On Designing and Developing CORBA Based Applications

YiLi

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal Quebec Canada

April 2004

© Yi Li, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91065-2
Our file Notre référence
ISBN: 0-612-91065-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i

Abstract

On Designing and Developing CORBA Based Applications

Yi Li

Common Object Request Broker (CORBA) is a mechanism to create, deploy, and
manage objects in a distributed environment. These objects are generally referred to as

distributed components or CORBA components.

CORBA is an open standard that addresses object orientation, distribution transparency;,
hardware independence, operating system independence, language independence and

vendor independence.

This report first highlights: What is CORBA? Why is CORBA needed? How is CORBA

used for developing applications? Second, this report shows how the CORBA

architecture is used to develop distributed object-based game applications.

Then, a CORBA-based application of gomoku game is given. The game is implemented

with VisiBroker 4.0 (a CORBA 2.3 specification compliance product) and C++ language.

iii

The game can be run on any platform for which a CORBA product (for instance,
VisiBroker or Orbix) is installed. The approach used in this report can be easily used for

other games in the distributed environment.

v

Acknowledgments

I would like to sincerely thank my supervisor Dr. Peter Grogono for his patient and
valuable suggestions and instructions. Without his encouragement this work would not

have been possible.

I'would also like to thank Dr. J. William Atwood for his valuable instructions and reading

my major report carefully.

I would also like to thank Ms. Halina Monkiewicz, the Graduate Program Advisor in

Computer Science, for her enthusiastic help.

I would also like to thank all the people who help me in various ways in my doing this

report.

Last but not least, I would like to thank my lovely wife and son for their understanding

and continuous support.

Table of Contents

Chapter 1 IntroducCtion...........ccccccooooooooooooiooioooeeeeeeeeeeeeeeeeeeeeee e 1
Chapter 2 Why CORBAooooooiieeeeeeeeeeeeeeee oo, 3
2.1 The Object Management Group (OMG)........ooocomeeomeoomeooeeeeeeoeeoo. 3
2.2 CORBA Architecture OVEIVIEWcooovvvomeeoomeeomeeescoeeeeoeeeseeooeooo. 4
2.3 Why distributed cOMPUtNGco.oovvveeveeeeeeeee e, 4
2.4 Socket Programimingcoooc.coomvvuervvereerneeoeoeeeseeeseeeseeseessss s 5
2.5 Remote Procedure Call (RPC)..........ooooeemeeeoeeeeoeeeoeeeeeeeoeeeeeoeooeoeooo, 6
2.6 OSF Distributed Computing Environment (DCE)ooovvoovvvoovon. 7
2.7 Microsoft Distributed Component Object Model (DCOM)............... 8
2.8 Java Remote Method Invocation (RMI).........oooooovvoooooooooo 9
Chapter 3 CORBA ArchiteCture.................oooooooooeeeeoeeoeeooo) 11
3.1 CORBA ZOQIS ...t 11
3.2 The Object Request BroKer (ORB) ... 12
3.3 Interface Definition Language (IDL)........ocooovoovovomooooeooooooooo 17
3.4 The CORBA CommuniCation.....................oowveoeeeereeomereemmroeeeseosooooooooo 19
3.5 The CORBA ODBJECLcomvveeereeeeeeeseeeeeeeeecer e eeeee oo, 21
3.5.1 Object Distribution................eveecveeeeeeeeeeeeeeeoeeeeeeeeeeee oo 22
3.5.2 ObJect REFEIeNCES.......ouveeeeeeeeeeeeeeee oo 23
3.6 CORBA Clients and SETVETS..............coo.oveereeeeeeeereeeeereeeeeeeoeoeoeeooeoooooos 24
3.7 Stubs and SKeIEtONScvveerveeeeeeeeeeeeeeeeeee oo 26
3.8 Basic Object Adapters (BOA)coooovoeeeeeeeeoeeeceeeeeeeee oo 26
3.9 Portable Object Adapter (POA)........cooo..oveoreeeeeoeeeeeeeeeeeeeoeeooo 27
3.10 CORBA Services and FaCilitiesooo.ovevveereoemeeereoerooo . 28
3.10.1 CORBA SEIVICES.....ouvuuierreireeiereoeeeeeeeeseee e 29

Vi

3.10.2 CORBA FaCiliti€sccovuvuurirererirerieneiineirssies s 31

Chapter 4 Building CORBA Applications............ccooooovvvvccerne.. 32
4.1 Benefits of using CORBAcocooiiieeeeeeeeeeeeeeeeeeee e 32
4.2 Typical steps to build a CORBA application............ccccooevvevreemennnn.n. 32
4.2.1 Building @ CORBA SeIVeT.........cooevoiuiiveieeeeeeeieeeeeeeeeeeere e veseesees e 33
4.2.2 Building a CORBA CHENt...........o.overeeereeeeeieeeeee e, 33
4.2.3 Choosing an Implementation Approachc.ccoooovvcevervecreonennn.. 34
Chapter 5 VISIBIOKETc.o.vvvvvvveeevivviesieesseeeeeeeeee oo eeeene 35
5.1 PTOAQUCT ...ttt e e 36
5.2 VisiBroker Runtime Package...........coooooovuivmieoroieeeeeeeeeee e 36
5.3 Developing applications with VisiBroKer..............cccoooovoveveororeerernnn. 38
Chapter 6 An application developed with the VisiBroker........... 40
6.1 The GOmOKU ZAME ..o 40
6.2 The design methodOlOZYcovuevvevvereeeeeieeeeeeeeeeeeeeee e 42
6.2.1 Advantages of using object-oriented design methodology............... 42
6.2.2 Advantages of using C++ as the implementation language.............. 43

6.2.3 Advantages of using distributed object computing for a game

APPHCALION ...ttt et 43
6.3 SeqUENCe diAZTAINoovueeeieieceeceecee e 44
6.4 The architecture of the applicationo..cooovevoeeoeeereeeeeseeo 46
6.5 The design of the appliCAtioNccoo...ovveeveeeeeeeeeeseeeceeeeeeseeeeeeeen, 48
6.6 The detail design and implementationscooovoveeereeeeooreorvernn, 50
6.6.1 MAKEFIIES ... 51
6.6.2 Define iNterfaces........ocovvuvreerioriieceeeeeeeeeese e 51
6.6.3 Implementing the SEIVETcoo.cooiomemeeeeeeeceeeeeeeeeeeeeeeeeeoee e, 53
6.6.4 Implementing the Clientooo.ooovivveeoeeeeeeeeoeeeeeoeeoeoo 59

vii

6.7 The application running eNVironmMentcoeeevrneereesrseresnssnssnsssssnnnns 61

6.7.1 The Smart AZENt.........cccocvvveveevreieieetiee et 62
Chapter 7 ConClUSION. ..o, 63
RETEIENICES ...ovveerce et 65
APPENAIX .ot 67
How to run the application ... 67
1 Starting the Smart AZENtccoccoueveviiiiieieieeee e 67
2 Starting the SEIVET ..ottt 68
3 Starting the CHENS ..o 68
LiSt Of ACTONYINISoovoirivveeirereeeseee e 70

Viii

Chapter 1 Introduction

Modern programming languages employ the object paradigm to structure computation
within a single operating system process. The next logical step is to distribute a
computation over multiple processes on one single or even on different machines.
Because object orientation has proven to be an adequate means for developing and
maintaining large scale applications, it seems reasonable to apply the object paradigm to
distributed computation as well: objects are distributed over the machines within a

networked environment and communicate with each other.

As a fact of life the computers within a networked environment differ in hardware
architectures, operating system software, and the programming languages used to
implement the objects. This is called a heterogeneous distributed environment. To allow
communication between objects in such an environment one needs a rather complex
piece of software called a middleware platform. Middleware refers to software that aids
in the creation of distributed applications. Middleware generally provides a framework
for developing distributed applications, shielding the programmer from lower level

details, providing run-time application support features.

The Common Object Request Broker Architecture (CORBA) is a specification of such a

middleware platform by the Object Management Group (OMG).

This report first highlights: What is CORBA? Why is CORBA needed? How is CORBA

used for developing applications?

Second, this report shows how the CORBA architecture is used to develop distributed

object-based game applications.

Then, a CORBA-based application of gomoku game is given. The game is implemented

with VisiBroker 4.0 (a CORBA 2.3 specification compliance product) and C-++ language.

The object-oriented design (OOD) methodology is used fully in designing and

implementing the game application.

The game can be run on any platform on which a CORBA product (for instance,

VisiBroker or Orbix) is installed.

Chapter 2 Why CORBA

CORBA provides a flexible communication and activation substrate for distributed
heterogeneous object-oriented computing environments. When designing and
implementing distributed applications, CORBA certainly is not the only choice. Other
mechanisms exist by which such applications can be built. We will briefly explore some

of the alternatives and see how they compare to CORBA.

2.1 The Object Management Group (OMG)

To address the problems of distributed computing, the Object Management Group
(OMG) [6] was established in 1989 with eight original members, and is now a 760 plus
member organization whose charter is to “provide a common architectural framework for
object-oriented applications based on widely available interface specifications.” That is a
rather tall order, but the OMG achieves its goals with the establishment of the Object
Management Architecture (OMA), of which CORBA is a part. This set of standards
delivers the common architectural framework on which applications are built. Very
briefly, the OMA consists of the Object Request Broker (ORB) function, object services
(known as CORBAServices), common facilities (known as CORBAfacilities), domain
interfaces, and application objects. CORBA’s role in the OMA is to implement the

Object Request Broker function.

2.2 CORBA Architecture Overview

CORBA is a mechanism to create, deploy, and manage objects in a distributed
environment. These objects are generally referred to as distributed components or

CORBA components.

CORBA is also an open standard that addresses object orientation, distribution
transparency, hardware independence, operating system independence, language

independence and vendor independence.

CORBA is an object-oriented architecture. CORBA objects exhibit many features and
traits of other object-oriented systems, including interface inheritance and polymorphism.
Although CORBA maps particularly well to object-oriented languages, such as C++ and
Java, CORBA provides the object-oriented capability even when used with nonobject-
oriented languages such as C and Cobol. Interface inheritance is a concept that should be
familiar to C++ and Java developers. In the contrasting implementation inheritance, an
implementation unit (usually a class) can be derived from another. By comparison,
interface inheritance allows an interface to be derived from another. Even though
interfaces can be related through inheritance, the implementations for those interfaces

need not be.

2.3 Why distributed computing

Today’s business is driven by computerized information. Information must be accessible

through networks. Typical organizations have the following characteristics:

e Organizations are distributed.

¢ Business relationships are distributed.

e Computing resources are distributed.

* Enterprise computing needs to span organization and enterprise.
e Network programming is time consuming.

e Networks are almost always heterogeneous.

Distributed computing has all of these characteristics and is therefore suitable for modern
organizations. In a distributed computing environment, geographical limitations are
reduced and distant individuals can communicate and collaborate more effectively;
computing resources (in terms of both software and hardware) are shared on the networks

and access to shared information can be greatly improved.

Distributed object computing extends an object-oriented programming system by
allowing objects to be distributed across a heterogeneous network, so that each of these
distributed object components interoperate as a unified whole. These objects may be
distributed on different computers throughout a network, living within their own address

space outside of an application, and yet appear as though they were local to an

application.

2.4 Socket Programming

In the most modern systems, communication between machines, and sometimes between

processes in the same machine, is done through the use of sockets. Simply put, a socket is

a channel through which applications can connect with each other and communicate. The
most straightforward way to communicate between application components is to use
sockets directly (this is known as socket programming). That is, the developers write data

to and read data from sockets.

The Application Programming Interface (API) for socket programming is rather low-
level. So, the overhead associated with an application that communicates in this fashion
is very low. Because the API is low-level, socket programming is not well suited to
handling complex data types, especially when application components reside on different
type of machines or are implemented in different programming languages. Whereas
direct socket programming can result in very efficient applications, the approach is

usually unsuitable for developing complex distributed applications.

Socket network programming mechanism also lacks type safe, portable and extensible

interfaces.

2.5 Remote Procedure Call (RPC)

One rung on the ladder above socket programming is remote procedure call (RPC). RPC
provides a function-oriented interface to socket-level communications. Using RPC, rather
than directly manipulating the data that flows to and from a socket, the developer defines
a function — much like those in a functional language such as C — and generates code that

makes that function look like a normal function to the caller. Under the hood, the

function actually uses sockets to communicate with a remote server, which executes the

function and returns the result, again using sockets.

~ Because RPC provides a function-oriented interface, it is often much easier to use than
raw socket programming. RPC is also powerful enough to be the basis for many client /
server applications. Although there are various incompatible implementations of RPC

protocol, a standard RPC protocol exists that is readily available for most platforms [5].

2.6 OSF Distributed Computing Environment (DCE)

The Distributed Computing Environment (DCE), a set of standards pioneered by the

Open Software Foundation (OSF), includes a standard for RPC.

DCE provides a complete Distributed Computing Environment infrastructure. It provides
security services to protect and control access to data, name services that make it easy to
find distributed resources, and a highly scalable model for organizing widely scattered
users, services, and data. DCE runs on all major computing platforms and is designed to

support distributed applications in heterogeneous hardware and software environments.

Although the DCE standard has been around for some time, and was probably a good

idea, it has never gained wide acceptance and exists today as little more than a historical

curiosity [5].

2.7 Microsoft Distributed Component Object Model (DCOM)
Microsoft Distributed Component Object Model (DCOM), which is often called “COM

on the wire”, supports remote objects by running on a protocol called the Object Remote
Procedure Call (ORPC). This ORPC layer is built on top of DCE's RPC and interacts
with COM's run-time services. A DCOM server is a body of code that is capable of
serving up objects of a particular type at runtime. Each DCOM server object can support
multiple interfaces, each representing a different behavior of the object. A DCOM client
calls into the exposed methods of a DCOM server by acquiring a pointer to one of the
server object's interfaces. The client object then starts calling the server object's exposed
methods through the acquired interface pointer as if the server object resided in the
client's address space. As specified by COM, a server object's memory layout conforms
to the C++ vtable layout. Since the COM specification is at the binary level it allows
DCOM server components to be written in diverse programming languages such as C++,
Java, Object Pascal (Delphi), Visual Basic and even COBOL. As long as a platform

supports COM services, DCOM can be used on that platform.

The Distributed Component Object Model (DCOM) is Microsoft’s entry into the
distributed computing foray, offers capabilities similar to CORBA. DCOM is a relatively
robust object model that enjoys particularly good support on Microsoft operating systems

because it is integrated with Windows 95, Windows NT and the later versions.

Microsoft has, on numerous occasions, made it clear that DCOM is best supported on

Windows systems. So developers with cross-platform interests in mind would be well

advised to evaluate the capabilities of DCOM on their platform(s) of interest before
committing to the use of this technology. However, for the development of Windows-
only applications, it is difficult to imagine a distributed computing framework that better

integrates with the Windows operating systems.

2.8 Java Remote Method Invocation (RMI)

The tour of exploring CORBA alternatives stops with Java Remote Method Invocation

(RMI), a very CORBA like architecture with a few twists.

Java/RMI relies on a protocol called the Java Remote Method Protocol (JRMP). Java
relies heavily on Java Object Serialization, which allows objects to be marshaled (or
transmitted) as a stream. Since Java Object Serialization is specific to Java, both the
Java/RMI server object and the client object have to be written in Java. Each Java/RMI
Server object defines an interface that can be used to access the server object outside of
the current Java Virtual Machine (JVM) and on another machine's JVM. The interface
exposes a set of methods that are indicative of the services offered by the server object.
For a client to locate a server object for the first time, RMI depends on a naming
mechanism called an RMIRegistry that runs on the Server machine and holds information
about available Server Objects. A Java/RMI client acquires an object reference to a
Java/RMI server object by doing a lookup for a Server Object reference and invokes
methods on the Server Object as if the Java/RMI server object resided in the client's
address space. Java/RMI server objects are named using Uniform Resource Locators

(URLs) and for a client to acquire a server object reference, it should specify the URL of

the server object as you would with the URL to a HTML page. Since Java/RMI relies on
Java, it can be used on diverse operating system platforms from mainframes to UNIX
boxes to Windows machines to handheld devices as long as there is a Java Virtual

Machine (JVM) implementation for that platform.

One advantage of RMI is that it supports the passing of objects by value, a feature not
(currently) supported by CORBA. A disadvantage, however, is that RMI is a Java-only

solution; that is, RMI clients and servers must be written in Java.

For all java applications, particularly those that benefit from the capability to pass object
by value, RMI might be a good choice, but if there is a chance that the application will
later need to interoperate with other applications written in other languages, CORBA is a
better choice. Fortunately, full CORBA implementations already exist for Java, ensuring

that Java applications interoperate with the rest of the CORBA world.

10

Chapter 3 CORBA Architecture

Having described the history and reasons for the existence of CORBA, we are ready to

examine the CORBA architecture.

3.1 CORBA goals
The CORBA architecture has the features listed below:
* Location transparency: clients of objects do not need to know where the objects
reside in the network.
e Separation of interface and implementation:
o Enable object implementations to evolve independently for clients.
o Enable programming language independence between client and object

implementations
® Marshalling and Unmarshalling on-wire format: enable clients and objects in
different operating systems to interoperate.

e Interoperability: allows communication between different vendors’ products.

The classic CORBA architecture is as shown in Figure 1.

11

"

Application Vertical Horizortal
Objects CORBA Facilities CORBA Facilities

**

CORBA Senvices

Figure 1

3.2 The Object Request Broker (ORB)

The Object Management Group (OMG) is an industry consortium that creates and
publishes specifications for CORBA. Vendors implement the specifications to produce
products known as Object Request Brokers (ORB). Fundamental to the Common Object
Request Broker Architecture is the Object Request Broker (ORB). An ORB is a software
component whose purpose is to facilitate communication between objects. It does so by
providing a number of capabilities, one of which is to locate a remote object, given an
object reference. When an application component wants to use a service provided by
another component, it first must obtain an object reference for the object providing the
service. After an object reference has been obtained, the component can call methods on
that object, thus accessing the desired services provided by that object. (The developer of
the client component knows at compile time which methods are available from a

particular server object.) The primary responsibility of ORB is to resolve requests for

12

object references, enabling application components to establish connectivity with each

other.

ORB defines the middleware to carry out component collaboration in a distributed

environment. ORB is also referred to as an object-bus.

ORB enables clients to communicate with a remote éomponent in a distributed
environment. In other words, ORB provides transparency of a component’s location,
activation, communication, and implementation. Thus ORB is essential for building and
packaging distributed components. ORB encapsulates some aspects of the underlying OS

and the networking layer [4].

Another service provided by the ORB is the marshaling of parameters and return values

to and from remote method invocations.

After an application component has obtained a reference to an object whose services the
component wants to use, that component can invoke methods of that object. Generally,
these methods take parameters as input and return other parameters as output. Another
responsibility of ORB is to receive the input parameters from the component that is
calling the method and to marshal these parameters. What this means is that the ORB
translates the parameters into a format that can be transmitted across the network to the

remote object. (This is sometimes referred to as an on-the-wire format.) The ORB also

13

unmarshals the returned parameters, converting them from the on-the-wire format into a

format that the calling component understands.

The entire marshaling process takes place without any intervention from users
whatsoever. A client application simply invokes the desired remote method — which has
the appearance of being a local method, as far as the client is concerned — and the result is
returned or an exception is raised, again, just as would happen with a local method. The
entire process of marshaling input parameters, initiating the method invocation on the
server, and unmashaling the return parameters are performed automatically and

transparently by the ORB [5][6].

The process of marshalling and unmarshalling parameters is handled completely by the
ORB, entirely transparent to both the client and the server. Because the entire processes is
handled by the ORB, so the developers need not concern themselves with the details of

the mechanism by which the parameters are marshaled and unmarshaled.

The sequences of ORB resolution of object requests including processes of marshalling

and unmarshalling are shown in Figure 2.

14

Obiect reference to server

Stage 1

Method invocation

Stage 2

Return values

Stage 3

Method invocation

Return values

Figure 2

The use of ORB is one of the cornerstones of CORBA. ORB must run on both the client

side and the server side. The ORB process on the client side is referred to as client-ORB,

and the ORB process on the server side is referred as server-ORB.

The following summarizes the purpose of ORB and responsibilities that it carries out

automatically and transparently:

15

1. Client-ORB locates a component implementation on behalf of the client when
given an IOR (Interoperable Object Reference) by the client. A component can be
located in a number of ways.

2. When a server is located, server-ORB prepares the server to receive the request.
For example, server-ORB can launch the server if it is not running.

3. Client-ORB accepts the parameters from the client and marshals the parameters.

4. Server-ORB unmarshals the input parameters.

5. Server-ORB invokes the requested operation on the target component.

6. Server-ORB marshals the return parameters or exception.

7. Client-ORB unmarshals the return parameters or exception.

The major benefit offered by the ORB is its platform independent treatment of data;
parameters can be converted on the fly between varying machine formats as they are
marshaled and unmarshaled. So the communication between components is platform

independent.

The Object Management Architecture (OMA) includes a provision for the ORB
functionality; CORBA is the standard that implements this ORB capability [6]. We will

soon see that the use of ORBs provides platform independence to distributed CORBA

objects.

16

3.3 Interface Definition Language (IDL)

If the concept of the Object Request Broker is one cornerstone of the CORBA
architecture, the Interface Definition Language (IDL) is another. IDL is a standard
language used to define the interfaces used by CORBA objects [6]. As its name suggests,
IDL is the language used to define interfaces between application components. That is,
IDL can be only used to define interfaces, not implementations. It is not a procedural
language. C++ programmers can think of IDL definitions as analogous to header files for
classes; a header file typically does not contain any implementation of a class but rather
describes that class’s interface. Java programmers might liken IDL definitions to
definitions of Java interfaces; again, only the interface is described, no implementation is

provided with IDL.

IDL permits interfaces to objects to be defined independent of the implementation of the
object. After defining an interface in IDL, the interface definition is used as input to an
IDL compiler that produces output that can be compiled and linked with an object

implementation and its clients.

Interfaces can be used either statically or dynamically. An interface is statically bound to
an object when the name of the object it is accessing is known at compile time. In this
case, the IDL compiler generates the necessary output to compile and link to the object at
compile time. In addition, clients that need to discover an object at run time and construct
a request dynamically can use the Dynamic Invocation Interface (DII). The DII is

supported by an interface repository, which is defined as part of CORBA.

17

The IDL specification is responsible for ensuring that data is properly exchanged between
dissimilar languages. For example, the IDL long type is a 32-bit signed integer quantity,
which can map to a C++ long (depending on platform) or a Java int. It is the
responsibility of the IDL specification and the IDL compilers that implement it to define

such data types in a language independent way [6].

CORBA has been postured as being both language-neutral and independent of ORB and
CORBA object implementations. The IDL language is part of the standard CORBA
specification and is independent of any programming language. It achieves this language
independence through the concept of a language mapping. The OMG has defined a
number of standard language mappings for many popular languages, including C, C++
COBOL, Java, and Smalltalk. Mappings for other languages exist well; these mappings

are either nondstandard or are in the process of being standardized by the OMG.

Language independence is a very important feature of the CORBA architecture. Because
CORBA does not dictate a particular language to use, it gives application developers the
freedom to choose the language that best suits the needs of their applications. Taking this
freedom one step further, developers can also choose multiple languages for various
components for an application. For instance, the client components of an application
might be implemented in Java, which ensures that the clients can run on virtually any

type of machine. The server components of that application might be implemented in

18

C++ for high performance. CORBA makes possible the communication between these

various components.

IDL, which specifies between CORBA objects, is instrumental in ensuring CORBA’s
language independence. Because interfaces described in IDL can be mapped to any
programming language, CORBA applications and components are thus independent of
the language(s) used to implement them. In other words, a client written in C++ can
communicate with a server written in Java, which in turn can communicate with another

server wﬁtten in COBOL, and so forth.

One important thing to remember about IDL is that it is not an implementation language.
That is, we can’t write applications in IDL. The sole purpose of IDL is to define
interfaces; providing implementations for these interfaces is performed using some other

languages.

3.4 The CORBA Communication

CORBA provides a layer of abstraction above the communication layer, thus shielding
clients from needing to know about the underlying communications mechanisms or

where in the network the target object resides.

In order to understand CORBA communications, we must first understand its role in a

network of computing systems. Typically, a computer network consists of systems that

are physically connected. This physical layer provides the medium through which

19

communication can take place, whether that medium is a telephone line, a fiber-optic

cable, a satellite uplink, or any combination of networking technologies.

Somewhere above the physical layer lies the transport layer, which involves protocols
responsible for moving packets of data from one point to another. So how does CORBA
fit into this networking model? It turns out that the CORBA specification is neutral with
respect to network protocols; the CORBA standard specifies what is known as the
General inter_ORB Protocol (GIOP), which specifies, on a high level, a standard for
communication between various CORBA ORBs and components. GIOP, as its name
suggests, is only a general protocol; the CORBA standard also specifies additional

protocols that specialize GIOP to use a particular transport protocol.

The Internet Inter_ORB Protocol (IIOP) is a specialization of the GIOP. IIOP is the
standard protocol for communication between ORBs on TCP/IP based networks. An

ORB must support IIOP in order to be considered CORBA 3.0 compliant.

CORBA uses the notion of object references (which in CORBA/IIOP lingo are referred
to as Interoperable Object References or IORs) to facilitate the communication between
objects. When a component of an application wants to access a CORBA object, it first

obtains an IOR for that object. Using the IOR, the component (called a client of that

object) can then invoke methods on the object (called the server in this instance).

20

In CORBA, a client is simply any application that uses the services of a CORBA object;
that is, an application that invokes a method or methods on other objects. Likewise, a
server is an application that creates CORBA objects and makes the services provided by

those objects available to other applications.

CORBA ORBs usually communicate using the Internet Inter ORB Protocol (IIOP). Other
protocols for inter-ORB communication exist, but IIOP is fast becoming the most
popular, first of all because it is the standard, and second because of the popularity of
TCP/IP (the network protocol using by the Internet), a layer that IIOP sits on the top of.
CORBA is independent of networking protocols, however, and could (at least

| theoretically) run over any type of network protocol.

3.5 The CORBA Object

An object model describes how objects are represented in an object-oriented system.
CORBA as an object-oriented architecture has an object model as well. But the CORBA
object model probably differs somewhat from the traditional object models because of its
distributed object features. Three of the major differences between the CORBA object
model and traditional models lie in CORBA’s semi-transparent support for object
distribution, its treatment of object references, and its use of what are called object

adapters [5].

In CORBA, all communication between objects is done through object references (these

are known as Interoperable Object References or IORs).

21

In fact, it is more natural to use object-oriented technologies in the distributed computing
area than it is used in non-distributed computing. This is due to the inherently

decentralized nature of distributed computing,

Furthermore, visibility to objects is provided only through passing reference to those
objects. In other words, remote objects in CORBA remain remote; there is currently no

way for an object to move or copy itself to another location.

A CORBA object is a programming entity with an identity, an interface, and an
implementation. It is capable of being located by the ORB and being invoked by clients.
It does not physically exist unless made concrete by an object implementation. From a
client’s perspective, a CORBA Object’s identity is encapsulated in the object reference.
An object reference is a value that reliably denotes a particular object. It allows a client
program to identity, locate and use a particular CORBA object. An object reference refers
to a single CORBA Object. An object may be denoted by multiple, distinct object

references.

3.5.1 Object Distribution

To a CORBA client, a remote method call looks exactly like a local method call, thanks
to the use of client stubs. Thus, the distributed nature of CORBA objects is transparent to
the users of those objects; the clients are unaware that they are actually dealing with

objects, which are distributed on a network. Actually, the proceeding statement is almost

22

true. Because object distribution brings with it more potential for failure (due to a
network outage, server crash, and so on), CORBA must offer a contingency to handle
such possibilities. It does by offering a set of system exceptions, which can be raised by

any remote method.

3.5.2 Object References

In a distributed application, there are two possible methods for one application
component to obtain access to an object in another process. One method is known as
passing by reference. In this method, the first process, Process A, passes an object
reference to the second process, Process B. When Process B invokes a method on that
object, the method is executed by Process A because that process owns the object.
Process B only has visibility to the object through the object reference, and thus can only
request Process A to execute methods on Process B’s behalf. Passing an object by
reference means that a process grants visibility of one of its objects to another process
while retaining ownership of that object. That is, when an object is passed by reference,
the object itself remains in the place while an object reference for that object is passed.
Operations on the object through the object reference are actually processed by the object

itself.

The second method of passing an object between application components is known as
passing by value. In this method, the actual state of the object, such as the values of its
member variables, is passed to the requesting component, typically through a process

known as serialization. When methods of the object are invoked by Process B, they are

23

executed by Process B instead of Process A, where the original object resides.
Furthermore because the object is passed by value, the state of the original object is not
changed; only the copy (now owned by Process B) is modified. Generally, it is the
responsibility of the developer to write the code that serializes and deserializes objects.

Serialization refers to the encoding of an object’s state into a stream, such as a disk file or
network connection. When an object is serialized, it can be written to such a stream and
subsequently read and deserialized, a process that converts the serialized data containing

the object’s state back into an instance of the object.

Currently, CORBA only supports the method of passing by reference and does not

support the method of passing of objects by value.

3.6 CORBA Clients and Servers

Traditionally, in a client / server application, the server is the component, or components,
which provides services to other components of the application. A client is a component
that consumes services provided by a server or servers. The architecture of a CORBA
application is no different; generally, contain components of an application provide
services that are used by other components of the application. Not surprisingly, the
general terms client and server refer to these components of a CORBA application. When
considering a single remote method invocation, however, the roles of client and server
can be temporarily reversed because a CORBA object can participate in multiple

interactions simultaneously.

24

In a CORBA application, any component that provides an implementation for an object is
considered a server, at least where the object concerned. If a component creates an object
and provides other components with visibility to that object, that component acts as a
server for that object; any requests made on that object by other components will be
processed by the component that created the object. Being a CORBA server means that
the component executes methods for a particular object on behalf of other components

(the clients).

Frequently, an application component can provide services to other application
components while accessing services from other components. In this case, the component
is acting as a client of one component and as a server to the other components. In fact,

two components can simultaneously act as clients and servers each other.

Like the client / server architectures, CORBA maintains the notions of clients and
servers. In CORBA, a component can act as both a client and as a server. Essentially, a
component is considered a server if it contains CORBA objects whose services are
accessible to other CORBA objects. Likewise, a component is considered a client if it
accesses services from some other CORBA object. Of course, a component can
simultaneously provide and use various services, and so a component can be considered a

client and/or server, depending on the scenario in a question.

25

3.7 Stubs and Skeletons

When implementing CORBA application components, we will encounter what are known
as client stubs and server skeletons. A client stub is a small piece of code that allows a
client component to access a server component. This piece of code is compiled along
with the client portion of the application. Similarly, server skeletons are pieces of code
that you “fill in” when you implement a server. You do not need to write the client stubs
and server skeletons yourselves; these pieces of code are generated when you compile

IDL interface definitions.

3.8 Basic Object Adapters (BOA)

The CORBA standard describes a number of what are called object adapters, whose
primary purpose is to interface an object’s implementation with its ORB. The Basic
Object Adapter (BOA) provides CORBA objects with a common set of methods for
accessing ORB functions. These functions range from user authentication to object
activation to object persistence. The BOA is, in effect, the CORBA object’s interface to
the ORB. According to the CORBA specification, the BOA should be available in every
ORB implementation, and this seems to the case with most CORBA products available.
One particularly important feature of the BOA is its object activation and deactivation
capability. The BOA supports four types of activation policies, which indicate how
application components are to be initialized. These activation policies include the
following:

® The shared server policy: in which a single server is shared between multiple

objects.

26

* The unshared server policy: in which a server contains only one object.
* The server per method policy: which automatically starts a server when an object
method is invoked and exits the server when the method returns.

* The persistent server policy: in which the server is started manually.
The variety of activation policies allows an application architect to choose the type of
behavior that makes the most sense for a particular type of server. For instance, a server
requiring a length of time to initialize itself might work best as a persistent server,
because the necessary initialization time would aversely affect the response time for that
server. On the other hand, a server that starts up quickly upon demand might work well

with the server per method policy.

3.9 Portable Object Adapter (POA)

The BOA provides a bare minimum of functionality to server applications. As a
consequence, many ORBs added custom extensions to the BOA to support more complex
demands upon an object adapter, making server implementations incompatible among
different ORB vendors. Portable Object Adapter (POA) provides a much-extended
interface that addresses many needs that were wished for, but not available with the
original BOA specification. The POA features include:

* Support for transparent activation of objects.

® Servers can export object references for not-yet-active servants that will be

incarnated on demand.
* Allow a single servant to support many object identities.

* Allow many POAs in a single server, each governed by its own set of policies.

27

e Delegate requests for non-existent servants either to a default servant, or ask a
servant manager for an appropriate servant.

The general idea is to have each server contain a hierarchy of POAs. Only the root POA

is created by default; a reference to the root POA 1is obtained using the

resolve_initial_references() operation on the ORB. New POAs can be created as the child

of an existing POA, each with its own set of policies.

3.10 CORBA Services and Facilities

ORB enables you to write application interfaces to represent those components that
implement specific tasks for an application. Three points must be noted:

¢ One component may support many interfaces.

e One application is typically composed of many components.

¢ New application components can be built by modifying existing components.

Recall that ORB allows components to communicate with each other. Because everything
runs and depends on ORB, ORB is essential to creating distributed applications.
Unfortunately, ORB alone is not enough to create distributed applications: you typically
need services to locate components and manage their life cycles; you may need system
management services to observe the health of the system; and you may even need domain
specific interfaces and frameworks to help you do rapid development. OMG thus
provides additional capabilities in the form of services and facilities that provide both
horizontal and vertical capabilities. Horizontal services generally are useful to all

industries, whereas vertical services are designed to meet specific industries’ needs.

28

3.10.1 CORBA Services

Object services are domain-independent horizontal interfaces that are used in most
distributed applications. They are available in the form of CORBA interfaces and come
with implementations. Without object services, writing distributed applications would not

be easy. Object services are collectively called CORBAservices.

CORBA provides 15 types of object services, each of which is described briefly in the

following list:

* Naming service: Provides a client with the capability to obtain an IOR of another
component anywhere on the bus. Also allows a component to bind its name to a
naming context, an object that contains a set of name bindings in which each
name is unique.

e Event service: Supports asynchronous even notifications and event delivery.
Allows component to register dynamically their interest in an event. The desi gn of
this service is scalable and is suitable for distributed environments.

* Life cycle service: defines operations to create, copy, move, and remove
components on ORB.

* Persistent object service (POS): Provides a set of generic interfaces for storing
and managing the persistent state of components. The component ultimately has
the responsibility of managing its state, but it can use or delegate to POS for the
actual work. A major characteristic of POS is its openness — it allows a variety of

different clients and implementations of POS to work together.

29

Transaction service: Suppoﬁs a two-phase commit protocol between components.
Supports two transaction models — the flat and nested models.

Concurrency control service: Enables multiple clients to coordinate their access to
shared resources. This service is useful for keeping a resource in a consistent state
when multiple, concurrent clients access it.

Relationship service: Allows components to form dynamic relationships (links)
between each other. This service defines two new kinds of objects: relationships
and roles. A role represents a CORBA component in a relationship. One potential
use of this service is to create workflow managers.

Externalization service: Defines protocols for externalizing and internalizing
component data. This service enables a component to externalize its state in a
stream of data (in memory, on a disk file, or across the network) and then
internalize into a new instance of the component in the same or a different server
process.

Licensing service: Enables component vendors to control the use of their
intellectual property. This service itself does not define any business policy.
Vendors can define this service according to their own requirements and the
requirements of their customers.

Query service: Enables a component to invoke queries on collections of other
components. The queries can be used to invoke arbitrary operations.

Property service: Provides a mechanism to associate properties (named values)
dynamically with components. This service defines operations to create and

manipulate sets of name-value pairs.

30

e Security service: Ensures secure communication between components by
providing authentication, authorization, auditing, non-repudiation, and
administration (for example, a security policy).

e Time service: Enables the user to obtain current time in a distributed environment.
The service can be used to determine the order in which events occurred, and
compute the interval between two events.

o Collections service: Provides a uniform way to create and manipulate the most
common collections of components.

¢ Trader services: Enables a client to obtain an IOR of another component on ORB
based on some component properties. (Note that “properties” has nothing to do

with the property service.)

3.10.2 CORBA Facilities

Like object services, common facilities are interfaces. Printing facilities, database
facilities, system management facilities, and email facilities are some examples of

common facilities that are horizontally oriented.

OMG also provides domain interfaces, which are vertically oriented interfaces for
application domains, such as finance, health care, manufacturing, telecom, electronic

commerce, and transportation. Common facilities are collectively called

CORBAfacilities.

31

Chapter 4 Building CORBA Applications

4.1 Benefits of using CORBA

There are three benefits to be obtained by building applications using CORBA:

» Coding is quicker, so applications can be deployed sooner: Since the software
developer doesn't have to write as much code, development happens faster.

e Applications designed around discrete services have better ar'chitecture: Good
architecture divides applications into modules or object groups based on
functionality. By designing around the architecture, which is itself based on this
principle, your application gets a head start on its own sound architecture.

* Many CORBA implementations have enterprise characteristics built in: they're
robust, and they scale: Providers know where you're going to deploy your
applications with their CORBA products, so they compete to meet your
enterprise's needs. Scalable name servers, transaction services, and other services

have proved their worth in enterprise deployments for years already!

4.2 Typical steps to build a CORBA application

The outline of building a CORBA application process is as follows:

¢ Define the server’s interfaces using IDL

¢ Choose an implementation approach for the server’s interfaces. Normally,

CORBA provides two such approaches: inheritance and delegation.

32

. Uée the IDL compiler to generate client stubs and server skeletons for the server
interfaces.

¢ Implement the server interfaces.

¢ Compile the server application.

e Run the server application.

¢ Build a client that uses the services you implemented.

4.2.1 Building a CORBA Server

The first step in building a CORBA application is usually to implement the server
functionality. The reason for this is that while a server can be tested, at least in limited
way, without a client, it is generally much more difficult to test a client without a working
server. There are exceptions to this, of course, but typically you will need to at least
define the server interfaces before implementing the client; server and client functionality

can then be developed in parallel.

4.2.2 Building a CORBA client

Conceptually speaking, the process of building the client is much simpler; you only need
to decide what you want the client to do, include the appropriate client stubs for the types

of server objects you want to use, and implement the client functionality. Then you will

be ready to compile and run the client.

33

4.2.3 Choosing an Implementation Approach

Before actually implementing the server functionality, you will first need to decide on an
implementation approach to use. CORBA supports two mechanisms for implementation
of IDL interfaces. Developers familiar with object-oriented concepts might recognize
these mechanisms, or at least their names. These include the inheritance mechanism and

the delegation mechanism.

Implementation by inheritance consists of a base class that defines the interfaces of a
particular object and a separate class, inheriting from this base class, which provides the
actual implementations of these interfaces. That is, the implementation class derives from

a class provided by the IDL compiler.

Implementation by delegation consists of a class that defines the interfaces for an object

and then delegates their implementations to another class or classes.

The primary difference between the inheritance and delegation approaches is that in

delegation, the implementation classes need not derive from any class in particular.

34

Chapter 5 VisiBroker

VisiBroker is a complete CORBA2.3 Object Request Broker (ORB) that supports the

development, deployment, and management of distributed object applications across a

variety of hardware platforms and operating systems [2].

The client and server programs deployed with Visibroker ORBs are shown in Fi gure 3.

GUl fon Cllan
end
VisiBreker
ORB

: 2

Client

Java
Program Client Applet| Ciort

VisiBroker

VisBroker g’ ORB
ORB

irtemat/Intranet

R—

Okject A
Otject B
Okject C

VisiBroker
ORB Server

Figure 3

35

5.1 Product

In addition to VisiBroker (the ORB), three other components are available with this
product. They include
e Naming Service
The Naming Service allows you to associate one or more logical names with an
object implementation and store those names in a namespace. It also lets client
applications use this service to obtain an object reference using the logical name
assigned to that object.
¢ Event Service
The Event Service provides a facility that decouples the communication between
objects. It provides a supplier-consumer communications model that allows
multiple supplier objects to send data asynchronously to multiple consumer
objects through an event channel.
¢ Gatekeeper
Gatekeeper runs on a web server and enables client programs to locate and use
objects that do not reside on the web server and to receive callbacks, even when
firewalls are being used. The Gatekeeper can also be used as an HTTP daemon,
thereby eliminating the requirement for a separate HTTP server during the

application development phase.

5.2 VisiBroker Runtime Package

The VisiBroker Runtime Package, in conjunction with a Java or C++ runtime

environment, enables client and server applications to use and offer distributed objects.

36

The Runtime Package is a subset of the Development Environment and is required to
deploy an application [1]. Components of the Runtime Package include the following:

* ORB: The runtime library needed by servers and clients.

* Smart Agent: The Smart Agent (osagent) is used by applications to locate the
objects they wish to use. It is a process that must be started on at least one host
within the network.

* Location Service: The Location Service allows VisiBroker applications to locate
all instances of an object programmatically. Working with the Smart Agents on
your network, the Location Service can help clients with load balancing by
providing information on all the available instances of an object to which a client
can bind.

® Object Activation Daemon: The Object Activation Daemon (OAD) enables
objects to be activated automatically when they are needed by a client application.
This reduces overhead by allowing servers that implement objects for client
applications to be started on demand, rather than running continuouusly.

* Interface Repository: The Interface Repository is an online database of meta-
information about object types. Meta information stored for ORB objects includes
information about modules, interfaces, operations, attributes and exceptions.

Applications that use the dynamic interfaces require that an Interface Repository

be available.

37

5.3 Developing applications with VisiBroker

When we develop distributed applications with VisiBroker, we must first identify the

objects required by the application. We will then usually follow these steps:

Write a specification for each object using the Interface Definition Language
(IDL).

Use the IDL compiler to generate the client stub code and server POA servant
code. Using the idl2cpp compiler, we’ll produce client-side stubs and server-side
classes (which provides classes for the implementation of the remote objects).
Write the client program code.

Write server object code.

Compile the client and server code.

Start the server.

Run the client program.

These steps are shown in Figure 4.

38

Object specitications in IOL

[Client
classes

——& Client program Server

NG

classes

Chergt

8 Server cbjoct

ronring

Sevver

VisiBroker Object Request Broker

Figure 4

39

Chapter 6 An application developed with the VisiBroker

We would like to use the VisiBroker to build a game application as an example to
describe why we design the game application using the CORBA architecture, how to
develop a CORBA application and some implementation issues for a CORBA

application.

6.1 The Gomoku game
The game is described as following:
* There is a board like an international chess board. It has vertical and horizontal
lines on it, dividing the board into N * N squares. These squares are represented

by an N * N matrix in the program. The appearance of the board is shown in

Figure 5.

40

Figure 5

There are two kinds of pieces (beans). One is white color, and the other one is
black color.

There are two opponent players, each with his own color pieces.

The opponents move alternately.

One movement is just put one of his own color pieces in an available position on
the board. An available position means any intersection point of vertical and
horizontal lines but there is no piece in that position up to now.

The winner is the person who uses his pieces to make up a line of five continuous

pieces first in a line that may be any vertical, horizontal or diagonal line.

41

6.2 The design methodology
A good systems analysis begins by capturing the requirements of an application, and
modeling the essential elements in its environment. The design follows the features
below:

* The game application is completely object-oriented design.

¢ Object-oriented language C++ is used.

¢ Distributed computing environment is perfect for a game application.

6.2.1 Advantages of using object-oriented design methodology

Object-oriented technology has gained rapid acceptance among software developers and
has become the preferred choice for designing and implementing software systems
because object orientation has proven to be an adequate means for developing and
maintaining large scale applications. It seems reasonable to apply the object paradigm to
distributed computation as well. Object-oriented technology supplies abstraction,
encapsulation, inheritance and polymorphism. By using Object-Oriented Design (OOD)
technology to develop software, we have the following advantages:
* Natural: OOD is a natural way of thinking about problems and finding solutions
to the problems.
* Simple: OOD helps to decompose a complex application system into smaller,
simpler pieces, enabling a problem to be divided and conquered.
* Reusable: Inheritance and composition enable programmers to plug in the existing

objects into the new code that is being developed.

42

* Replaceable: Existing objects can be readily replaced with new implementations,
as long as the new object supports the same interfaces as the object that it
replaces.

* Extensible: New capabilities can be added to existing objects easily.

e Strong cohesion: A well-designed object, by definition, is cohesive because its
data and behavior are always related.

e Loose coupling: The interfaces between objects define object’ contract that

enables loose coupling and independent development.

6.2.2 Advantages of using C++ as the implementation language

C++ is an object-oriented language. All the expressions of object orientation are naturally
captured in the C++ language. For example, C++ class characterizes abstraction and
encapsulation, C++ class derivation implements inheritance, and C++ virtual mechanism

dynamic binding achieves polymorphism.

C++ users can rely on CORBA compliant ORB to help them develop portable distributed

OO applications using C++ in a natural fashion.

6.2.3 Advantages of using distributed object computing for a game
application

* The distributed computing environment is required by our game application in

which it operates.

* The game clients and game servers run on separate computers.

43

¢ The computers can be linked through heterogeneous inter networks of LANs and
WANS.

¢ Clients and servers may be heterogeneous end system platforms.

6.3 Sequence diagram

Sequence diagrams describe interactions among classes in terms of an exchange of

messages within the collaboration to effect a desired operation or result over time.

A sequence diagram has two dimensions; the vertical dimension represents time, the

horizontal dimension represents different objects. Normally time proceeds down the

page.

We use the sequence diagram to detail the requirements of the game application and to

describe the interactions among the classes.

The Sequence Diagram with concurrent objects of the game is as shown in Fi gure 6.

44

Client Black Server Client White

Open an account
Ll
Return account message
Open an >
account Open an account
successfully <
Return account message Open an
account
Wait Black move message successfully
al
Make a move
Ll
Return the move
Retumn Black move
-
. . Black’s valid
A valid Wait White move Make a move move
move
. Return the move
Return White move | X
A valid
h Wait Black move move
-
Make a move
»
Return the move
Not a valid Make a new move
move
Lad
Return the move
Retum Black move
N Wit Whi > Black’s valid
. ait 1te move message move
A valid » Make a move
move <
Return the move
Il
Wait Black move message
il
. * L] L]
L Game over Game
At this point client |
Black terminate At this point client
White terminate

Figure 6

45

6.4 The architecture of the application

As above sections described, this game application is most suitable to use the CORBA
architecture and to be designed as a CORBA application.

* There is a server and two or more clients. Two of the clients are players, and the
other clients can observe their playing.

* The clients can be on different machines and different platforms as long as the
machines are on the network and a CORBA product is installed on the machines.
Of course, the client program of the game application must be installed on the
machines.

* Clients must register on the server. Any move of a player on his local machine
will be sent to the server, that is, clients do not communicate with each other
directly, and they communicate through the server.

* The clients make requests to the server through ORB and networks Jjust like the

server running on the same machine.

Object-oriented design technology is also used for the game design because of the
features of object-oriented design technology as above sections described and also
because:
* CORBA itself and applications built on top of it are designed using object-
oriented software development principles. The management of complexity
afforded by OO software development techniques is very important for the

practical implementation and deployment of CORBA applications.

46

e Itis more natural to use object-oriented technologies in the distributed computing
area than it is used in non-distributed computing. This is due to the inherently

decentralized nature of distributed computing.

The logical structure of the architecture is as shown in Figure 7.

Client Client Client

A A A

A 4 y v

ORB ORB ORB

A

A/ \/

Network g Network

ORB

Server

Figure 7

47

6.5 The design of the application
We will use the class diagrams of UML (Unified Modeling Language) to describe the
design. Class diagrams are the backbone of almost every object-oriented method,

including UML. They describe the static structure of a system.

For the IDL interfaces, there is one module called Game, which contain two interfaces.

The class diagram for the interfaces is as shown in Figure 8:

AccountManager Interface

+ Account open(in string name)

Account Interface

+ unsigned short score(in short x)
+ string welcome()
+ short openGame()
-+ short quitGame(in short coloer)
+ short move(in short color, in short x, in short y)
+ short getOpponentMove(in short color,
out short x, out short y)
+ short watchMove(in short x1, in short y1,
out short x, out short y, out short color)

Figure 8

48

The class diagram for the client side is as shown in Figure 9:

CORBA_Objec

JA\

Game

CORBA::var

JAN

Account

Account_ops

Account_out |

Account_var

1

_1

AccountManager

AccountManager_ops

AccountManager_out

AccountManager_var

The class diagram for the server side is as shown in Figure 10:

Figure 9

49

Game::Account ops PortableServer_ServantBase

Game::AccountManager_ops

L

T &

POA_Game

PortableServer::
RefCountServantBase

JAN

¢

POA_Game::Account

POA_Game::AccountManager

— 7

> 7T

YA

| [

AccountImpl

AccountManagerlmpl

AccountRegistry

]

POA_Game_Account_tie

POA_Game_AccountManager_tie

Figure 10

6.6 The detail design and implementations

The VisiBroker 4.0 for C++ language is used for implementing both client side and

server side under Windows NT, but both the client side and the server side programs can

be run under any platform when the CORBA product is installed in that platform because

only ANSI Standard C++ is used for the implementations.

50

6.6.1 MakeFiles

Two makefiles MakeFile.cpp and StdmMk_NT are used to make whole compiles and
links easer from IDL, client and server C++ source codes to executable codes for both

client and server sides.

6.6.2 Define interfaces

There are two interfaces that are defined in a module with IDL language for the game in
the file Game.idl. One is called Account, and the other is called AccountManager. Each
interface contains some methods that clients can call through the object reference.
Interface Account mainly contains the methods to play the game, and interface
AccountManager mainly contains the methods for registration for a player in order to

play a game. The syntax of IDL language is like C++/Java syntax.

An interface defined grammatically for the game is shown in Figure 11.

51

Figure 11

The IDL compiler “idl2cpp” of VisiBroker for C++ takes IDL file (which contains
Account interface) as input and produces the necessary client stubs (which provide the
interface to the Account objects’ methods used by client program for all member function
invocations on the client side) and server skeletons (which provide classes for the

implementations of the remote objects on the server side) in C++ [3].

The “idi2Zcpp” compiler generates four files from the Game.idl file:

52

e Game_c.hh: Contains the definitions for the Account and AccountManager
classes used to build the client program.

e Game_c.cpp: Contains internal stub routines used by the client.

e Game_s.hh: Contains the definitions for the AccountPOA and
AccountManagerPOA servant classes used to build server objects.

* Game_s.cpp: Contains the internal routines used by server.

6.6.3 Implementing the server

The Server.c file is a server implementation. This file implements the server classes for
the server side of the game. The server program does the following:
1. Initializes the Object Request Broker.
The ORB provides a communication link between the client and the server. When
a client makes a request, the ORB locates the object implementation, delivers the
request to the object, and returns the response to the client. Each application must
initialize the ORB before communicating with it.
2. Creates and sets up a Portable Object Adapter with the required policies.
The Portable Object Adapter (POA) and its components determine which servant
should be invoked when a client request is received, and invokes that servant. A
servant is a programming object that provides the implementation of an abstract
object. A servant is not a CORBA object.
One POA called the root POA is supplied by each ORB. We can create
additional POAs and configure them with different behaviors and can also define

the characteristics of the objects the POA objects —the POA controls.

53

The steps to setting up a POA with a servant include:
¢ Obtaining a reference to the root POA
All server applications must obtain a reference to the root POA to
manage objects or to create new POAs. We can obtain a reference to the
root POA by using function resove_initial_references(). The
resove_initial_references() returns a value type CORBA::Object. We
can then use this reference to create other POAs if they are needed.
¢ Defining the POA policies
The root POA has a predefined set of policies that cannot be chan ged. A
policy is an object that controls the behavior of a POA and the objects
the POA manages. If we need a different behavior, such as different
lifespan policy, we will need to create a new POA.
e Creating a POA as a child of the root POA
POAs are created as children of existing POAs using create_POA(). We
can create as many POAs as are required. Children POAs do not inherit
the policies of their parent POAs.
3. \Creates the account manager servant object.
The servant object must be created and activated in the server side.When we
compile an IDL that contains an interface, a class is generated that serves as the

base class for the servant. For example, in Game.idl file, an AccountManager

interface is defined as shown in Figure 12.

54

Figure 12

A base class POA_Game::AccountManager is generated. Then the
implementation class AccountManagerImpl is derived from the base class.
4. Activates the servant object.
There are several ways in which objects can be activated:
» Explicit—all objects are activated upon server start up via calls to the POA.
* On demand—the servant manager activates an object when it receives a
request for a servant not yet associated with an object ID.
e Implicit—objects are implicitly activated by the server in response to an
operation by the POA, not by any client request.
* Default servant—the POA uses the default servant to process the client
request.
5. Activate the POA manager and the POA.
A POA manager is associated with a POA during POA creation. By default,
POA Managers are created in a holding state. In this state, all requests are routed
to a holding queue and are not processed. To allow requests to be dispatched, the
POA manage associated with the POA must be changed from the holding state
to an active state. A POA manager is simply an object that controls the state of
the POA.

6. Waits for incoming client requests.

55

Once the POA is set up, the server can wait for client requests by using function

orb.run(). This process will run until the server is terminated.

The main steps of the server program for the game are as shown in Figure 13.

Figure 13

56

The account class is derived from the POA_Game::Account class that is generated by the
idI2cpp compiler from the Account interface. Look closely at the POA_Game::Account
class definition that defines in the Game_s.hh file and notice that it is derived from the
Account class. The class hierarchy is as shown in Figure 14.

Figure 14

The Accountlmpl class is a holder of game implementations. It inherits
POA_Game::Account and PortableServer::RefCountServantBase and implements most
of game operations (methods) except registration operations. (The registration operations
are defined in another class called class AccountRegistry.) These methods are called from

client side through the object references and ORB.

The AccountImpl class is defined as shown in Figure 15.

57

igure 15

F

58

6.6.4 Implementing the client

The client side program is in the client.cpp file that contains game move implementations

as shown in Figure 16.

Figure 16

Many of the classes used in implementing the game client are also contained in the

Game_c.hh and Game_c.cpp files.

The client program uses an object reference to invoke an operation on the object that has
been defined in the object’s IDL interface and has been implemented on the server side
object. But before player can make a move, the game client program performs the
following steps:
e Initializes the ORB
Not only the server needs to initialize the ORB, but also the client program needs

to explicitly initialize the ORB. The ORB is transparent to the client. That is the

59

client is unaware that the object may be on the same machine or across a
network. Function CORBA::ORB_init() is used to initialize the ORB.
Binding to Objects
A client program uses a remote object by obtaining a reference to the object.
Object references are usually obtained by using the <interface>_bind() member
function. The ORB hides most of the details involved with obtaining the object
reference, such as locating the server that implements the object and establishing
a connection to that server.
A client uses the method Game::AccountManager::_bind() to bind to the
AccountManager object, which gets the manager ID, locates an account manager,
gives the full POA name and the servant ID.
When the server process starts, it performs a CORBA::ORB.init() and announces
itself to smart Agents on the network.
When the client program invokes _bind() member function, the ORB performs
server functions on behalf of the client program.
o ORB contacts the Smart Agent to locate an object implementation that
offers the requested interface.
o When an object implementation is located, the ORB attempts to establish
a connection between the object implementation that was located and the
client program.
o Once the connection is successfully established, the ORB will create a

proxy object and return a reference to that object. Then, the client will

60

invoke methods on the proxy object that will, in turn, interact with the
server object.

o The client program will never invoke a constructor of the server class.
Instead, an object reference is obtained by invoking the static _bind()
member function.

¢ Requests the account manager to open an account for the named player by
invoking the open() member function. Then, the player can start to play as a
black piece holding player, a white piece holding player or as a watcher to watch

a game played by other players.

The way for initializing ORB and binding to objects of the game client program is as

shown in Figure 17.

Figure 17

6.7 The application running environment

The game program for both server side and client side can be run on any platform for

which a CORBA product (for instance, VisiBroker, Orbix or OmniOrb etc.) is installed.

61

6.7.1 The Smart Agent

Before we attempt to run VisiBroker client programs or server implementations we must

first start the Smart Agent on at least one host in the local network.

VisiBroker’s Smart Agent is a dynamic, distributed directory service that provides
facilities used by both client programs and object implementations. The Smart Agent
locates the specified implementation so that a connection can be established between the
client and the implementation. The communication with the Smart Agent is completely
transparent to the client programs and also completely transparent to the object
implementations. VisiBroker locates a Smart Agent from a client program or object
implementation by using a broadcast message. The first Smart Agent who responds to the
broadcast will be used. After a Smart Agent has been located, a point-to-point UDP

connection is used for sending requests to the Smart Agent.

62

Chapter 7 Conclusion

An important characteristic of large computer networks such as the Internet and corporate

intranets is that they are heterogeneous. CORBA has proven itself as a solid basis for

heterogeneous object-oriented distributed systems.

This report has described the Common Object Request Broker Architecture portion of the

OMG Object Management Architecture (OMA). CORBA provides a flexible

communication and activation substrate for distributed heterogeneous object-oriented

computing environments. The strengths of CORBA include:

Heterogeneity: The use of OMG IDL to define object interfaces allows these
interfaces to be used from a variety of programming languages and computing
platforms.

Object Model: The Object Model and Reference Model provided by the OMA
define the rules for interaction between CORBA objects such that the interactions
are independent of underlying network protocols. CORBA-based applications are
abstracted away from the networking details and thus can be used in a variety of
environments.

Legacy integration: The CORBA specification is flexible enough to allow ORBs
to incorporate and integrate existing protocols and applications such as DCE or
Microsoft COM, rather than replace them.

Object-oriented approach: CORBA itself and applications built on top of it are

designed using object-oriented software development principles. The management

63

of complexity afforded by OO software development techniques is very important

for the practical implementation and deployment of CORBA applications.

It is clear that the future of CORBA is very promising. The flexibility and adaptability
offered by CORBA make it very attractive for distributed applications. CORBA has also
an advantage over other distributed object computing technologies (such as DCOM and

Java RMI) since it can be integrated into a wider range of platforms.

This report also discusses other distributed computing approaches, and briefly compares
these popular distributed object paradigms. The architectures of CORBA, DCOM and
Java/RMI provide mechanisms for transparent invocation and accessing of remote
distributed objects. Though the mechanisms that they employ to achieve remote

distribution may be different, the approach each of them takes is more or less similar.

The CORBA-based application of gomoku game is given as an example to show how the

CORBA architecture is used to develop distributed object-based applications.

This example also shows how CORBA helps to reduce the complexity of developing

distributed applications.

We like to note that our game approach has no restrictions for only this gomoku game.

The approach can be used to implement most games and similar distributed object

applications.

64

References

[1] VisiBroker Version 4.0 Installation Guide
(Inprise) http://www.borland.com/visibroker/

[2] VisiBroker Version 4.0 for C++ Programmer’s Guide
(Inprise) http://www.borland.com/visibroker/

[3] VisiBroker Version 4.0 for C++ reference
(Inprise) http://www.borland.com/visibroker/

[4] Aklecha, Vishwajit, Object-Oriented Frameworks Using C++ and CORBA,
Coriolis technology press, 1999

[5] Rosenberger, Jeremy L., Teach Yourself CORBA in 14 Days
Sams, 1998

[6] Object Management Group, The Common Object request Broker: Architecture and
specification 2.0, 2.3, 3.0.
http://www.omg.org/

[7] Henning, Michi and Vinoski, Steve, Advanced CORBA Programming with C++,
Addison-Wesley, 1999

[8] Ahmed, Suhail, CORBA Programming Unleashed, SAMS, 1998

[9] Orfali, Robert and Harkey, Dan, Client/Server Programming with Java and CORBA
Wiley, 1998

[10] Schettino, John, O'Hara, Liz, and Hohman, Robin S. CORBA for Dummies, IDG
Books, 1998

[11] www.corba.org/

[12] www.cs.wustl.edu/~schmidt/corba.html

[13] www.mico.org/

[14] http://www.theaceorb.com/

[15] http://www.uk.research.att.com/omniORB/omniORB.html

[16] http://www.omg.org/gettingstarted/

65

[17] http://cbbrowne.com/info/corba.html

[18] http://my.execpc.com/gopalan/misc/compare.htm]

[19] http://www.iona.com/products/orbix.htm

[20] http://www.ois.com/resources/corb-9.asp

[21] http://www .sei.cmu.edu/str/descriptions/corba.html

[22] http://research.microsoft.com/~ymwang/papers/ HTML/DCOMnCORBA/S .html

[23] http://www scit.wlv.ac.uk/~cm1924/cp3025/distrib/reading/corba/corba3/corba6.htm

66

Appendix
How to run the application

The game program for both server side and client side can be run on any platform for

which a CORBA product (for instance, VisiBroker, Orbix or OmniOrb etc.) is installed.

To run the game program in the VisiBroker environment, the following three steps must
be executed:

1. Starting the Smart Agent

2. Starting the Server

3. Starting the clients

1 Starting the Smart Agent

Before we attempt to run VisiBroker client programs or server implementations we must

first start the Smart Agent on at least one host in the local network.

The basic command for starting the Smart Agent is as follows.
Under Windows NT platform, open a DOS Command Prompt window, and then start a
Smart Agent by using the following DOS command:
Prompt> osagent
Under UNIX platform, start a Smart Agent by using the following command:

Prompt> osagent &

67

If we are running Windows NT and want to start the Smart Agent as an NT Service, we
need to register the ORB Services as a NT Service during installation. If the Service is
registered, we then are able to start the Smart Agent as an NT Service through the Service

Control Panel.

2 Starting the server

Under Windows NT platform, open a DOS Command Prompt window, and then start the
game server by using the following DOS command:

Prompt>start server
Under UNIX platform, start the game server by using the following command:

Prompt>Server&

3 Starting the clients

Under Windows NT platform, open a separate DOS Command window, which can be on
different computers, for each client and then start a client program by using following
DOS Commands:
e To start a client program as a player holding black pieces:
Prompt> client black
e To start a client program as a player holding white pieces:
Prompt> client white
e To start a client program as a watcher to watch other player’s play a game. We
start as many clients as we want for watching a game:

Prompt> client <Name>

68

Under UNIX platform, start a client program is the same way as start a client under

Windows NT.

69

List of Acronyms

ANSI:

API:

BOA:

CORBA:

DCE:

DCOM:

DII:

GIOP:

IDL:

1IOP:

IOR:

JRMP:

JVM:

OMA:

OMG:

OO0D:

OOP:

ORB:

OSF:

POA.:

American National Standard Institute
Application Programming Interface
Basic Object Adapter

Common Object Request Broker Architecture
Distributed Computing Environment
Distributed Component Object Model
Dynamic Invocation Interface
General inter_ORB Protocol
Interface Definition Language
Internet Inter_ ORB protocol
Interoperable Object Reference

Java Remote Method Protocol

Java Virtual Machine

Object Management Architecture
Object Management Group
Object-Oriented Design
Object-Oriented Programming
Object Request Broker

Open Software Foundation

Portable Object Adapter

70

RPC:

RMI:

TCP/1P:

Remote Procedure Call

Remote Method Invocation

Transfer Control Protocol/Internet Protocol
User Datagram Protocol

Unified Modeling Language

Uniform Resource Locator

71

