1/2Bue™
d=dnin
k w
= —W"YA,(Z 3.14
L) (3.14)

35

Y
4

WA

e
N
o
r
S
o
|

[Y [

N WA S
ANV VRN,

Fig. 3.2: Recursive systematic Encoder for Code Generator (13,17)

3.2 Convolutional Codes

Convolutional codes are represented by a triplet (n, k, m), where n is the length of
the codeword, k is the length of the input sequence and m is the memory of the
encoder. In Convolutional codes the codeword is not only dependent on the current
input but also on previous m inputs which determines the state of the encoder.
Since the output is determined by the input and the state of the encoder, each
encoder can be described by a state machine. Another popular way of representing
Convolutional codes is using trellis diagram, which again contains the information
about the state transition and output of a code given the input and current state
[19].

Convolutional codes can be either systematic or non systematic. In a sys-
tematic code, the output consists of a replica of the input sequence and a parity
sequence. Recursive Systematic Convolutional (RSC) codes can be represented by

their generator matrix with general form

G)=(1 2@) (3.15)

where g;(D) and go(D) are feed forward and feedback polynomials, respectively and

36

D is the delay element. For example the code in Fig. 3.2 has the generator matrix

G(D) = (| 1tD+D?4D?)

1+D+D3

The generator polynomials can also be represented in octal form, e.g., (g2,91) =

(13,17)oe. For an input sequence U(D), the output codeword will be equal to
U(D) - G(D) [20].

3.2.1 Weight Enumerators for Convolutional Codes

We use the equivalent block code of the convolutional code in order to find the weight
enumerating functions of the convolutional codes. The equivalent block code, is the
same as the convolutional code with additional constraint of being truncated at
step IV and also all the codewords being terminated to the zero state. The trellis
representation of the equivalent block code is the truncation at step IV of the trellis
of the convolutional code and the trellis is terminated to zero state at step N [9].
The IRWEF of the equivalent block code can be derived from the error events
enumerating function of the convolutional code. A single error path is a path that
diverges from the all-zero path in the trellis and then emerges to the all-zero path
within a finite number of branches. Using the above definition, any code word
belonging to the equivalent block code is obtainable by combining the set of error
events of the convolutional code with suitable sequences of “0” so that the total
length equals NV as shown in Fig. 3.3. For example, a single error event of length
[, can contribute to code words that have N — [zeros positioned before and after

the error event. The total number of these code words is equal to the number of

partitions of N — [into two numbers:

N-l+1
K[l,1] = =N-Il+1 (3.16)
1

37

Fig. 3.3: How to obtain Codewords of the equivalent Block Code from Error events
of the Convolutional Code

Codewords can be generated by concatenation of single error events, shown in
Fig. 3.3. The general expression for the multiplicity of codewords produced by

a single combination of n error events with total length [is given by

N-—-Il+n
Kl[l,n)= (3.17)
n
Let T¢(W, Z, L,)) enumerate all paths in the trellis diverting from the zero state
in the first step and converge to the zero state at or before step IV, with possible

emerging into the zero state in between, with the constraint that it diverges from

the zero state immediately after each reemerging

TOW,2,L,Q) = Y TyuV'Z7L'Qr (3.18)
w0

Where Ty, 1 is the number of paths in the trellis produced by an input sequence
of weight w, with weight of parity check equal to j, length [and n reemerging with

the zero state (concatenation of n error events).
In the equivalent block code each path of length ! and number of reemerging
n belonging to TS (Z, L, Q) will contribute to K[l,n] codewords with the same input
and parity weights, so the conditional IRWEF A¢(Z) of the equivalent block code

38

can be obtained as

AS(Z) = Au;Z (3.19)

J

where

AwJ' = Z K[l, n]Tw,j,l’n
in

N-Il+n
= > T jin (3.20)

In n
The algorithm to compute T5(Z, L, Q) is described in [21], but in Section 3.3.2,
we will use an approximation valid for large N which will enable us to analyze the

performance of the concatenated codes.

3.3 Parallel Concatenated Codes

Consider now a parallel concatenation of two block codes or two convolutional codes
whose equivalent block code WEF is known. The two encoders will encode the infor-
mation sequence with Hamming weight w. The weight of parity sequence generated
by first and second encoder are j; and ja, respectively. The total Hamming weight
of the codeword for the parallel concatenated code (Cp), will be w j; + jo, as shown

in Fig. 3.4. In the next section, we will find the WEF for concatenated codes.

3.3.1 Weight Enumerators for Concatenated Codes

We want to obtain the IRWEF AP (W, Z) of the parallel concatenated code (Cp)
from the IRWEF of the constituent codes. The IRWEF of the second parity se-
quence, not only depends on the encoder, but also depends on the choice of inter-

leaver and the particular pattern to which the inputs are mapped.

39

Information sequence

First parit
Encoder 1 partty

4

Interleaver

Encoder 2 Second parity
29

Fig. 3.4: Parallel Concatenated Code

To overcome this difficulty, concept of uniform interleaver is introduced. A

uniform interleaver of length k is a probabilistic device which maps a given input

word of weight w into all distinct permutations of it with equal probability
w
k
1/ [9].
w

By using the uniform interleaver, the conditional weight enumerating function
A%2(Z) of the second code becomes independent from that of the first code, because
of the randomization produced by the interleaver.

The conditional weight enumerating function of the parallel concatenated code
which uses the uniform interleaver is the product of the two conditional weight

enumerating functions of the constituent codes, as follows

_AS(2)- A%(2)
k

AS(Z) (3.21)

w

3.3.2 Performance Upper bound for Concatenated Codes

In Section 3.2.1, the exact formula for computing the conditional weight enumerating
function AS(Z) for equivalent block code for convolutional code is given, but in this

section we use an approximation which enables us to find the upper bound for

40

concatenated codes [22].
For a convolutional code, the codewords of the equivalent block code are con-

catenations of error events of the convolutional code. Let

A(w, Z,n) ZA wjnl (3.22)

be the parity-check enumerating function of the convolutional code, constructed
by concatenation of n error events with input weight of w. A, ;, is the number
of the codewords with input weight w and parity weight of j and n error events
being concatenated. The conditional weight enumerating function A€ (w, Z) of the

equivalent block code can be approximated by
A%(w, Z) ~ Z A(w, Z,n) (3.23)

where n,,q. is the largest number of error events generated by a weight w information
sequence and is a function w and depends on the encoder.

Ay jn can be calculated using T j;, which is the number of codewords pro-
duced by an input sequence of weight w, with weight of parity check equal to j,

length [and n error patterns given by Equation (3.18)

A(w, Z,n) ZZTMM (3.24)

Substituting the WEF of the constituent codes Equation (3.23), into Equation (3.21)

41

we get for the conditional WEF of the turbo code

N N
Nmaz Mmaxz n1 Ty
APZ)~ D Y - A(w, Z,m) Aw, Z,ns) (3.25)
ni=1ns=1 N ’
w

if we use the following approximation

N N
~ T (3.26)
n n!
we get
NmaZL Nmal w’
AC(Z) ~ Nmtme=w . Ay, Z n)A(w, Z 27
W() 2;1 ngZ=1 ny! - no! (u’ ’nl) (w’ ’nz) (3)

For large N, AS?(Z) can be approximated by the terms in the summations having

the highest power of NV, which are n; = ny = nypez
c w! 2 - 2
AZ(Z) ~ g NP (AW, Z,) (3.25)

Considering the bit error probability upper bounds in Equation (3.14), we get the

union upper bound for turbo code as

N
w!

Pile) < Zw'(n 0E

w=1 max-

WY[A(w, Z, Nunag)]?]

N2"’"'” —w—1

(3.29)

E,
.W=Z=e—r7vg-

42

3.4 Turbo Codes Design

The performance analysis developed in the previous section, enables us to investigate
many performance and design issues about turbo codes. We will discuss the benefit
of using recursive codes instead of non recursive convolutional codes as constituent
encoders. In addition we will determine the factors that determine the performance

for each SNR region.

3.4.1 Recursive Constituent Codes

It is preferable to use recursive convolutional constituent encoders, instead of non
recursive encoders. In this section we find the bit error rate for these two encoders
and show the benefits of using recursive convolutional constituent encoder [22).
The bit error probability for non recursive convolutional constituent encoder
can be found using Equation (3.29). Since the minimum weight of the input is equal
to one (wWmin = 1) we can have a finite-weight error sequence of length 2(v +1). An
information sequence of weight w, can cause w error events corresponding to the
concatenation of w error events of weight one, as a consequence n,,,, = w this will

conclude that the term
A(w, Z, Nmaz) = A(w, Z,w) = A(1, Z,1)* (3.30)

the bound can be simplified as

N

Pl < 3

= (w-1)!

xW¥[A(1, Z, 1)]*| B

E 3.31
W=Z=e "Ny ()

Equation (3.31), shows that for the case w = 1, the bit error probability is indepen-

dent of N, the size of interleaver. Indeed, no interleaving gain is possible.

43

On the other hand, in the case of recursive convolutional codes, Wy, is always
greater than one. Consider a code with generator matrix G(D) = [1, %} and
with memory v. The finite-weight error event is caused by input sequence that
is divisible by the feedback polynomial d(D). Feedback polynomial has the form
1+---+ DY, which can not divide a polynomial of the form D? for any value of i.
As a consequence, the minimum weight of the input is equal to two (wmi = 2), that
can cause |w/2] error events corresponding to the concatenation of error events of
weight two (nmee = |w/2] = 2k). It has been shown in [22], that the bit error
probability upper bound will be

LN/2]

Pe) < Y 2k) N2k
k=1

x[A(2, Z,1)]*] (3.32)

E
W:Z:e_RN%

Looking at Equation 3.32, it can be seen that the performance is affected by the
interleaver size N. Increasing the interleaver size N, the bit error probability is

reduced by a factor 1/N, which is called the interleaver gain.

3.4.2 Free Distance and Performance at High SNR

Up to now, turbo code performance is discussed based on the asymptotic bounds of
the bit error probability. In this section, we evaluate turbo code performance based
on its distance spectrum. Using the IRWEF of the code Equation (3.11), the bit

error probability upper bound can be expressed based on the code distance spectrum

by
Pe) < > B.Q <\/2dr—%> (3.33)

d:dfree

44

where the set of all pairs of (d, By) is the code distance spectrum. For turbo codes,

the error coefficients By can be represented by

Bd = Z %'Aw,z
_ Z B.Ac . Ac

- (3.34)
d=w+2z1+22 jV

w

where dr is the free distance which is the minimum Hamming weight of all possible
nonzero codewords.

For moderate and high SNR the bit error rate performance will be dominated
by the free-distance term in Equation (3.33). Thus the asymptotic performance
approaches

Ey

Pb(e) ~ BdfreeQ (2dfreeR]—V‘(;> (335)

Turbo codes have a relatively small free distance and consequently a relatively flat
free-distance asymptote behaviour. This flattening of performance curve at high
SNR is a phenomenon known as error-floor.

Error-floor can be manipulated in two ways: first, increasing the length of
the interleaver while preserving the free distance, this will decrease the multiplicity
and will improve the performance. If the size of interleaver is fixed, then the error-
floor can be modified by increasing the free distance of the code while preserving the
multiplicity. It is shown in [23] that for a fixed interleaver size, choosing the feedback
polynomial to be a primitive polynomial results in an increased free distance and
thus a steeper asymptote. We will show in Chapter 4 that free distance can also be

increased by proper choice of interleaver.

45

3.4.3 Spectral Thinning and Performance at Low SNR

Unlike error-floor region, where the performance curve flattens, at low to moderate
SNR, the performance curve has a steep decent known as water fall region. In
order to explain this phenomenon, assume a turbo code with a uniform interleaver.
Several low-weight input sequences associated with low-weight parity will be mapped
to interleaved sequences which are associated with high-weight parity (since the
average parity weight is high even for low-weight input). Compared with the weight
distribution of its component RSC code, the number of low-weight input sequences
associated with high-weight parity is increased while those associated with a low-
weight parity remain few. This phenomenon is called spectral thinning because
the low-weight portion of the distance spectrum retains a low multiplicity. Thus,
although the free distance of a Turbo code may be small, but the multiplicity of low-
weight codewords is lower (not just for the free distance codewords). This means
that at low-medium SNR, when the effect of higher-weight codewords cannot be

neglected, the performance of a Turbo code is better than a RSC code [24].

3.5 Summary

In this chapter we have presented the weight distribution for the convolutional codes,
which are used as constituent codes in turbo codes. Based on this, we have found
the weight distribution and the performance lower bounds for turbo codes.

We also observed that at low to moderate SNR, the performance of turbo
codes is improved extremely, by decreasing the multiplicity of low weight sequences.
On the other hand, at the moderate to high SNR where free distance asymptotic
dominates the performance, the performance curve flattens. This is called the error-

floor region.

46

Chapter 4

Interleaver Design

It is widely accepted by the research community that the interleaver plays a very
important part in the construction of good Turbo codes. Interleaver design criteria
aim at improving the performance of turbo codes. In this chapter, we review some
known interleaver design criteria. Later in the chapter, we review some known inter-
leaver design methods such as block, even-odd interleaver and etc we will emphasis
more on some optimized interleaver design methods such as S-random and Code-
matched interleavers and we will observe some simulation results for code-matched

interleaver design for 3GPP standard.

4.1 Interleaving

Interleavers have been used in communication systems for a loﬁg time. Traditionally
they were used to randomize the location of errors, enabling the use of random-error-
correcting codes on channels with burst error patterns. Typically, bursty channels
would include fading channels often found in wireless transmission.

Another use of interleaving is in concatenated coding, where information is
passed through an interleaver before component codes. This action will construct

a long block code from a small memory convolutional code. The input sequence

47

of each component encoder is scrambled by this interleaver in order to decrease
the correlation between bits of the input sequences. Interleaver also can be used
to improve the minimum distance of the code, by breaking the low weight input

sequences.

4.1.1 Effect of Interleaver Structure on Distance Spectrum

As we discussed in earlier chapters, the performance of turbo code at high SNR
is dominated by the first several distance spectral lines, which are generated by
low weight input sequences. These low weight codewords happen when a low weight
input sequence generates low weight parity sequences at the output of the constituent
encoders. However, interleaver can affect the mapping of the input patterns of the
constituent encoders and it is capable of associating the patterns that cause low
weights at the output to the patterns that generate higher weights at the output.
By acting on low weight inputs we are able to improve the free distance of the code
and consequently improve the performance of the code.

In order to design interleavers that improve the distance spectrum of turbo
codes, we need to determine the input patterns that result in low weight codewords.
After wards, the interleaver is designed to prevent such patterns from being mapped
to each other. In this section, we introduce divisibility principle [25], which enables
us to determine the patterns that generate low weight parity sequences, and in
Section 4.5, we will introduce interleaver design method that benefits from this

principle and eliminates first dominant spectral line of turbo codes.

4.1.1.1 Divisibility Principle

Consider a turbo code, constituting of a recursive systematic convolutional codes
with generator polynomial G(D) = g—gg—;, Fig. 4.1. We refer to U(D) as informa-

tion sequence polynomial and its interleaved version is referred as V (D), the parity

48

Y1(D)
_ F(D)
G(D) = EEF)
y
Interleaver
V(D) YD
F(D
G(D) = fp —2

Fig. 4.1: Rate 1/3 Turbo code

sequence of each encoder will be given by

F(D)

Yi(D) = U(D)E(—D) mod D™**™ (4.1)
V(D) = V(D)gg mod D™

If U(D) or V(D) are divisible by the feedback polynomial B(D), then the parity se-
quence will have a finite Hamming weight. For example, for constituent encoder with
feedback polynomial B(D) = 14D+ D?, the input sequence U(D) = 14 D? is divisi-
ble by feedback polynomial and will generate parity sequence Y;(D) = (1 + D)(F(D)).
Based on Divisibility principle, patterns divisible by the feedback polynomial
generate low weight parity sequences. As a consequence, a good interleaver ought to
permute divisible patterns to non divisible patterns for low weight input patterns.
This procedure will ensure that the output of at least one of the encoders has high

weight.

4.1.2 Effect of Interleaver Structure on Iterative Decoding

The interleaver, as mentioned in previous section, has two major tasks. One is to

ensure a good distance spectrum for the code by breaking up the low weight divisible

49

Deinterleave

Le®) - Le(?
T — Decoder 1 Interleaver | 2| Decoder 2
ym L y? L

Fig. 4.2: Structure of Iterative Decoder

input sequences and the other is to decorrelate the input of component encoders to
improve the performance of iterative decoding.

Turbo codes are decoded iteratively which is not optimal in the sense of mak-
ing maximum likelihood decisions. The performance of the iterative decoding is
dependent on the quality of extrinsic information being exchanged between the con-
stituent encoders in the iterative decoding scheme. The choice of interleaver, as we
will see in this section, affects the degree of correlation between extrinsic inputs [26].

The iterative decoding is depicted in Fig. 4.2. Each soft-input/soft-output
constituent decoder has three inputs and two outputs. The three inputs are the
systematic input z at the first decoder and the interleaved version of it # at the
second decoder, the parity inputs y™® or y® and the extrinsic information from the
previous decoder. The outputs are the soft decision and the new extrinsic output
Le® or Le®. The extrinsic information is used as a priort probability in the next
decoding step. The systematic and parity inputs for each decoding step depend only
on the received values for each specific bit. However, extrinsic inputs are dependent
on a range of symbols in the received systematic and parity sequences, which we
will investigate in the following.

After the first decoding step, since the a priori probability inputs to first
decoder are all zero, the extrinsic outputs are only dependent on the systematic

and parity input sequences. The decision variable at position i, is dependent on

o0

1 7im)] N

Lefrl_)l(m) |‘7r‘1(m)__>]| original sequence
|t —m|
1 B - . N
H : Y & N '
T)

interleaved sequence

Fig. 4.3: Correlation for Extrinsic Information of Second Encoder

the decoder input at position ¢ and as a result of the trellis structure of the code,
it is also decreasingly dependant on the input at times 2+ 1, 2 £ 2, ¢ £ 3 and so
on. Letting p(LT:)z] denote the approximated correlation coeflicient between extrinsic
output ¢ and systematic input j after decoding step n. The simulation results in
[27] show that these correlation coefficients decay exponentially and are dependent
on the distance between 7 and j and not on their absolute value. As a consequence,
after the first decoding step we have [27] :
P .= o 1“:]. i,j=1,2,...,N (4.2)
ae~l=3l otherwise
where N is the size of interleaver and constants a and ¢, which depend on the choice
of the encoder, adjust the amplitude and the exponential decay rate respectively.
The p(ngi’zi being equal to zero, is explained by the way the decoder is implemented,
where we subtract the weighted systematic value in order to get the extrinsic infor-
mation.
Equation (4.3) also shows that the interleaver does not affect the correlation
coefficients after the first decoding step, p(l) . However, investigating the same

Le;,x;

correlation coefficients after the second decoding step reveals the role of interleaver.

ol

If interleaving is represented as m(m), the correlation coeflicients can be approxi-

mated as:
extrinsic input
systematic input -, - ~
2 —— ol —1_4lal;
pLe)i’xj — 1/2 ae~c|7r(])—1| +1/2 Z a2e—c(|7f(m) —jl+|i-m]|) (43)
m=1,m#i

The approximation can be intuitively justified using Fig. 4.3. The extrinsic output
of the second decoder at position ¢ is correlated to the a priori input at position
m and this correlation is exponentially decreasing with the distance between i and
m, i.e., [t — m|. Further more, the a priori input at position m stems from out-
put 77!(m) from the first decoder and it is thus correlated to the systematic bit j
according to Equation (4.2), i.e., exponentially decreasing with-|7~*(m) — j|. the
total correlation between extrinsic output ¢ from the second decoder and systematic
input j, contributed from extrinsic output 7~(m) from the first decoder, is there-
fore approximated as a2e~¢("(m™'=jl+li-m}) " The systematic part in Equation (4.3)
is the same as in the case of the first decoder, except that the systematic inputs are
now interleaved.

The above discussion shows that the output ¢ from the second decoder is not
only dependant on the sequence of systematic and parity inputs in the vicinity of
position 7, but also on the a priori inputs in the same neighborhood. Each of these a
priori inputs are in turn correlated to the channel inputs in the vicinity of its origin,
before interleaving. Provided that the interleaver is suitably chosen, output ¢ from
the second decoder can be correlated to a wide range of channel inputs, not only to
those in the vicinity of . This will improve the quality of extrinsic information and
therefore improve the performance of the system.

The best performance of the iterative decoder is achieved if all the a prior:
inputs are totally uncorrelated. Since this is not possible, we try to make nearby a

priort inputs as uncorrelated to each other as possible. This is achieved by forcing

02

the extrinsic outputs from the second decoder to be as uniformly correlated to the
systematic sequence as possible, since correlated a prior: inputs result in extrinsic
outputs that are excessively correlated to some part of the systematic sequence.
Thus, for each new interleaver element to be defined, say n(j), the correlation co-
efficient p(fe)i,xj resulting from the already defined elements are approximated using

Equation (4.3). The element 7 (j) is then chosen at the position to which the corre-

lation up to this point is the lowest.

4.2 Block interleaver

A block interleaver formats the input sequence in a matrix of m rows and n columns,
such that V = m x n. The input sequence is written into the matrix row-wise and
read out column-wise. The deinterleaver stores the data into a matrix with the same

format as the interleaver and data will be read out row-wise.

4.3 Odd-Even Block Interleavers

In the case of iterative decoding, improvement is obtained when the errors remain-
ing from one decoder is correctable by the other decoder. Interleavers can improve
the performance, provided that the sequence is spread appropriately. Odd-Even
block interleavers, introduced in [28], improve the decoding ability of rate 1/2 punc-
tured turbo codes, by means of providing an uniform error protection across the
information sequence.

An odd-even interleaver, maps even position elements to even positions and
odd position elements to odd positions. For example, Table 4.1 shows the input and
parity sequence for the first encoder for a rate 1/2 turbo encoder. The even position

parity bits are punctured, but each odd position information bit has its own coded

bit present.

93

Table 4.1: Odd positioned coded bits of the first encoder
€1 | C2] €3 [C4] C5 1C| C7 | Cg| Cog (Cio| €1 jCi2] C13 | Cia | C15

Vg | — U1 | T Us1 | | VUra | — | Vo1 | — |V | — [V31| — | Vs

If the interleaver maps even position elements to even places and odd position
elements to odd positions, after the second encoder we will have a sequence shown
in Table 4.2 and as it can seen all the even positions information bits have their own

coded bit present.

Table 4.2: Even positioned coded bits of the second encoder
Ci| G [Ci1| € |C7| C2 [€3] Cg [Ci3| €4 [C9g| Ciga | C5 | C1p | C15
— V2 | T [Ve2 | — V122 | — | Vg2 | — | Va2 | — | Va2 | — | Vo2 | —

The whole code word, after multiplexing is shown in Table 4.3. If the interleav-
ing was done in a random way, some information bits would have had two coded bits
associated with them and others would have no coded bits associated with them,
so the coding power is not uniformly distributed among all the bits. However, in
even-odd interleaver, all the information bits will have associated one and only one
coded bit. This gives a uniform distribution of the correcting capability of the codes

and better performance for turbo codes.

Table 4.3: Information bits and multiplexed bits for an ‘odd-even’ interleaver

5] Ca C3 C4 Cs Ce Cr Cg Cq Cio 11 C12 C13 C14

C15

V1,1 | Ue2 | Y31 | V22 | Usy | V12,2 | Y71 | Ug2 | Vo1 | Va2 | U111 | V142 | V131 | Vo2

U1s,1

4.4 S-random Interleaver

One of the interleavers that improves both the distance spectrum of the code and
the iterative decoding suitability of the code, is S-random interleaver. S-random
interleaver is based on random mapping of N elements conditioned by S-random

constraint. The S-random constraint ensures that if two elements are placed closer

o4

than distance S, after interleaving they are placed in distance bigger than S [29].

In general the S-random interleaver can be described as
|T(t1) — m(i2)] > S whenever |i; —iy] < S (4.4)

where 14,1, are the positions before interleaving and = (7,), 7 (i) are the positions
after interleaving, as depicted in Fig. 4.4

S-random interleaver is able to break input patterns shorter than S, these
patterns may include some of low weight divisible input patterns . As we showed
in Section 4.1.1, these low weight divisible input patterns can deteriorate the per-
formance of the turbo code. S-random interleaver will map divisible input patterns
shorter than S into patterns larger than S. If the interleaved sequence, is a non
divisible pattern by the feedback polynomial it will increase the parity weight con-
siderably. However, if the interleaved sequence is again a divisible pattern, the
weigh will increase slightly (still the Hamming weight of the parity sequence is fi-
nite). This shows that although S-random interleaver can improve the performance
considerably, it is not capable of targeting in specific the low weight divisible input
sequences. Another downside of S-random interleaver is that for large value of S
the search time for interleaver will increase up to a point where converging becomes
impossible. The attainable value for S are less than \/’]\m In the next section we

will see an interleaver design method, which targets divisible patterns specifically

1 i1< ------------ ?/2 N

original sequence

¥ A

T (01) oo - (i) interleaved sequence

Fig. 4.4: Design Criterion for S-random Interleaver

99

and improves the minimum free distance of the code.

4.5 Code-Matched Interleavers

As discussed earlier, turbo codes, performance at moderate to high SNR is domi-
nated by the first several distance spectral lines, which are generated by low weight
input sequences. These low weight input patterns can be eliminated by proper in-
terleaving. In code-matched interleaver design [30] for turbo codes, a particular
interleaver is constructed to match the code weight distribution and the low-weight
codewords with significant contribution to the error performance, are completely
eliminated. These patterns can be eliminated by breaking up the input pattern or
in other words, to ensure that they are not mapped to divisible patterns shorter
than a certain length.

Designing a code-matched interleaver consists of two major steps. In the first
step in order to determine the weights that need to be eliminated, the contribution of
each spectral line to the error performance is found. In the second step, interleaver
will be designed with the constraint of eliminating the patterns that generate the
dominating weights [31].

As previously seen, a lower bound on the bit error probability of turbo code

can be computed based on its distance spectrum using Equation (4.5)

P,< > B4Q <,/2dr%> (4.5)

d—_‘dfree

Where B, is

w
By = Y & Ave (4.6)

d=w+z

56

From the code distance spectrum, we can obtain the contribution of each spectral
line to the BER performance. The contribution of a spectral line with distance d to

the overall BER, denoted by P,;(vb), can be written as

Pi(vb) = B4Q (\/eryb) (4.7)

where vb = E,/Ny. Relative contribution of each spectral line to the total BER can

be represented as

Py(vb) = Fa(20)

=SB0 (48)

Then the contribution of the spectral line in a SNR range [a, b] is obtained as

b—_

Fy = [Pt (4.9)

where Fy, is called the contribution integral and a and b are the specified SNR

values. F4 can further be normalized as

(4.10)

where F_fb is called the relative contribution integral. The relative contribution in-
tegral Fg; accurately represents the relative contribution of each spectral line in a
given SNR range. It can be used as the criterion to determine the contribution of
each spectral line in that SNR region. In Section 4.5.2, we find the relative contri-
bution integral for a given system 3rd Generation Partnership Project (3GPP) and

find the weights that contribute to the error performance at error-floor region and

need to be eliminated.

a7

4.5.1 Code-Matched Interleaver Design

The code performance analysis, will provide us with the weights that contribute to
the error performance. The patterns in the input that generate these weights, can be
found from the generator polynomial of the encoder. Usually these patterns are low
weight input patterns (weight 2, 3 and 4) that are divisible by the feedback polyno-
mial. For such input patterns we try to either eliminate the significant contributors
to the error performance or to reduce the number of such codewords.

Now consider a weight-2 input sequence
P(D) = (1 + D*)pn (4.11)

where k) =1,2,3,... and p is the minimum distance between two “1”s in the weight-
2 input pattern that generates the finite weight codeword (it is divisible by feedback
polynomial) and 7 is the time delay, 7, = 1,2,3,... . The input to the second

encoder (D), the interleaved version of the input sequence, will be presented as
Q(D) = (1 + D2y p™ (4.12)

where k2 = 1,2,3,... and 7, is the time delay, 7, = 1,2,3,.... Let us denote by
Zmin the minimum weight of the parity-check sequence generated by a weight-2 input
pattern. Then the parity-check weight of any weight-2 input pattern with the form
of Equation (4.11) is given by

/Cj X (zmin — 2) +2 (413)

where k; = 1,2,3,... and j = 1,2. The overall weight of the generated codeword

can be calculated as
d=6-+ (kl + kg) X (me - 2) (414)

98

P o 0100 00 10,
Q 0 4\01 00 e
m(i1) 7 (i)

Hk2

Fig. 4.5: A weight-2 input sequence is mapped to a sequence with the same pattern

Let ¢, and 75 denote the positions of “1” in the weight-2 input sequence and 7 (i;) and
m(i2) denote the positions of “1” in the interleaved input sequence. If an interleaver

mapping function meets the following condition
lin — io| mod p =0 and |7 (1) — 7(i2)| mod p =0 (4.15)

This interleaver will map a divisible input sequence, to another divisible input se-

quence as shown in Fig. 4.5. As a result, both encoders will generate finite weight

parity-check sequences which is detrimental to the overall code error performance.
In order to avoid this type of mapping, the interleaver should have the following

condition:
|m(11) — 7(i2)] mod p # 0 whenever |i; — i3] mod p =0 (4.16)

However, only those input patterns that generate low weight codewords with large
contributions to the performance need to be eliminated in the interleaver design.
Let dZ,,, denote the maximum weight of the codewords generated by the weight-2
input patterns that should be eliminated by the interleaving. The value of the d2 ..

can be determined by the relative contribution integral. From Equation (4.14) we

have:

6+ (k1 + k2) X (2min ~ 2) < d? (4.17)

mazx

29

ki + ko < M (4.18)
Zmin — 2
This shows that only patterns with k; + k, satisfying Equation (4.18) need to be
eliminated.

In the case of weight-3 input patterns that generate low weight codewords, the
mapping from one weight-3 input pattern to another weight-3 input pattern that
generates low-weight codewords is not easy to make. Nevertheless, a similar method
described above can be used to break those patterns. Another method that can be
used to break these patterns is the S-random constraint. An interleaver with the
S-random constraint can either break a short weight-3 input pattern with lengths
up to 5+ 1 or expand it to a longer one with lengths more than 2(S + 1). These
longer input patterns will produce higher weight codewords.

Now we will focus on the higher weight input patterns that generate compound
error events. A compound error event is defined as a concatenation of two or more
single error events. Consider weight-4 input sequences that generate compound error
events consisting of two single error events, which are generated by two weight-2

input patterns. The weight-4 input sequences can be represented by a polynomial
P(D) = (1+ D*)D™ + (1 + D) D™ (4.19)

where k],k, = 1,2,3,... and 73 and 7, are time delays. The input to the second

encoder after interleaving is :
Q(D) = (1 + D*2)D™ 4 (1 4 D#ka) D (4.20)

where ky,ky = 1,2,3,... and 73 and 74 are time delays. The overall weight of the

60

the generated codeword can be calculated as

d = 4+(k'1+k§)x(zmm—2)+4+(/€g+kf1)><(zmm—2)+4

= 12+ (k) +Ey + k5 +) X (2min — 2) (4.21)

Let 1, 23,73 and 74 denotes the position of “1”s in the welght-4 input sequence, where
< i < 13 < 44 and w(4y), w(iy), 7(i3) and 7(i4) the positions of “1”s in the

interleaved sequence. If an interleaver mapping meets the following conditions:

liy — 2| mod 1 = 0 and li3 —iql mod p = 0

|m(i1) — 7(i3)] mod p = 0 and |7 (iy) — m(ig)] mod u =0

or

iy — 49| mod g = 0 and |is — is| mod p = 0

|7 (41) = 7(i4)| mod p = 0 and | (iy) — m(t3)] mod p =0

This interleaver will map a divisible input sequence, to another divisible input
sequence as shown in Fig. 4.6. Both encoders generate finite weight parity-check
sequences which is detrimental to the overall code error performance.

In order to avoid this type of mapping, the interleaver should have the following

condition:

|7 (i1) — 7(43)] mod p # 0 and |7 (i2) — m(is)] mod p # 0

(4.22)
whenever iy — 15| mod p = 0 and |i3 — 44| mod p = 0

|m(i1) — 7(34)| mod p # 0 and |w(iy) — m(i3)] mod p # 0 (4.23)
whenever|i; — iy] mod p = 0 and |is — 44| mod = 0 '

As in the case of weight-2 input patterns, only those weight-4 input patterns that

61

11 19 7;3 14
P 0 O 1 0 0 1 0 0 0 0 1 0 0 1 O O
Q 00 1 Qeeeeevens O 1 0 Ocevrerrerenrmnnennes 0 0 1 Qceerereeeernenes 0100
(1) m(i3) 7 (i2) 7 (i)
[ik73 P4
it Hrr1 A s Hi2 iy
P OO0 1 Qeeeereees 0 %1 :
Q 0 0 1 0 0 1 O 0 0 O 1 0 0 1 0 0
(1) m(i3) 7(ia) 7(14)
B3 M4

Fig. 4.6: A weight-4 input sequence is mapped to a sequence with the same pattern

generate low weight codewords, which have large contributions to the error perfor-
mance, need to be eliminated. Therefore, if only the weight-4 input patterns that

generate codewords with weight less than d! __ are considered, so

12 + (k) + Ky + k5 + K} X (Zmin — 2) < dias (4.24)
! 1 ! I d?naz —12
kl + kQ + k3 + k4 S —‘Z—*‘:—ﬁ‘ (425)

This shows that only patterns with ki + Kk} + k% + k} satisfy Equation (4.25) need
to be eliminated.

The effect of input patterns with weight bigger than four, on code error per-
formance is small and they can be typically broken by the S-random constraint.

Therefore, these input patterns are not important and do not need to be considered

62

in the interleaver design, provided that the conditions of breaking weight-2, weight-3
and weight-4 input patterns are satisfied. In the next section we use these results,

in order to design a code-matched interleaver for the 3GPP system.

4.5.2 Design of Code Matched Interleaver for 3GPP

In this section, we design a code-matched interleaver for a 3GPP system. Sec-
ond generation (2G) mobile communication systems, which have been designed for
mobile digital telephony, have a very low data capacity [32]. For example, GSM
supports only data rate of 9.6kbit/s. In order to transmit video and image on
a mobile communication system, third generation (3G) standards have been pro-
posed. International Telecommunication Union (ITU) has developed a standard
called IMT-2000, which is capable of transmitting data rates up to 2Mbit/s. Third
Generation Partnership Project (3GPP) organization, has proposed 3GPP standard
for 3G systems based on IMT-2000, which has been accepted by Europe and Japan.
This standard has a Turbo code option which is shown in Fig. 4.7 and has generator
polynomial g(D)/g1(D) where g2(D) = (15)oc; and g1(D) = (13)oct [33]-

In order to design a code-matched interleaver for this system, our first step is
to find the weight enumerator functions for each constituent code and then find the
weight enumerator function for the parallel concatenated code. For each constituent
code, we use the method in [34] and [35] to find the weight enumerator functions.
The state transitions will be presented by state transition matriz A(L, I, D) which
is a 2™ x 2™ matrix. Each element in this matrix has the monomial form of LIt D¢
where [is the length and is always equal to 1, ¢ and d are either 0 or 1, depending

on whether the corresponding state transition, input and output bits are 0 or 1,

respectively.

63

. g2(D)
hl g1(D) y
|
interleaver
o 92(D)
e g1(D)

Fig. 4.7: 3GPP Encoder N = 1440

For the 3GPP system , the state transition matriz is equal to:

[L o0 0 0 LID 0 0 0 |
LID 0 0 0 L 0 0 0
0 LI 0 0 0 LD 0 0
A(LI.D) = 0 LD 0 0 0 LI 0 0 (4.26)
0 0 LD 0 0 0 LI 0
0 0 LI 0 0 0 LD 0
0 0 0 LID 0 0 0 L
i 0 0 0 L 0 0 0 LID |
Using the method in [34], the transfer function is defined by
T(L,I,D)=> > Y L'I'D%(,i,d) (4.27)

1>0 i>0 d>0

where t(1,4,d), is the number of paths of length [, input weight 7, and output weight
d, starting and ending in zero state. If we ignore the effect of trellis termination?,

transfer function can be calculated as:

T(L,I,D)=[1-A(L,I,D))™Y] (4.28)

1

In the original method, the transfer function considering trellis termination is equal to
T(L,I1,D)=[I- A(L,I,D))"! x A(1,1,D)™], where m is the code memory

64

The transfer function for the 3GPP system is equal to:

N(L,I,D)
T(L,1,D) = DL.1D)
where
N(L,I,D) = 1-LID-L*ID - L*ID+ L*(I°D* - ID) (4.29)
+ L¥I°D®-ID)+ L8(2I°D® — I°D - D°I)
+ L'(21*D*-I*-2I*D* -~ D* + I’D® + I°D?)
D(L,I,D) = 1-L(A+ID)+L%(ID - ID°—1I°D + I°D®)

+ L'(-D*+1D°+2I°D*+ I*’D° - 2I°D® - *D"
— I*-2I'D*+ IPD+2I°D° + I°D?* - I' D?)

+ L¥D*'-21*D? - 2I°D® + I* + 4I'D*

+ I'D®—I°D? - 2I°D? + I*DY)

From the transfer function we can get a recursive relation for ¢(l, 1, d).

tlid) = t(l—14,d)+t(l—1,i—1,d—1)—t(I—6,i—1,d~1) (4.30)
41— 6,i—1,d—5) +t(l—6,i—5,d—1) —t(l—6,i — 5,d — 5)
(=T i,d—4) =t —T,i,d—5) +t(l—T,i—3,d—T)
(=T, i=2,d—2) —t(l—T,i—2,d —6) +2t(1 — T,i —3,d — 3)
(=T i—4,d) +2(0—T,i—4,d—4) —t(l—T,i—5d—1)
42— Ti—5,d—5)+t(l—T,i~T,d=3)—t(l—T7,i—6,d—2)
424(1 = 8,i—2,d —6) — t(1 — 8,i — 4,d) — 4t(1 — 8, — 4, d — 4)

—t(l—8,i,d—4)+2t(l~8,i—2,d—2) + t(l — 8,i — 6,d — 2)

65

—t(1—8,i—4,d—8)+2t(I—8,i—6,d—2) —t(l —8,i — 8,d — 4)
+8(1, 3,) S(l—1,i-1,d—=1)=6(1—-2i-1,d—1)
§(1—3,i—1,d=1)—=6(—4,i—1,d—1)+6(—4,i—3,d—3)
6(1—52 1,d—1)+6(—5,i—3,d—3)+20(1~6,i — 3,d — 3)
—6(1—6,i—5,d—1)—6(l—6,i—1,d—5) —26(l — 7,i — 4,d — 4)
+20(1—T7,i—2,d=2)+6(l—7,i—6,d—2) - 6(l—7,i—4,d)
+6(1—T,i—2,d—6)—6(l—7T,45,d—4)

+

Based on the above recursive relation, the input-redundancy weight enumer-

ating function (IRWEF) for one encoder can be found Equation (4.31).

A% (w,2) = 3 A% wz) - A (w2 (4.31)

z=z1+22

The IRWEF for the turbo code is calculated from, with similar constituent encoders.
The values for A (w,z) are shown for low-weight input sequences in Table 4.4.
Using the equations for design of code-matched interleaver given in Section 4.5, we
have also found the relative contribution of the first spectral lines to the bit error
rate which is depicted in Fig. 4.8 and also the relative contribution integral shown
in Table 4.4.

From Fig. 4.8, we see that for given 3GPP system, the codewords with input
weight 9, 13, 14, 17 and 18 are the dominant error events in the SNR range of
(2, 8]dB, this also agrees with the values for relative contribution integral that we
found for these weights. These weights can be generated by different input weights,
e.g., sequences with weight 13 can be generated by a weight-3 input and two parity
sequences with weights 3 and 7 or by a weight-7 input and two parity sequences

with weights 3 and 3. At first glance, one may think that we have to remove

66

both weight-3 and weight-7 input patterns that cause such patterns, in order to
remove the codewords with weight-13. But if we check the value of A(w, j) for these
sequences, we see that the number of patterns with weight-7 is only 5.2146e-11
compared to 1.3234e-01 of the patterns with weight-3. As a result, we can assume
that if we remove the ones with weight-3 input, we have nearly removed all weight-
13 codewords. This fact is also true for other weighs and explains why in the design
of interleaver we just remove the patterns with low weight inputs (2, 3 and 4).
Now that we have found the weights that we need to remove, we have to
determine the input patterns that need to be eliminated. As seen in Table 4.4, we
need to remove weight-2 inputs with codeword weights less than 22. It can be seen
that there is no dominant weight-4 input patterns that need to be eliminated and
weigh-3 inputs will be removed using a S-random interleaver. Using Equation (4.18)

we can find the upper limits for weight-2 inputs that need to be eliminated:

2 —6 22-6
k k< mazr —
1+2”zmm—~2 6—2

=4 (4.32)

The values for 2,,;, and p depend on the encoder structure and are 6 and 7, respec-
tively. The conditions we used in order to design our code-matched interleaver can

be summarized as:

L. |m(4,) = 7(i2)| mod p # 0 whenever |i; — iyl mod u =0
where k) + ko < 4

2. |7(iy) = w(ia)] > (S = 27) whenever |i; — 15| < (S = 27)

The simulation results for the designed interleaver are given in Fig 4.9 and Fig. 4.10.
These results are compared with the result of a S-random interleaver with the same
S parameter. As it can be seen the performance of the code has been improved in

error-floor region, due to the increase of the minimum weight of the code.

67

Relative Contribution to BER

0.8

0.8

0.7

0.6

0.5

0.4

0.3

' T T T —
..

thide

N = 1440

Fig. 4.8: Relative Contribution to Bit Error Rate

68

Table 4.4: Relative Contribution Integral

weight B(d) Fe Input weight Parity weight A(w, j)
9 3.4602e — 05 6.3081e + 01 3 3 1.6609e-02
10 6.99818e — 13 3.4275e — 07 6 2 1.6756e-10
12 2.0462e — 06 1.1480e — 01 4 4 7.3662e-04
13 2.757e — 04 6.1596e + 00 3 3,7 1.3234e-01
7 3 5.2148e-11
2 6 1.9820e+-00
14 2.7528e - 03 2.6289% + 01 6 2,6 1.0068e-06
10 2 1.9860e-19
15 1.5084e — 07 6.4827e — 04) 5 4.3443e-05
16 2.3943e — 05 4.8107e - 02 4 4,8 8.6196e-03
8 4 1.004e-11
3 3,7,11 4.9410e-01
17 1.0294e — 03 9.9567e — 01 7 3,7 3.0603e-07
11 3 2.9835e-19
2 6,10 3.9446e 100
18 0.4850e — 03 2.6138e + 00 6 2,6,10 1.5243e-03
10 2,6 1.4109e-14
14 2 1.1346e-27
19 2.8409e — 05 6.7960e — 03 5 3,9 8.1819e-03
9 5 2.7588e-10
4 4,8,12 1.7806e-01
20 4.9460e — 04 6.0327e — 02 8 4,8 6.1244e-08
12 4 8.9238e-18
3 3,7,11,15 1.2459e+-00
21 2.5979% — 03 1.6370e — 01 7 3,7,11 4.5260e-04
11 3,7 1.1857e-14
15 3 4.7570e-27
2 6,10,14 5.8879¢+-00
6 2,6,10,14 3.5645e-02
22 8.3262¢ — 03 2.7411e —- 01 10 2,6,10 2.5088e-10
14 2,6 3.8316e-22
18 2 2.0036e-35

69

-1

S—— — — ;
::| @~ code-matched interleaver |
<~ | =@=_standard 3GPP interleaver |

Bit Error Rate

- L 1 ! ! L 1

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Ey/Ny(dB)

Fig. 4.9: Bit Error Rate for the 3GPP system, NV = 1440 , number of iterations

70

\[@ code-matched interleaver j
-| == standard 3GPP interleaver {-

Frame Error Rate

Eu/No(dB)

Fig. 4.10: Frame Error Rate for the 3GPP system, N = 1440 , number of iterations
=15

71

4.6 summary

In this chapter we studied the criteria which are used in design of interleavers, in
order to improve both distance spectrum and the iterative decoding suitability of
the code. S-random and code-matched interleavers were presented in detail. We
also included the simulation results for a code-matched interleaver design for 3GPP

system.

72

Chapter 5

Joint Interleaver Design for Multiple

Turbo Codes

As discussed earlier, the performance of turbo codes is deteriorated in error-floor
region, due to the low values of free distance of turbo codes. As we have seen in
Chapter 4, improving the free distance of turbo codes, require to eliminate certain
patterns that generate low-weight outputs from the input of the encoders.

As we have seen, criteria to improve the weight spectrum of the code and also
criteria to improve the performance of the iterative decoding is known to us. While
these criteria are known, the fact that hold us from designing a good interleaver
is how to find an interleaver for given length that satisfy these conditions, in a
reasonable search time (converge). In these cases we have to loosen the conditions
in order that interleaver can converge, which will deteriorate the performance of the
code.

In the case of Multiple Turbo Codes, where we have three or more constituent
codes and we have at least two interleavers, each interleaver can be designed to
eliminate some of the unwanted patterns at the input of the encoder and other
patterns are eliminated by the other interleavers. This will decrease the burden on

one interleaver to satisfy all the conditions at the same time and enables us to satisfy

73

tougher conditions.
In this chapter, we see some simulation results for multiple turbo codes. Later
we will introduce two methods for joint interleaver design for multiple turbo codes

and investigate their effect through lower bound calculations and scatter plots.

5.1 Multiple Turbo Codes

Multiple turbo codes have been discussed in detail in Section 2.5. In this section, we
present some practical issue that we were faced while simulating a multiple turbo
coding system and some simulation results which are the basis for the future sections.

We have used the multiple turbo coding system presented by Divsalar in [15],
whose ehcoder consists of three similar RSC encoders with memory size 2 with a
total code rate of 1/4. Two versions of this system are shown in Fig. 5.1. In the first
version (Cs7), the constituent encoder has the generator polynomial (5, 7). and for
the second one (C7s) the generator polynomial is (7,5),¢. In [15], simulation results
for a 3-memory encoder is also given with generator polynomial (11,17),, which is
the same as 2-memory code (7,5)c- *

As seen in Section 2.5, different configurations can be chosen for the decoders.
We have simulated two of the best performing configurations, which are extended
serial (ES) and parallel (P) configurations. Each decoder consisted of three Log-
MAP decoders and extrinsic information is added before each decoder, the only
difference between the two configurations is that in the extended serial configuration
the extrinsic information is updated after each decoder finishes its operation, whereas
in parallel configuration the extrinsic information is updated after one complete
iteration.

The Bit error rate (BER) and Frame error rate (FER) for the described systems
1s given in Fig. 5.2 and Fig. 5.3. The simulation results are for block length N =

1

In [10] the generator polynomial for 3-memory code by mistake is mentioned as (11,13)4c:

74

JanY
P

1 L M—
] ”"E L
¢ I

Fig. 5.1: Multiple Turbo Code with constituent encoder (2)(5, 7)ot (b)(7,5)0ct

4096, with number of iterations equal to 20. The interleaver used is a S-random
interleaver with S=31.

As expected, the performance of the extended serial configuration is better
than the parallel configuration. It can also be seen that as we expected the 3-
memory code (11,17),4, has approximately the same performance as the 2-memory
code Cys. 2

As it can be seen from Fig. 5.2 and Fig. 5.3 performance of the C75 is approx-
imately 0.2 dB better than the code Cs;. In order to explain this phenomena, we

need to use density evolution method presented by Divsalar in [36].

2

_ 1+ D3 _ (1+D)1+D+D? __ (1+4D+D?) _
(11717)oct - 1+D—:—D2+D3 = Tu+D)(+D?2) — ((1+D2)l - (7a5)oct

)

10 T T T T T T T

I I
.......... *SﬂExtendedSenal 4
O S SO DI - (DRI .| == 5/7 Parallel]
.......... *7/5Para”e|
.......... i NG e e =@ 11/17 Parallel

i
-

—
o

Frame Error Rate

-0.5 0.5

Fig. 5.2: Frame Error Rate of Multiple Turbo Codes Simulation (N = 4096 , r=1/4,
S-random interleaver S=31)

76

| g
== 5/7 Extended Serial
=B= 5/7 Parallel
== 7/5 Parallel
-©- 11/17 Parallel

Bit Error Rate

0 0.1 0.2 0.3 0.4 05
(Ey/No(dB)

Fig. 5.3: Bit Error Rate of Multiple Turbo Codes Simulation (N = 4096 , r=1/4,
S-random interleaver S=31)

77

—-
from channel Decoder 1
EofNo l—>

SNR1}, Gq SNR1g,

'——>

.

i SNR2g,¢ Go j’ﬂi_n_'

Fig. 5.4: Analysis of Turbo Decoding as a Nonlinear Dynamic System with Feed-
back Using Density Evolution '

In this method, the density evolution is used to analyze the performance of
iterative decoders for turbo codes. ® Density of extrinsic information in iterative
turbo decoder is tracked by actual density evolution which is approximated by sym-
metric Gaussian density functions. The evolution of these density functions is viewed
through an iterative decoder which is viewed as a nonlinear dynamical system with
feedback.

When the interleaver is very large and random the extrinsic information mes-
sages are independent and identically distributed, which will be approximated by a
Gaussian density function. The probability density evolve with successive decoder
iterations from narrow densities to broader Gaussian-shaped densities with increas-
ing means as the iterations continue. A signal-to-noise ratio for this random variable
can be defined as SNR= p?/0?, where p and o are the mean and variance of the
Gaussian density function, respectively. For each decoder input and output, SNR
can denoted by SNR;, and SNR,,;. In a turbo decoder, a nonzero E,/Ny from the
channel enable the first decoder to produce a nonzero SN R1,,; for the output ex-
trinsic information despite starting from SNR1;, = 0. For a given value of E,/Ny,
the output SNR of each decoder is a nonlinear function of its input SNR, denoted

by G;, where we have SNR1,,; = G1(SNR1,y, E},/Ny). The same can be defined for

3

the simulation results for density evolution is provided by Dr. Divsalar, answering the question
about the better performance of C7s than Cs7

78

10

,l
g EpNo=05dB
e Actual Density Evolution
= = = QGaussian Approximation
8
7
£ g
g
& §
B
<2
3
2
i §
This point
changes
vith EpNg o 4

0 1 2 3 4 5 6 7 8 9 10

Fig. 5.5: Iterations and Convergence of a Turbo Decoder

other decoders, as shown in Fig. 5.4. The decoder’s convergence can be assessed by
measuring the change in the SNR of the extrinsic information from one iteration to
the next. The convergence of the decoder can be tested by tracking the evolution of
the extrinsic information’s SNR. The analytical method is to plot the output SNR
of decoder 1 versus its input SNR and the input SNR of decoder 2 versus its output
SNR, as shown in Fig. 5.5. Fig. 5.5 graphically shows the progress of iterations.
The improvement in the SNR of the extrinsic information and the corresponding
improvement in the decoder’s BER, follows a staircase path reflecting at right an-
gles between the curves corresponding to Gy and G5'. The steps in this staircase
are large when the bounding curves are far apart and small when they are close
together. Where the curves are closest together, the improvement in BER slows
down, as many iterations are required to bore through the narrow iterative decod-
ing tunnel between the curves. If the iterative decoder successfully passes through

the tunnel, convergence becomes very rapid as the two curves get farther apart at

79

higher SNRs.

The initial displacement of the G, curve for SNR1;, = 0 is dependent on the
Ey/Ny due to the channel observations. If the value of 0.5 dB used in Fig. 5.5 is
reduced, then at some point the two curves will just touch each other. That value
represents the iterative decoding threshold. The iterative decoding tunnel will be
closed at the SNR where the two curves touch and the staircase path will not go
past this point. If E,/Ny is greater than this threshold, the decoder converges and
the BER goes to zero as the iterations increase.

The density evolution has been employed for code Cs; and C7; for length
N = 4096, at E,/Ny = —0.3 dB and E,/Ny = —0.5 dB respectively. The results
are presented in Fig. 5.6 and Fig. 5.7. These results show that the iterative decoding
threshold for Cr5 is 0.2 dB less than code Cs7, that is the reason why this code
enters the waterfall region sooner and performs better before error-floor region. At
error-floor region as it can be seen from the figures the curves for code Cs; are more
separated. This means that we will have more gain with each iteration, this will

result in better performance at error floor region for code Cs;.

30

a0

25 - D] @‘1

20

SMNRout (codel), SNRin(code 2)

0.2

more separation
lower error floor

DU T M T T ¥ 4 T
00 0.2 10 15 20

i T

25 30 3.9 40

SNRin (code1), SNRout(code 2)

Fig. 5.6: Density evolution for Multiple Turbo Code Cs7

(N=4096, r=1/4, E,/N, = —0.3dB)

81

4.5 a0

3.0,

25;

204

¥

L 4

L

“E
i
ha

=

less separation

&
D
T
=}
(%)
<
i
5 higher errar floor
~ 15
o
T
e code 2
5
v
z 10,
n

0.5

00 05 1.0 19 20 25 30 35 40 45

SNRin (code1), SNRout{code 2)

Fig. 5.7: Density evolution for Multiple Turbo Code C7s
(N=4096, r=1/4, Ey/Ny = —0.5dB)

82

50

5.2 Performance Analysis of Multiple Turbo Codes

In the previous section, we have seen simulation results for two multiple Turbo code
systems Cs7 and Crs. In this section, we examine their behaviour at error-floor region
and in Section 5.2.2 we determine the parameters that affect their performance in
error-floor region and outline the design criteria that we try to reach in future

sections by means of joint interleaver design for multiple Turbo codes.

5.2.1 Performance Analysis in Error-Floor Region

In order to be able to examine the performance of two codes Cs; and Crs at error-
floor region, we have to simulate them for short frame lengths. Simulation results
for these two systems are presented in Fig. 5.8 and Fig. 5.9 for length V = 256.
We can see that in water fall region the performance of the C7s5 is better than that
of the code Cs7, but they cross over before error-floor region and at the error-floor
region code Cs; will show lower error-floor.

As we have seen in the previous chapters, the performance of turbo code at
error floor region can be approximated using the lower bound of probability of error,
which can be found provided that the weight distribution of the code is known. So,in
order to examine the performance at the error-floor, first we have to find their weight
distribution.

In order to be able to examine the effect of interleaver on weight distribution,
in this section, unlike what we did ih Chapter 4, we will not use uniform interleaver.
For finding the weight distribution using the S-random interleaver, we will find the
Hamming weight of the output codewords for all inputs with weight 2, 3 and 4.
These are the input weights that usually cause low-weight codewords. After the
output weights of all these input sequences are found, we can follow the formula in

Section 4.5 to find the Relative contribution of each spectral line to the bit error

83

[== 5/7 Code |
-| 4= 7/5 Code

Bit Error Rate

Fig. 5.8: Bit Error Rate for Multiple Turbo Code with N=256, Rate=1/4, S-random
interleaver S=14

84

["—= 5/7 Code |1
| == 7/5 Code |]

Frame Error Rate

-5 ! 1 1] 1 1 I

2.5 3 3.5 4 45 5
Ey/No(dB)

Fig. 5.9: Frame Error Rate for Multiple Turbo Code with N=256, Rate=1/4, S-
random interleaver 5=14

85

rate. The Equation (5.1) shows the lower bound for the probability of bit error.

P< Y. BdQ< 2dr%> (5.1)

d=dfree

The contribution of each spectral line to the probability of bit error is,

Py(b) = B,Q (\/er'yb) (5.2)

The relative contribution of each spectral line to bit error rate and contribution
of each spectral line to probability of error for code (Cs7), are shown in Fig. 5.10
and Fig. 5.11, respectively and for code (Crs), are shown in Fig. 5.12 and Fig. 5.13,
respectively.

It can be seen from these figures that the dominant weights for the code Cys
are lower than the weights for the code Cs7, in other words the free distance of the
first code is smaller than the second one, this will result in the poor performance
at error-floor region. At SNR from 4 dB to 6 dB where the minimum weight terms
dominate the performance, the lower bound of probability of error for code Cs7 is
0.01 times lower than the code Crs, Fig. 5.11 and Fig. 5.13.

It is clear that if we increase the minimum free distance of the code the per-
formance of the code will improve considerably at error-floor region. In the next
section based on the performance analysis, we will find the interleaver design criteria
that we try to reach by means of joint interleaver design, in order to improve the

performance at error-floor region.

5.2.2 Design Criteria for Multiple Turbo Codes

In this section, we outline the design criteria that we aim to fulfill by means of joint
interleaver design, we will conclude the conditions that the interleaver has to satisfy

in order to improve the performance at error-floor region. We will consider code Cs7

86

Relative Contribution to BER

Fig. 5.10: Relative Contribution to Bit Error Rate code Cs7, rate= 1/4, N=256

87

Contribution to Lower Bound

—— d=28
-©- d=29
—— d=30

Fig. 5.11:

Contribution to Lower Bound for Code Cs7, rate= 1/4, N=256

88

Relative Contribution to BER

40 T T T T T

351 | = d=20 D

25

T

20_.

Q

Fig. 5.12: Relative Contribution to Bit Error Rate Crs, rate= 1/4, N=256

89

Contribution to Lower Bound

Fig. 5.13: Contribution to Lower Bound for Code Crs, rate= 1/4, N=256

90

as an example throughout the future sections, but these methods can be applied to
any other code. As we have seen in the previous chapter, there are two important
issue when we design the interleaver. First is the improvement of weight spectrum
of the code and second is the improvement in the performance of iterative decoding.

In order to improve the weight spectrum of the code, we have to eliminate
the patterns at the input of encoders that generate low-weight codewords. These
input patterns are generally the low-weight input patterns that are divisible by the
feedback polynomial of the encoder. In case of code Cs;7, the feedback polynomial
is 1+ D + D?. For eliminating divisible weight-2 and weight-4 input sequences, we
will use a code-matched like method, by removing the exact patterns as described
in Section 4.5.1. The values for p (the minimum distance between two “1”s in the
weight-2 input pattern) is equal to 3 and 2., (the minimum weight of the parity-
check sequence generated by a weight-2 input pattern) is equal to 4. Assuming that
the allowable dZ . (the minimum weight of the codewords generated by the weight-
2 input patterns) is equal to 40 and d} . (the minimum weight of the codewords

generated by the weight-4 input patterns) is equal to 40. We can conclude that the

following patterns have to be eliminated by interleavers:
e weight-2 patterns

2 —6 40—6
k: k< mazx — —
‘+2—zmm—2 429

|7 (1) — 7(i2)| mod 3 # 0 whenever |i; — i3] mod 3 = 0 and k; + ky < 17

e weight-4 patterns

dtoe —12 40— 12
kl ! ! I< maxr — —
RN ARy AR TS = W

91

|7(21) — 7(i3)] mod 3 # 0 and |7 (i3) — 7(i4)| mod 3 # 0

wheneverli; — 1| mod 3 = 0 and |i3 — 44/ mod 3 =10

|m(i1) — 7(i4)] mod 3 # 0 and |7 (iz) — 7(i3)| mod 3 # 0

whenever|i; — i3] mod 3 = 0 and i3 — 44| mod 3 =0

For other low-weight input sequences finding the exact divisible patterns is a task
with overwhelming complexity. In this case, we rely on the ability of the S-random
interleaver to break low-weight divisible input sequences. For interleaver size N = 256,
we use S-random interleaver with S parameter equal to S = VN = /256 = 16. So,

the interleaver must have the condition of:
|7(3,) — 7(i2)| > 16 whenever |i; —ip| < 16

In order to improve the iterative decoding performance as we saw in Sec-
tion 4.1.2, the aim is to make the extrinsic information as uncorrelated as possible.
We use a suboptimal algorithm to minimize the correlation coefficients [27]. In this

algorithm we ensure that
(|r(z) = 7(5)| +|i = j|) = IDS for all defined i, j

Where Iterative Decoding Suitability (IDS) is a design parameter, this will
upper bound the correlation coefficients and ensure that this term is always less

than a certain value depending on the value of IDS. For our simulations, we have

used IDS=30, which means

(|r(i) — 7 ()| + |¢ — 4]) > 30 for all defined 1i,j

92

Distance after Interleaving

250 |-

200 |7 i

100

50|

150 | i

[e—— v - .
Ry - - bt
e e T e - .
iy - - . TN :
- v - -
- L b & =
L it a S .
i e B .
s oL i . :
i - o= x - -
a s . s - :

Fig.

50 100 150
Distance before Interleaving

5.14: Scatter Plot for S-random interleaver S=14, Max. distance=256

93

200

250

Distance after Interleaving

50

45
40
35
30| &

25
20

15 b%%

10

0.09

0.08

0.07

0.06

10.03

'40.02

0.01

5 10 15 20 25 30 40 45 50

Distance before Interleaving

Fig. 5.15: Scatter Plot for S-random interleaver S=14, Max. distance=>50

94

Scatter plots are used to show the spreading factor for interleavers [37]. The
scatter plot for code Cs; with N = 256 and S-random interleaver with S = 14,
are shown in Fig. 5.14 and Fig. 5.15. The x-coordinate shows the distance between
elements before interleaving (|i — j|), the y-coordinate shows the distance after
interleaving (|7(¢) — 7(j)|) and the shade of each point shows the density at each
coordinate. It can be seen that for S-random interleaver, there is no element in the
area of (z < 14 and y < 14), which agrees with the condition of S-random interleaver
Fig. 5.15. However, as it can be seen in Fig. 5.14 the density of distances is not

uniformly distributed.

5.3 An Algorithm for Interleaver Design

In order to design an interleaver, we need a search program that finds an interleaver
that satisfies the design criteria. Design criteria for each interleaver depends on the
code and the desired performance. We also need to add some extra conditions for
joint design of two interleavers as will be discussed in the next section. Considering
an interleaver of size 256, for such interleaver there are 256! combinations. It is
impossible to search all the possible solutions in order to find the interleaver that
satisfy the design criteria. Usually to resolve this problem, we use random search
and it proves to be a good solution.

In this section, we introduce the search algorithm used for designing inter-
leavers in the following sections. The structure of the search will remain the same,
but for different methods, the conditions applied to the interleaver will change. The
interleaver matrix is presented by z[i], which means that element z[i] before inter-
leaving, will be placed at position 4, after interleaving. In this algorithm we assume
that all different criteria are checked in one function, which will check whether 2[1]
(element put in position 4), satisfy all the conditions with the ¢ —1 elements placed

before. The algorithm is summarized in page 96.

95

z [i] = a random number

check condition for z [i]

while ((condition not satisfied) and (not reached end of sequence))

{ z[i]=z[i]+1

check condition forz [i] }

if (reached end of the sequence)

{ z[i]=1}

while ((condition not satisfied) and (not all the numbers chosen once))

{ z[i]=z[i]+1

check condition forz [i] }

if (all the numbers chosen and the condition is not satisfied)
{ z[i]=1
while (z[i]<N)
{ =1
while (j <=i-1)
{ swapz[i]andz[j]
check condition for z [i]
check condition for z [] |
if (condition not satisfied)
{ swapz[i]andz|[j]

i++ }

96

5.4 Joint Interleaver Design for Multiple Turbo Codes

In the previous chapters, we discussed the interleaver design criteria that improve
the distance spectrum of the code and also the iterative decoding suitability of
the code. However, it is not always possible to fulfill all of these conditions in a
reasonable amount of time. Especially for short length interleavers, the convergence
of interleaver is harder and usually we have to loosen the required conditions, to
allow the interleaver to converge in reasonable time.

In the case of Multiple turbo codes where we have at least two interleavers to
design, we can benefit from this fact and design each interleaver to satisfy part of
the conditions and the other interleaver to satisfy the rest. This will decrease the
burden on one interleaver to satisfy all the conditions at the same time and enables
us to satisfy tougher conditions.

There are two possible approaches. In the first approach, before designing
the interleaver, we determine which conditions are supposed to be satisfied by each
interleaver. This method enables us to design interleavers in parallel, because each
interleaver is assigned a certain patterns that need to be eliminated, which does not
overlap with the patterns assigned to the other interleaver. We call this method
Parallel joint interleaver design method. This method will be discussed in detail in
Section 5.5.

In the second approach, we first design an interleaver trying to satisfy as many
conditions as it can, without loosening the conditions and ignore the conditions we
cannot fulfill. Second interleaver has the duty of satisfying the conditions that the
first interleaver was unsuccessful to achieve. We call this method Sequential joint

interleaver design method and will discuss it in Section 5.6.

97

5.5 Parallel Joint Interleaver Design Method

In parallel design method for joint interleavers, design of two interleavers is done
separately. This separation requires that a dividing criterion be defined, i.e., to
decide a priori on the patterns that each interleaver will check. Each pattern is
checked by one of the interleavers. Dividing criterion will specify which patterns
are to be checked by a given interleaver and which patterns will be ignored by that
interleaver. In the following section, we discuss the characteristics that a dividing

criterion must have and we will see the effect of different dividing criteria on the

interleaver convergence.

5.5.1 Dividing Criterion

There are certain characteristics a dividing criterion must have in order to be able to
improve the convergence of the interleaver. It is obvious that the patterns checked
and eliminated by each interleaver must not overlap with the patterns checked by
other interleaver and in total all patterns that need to be eliminated must be cov-
ered. In the other words, the set of target patterns should be partitioned mutually
exclusive and exhaustive subsets and each subset be assigned to one interleaver.

Another preference considering the dividing criterion, rises from the practical
limits we face while designing the interleaver. Due to the large number of possible
combinations for even a short length interleavers, we usually use a random search.
Due to the characteristic of a random search, the dividing criterion must be defined
in a way that facilitate the convergence of the interleaver.

In our case, we have to design two interleavers. The elements can be divided
based on whether their position in the original sequence is odd or even. One ad-
vantage of division based on being odd or even is that the elements are distributed
uniformly through the sequence. Following, we will discuss three possible dividing

criteria and examine their effect on the interleaver convergence.

98

Checked patterns

A}
44 | 45 46 | 47 48 | 49 50 | sl 52 | 53 54 | 55 56
A 4 bd A

LAAN
57 x

P RS - - -
z

(b) Second Interleaver

Fig. 5.16: Checked and Ignored Patterns for the First Dividing Criterion Based on
the Position in the Original Sequence

5.5.1.1 First Dividing Criterion

In the case that we design two interleavers without considering their joint design,
in each interleaver all of the conditions will be checked and must be satisfied. One
step forward, to ease this condition, is to let one interleaver ignore some specific
patterns, but there still remain some overlap between the patterns that both in-
terleavers check. In the first dividing criterion, one interleaver ignores the patterns
with elements whose positions in the original sequence are all even numbers and the
other interleaver ignores the patterns with all odd-positioned elements. Based on
the original sequence, we can determine which patterns will be eliminated by each
interleaver. For example consider an element positioned at position 50, for such el-
ement in the first interleaver as shown in Fig. 5.16(a), the patterns with element 49
and 53 (odd and even) will be checked, but patterns between the element 50 and 48
(even and even) will be ignored. In the second interleaver, as shown in Fig. 5.16(b),

for element positioned at place 50 all the patterns will be checked.

99

It is obvious that this dividing criterion, causes an overlap between patterns
assigned to two interleavers. This will reduce the capability of joint interleaver and
we will not be able to gain much over separate design of interleavers. However, for

this criterion, both interleavers converge with similar rate.

5.5.1.2 Second Dividing Criterion

Checked patterns

d
44 45 46 47 48 49 50 51 52 53 54 55 56
AN > P, S ul hd
S, Se__ el DTl -7 -

-~ . - i

(a) First interleaver

Checked patterns

7 7 A\l 4 Y N
44 45 46 47 48 49 50 51 52 53 54 55 56
X X 1N A 4 A A

&7 N 7 7
~ ~ ~ P N - 4 -
~ -~ N g -] - ”
~ . __=’ \:__—’ ”/
"""""" Ignored patterns ~~~----"~

(b) Second Interleaver

Fig. 5.17: Checked and Ignored Patterns for Second Dividing Criterion Based on
the Position in the Original Sequence

In order to solve the overlapping problem of the first dividing criterion, we
introduce another criterion which does not contain any overlapping patterns. In
the second dividing criterion, the first interleaver will check the patterns between
the elements that the sum of their positions in the original sequence is even and
the second interleaver will check the patterns between the elements that the sum
of their positions in the original sequence is odd. For example, consider an element

positioned at position 50, for such element in the first interleaver, as shown in

100

F 14 \
even odd X
AY A

rteven rreleven e X
N\ N 4
e PV

~= ==

-~ - — -

(b) Second Interleaver

Fig. 5.18: Convergence Comparison between Two Interleavers

Fig. 5.17(a), the patterns with element 48 (sum equal even) will be checked, but
patterns between the element 50 and 49 (sum equal odd) will be ignored. In the
second interleaver, as shown in Fig. 5.17(b), the patterns with element 51 and 47
(sum equal odd) will be checked, but patterns between the element 50 and 48 (sum
equal even) will be ignored.

This dividing criterion, does not cause overlap between the patterns checked
by two interleavers and in total it covers all the patterns that need to be checked. In
practice, when we execute random search for finding the interleavers, we observe that
the interleaver with dividing criterion ignoring the elements with odd sum converges
much slower than the interleaver ignores the elements with an even sum.

This behaviour can be explain by comparing the result of continuous ignoring
in both interleavers. As shown in Fig. 5.18(a), consider a case that an even number
is placed and another odd number is placed with ignoring the conditions between
the even and odd number, which is acceptable because the sum of them will be
odd. In this case, these two numbers can block any even and odd number in the
neighbourhood of their original positions to be ignored. This happens because for

odd numbers the conditions with odd number placed before must be satisfied and

101

for even numbers the conditions with the even number placed must be satisfied.
In other words, ignoring will obstruct the ignoring of other numbers. In the case
of other interleaver, if we have placed two even numbers by ignoring the condi-
tions between them (sum equal even), we can still ignore another even number in

the neighbourhood, which means ignoring does not prevent us from ignoring more

Fig. 5.18(b).

5.5.1.3 Third Dividing Criterion

In the third dividing criterion, the first interleaver will check the patterns between
the elements that the smaller element in the original sequence is even. The second
interleaver will check the patterns between the elements that the smaller element in
the original sequence is odd. For example, consider an element positioned at position
50, for such element in the first interleaver as shown in Fig. 5.19(a), the patterns
with element 48, 51 and 52 will be checked, but patterns between the element 50 and
49 will be ignored. In the second interleaver, as shown in Fig. 5.19(b), the patterns
with element 50 and 49 will be checked, but patterns between the element 50 and
48 51 and 52 will be ignored. This dividing criterion, does not cause overlapping
between patterns checked by two interleavers and in total it covers all the patterns

that need to be checked and the two interleavers converge at the same rate.

5.5.2 Convergence Analysis of Parallel Joint Interleaver De-

sign Method

In order to examine the convergence of different dividing criteria, we will consider
four different sets of design criteria and then examine the convergence for each divid-
ing criterion. The system under consideration is the code Cs7 as discussed in earlier
sections with length N = 256. The sets are called V; and presented ih Table 5.1.

As it can be seen, V] is the easiest and Vj is the hardest to satisfy. Considering the

102

Checked patterns

7 7 7 T \ N\ Y N Y

44 45 46 47 48 49 50 51 52 53 54 55 56

\\ \ 4 44}
\\\ \\§__’\<:,

—~—— -

(a) First interleaver

Checked patterns

7 7 Al N
44 45 46 47 48 49 50 51 52 53 54 55 56
N X \ I L N 20 . A . A
~ N ~ _Z N 4 4 P2
\\\ ___\:77 \~‘2-:;.5:_,’:’// //,
TN __-- -~ Ignored patterfis~~Z_ _ _ - -7

(b) Second Interleaver

Fig. 5.19: Checked and Ignored Patterns for Third Dividing Criterion Based on
the Position in the Original Sequence

above design criteria, we have designed interleavers satisfying these conditions with
the described three dividing criteria. Depending on the the design criterion and the
dividing criterion, the interleavers converge to some extent. For all design criteria
and dividing criteria, the maximum percentage of elements which satisfy the design
criteria, is shown in Fig. 5.20, for each possible combination. The first and second
interleaver convergence is examined, due to the fact that some of the dividing crite-
ria do not behave symmetrically. As it can be seen from Fig. 5.20, second dividing

criterion has the best convergence performance, but as discussed earlier it does not

Table 5.1: Examined Design Criteria
Vi Va V3
S 13 14 15 16
IDS 15 20 25 30
d2,.. 25 30 35 40
dt.. 25 30 35 40

103

10

875 : 4
75
62.5

BOb -

37.5 ' N
-%= first div. ., first interleaver Do

=+= first div. c., second interieaver ~ k -~ ey
o5 || == second div. c., first interleaver ‘#g. g
-8~ second div. c., second interleaver : -~

X third div. c., first interleaver

third div. c., second interelaver :
125_ —

Maximum Percentage of Elements Satisfying the Criteria

Vi v2 V3 va
Vi

Fig. 5.20: Convergence for Different Dividing Critera

behave symmetrically. This means that one of the interleavers converges much faster
than the other. The other two dividing criteria are symmetric and the third divid-
ing criterion has better convergence than the first one. Considering the convergence
analysis done in this section, we can conclude that although some dividing criterion
can perform better than others but none of them can improve the performance as
desired. This will lead us to Sequential Joint Interleaver Design Method, where the
patterns ignored by each interleaver will be decided while the interleaver is being
designed and as we will see later the convergence is much better than Parallel Joint

Interleaver Design Method.

104

5.6 Sequential Joint Design Method

In the previous section, we saw that although different dividing criterion can be
employed for joint interleaver design, there are two major obstacles in using di-
viding criterion, first the number of iterations needed for interleaver to converge
is extremely sensitive to the choice of dividing criterion and second, some dividing
criteria can be unsymmetrical, which results in nonuniform rate of convergence be-
tween interleavers. This discussion lead us to Sequential joint interleaver design,
where the patterns ignored by each interleaver is decided during the design of each
interleaver.

Due to the fact that the patterns ignored by each interleaver is not known
initially, interleavers cannot be designed in parallel. The first interleaver will be
designed first, trying to satisfy all the conditions and ignore the patterns when
there is no other way. The second interleave has to check only for the patterns that
the first interleaver has ignored.

For each element, we check different condition, e.g., weight-2 patterns, S-
random, etc An element may satisfy some of the conditions and fail others (e.g.,
it may satisfy weight-2 condition but there maybe an element with which it does
not satisfy the S-random condition). In such cases, we can choose two methodolo-
gies. In the first methodology, in the first interleaver we ignore 50% of the elements,
so in the first interleaver when we come across such cases, we ignore the element
and in the second interleaver the patterns that have been ignored will be checked.
Employing this methodology, we observe that although we intended to ignore 50%
of the elements in the first interleaver and check the rest in the second interleaver,
the second interleaver converges much faster than the first interleaver and also the
first interleaver is not as powerful as we desired. This phenomenon is related to the
fact that for each element ignored in the first interleaver only some of the conditions
have not been satisfied so the role of the second interleaver is to satisfy only those

conditions. So the load on the second interleaver is much less than the first one. In

105

the second methodology, instead of ignoring 50% of the elements we ignore 50% of
each set of conditions. This means that 50% of weight-2 patterns, 50% of weight-4
patterns, and etc. are ignored. This will divide the conditions between two inter-
leavers more uniformly and both interleavers will have the same rate of convergence
and will perform much better.

In order to have a better rate of convergence, in practice, we need that the pat-
terns ignored be divided uniformly through the interleaver. For weight-2, weight-4
and S-random conditions if we ignore the edge effect, the number of patterns checked
for each element is constant so the number of allowable ignored conditions must be
proportional to the length of the interleaver up to that point. For the iterative
decoding suitability condition, further we proceed, further increase the number of
conditions per element will increase because each element will be checked with all
elements placed up to this point. So, we have to find the number of conditions up

};11 = k(k; 1) and the number of allowable

to this point which at place 1 is equal to

ignored conditions is 50% of this number.
Considering the above discussion, in the next section we will present the al-

gorithm for designing the first and second interleavers using joint interleaver design

method.

5.6.1 An Algorithm for Sequential Joint Interleaver Design

In this section, based on the points discussed in the previous section, we introduce
the algorithm for joint interleaver design. For design of the first interleaver, the
main search algorithm is the one presented in Section 5.3. After the main search
fails in finding an element to be placed in position %, we will check whether for this
place we can find an element that we can ignore and do not exceed the 50% rule.
The algorithm to check this is as follows:

z [1] = a random number

check weight-2 condition for z [¢]

106

if (z [7] not satisfy the weight-2 condition)
{ if (number-weight2-ignored < max-weight2-patterns -0.5- i/N)
{ ignore this pattern

increase number-weight2-ignored } }

check weight-4 condition for z [¢]
if (z [7] not satisfy the weight-4 condition)
{ if (number-weight4-ignored < max-weight4-patterns-0.5- i/N)
{ ignore this pattern

increase number-weight4-ignored } }

check S-random condition for z[i]
if (z [7] not satisfy the S-random condition)
{ if (number-Srandom-ignored < max-Srandom-patterns-0.5- i/N)
{ ignore this pattern

increase number-Srandom-ignored } '}

check IDS condition for z [¢ |
if (z [7] not satisfy the IDS condition)
{ if (number-IDS-ignored < (¥51).0.5)
{ ignore this pattern

increase number-IDS-ignored } }

This algorithm ensures that the ignored patterns are spread uniformly through

the interleaver and also ensures that only 50% of each condition is ignored by the

first interleaver.4

4

the 50% ignored ratio, can be changed. One may prefer to ignore only 40% of patterns in the
first interleaver to ensure that the second one will converge

107

The second interleaver has two tasks to do. For each element, it must check
whether there are any pattern ignored by the first interleaver and if the answer is
ves, it has the task to satisfy that condition for these elements. If the pattern has
not been ignored in the first interleaver we will not check it in the second interleaver.
Again we will use the main search algorithm, the only difference is in the part when
we check conditions for each element. The algorithm for the part that checks the
conditions is as following:

if (pattern including z [¢] do not satisfy the weight-2 condition)

{ if (this pattern is ignored in the first interleaver)
{ check the pattern }
else
{ ignore the pattern } }
if (pattern including z [7 | do not satisfy the weight-4 condition)
{ if (this pattern is ignored in the first interleaver)
{ check the pattern }
else
{ ignore the pattern } }
if (pattern including z [4] do not satisfy the S-random condition)
{ if (this pattern is ignored in the first interleaver)
{ check the pattern }
else
{ ignore the pattern } }
if (pattern including z [¢] do not satisfy the IDS condition)
{ if (this pattern is ignored in the first interleaver)
{ check the pattern }
else

{ ignore the pattern } }

108

5.6.2 Performance Analysis of Sequential Joint Deign Method

In this section, we examine the convergence and performance of Sequential joint
interleaver design method. In order to be able to compare the results, we will use the
Cs7 code with interleaver of size N = 256 and rate=1/4. Interleaver design criteria
used are d2 ,, = 40, d} . =40, S = 16and IDS = 30 for these design criteria, both
interleavers converge with the same rate and converge in a few iterations.

For this system, we also find the relative contribution of each spectral line to bit
error rate , shown in Fig. 5.21. Comparing these results with the one of conventional
S-random interleaver design for multiple turbo code in Fig. 5.10, we can see that the
minimum weight of the code is increased considerably. This will considerably im-
prove the performance of turbo code at error-floor region. In Fig. 5.22, contribution
of each spectral line to lower bound of probability of bit error is shown. Comparing
the results with case of conventional interleaver design shown in Fig. 5.11, it can be
observed that the error-floor is improved by a factor of 1073.

Scatter plot can also be drown for interleavers resulted form sequential joint
interleaver design method. This is shown in Fig. 5.23 and Fig. 5.24. It can be
seen that no element is present in the lower corner triangle, which is resulted from
S-random interleaver condition with S = 16 and iterative decoding suitability con-
dition with IDS = 30. It can also be seen that the distances is spread more uniform

in this case that will result in weaker correlation between elements.

5.7 Summary

We have introduced two methods for joint interleaver design for multiple turbo codes.
In the first approach, Parallel joint interleaver design method, two interleavers were
designed in parallel. In order to do so, we need a dividing criterion, which determines
which patterns will be ignored (or checked) by each interleaver. We have proposed

three different dividing criteria. We have seen that the convergence of the interleaver

109

50 T

d=44
d=45
d=46
d= 47
d= 48
d= 49
d=50
d=51

d=52
d=53
d= 54
d=55
d=56
d=57
d=58

Srodthvebebt 11

40

35

30

d=59

Relative Contribution to BER

Fig. 5.21: Relative Contribution to Bit Error Rate code Cs7, rate= 1/4, N=256

110

Contribution to Lower Bound

47
48

coaooaagaaQ

52 |

Qo
agand o
JdoaPo

|

S EAETREEL 1ot

QQaQ

Fig. 5.22: Contribution to Lower Bound for Code Cj;, rate= 1/4, N=256

111

250

200 |

150

100

Distance after Interleaving

o
Q

R
S P
TN e

100 150 200 250
Distance before Interleaving

Fig. 5.23: Scatter Plot for Designed interleaver Max. distance =256

112

0.05

0.045

0.04

0.035

0.015

Ho.01

0.005

0.02

0.018
0.016
0.014
0.012
0.01

0.008
0.006

#0.004

40.002

[Te] (=] [Te]
w <t <]

Furaeo(193u] 199je 90URISI(]

o 7e] o 12}
(] 3] N -

(o]
—

Distance before Interleaving

Scatter Plot for Designed interleaver Max. distance =50

Fig. 5.24:

113

is extremely sensitive to the definition of the dividing criterion and for some dividing
criteria, interleavers converge non symmetrically. This lead us to the conclusion
that the concept of dividing patterns before designing interleaver, will slow down
the convergence of the interleaver.

In the other method, Sequential joint interleaver design method, we design
interleavers sequentially. The first interleaver will be designed trying to satisfy all
the design criteria, we only ignore a pattern if there is no other way. the second
interleaver has the duty of fulfilling all the conditions that the first interleaver has
failed to reach. In order to have the better convergence, we must take care that the
patterns ignored be distributed uniformly through the interleavers and also no more
than 50% of conditions be ignored by first interleaver. Sequential joint interleaver

design method converges very well and can satisfy very tough design criteria.

114

Chapter 6

Conclusion

The outstanding performance of turbo codes at low SNR is deteriorated in the
error-floor region, due to the low values of free distance of turbo codes. In order to
improve the minimum distance of turbo codes, we need to eliminate the low-weight
input sequences that generate low-weight codewords, in other words, we have to
break these low-weight input sequences.

One of the tasks of interleaver design for turbo codes is to improve the mini-
mum distance of the code, by eliminating low-weight input sequences that result in
low-weight code words. The other task of the interleaver is related to the fact that
turbo codes are decoded using sub-optimal iterative decoding methods, where the
performance is greatly dependant on the quality of extrinsic information exchanged
between decoders. Interleaver has the task of decorrelating the extrinsic information
as much as possible.

Although interleaver design criteria that improve the distance spectrum of
the code and also the iterative decoding suitability of the code are known, we are
not able to find an interleaver that fulfills all of these conditions in the reasonable
time. Especially for short length interleavers, the convergence of interleaver is harder
and usually we have to loosen the necessary conditions, so that the interleaver can

converge in reasonable time. This, in turn degrades the performance.

115

In the case of Multiple Turbo Codes, where we have three or more constituent
codes and we have at least two interleavers, each interleaver can be designed to satisfy
some of the conditions and other conditions are satisfied by the other interleavers.
This will decrease the load on one interleaver to satisfy all the conditions at the
same time and enable us to satisfy tougher conditions.

We have introduced two methods for joint interleaver design for multiple turbo
codes. In the first approach, Parallel joint interleaver design method, two interleavers
were designed in parallel. In order to do so, we need a dividing criterion, which will
determine which patterns will be ignored (or checked) by each interleaver. We have
considered three different dividing criterion. We have seen that the convergence of
the interleaver has strong dependence on the definition of dividing criterion and for
some dividing criteria interleavers converge non symmetrically. This lead us to the
conclusion that the concept of dividing patterns before designing interleaver, will
slow the convergence of the interleaver.

In another method, Sequential joint interleaver design method, we design in-
terleavers sequentially. The first interleaver will be designed trying to satisfy all the
design criteria, we only ignore a pattern if we have no other choice. The second
interleaver has the duty of fulfilling all the conditions that the first interleaver has
failed to satisfy. In order to have better convergence, we must ensure that the pat-
terns ignored are distributed uniformly through the interleaver and also not more
than 50% of conditions be ignored by the first interleaver.

Sequential joint interleaver design method, proves to converge very fast and
also can satisfy very tough design criteria. This method can be used to satisfy dif-
ferent design criteria for interleavers. These design criteria can be aimed toward
increasing the minimum distance of the code which will improve the performance
at error-floor region and also further more can aimed at improving the iterating de-
coding performance. Simulation results presented prove that this interleaver design

method can improve the performance of the multiple turbo codes in the error-floor

116

region considerably.

Although in this thesis we employed this method in context of multiple turbo
codes with rate 1/4, but puncturing methods can be used in order to get desired code
rates. Future work, on this thesis can employ these method for designing interleaver

for punctured multiple turbo codes, in order to reach higher code rates.

117

References

[1] C. E. Shannon, “A mathematical theory of communication,” Tech. Rep. 23, Bell
System Technical Journal, 1948. '

[2] S. Benedetto, G. Montorsi, and D Divsalar, “Concatenated convolutional codes
with interleavers,” IEEE Commun. Mag., vol. 41, pp. 102-109, Aug. 2003.

[3] J. Hagenaur, E. Offer, and L. Papke, Reed-Solomon Codes and Their Applica-
tions. New York:IEEE Press, 1994.

[4] J. Lodge, R. Young, P. Hoeher, and J. Hagenauer, “Separable map filters for
the decoding of product and concatenated codes,” in Proc. IEEE Int. Conf. on
Communications, pp. 1740-1745, May 1993.

[5] J. Hagenauer and P. Hoeher, “Concatenated viterbi-decoding,” in Proc. Joint
Swedish-Soviet Int. Workshop on Information Theory, pp. 29-33, Aug. 1989.

[6] J. Forney and G. Davi, Concatenated Codes. Cambridge, MA: M.I.T. Press,
1966.

[7] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf. Com-
munications, (Geneva, Italy), pp. 1064-1070, May 1993.

[8] L. R. Bahl, J. Cocke, F. Jelink, and J.Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20,
pp. 284-287, Mar. 1974.

[9] S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results on parallel
concatenated coding schemes,” IEEE Trans. Inform. Theory, vol. 42, pp. 409-
428, Mar. 1996.

[10] D. Divsalar and F. Pollara, “Multiple turbo codes for deep-space communica-
tion,” TDA Progress Report 42-121, Jet Propulsion Laboratory, Pasadena, CA,
May 1995.

118

[11] J. Han and O. Y. Takeshita, “On the decoding structure of multiple turbo
codes,” in Proc. IEEE Int. Symposium on Information Theory, p. 98, June
2001.

[12] J. Hagenaur, E. Offer, and L. Papke, “Iterative decoding of binary block and
convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429-445, Mar.
1996.

[13] M. R. Soleymani, Y. Gao, and U. Valaipornsawai, Turbo Coding for Satellite
and Wireless Communication. Kluwer Academic Publishers, 2002.

[14] S. Benedetto, D. Divsalar, and G. M. F. Pollara, “Soft-output decoding algo-
rithms in iterative decoding of turbo codes,” TDA Progress Report 42-124, Jet
Propulsion Laboratory, Pasadena, California, Feb. 1996.

[15] D. Divsalar and F.Pollara, “Multiple turbo codes,” in Proc. MILICOM’95,
(SanDiego, CA), Nov. 1995.

[16] S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory. En-
glewood Cliffs, NJ: Prentice-Hall, 1987.

[17] S. Benedetto, D. Divsalar, and G. M. F. Pollara, “Serial concatenation of in-
terleaved codes: Performance analysis, design, and iterative decoding,” IEFE
Trans. Inform. Theory, vol. 44, pp. 909-926, May 1998.

[18] B. Vucetic and J. Yuan, Turbo Codes: Principles and Applications. Kluwer
Academic Publishers, 2000.

[19] J. G. Proakis, Digital Communications. New-York: McGrawHill, 2 ed., 1989.
[20] W. Ryan, “A turbo code tutorial,” 1997. submitted to Globecom 1997.

[21] S. Benedetto, M. Mondin, and G. Montorsi, “Performance evaluation od trellis-
coded modulation schemes,” Proc. IEEE, vol. 82, pp. 833-855, June 1994.

[22] S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional
codes,” IEEE Trans. Commun., vol. 44, pp. 591-600, May 1996.

[23] J. Seghers, L. C. Perez, and D. J. Costello, “On selecfing code generators for
turbo codes,” in Proc. of the 33rd Annual Allerton Conference on Communica-
tion, Control and Computing, pp. 357-361, 1995.

[24] L. C. Perez, J. Seghers, and D. J. Costello, “A distance spectruin interpretation
of turbo codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 1698-1709, Nov.
1996.

119

[25] M. Z. Wang, A. Sheikh, and F. Qi, “Interleaver design for short turbo codes,”
in Proc. IEEE Globecom Conf., 1999.

[26] J. Hokfelt, O. Edfors, and T. Maseng, “Turbo codes: Correlated extrinsic in-
formation and its impact on iterative decoding performance,” in Proc. IEEE
VTC, (Huston,Texas), May 1999.

[27] J. Hokfelt, O. Edfors, and T. Maseng, “A turbo code interleaver design criterion
based on the performance of iterative decoding,” IEEE Commun. Lett., vol. 5,
pp- 52-54, Feb. 2001.

[28] A. S. Barbulescu and P. S. S, “Interleaver design for turbo codes,” FElectron.
Lett., vol. 30, pp. 2107-2108, Dec. 1994.

[29] D. Divsalar and F.Pollara, “Turbo codes for PCS applications,” in Proc. IEEE
Int. Conf. Communications, June 1995.

[30] J. Yuan, B. Vucetic, and W.Feng, “Combined turbo codes and interleaver de-
sign,” IEEE Trans. Commun., vol. 47, pp. 484-487, Apr. 1999.

[31] J. Yuan, B. Vucetic, and W.Feng, “A code-matched interlevaer design for turbo
codes,” IEEE Trans. Commun., vol. 50, pp. 926-937, June 2002.

[32] K. Richardson, “UMTS overview,” Electronics €& Communication Engineering
Journal, vol. 12, pp. 93-100, 2000.

[33] European Telecommunications Standards Institute, Universal Mobile Telecom-
munication System (UMTS): Multiplering and Channel Coding (FDD)3GPP
TS 125.212 version 4.0.8, Dec. 2001.

[34] R. P. Stanley, Enumerative Combinatorics. Monterey, California: Wadsworth
& Brooks/Cole, 1986.

[35] D. Divsalar, F. Pollara, and S. Dolinar, “Transfer function bounds on the per-
formance of turbo codes,” TDA Progress Report 42-122, Jet Propulsion Labo-
ratory, Pasadena, California, Aug. 1995.

[36] D.Divsalar, S. Dolinar, and F.Pollara, “Iterative trubo decoder analysis based
on density evolution,” IEEE J. Select. Areas Commun., vol. 19, pp. 891-907,
May 2001.

[37] C. Heegard and S. B. Wicker, Turbo Coding. Kluwer Academic Publishers,
1999.

120

