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Abstract

Weak Convergence Approach to Compound Poisson Risk Processes

Perturbed by Diffusion

Joykrishna Sarkar

The ruin probability, the joint density function of the surplus immediately prior to
ruin, the deficit at ruin, and the time to ruin and the expected discounted penalty
function for the classical as well as for the diffusion risk model have been studied by
many authors. We consider a sequence of risk processes, which converges weakly to
the standard Wiener process when, for instance, the number of policies in a large
insurance portfolio goes to infinity, and is added to the classical risk process. The re-
sultant process is a diffusion perturbed classical risk model. We study this model and
obtained the ruin probabilities, the joint density function of the surplus immediately
prior to ruin, the deficit at ruin, the time to ruin and the expected discounted penalty
function for the diffusion risk model by the weak convergence. In other words, we
show that these quantities converge weekly to the corresponding quantities of the dif-
fusion risk model for large number of policies. Numerical illustrations of the expected

discounted penalty function and ruin probabilities are also presented.
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Introduction

The claim size distribution, of course, represents one major aspect of a risk model.
The specification of the structure of the claim counting process is an another impor-
tant aspect. In the classical model of risk theory, the number of claims occurred in an
insurance business is assumed to follow a Poisson process. The surplus immediately
prior to ruin, the deficit at ruin and the time to ruin play important roles in the
classical risk theory. As usual these quantities are denoted by U(T™), |U(T)| and
T respectively. Extensive literature on the topics of ruin probability, the joint and
marginal distributions of U(T~), |U(T)| and T for the classical risk model (CRM) as
well as for the diffusion risk model (DRM) is available. For instance, see, Gerber et al.
(1987), Dufresne and Gerber (1988, 1991), Dickson (1992), Dos Reis (1993), Gerber
and Shiu (1997), Gerber and Landry (1998), Lin and Willmot (1999), Tsai (2001),
Tsai and Willmot (2002), Wang (2001) or Zhang and Wang (2003). In particular,
Gerber and Shiu (1997) obtained the joint density function of the random variables
U(T™), |U(T)| and T for the CRM. To find the joint density function they use a
duality argument. They also introduce an expected discounted penalty function with

the force of interest ¢ > 0 and show that its explicit expression converges to the tra-



ditional ruin probability when the force of interest ¢ is zero. Gerber (1970) extended
the CRM by adding an independent diffusion process to this model which is called
the diffusion model.

Based on this model Dufresne and Gerber (1991) derive explicit expressions of
ruin probabilities caused by either oscillations in the diffusion or a claim. In the
DRM, the diffusion term is a Weiner process with zero infinitesimal drift and the
infinitesimal variance of 2D > 0. It is assumed that the aggregate claims and the
Wiener process are independent. The physical interpretation of the diffusion term is
an additional uncertainty of the aggregate claims or alternately an uncertainty to the
premium income of the insurance company.

Zhang and Wang (2003) obtain the explicit formula of the joint density function
of U(T™), |U(T)| and T for the DRM by using the similar argument to Gerber and
Shiu (1>997) and the strong Markov property. For D = 0, the DRM turns to be the
CRM and it is shown that the ruin probability and the joint density function of the
DRM coincide with the corresponding quantities of the CRM respectively.

Gerber and Shiu (1997) derive a defective renewal equation for the expected dis-
counted penalty function in the CRM and obtain an explicit expression for this func-
tion by using the Laplace transform technique. If the discounted factor is set to zero
this function then coincides with the ruin probability.

Dufresne and Gerber (1991) consider the DRM and derive a defective renewal
equation for the survival probability and similarly for the ruin probability caused by
oscillations. By applying standard technique of renewal theory argument, they solve
the renewal equation and obtain explicit expressions. From these, it easy to get the

2



ruin probability either due to oscillations or due to claims, and the ruin probability
caused by a claim for the DRM. Gerber and Landry (1998) consider a more general
expected discounted penalty function (EDPF) and show that it satisfies a defective

renewal equation.

Goals of the Thesis

In Chapter 1 of the thesis, a brief review of the compound Poisson process and the
ruin probability is presented. The joint and marginal distributions of U(T~), |U(T)|
and T are studied. The expected discounted penalty function and its defective re-
newal equation is discussed in Chapter 1. Though the CRM model is mathematically
simple to analyze but it also admits physical interpretations (e.g., a large portfolio
of insurance policy holders, each having a (time homogeneous) small rate of experi-
encing a claim, gives rise to a claim counting process that is very close to a Poisson
process).

The DRM is introduced in Chapter 2. The ruin probability, the joint and marginal
densities, and distributions of the random variables U(T'~), |U(T)| and T are discussed
for this process. Also, the defective renewal equation of an EDPF is studied.

Finally, Chapter 3 is devoted to the main work of the thesis. First all basic and
necessary theorems of weak convergence are discussed. A sequence of risk processes
which converges weakly to the standard Wiener process when the number of policies
is infinite, is added to the CRM. This new model is again a CRM, i.e., compound

Poisson process. We show that the ruin probability, the joint density function of



U(T™), [U(T)| and T, and the EDPF for this new model converges weakly to the
corresponding quantities of the DRM when, for instance, the number of policies in
insurance business goes to infinity.

Our approach provides a simpler way of obtaining the results of , for example,
Dufresne and Gerber (1991) and Tsai and Willmot (2002). In particular, we show
that the expected discounted penalty function obeys a defective renewal equation in
the DRM, under an easily verifiable condition on the penalty function, compared to
the condition of Tsai and Willmot (2002). The appendix contains some numerical

results for our model.



Chapter 1

Classical Model

1.1 Classical Risk Model

Here the claim counting process is considered to be a homogeneous Poisson process
(simply called Poisson process). We review here the theory of Poisson processes and

compound Poisson processes (CPP).

1.1.1 The Poisson Process

Consider a claim counting process N = {N(¢t) : t > 0} with a claim arrival intensity

parameter A > 0 such that:

2. N has stationary and independent increments;

then N(t) is Poisson distributed with mean Xt. That is, for all s,¢ > 0,

)\tn—)\t
Pr{N(s+t)—N(s):n}:%—, n=0,1,23,...



Note that if the claim inter-occurrence times are i.i.d. random variables with a com-
mon distribution function, then {N(¢) : ¢ > 0} is called a renewal process. The Pois-
son process is a special case of renewal process, i.e, when the claim inter-occurrence

times are exponentially distributed.

1.1.2 Compound Poisson Process

Suppose that individual claim sizes X, X», X3, ... are nonnegative, i.i.d. random
variables with a common distribution function P(z) = Pr{X < z}, where P(0) =0,
p is the corresponding density function. Claim sizes are assumed independent of
the claim counting process {N(t):¢ > 0}. Let p be the mean claim sizes. The
aggregate claim process {S(t) :t > 0}, where S(t) = ZiNz(f) X; (with S(t) = 0 if
N(t) = 0) denotes the aggregate claims in the time interval [0,1), is called the CPP
with parameter A > 0. Thus, for any fixed ¢t > 0, S(¢) has a compound Poisson
distribution which is denoted by S(t) ~ C.P.[\t; P]. Therefore the insurer’s surplus

process for the CPP is defined by
U(t) =u+ct—S(t), t>0, (1.1)

where U(0) = u > 0 is the initial reserve of the insurance company, ¢ = Au(1 + 6)
is the premium received continuously at a constant rate per unit time, 8 > 0 is the
relative security loading. The surplus process (1.1) is known as the classical risk

model (CRM).

Definition 1.1 Let T = inf{t: U(t) < 0} be the first time that the surplus becomes
negative with initial reserve u, then T is called the time to ruin (T = oo if ruin does
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not occur). The probability ¢ (u) = Pr{T < co|U(0) = u} is called the ultimate ruin
probability and the distribution function ¢¥(u,t) = Pr{T < t|U(0) = u} is called the

finite time rwin probability.

It is note that 1 (u) is not necessarily 1 as T is a defective random variable. Also,
we have 1(u,t) < ¢(u) for all u > 0, while )(c0) = 0 and ¢(u) =1 if u < 0 are two

useful boundary conditions.

1.2 Ruin Probability

1.2.1 An Integro-differential Equation

Theorem 1.1 The ruin probability ¥(u,t), within time t > 0, satisfies the partial

integro-differential equation

582 (u,t) = c%@b(u,t) + Al = P(u)] — M(u,t) + )\/Oud)(u —z,t)dP(zx), u>0.
Proof. Panjer and Willmot (1992), p. 389. O

An explicit expression for the ruin probability 1(0,t) is given by the following
theorem.

Theorem 1.2 The ruin probability, within the time t > 0 with zero initial reserve,

is given by

$(0,£) = % /0 [1 - P(z)]dz.

Proof. Klugman et al. (1998), p. 534. o



Corollary 1.1 The ultimate ruin probability 1)(0), with the initial reserve u = 0, is
given by

$0) =

Proof. By the definition of the ultimate ruin probability, we have 1¥(0) = lim,_,, (0, t).

From Theorem 1.2, when ¢ — oo,

b0 = 2 / 1l - P(a))da

c

O
It is remarkable that the ruin probability with initial reserve zero is independent
of the claim size distribution and is completely determined by the relative security

loading 6 > 0 only.

1.2.2 Volterra Integro-differential Equation

An important equation for the ultimate ruin probability is the Volterra integro-

differential equation.

Theorem 1.3 The probability of ultimate ruin ¥(u) satisfies the following Volterra

integro-differential equation:

D w) = 2p(u) - % /qu/j(u _2)dP(@) - 21— Pw)], u>0.

ou c c



Proof. Rolski et al. (1999), p. 162. ]

The analytical or numerical solution of the equation in Theorem 1.3 for the ruin
probability ¢(u) is rather complicated for a general claim size distribution P. For
some special choices of P, analytical or numerical solutions are possible, subject to
the boundary conditions 1(c0) = 0 and ¥(—u) = 1 for v > 0. For example, if P
is exponential or a mixture of exponential claim size distributions, then an exact
analytical expression for ¢(u) can be obtained.

Now consider another equation for the ultimate ruin probability by using Theorem

1.3 which gives a different approach to calculate 1(u). Let

P =7 [ Pwiy  o2o0, (12)

be an equilibrium distribution function of P and P(z) = 1 — P(z) with P(0) =

Theorem 1.4 The probability of ultimate ruin ¥ (u) satisfies the following defective

renewal equation

15 ()
- > 1.
1+9/¢u z)dP,.(z) + 5 u >0, (1.3)
where P,(u) = 1 — P.(u) with P.(0) = 0.
Proof. Klugman et al. (1998), p. 544. m]

The Theorem 1.4 may be solved for ¥(u) by using Laplace transform technique.
Though an analytical solution of (1.3) is possible for some choices of claim severity
distributions, it is not for general claim severity distributions, but can be solved

numerically. This will be discussed in detail in Section 1.5. For the time being we



just state that the ruin probability ¥ (u), that solves (1.3), can be expressed as the

convolution of the tail of a compound geometric distribution, i.e.,

Y() = Zl%ag VP, w20, (1.4)
where P (u) = 1 — P¥(u) is the tail of j-fold convolution of P, with itself and 6 > 0
is the relative security loading.

Therefore we can calculate the ruin probability numerically by computing the tail
of the j-fold convolution of a compound geometric distribution, using some known
technique, e.g., recursive method, inverse transform method or direct evaluation of
convolution. In some cases analytical forms of the j-fold convolution exist, that is,

when the claim size distribution is closed under convolution (e.g., gamma, inverse

Gaussian).

1.3 Asymptotic Ruin Probability

We start this section by defining the adjustment coefficient which will be used to
obtain a bound of the ultimate ruin probability ¥ (u).
The adjustment coefficient r is the unique positive solution, if it exists, to the

equation
1+ (Q+8)ur = B(eX) (1.5)
oo -—
or equivalently 1+0)p = / e P(z)dz, z>0.
0
Remark: The positive solution of equation (1.5) may not always exist, i.e., if the

claim size distribution has no moment generating function (e.g., Pareto, lognormal or

10



Weibull).

Theorem 1.5 (Cramer-Lundberg bound): Suppose the adjustment coefficient v > 0

satisfies that (1.5), then the ruin probability v¥(u) satisfies
P(u) <e ™, u > 0.

Proof. Klugman et al. (1998), p. 544. O

This bound is very simple and gives accurate results for some choices of claim
severity distributions. But in practical situations the adjustment coefficient does not
always exist, then the above inequality is not suitable to calculate the upper bound of
ruin probability in insurance business. Many authors have derived lower and upper
bounds for the ruin probability 1 (u) based on the fact that 1(u) can be expressed
as convolution of the tail of compound geometric distribution (e.g., De Vylder and
Goovaerts (1984) or Cai and Garrido (1999)).

We now turn our discussion to evaluate the probability of ruin ¥ (u) with a different
approach. The following Cramer’s formula gives the asymptotic ruin probability. We

use the notation a(u) ~ b(u) as u — 0o, to mean lim, % =1

Theorem 1.6 Assume that r > 0 satisfies (1.5), then the probability of ruin is given

by

o T U — 00
R e i) S ’

or equivalently P(u) ~ () fu,u(l n 9)}6_’"“, U — 00.
X

M/ (r) is the derivative of the moment generating function of X.

11



Proof. Panjer and Willmot (1992). O

Since the adjustment coefficient r > 0 satisfying (1.5) always exists for the light
tailed claim severity distribution (e.g., exponential, gamma, or inverse Gaussian), so
the ultimate ruin probability for the large initial reserve can be evaluated by the above
Cramer’s formula (Theorem 1.6. But for the heavy tailed subexponential distributions
(e.g., Pareto, lognormal or Weibull) r > 0, satisfying (1.5), does not always exist. In
these situations, there are some generalized asymptotic formula available such as
Embrechts and Veraverbeke (1982) obtained 9(u) ~ f;o[l—a*i(ym = P—;—) as u — 00
and for the medium tailed distributions they show that ¥ (u) ~ HO%% as
u — o0, where Mx (&) < 1+ (1 + @)u& if Mx (&) exists for any 0 < £ < ¢t and
Mx(t) = oc.

In the next section, the joint and marginal density functions of the surplus im-
mediately before ruin, the deficit at ruin, and the time to ruin is obtained. Also, the

joint density function of the surplus immediately before ruin and the deficit at ruin

are shown with initial reserve zero.

1.4 Joint and Marginal Density Functions

Let U(T™) = z be the surplus immediately before ruin, |U(T')| = y, the deficit at
ruin and T = ¢, the time to ruin. For U(0) = u, let f(z,y,t) be the joint density

function of x, y and ¢. Then we have
f(@,y, tlu)dzdydt = Pr{U(T") € [z,z + dz], [U(T)| € [y,y + dy], T € [t, ¢ + di] [ u}

Gerber and Shiu (1997) prove the following theorem:

12



Theorem 1.7 Foru > 0,
A .
f(z,y,tle) = —plz +y)i(tuz),  oyt20,

where 7(t;u, z)dt is the probability that ruin does not occur by the time t and that

there is an upcrossing of the surplus process at level x between times t and t + dt.

Proof. Gerber and Shiu (1997). ]

Let T, = inf {¢t : U(t) = z} be the first time that the surplus reaches the level z.
Suppose 7(t;u, z) and 7(t;u, z)dt denote the probability density function of T, and
the probability that ruin does not occur by time ¢, respectively and that there is an
upcrossing of the surplus process at level x between times ¢ and ¢ + dt. Then by the

duality argument Gerber and Shiu (1997) obtained the following result.
Corollary 1.2 Forz,t >0,
7(t;0,z) = 7(; 0, z).

Proof. Gerber and Shiu (1997). O

The process {e"““U(t) :t > 0} is a martingale, where 6 > 0 is the force of interest,
p is the solution of the equation —d + ¢£ + A[p(€) — 1] = 0 and p(§) is the Laplace
transform of p(x). By the optional sampling theorem, Gerber and Shiu (1997) show

the following result.

Corollary 1.3 Forz>u >0,1t >0,

o0
/ e n(t;u,z) dt = e P,
0

13



Proof. Gerber and Shiu (1997). ]
For an initial reserve of u = 0, from Theorem 1.7 and using Corollary 1.2, we

obtain
A - A
f(iE,y,th) = Zp(x—l_y)ﬂ-(t;())x) = Zp(x—i_y)ﬂ-(t;o’x): l’,y,t > 0. (16)

Multiply (1.6) by e~% and integrate it from 0 to oo with respect to ¢, then by

Corollary 1.3, we get
A —pz
f(z,9l0) = —pz +y) e, 2,y>0. (L.7)

Integrating (1.7) with respect to y and x respectively, gives

f(z]0) = %[1 — P(z)] e™*®, z > 0. (1.8)
and
f(y|0) = %/Ooop(x +y) e P dux, z,y > 0. (1.9)

1.5 Defective Renewal Equation
Gerber and Shiu (1997) introduce an EDPF for § > 0,
() = E{e TV [(T < 00)|U(0) = u}, u>0, (1.10)

where
1 if T <o

I(T < x) =
0 otherwise

14



In particular, when é = 0, then
d(u) = E{I(T < 00)|U(0) = u} = Pr{T < oo|U(0) = u},

which is just the ultimate ruin probability. They also derive the following defective
renewal equation by conditioning on whether or not ruin occurs at the first time that

the surplus falls below the initial level v, and applying the law of iterated expectations.

MM=A%@—@f@®@+/m€mwaMW- (111)

The general solution of (1.11) can be obtained by Laplace transform technique, and

it is
o) =~ =g + Y [ fu—y0 ) (112

where $(0) = [~ e ¥ f(4]0) dy = () -
For § = 0, (1.12) becomes ¢(u) = > 72, T%(l_}m)jpe*j(“)’ which is exactly the ruin
probability with initial reserve u.

In addition, Gerber and Shiu (1998) generalized (1.10) by introducing a non-

negative penalty function w(zi,zs), 0 < 1, z2 < 00, such that
$u(u) = B{e™Tw(U(T™), [U(T))I(T < 00)|U(0) = u},

where I is the same as defined in (1.10). If § = 0 and w(z1,z2) = 1, obviously, ¢, (u)
coincides with the ruin probability, i.e., ¢y (u) = ¥(u).

For the evaluation of ¢, (), Gerber and Shiu (1998) used an approach where ¢,,(u)
can be expressed as a function of the tail of a related compound geometric distribu-
tion. This is useful as there are many results available regarding the tail of compound

15



geometric distributions, e.g., recursive formula [Panjer and Willmot (1992)], upper
and lower bounds [Willmot (1994), Lin (1996), Willmot and Lin (1998)]. Also, Tijms
(1994) and Dufresne and Gerber (1988) found the exact solutions for the tail of com-
pound geometric distributions. Cramer-Lundberg’s well-known asymptotic formula
le.g., Gerber (1979)] and Tijms approximation [e.g., Tijms (1986), Willmot (1997)]
are also available. It is also possible to evaluate ¢,,(u) for various choices of w(zy, z2)
under this approach.

Gerber and Shiu (1998) stated that ¢,,(u) satisfies the defective renewal equation
P oo ply—2)
‘bw(u) = E ¢w(u - :L‘) e ¥ dP(y) dz
0 z

+%e"“/ e“”/ w(z,y — z) dP(y) dz, u>0, (1.13)

where p(d) = p is the unique nonnegative solution of the equation

cp—5:)\—)\/ e PdP(y),
0

with p(0) = 0. For the analytical representation of p, see De Vylder and Goovaerts
(1998). To obtain the solution of (1.12) another defective renewal equation is consid-

ered as follows:

bult) = ﬁ/ougbw(u ~9)dGa) + AW, w20 (L1

where 3 > 0, G(z) = 1 — G(z) is a distribution function with G(0) = 0, H(u) is

continuous for v > 0, and

—

K(u)=1- = Z?ﬁﬁ Y GYw), u>0, (1.15)

j=1



is the associated compound geometric distribution and G* (u) is the j-fold convolution
of G(u). The solution ¢, (u) to (1.13) in terms of K(u) is stated by the following

theorem.
Theorem 1.8 The solution ¢,(u) to (1.14) can be expressed as

1 [« 1
bulw) = /0 H(u— z) dK(2) + —— H(u)

1+5
1 [ 1 ” 1
_ _B/O R(u—a) dH(@) - GHO)K(W) + 51w,

If H(u) is differentiable, then

L "k ! _L K (u 1 u u
bolu) = =3 / Ru= o) (@) &z = GHOKW + ZHW, w20

Proof. Lin and Willmot (1999). O

Now the solution of (1.13) can be obtained via the solution of (1.14). For this
purpose, in particular, we have to show that (1.13) and (1.14) have the same form
and by comparing them identify 3, G(z) and H(u) in (1.13). The rearrangement of

(1.13) gives

_ AT wp ¢ _ fxooe_(y_z)dp(y
outw) = 5 [Py [ g =) me
e [ emrm [ w(af, y — z)dP(y)dz

fooo e—pyP(y)dy

) A% =Py p
}dx-f—z/o e PYP(y)dy

{ Y, w0 (1.16)

The equation (1.16) has the same form as (1.14), and so by comparing them we have

1+6

b= 1w ap,y)

-1, (1.17)

G = e 2 AW

_ > 11
fooo e_pyP(y) dy b z —_— 0’ ( 8)

17



e [ P P(y) dy

Clo) = fo e P(y)dy

z >0, (1.19)

and

e [Pt [Pz, y — x)dP(y)dz
H(u) - fooo e_pyp(y)dy )

w>0. (1.20)

Since the solution of (1.14) is stated by Theorem 1.8 and hence the general solution
of (1.16) (i.e., of (1.13)) is also stated by Theorem 1.8 with K (u), 8, G(z), and H (u)
given by (1.15), (1.17), (1.19), and (1.20), respectively.

Let us investigate the special cases of the EDPF ¢,,(u), i.e., the solution of the
defective renewal equation (1.13).

Case (i): Consider the discounted factor 6 = 0 (ie., p(0) = 0). Then (1.17),
(1.19), and (1.20) imply that 8 = 8, G(z) = P.(z) and H(u) = %f:o [ w(z,y —
z) dP(y) dz, respectively. Therefore, in this case the solution of (1.13) is given by
Theorem 1.8 with these 8, G(z) and H(u). Another important fact is that the
tail of the compound geometric distribution K (u) = Y22 & () P (u) = ¢(uw).
Hence when the discounted factor or the force of interest is zero, the EDPF ¢,,(u)
can be expressed in terms of the ultimate ruin probability ¢ (u). Also ¢, (u) reduces
to E{w(U(T™)), |[U(TY)I(T < 00)|U(0) = u}, i.e., the expected value of the penalty
function at ruin.

Case (44): Consider w(zy,z2) = 1. Therefore (1.20) becomes H(u) = G(u) while
(1.17) and (1.19) the remain same. Now the solution of (1.13) is stated by Theorem
1.8, where 8, G(z) are given by (1.17), (1.19), respectively and H(u) = G(u). In
this case, ¢,(u) reduces to E{e %t I(T < 00)|U(0) = u}, i.e., the expectation of the

present value of the ruin time or the Laplace transform of ruin time. Let us define
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the Laplace transforms of G(u), K (u) and K (u) as follows:

99 = [ etic,

0

ey - ___ B
K(&) K(O)-I—/O e K(u) du Tt
k@) = / e~6U R (u)du.
0
We also have that
& _ E _ oo —tu
ko) = - [ etar)
_ L ek . L 17 8E)
Taking the inverse Laplace transform, we get
R(u) = %ﬁ /Oul_((u 1) dG(z) + Ti_ﬁé(“)’ w>0.  (121)

Note that equation (1.21) has the same form as the defective renewal equation
(1.14) and hence we can say that (1.21) is a defective renewal equation for the function
K (v). By comparing (1.14) and (1.21), one immediately obtains that ¢,,(u) = K (u),
where 3 and G(z) are given by (1.17) and (1.19), respectively.

Case (4i4): Suppose that the discounted factor 6 = 0 (ie., p(0) = 0) and
w(z1,29) = 1. In this case, (1.17), (1.19) and (1.20) reduce to the simple forms
B8 =0, G(z) = P,(z) and H(u) = P.(z), respectively. Thus the solution ¢, (u) to
(1.13) is stated by Theorem 1.8 with 8 = 0, G(z) = Pe.(z) and H(u) = P(z). It can
be easily shown that ¢y, (u) = 3222 15 (15)! Pri(u) = ¢(u), ie., the ultimate ruin

probability.
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1.6 Distribution and Density Functions with Penalty

Function

The joint distribution function of U(T~) and |U(T)| can be obtained by an appro-
priate choice of the non-negative penalty function w(U(T~), |U(T)|) in ¢,(w) in of
Section 1.5. Then the joint density function from the joint distribution, and marginal

distribution and density functions are also presented in this section.

1.6.1 Joint Distribution and Density Functions

To obtain the explicit expression of the joint distribution function, we choose the
penalty function as follows.

For any fixed x and y,

1 Zf x S z, ") S Yy
w(xl,xz) =
0 otherwise

For 0 < u < z, by (1.20), we have

A(%Qe”“ /:o e " /:ow(x,y —z)dP(y) dz

= Me"“ /oo e P P(z) dP(y) dz

c

= Gu)—Glu+y) — ePu=72) [G(z) — G(z + y)].

Again, for 0 < z < u and by using (1.19), we have H(u) = 0. By Theorem 1.8, for

0 < u < z and since z; < z, the explicit expression of the EDPF ¢,,(u) is

Y 1 _ 1
du(u) = —E/O K(u—z1)dH(z1) — BH(O)K(U) + EH(U)
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Substitute H(u) in this equation, then it follows that

bul) = SR -5 [ Rlu=2dGe +1) - 5RO +
%e"’”[@(m) — Gz +y)][K(uw) + p/o P K (u — x1)dxy — €™ — %G‘(u + ).

If 0 < z < u, then H(u) =0 and ¢,,(u) becomes
bo(u) = -% /wa((u — ) dH(z1) — %H(O)f((u).

As previously, we substitute H(u), to obtain

1 /2 1 _
bult) = 3 / R(u=)d[6(z) - 6z + )] - 5KWGE)
+%e”’x[@(x) - Gz +y)|[K(u) + ,0/0 e K(u — 1,)dx

—e’””{f((u—x)+p/ e K(u—1 —21)dz; — K(u—2)}], u > 0.
0

Now for § = 0 and w(zy,z2) = 1, if z; < z, 23 < y, the EDPF ¢,,(u) turns to have

the following form

du(u) = E{w(zy,z)I(T < 00)|U(0) = u}
= Pr{r; <z, 2z <y, T <oo|U(0) =u}
— Fla, ylU(0) = u)
= F(z, ylu), u >0,
i.e., the joint distribution function of U(T~) = z and |U(T')| = y. Lin and Willmot

(1999) derived an explicit expression for F'(z, y|u), which is stated in the following

theorem.
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Theorem 1.9 The joint distribution function of U{T™) and |{U(T)| is as follows: If
0<x<u, then
Pyl = 5 [ =) (Pl = P +1)} do
Y9 p 0 1y) - Ra) - B

If 0<u<uz, then

F(z,ylu) = % /0y¢(u +y —21)P(21) dzy + @[Fe(w +y) — Pe(z) — Pe(y)]
)~ gt y)] - 5P +y) - B0
Proof. Lin and Willmot (1999). O

We obtain an explicit expression for the corresponding joint density function

f(z, ylu), simply by differentiating F'(z,y|v) with respect to = and y.

Corollary 1.4 The joint density function of U(T™) and |U(T)| is given by

%p(x%—y)i—:%, if 0<u<z

f(@,ylu) =

Ap(z +y) Rt if 0<z<u

1.6.2 The Marginal Distribution and Density Functions

The marginal distribution and density functions can be derived from the joint distri-
bution and density functions respectively.
Taking y — oo and £ — oo in Theorem 1.9, then the marginal distributions of z

and y are described by the following corollary.

Corollary 1.5
o Jo Y(u—m31) P(zy)dzy — 84P,(), if O<z<u

F(z|lu) =
{1+ 2wy - 2E 4 0<u<as
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Flylu) = —IP(y)p(u), if O0<u<z

O0<zr<u

\

% S vlu+y— 1) P(z) day + 1%0[1#(“) ~Y(u+y)

By differentiating the marginal distribution functions in Corollary 1.5, the marginal

density functions are obtained.

Corollary 1.6

S@EG, i 0su<s
folu) =
PTG, 0<esu

$f0y¢'(u+y—xl)13(xl) dﬂ?1+1%0—¢’(u+y), if
flylu) =

0, if O<z<u
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Chapter 2

Diffusion Model

In this Chapter, we define the diffusion process (or Wiener process) and then introduce
the classical model that is perturbed by diffusion, called diffusion model (or perturbed
model).

For the CRM in Chapter 1, the income of an insurer is a linear function of time.
But this is not realistic. Actually, the income of an insurer is a non-linear function of
time because of some sources of uncertainty. For example, there are fluctuations in
the number of customers, the claim arrival intensity may depend on time, the insurer
investment of surplus, claims as well as premiums increase with inflation and also
the difference of interest and inflation is not constant always in time. To add these
additional uncertainties to the insurer surplus process, a diffusion process is added to
the CRM.

We study the defective renewal equation to obtain the explicit expression of the
ruin probability for this model. The joint density function of the surplus immediately

prior to ruin, the deficit at ruin, and the time to ruin is presented. Also joint and
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marginal distributions, and density functions of the surplus immediately prior to ruin,

and the deficit at ruin will be discussed briefly.

2.1 Diffusion Risk Model

Definition 2.1 Diffusion process (or Wiener process or Brownian motion):
Let {W (t) : t > 0} be a continuous time stochastic process. Then, it is called diffusion

process if

2. {W(t) : t > 0} has stationary and independent increments, and

3. for allt > s > 0, W(t) — W(s) is normally distributed with mean zero and

variance 2D(t — s) > 0.

Remark: The process {W(t) : ¢t > 0} is called a Brownian motion with drift if it
satisfies properties (1) — (2), above, and additionally for all ¢ > 0, W (t) is normally
distributed with mean pgt and variance 2Dt > 0. That is, the diffusion process (or
Wiener process) is a special case of Brownian motion with drift (i.e, when pup = 0).
First Gerber (1970) extended the CRM by adding a diffusion process which is
known as the CRM perturbed by diffusion, in short, the Diffusion Risk Model (DRM).

For this model the surplus of the insurance company is given by
Up(t) =u+ct— SE) +W(), ¢>0, (2.1)

where u, ¢ and S(t) are defined as in the CRM of Section 1.1 with ¢ —~ Ay > 0.
W is a diffusion process with infinitesimal drift zero, and infinitesimal variance
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2D > 0. So, for any t > 0, the random variable W (¢) is normally distributed with
mean zero and variance 2Dt, i.e., W(t) ~ N(0,2Dt). Furthermore, it is supposed
that {N(t) : t > 0}, the claim counting process; {S(t) : t > 0}, the aggregate claim
process and {W(¢t): ¢t > 0}, the diffusion process are mutually independent. It is
noted that the physical interpretation of the diffusion process is that an additional
uncertainty of the aggregate claims; or an alternative interpretation is that it adds

an uncertainty to the premium income of the insurance company.

2.2 Joint Density Function

Many authors study joint and marginal density functions of the characteristics: the
surplus immediately prior to ruin, the deficit at ruin and the time to ruin for the
CRM, for example, Gerber et al. (1987), Dufresne and Gerber (1988), Dickson and
Waters (1992), Dickson (1992, 1993), Gerber and Shiu (1997), Willmot and Lin (1998,
2000), Lin and Willmot (1999), Wu et al. (2003) and references therein. In particular,
Gerber and Shiu (1997) obtained an expression of the joint density of U(T~), |U(T)]|
and T, for the CRM given in Section 1.4 by Theorem 1.7. Wu et al. (2003) give an
explicit expression for Theorem 1.7 based on the CRM. Thereafter Zhang and Wang
(2003) studied the DRM and obtained an explicit expression of the joint density of
the random variables U(T"™), |[U(T)| and T, which coincides with the one in Wu et
al. (2003) and thus coincides with Theorem 1.7 when the diffusion process is removed
from the DRM.

Before going to the joint density function, denote by R(t) = ¢t — S(t) + W(¢) and
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assume that g;p is the density function of R(¢). Then an explicit expression for g:p

is presented by the following lemma.

Lemma 2.1 The density function of R(t) is given by

N ) LV L S I
gtD(m):Z(r!)e)\t/_OOQ\/me Zymp (ct +y—z)dy, zeR.

r=0
Proof. Zhang and Wang (2003). a
Let us assume that 7p(t; u, z)dz is the probability of non-ruin before time ¢ and

that the surplus then lies between = and z + dz, i.e.,
np(t;u,x)dz = Pr{t < T, Up(t) € [z, z + dz]|U(0) = u}

and 7p(t; u, z)dz is the probability that the surplus does not reach the level z +u by

the time ¢ and still lies between x and = + dz, i.e.,
p(t;u, x)dx = Pr{it < Tpyu, Up(t) € [z, z + dz]|U(0) = u}.
Now by the duality argument it can be shown that
7wp(t;u, z) = Tp(t; u, x).

Zhang and Wang (2003) derive an explicit expression for 7p(¢; u, ) which is stated

below.
Proposition 2.1 The density np(t;u,x) is as follows:
by
7p(t;u, T) = gip(z — u) — / S 9sp() g-syp(—u) ds, u,z >0, t>0,
0

where g;p(x) is given by Lemma 2.1.
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Proof. Zhang and Wang (2003). a
Let ¢p(u,t) be the finite time ruin probability. Then ruin probability ¥ p(u,t)
can be decomposed as follows (based on the idea of Dufresne and Gerber (1991) for

the ultimate ruin probability p(u)):

¥p(u,t) = valu, ) + Ye(v,t),  u, 120,

where 94(u, t) is the finite time ruin probability caused by oscillation and ¥.(u,t) is

the finite time ruin probability caused by a claim. So we can write
Ya(u,t) = Pr{T <¢, [UT)[=0]U(0) =u}, w20,
and
Yo(u,t) = Pr{T <t, [UT)| > 0| U(0) = u}, u,t > 0.

Let fp(z,y,tlu) be the density function of U(T'"), |[U(T)| and T for the DRM.
Also, suppose that fi(z,y,t|u) and f.(z,y,t|u) are the corresponding density func-

tions due to oscillations and due to claims respectively. Then, obviously, we have
fD(x’y7t|u) :fd(xvyatlu)+f0(x7y7t|u)> u,t 2 0,
Which is derived explicitely by Zhang and Wang (2003) and is stated below.

Theorem 2.1 For u > 0, the joint density function fp(z,y,tlu) is

Ap(z + y)[gip(T — u) — fot% 9s0(2) gi—syp(—u) ds], if a0
fD(.T, Y, tl’U,) B
0, if z=0, Y0,
and also
fp(0,0,tju) = w,
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where g;p(x) is given by Lemma 2.1.

Proof. Zhang and Wang (2003). a

2.2.1 An Explicit Expression for f(z,y,t|u)

Here we try to derive a similar explicit expression of f(z,y,t|u) for the CRM, from
fo(z,y,tju). If we remove the diffusion term from the density function g;p(z) (i.e.,

if D = 0), then g;p(z) becomes

o) =3 O eotp (et — ). (22)

r!
That is, ¢;(x) is the density function of ct — Zfi(lt) X;. For the CRM, the probability
of ruin due to oscillation is zero, i.e., ¥4(u,t) = 0, which implies that fp(0,0,t) = 0.
Now we are in a position to write an explicit expression for the joint density
function f(z,y,t|u) in terms of g,(z) by Theorem 2.1. As we have, for D = 0,
g:p(z) = gi(z). Thus the joint density function f(z,y,tlu) in terms of g¢(x) is as

follows.

Corollary 2.1

Fth) =l + oo ) = [ L) g0 dsl,  £20

where g4(x) is given by (2.2).

Proof. Proof follows from Theorem 2.1 by letting D = 0. a
It is difficult to get analytical expressions for the joint density function f(z,v, t|u),

even for simple severity distributions. A numerical evaluation is sometimes possible.
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If the severity distribution is closed under convolutions, then an analytical expression

for f(z,vy,tlu) may be found (i.e., exponential severities).

2.3 Ruin Probability

Let ¢¥p(u) = Pr{Up(t) >0:Vt >0} be the ultimate survival probability for the
DRM. Then 9p(u) = 1 — ¢p(u) is defined as the ultimate probability of ruin. It is
well known that the ruin probability p(u) can be decomposed as the sum of the
probability of ruin caused by oscillations, t4(u) and that caused by a claim, .(u),

Yp(u) = Ya(u) + Pe(u), v =0. (2.3)

We also have that ¢p(0) = 1.(0) = 0 which implies that 1p(0) = 94(0) = 1, from
the oscillating nature of sample paths. As in the CRM, here we are interested in ruin
probability for the DRM. Dufresne and Gerber (1991) give an analytical expression
of the ruin probability. Specially, they derive a defective renewal equation for the

survival probability p(u) and solve it analytically.

2.3.1 Defective Renewal Equation for ¥p(u)
Dufresne and Gerber (1991) show that the survival probability ¢¥p(u) satisfies the
defective renewal equation

ip(u)z c— A

p P(u)+ )\T,u /Ou Yp(2)p1 * pe(u — 2) dz, u >0, (2.4)
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where Pj(z) = 1 — e 5® and P.(z) = for #’ldy, z > 0, while p; and

pe are the corresponding density functions.
Theorem 2.2 The solution ¥p(u) to (2.4) is given by

. YA YA .
Fo(w) = Y (YR PI@),  wzo,
j=0

o

Proof. Dufresne and Gerber (1991). O

Hence, from Theorem 2.2, it follows that the ultimate ruin probability 1 p(u) is

1 — 32%0(2) ()3 PYUHY s Pi(u)

Yp(u) = | : (2.5)
1- Y201 ) (g P« P (), u>0

1+6
Remark: For D = 0, the ultimate ruin probability for the DRM coincides to the
ultimate ruin probability for the CRM, i.e., ¥p(u) = ¥ (u), for u > 0.
By a similar approach, used to obtain the survival probability 1¥p(u), the ruin

probabilities 14(u) and 9.(u) can be calculated. For example, we write down the

defective renewal equation and the solution for 14(u). The defective renewal equation

of ¥y(u) is
Pa(u) =1 — Pi(u) + %/f /0“ Ya(u — 2)p1 * pe(2) dz, u > 0. (2.6)

Corollary 2.2 For u > 0, the solution ¥4(u) to (2.6) is given by

Yalw) = 121%(2) = D(lc__wf;u))l, u>0.

Proof. Dufresne and Gerber (1991). O
Thus according to Corollary 2.2, the ultimate survival probability or ruin proba-
bility is determined, the ruin probability 14(u) can then be obtained numerically or if
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possible analytically, and hence 1.(u) can be calculated immediately as we know that
Yp(u) = Pg(u) + ¥.(u). If p is continuous, Wang (2001) show that 14(u) and 1.(u)
are twice continuously differentiable, and also gives explicit expressions for ¥4(u) and

¥e(u) if the severity distribution is exponential.

2.4 An Explicit Expression of a Generalized EDPF

In Chapter 1, we present the expected discounted penalty function ¢, (u) for the
compound Poisson process. The defective renewal equations of ¥p(u) and 1p4(u) are
studied for the DRM in Section 2.3 of this chapter. Based on the idea of Dufresne
and Gerber (1991), Gerber and Landry (1998) introduced the EDPF in the DRM
associated with a non-negative constant penalty wy at ruin if ruin is due to oscillations,

and a penalty function w(U(T')) at ruin, if ruin is due to claims. That is, for 6 > 0:
$py (1) = wo da(u) + Ble”Tw(|U(T)) I(T < 00, U(T) <0) |U(0) =u], w20,

where wyg is a nonnegative constant, I is an indicator function, i.e., I(T" < oo, U(T) <
0) = 1if T < oo and U(T) < 0, but 0 otherwise. Similarly, ¢4(u) = Ele™TI(T <
00, U(T) = 0) | U(0) = uj, also I(T < 00,U(T) =0) =1if T < oo and U(T) = 0,
but 0 otherwise. We see that ¢4(u) is the Laplace transform or the expectation of the
present value of the time of ruin 7" due to oscillation and the other term on the right
hand side of ¢p,(u) is the expected discounted penalty if the ruin occurs by a claim.
When § = 0, then ¢4(u) = E[[(T < oo,U(T) = 0) | U(0) = u] is the probability
of ruin due to oscillations, i.e., ¢q(u) = ¥g(u), and if § = 0 and w(U(T)) = 1,
then E[e™Tw(U(T)) I(T < 00,U(T) < 0) | U(0) = u} = E[I(T < 00,U(T) <
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0) | U(0) = u], i.e., the probability of ruin due to a claim. Thus ¢p,(u) becomes the
ruin probability ¥p(u) in this case, given by (2.5) for the DRM.
Gerber and Landry (1998) also derive a defective renewal equation for the function

‘bDy(u):

0]

bpy(u) = /qusny(u—y)gp<y>dy+woe-b“+ [ e - v)an)iy
ot / T w(=)gowdy, w0,

where D = 20, b=pp+ %, pp=pp(d,D) is the unique nonnegative solution of

the generalized Lundberg’s equation
e+ DE* + /\/ e YdP(y) = A+ 6
0
with pp(0,D) =0 and

A (Y e
gp(y) = —/ e_b(y“s)/ e PPE=9)dP(z)ds. (2.7)
0 s

c

But there are some restrictions for the applications of ¢p,(u) as the given penalty
w(|U(T)]) is a function of |[U(T')| alone. To remove the restrictions Tsai and Willmot
(2002) generalize the penalty function in such a way that w is a function of both
U(T~) and U(T), i.e., w(U(T™),|U(T)]). Then the corresponding generalized EDPF
¢p(u) involving w(U(T™), |U(T)|) is defined by

ép(u) = woda(u) + de(u), u >0, (2.8)

where ¢.(u) = Ele *Tw(U(T™), |[U(T))I(T < 00, U(T) < 0) | U(0) = u]. Note that
#p(u) also coincides with 1¥p(u) when § = 0 and w(U(T™),|U(T)|) = 1.

Tsai and Willmot (2002) prove that the generalize EDPF ¢p(u) satisfies a defec-

tive renewal equation given by the following theorem.
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Theorem 2.3 For D > 0, if lim, .o € "2 (u) = 0 and lim, ., e™PP*¢(u) = 0,

then ¢p(u) satisfies the defective renewal equation

bolw) = [ dolu=s)an)dy + wne™ + Hop(u), w20
where gp(y) is given by (2.8),
w(z) = /oow(x,y —z)dP(y), z >0,
and

H,p(u) = %/0 e_b(“_s)/ e~PP @)y (3)dxds.

S

Proof. Tsai and Willmot (2002). O

Lemma 2.2 For D > 0, the Laplace transforms of gp(y), and H,p(u), respectively

are given by

VG0

) = Bl e r ey
e < @60

- D(p—&)(b+¢)

where &(€) = fo‘x’ e—ExU‘z‘” w(z,y — z)dP(y)|dz and b = % + p.

Proof. Tsai and Willmot (2002). ]

Theorem 2.4 For D > 0, the Laplace transform of ¢p(u) is given by

~ . ﬁwD (§> wo
P =T 5,0 T b On - an@)

£2>0.
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Proof. For D > 0, ¢p(u) satisfies the defective renewal equation [Theorem 2.3]

dp(u) = / " bo(u—1)gp(@)dy + woe ™ + Hup(w),  u>0.

Taking Laplace transforms, then

o) = / et / b0 —y)gp(y)dy du
“+wy /000 e~ Se™tdy + /Ooo e “H,,p(u)du

= ¢p(©gn(&) +

O
Note that the explicit expression of the function ¢p(u), i.e., the solution of the de-
fective renewal equation in Theorem 2.3 can be easily obtained, given by the following

corollary.

Corollary 2.3 For D > 0,

/ [Hop(y) + woe™ Zg y)dy + wee” oy H,p(u), u > 0.

Proof. From Theorem 2.4

I _ ﬁwD(g) + Wo
P 1—gp(&) = ®+&[1—gn(®)]

= A3 030+ b’j—g > 95 (6)

= H,p €)+HwD Zg

Wo
b+¢ s

i[]s
Q
Sk
)
N

V
o
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Taking inverse Laplace transforms, we have
¢p(u) = / H,p(y Zg y)dy + wee” bu
/ e

= / [Hup(y) + woe™ Zg y)dy + wee” b"—i—HwD( ), u>0.
0
Which is an explicit expression for ¢p(u). 0
The defective renewal equation [Gerber and Landry (1998)] for the function ¢4(u)
is
= / ba(u —y)gp(y)dy + ™, u > 0. (2.9)
0

The function ¢,(u) satisfies the defective renewal equation [Tsai and Willmot (2002)]

_ /0 Y ol — 9)ap@W)dy + Hop(w), w20, (2.10)

where gp(y) and H,p(u) are defined in Theorem 2.3.
We can also find the explicit expression for ¢p(u) by solving the defective renewal

equations (2.9) and (2.10).

2.5 Discounted Distribution and Density Functions

with Penalty Function

Section 1.6 of Chapter 1 discusses the joint, marginal distributions, and density func-
tions of U(T~) and |U(T)|, when the discounted factor 6 = 0 for the CRM. In this
section, we describe briefly the joint, marginal distributions, and density functions of
U(T™) and |U(T)| with the discounted factor § > 0 for the DRM.
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2.5.1 Discounted Joint Distribution and Density Functions

We rewrite equation (2.10) as follows:

bulu) = ﬁ / gulu—y)dCo(y) + 1 Holw), w0, (2.11)

where Hp(u) = (14 B8)H,p(u), while Gp(y) = Ty *y(y) with I'1(z) = e7%, I'y(z) =
1=T4(z) and

Fye) = e Py
T T e Py T

The solution of (2.11) can be expressed as (based on Theorem 1.8 in Chapter 1)

1 [ 1
bulu) = = /0 Ro(u=a)dHp(@) + 5Ho(w) = 3HpOKp(u),  u20, (212)

where Kp(u) = Z:‘;l(%)(ﬁ)’"é’g(u), which satisfies the following defective re-

newal equation:

Kp(u) = -l—i—ﬁ/OuKD(u—z)dGD(x)—k 0o, w20 (1)

Here at first we study the joint distribution of U(T~) and |U(T")| by appropriately

choosing the penalty function w(U(T~), |[U(T')]). For instance choose w(U(T ™), |U(T)|)

such that
1 if z; <z, T2 <Y
’LU(IEl, .’Ez) =
0 otherwise
Then Hp(u) becomes
~ _ - b
Hp(u) = Gp(u) = Gp(u+y) = Ti(u)Gp(y) — ——e (e —e™)
+pp
[C2(z) — To(z + )], u > 0. (2.14)
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With this choice of penalty function w, ¢.(u) to be of the form

x py poo
$e(u) = / / / e fr(xy, o, t|u) dt dzy dvy = Fp(z,y; 6|u),
o Jo Jo

i.e., the discounted joint distribution of U(7~) and |U(T)|, where fp(z1,x2,tu) is
the joint density function of U(T~), |U(T)| and T'.

Now for the explicit expressions of Fp(z,y;é|u) and fp(z,y; 6|u), the discounted
joint density function of U(T~) and |U(T')|, we refer to Tsai (2001). It also gives
explicit expressions for the discounted marginal distributions and density functions
of U(T™) and |U(T')]. When the diffusion term is removed (i.e. D = 0) all the dis-
counted joint, marginal distributions and density functions converge to corresponding
quantities for the CRM. If both D = 0 and § = 0, then all the discounted joint, mar-
ginal distributions and density functions coincide with those presented in Section

1.6.
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Chapter 3

Results Under the DRM via Weak

Convergence

At the beginning of this chapter, we would like to discuss the convergence of the
surplus process U, by using weak convergence theorems, our main mathematical
tools. As far as we know that the first application of weak convergence in risk theory
is due to Iglehart (1969), which shows its usefulness. In Section 3.2, we consider a
sequence of aggregate claim processes, which converges weakly to a Wiener process
when, for instance, the number of policies of a large insurance portfolio goes to infinity.
Then by adding this sequence of risk processes to the CRM, we derive the ultimate
ruin probability, the joint density function of the surplus immediately before ruin, the

deficit at ruin and time to ruin as well as the expected discounted penalty function.
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3.1 Weak Convergence of the Surplus Process U,

In this section, first we consider a large portfolio of insurance business. A sequence

of aggregate claims processes is introduced as follows (see Iglehart 1969):

n-3/3D M)

S (t) = ——— Y — any't], t>0, 3.1
where, the claim sizes Y] are ii.d. random variables for j = 1,2,..... with mean

E(Y]) = p/ and variance V(Y]) = 0. The claim counting process, M(nt) ~

Poisson(ant) for (a > 0), while the infinitesimal variance 2D > 0, of the Wiener
process W, is defined in Section 2.1 and n is a large quantity, e. g., the number of
policies in a large insurance portfolio.

We add the sequence S, (t) in (3.1) to S(¢) defined in the surplus process (1.1),

then the resulting surplus process, Uy(t), can be written as

In order to establish the weak convergence of U,(t) to U(t) — W (t), we quote the

following result from Grandell (1977):

Theorem 3.1 (Grandell 1977, Theorem 9): Let X1, X, .....be either summation processes
(i.e., Xp(t) = ZEﬂYz, where Y; are i.4.d., E(Y;) = 0) or stochastic processes with
stationary and independent increments. Define &, by &.(t) = Xn(nt) and let € be a
stochastic process with stationary and independent increments. If £,(t) LR &(t) for all

t €[0,00) then &, > €.

By Theorem 3.1, clearly S, LW as Sn(t) <, W(t). It follows that (U, S,) <
(U, W) by independence and consequently our surplus process U, converges weakly
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to the process U — W in distribution as n — oo. Thus the process U, (t) approximates

the DRM.

3.2 Convergence of Ruin Probability

For simplicity of calculations we suppose that « = 1, ' = 1 and ¢’ = 1. Then (3.1)

takes the following simple form:

M(nt) D
Sa®) = —Y/=VaDt,  t>0. (3.2)
j=1

Let us rewrite the surplus process U, as follows:

Un(t) = utct—[SE)+Sat), t>0,
N(£) M(nt)

D.
= utct—[y X;+ \/— ! —+v/nDt
N(t) M@t
= ut(c+VaDit—D_Xi+ > ﬂ/ng']- (3.3)
i=1 j=1

Here assume that Py~ (y) is the distribution function of i.i.d. random variables Y;. The
claim counting process, M (nt) ~Poisson(nt). Thus S,( M("t) \/ 2Y] is a com-
pound Poisson process (CPP) with parameter nt and severity distribution Py (\/%y),

ie.,

and
S(t) ~ C.P[M; P(z)], t>0,
as defined in Subsection 1.1.2. Also, S and S, are independent aggregate claim

processes.
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Theorem 3.2 Suppose S;(t) are independent compound Poisson processes with pa-

rameter it and distribution function Fi(z), fori=1,2,.....,r, i.e.,

Then

S(t) = Z Sit) ~ C.P\; F],  t>0,

i=1

where F(z) = Y7, %F(z) and A=Y, | A

Denote
c+vVnD =c,,
Atn=A,,
and
Ln(t)

S(t) + S'n(t) = Z Zk,
k=1

where L, (t) ~Poisson(\,t) and Zj are ii.d. random variables for &k = 1,2, ..... The-
orem 3.2 asserts that the aggregate claim process Zfl(lt) Zy is another CPP with
parameter \,t and distribution function P,(z) = ﬁP(w) + %Py/(\/%l').

Now (3.3) takes the following form

Ln(t)
Un) =u+tcat— > Zx, 20 (3.4)
k=1
The surplus process in (3.4) is similar to the surplus process in (1.1). Assume that 6,

is the relative security loading, u, is the mean of Z; and v, (u) is the ultimate ruin
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probability for the surplus process in (3.4). We have

pn = E(Z)

A n D_,
= X:E(Xi)+X;E(VEYj)

)\_u . vnD

An An

A+ Vn
An

and

Cn (1 + gn)An,un;

vnD
L1 _ MwtveD (3.5)
1+6, c+vnD

The ultimate ruin probability for the CRM can be expressed as the convolution of the
tail of a compound geometric distribution, given by (1.4) in Section 1.2. Therefore,
for the surplus process (3.4), the ultimate ruin probability 1, (uv) can be written as

> 0, 1

Yolw) = 1= () Gg P, w20, (36)
where
Pal@) = [[1= Py, 220, (37)

and P¥(u) = 1 — P2 (u) is the tail of j-fold convolution of P, with (Pe.,(0) = 0).

(3.5) gives
g - _C~ Al
" A+ vnD
and
O, c— Ap
T — (3.8)
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By applying Corollary 1.1 for the surplus process (3.4) and equation (3.5), it follows

that:

1 )\u—i—\/nD
1460, c¢++vnD

— lasn — oo.

¥n(0) =

Based on the oscillating nature of the (surplus process) sample paths and the defi-
nition of the ultimate ruin probability, ¥p in Section 2.3, with an initial reserve of
u = 0 gives ¥4(0) = 1, while 4.(0) = 0, and hence 9,,(0) — 14(0) + ¥.(0) as n — oo,
which implies that 1,(0) — ¥p(0) as n — oo, i.e., the ultimate ruin probability for
the CRM converges to that for the DRM when the initial reserve u = 0 and the
number of policies goes to infinity.

Now we are going to prove the main result of this section. Here we will show
that the ultimate ruin probability, given by (3.6), converges to the ultimate ruin
probability, given by (2.5), for u > 0, i.e., ¥n(u) — Yp(u) as n — oco. To prove the

main result, we first need the following lemmas.

Lemma 3.1 The Laplace transform of P., is given by

) A _ ,[
Pen(§) = >\N+\/”—D- Pe(§ ) AH"‘\/E —————[1 — py( 5 £>0.

Proof. Let p.,, p. and Py be the Laplace transforms of pe,, p. and py-, respectively.

From (3.7) we get

1 € A n /n
Pen(x) = M [1"“‘“P()_)\_PY’( Ey)]d% z >0,

- - P(y) n

- o nD/ { . }dy + sy r—nD/ - Pr(y /¥l dy
. in

B Ap+ \/nD (@) + Ap + \/nD / = Pe Dy)] .
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Multiplying both sides of the above equation by e~ and integrating from 0 to oo,

then

X B A R n ooe_x x _ / n
a8 = 2 s [ el [ = R Gl

—_———— +__—__
A+ vVnD A+ vnD €

Ap

Ap

Using (2.5), Corollary 2.2 gives

D Z"" G 1w ,
_ j. x4+ #j

=0

Lemma 3.2 The Laplace transform of 14 is given by

- D
Yl = D b

Proof. The Laplace transform of 1)4(u) is defined as

e = [ et udy, €20,

0

D 0 1

R n R D
= mpe(f) + m[l - PY’(\/;@],

_ M n ey \/E
)+ | et Pl Folde
- Mg [T eh [
0

_ . n 7 egp |
TWRVY: L v, L A dPY(\/;‘””

£=0.

u > 0.

— S i [T bu G i d
C_M;gw)(lw)/o e Ep D« p (u)ds

D X4 1 (1) e
= T ;(1+0)(1+9)ﬂpf (8O

D 6 ad 1

= (m)ﬁl(f) Z[(l i e)ﬁl(f)ﬁe(f)]j-

c— A\ =
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: 1 _ A 8 _ e - _ ¢
Since 5 = ¢, 735 = L and pi(§) = otéD» SO

- B D c-—X ¢ ¢ i

c—A ¢
I
c+ED 1 225.(6)

D

c+ED — Mupe(§)

The following propositions show how % p(u) can be derived from v, (u).

Proposition 3.1 When n — oo, the limit of the Laplace transform of ¥, is given by

. - _ 1 c—Au+D D
zzmnmwn(g)_f c+§D—)\,uﬁe(£)+c+€D—>\,uﬁe(§)’ £>0.

Proof. Multiplying (3.6) by e ¢* and integrating from 0 to co with respect to u, we

have

o] o0 o i) 1 ) oo )
—u — —fu g, n J —§u J p*j
| ety = [t S g [ e arRw)

3=0
. 1 0, = 1 4
= d’n(g) = E - 1+0, ;[1 T enpen(f)]J: §=>0,

Lo 6
f 1 +9n _ﬁen(g)‘

Using (3.5) and Lemma 3.1, 1, becomes

. 1 c— A
() = - ! £20,
€ o Mupo() + VD — 21~ vl 28)]
_ 1_ c—Au+D
£ ¢ — A\upe(€) +\/n_ [1—PY' \/>€
+

¢ — Nupe(€) + \/n— 21— pri(4/26)]
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Since pe(§) =1 —-EE(X) + %E()@) + O(€3) when £ — 0, we can write ﬁy/(ﬁ\/é) =
162 E(Y)+ §2E(Y)+0((€\[2)%) asn — o0, e, £4/2 = 0. Since E(Y) =1
and E(Y'?) = 2, therefore ﬁy/(f\/%) =1- f\/% + &8 4 O((f\/g)s) as n — 0.

. h 1 —\u+D D
Hence, limn o0 ¥n(§) = ¢ = FeD=Nipe® T e¥eD-Nite(®)’

£€>0. 0

Proposition 3.2 The Laplace transform of ¥p is given by

. 1 c—Au+D D
¥p(§) = £ c+ED — Mupo(§) + ¢+ €D — Mupe(§)’

£20.

Proof. Multiplying (2.5) by e~¢* and integrating from 0 to co with respect to u, we

have
| etavot) = [T etan- gq—j’_—e)(l P [ AR )
~0o®) = £~ YA ORO. €20
= £ T Ol hOner
Since 15 = 2, & = <24 and p1(€) = 555, hence

_ c— Al 1

T cHED1- (€
1 c— A

T & ¢+ ED = Mppe(§)

1 c—Au+D N D
€ c+ED—Mupe(§)  c+ED — Aupe(§)

Lemma 3.3 The Laplace transform of 1. is as follows:

- _1 c—Au+D
O w20
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Proof. We have

N B et VR
'(pc(g) - ¢D(€) d)d(g) f C—|—€D ___ )\,Ufﬁe(fy £ 2 O)

from Lemma 3.2 and Proposition 3.2.

The following theorem establishes the main result of this section.
Theorem 3.3 Foru > 0, 9¥,(u) converges to Yp(u) asn — co.

Proof. The proof follows from Propositions 3.1 and 3.2.

3.3 Convergence of the Joint Density Function

We are interested in that the joint density function of U(T"), |U(T')| and T for the

CRM converges to that for the DRM as n — co. We give an explicit expression for

this joint density function for the CRM in Corollary 2.1 in terms of density function

gs, given by (2.2). For the DRM, the explicit expression for this joint density function

is presented in Theorem 2.1 in terms of the density function g;p, given in Lemma 2.1.

To establish the main result of the present section, we first present some needed

propositions. Recall that the surplus process U, is given by (3.4) and g¢:(z) is the

density function of ¢t — Zf.vz(f) X; for U(t), given by (1.1). Let g¢,(x) be the density

function corresponding to g:(z) for U,(¢). Then we have

- ()‘nt)r —Ant, *r
gen(z) = Z e "orl (et — ), z >0,
r=0 ’

where

A n o /n n
pr(Cat — ) = /\—p(cnt —z)+ A / pr,(« /E(cnt — 1)), z,t > 0.
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Proposition 3.3 When n — oo, the limit of the characteristic function of gin 1s

given as follows:

: - ict{— 2
lim gy, ,(€) = Mo @Dt g > g,

Proof. By the definition of the characteristic function of g ,:

o€ = / ¢éeg (2)ds, €30,
— Z (Ant) e—)\nt/ elﬁzpzr(cnt —$)dl'
0

o o0
— Z ()\nt)r e_)\nt+icnt5/ ei(—g)(cnt—z)p;r(cnt _ x)da:
0

eIt T (—8),

fl
[]e

—~
5 [
]

~—

where

)‘ OO H(—&)(ent—x
eo(—8) = 3= [ O (et - )i

+—\/' [ o [ ot~ )a
- Ansop( 5 )\ Sopyl E\/7

©g.n () becomes

M) _y pvionter A D,
@gt,n(f) = ( t) € Anticn E[;\; @P(_f)—i_% SOPY/(—é\/E)] ’ 62 07

7!

_ Dyr
—Antticnté <, [Mpp(—€) + 1t ©py,, ( f\/:)]

NE

ﬁ
Ii
o

= €

- e—At[l—wp(—E)l e—ntu—wpy, (=¢v/B)l+itletvnD)

By using the fact ¢, (§) = 1+z’§,u—§23!E(X2)+O(§3) as¢ — 0. We have wpy,(—ﬁ\/g) =
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1— zf\/% -2 O((é\/g):*), since ¢/ =1 and o' = 1. Again, g, ,(§) follows:
Pan(l) = e Mier(=6) e/ BHE RHO(E P itlet VD £ >
¢~ Ml1=pp(=§)]=€ Di+icté+0(6y/B)®)
which in turn implies lim, o @, , (€) = e~ =¢p(-O)=¢*Dirictt O
Proposition 3.4 The characteristic function of gip is given by:
Do () = e—At[l—wp(—ﬁ)}—52Dt+ict§, £>0.

Proof. The characteristic function of g,p is given by:

o0 )\tr B o0 ix o0 1 B 2 "
gogtD(é-) = Z( )6 At/o eﬁ/_ m@ ﬁﬂp (ct—!-y—x)dydx, £E>0,

]
—0 s
o0 00
e—/\t-i-ictg Z (At)r / 1 6_%“%
s rt J_ s 2V Dt

o<
[ / YR (of 4y — x)dz]dy
0

2 .
= e e~ T T (—&)dy

At+ictg (At)r / 1

s rl Joe 2Dt
o [e's)

o~ MFicté Z App(—=E)]" / 1 e—ﬁ%ﬂ‘y&dy
= r! —o0 2V 7Dt

o~ MHictE+ Mty (—€) —€2 Dt / ©_1 e"—*—*(y_igtg)z dy

—oo 2V T Dt

—At{1—pp(—€)]—€> Dt-ictt

= €

which is exactly the characteristic function of ¢;, if n — oc. O
From Propositions 3.3 and 3.4, we can make a conclusion given by the following

theorem.

Theorem 3.4 The density function g., converges to the density function g;p if n —

Q.
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Proof. Propositions 3.3, 3.4 and the following theorem guarantees the proof. 0O

Theorem 3.5 We have S,( \/7 ZM(M) Y] — VnDt and assume that fy, the
common density function of Yj’(j = 1,2,....), is bounded. Then the density function
fs.) of Sn(t) satisfies |fs,(x) — fip(x)] — 0 as n — oo, where fip is the density

function of N(0,2tD).
Proof. We can write

Sa(t)

DM(nt)
J2 Z Y/ —VnDt, t>0,
n j

M(nt)
\/ Yi—1)+4/— [Mnt ) — nt].

Let us suppose that D = 1. Then S,,(f) becomes

M(nt)
Sn(t):—\/l—ﬁ Z(Yj’—l)jtm\?ﬁ—_ﬁ, t>0.

The density function of S,(t) is given by

fsup(@) = e (Vi = (k=nt)), x>0
k=1

The characteristic function of S, (t) is given by:

NIE

k 0
Ps.0(&) = G—nt%?—ﬁ[ e fk (nx — (k — nt))dz, £>0,

k=1

Il

ot (mt)’C it
k!

§ vk
[(bY’ (\/ﬁ” :

(4

I
M8

>
I
—

The boundedness of fy:_1(.) implies, as in the proof of Theorem 1, p. 224, of Gne-
denko and Kolmogorov (1954, Ch. 8), that [ |¢y:_1(£)|*d¢ < oo for k > 2.

Hence [ 167 [gyr_1 () JFIdE < [ |yro1(S)[Fd€ < oo. So, sup, f3§_y(vz -
(k —nt)) < oo for k > 2.
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Now we have

!fsn(t)(x) - ftD(m)l
e O gt (V- (k- nt) — fuole), 20,

n k
cemf@+ Y e AR (Vae — (k- nt) ~ fun(e)

3
|k—nt|<Mnd

+Bvn Y e—"t(%)k, (3.11)

[k—nt|>Mn§
where M > 0 is any number and B > 0 is an upper bound for |f3%_,(v/nz — (k —

nt)) — fio(x)|-

By the Fourier inversion formula, the 2nd term on the right-hand side of (3.11)

can be written as:

Z —nt( ) WVnfis_ (vnz — (k —nt)) — fip(z)|

|k—nt1§Mn4
1 o s¢ k=) ¢ 2
< B[R (S - e
[k— nt]<Mn2f
1 o (nt)*
<o S Vora (ot - 4
Jk— nt|<Mn4
+/€‘552t!elﬁ( s —e'%§2tld€]
1 —nt —1¢%
§2— |[dyr—1( —e 2% 'd¢
lk— nt[<Mni‘
_/|Z el nt) z'ggc_—“’z'tl—e’%"ﬁt|e_%§2‘|al€. (3.12)

For every M > 0 and k with |k — nt| < Mnji, we have

I = -5 o
= [1—%—%0(

[@yr—1( )", >0,

Sl

k—nt 1p.2
) e~ 58" as  n — oo.

e = S.wl -
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Hence the first term on the right-hand side of (3.12) can be made arbitrarily small
by letting n — oo for any M > 0 as in the proof of the Theorem 1 of Gnedenko and
Kolmogorov (1954). The second term on the right-hand side of (3.12) can be written

as:

i)

and hence converges to zero as n — oo by the dominated convergence theorem since
M(:’%—“"t — N(0,t). Thus the second term of (3.11) tends to zero for every M > 0 as
n — oo. The first term of (3.11), e ™ f;p(z) — 0 as n — oo uniformly in z and the

third term of (3.11), by the Chebyshev’s inequality,

(nt)] Bt

i ()" ViM@nt)] _ Bt
B\/ﬁ Z € k' S B\/ﬁ M27’L% - M27

3
|k—nt|>Mn1

which can be made arbitrarily small by letting M > 0 be sufficiently large. Hence
, finally we obtain from (3.11), |fs.@(z) — fin(z)] — 0 as n — oo uniformly in

T (—o0 < z < 00). O

Lemma 3.4 Let us assume that py:(z) = O(%) for some k > 3 as z — oco. Then

for D >0, \ppn(z +y) = Ap(z +y) asn — oo, where Ay =n + A

Proof. We have

A n [n n
Anpn(z +y) = /\n[A—p(fc+y)+A—\/—ﬁpy’( 5(x+y))], z,y >0,

n n

= ot +9) 4[5 (B )
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Then, for some &k > 3,

n n n 1
BB+ = w5 Ol

Ve HEE

)

(k

D=

n@(:c +y)k

)—0 as n— 00 .

Which implies that

/—% (\/ ‘“( )) 0
’ T + — as n — 090,
D Py D Yy

under the assumption, made in the statement of the lemma. O
Example 3.1 Consider Y’ has exponential claims, i.e., Y' ~ Exp(1).

Then py/(z) = e *, z > 0. Now we have

jipy«\/gmy))

2

D

T+ Bty + 5 (R + (R 0((3) )
1

7% + :Lx/?ﬁ(x +y)+ %(2;!1/22 S B Cou”) LA W ) DO((%)5£r+y25)

vnD 3! D 4

3
Which in turn implies Z=py/(1/Z(x +y)) — 0 as n — oo. Hence, in case of ex-
VD D
ponential claims, by Lemma 3.5, for D > 0, A,pn(z +y) — Ap(z +y) as n — oo.

c
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Let us now write down the joint density function of U(T~), |U(T)| and T for

Un(t), given by (3.4), from the Corollary 2.1 as follows:

fn(xay;ﬂu) = )\npn(x + y)[gt,n(x - U) - /0 ggsm(x)g(t—S),n(*u)ds]: t >0,

where g; () is given by (3.10). Also

Mp(z + ) [gep(x — u) — [ 29s0(2)ge-op(—u)ds],  if
fD(x7y7tlu) =
0, Zf r=0,y 7£ 0,

and

fD(0707t‘u) = W?

where g;p(z) is given by Lemma 2.1.

The main result of this section is stated by the following theorem:

z > 0,

Theorem 3.6 For x > 0,u > 0, the joint density function f.(z,y,tlu) converges to

the joint density function fp(z,y,t|u), pointwise as n — oco.

Proof. Theorem 3.4 and Lemma 3.4 illustrate the convergence of g, and A,p, to g:p

and \p, respectively as n — oco. Consequently, the joint density function f,(z,y,t|u)

converges to the joint density function fp(z,y,t|u), pointwise as n — 0o.

3.4 Convergence of EDPF

O

Here we prove that a generalized EDPF under the DRM can be obtained from the

EDPF under the CRM using a weak convergence approach. Defective renewal equa-

tions with their solutions are given in Sections 1.5 and 2.4 for the CRM and DRM,
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respectively. Since (1.14) is the defective renewal equation for the CRM, then the

corresponding defective equation for the CRM, defined by (3.4), can be written as

1

T ﬂan(u), u >0, (3.13)

1 u
Pun(u) = r"‘-ﬁ-r:/o Pun(u — 1)dGr(z) +
where p = p(9) is the unique nonnegative solution of Lundberg’s equation
A+ 6=cé+ )\n/ e~ YdP,(y)
0
with p(0) = 0.

Lemma 3.5 For § > 0, when n — o0, A\, + 9 = ¢,§ + /\nf’n(f) converges to the

generalized Lundberg’s equation Ap(€) = X+ 8 — c€ — DE2, where D > 0.

Proof. We have

M+ = b+ M /00 e Yd P, (y)
0
. ) D
= ¢l + AP(E) + ndy (€4 ;)‘

Now by the same fact used in Proposition 3.1, i.e., py- (f\/%) =1-¢ \/§+§2§+O(f%—)

as n — 0o, we have

1

3
2

Atn+d = (c—l—\/@)§+>\ﬁ(§)+n[1—§\/—g+§2—g+0( )]

n
= M) = A+6—ct— DE asn— oo.
O
The following theorem illustrates how the Laplace transform of the EDPF under
the CRM converges as n — oo to the Laplace transform of the EDPF under the
DRM.

o6



Theorem 3.7 Letwy = w(0,0) and we(z,y) = w(z,y)—wy. Assume that |w,(z,y)| <
alz +y)" forz,y >0, a >0 andr > 1. Then for D > 0, when n — oo, the limit of

the Laplace transform of ¢y n(u) is given by

Hm o n(€) = Hop(®) | =0 €20,

A N R Gk
where w(@) = [ w(z,y = 2)dPy), $(€) = [;° e w(e)dz, wo = w(0,0) and Gp(¢)

and H,p(€) are given by Lemma 2.2.

Proof. We have

[ enrway = | " e - Puy)ldy

= / e / " dP.(2) dy

= / (1 — e *]dP.(2)

= p 21— paloll,

o0 o0 X Y
/ e e / PP, (e = / [ / D galeMdP,(y), €0,
0 x 0 0

- __i_p[ /O ” e~ PVdP,(y) — /0 ” e dP,(y)]

1 .. .
= ;_—g{Pn(f)—Pn(P)]o

s

So
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Thus

A ~ 146, plpa(§) — Dulp)]
L+ Bn = gu(§) = JE e vdPoly)  (p— 61— Pr(p)
Cn P[pn( ) ( )]

Ao fo e dPu(y)  (p— [ — pn( )l
J plpn(§) — Pnlp)]

Al =pn(p)] (0 =& = Dalp)]

= P —&)ep, — p —p .
= (0 — L = Pnlp)] [(p = &)en — A{Bal€) — Pulp)}]

Let )\n(p—E)pl—ﬁn(p) = Qn(p) and using ﬁn(i) = }\)\:ﬁ(é) + %ﬁY’(é\/g)v A = A+

n, ¢, = c+n, we get

L+ 6, = 32(6) = Qu(®)l(p—&)(c+ VnD) = Mp(E) - ()}

—n{py( f\/‘ — Py ( \/—

By the fact used in Proposition 3.1, i.e., ﬁy/(f\/g) =1- 5\/§ + {2% + O(—l-%—) as

n — 00, We get

1 + /Bn - gn(é)
= Qu(p)(p — &)(c+VnD) — MB(&) — p(p)} + (€ = p)VnD — (€ 2)D+O(T
= Qn(p)[(p — &)(c+ pD +£D) — Mp(&) — B(p)} + O(T)]
Using Corollary 2.2 and b= 5 + p, then
14 B — 3u(6) = Qu(p)(p — E) b+ ED[1 = Gn(€) + 0(%,7)}. (3.14)

Further suppose that
on(a) = [ wia,y = 2)dPa()
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onle) = [ e,
- /Oooe-éw An/z w(z,y — z)dP(y) / w(z,y — x)dPy(\/;)]dw

- 2o (g)nﬁ/“[/omeﬁ w(e, y\/é—mdx]dpy()

with w(z) = [ w(z,y — 2)dP(y) and &(¢) = [;° e " w(z)dz.

Similarly, &n(p) = £(p) + & [y Lo y\/_e P (z y[— z)dz|d Py (y), then

v+ [eonin

J e e [7 e [* w(z,y — x)dPy(y) dz]du
Jo~ e Pu(y)dy

Jo7 e Cm [ emro iy, (x) d)du

l—ﬁn(p)
0

= Qn(p)An[@n(£) — on(p)]
Qn(p) M@ (§) — ()}

+n /000 {/Oy\/g(e_& - e“””“)w(:c,y\/g — z)dz }d Py (y)].

Therefore using w(z,y) = we(z,y) + wo and the assumption made in the statement

of the theorem, we have

fl

00 y\/g
Q) M () — &(p)} + e / { / (8 — e ™)da}dPy(y), €20,

+n /Oo {/y\/g(e‘fw — e P Yw,(z, y\/g— z)dz}d Py (y)]

—E\/_y 1= =PV 2y

QM) — ()} + mwo / L ape )

[T /OM( - y\F — 2)dz}dPy(4)]

1 —py f 1—py o)
= Q)OO — 60} + nun(— /D 1o pp\f}

[ VR e e-f“)we(:c,y\/; — 2)ds}dPy(y)).
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Now the middle term of the above equation is

1—py1 E\/_ 1 — py( pf
nwo{ } =woD(p — &)+ O(
sinceﬁy/(f\/é)z f+§2D+O n%% as m — 00.

The last term of the above equation is
—f;‘a: x D
|n { e P we(z,y - — z)dz}d Py (y)|
y\/—
<na/ {/ ,/D) ¢ — &2z}
< na/ (y\/——)’”’lePy/(y) since le™$" — 7P| < 1,

r+1  l-r

=aDZTn7 / yT+1dPY/(y).
0

)

B

for some r > 1 and f;° y""'dPy(y) < oo asn — oco. Finally H,(¢) takes the following

nice form

Ha(€) = Qu(p)M&(€) = &(p)} +woD(p ~ §)+0(——)] (3.15)

§|

Multiply (3.13) by e™¢* and integrate from 0 to oo, then

o —&u . 1 % —&u " _
/0 e Py n(u)du = 1+ﬁn/o e /0 Pwn(u — z)dGp(z)du
1 e}

. 5 / O H(Wdu, €20,
= 1+ﬁn¢wn(§) (5) + H—ﬁ_an(é‘)
A0

1+ ﬁn - gn(é)

Using equations (3.14) and (3.15) in the above equation, we get

b = POREE =G}t D=9 + O

200+ DT 50 + O
Mo© -0} . wy

(- )6+ 81— 3p©)] b+~ o)
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By Lemma 2.2

ﬁwD(é.) + Wo
1—9p(§)  (0+&[1—3p(&)]

Which is exactly the Laplace transform of the expected discounted penalty function

lim $un(€) £€>0.

ép(u) = ¢o(u) + woda(w), shown by Theorem 2.4. O

The following examples illustrate the function |we(z,y)| < a(z +y)"

Example 3.2 For any fized x1,y1 > 0, let

1 if z<z, Yy< U1
UJ(Z‘, y) = ’
0 otherwise

i.e, w(z,y) gwes the distribution function of U(T~) and |U(T)|, when § = 0 and the

discounted distribution function, while 6 > 0. Then w(0,0) = wo = 1, and hence

0 of z <21, YySh
|we(z, )| =
1 if T>Z10rY >N

So, it is clear that |we(z,y)| < (mﬁf?m)?

Example 3.3 Again, for any fized v > 0, let

1 if z+y<Lv
w(z,y) = ,
0 otherwise

ie., w(z,y) gives the distribution function of U(T~) + |U(T)|, when § = 0 and the
discounted distribution function, while § > 0. This kind of distribution is interesting
because U(T™) + |U(T)| is a claim causing ruin. Then w(0,0) = wy = 1, and hence
0 if r+y<v
|we(z, y)| =

1 if T+y>v
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Thus, clearly |we(z,y)| < (achLy)2

Example 3.4 Finally, for any k,1 > 1, let
w(z,y) = 2"y,
i.e., the product moments of U(T™) and [U(T)|. Then w(0,0) = wo = 0, therefore

lwe(z,y)| < (z+ y)**.
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Appendix

This section illustrates some numerical results for our model. We consider claims
are exponentially distributed, i.e., p(z) = Be ?*, z > 0 with a positive security
loading condition ¢ > Au. Also, let Y’ have the exponential distribution with mean

W =1, e, py(y)=e¥, y>0. To keep calculations simple let w(z,y) = 1. Then

o B
p§) = e (3.16)

X Dy_ 1 . e ]D, 2D .

Also we have

O = 50 + (e D)
X B +n—5\/n_D+§2D
C B M '

Now, for § > 0, we see that the exponential claim size distribution satisfies Lemma,

3.4, when n — o0.

cné + )\nﬁn(g) = Ap + 6,
A B n—§&VnD + €D

= (c+m)§+kn[;ﬁ+€+ N = A+n+d,
= c§+5¥—§—+§2D=>\+6, (3.18)
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which is the generalized Lundberg’s equation for exponential claims.

By Lemma 2.2, we have

o A3

w&=teraproery =Y (3.19)
N A
Hool® = 509G+ oG+ ) (3.20)

Let us now obtain the explicit expressions for ¢.(u), ¢4(u) and ¢p(u). Moreover

we derive the ultimate ruin probabilities for the DRM through our model. We have

L+ B = (&) = Qulp)l(p— &)(c+ VnD) = Mp(€) — ()}

—n{py( é\/7 — Py ( \/>

Using (3.16) and (3.17) in the above equation

1+ Bn = Gn(€) = DQn(p)(0+ ) (p — 1 = Gp(£)] (3.21)

1 — pyr( 5\/» 1 —pyi(p \/7}, >0,

H(€) = Qulp)M&(€) — (o)} + nun p
0 y\/g
+n/0 {/0 (7% — e P, (x, y\/g — z)dz}d Py (y)].

Since w(z,y) = 1 and using (3.16) and (3.17), the first term in the above equation

becomes

Ap =¢)

The second term in H,(¢) as n — oo

Ao (] D _ D
nwo{l pY(éh\/:)“l PYIO(P\/()}_)wOD(p ).

Iy
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By the assumption |w.(z,y)| < a(z + y)" made in the statement of Theorem 3.7 and

le6® — e~#%| < 1. The last term in H,(€) as n — occ:

" {/ (€6 — ey (a, y\/g—w)dx}de(y)l
<na/ \/7T+1dP

r+1 1-r
2 2 yr+1 ydy—')O
0

since for some r > 1, f0°° y" e ¥dy < oo. So

Ap—§)

W +woD(p = £)], §>0. (3.22)

Note that we = 1 as |w,(0,0)| < 0. Hence by Theorem 3.7:

A 1
Do+ B +EBT AL —d0©)]  (b+E1—n(E)]

= $e() + a(6),

nh_{lgo &w,n(é) =

by the defective renewal equations (2.9) and (2.10).

Therefore

N A
%) = DeroGror Tl -mEr 2"

X
D{B+p)

(b+6(B+6) — 5o

Suppose that & and &, are two roots of the following equation

(b+6)(B+6) — ﬁﬂ?}ﬁ 0. (3.23)

Then

R b 1 1
v = DTG - E-6 -6
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Taking inverse Laplace transforms, we get

A
)= BTG T v20 (324
Similarly
L1 B+& B+
WO=gTglemy Temar 20
By inverse Laplace transforms
bol) = = (BT E)E — (&), w20 (325)
§1—&

Numerical Results

Suppose that ¢ = 2,A = 8 = D =1 and § = 0.1. Then the nonnegative solution
of (3.18) is p = 0.0858441545. Equation (3.23) gives {; = —0.4403311035, & =
—2.645513051.

So, (3.24) and (3.25) take the following form:

¢c(u) — 0'417626524[6—0.4403311035u 4 6—2.645513051u], U 2 0’

pa(u) = 0.253797151 ¢~0-4403811035u 1 () 746902848 ¢~ 2-045513051u,

Hence the total expected discounted penalty function:
dp(u) = 0.671423675 ¢~ -4403811085u 1 () 308576324 ¢~ 2045513051 4, > .

Now assume that c=2, A=08= D =1 and é = 0. By the same procedure we have

p =0, & = —0.381966011 and &; = —2.618033989.
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In this case, ¢c(u) = 9 (u) and ¢4(u) = ¥g(u). Thus the corresponding explicit
expressions are given by
,(pc(u) — 0.447213595[e—0~381966011u _ e—2.618033989u], U 2 0,
a(u) = 0.276393202 ¢~3190%0MU 1 0.723606797 ¢~ 018053980

Yo (u) = 0.723606797 ¢~0-381966011u 1 () 976303202 ¢ ~2-61803398%u

Let us now investigate the effect of different values of D.

Case(i): when D = 0.25. Then p = 0.09045174916, &, = —0.5157307462 and
& = —8.574721003.
¢c(u) — 0.455169242[6—0'5157307462u . e——8.574721003u]’ U 2 0,
¢a(w) = 0.060090562 ¢~ 05197082 4 0,939009438 ¢ =5 54721003,

¢p(u) = 0.515259804 ¢ ~0-5157807462 1 () 484740169 ¢~5574721003
with § = 0: p=0, & = —0.468871125 and &, = —8.531128874.

¢c(u) — 0.4961389384[6—0.468871125u _ 6—8.53112887’(1,]’ U 2 0,
Pa(u) = 0.06587842904 ¢~0-468871125u 1 () 934121571 ¢~ 853112887u
Yp(u) = 0.5620173674 ¢~0-468871125w 1 4379826326 ¢~ 853112887%
Case(ii): when D = 0.50. Then p = 0.08881201191, & = —0.4896422020 and
£y = —4.59916981.
qsc(u) — 0.446977014[6~0'4896422020u . 6—4.59916981u]’ u Z 0,

da(u) = 0.12418802 ¢~0-4896422020u 4 () 875811079 ¢~ * 39916981,

ép(u) = 0.571165934 ¢ 048964220200 | () 498834065 ¢~ *99916981u
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with § = 0: p = 0,& = —0.438447187 and &, = —4.561552813.

Ye(u) = 0,48507125[6—0.438447187u . e—4.561552813u]’ u>0
tha(u) = 0.1361965625 ¢~ * 34787 1 0.8638034375 =+ 501552813,

Yp(u) = 0.6212678125 ¢~ 043844718Tu | () 3787321875 ¢=*561552813u,

Case(iii): when D = 0.75. Then p = 0.08728028151, £, = —0.4643929012 and

& = —3.289554048.

¢c(u) — 0.4340642313[6_0'4643929012u _ 6_3'2895540481‘], u> O,
¢a(u) = 0.1895846187 ¢~ 46439290121 1 (. 8104153812 ¢ 3289054048,

¢p(u) = 0.62364885 ¢ 01643929012 1 (3763511499 ¢~ 2995540450,
with § = 0: p =0, & = —0.4093327093 and &, = —3.257333958.

/d)c(u) — 0‘4681645886[6—0.4093327093u - 6—3.25733395811,], U 2 O,
Ya(u) = 0.2073971319 ¢0-4093327098v 1 () 799602868 ¢~ >257333958u

¥p(u) = 0.6755617205 ¢~ 10933270%n 1 (,3944382794 ¢=327333958u,

Graphical Illustrations of EDPF

Figure 3.1 explains the effect of different values of D in EDPF. It is clear that for small
values of u, the graphs increase very sharply (approximately for 0.4 < u < 1) and
then also decrease sharply. For large values of u (i.e., u > 10) the rate of decreasing is

very slow. We also see that for greater values of D, the rate of increasing (for smaller
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246 8 0 12 14
Figure 3.1: EDPF due to claims for different D.

values of u) of graphs is comparatively less than that for the smaller values of D. On

the other hand, for larger D graphs decrease faster than that for smaller D.

Loy
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ue o ww lun}
i
—00o
o gty
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Figure 3.2: EDPF due to oscillations for different D.

In Figure 3.2, we see that the graphs of EDPF due to oscillations are totally dif-

ferent from the graphs due to claims. All the graphs due to oscillations are decreasing
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for u > 0, because claims dominate for large u and oscillations dominate for small
u. Approximately, for 0 < u < 1.2, graphs decrease sharply and then decrease very

slowly. Also, graphs decrease faster with smaller values of D.

1

12 14

Figure 3.3: EDPF due to either claims or oscillations for different D.

In Figure 3.3, let us see the complete graph of EDPF, i.e., due to either claim or
oscillations. These graphs behave like the graphs due to oscillations. But these have
smoothness rather than sharpness. These also have the property that the smaller D,

the faster decreasing.

Figure (3.4) illustrates the graphs of EDPF due to claims, due to oscillations and
due to claims or oscillations for D = 1.00. We can easily distinguish and compare the
behavior of all the graphs. Clearly, for 0 < u < 0.8 (approximately), the graphs due
to oscillations and either claims or oscillations decrease. On the contrary, the graph
due to claims increases. As for small initial reserve oscillations are more dominating

than claims. Then for u > 1 (approximately), all graphs decrease in different rate.
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Due to oscillation
¢« «s+ v Dyeto either claim or osc

5
Figure 3.4: Comparison of the graphs of EDPF for D=1.00.

Graphical Illustration of Ruin Probabilities

o 12 14

Figure 3.5: Ruin probability due to claims for different D.

Figure 3.5 describes the graphs of the ruin probability due to claims for different
D. The ruin probability due to claims for v = 0, is 0 and for large u tends to 0.

The ruin probability due to claims increases sharply with the increasing values of
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u (approximately when 0 < u < 1) but decreases for u > 1 (approximately), since
the larger the initial reserve, the smaller the ruin probability due to claims. Another
aspect is that for 0 < u < 1.2 (approximately), the ruin probability due to claim is
bigger with smaller D but for u > 1.8 (approximately), the ruin probability due to a

claim is smaller with smaller D.

1 [

LR R R

e P
=

Figure 3.6: Ruin probability due to oscillations for different D.

Figure 3.6 tells us that the ruin probability due to oscillations always decreases.
For v = 0, the ruin probability due to oscillations is 1. But for large u, the ruin
probability due to oscillations tends to 0 because then ruin is possible by big jumps.
The graphs show that the ruin probability due to oscillations varies with different

values of D, specifically, the smaller D the smaller ruin probability due to oscillations.

We can say from Figure 3.7 that the ruin probability due to either claims or

oscillations decreases if the initial reserve increases. If w = 0, this is just the ruin
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e

Figure 3.7: Ruin probability due to either claim or oscillations for different D.

probability due to oscillations. There is no possibility of ruin by claims. And for large
u, it tends to 0. Further the smaller D, the smaller the ruin probability due to either

claims or oscillations.

» =2« [uye ta either claim or asc
eeeeee Duetoclaim
Due to oscillation

TTTE 8 70 13 14

u
Figure 3.8: Comparison of ruin probabilities for D=1.00.

In Figure 3.8, the ruin probability due to claims, due to oscillations and due to
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either claims or oscillations are plotted. Graphs give an important conception that
for small initial reserve the ruin probability due to oscillations and either claims or
oscillations decreases but that due to claims increases as the probability of ruin due
to oscillations is more than that due to claims for small . For large initial reserve

all the ruin probabilities decrease but at different rates.
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Conclusion

In classical risk analysis, the most popular risk process, easy to analyze and suitable
for practical applications is the compound Poisson. This explains the rigorous research
done on the compound Poisson process by many authors for a long time. But due
to practical reasons, now a days the CPP is no longer the fundamental risk model in
modern risk theory.

People are interested in incorporating the phenomena arising in practical situa-
tions (e.g., the effect of the fluctuations in the number of customers, the investment
of surplus, the inflation of claims and premiums, etc.) in the risk model to make it
more practical. That is why Gerber (1970) established the diffusion risk model. The
ruin probabilities due to claims, due to oscillations/diffusion, and due to either to
a claim or oscillation/diffusion, are obtained for the DRM by Dufresne and Gerber
(1991). We derive the above quantities for the same model by using the weak con-
vergence approach from the CPP, given by (3.4) which is made by adding the well
known and established sequence of risk processes converges weakly to the standard
Wiener process when, for instance, the number of policies in a large insurance port-

folio goes to infinity. It is very interesting that not only the ruin probabilities but
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also we showed that the more general EDPF and the joint density function of the
random variables, the surplus immediately before ruin, the deficit at ruin, and the
time to ruin are easily obtained for the DRM from the process (3.4). These results
are derived by Tsai and Willmot (2002), and Zhang and Wang (2003) respectively
with different approaches. The EDPF and the ruin probabilities are illustrated in the

Appendix by a numerical example for the exponential claim size distribution .
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