A Comparison of Two Programming Languages

Java and C#

Hao Zheng

A Major Report

in The Department of Computer Science

Presented in Partial Fulfillment of the Requirements for
the Degree of Master of Computer Science

at Concordia University
Montréal, QC, Canada

March 2004 @ Hao Zheng 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91160-8
Our file Notre référence
ISBN: 0-612-91160-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

Abstract

A Comparison of Two Programming Languages:

Java and C#

Hao Zheng

Java programmers must be aware of the advent of C#, the NET network environment, and
a host of new supporting technologies, such as web service. Before taking the big step of
migrating all development to a new environment, programmers will be eager to understand
what are the advantages and disadvantages of both languages and whether it is worth while
to make the big step or not. Java and C# are both good object-oriented programming
languages. In general, Java and C# looks astonishingly alike: they include language
features like single inheritance, interfaces, nearly identical syntax, and compilation to an
intermediate format. However, C# distinguishes itself from Java with language design
features borrowed from C++ and other languages, direct integration with COM
(Component Object Model), and its key role in Microsoft's .NET Windows networking
framework. In this report, I will compare both languages to expose the similarities and
differences between them. Some new features in C# which make it interesting for java

programmers are also discussed in this paper.

iii

Contents

CHAPTER 1 INTRODUCTION.......ccceeurerrernrnersacsasnssssesssnensensaens 1
CHAPTER 2 SIMILARITIES OF C# AND JAVA ...overreeeesennssessasesssssssssssesnes 4
21 OBJECT-ORIENTEDceiutouiitintiaienus ceirerteseeseessansieeseastestesesesseseeeeeeseeeesesessseseesesses 4
22 CASE SENSITIVITY AND NAMING CONVENTIONcouovveinrereieeeeseseeeeeeseeoen 5
23 NAMESPACES AND CLASSESouviutieetitiresesetieene oo etesteeeeeeeeeeeeeeeaeesssssenesns 7
2.4 ABSTRACT CLASScuiriiieriieteiiiete ettt sttt et et e e e et eeee s e e seessereeseeons 8
2.5 GARBAGE COLLECTIONcvtiitieriireieeereereeseessensiestestesseosessessesseseeesssssssssssessesoas 10
2.6 INTERFACE AND SINGLE INHERITANCEcvoviiieeeeeeeeeeeerereesesseeses oo, 11
2.7 EXCEPTION HANDLINGcoueouiitiiiiteiieiceietete ettt sttt es e, 14
2.8 ARRAYS L.ttt ettt et eb et ae e a et test et ne et e e s ee e e e et es e 17
2.9 DECLARING CONSTANTSoeuitiuieieeeemetereeeseseesseeeeeeeeeseseeeeee e ses e 19
2.9 CONSTRUCTORS, DESTRUCTORS AND CALLING BASE CLASS CONSTRUCTORS .. 20
210 SUMMARY ..ottt ettt st ese ettt s et e e s e s e eses et oo 23
CHAPTER 3 DIFFERENCE OF C# AND JAVA ...cuconecreececsensnensssssesssenses 24
3.1 DATATYPES ..ottt et 24
3.2 SWITCH STATEMENTovitetitiuiaeieeeeeeeeeteee et 25
33 INTERMEDIATE LANGUAGEc0ovtiuitieiitictee oo, 26
34 PLATFORM INTEROPERABILITYcccooiiiirieieeeeeeeeeeeseeeeseseee oo 27
3.5 LANGUAGE INTEROPERABILITYcocovouiuiterieeeieseeeeeeeeeeeeeee oo 28
3.6 THREADING.....ccootetitrtitetiitetitieeeteee ettt ettt et ee e 30
3.6.1 Create and Run a Thread.............ooooeiioiieieeeeioeeeeeeeeeeeoeoe oo 30
3.6.2 Thread USAZEccecvviriieieniieiiieerete e, 33
3.6.3 Stop aTRread.........cccoouiiiiiiiiiiiieeeeeeeee e, 35
3.6.4 Thread Synchronizationccovoveeeveioeecoeeceee oo 35

3.7 INESTED CLASSES ...ttt ettt ettt oot e s e 37
3.8 ACCESS MODIFIERSoutitiiieriaiiate ettt ettt 38
3.9 SERIALIZATIONotiimieuiiteinnieieeseesieseatese et estst s ae e ete e s e ee e esees e 39
3.10 DOCUMENTATION.....c.e.ttiitiiriiateite ettt ettt e ee e ee et 40

v

3,11 IMPORTING LIBRARIES «..ucueueeeiiteereeeeeeeeeeeeessesessreesaseassesess s 40

312 SUMMARY oottt ettt ettt ettt e et e at et e et eaeeae s 41
CHAPTER 4 THE FEATURES IN C# BEYOND JAVA ...uuuevrrnecrenerersssssssssnens 42
4.1 ENUMERATION....ccoeitttititeninieteaitesseesteesetaesasssseseseesetessessesessesesseeseneeeeeesseeasaeenes 42
4.2 FOR-EACH STATEMENTc.ccoeitiuireeriereeneetestetestieesessaseeeetessereesaseeseseeesessessanas 43
4.3 JUMP STATEMENT---GOTO.....c.ceireeireeiriiieniinteintieieeee s eee s eeee e eeee e e eeae s 45
4.4 DELEGATES AND EVENTS.....ccoiiiieitiiiiteeesiese sttt st e e e e e ese s ere e 46
4.5 PROPERTIEScueiuiitenienienieiaieee e eesressietesessestes e saeteesteeeseeeteneeeeenesseeseseneasens 51
4.6 INDEXER ..cooeriiieiriiiiriieiiineeseteteesteseetasassesete ettt saeeesns s e tenereesseeteesesesesseseens 53
4.7 BOXING AND UNBOXING....c..cveirieerrenririeiiresniiinseseneensseeseeesesesesesssessesesssesesens 54
4.8 STRUCT ..ottt ettt ettt et ee et et s ettt e e er et ee e e e e e s seaee. 56
4.9 OPERATOR OVERLOADING.......c0cveeietreerereneeteternsieeseeeseeeeneoseeeaesssessseeseseeesesssons 57
4.9.1 Overloading Unary OPerators........cccurrueereimireeeerereeeerisseeeeseeesressssssens 38
4.9.2 Overloading Binary OPerators..........covveenieeemeeerisnoneseeeeereesesesessssenns 59
4.9.3 Overloading Conversion OPEratorsouevereereereeereeereereeeseeesesereessns 60
410 POINTERS ...oooiiitiiiiinieirtsieteiee e sttt ettt ettt ettt en et e e e e et e e 61
411 ATTRIBUTES......cuiiieiereieniriitetieteretesteseese s stesess et e et sees oo seseseeseseseseeseesesessens 63
4.12 RICH PARAMETER PASSING........ocviitiieiivetitetiietece et 66
413 SUMMARY ...ttt ettt ettt ettt e e s es e e s, 67
CHAPTER 5 GUI COMPARISON---SWING VS WINDOWS FORM................... 68
CHAPTER 6 CONCLUSIONcocvuceernrenernreencreassessssssssssesssessssssassessasasassensasssssssssssssenes 72

List of Tables

Table 3.1 Comparison of Thread Usage Methods in Javaand C# 33
Table 3.2 Comparison of Thread Synchronization Methods in Javaand C#................ 36
Table 3.3 Comparison of Access ModifersinJavaand C#.....................ccooiiii, 39
Table 4.1 Illustration of Operators Overloadbilityocooviiiiniii . 58
Table 4.2 Attributes targets and their description 64

vi

Chapter 1 Introduction

Java and C# are both strongly-typed objected oriented programming languages. Java and
C# were designed with simplicity, expressiveness, and performance in mind. Both compile
to machine independent code which runs in 2 managed execution environment. Java uses
Java byte code and the Java Virtual Machine (JVM); C# used Microsoft Intermediated
Language (MSIL) provided by the Common Language Runtime (CLR) of the .NET

platform.

Java came on the programming language landscape around 1995. It is easily learned, and
prohibits many types of programming errors. Its syntax is like that of the C language. The
Java programming language evolved from a language named Oak by James Gosling in
1991. [5] Oak was first slated to appear in television set-top boxes designed to provide
video-on-demand services. Just as the deals with the set-top box manufactures were fallin g
through, the World Wide Web was coming to life. As Oak’s developers began to recognize
this trend, their focus shifted to the Internet and WebRunner, an Oak-enabled browser, was
born. Sun formally announced Oak’s name was changed to Java and WebRunner became
the HotJava web browser in 1995. The excitement of the Internet attracted software
vendors such that Java development tools from many vendors quickly became available.
Java is particularly designed to interface with web pages and to enable distributed
applications over the internet, since the web is becoming a dominant software development

arena, this drives Java as a well supported and most widely used language.

Microsoft initially resisted Java but eventually it became a part of its so much famous
Visual Studio and named VJ++. But the Microsoft efforts to giving Java flavor to Visual
Studio did not succeed and VJ++ ultimately failed. There were of course, other reasons like
poor marketing for its failure. Consequently Microsoft has not released new versions of

VI++ after 1998 and has no plans for it in near future.

Since then, Microsoft started developing a new language ---- C# (pronounced C-sharp)
which conceptually is much like Java but provides additional features missing in Java. C#
1.0 language was submitted by Microsoft to the ECMA standards group in mid-2000, and
released with Visual Studio .NET 2002 and 2003. C# is developed by Anders Hejlsberg for
Microsoft’s .NET platform, which is Microsoft’s platform for XML Web service, and it is
arguably the cleanest, most efficient language for .NET in popular use today. The C#
language is aimed at enabling programmers to quickly build a wide range of applications.
The goal of C# and the .NET platform is to shorten development time by freeing the
developer from worrying about several issues such as memory management, type safety
issues, building low level libraries, array bounds checking, etc. thus allowin g developers to
actually spend their time and energy working on their application and business logic
instead. C# bears a striking resemblance to Java and improves on that language. It may well

become the dominant language for building applications on Microsoft platforms.

It is important to note that this report does not cover the complete aspects of these two
languages and that there are many features of these two languages which are not reported
here. In addition, at the time of writing this report, in October 2003 Microsoft has released

a draft of the C# 2.0 specification, which announced four new features: generics, iterator,

anonymous methods and partial types. However, since it is still a template, only a small
part of iterator is discussed in this report. In chapter 2, I present the similarities of Java and
C#. In chapter 3, I explain a couple of high-level, fundamental differences in scope
between Java and C#. In chapter 4, I introduce some new features in C# beyond Java. In
chapter 5, Lillustrate the GUI part using Java Swing and C# Windows Form. In chapter 6, 1
close the report by evaluating the wisdom of developing application in these two

languages.

Chapter 2 Similarities of C# and Java

Anders Hejlsberg, the creator of C# language from Microsoft says that the C# language
definition has been primarily derived from C and C++, and many elements of the language
reflect that. [11] However, C# looks astonishingly like Java; it includes language features
like single inheritance, interfaces, nearly identical syntax, and compilation to an
intermediate format. This section explores similar features of C# and Java. Notice that the
similar features in these two languages are not necessarily identical features; therefore,

there are still some differences within the similarities.

2.1 Object-oriented

The object-oriented programming paradigm first is introduced in Simula 67, a language
designed for making simulations, created by Ole-Johan Dahl and Kristen Nygaard [1].
Alan Kay's group at Xerox PARC used Simula as a platform for their development of
Smalltalk (first language versions in the 1970s), extending object-oriented programming
importantly by the integration of graphical user interfaces and interactive program
execution. Object-oriented programming became as the dominant programming
methodology during the mid-1980s, largely due to the influence of C++. In the past decade
Java has merged in wide use as a popular object-oriented programming language. Most
recently, besides Java, C# became the most commercially important object-oriented

languages.

Java and C# both are object-oriented languages that use a single rooted class hierarchy. In
C#, these three most important principles of object-orientation have been preserved. To
qualify as an object-oriented language, there are four main concepts that an object oriented
programming language must support---Objects, Abstraction, Inheritance and
Encapsulation. [1] Every class in Java is a subclass of java. lang. Object, and every
class in C# is a subclass of System.Object. Both Java and C# treat data as a critical
element in the program development. Every problem is decomposed into a number of

entities called objects and then built data and functions around these entities.

One thing to note is that there are no more global function and variables, methods and
fields modified by the stat ic keyword are mechanisms for providing “global” functions
and variables. Abstraction is the ability of a programming language to define internal types
and be able to control external access to the types. C# has similar abstraction technique to
Java. Encapsulation enables programmers to group actions together with their respective
owners. Everything must be encapsulated inside a class. This makes a C# code more
readable and also reduces naming complexity. C# class members can be declared as
private, protected, public, internal or static,thus facilitating complete
control over their encapsulation and information hiding. The last concept is inheritance.
Inheritance is the foundation and fundamental support for object-orientation. It allows a
class to “inherit” the characteristics and attributes of the parent class, but Java and C# do

not allow multiple inheritance, hence they provide interfaces as an alternative to it.

2.2 Case Sensitivity and Naming Convention

Java and C# both are case-sensitive languages. Both languages generally follow the

naming convention that all keywords are in lower case letters and class names start with a
capital letter. However, case sensitivity shouldn’t be used to differentiate program
elements. The multilanguage support in the INET runtime system means that components
developed in C# can be called from components written in other .NET languages such as
VB.NET that might not be able to differentiate on the basis of case. This is discussed in

section 3.5.

In Java naming convention, a class must be written in a file with the same name, including
the capitalisation, and with the extension. For example, a class named QuickSort should
be written in a file named QuickSort. java. The variable names and method names
should start with lower case letter, and constants usually written in all capitals. In the
naming convention used by .NET, if a single class name contains multiple words, each

word's starting letter would be capital. The same applies to function names as well.

Java code;

// In a file named QuickSort. java, class has the same name “QuickSort”
public class QuickSort|

// Constant in all capital letters

final static int DATA_ARRAY_SIZE = 100;

/[Variable name in lower case letters

String str = “QuickSort Animation Applet”;

// Method name in lower case letters

public static void main(String args[]){

QuickSort appletObject = new QuickSort();

System.out.print(str);

C# code:

namespace QuickSortCSharp

{

public class QuickSort

{

const int DATA_ARRAY_SIZE = 100;
string str;
// Method name in capital letters

static void Main (string[] args)

{

str = Console.ReadLine() ;

Console.WriteLine (str);

2.3 Namespaces and Classes

In Java, packages are physical directories using for providing access protection and file
management. Namespace in C# are analogous to packages in Java, but takes a more
practical approach, because it represents a logical hierarchy rather than a physical Jayout of
source files. Namespaces can be used to semantically group elements for organization and
readability of classes and other namespaces. Names declared in one namespace will not

conflict with the names declared in another namespace. It can be nested to any level.

Classes are declared very similar in both Java and C#. The Java keyword import is the
same as C# keyword using, which performs the same basic function. The point at which
a class begins execution is the static method main () in Java, and Main () in C#. The

following code from Java and C# demonstrates the basic form:

Java code:

import java.lang.System;
class QuickSort {
// entry point of a class is static main() method in Java
public static void main(String[] args) {
System.out.printin("QuickSort Animation say hi.");

C# code:

using System;
class QuickSort {
/I entry point of a class is static Main() method in C#
static void Main() {
Console.WriteLine("QuickSort Animation say hi ");

}

Classes can be abstract: A class that is declared as abstract cannot be instantiated; it can

only be used as a base class. Classes also can be unextendable: The C# keyword sealed

is like the Java keyword final, which declares a class to be non-abstract, but it also

cannot be used as the base of another class.

2.4 Abstract Class

An abstract class represents the common elements of a set of related classes. The concrete

classes inherit the definitions in the abstract class. The abstract class forces a requirement

on the concrete classes to implement the abstracted methods. The concept of abstract class

1s similar in Java and C#.

Both Java and C# make it easy to define an abstract class using the abstract keyword.
The abstract class may contain abstract methods. Both in Java and C# all abstract methods
should be implemented in subclass, but in C#, the implementation is provided by an
overriding method, which is a member of a non-abstract class. Abstract methods also can
be virtual method in C# but not in Java, because all methods in Java are implicitly

virtual, so there's no need for this keyword in the language.

Java code:

// abstract base class declaration in Java
abstract class SortAlgorithm {
SortPanel parentPanel;
/[abstract class constructor
public SortAlgorithm() {
//call base class constructor
super();
}
public void setparent(SortPanel sortPanel) {
this.parentPanel = sortPanel;
}
//abstract method in base class
abstract public void sort(int[] data);
}
/lclass inherited from abstract base class
class QSortAlgorithm extends SortAlgorithm

{
/foverride abstract method in base class
public void sort(int a[])
{
quickSort(a, 0, a.length - 1);
}
}

C# code:

// abstract base class declaration in C#

abstract class SortAlgorithm

{

public SortControl parentpanel;
/labstract class constructor

public SortAlgorithm() :base() //explicit constructor call

{}

public void setparentpanel(SortControl sortControl)

{

this.parentpanel = sortControl;

}

//abstract method declaration
public abstract void sort(int[] data);

}

//class inherited from abstract base class

class QSortAlgorithm :SortAlgorithm
{

/loverride abstract method in base class, virtual keyword can be used in which case
/Ithe method or the property is called a virtual member

public override void sort(int[] a)

{

Console.WriteLine(“override sort function here”);

2.5 Garbage Collection

Garbage collection is one of Java’s most popular features, which is very useful for memory
management and helps in reducing the complexity of application development. [6] C# has
followed the Java way of automatic garbage collection, which relieves the programmer of

the burden of manual memory management. With automatic garbage collection, manually

10

implement destructors for every object is not necessary, and C# automatically removes
from memory all objects that a program no longer references. It does have a Java-like
‘garbage collection’ scheme in which the runtime system sporadically reclaims memory
from objects automatically which occurs automatically without the knowledge of the

programmer.

Java and C# provide garbage collection make the life easier for the programmer, because
they don’t need to do all of the disposal of memory and run-time is in charge. Both garbage
collection run in the background and cleans up the objects some time after all references to

them have been dropped. This is an advantage that makes no memory leaks of the system.

(6]

In both Java and C#, all objects are allocated on the heap with new keyword which
provides the objects’ reference. The garbage collector then periodically frees the memory
used by objects that are no longer referenced, which removes the programmer from having
to deal with the memory space that is allocated to objects. Programmers don’t need to
worry about creating too many objects, but don’t want to waste any that they’ve already got
sitting in memory. It’s a good idea not to create any more objects than really need, thus

avoiding running the garbage collector too often.
2.6 Interface and Single Inheritance

Similar to Java, C# does not support multiple inheritance which is the ability of a class or
interface to extend more than one class or interface; instead it provides Java's solution:

interfaces. Interfaces implemented by a class specify certain functions that the class is

11

guaranteed to implement. Multiple inheritance causes more problems and confusion than it
solves. Interfaces avoid the dangers of multiple inheritance while maintaining the ability to

let several classes implement the same set of methods.

In C# just as in Java, an interface is an abstract definition of a collection of methods. When
class implements an interface, it must implement all of the methods defined in the interface.
A single class can implement a number of interfaces. There may be some subtle differences
that surface later, such as extends and implements keywords of Java are replaced
with a colon (:). In Java, the modifier publ ic could be presented in a method signature;

however it is illegal in C# for explicitly specifying an interface method as public.

Java code:

class Control {...}
//interface definitions
interface IControl

{
void Paint();

}

interface IDataBound

{
void Bind(Binder b);

}
// keyword extend and implement are used in Java to indicate inheritance

public class EditBox extends Control impIements IControl, IDataBound

{
public void Paint() {...}

public void Bind(Binder b) {...}

12

C# code:

class Control {...}
/linterface definitions

interface IControl

{
void Paint();

}

interface IDataBound

{
void Bind(Binder b);

}

/I C# uses the colon “” operator to indicate inheritance
public class EditBox : Control, IControl, IDataBound

{
public void Paint() {...}

public void Bind(Binder b) {...}

Multiple inheritance is a very powerful technique, and in fact, some problems are quite
difficult to solve without it. Multiple inheritance can even solve some problems quite
elegantly. However, multiple inheritance can significantly increase the complexity into the
implementation. This complexity impacts casing, field access, serialization and probably

lots of other places.

As with operator overloading, the designers of Java and C# decided that the increased
complexity of allowing multiple inheritance far outweighed its advantages, so they
eliminated it from the language. In some ways, the Java and C# language construct of
interfaces compensates for this; however, the bottom line is that Java and C# do not allow

conventional multiple inheritance.

13

Like Java, C# gives up on multiple class inheritance in favor of a single inheritance model
extended by the multiple interfaces implementation. C# follows the Java path by allowing
inheritance from only a single base class. An inheritance relationship signifies an IS A
relationship between two classes. The lack of multiple inheritance becomes a factor when
considering it is possible for a class to be classified through multiple IS A relationships.
Just like Java, a class can inherit from one base class, and a class can implement multiple

interfaces.

2.7 Exception Handling

Most object oriented languages provide a feature called exceptions. In the most basic sense,
exceptions are unexpected events that occur within a system. Exceptions provide a way to
detect problems and then handle them. Exception handling in C# is almost same as in Java
except some minor differences. Both languages use of the try and catch blocks for
exception handling. The try block indicates the region under inspection and the catch
block for handles the exceptions. There can be multiple catch blocks to handle multiple

exceptions and the £inally block for handling any of the exceptions not handled by the

previous catch blocks. This code will run whether or not an exception is generated.

In Java all exceptions are derived from java.lang.Throwable. In C#, they are all
descended from System. Exception. In both Java and C# the exception is signaled by
a throw statement that transfers control to a matching catch clause of a logically
enclosing try block. The processing of a throw statement in the Java language

specification occupies several very dense pages of technical vocabulary. The exact

14

language need not be reproduced here. However, there is a problem with the Java

specification that needs to be confronted before anything else.

In Java, C# and other languages such as C++ and Visual Basic, finally statement exists
to be used for processing after leaving the try/catch block. It executes all the
statements in the finally clause, then resumes looking through the stack for a catch to
match the pending throw. Finally doesn't just trap exceptions. It also traps any of the
jump statements (break, continue, return,or goto) that would exit from a try
block that contains a finally clause. For that matter, the finally clause also executes

when the try block ends normally and falls through after executing the last statement.

Java has a problem related to finally clause that C# corrects. Java allows a finally
block to include one of the jump statements; however, if the final block is entered from
a throw statement, then execution of a break, continue,or returninthe final
block overrides the throw statement and aborts error handling. This is a design problem
because the finally clause cannot actually handle the error since it doesn't have access
to the exception object and cannot even determine that it has been entered as a result of a
throw rather than from some other cause. C# solves this problem by prohibiting any jump

statement in a £inally block that would transfer control outside the block.

Java code:

public final void run() {
while (Thread.currentThread() == animateTread) {
/lone try statement for the entire method makes the code is easier to read

try {
if (IstopRequest && sortAlgorithm != nuil) {

15

sortAlgorithm.sort(dataArray);
stopRequest = true;
System.out.print("\n" + "result ");
for(int i=0;i<dataArray.length;++i)
System.out.print(dataArray[i]+" ");
System.out.print("\n");

}
Thread.sleep(10);
}
/*catch InterruptedException, which would be thrown if the thread in the
Thread.sleep() call stops prematurely.
*/
catch (InterruptedException e) {
System.out.printin("Thread was interrupted in SortPanel.run()");
}
// finally block executes and cleans up the state of method
finally {
System.out.printIn(“ Execute the finally block”);
}
}
}
C# code:

public void PerformSort()

{
while (Thread.CurrentThread ==t)
{

/lone try statement for the entire method makes the code is easier to read

/lconcept is the same as in Java
try
{
if (!stopRequest && sortAlgorithm != null)

{

16

sortAlgorithm.sort(dataArray);

stopRequest = true;

Console.WriteLine("\n" + "result ");

for(int i=0;i<dataArray.Length;++i)
Console.WriteLine(dataArray(i]+" ");

Console.WriteLine("\n");

}
Thread.Sleep(10);

}

[*catch ThreadInterruptedException, which would be thrown if the thread in the
Thread.Sleep() call stops prematurely.

*/
catch (ThreadInterruptedException e)
{
Console.WriteLine("Thread was interrupted in SortPanel.PerformStart()");
}
/ffinally block executes and clean up the state of the method
finally
{
Console.WriteLine(“Executing finally block”);
}
}
}
2.8 Arrays

Reference type is a non-primitive type, where a variable of that type evaluates to the
address of the location in memory where the object referenced by the variable is stored.
Arrays are reference types in both C# and Java. Because of their importance, both language
implement native language syntax to declare and manipulate arrays. In Java,
multi-dimensional arrays are implemented solely with single-dimensional arrays (where

arrays can be members of other arrays). Java doesn’t support true multidimensional arrays.

17

A true multidimensional array is rectangular arrays that represent an n-dimensional block.
The lack of true multidimensional arrays in Java has made it problematic to use Java in
certain aspects of technical computing which has lead to various efforts to improve this
position including research efforts by IBM which involved writing their own Array class to

get around the shortcomings in Java arrays.

C# supports single-dimensional array, multidimensional arrays. There are two types of
multidimensional array in C#, rectangular array and jagged arrays. [3] A rectangular array
is a single array with more than one dimension, with the dimensions' sizes fixed in the
array's declaration. A jagged array is akin to an array in Java which is an array of arrays,
meaning that it contains references to other arrays which may contain members of the same

type or other arrays depending on how many levels the array has.

The syntax for defining an array in looks similar in C# to that in Java, by placing empty
square brackets with the type and the variable name. However, it is less flexible in C# than

that in Java. For example,

in[]x={0,1,2,3}%

intx[]={0,1,2,3};

These two declarations are both legal in Java. In C# only the first line is valid. The empty

square brackets cannot be placed after the variable name; it must follow the type

specification.

Array instances are created using the new keyword both in Java and C#. Both java and C#

consider arrays as objects. However, the objectlike features of arrays in C# are more

18

extensive that those in Java. In Java, arrays are not directly exposed as objects, but the
runtime system enables an instance of an array to be assigned to a variable of type
java.lang.Object and for any of the methods of the Object class to be executed
against it. In C#, all arrays inherit from the abstract base class System. Array, which
derives from System.Object. The System.Array class provides functionality for

working with the array, some of which is available in java.util.Arrays.

2.9 Declaring Constants

Java uses the static final keyword to declare compile time constants, and the
compiler prevents any other object from changing the value of the variable. C# uses the
const keyword to declare compile time constants while the readon1y keyword is used
for runtime constants. The semantics of constant primitives in C# and Java is the same, but
there is a little difference. In Java, final members can be left uninitialized when declared
but then must be defined in the constructor. In C#, constants must have a value initialized

when declaring them. Failing to do so will result a C# compiler error.

Java code:

static final ONE =1;

// this expression is converted to 2 * 1
static final TWO =2 * ONE;

C# code:

const int ONE = 1;

// this expression is converted to 2 * 1

int TWO =2 * ONE;

19

Both Java and C# compiler can evaluate a constant value at compile time. However, in the
previous example, marking the variable ONE const causes the value to be evaluated

before compiling which makes the compiled program to run faster.

2.9 Constructors, Destructors and Calling Base Class Constructors

In both Java and C#, the constructor initializes an object when it is created and their
syntaxes are the same. In both languages, a constructor is invoked using the new keyword,
or use the various methods of reflection to create an instance of a class. C# supports two
types of constructors: instance constructors and static constructors,

while Java doesn’t have the static constructors.

In C#, a destructor can be called explicitly to release and terminate the unmanaged
resources just like in C++. The destructor in C# is similar to the finalize method in
Java. This is because they are called by the garbage collector rather than explicitly called
by the programmer. Furthermore, like Java finalizers, they cannot be guaranteed to be

called in all circumstances (this always shocks everyone when they first discover this).

Java code:

class ConstructorExample

{

public static void main(String[] args) {
A.F();
B.F();

}

class A

{

20

// static block in Java

static {
System.out.printin("Init A");

}

public static void F() {
System.out.println("A.F");

}

class B
{
static {
System.out.printin(“Init B");
}
public static void F() {
System.out.printin("B.F");

output:
Init A
A.F
Init B
B.F

C# code:

using System;
//static Constructor in C#
class StaticConstructorSample
{
static void Main() {
A.F();
B.F();

21

class A

{
static A() {

Console.WriteLine("Init A");

}
public static void F() {

Console.WriteLine("A.F");

}

class B

{
static B() {

Console.WriteLine("Init B");

}
public static void F() {

Console.WriteLine("B.F");

output:

Init A
A.F
Init B
B.F

In Java, parent class members can be accessed in the child class by using
super.method() format and invoke super class’ constructors in java can use the

notation super () as the first line in constructor. C# uses the base keyword and C#

syntax for calling the base class constructor is reminiscent of the C++ initializer list syntax.

22

Java code:

abstract class SortAlgorithm

{
public SortControl parentpanel;
public SortAlgorithm()
{
// calling the base class constructor
super();
}
}
C# code:

abstract class SortAlgorithm

{
public SortControl parentpanel,
public SortAlgorithm() :base()// calling the base class constructor
{}

}

2.10 Summary

In this chapter, a quite few similar features in Java and C# are presented, which makes
programmers come to the thought that “C# seems is a Java-like language”. The syntax and
semantics of these features in both languages are similar: Object-Oriented, Namespace vs
Package, Garbage collection, Exception Handling, Abstract Classes, Arrays, Constants,
and Constructors and Calling Base Class Constructors. There are also some differences

among these similar features such as declaration of array and constants.

23

Chapter 3 Difference of C# and Java

Ci#'s most intriguing facets are its differences from Java, not its similarities. There are a few
significant differences between these two languages. Since the developers of C# had the
advantage of carefully examining Java while developing their language, it is not surprising
that some of the differences attempt to address significant problems that are difficult to

deal with in Java. This section covers features of C# that Java implements differently.

3.1 Data Types

Java has primitive and reference types; C# refers to them as value and
referencetypes. Value types include byte, int, long, float, and double.
Reference types include class, interface, and array. In Java, the benefit of
value types stems from their simplicity relative to objects, resulting in performance
benefits and memory savings compared with the alternative of implementing everything as
object. C# has a third category, the infamous pointer. Java doesn’t provide a pointer
type, primary because of the complexity of these types and the dangers they pose to

application stability when used incorrectly.

C# has wider variety of data types than Java. C# has simple type consisting of integer type,
boolean type, char type, floating-point type, decimal type, struct type and enumeration type.
C# reference type consists of object type, class type, interfaces, delegates (which is

introduced in section 4.4), string type, and arrays. Unlike Java, C# has unsigned types

24

(byte, ushort, uint, ulong). Furthermore, every type in C# is an object, because
every data type in C# directly of indirectly derived from System. Object, and object is
the ultimate base class of all types. This gives all value types, including primitives such as
int and Iong, object capabilities. In C#, the primitive types are treated as objects as
and when necessary. C#’s type system is unified such that value of any type can be treated
as an object. Any value type can be converted to reference type and vice versa using

boxing and unboxing, which will be discussed in section 4.7.

Although C# maintains strong parallels with the data types offered by Java, the designers
of C# have also drawn heavily on the features of C and C++. For the Java programmer, C#
data types include many subtle and confusing difference as well as some new features. Java
provides a set of data types suitable for the resolution of most contemporary business
computing problems---complexity, incompatibility and security. However, the unified
type system provided by the .NET Framework, as well as the extended selection of C# data

and member types, offers greater flexibility and more control to the programmer.

3.2 Switch Statement

The switch statement is used to conditionally execute statement blocks. The value of an
expression defines which case is executed. Both Java and C# allow the control flow to
implicitly fall through different cases. For example, if a case is not explicitly left, the

switch statement keeps executing through all cases up to the end of the statement.

In C#, the switch statement is an enhanced version of switch statement in Java. Java

accepts only integral values in switch statement, but C# supports a broader range of data

25

types for the swi tch expression including enum and built in integer types. Most usefully,

C# supports the use of strings as swi tch expression.

C# code:

string direction, str;
switch (direction){
case “first” : str = “North”;
break;
case “second” : str = “South”;
break;
case “third” : str = “East™;
break;
case “forth” : str = “West”;
break;
default:
break;

Non-empty cases within switch statements must end with a statement that causes a
control-flow transfer. Usually cases end with a break; although they can end with goto

case X; where Xis another case in the swi tch statement.

3.3 Intermediate Language

Both C# and Java compile initially to an intermediate language: Java code runs as Java
Virtual Machine (JVM) bytecodes that are either interpreted in the JVM or JIT
(Just-in-Time) compiled. C#, as part of the NET framework, is compiled to Microsoft
Intermediate Language (MSIL), and is run as JIT compiled bytecodes or compiled entirely

into native code. The MSIL is run within the CLR (common language runtime) which is a

26

stack-based virtual machine as JVM. The CLR, in turn, converts the MSIL into commands
or code that will run on a particular operating system. Moreover, since the other languages
that make up the .NET platform (including VB) compile to MSIL, it is possible for classes

to be inherited across languages.

Microsoft is very flexible about choosing when MSIL is compiled to the native machine
code. The company takes care to say that MSIL is not interpreted, but compiled to machine
code. It also understands that many -- if not most -- programmers accept the idea that Java
programs are inherently slower than anything written in C. The implication is that
MSIL-based programs (written in C#, Visual Bésic, "Managed C++" -- a version of C++
that conforms to the CLS -- and so on) will outperform "interpreted" Java byte code. Of
course, this has yet to be demonstrated, since C# and other MSIL-producing compilers
have not yet been released. However, the ubiquity of JIT compiler (Just-In-Time compiler)
for Java make Java and C# relatively equal in terms of performance. Java byte code and
MSIL are very similar languages. Java byte code and MSIL are both intermediate
assembly-like languages that are compiled to machine code for execution, at runtime or

otherwise.
3.4 Platform Interoperability

Java has the strength in platform interoperability because it is designed to be platform
independent. Java source code is compiled into intermediate byte-codes, which are then
interpreted at run-time by a platform-specific Java Virtual Machine (JVM). This allows
developers to use any compiler they want on any platform to compile code, with the

assumption that this compiled byte-code will run on any supported operating system. Since

27

a JVM can be installed on any platform before the java code could be run, this makes Java

is truly supported on every OS with JVM.

C#, as part of the NET framework, is compiled to an intermediate language--Microsoft
Intermediated Language (MSIL), hence .NET is currently only fully available on Windows
platforms. However, if developers are creating applications for Windows platform, it's
more sensible to use C# over Java, because naturally Java doesn't ship with as many
Windows-rich features. It's not that C# is better than Java, but Microsoft has created all the
classes to handle Windows-based tasks and made them available through wizards, drag and

drop, and point and click.

NET takes care of this is by creating a managed exeéution environment based on a
Common Language Runtime (CLR), where every aspect of code execution is controlled,
regardless of source development language. The CRL handles memory management,
provides a secure runtime environment, ensures object location transparency and provides
concurrency management. C# code runs in a managed execution environment, which is the
most important technological step to making C# run on different operating systems.
However, some of the .NET libraries are based on Windows, particularly the WinForms
library which depends on the nitty-gritty details of the Windows APL. There is a project to
port the Windows API to Unix systems, but this isn't here now and Microsoft have not

given any firm indication of their intentions in this area.
3.5 Language Interoperability

C# has strength in language interoperability, any language targeted to the CLR in Visual

28

Studio .NET can use, subclass, and call functions only on managed CLR classes built in
other languages. C# demands the standardization of code so that the code written in one
language can be reused in another language. While this is possible, it is no doubt more
awkward in Java, as in other programming languages not supported yet in .NET. Java, by
contrast, was one programming language and execution machinery for that one

programming language.

It is very straightforward to create Java code for a Windows-based operating system that
can access COM objects. However, CLR would be language neutral, that it would support
multiple programming languages, has interoperability with DLLs, COM, OLE
automation—all of these technologies that any piece of code was written in before .NET.
Using Visual Studio .NET, libraries can be easily built in J#, Visual Basic .NET and
managed C++ (with other languages to come) and subclassed or directly used in C#. Just
looking at the libraries available in the on-line documentation, the developer has no idea

whether the classes were built in C#, C++ or another.

Both the Java Virtual Machine and the Common Language Runtime allow programmers to
write code in many different languages, so long as they compile to byte code or IL
(Intermediated Language) code respectively. However, the NET platform has done much
more than just allows other languages to be compiled to IL code. NET allows multiple
languages to freely share and extend each others libraries to a great extent. For instance, an
Eiffel or Visual Basic programmer could import a C# class, override a virtual method of
that class. With VB.NET, the VB language finally completes the transition to a fully OO

language.

29

Microsoft is opening up a channel to developers in other programming languages,
because .NET is enfranchising Perl, Eiffel, COBOL, and other programmers by allowing
cross-language component interactions. By using XML and SOAP in their component
messaging layer, it is opening up a channel to non- NET components. Languages written
for NET will generally plug into the Visual Studio.NET environment and use the same
RAD (Rapid Application Development) frameworks if needed, thus overcoming the

"second class citizen" effect of using another language.

3.6 Threading

Threads are a powerful abstraction for allowing parallelized operations: graphical updates
can happen while another thread is performing computations, two threads can handle two
simultaneous network requests from a single process, and so on. Java and C# threading

capabilities are quite different on the syntax and usage.

3.6.1 Create and Run a Thread

Java provides most of its threading functionality in the java.lang.Thread and
java.lang.Runnable classes. Creating a thread is as simple as extending the
Threadclass and calling start () ; a Thread may also be defined by authoring a class

that implements Runnable and having that class passed into a Thread.

Where Java allows the java.lang.Thread class to be extended and the
java.lang.Runnable interface to be implemented, C# does not provide these
facilities. In C#, a thread can be created using System. Threading namespace which

contains two classes: Thread and ThreadStart. The ThreadStart method has

30

both its parameters and return value as void -- this simply means that instead of using the
inner class pattern, an object will need to be created and one of the object's methods must

be passed to the thread for execution.

Java code:

// Thread class extends the java.lang.Runnable interface
class SortPanel extends javax.swing.JPanel implements Runnable {
//declaration of a thread

private java.lang.Thread animateTread = new Thread(this);

/1 run() method is the thread’s running behavior
public final void run() {
// make sure the current thread is the one we want
while (Thread.currentThread() == animateTread) {
try {
if (!stopRequest && sortAlgorithm != null) {
sortAlgorithm.sort(dataArray);
stopRequest = true;
System.out.print("\n" + "result ");
for(int i=0;i<dataArray.length;++i)
System.out.print(dataArray[i}+" *);
System.out.print("\n");
}
// the tread sleeps for one second (1000 milliseconds)
Thread.sleep(1000);
} catch (InterruptedException e) {

System.out.printin("Thread was interrupted in SortPanel.run()")
} //lend of catch
MY/end of while

31

C# code:

class SortControl {

1)

// Decalration of a thread

private Thread t;

private void ClickEvent(object sender, System.EventArgs e)

{

}

// Instantiate the thread, PerformSort() method is the thread running behavior
t = new Thread(new ThreadStart(PerformSort));

// Start the thread

t.Start();

public void PerformSort()

{

// make sure the current thread is the one we want
while (Thread.CurrentThread == 1)

{
try
{
if (!stopRequest && sortAlgorithm != nutl)
{
sortAlgorithm.sort(dataArray);
stopRequest = true;
Console.WriteLine("\n" + "result ");
for(int i=0;i<dataArray.Length;++i)
Console.WriteLine(dataArray[i]+" ");
Console.WriteLine("\n");
}
/1 the thread sleeps for one second, the same method as in Java
Thread.Sleep(1000);
} catch (ThreadinterruptedException e) {
Console.WriteLine("Thread was interrupted in SortPanel.PerformStart()");
}

32

3.6.2 Thread Usage

There are lots of standard operations that a thread can perform: test if the thread is alive,

what is the current thread, put a thread into sleep and kill a thread, etc. The following table

describes the mapping between Java’s java.lang.Thread methods and C#s

System.Threading. Thread object.

Java

C#

Description

isAlive ()method

IsAlive get property

Returns true if the thread is alive

interrupt()

method

Interrupt ()

method

In Java, this sets the interrupted status
of the thread and can be checked to see
whether a thread has been interrupted;
in C#, it returns to the started state if the
sleeping or waiting thread’s Interrupted
method is called by another thread in

the program

isInterrupted()
method

N/A

Returns true is this thread has been
interrupted

sleep () method

Sleep () method

A method paused the thread of
execution for a given amount of time or
until the thread is interrupted

Jjoin () method

Join () method

Java join method is simply timeout; in
C#, it returns a boolean upon
termination to signify whether the
thread died(true) or the timeout

expired(false)

suspend/()

method

Suspend () method

Calls the running thread into a suspend
status

resume () method

Resume () method

Resumes a suspended thread

Table 3.1: Comparison of Thread Usage Methods in Java and C#

33

Java code;

class SortPanel extends javax.swing.JPanel implements Runnable {
// Create the thread and instantiate it
private java.lang.Thread animateTread = new Thread(this);
// start the thread
public void start()
{
stopRequest = false;
// Starts thread that controls the timing of the sorting
if ((animateTread == null) || (lanimateTread.isAlive())) {
animateTread = new Thread(this);
}
// Test whether the thread is alive
if (lanimateTread.isAlive()) {
animateTread.start();

}
C# code:

class SortControl {
// Create a thread
private System.Threading.Thread animateThread;
public void start() {
stopRequest = false;
// Instantiate the thread
animateThread = new Thread(new ThreadStart(PerformSort));
// Test whether the thread is alive
if (lfanimateThread.IsAlive){
// Start the thread
animateThread.Start();

34

3.6.3 Stop a Thread

In Java, Thread. suspend () and Thread.stop () provide asynchronous methods
of stopping a thread. However, these methods put the running program into an inconsistent
state. Using them often results in deadlocks and incorrect resource cleanup. Upon a stop ()
method call, an unchecked java.lang.ThreadDeath error will propagate up the
running thread's stack, unlocking any locked monitors as it goes along. [5] The proper way
to stop a running thread in Java is to set a variable that the thread checks occasionally. For
a thread to terminate cleanly the run () method must complete; therefore, when the thread

detects that the variable is set, it should return from the run () method.

In C#, a thread is destroyed with a call to the Thread.Abort () method, which begins
the process of terminating the thread. Once the thread terminates, it cannot be restarted by
calling the function Thread. Start () again. The runtime system forces a thread to
abort by throwing an uncatchable System. Threading. ThreadAbortException.
The Thread. Abort () method lets the system quietly stop the thread without informing
the user. As this method does not say that the thread will abort immediately, hence to be
sure that the thread has terminated, Thread. Join () can be called to wait on the thread.

Join is a blocking call that does not return until the thread has actually stopped executing.

[3]

3.6.4 Thread Synchronization

Both languages allow developers to acquire a lock to coordinate the actions of the two

threads in a certain behavior on any reference object—once the lock is acquired, the

35

program block can be assured that it is the only block that has acquired it. Also by using

that lock, a program can wait until a signal comes through the variable causing the thread to

wake up.
Java C# Description
Synchronized Lock C# provides the lock statement

which is semantically identical to

the synchronized statement in Java

 Object.wait()

Monitor.Wait(object

obj)

In C#, to wait for a signal, the
System. Threading.Monitor()

class needs to be used instead of a
wait method inherent to an Object
in Java. Both of these methods
need to be executed in

synchronized blocks.

Object.notify()

Monitor. Pulse(object

obj)

The same concept as

Monitor.Wait()

Table 3.2: Comparison of Thread Synchronization Methods in Java and C#

Java code:

public static Object synchronizeObj = "locking variable";

public static void count() {

synchronized(synchronizeQbj) {

for(int count=1;count<=5;count++) {

System.out.print(count + ");

36

synchronizeQObj.notifyAll();

if(count< 5)

try {
synchronizeObj.wait();

} catch(InterruptedException error) { }

C# code:

public static Object synchronizeObj = "locking variable";
public static void Count() {
lock(synchronizeObj) {
for(int count=1;count<=5;count++) {
Console.WriteLine(count + " ");nbsp;
Monitor.PulseAll(synchronizeObj);
if(count< 5)

Monitor.Wait(synchronizeObj);

3.7 Nested Classes

Java suppbrts both nested classes and inner classes. A nested class is syntactically nested in
another but otherwise has no special relationship. In Java, nested classes are declared by
using the static keyword on a class declaration that is syntactically nested in a class
declaration. When a class declaration that is lexically nested in a class declaration omits the

static keyword, the class is called inner class. An inner class takes an implicit this

37

pointer from the outer class, which means it can access the instance members of the outer

class using this.

C# only has nested classes, which are more like C++ than Java. C#’s nested classes have
few limitations than Java’s inner classes. In fact, C#'s nested classes are akin to nested
classes of Java. The methods of a nested class may access all the members (fields or
methods) of the nested class but they can access only static members (fields or methods) of
the outer class. Private members of outer class are accessible from the nested class but the

enclosing instance must be passed to the nested class.
3.8 Access Modifiers

C# has all the access modifiers as Java has (private, public, protected).
Private and public have the same meanings as in Java, noting that in C# the default
access level is private. However, the C# protected access modifier has the same
semantics as the C++ version, and the scope of the protected is slightly different from
that of the protected access modifier in Java. A protected entity (method or data) can
only be accessed by the same class or its sub classes. The internal access modifier in
C# .is equivalent to the protected access modifier in Java. By default access modifiers
of all methods in C# are private but that of Java are pbrotected. C# also has the

internal protected access modifier, which means that a member can be accessed

from classes that are in the same assembly or from derived classes. [9]

38

Java C#
private private
public public
protected internal
N/A protected
N/A internal protected

Table 3.3: Comparison of Access Modifers in Java and C#

3.9 Serialization

Object serialization is the process of rendering an object into a state that can be stored
persistently. In Java, for an object to be serialized, it must be an instance of a class that
implements either the java.io.Serializable or java.io.Externalizable
interface. [5] Java classes are not serializable by default and are required to implement the
java.io.Serializable interface before they can be persisted. C# classes require
annotation with the [Serializable] attribute (attributes will be discussed in the next
chapter) before they can be processed by the formatter which is an object handles message
serialization; the classes are marked as serializable with that [Serializable]
compiler attribute, which is similar in spirit to the Java implements
java.io.Serializable. Serialization of object can also be customized using the

System.Runtime.Serialization.ISerializable interface.

The transient keyword in Java is used to specify members that are not to be serialized.

Serializable objects in C# are specified with the [Serializable] attribute and

39

members that should not be serialized are specified using the [Nonserialized]
attribute. The default serializable format in Java is binary, but it allows customization of
format. In C#, however, there are two formatters control the way the serialized data is
stored: BinaryFormatter and SoapFormatter, which produce two serializable

formats: Binary format and XML. [3]

3.10 Documentation

Documentation is a key resource in development on any platform. Java’ s javadoc is the

tool with standard format makes it easy to produce excellent HTML documentation of
APIs (Application Program Interfaces). C# implements a code documentation has similar
functionality to the javadoc utility. [9] Like javadoc, this works only if the developer
places markup in appropriately formatted code comments. Unlike javadoc, this markup
is extracted at compile time and is output to a separated file as XML. Being XML, this
information can be easily processed to produce documentation in different formats---not
just HTML, but any format that is supported by a valid XSLT (Extensible Stylesheet
Language Transformation). The most common approach, however, is to utilize an XSLT to

generate HTML tags.

3.11 Importing Libraries

A language is pretty much useless without libraries. Java and C# both define an extensive

set of standard libraries that implement critical functionality, in particular: multithreading,
locking, interprocess communication, and network access. However, a Java developer

knows that Java provides built in class libraries or packages support through which

40

developers can achieves their task more efficiently. C# does not have its own class libraries,
but it shares the .NET framework class libraries known as namespaces that can be used in
other .NET languages such as VB.NET or JScript.NET. The .NET framework class library
provides a set of classes that provide essential functionality for applications build within
the .NET environment. Web functionality, XML support, database support, threading and
distributed computing support is provided by the .NET framework class library. .NET
allows an entire family of programming languages such as C# and VB.NET to share the
same library functions, the same web functionality and the same database access

methodology.

3.12 Summary

In this chapter, some different features in Java and C# are presented. Java has the strength
of platform interoperability and C# has the strength of language interoperability. C# has
more data types and access modifiers than that in Java, and supports boarder data types in
switch statement. The threading in Java and C# has differences with syntax and
implementation. C# only supports nested class while Java supports nested classes and inner
classes. In C#, objects have [Seriliazable] and [Nonserili azed] attributes. C#
has code documentation tool which outputs a XML file. C# doesn’t have its own library

like Java but it shares the .NET framework class library with other NET languages.

41

Chapter 4 The Features in C# Beyond Java

C# is a modern and innovative programming language, one which carefully incorporates
features found in the most common industry and research languages. It has many useful
features as Java does; in addition, many new features which are completely new to Java

have been added into that language.

4.1 Enumeration

In C#, an enumeration (enum) is a special form of value type, which inherits from
System. Enum and supplies alternate names for the values of an underlying primitive
type. An enumeration type has a name, an underlying type, and a set of fields. The
members of an enumeration are the constants declared in the enumeration and the members

inherited from class object.

Although Java can add static final variables to interfaces, they don't have much
other functionality than their values. In contrast, C# can convert enums between their
strongly typed enum value, their underlying integer type, or a string representation of the

enum itself.

Using enumeration types is the best way to store data such as days, months, account types,

genders, and so on. In the following example, an enumeration, Days, is declared. Two

enumerators are explicitly converted to int and assigned to int variables.

42

C# code:

using System;
public class EnumTest

{
enum Days {Sat=1, Sun, Mon, Tue, Wed, Thu, Fri};
public static void Main()

{
int X = (int) Days.Sun;
inty = (int) Days.Fri;
Console.WriteLine("Sun = {0}", x);
Console.WriteLine("Fri = {0}", y);

}

output:

Sun=2

Fri=7

Notice that if removes the initializer from Sat=1, the result will be:
Sun =1

Fri=6

4.2 For-each statement

Borrowed from Visual Basic, the C# foreach loop is a less verbose way to iterate
through an array or collection class that implements the

System.Collections.IEumerable interface.

C# code:

using System;

using Threading;

43

foreach (Thread t in threadHolder.Values)

{
if (t!=null && t.IsAlive)

t.Abort();

C# 2.0 adds a new semantic to the foreach keyword that makes writing the iterators
much more concise. The original version of Iterators required a foreach method be
declared in the class. This syntax limited iterators to one per class and did not support
arguments. The new syntax uses the same function syntax as other methods, allows for
multiple types of iterators per class and also for any number of function arguments. The
only requirement is that a yield instruction exists in the function and that the function
returns ITEnumerator, IEnumerable or generic versions. The default iterator used for
foreach must be given the name GetEnumerator. The yield syntax has been

updated to yield return value to return the next value or yield break to indicate completion.

[12]

C# code:

public class List

{

public object foreach ()
{
int i=0;
while (i < theList.Length ()
yield thel.ist{i++];
}

44

4.3 Jump Statement---Goto

In Java goto is an unimplemented keyword which cannot be used in Java progeams. C#
supports goto statement; it's possible to jump to any position inside the program with help
from goto. It transfers control to a labeled statement. The label must exist and must be in
the scope of the goto statement. More than one goto statement can transfer control to the

same label.

C# code:

using System;
class Hello

{

public static void Main()

{

Console.WriteLine("DemoGoto");

goto nobodyknows;

Console.WriteLine("End of DemoGoto");
nobodyknows:

Console.WriteLine("Goto jumps to here");

The goto statement can transfer control out of a block, but it can never transfer control
into a block. The purpose of this restriction is to avoid the possibility of jumping past an

initjalization. The same rule exists in C++ and other languages as well.

The goto statement and the targeted label statement can be very far apart in the code. This

distance can easily obscure the control-flow logic, also makes the programs complex and

45

painful to maintain. Therefore, most programming guidelines recommend that avoiding

use goto statements.

4.4 Delegates and Events

A delegate in C# allows programmers to pass methods of one class to objects of other
classes that can call those methods. This concept is familiar to C++ developers who have
used function pointers to pass functions as parameters to other methods in the same class or

in another class. Delegates are a type introduced by C# that has no direct analogue in Java.

Delegates provide an object-oriented type-safe mechanism for passing method references
as parameters without using function pointers. Delegates are primarily used for event
handling and asynchronous callbacks. C#’s delegate is used where Java developers would
use an interface with a single method. A delegate instance encapsulates a static or an
instance method. The use of appropriate design patterns and interfaces in Java can provide

equivalent capabilities; however, delegates are an elegant and powerful feature.

The design of delegates in C# makes simplifies for event creation and handling.
Event-driven programming is referred to as the publish-subscribe design pattern and also
known as Observer/Observable to Java programmers. Events are published and interested
parties can subscribe to a given event. An event listener registers for some event with an
event broadcaster, and when something happens, the broadcaster “fires” an event to all
listeners of the event. This event model not only makes it easier to both trigger and
responds to events, but also it uses a system that makes it a lot less likely to introduce bugs

when setting up a messaging system.

46

Java event handling adheres to this publish-subscribe approach, so an event can be
published to all the subscribers of that event. When an event occurs, the parties that have
subscribed are notified. The publisher has register or unregister methods which are used to
register/unregister subscribes. Usually the subscribe implements an event interface and can
add itself to the particular event and take appropriate action on its occurrence (which is

conveyed to all the subscribers simultaneously).

C# uses delegates to provide an explicit mechanism for creating a publish-subscribe
model to handle events. Delegates are a general-purpose mechanism for calling methods
indirectly and their principal uses in .NET framework are for implementing events and
call-back methods. An event is a subclass of the System.EventArgs class which
inherits all its methods from System.Object. In C#, any object can publish a set of
events to which other classes can subscribe. When the publishing class raises an event, all
the subscribed classes are notified. The publisher and the subscribers are decoupled by the
delegates. The delegates are passed as parameters of the protected methods which are
invoked when an event occurs. The subscribe is a method subscribe to the event that accept
the delegate parameters and returns the same type as the even delegate. The event handler
usually returns void and take two parameters: the first is the source of the event which is
the publishing object; the second parameter is an object derived from
System.EventArgs subclass. The C# delegates are implemented in the NET
framework as a class derived from System.Delegate. An event handler in C# is a

delegate with a special signature, which is given below:

public delegate void MyEventHandler(object sender, MyEventArgs e);

47

C# has class members called events that accept one or more delegates. The event
keyword is used in the declaration of methods that are to be the delegates called when an
event occurs. When an event is raised through the event variable the target method is called
through a predefined delegate. Since publisher and the subscribers are decoupled by the
delegate which makes for more flexible and robust code. In contrast, Java doesn't have an
event class member, nor does it have delegates. It commonly implements event behavior

via inner classes and methods.

Java code:

import java.util.*;
class EvenNumberEvent extends EventObject{
public int number;
public EvenNumberEvent(Object source, int number){
super(source);

this.number = number;

}
}

interface EvenNumberSeenListener{
void evenNumberSeen(EvenNumberEvent ene);
}
class Publisher{
Vector subscribers = new Vector();
private void OnEvenNumberSeen(int num){
for(int i=0, size = subscribers.size(); i < size; i++)
((EvenNumberSeenListener)subscribers.get(i)).evenNumberSeen(new
EvenNumberEvent(this, num));
}
public void addEvenNumberEventListener(EvenNumberSeenListener ensl){

subscribers.add(ensl);

48

public void removeEvenNumberEventListener(EvenNumberSeenListener ensl){
subscribers.remove(ensl);
}
//generates 20 random numbers between 1 and 20 then causes and
//levent to occur if the current number is even.
public void RunNumbers(){
Random r = new Random(System.currentTimeMillis());
for(int i=0; i < 20; i++){
int current = (int) r.nextInt() % 20;
System.out.printin("Current number is:" + current);
//check if number is even and if so initiate callback call
if((current % 2) == 0)
OnEvenNumberSeen(current);
Mifor
}
Y/Publisher
public class EventTest implements EvenNumberSeenListener{
//callback function that will be called when even number is seen
public void evenNumberSeen(EvenNumberEvent €){
System.out.printin("\\tEven Number Seen:" + ((EvenNumberEvent)e).number);
!
public static void main(String[] args){
EventTest et = new EventTest();
Publisher pub = new Publisher();
//register the callback/subscriber
pub.addEvenNumberEventListener(et);
pub.RunNumbers();
/lunregister the callback/subscriber

pub.removeEvenNumberEventListener(et);

C# code:

using System;

49

class EvenNumberEvent: EventArgs{
// fields are typically private, but making this internal so it can be accessed from
/I other classes. In practice should use properties.
internal int number;
public EvenNumberEvent(int number):base(){

this.number = number;

}

class Publisher{
public delegate void EvenNumberSeenHandler(object sender, EventArgs e);
public event EvenNumberSeenHandler EvenNumHandier;
protected void OnEvenNumberSeen(int num){
if(EvenNumHandler!= nuil)
EvenNumHandler(this, new EvenNumberEvent(num));
}
//generates 100 random numbers between 1 and 200 then causes and
/fevent to occur if the current number is even.
public void scramble (){
Random r = new Random((int) DateTime.Now.Ticks);
for(int i=0; i < 100; i++){
int current = (int) r.Next(200);
Console.WriteLine("Current number is:" + current);
//check if number is even and if so initiate callback call
if((current % 2) == 0)

OnEvenNumberSeen(current);

}
public class EventTest{
/[callback function that will be called when even number is seen
public static void EventHandler(object sender, EventArgs e){
Console.WriteLine("\t\tEven Number Seen:" + ((EvenNumberEvent)e).number);

}
public static void Main(string[] args){

50

Publisher pub = new Publisher();
/Iregister the callback/subscriber
pub.EvenNumHandler += new Publisher.EvenNumberSeenHandler(EventHandler);
pub. scramble();
/lunregister the callback/subscriber
pub.EvenNumHandler -= new

Publisher.EvenNumberSeenHandler(EventHandler);

}

4.5 Properties

Properties are named members of classes, structs and interfaces. [11] In C#, properties are
natural extension of data fields. Properties provide the opportunity to protect a field in a
class by reading and writing to it through the property. In Java, this is often accomplished
by programs implementing getter and setter methods. C# property is similar to Visual
Basic property. C# property is a built in mechanism which has accessors that specify the
statements to access the property just like it was a field. The accessor of a property contains
the executable statements associated with getting (reading or computering) or setting
(writing) the property. [11] A property should have at least one accessor, either set or get.
The set accessor has a free variable available in it called value, which gets created
automatically by the compiler. It is illegal to use the implicit parameter name (value) for a
local variable declaration in a set accessor. Since normal data fields and properties are

stored in the same memory space, in C#, it is not possible to declare a field and property

with the same name.

Java code:

public class SortPanel extends JPanel{

51

private boolean stopRequest;
public void setStopRequest(boolean stop)

{
stopRequest = stop;
}
public boolean getStopRequest()
{
return stopRequest;
}

}

In C#, properties are defined using property declaration syntax. The first part of the syntax
looks quite similar to a field declaration. The second part includes a get accessor and/or a

set accessor. The code would be more like:

public class SortControI:UserCohtrol{
protected static bool stopRequest = true;

public bool stopRequest

{
get
{ return stopRequest; }
set
{ stopRequest =value; }
}

Properties that can be read and written, like stopRequest in SortControl class,
including both get and set accessors. The get accessor is called when the property's value is
read; the set accessor is called when the property's value is written. In a set accessor, the

new value for the property is given in an implicit value parameter. It is then possible to just

52

assign to stopRequest. This is a tiny syntactic change from Java code, but it makes the

implementation more elegant.

A property can be read and written in the same way that fields can be read and written. For
example, the following code instantiates the SortControl class and writes and reads its

stopReguest property.

C# code:

SortControl sortControl = new SortControl();
sortControl.stopRequest = true; // set
bool stop = sortControl.stopRequest; // get

4.6 Indexer

One of C#'s most interesting features is the class indexer. An indexer is a special kind of
property that makes it possible to access value in a class with array like syntax. Obviously,
this ability becomes useful when creating a collection class, but giving a class array-like
behavior can be useful in other situations, such as when dealing with a large file or
abstracting a set of finite resources. Here's a sample class with an indexer that returns a

string:

C# code:

public class ListBox: Control
{
private string[] items;

//indexer that indexes by number
public string this[int index] {

get
{

53

return items[index];

}

set

{

items[index] = value;
Repaint();
}

}

Notice that the property name is this, which refers back to the current instance of the
class, and that the parameter list is enclosed in square brackets instead of parentheses.
When defining an indexer, the parameters may be of any type, although int usually makes

the most sense. It's also possible to have more than one indexer in the same class.
4.7 Boxing and Unboxing

Boxing and unboxing is an essential concept in C#’s type system. It enables a unified view
of the type system where a value of any type can be treated as an object. Conversion of a
value type to a reference type is called Boxing. Itl is possible that any value types such as
int, structs or enumerations are compatible with object. When a variable of a value
type needs to be converted to a reference type, an object box is allocated to hold the value,

and the value is copied into the box.

C#t code:

class BoxingExample

{
static void Main() {

inti=1;

54

//boxing
//which automatically wraps up the value 3 in a heap object.

object obj = i;

The runtime system implements boxing by instantiating a container object of the
appropriate type and copying the data from the value type into it. It’s important to
understand that the boxed instance contains a copy of the source value. Any changes made

to the original value are not reflected in the boxed instance.

Unboxing is the reverse of boxing. An unboxing conversion permits an explicit conversion
from type object to any value-type or from any interface-type to any value-type that
implements the interface-type. It takes an object representing a previously boxed value and
re-creates a value type from it. The runtime system checks that the boxed instance is being
unboxed as the correct type. If the source argument is null or a reference to an incompatible
object, it throws a System. InvalidCastException. It isn’t possible to create a
value type representation of any reference type using unboxing; unboxing works only on

objects that contains previously boxed values.

C# code:

class UnboxingExample
{
static void Main() {
inti=1;
//boxing
/lwhich automatically wraps up the value 1 in a heap object.

object obj = i;

55

//unboxing a previous boxed value
//Automatically unwraps the wrapped inf value.

int j = (int) obj;

With boxing and unboxing, primitive types can be used just as efficiently as any primitive
type in any language, hence, this primitive type can be converted to an object automatically
when it needs to be treated like an object. This type system unification provides value types

with the benefits of object-ness without introducing unnecessary overhead.

4.8 Struct

A structis very similar to a class. A struct can implement interfaces and have the same
kinds of members as a class, but a struct does not support inheritance. Unlike class, a struct
cannot have a constructor nor have a destructor. While a class is created in the heap as a
reference type, a struct is a value type that is stored on the stack. Therefore, used with care,
structs are faster than classes. It is helpful to view C# structs as a construct which makes the

C# type system work elegantly.

However, simply replacing a class with a struct can be disastrous. Since a struct is passed
by value, a "fat" struct is slower to pass around because values must be copied to a new
place. In the case of a class, only the reference to the class is passed around. The following
is an example of a struct. Note how similar it is with a class. Substituting the word class

for struct, it becomes a class.

56

C# code:

struct Point

{
public int x, vy;
public Point(int x, int y) {
this.x = x;
this.y = y;
}

C# simply allows programmers to extend the primitive set of types built in to the
language. In fact, C# implements all the primitive types as structs. For instance, the int
type merely aliases System. Int32 struct, the 1ong type aliases System. Int64
struct. These primitive types are of course able to be treated specially by the compiler,

but the language itself does not make such a distinction.

4.9 Operator Overloading

Unlike Java, C# has the useful feature that various operators can be overloaded. Operator
overloading allows programmers to build types which feel as natural to use as simple types.
Operator overloading is pretty useful concept derived from C++ by c#, but C# implements

a stricter version of operator overloading in C++.

Operator overloading provides a way to define and use operators such as +, -, and / for
user-defined classes or structs. It allows define/redefine the way operators work with

classes and structs. This allows programmers to make their custom types look and feel like

simple types such as int and String. It consists of nothing more than a method declared

57

by the keyword operator and followed by an operator. These method called operator
functions and must be public and static. They can take only value arguments; the ref and

out parameters are not allowed as arguments to operator functions.

There are three types of overloadable operators called unary, binary, and conversion. It is
impossible that all operators of each type can be overloaded. Following is a table

illustrating these operators along with their overloadabilities.

Operators

Overloadability

+, s *, /7 %9 &7 |’ <<7 >>

All C# binary operators can be overloaded.

+, -, L~ A, - All C# unary operators can be overloaded.
== 15,85, <=, >= All relational operators can be overloaded
&&, || They can’t be overloaded.

[] (Array index operator)

They can’t be overloaded.

| () (Conversion operator)

They can’t be overloaded.

+=, -=, *:, /=, %:

These compound assignment operators can be overloaded.

However in C#, these operators are automatically

overloaded when the respective binary operator is

overloaded.

=,., 7, ->, new, is, as,

sizeof

These operators can’t be overloaded in C#.

Table 4.1: Ilustration of Operators Overloadbility

4.9.1

Overloading Unary Operators

Unary operators are those that require only a single operand/parameter for the operation.

58

The class or struct involved in the operation must contain the operator declaration. Unary
operators are +, -, !, ~, ++, --. When overloading the unary operators, +, -, !, or ~ must take
a parameter of the defining type and can return any type; ++ or - must take and return the

defining type.

C# code:

class Complex

{
private int realPart;
private int imgPart;
public Complex()
{}
public Complex(int i, int j)
{
realPart = i;
imgPart = j;
}
public static Complex operator -(Complex c)
{
Complex temp = new Complex();
temp.realPart = -c.realPart;
temp.imgPart = -c.imgPart;
return temp;
}
}

4.9.2 Overloading Binary Operators

Binary operators are those that require two operands/parameters for the operation. One of
the parameters has to be of a type in which the operator is declared. They include +, -, *, /

b

%, &, |, ", <<, >>, ==, I=, >, <, >=, and <=.

59

C# code:

class Complex

{
private int realPart;
private int imgPart;
public Complex()
{
}
public Complex(int i, int j)
{
realPart = i;
imgPart = j;
}
public static Complex operator +(Complex c1, Complex c2)
{
Complex temp = new Complex();
temp.realPart = c1.realPart+c2.realPart;
temp.imgPart = c1.imgPart+c2.imgPart;
return temp;
}
}

4.9.3 Overloading Conversion Operators

Conversion operators are those that involve converting from one data type to another
through assignment. There are implicit and explicit conversions. Implicit conversions are
those that involve direct assignment of one type to another. Explicit conversions are
conversions that require one type to be casted as another type in order to perform the
conversion. Conversions that may cause exceptions or result in loss of data as the type is

converted should be handled as explicit conversions.

60

C# code:

/lexample of overloading explicit conversion operator

string dbFileType = "C"; // Assume this is from a database

FileType fileType = new FileType();

fileType = (FileType)dbFileType;

A few rules greatly simplify the design and use of operator overloading: each operator
declaration must be Public and Shared, and must be declared in the same type as one
of its operands. The operator overload methods can be overloaded just like any other
methods in C#, but it can’t return void. The overloaded methods should differ in their type
of arguments and/or number of arguments and/or order of arguments. The operator

overloading is one of the key concepts of C# and is a very interesting aspect of the

language.

4.10 Pointers

In the C++ world, the use of pointers is an integral part of the language. This gives C++ a
tremendous amount of power and flexibility, which are both a strength and a weakness. It's
a strength because C++ gives programmers lots of freedom to do exactly what they want,

but the same freedom also makes it easy to write code with subtle bugs.

Java, on the other hand, views pointers as something that is too much trouble to deal with
and hides any direct pointer manipulation in its language and the programmer doesn’t have
the power to access or manipulate pointer references. This means that programmers never
have to deal with any of the bugs that are common in code involving pointers. However,
programmers still have to be aware that some parameters are passed by reference (any

object variable) and other parameters are passed by value (any primitive type).

61

C# takes a view of pointers that's between the C++ and Java views. For the majority of the
code that people write, the disadvantages of pointers outweigh the advantages; C# doesn't
support pointers when producing managed code. From a pragmatic viewpoint, however,
there are some cases where pointers are very useful, so C# provides a way to bypass the
safety net when pointer use is required. That gives developers the best of both worlds—the
safety that the Java model provides, along with most of the flexibility of the C++ model

when it is needed.

A pointer variable holds a memory address that references another data item. Pointers are
similar to Java and C# reference types except that pointers give the developer access to
both the memory address referenced by the pointer and the data at that address. Pointers are
unique in that they do not derive from System.Object. A major problem with using
pointers in C# is that there is a background automatic garbage collection process in
operation. Trying to free memory, garbage collection could change the memory location of
a current object without the programmer’s knowledge. So any pointer which previously
pointed to that object will no longer do so. This could compromise the running of the C#
program and could affect the integrity of other programs. Therefore the code using pointers
has to be explicitly marked by the programmer as unsafe, which can deal directly with
pointer types, and fix objects to temporarily prevent the garbage collector from moving
them. This unsafe code feature is in fact a "safe" feature from the perspective of both
programmers and users. Unsafe code must be clearly marked in the code with the modifier
unsafe, so programmers can't possibly use unsafe features accidentally, and the C#
compiler and the execution engine work together to ensure that unsafe code cannot

masquerade as safe code.

62

C# code:

unsafe{
//Declare and initialize an int variable
int mylnt = 100;
/[Declare a pointer to an int
int* myPtr;
//Use address-of (&) operator to get the address of mylnt and assign to myPtr
myPtr = &mylnt;
//Use indirection (*) to get value of the int referenced by myPtr
System.Console.WriteLine(“value of a = “ + *myPtr);
//Use indirection to set value of int pointed to by myPtr
*myPtr = 300;
}

output:

value of a = 500;

Unsafe code is used in C# when speed is extremely important or when the object needs to

interface within existing software, such as COM objects or native C code in DLLs.
4.11 Attributes

An attribute is a powerful C# language feature that is attached to a target programming
element to customize behaviors or extract organizational information of the target at design,
compile, or runtime. There are two types of attributes: intrinsic and custom.
Intrinsic attributes are those provided by the .NET Framework. Serializable is an example
of intrinsic attribute. It’s clear that custom attributes are very useful, but missed in Java
features. For a Java developer new to C#, attributes may well be one of the hardest
language features to appreciate; however, while attributes may seem like a relatively

insignificant element of C# grammar, they can dramatically ease the development.

63

Attributes provide a powerful method of associating declarative information with C# code
(types, methods, properties, and so forth). Once associated with a program entity, the

attribute can be queried at run time and used in any number of ways.

Custom attribute can be created by defining an attribute class, a class that derives directly
or indirectly from System.Attribute. Custom attributes can be used to store
information that can be stored at compile time and retrieved at run time. This information
can be related to any aspect/feature of target element depending upon the design of an
application. There are four sections of any custom attribute AttributeUsage, Class

declaration, Constructor and Properties.

Attribute usage is defined by System.AttributeUsageAttribute, which is
another attribute. AttributeUsage has three members; AttributeTarget,
Inheritedand AllowMultiple. AttributeTarget specifies the target elements

to which custom attribute can be applied.

Target name Description
assembly The attribute applies to the entire assembly.
module The attribute applies to the entire module.
return The attribute applies to the return value of

the method, property set branch or indexer

set branch.

value The attribute applies to the implicit value

parameter of the property or indexer.

Table 4.2: Attributes targets and their description

64

An attribute class is declared as any other class in C#, but it must be declared as public
classes. By convention, the name of the attribute class ends with the word Attribute.
Constructors are needed for custom attribute class. Constructors can have required and
optional parameters the same way as in a regular class. When required Properties should
be declared, for access and setting the information (as per design requirement) for the
attribute class. The following code is an example of using an attributes to provide
information about the name of a developer and then using property to access the

information.

C# code:

using System;
namespace CustomCode
{
[Codelnfo("Concordia")]
class CustomAttrDemo
{
static void Main(string[] args)
{
CustomAttrDemo cattDemo = new CustomAttrDemo();
DisplayCustomAttribute(cattDemo);
}

static void DisplayCustomAttribute(CustomAttrDemo cattDemo)
{
Type type = cattDemo.GetType();
Object obj = type.GetCustomAttributes(false)[0];
if(obj is CodelnfoAttribute)
{
System.Console. Write("Developer - ");

System.Console.WriteLine({(CodelnfoAttribute)obj).Devloper);

65

else

System.Console.WriteLine("Attribute not found");

}
/ define the AttributeUsage for CodelnfoAttribute class

[AttributeUsage(Attribute Target.All,Inherited=true, AlowMultiple=true)]
// custom attribute class

public class CodelnfoAttribute : Attribute

{
// Private Data
private string developerName;
// Constructor
public CodelnfoAttribute(string developerName)

{

this.developer_name = developerName;

}
//Declare a property to get developer's name
public string Devloper

{
get
{ return developerName; }

}

4.12 Rich Parameter Passing

Compared to Java, C# has much richer syntax for expressing parameter passing, includin g
the ability to specify that a parameter is in, out or ref. By default, a parameter passed
into a method in C# is passed by value. However, if the value of a parameter can be
changed inside a method, then it should be marked as ref. This allows any assignments

that occur inside a method to be reflected outside the method after the method call has

66

terminated. The ref parameters must have been initialized before the method is executed.
A parameter marked as out is exactly the same as a ref parameter, but does not require the
parameter to have been initialized before the method is called. Such a rich syntax is in line
with other high level languages and therefore simplifies the integration of C# with these

other environments. They also represent best practice software engineering principles.

4.13 Summary

In this chapter, some features that lack in Java but are present in C# has been discussed.
Enumeration, delegates, properties, indexer, boxing, unboxing, operator overloading, rich
parameter passing are all powerful features in C# language. For-each, goto statement and
struct are also useful while developing. Pointers marked as unsafe code because

programmers need directly access the memory.

67

Chapter S GUI Comparison---Swing vs Windows Form

So far, what I discussed is all language level of these two languages. I also write
applications building in both Java and C#: an animation of quicksort algorithm. I use
Borland JBuilder 6.0 for creating Java applet and Visual Studio .NET Beta 1 for creating
C# windows application. Although while writing the code, I have the feeling that no big
difference from the language syntax; however, no doubt there are some differences about

the GUI part.

Swing is more powerful than Windows Form in some ways. For example, border styles can
be plugged into any component using the strategy design pattern. In Windows Forms,
components are responsible for supplying and drawing their own borders, but not all
components support borders, and some only supply a few borders. This is because
Windows form is a thin layer about native windows control and doesn't seem to have any
improvements over WEC in J++. Moreover, there is no LayoutManager in C#, and all the
components are aligned to a fixed coordinate system which is relative to the top left of the
Form control. Although this enables programmers to have fine grain control over the exact
placement of their controls, but it comes very difficult for any programmer to imagine the
exact position where the component should be placed during design time. Furthermore,
since Swing used the model-view-controller (MVC) design pattern, all the components use
separated data models which can all be extended. All the layout and rendering elements

also can be extended and overridden. None of this true for Windows Forms.

68

However, Windows Form for sure has some advantages over Swing. For Swing, speed
used to be a problem, although it has become a minor issue latterly. Windows Form is
much faster than Swing. In addition, Event Handlers are able to be added by clicking
buttons and selecting menu items in Visual Studio .NET. For example, instead of complex
inner classes in Java, C# Windows Forms uses a VB-like syntax for event handler

signatures.

C# code:

private void ClickEvent(object sender, System.EventArgs e)

{
//if the Create button is clicked

if (sender == cmdCreate)

{
this.sortControl.Show();
dataArray.Initialize();
scramble();
initSort();

}

//if the Sort button is clicked
if (sender == cdSort)

{
sortControl = new SortControl(dataArray);
sortControl.StopRequest = false;
sortControl.PausePeriod = pausePeriodMilliSeconds;
sortAlgorithm = (SortAlgorithm) new QSortAlgorithm();
sortControl.setSortAlgorithm(sortAlgorithm);
sortControl.start();

}

else

69

/fif the Exit button is clicked
if (sender == cmdStop)

{
sortControl.stop();
foreach(Thread t in threadHolder.Values)
{
if(t 1= null && t.IsAlive)
t.Abort();
}
Application.EXxit();
}

A nice thing to notice is that operator overload is used to add event handlers with .NET
showing in the tool-generated code which makes the code more elegant than inner class in

Java:

this.cmdSort.Click += new System.EventHandler(this.ClickEvent);

Moreover, Windows Form has powerful support for DataBinding and XML, although I did
not have the chance to touch these two parts in my application. Data binding provides a
way for developers to create a read/write link between the controls on a form and the data
in their application. Clearly, data binding was used within applications to take advantage of
data stored in databases. Windows Forms data binding allows programmers to access data
from databases as well as data in other structures, such as arrays and collections. A new
aspect of Visual Studio is XML Web services, which provides the ability to exchange
messages in a loosely coupled environment using standard protocols such as HTTP, XML,

XSD, SOAP, and WSDL..

70

The question comes out that which GUI framework is better? On one hand, Java Swing has
been improving over the years and there are excellent Java GUI component vendors
produce better GUI components. Java Swing uses the MVC pattern much more extensively
than Windows Form, and some GUI features such as LayoutManager and border style are
more convenience in Java Swing than in Windows Form. On the other hand, Windows
Form is faster than Java Swing and it is the best way to develop windows application. Both
Java Swing and .NET Windows Form have their own advantages and disadvantages.

Programmers have the choice to choose the better tool for their own needs.

71

Chapter 6 Conclusion

Java became very popular among many developers for several years and has made
phenomenal inroads into the world of system, business, internet and education
programming. C# derived from C and C++ is Microsoft's answer to Sun's popular Java
programming language and a part of Microsoft's grand .NET initiative. The similarity
between Java and C# is a great benefit to any organization with an existing training
investment in Java or C++. Programmers accustomed to Java will have no trouble
understanding C#. Moreover, Windows programmers who invested time learning Java
(often in the form of Visual J++) will come up to speed on C# even more quickly than C++
programmers. It's worth noting just how many of these features are "Java-like," as they
were introduced in Java and will thus be comfortable and familiar to existing Java
developers. Garbage collection, interfaces, and type-safe variables are part of Java's feature
set. After all, C# is not a Java clone; it is designed much closer to C++ and it adds some
very handy features of its own. C# borrows most of its operators, keywords, and statements
directly from C++. It provides greater expressiveness and is more suited to writing
performance-critical code than Java, while sharing Java's elegance and simplicity, which

makes both much more appealing than C++.

Java has many years of head start, so it is more mature and has a strong user base. Java will
run on many different operating systems without recompiling code is always being a big

advantage. However, C# has many more built-in language features, and it provides direct

72

access to operating system services in the Windows platform. [11] No doubt that C#’s
designer had the benefit of knowing about Java’s weaknesses and this allowed them to fix
many of them in the C# language along with providing extra features. However, adding
new features makes the C# language more complex and difficult for novice programmers.
The great thing about Java is its simplicity and is currently the only choice for cross
platform development. In fact, it has the advantages that it is popular used among
programmers and wildly supported by many different vendors. Overall, I think that these
two languages share enough in common and it is possible for programmers finding plenty

of interesting work with both languages.

73

References:

[1]1 Object Oriented Programming, http://www.tutorgig.com/encyclopedia

[2] Programming Microsoft Windows with C# by Charles Petzold, Microsoft Press, 2002
[3] Inside C# by Tom Archer, Microsoft Corporation, 2002

[4] Professional C# (2nd Edition) by Simon Robinson, Burt Harvey, Christian Nagel, Ollie
Cornes, Karli Watson, Morgan Skinner, Jay Glynn, Zach Greenvoss & Scott Allen,
Wrox Press Inc, March 2002

[S] The Java™ Tutorial by Sun Microsystems, http://java.sun.com/docs/books/tutorial/

[6] C# and Java: Comparing Programming Languages by Kirk Radeck, Microsoft,
February 2003

[7] Multithreading in C# By Paul Deitel, Harvey Deitel, Jeffrey Listfield, Tem Nieto,
Cheryl Yaeger, Marina Zlatkina www.informit.com February 28, 2003

[81 C#: A Thread to Java? by Setul Verma www.csharphelp.com

[91 A Comparison of Microsoft’s C# Programming Language to Sun Microsystems’ Java

Programming Language by Dare Obasanjo, Whitepaper

[10] A Comparative Overview of C# by Ben Albahari, Genamics, http://genamics.com
August 10, 2000

[11] Microsoft MSDN online library by Microsoft, http://msdn.microsoft.com

[12] What’s New in CH# 2.0 by Bill Wagner,
http://www.c-sharppro.com/features/2003/10/cs200310bw_f/cs200310bw_f.asp

74

