TYPE INFERENCE IN SQL

WEISHENG LIN

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

ApriL 2004

(© WEISHENG LiIN, 2004



3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91069-5
Our file  Notre référence
ISBN: 0-612-91069-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol ]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



11



Abstract

Type Inference in SQL

Weisheng Lin

Type inference is an important concept in programming languages. In this Thesis, we
study this problem and propose a framework for type inference in SQL, the database
programming language for relational databases such as Oracle and Sybase. We con-
sider a context-free grammar Gggr which covers the core features of the standard
SQL. We add semantic rules to Gsgr, following Knuth’s method of “attribute gram-
mars”, to capture the set of schemas for which a query ¢ € L(Gsqr) is well-defined.
We show that Gggr is unambiguous and that our attribute grammar is non-circular.
The set of schemas of a query is usually infinite. To finitely represent this set, we
introduce schema tableauz, a variation of a well-known tool from database theory. By
defining another attribute grammar for Gggr, we show that the set of schemas of a
query g € L(Gggy) can be finitely represented as a tableau which can be effectively
computed given ¢ as input. We discuss applications of our type inference methodol-
ogy, and as a case study, we apply it on the suite of TPC Benchmark”™ H queries,
which has industry-wide relevance and a high degree of complexity. The experiments
indicate the methodology in useful in practice, particularly in the context of database
schema comprehension.
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Chapter 1

Introduction

With the development of programming languages, type theory has become increas-
ingly important. In the context of programming languages, a type system is a
tractable syntactic method for proving the absence of certain program behaviours
by classifying phrases according to the kinds of values they compute [12].

A data type in programming language is a set of data with values having certain
properties that are predefined. Examples of data types are: integer, character, string.
Programmers need to declare the data type of every data object for most programming
languages, and most database systems require the user to specify the type of each
data field.

One of the major developments in programming is polymorphic type inference.
Type polymorphism allows code to handle data objects regardless of their data types.

Type inference automatically assigns the output and input types to a function if it is



not given[20]. Type inference is an extensively studied topic and used in industrial-

strength functional programming languages as well such as SML/NJ [4].
The form of declaration of a relation schema consists of the keyword Create Table
followed by the name of the relation and a parenthesised list of the attribute names

and their types. One example is as follows:

Create Table R(
A CHAR(2),
B Char(20),
C Date,
D int

);

The operators of SQL are polymorphic. We can take the cross product of any
two tables, regardless of their schema. We can perform a comparison between two
attributes, as long as they are comparable, namely they are either of the same type,
or in a same type hierarchy. Types int and double are different, but they can be
regarded as subtypes of some more general type, for example, number and hence
comparable. In SQL expression A = B, the attributes A and B can be both of char,
or one is int and the other of double, for instance. When the SQL expression becomes
complex, all these type conditions become more involved. Consider the following SQL

expression:

Select A, B

From R, S

Where (B, C) in (
Select (D,E)
From S

)



For this expression to be well-typed, attribute A must be in relation R or .S but
not in both, and so is attribute B; attributes D and E must be both in relation s.

Moreover, B must be comparable with D, and C' must be comparable with E.

1.1 Problem Statement

A natural question thus arises: given an SQL expression e, under which database
schema is e well-typed? And what is the result relation schema of e under each of
these schemas? Obviously, this is the SQL version of the classical type inference
problem.

Doing type inference for a language involves setting up two things. Firstly, we
need a system of type rules that allows us to derive the output type of a program
given types for its input parameters; under these assignments the program is said
to be well-typed. Second, we need a formalism of type assignments, as well as an
output type for each type assignment in the family. Every typable program should
have a principal type formula, which defines all type assignments under which the
program is well-typed, as well as the output type of the program under each of these
assignments. The task then is to come up with a type inference algorithm that will
compute the principal type for any given program [4].

The issue that given a relational algebra expression e, under which database
schemas e is well-typed was investigated recently [4]. In relational algebra, an at-

tribute name says all about the attribute. Hence multiple occurrences of an attribute



in different relations of a database refer to the same concept including its type. But
this may or may not be the case for SQL. For the expression RUm4 g(.S) to be valid,
for example, the schema of R must be R(A, B). In SQL, however, due to the explicit
introduction of data types, attribute name is associated with its data type.

Let us examine the SQL counterpart of the previous example,

Select * From R Union Select A, B From S.

For this SQL statement to be valid, attributes A and B are no longer required
to appear in relation R. It suffices for the validity of this SQL statement that R is
a binary relation having the first attribute of type of S.A, and the second of type of
S.B. Moreover, even if binary relation R has attributes A and B, the SQL statement
could be illegal. It is the case when R.A and S.A are of different types, and/or when
so are R.B and S.B, in spite of the fact that it is unlikely to happen in a well-designed
database application.

There is another issue, too. In relational algebra, the collection of attributes of a
relation is regarded as a set. Conceptually, it is still true for SQL. Practically, however,
attributes are listed with some order that should be followed by some operators. Hence
in relational algebra, we can take the union of relations R(A, B) and S(B, A). The
polymorphic operator U produces as output relation (R.AUS.A, R.BU S.B). Now
let us see what happen if we perform the similar operation in SQL.

First we create two tables R and S by

Create Table R (A int, B char(1)),



and

Create Tables (B char(1l), A int).

If we try to run the SQL query

Select * From R Union Select * From S.

This is regarded as an illegal operation, although both tables R and S have at-
tributes A with the same type, and B with the same type, too. This is because when
the tables are created, each attribute is assigned to a column according to the order
as they appear in the Create Table expression.

The following is what we get running this test on Oracle.

SQL> Create Table R(A int, B char(1));
Table created.
SQL> Create Table S(B char(1), A int);
Table created.
SQL> Select * From R Union Select * From S;
Select * From R Union Select * From S
*
ERROR at line 1:
ORA-01790: expression must have same data type as corresponding

expression

The type of an output attribute inherits the type of the attribute where it is
projected. In this SQL example, the output is A and B. And the type of A4 is the

same as A in the table R or S. And so is B. However, the case of union is an exception.



In the following example, we show that when two attributes with comparable types
are arguments for union, the output type is a type, of which these two attributes are

subtypes.

SQL> Create Table R(A varchar(10), B number(20,0));
Table created.
SQL> Create Table S(C char(1), D number(18,3));
Table created.
SQL> Create View RS As
2 (Select * From R Union Select * From S);
View created.
SQL> Create View SR As
2 (Select * From S Union Select * From R);

View created.

SQL> desc R;

Name Null? Type

A VARCHAR2(10)
B NUMBER (20)
SQL> desc S;

Name Null? Type

C CHAR(1)

D NUMBER(18,3)

SQL> desc RS;

Name Null? Type

A VARCHAR2(10)



B NUMBER

SQL> desc SR;

Name Null? Type
C VARCHAR2(10)
D NUMBER

Related work proposes interesting treatment on type inference in relational al-
gebra, yet applying it in SQL remains to be addressed. Furthermore, SQL specific
features such as aggregation provide extra knowledge of attributes and the conditions
on them, but are not captured by the primitive form of relational algebra, either.

Since these SQL specific features are missing in relational algebra, there is a need
to investigate the type inference issue for SQL. We believe it is a natural approach
to collect and infer attribute constraints and type information from SQL statements

directly, as the rest of this thesis will demonstrate.

1.2 Motivation

One main motivation for this work is fundamental and theoretical. SQL is a spe-
cialised programming language, consequently important ideas in programming lan-
guages such as type inference should be applied and adapted to SQL. There are also
other scenarios in database and engineering that add weight to the motivation.
Imagine a crucial application which relies on some antiquated RDBMS. For some

reasons, say, the vendor ran out of business, and the system is no more supported.



Even worse, it crashed before the user has the chance to migrate to a modern DBMS.
Since it is critical, the user cannot afford to lose the data and have to recover the
system as much as possible. Fortunately, there is a reasonably comprehensive set of
queries available, for example, embedded in some host language. In such a situa-
tion, our work could come to rescue. Incorporated with other techniques of reverse
engineering, we believe the system can be reconstructed to some extent.

Not only useful in antiquated systems, our work is also instrumental in recent
trends of database programming. Many business applications centre increasingly
around a database. The key to such applications is ensuring that all database inter-
action are both efficient and secure. Stored procedures help developers accomplish
both of these goals and also accomplish greater abstraction between the application
code and database details [10]. Stored procedure is a set of SQL statements that is
assigned a name and stored in a database in compiled form so that it can be shared
by a number of programs.

Stored procedures can contain not only simple select, insert, update, and delete
statements, but also can encapsulate procedural code. Encapsulating the database

interaction provides a number of benefits, including

1. It simplifies the coding. Instead of using a large query, one just call a stored

procedure.
2. It allows the user to optimise the queries in a central location.

3. It achieves greater security.



Due to its importance, stored procedure is one of the basic building blocks in
database programming. However, a large number of stored procedures in database
pose new challenge as well. When a user calls a stored procedure, the server does
not always create a new data access plan when retrieving information. Clearly, when
a procedure references a database table and the structure of the table changes, the
plan has to change, too. Unfortunately, the server may not keep a complete database
of dependencies and is not able to determine which procedures must be recompiled
when a structural change takes place. If one database programmer finds herself in a
situation in which she has a considerable number of stored procedures and her table
structures change quite often, say she is prototyping a new system and is using a
trial-and-error approach, keeping track of all the dependencies can be pretty painful
[19]. Therefore, a tool that examines the validity of stored procedure when the schema

changes is very helpful. Our work fits in nicely this scenario.

1.3 Contributions

The contributions of our work are as follows:

1. Type inference is an important concept in programming languages. SQL is a
specialised language, but to the best of our knowledge, theory of type inference
in SQL is missing in the literature. In this research, we make a first attempt

and investigate this problem.



2. We propose a framework in which database schema is formally defined, intro-
duce a grammar Gggr, that covers the core features of the standard SQL, and

assign attributes to syntactic rules by a set of semantics rules.

3. We develop a formalism, schema tableaux, which is specially tuned for specify-
ing incomplete information of database schemas. We also define an important

operator merge on schema tableaux.

4. We establish that schemas satisfying nodes of derivation trees can be represented
by schema tableaux. Furthermore, we devise rules to compute schema tableaux

associated with nodes of the derivation trees of queries generated by Gggr.

5. We apply the proposed framework on the suite of queries of TPC-H, which
has broad industry-wide relevance with a high degree of complexity. The ex-
periments result shows our framework for type inference in SQL is useful for
database comprehension. In a broader context, our work provides an instru-
mental technique in various applications, including reverse engineering, stored

procedures maintenance and automatic schema matching.

Although our work focuses on SQL queries, the formalism introduced in this work,
i.e. schema tableaux, can be applied to other SQL statements such as Create and
Insert due to the similarity of SQL statements. This is a potential extension that

we would like to explore in a future work.
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1.4 Outline of the Thesis

The thesis is organised as follows.

Chapter 2 presents a survey on the related work on type inference in database
programming. Especially, we review the formalism of type formula in relational alge-
bra context proposed by Bussche and Waller [4]. The principal type of an relational
algebra expression specifies all assignments of types, namely sets of attributes, to
relation names, under which a given relational algebra expression is well-typed, as
well as the output type that expression will have under each of these assignment.

When we move from relational algebra to SQL expression, the situation is very
different. Issues such as data type and column position of attributes in SQL are
missing in relational algebra. If we try to translate SQL expression to the primitive
form of relation algebra, such type information are lost. Chapter 3 takes up the
SQL specific features and formally defines schema, and develops a grammar that
includes the core features of the standard SQL. Moreover, properties are assigned to
the syntactic rules by semantic rules. On the other hand, a new formalism called
schema tableau is associated with nodes of the derivation trees corresponding to
query generated by the grammar. We show schemas satisfying nodes of the derivation
trees can be represented by schema tableaux associated with nodes of the derivation
trees. Furthermore, we introduce an important operator merge and rules to compute
schema tableaux. Issues such as unambiguity and non-circularity of the grammar are

discussed.

11



Chapter 4 manifests how the proposed framework works in practice. We introduce
an architecture of a system that takes as input a collection of SQL expression and
generates schema tableaux of the database. The system consists of a parser, and type
inference engine, and a conjugator. Then we apply the system on the suite of queries
of TPC-H. While the TPC-H is a benchmark for performance, the suite of queries
are also good test input for our case that represents the real world situations, due to
the broad industry-wide relevance with a high degree of complexity they have. The
experiments indicate the proposed framework is very useful in the context of database
schema comprehension.

We draw conclusion in Chapter 5. We also identify possible directions of future

work.
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Chapter 2

Background Review

This chapter gives a general account on related work, followed by a review of type

inference in relational algebra.

2.1 Related Work

In their work on the language Machiavelli [11, 3], Ohori, Buneman and Breazu-Tannen
were probably the first to introduce type inference in the context of database pro-
gramming languages. Machiavelli features polymorphic field selection from nested
records, as well as a polymorphic join operator. However, the inference of principal
types for full-fledged relational algebra expressions was not taken up in that work.
We should also mention the work of Stemple et al. [14], who investigated reflective
implementations of the polymorphic relational algebra operators.

Other important related work is that on the extension of functional programming

13



languages with polymorphic record types. Some of the most sophisticated proposals
in that direction were made by Rémy [12, 13]. This work adds record types to the
type system of ML, featuring polymorphic field selection and record concatenation.
While this system captures many realistic functional programs involving records, it
cannot express the conditions on the types of relations implied by certain relational

algebra expressions, such as
dacs(r ™M s) X ((r x u) —v).

Notably constraints such as set disjointness (needed for the operator x) or set equality
(for the operator U), cannot be expressed in these systems. The reason is probably the
additional concern of these systems for subtyping: a program applicable to records
of a certain type should more generally be applicable to records having all the fields
of that type and possibly more [4]. This is clearly not true for relational algebra
expressions.

Bussche and Waller gave a polymorphic account of the relation algebra. In their
paper [4], they introduced a formalism of type formula specifically for relational alge-
bra expressions. They also presented an algorithm that computes the principal type
for a given relational algebra expression. The principal type of an expression is a
formula that specifies all assignments of types, namely sets of attributes, to relation
names, under which a given relational algebra expression is well-typed , as well as the
output type that expression will have under each of these assignments.

In the paper [4], the concept of a polymorphic query was defined. Topics such as
complexity, the relationship with monadic logic, and polymorphic expressive power

14



were also discussed.

2.2 Type Inference in the Polymorphic Relational

Algebra

This section will briefly review the major concepts of the type formula for relational

algebra.

Schemas, Types, and Expressions

A schema is a finite set S of relation variables. A type is a finite set 7 of attribute
names. Let S be a schema. A type assignment on S is a mapping 7 on S, assigning
to each r € S a type T(r). So, the usual notion of database schema, which specifies
both the relation names and the associated sets of attributes, splits in two notions.

The expressions of the relational algebra are defined by the following grammar:

e—rl(eVe)](e—e)[(eMe)|(exe)|opu,..an(e) | Tay,..anle) | pasB(e) | Fale)

Here e denotes an expression, r denotes a relation variable, and A, B, and A4,
denote attribute names. And 6, = and # refer to a selection, projection and project

out respectively.

Well-typed Expressions and Typable Expressions

Let S be a schema , e an expression with Relvars(e) C S, where Relvars(e) denotes
all relation variables in e, 7 a type assignment on S, and 7 a type. The rules for

15



when e has type 7 given T, denoted by T+ e : 7, are given in Figure 1.
Definition Let e be an expression and let T be a type assignment on Relvars(e).
If there exists a type 7 such that 7+ e : 7, we say that e is well-typed under 7.

Expression e is called typable if there exists a type assignment T on Relvars(e)
such that e is well-typed under 7.

Type Contexts and Type Formulas

Consider the expression
e =op=c(pa/p(r)Us) Xu.

This expression is well-typed under exactly those type assignments 7 satisfying

the following two conditions:
L T(s) = (T(r) —{A}) U{B};
2. C must belong to at least one of T(s), T(t) or T(u).

Given such T, the type of e then will equal 7 (s)UT (u).

All the above information is expressed by the following type formula for e:

T ajag

S ajay ~r € 410203
U : agas

A:rA=-s A:u
B:sA-r B :true
C:(res)A(rvsvu) C :true

16



The : T The 7

T (e1Ues): T

THe 7 The : T

T (e1—e2): 7

THer:n ThHe:m

TH (61 N@Q) | UTQ

The :m The nNm=0

TH (61 X 62) : 7'1U7"2

The:T Ay, AL ET

TE oA, an)(€) : T

The:T Ay, A €T

7_" 7T(A1 ’’’’ An)(e) . {Al,...,An}

The: T Acr Bé¢r

Tk passle) : (r— {A}) U{B}

The: T Aer

TH 7tale) : r — {A}

Figure 1: Typing Rules of the Relational Algebra
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The left-hand side of the formula, called type context, along with the right-hand
side of the formula, which specifies relational algebra e, output variables and output
attribute, depict the condition under which the relational algebra expression is well-
typed and the output of it. This type formula can be read as follows. Expression e is
well-typed under precisely all type assignments that can be produced by the following

procedure:

1. Instantiate a;, az, and a3 by any three types, on condition that they are pairwise

disjoint, and do not contain A, nor B, nor C.

2. Preliminarily assign type a; U as to 7; a1 U ag to s; and ag U as to u.

3. In this preliminary type assignment, A must be added to the type of r, but
must not be added to that of s; where it is added to the type of u is a free

choice.

4. Similarly,B must be added to the type of s, not to that of r, and freely to that

of s.

5. Finally, C must be added at least to one of the types of r, s, and u, but if we

add it to r we must also add it to s and vice versa.

The type of e under a type assignment thus produced equals a; U as Uas, to which
we must add B and C, and to which we also add A on condition that it belongs to

the type of u.

18



2.3 Solving Systems of Set Equations

Type inference algorithm for programming languages typically work by structured
induction on program expressions, enforcing the typing rules “in reverse”, and using
some form of unification to combine type formulas of subexpressions. In the context
of relational algebra, relation types are sets, so we need a replacement for classical
unification on terms. This role will be played by the following algorithm for solving

systems of set equations.

Symbolic Solutions

Fix some universe /. In principle &/ can be any set, but in our intended application
U is the universe of attribute names. Assume further given a sufficiently large supply
of variables. In our intended application, this role will be played by type variables.
An equation is an expression of the form lhs = rhs, where both lhs and rhs are
sets of variables. A system of equations, such that every variable occurring at the
left-hand side of some equation is in L, and every variable at right-hand side of some
equation is in R,

A substitution on a set S of variables is a mapping from S to the subsets of /. A
substitution is called proper if different variables are assigned disjoint sets. A valua-
tion of a system X consists of a proper substitution on L and a proper substitution

on R. A valuation (fz, fr) is a solution of ¥ if for every equation

al...amzbl...bn

19



in X, we have
fL(al) U...u fL(am) = fR(bl) u...u fR(bn)

A symbolic valuation of ¥ consists of a new set V of variables and a mapping g
from L U R to the subsets of V. Take some proper substitution # on V. Now define

the following substitution hy on L: for any a € L,

hi(a) = [ J{h(0)lc € g(a).}

In a completely analogous way the substitution hg on R is defined too. A symbolic
valuation is called a symbolic solution of X if for every proper substitution 4 on V/,
the pair (hz, hg) is a solution of ¥, and conversely, every solution of ¥ can be written
in this way. So, a symbolic solution is a finite representation of the set of all solution.

Every system of equations ¥ has a symbolic solution, which can be computed

from ¥ in polynomial time.

An Equation-solving Example

The following is an equation-solving example.
Consider ¥ with L = {a1,a2,as}, R = {by, by, b3}, and the equations a; = b; and
a9 = blbg.

From the first equation we deduce that

ay, (@, bs), (@, bs)

as well as
by, (@2, b1), (@3, b1)

20



are also in V. So

V — ‘/0 = {61;537 (62)52)7 (63753)7

and the symbolic solution ¢’ is given by

g'(a) =10 gb)=10
g'(a2) = (a2, ba) g'(by) = (as, bs)
g'(as) = as, (as, bs) g'(bs) = bs, (a@s, bs)

If we rename the variables for added clarity, we obtain the symbolic solution

a1=® b1=@
a2 = C by =1

a3 = C9C3 b3 == C3C4

which can be interpreted as specifying that the only solutions to ¥ are those were we
assign the same set to ay and by, which is disjoint from the sets assigned to ag and b;

(the latter two sets need not be disjoint), and where a; and b; are empty.

2.4 From Relational Algebra to SQL

Considering the difference between relational algebra and SQL, observant readers may
wonder how this formalism and algorithm can be applied to SQL. As we have noticed,
the type on the level of individual attributes, which are almost present, is ignored
in the work of Bussche and Waller [4]. For example, as they further explained, for
0 a=johnr (1) to be well-typed it suffices for the algorithm that the type of r has an

A-attribute. However, in reality, A must in addition be of type string. Incorporating
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types on the attribute value level only has an effect on the special attributes of an
expression, and it has no effect on its polymorphic basis, claimed Bussche and Waller.
It is true for this example. But L does need extra care to apply type inference in

SQL, if we take other situations into account. Consider the following example:
Select A, B From R Union Select * From S.

In relational algebra, A and B must be attributes of s, but this is not necessary
for SQL.

There is another issue that is important in SQL. In practice, the position of column
plays an role in SQL. However, since relational algebra is a set notion, order does not
matter.

There is also type information readily to be collected in SQL. The statement,
Select R.A From R, S,

implies relation R contain attribute A.

Furthermore, operators not captured by primitive form of relational algebra, such
as aggregation, provide useful attribute and type information, too.

In light of the difference between relational algebra and SQL, we believe it is a
natural approach to collect and infer attribute constraints and type information from

SQL expressions directly, as the rest of this thesis will demonstrate.
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Chapter 3

Proposal

Our major proposal is put forward in this chapter. We will have a closer look at issues
such as data type and column position of attributes in SQL, which are missing in re-
lational algebra. We take up these SQL specific features and propose a framework for
type inference in SQL. Schema. is formally defined. We consider a grammar Ggqr, that
includes the core features of the standard SQL. Furthermore, attributes is assigned
to syntactic rules by a set of semantic rules. On the other hand, a new formalism
called schema tableau is introduced. Nodes of the derivation trees are associated with
schema tableaux. Then we devise rules to computed schema tableaux corresponding
nodes of the derivation trees. We show that schema satisfying nodes of the deriva-

tion trees can be represented by schema tableaux obtained by our algorithm. Many

aspects are discussed.
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3.1 Schema

Definition Schema

Let Rels be a henceforth fixed finite set of relation names, and Attrs a henceforth
fixed finite set of attribute names. Relation names will be denoted R, S, U, . . ., possibly
subscripted, and attribute names will be denoted A, B,C,.... We assume that Rels
contains two special relation names T, and L. The name T refers to the (unique)
relation whose arity is 0. The name L refers to an relation whose name is not explicitly
mentioned, such as the output relation of a query.

Furthermore, let Types be a henceforth fixed finite set of Typenames. Typenames
will be denoted 71,7, .. ..

A schema is a mapping

o : Rels x Attrs x N — Types,

such that for each relation R € Rels, there is a subset A of Attrs of cardinality &, for
some k € N, such that o(R, A,m) is defined if and only if A € A, and 1 < m < k,
and furthermore, each attribute participates at most once in o(R, -, -).

While attribute names and relation names can be of any length in theory, once
given, however, its length is fixed. In practice, the range of length allowed for attribute
names and relation names is specified by DBMS vendors. Char in DB2, for example,
can have 1 to 254 bytes fixed length, while char in Oracle has maximum length of 2000
bytes. Hence, it does not lose generality by assuming attribute names and relation

names are finite sets.
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Note that there may be many unnamed relations, and each occurrence of L may
refer to a different one. We have this notion such the formalism is more uniform.

Example: The schema

CREATE TABLE r (
A int

B char

);

CREATE TABLE s (
C char

D char

)

corresponds to

o ={(R,A,1) - int, (R, B,2) — char,(S,C,1) — int, (S, D,2) — char}

For brevity, we shall usually write

o = {R(A:int, B: char), S(C: char, D: char)}.

Grammar of SQL Query

Since there exists a unique derivation tree for each leftmost derivation of a string,
and vice versa [8], we shall move back and forth freely between the two.

Consider query w,
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Select A, C From R, S Where B = D.

we have the derivation sequence,

<SAW> => Select <SL> From <FL> Where <Cond> == w.

We want to know what is meant by node <FL>. Meaning conveyed by the ex-
pression <FL> includes relations R and S, and, attributes occurring in R, and S.
Furthermore, our interest is those databases that satisfies such a node. Schema
{R(A, B), S(C, D)}, for example, is one that satisfies node <FL>, while schema {U(A4, B)}
is not.

Schemas satisfying a node in a derivation tree is decided by what relation and
attribute names are associated to the node. At times, it appears convenient to have
this redundancy. Therefore, we consider it part of the 'meaning’ of the nodes too.

In other to appreciate the semantics of SQL expressions, we assign attributes
to production rules, called syntactic rules, by another set of rules called semantic
rules [9]. The reader should distinguish the term attribute in this context from one
occurring in tables as column name.

We define a mapping m as follows:

m: % — {0,1}

where 2 is a set of schemas.

Three type of attributes are associated to the grammar of SQL:
1. rels(v);

2. attrs(v);
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3.

schemas(v).

An SQL query is a string in the following grammar:

1.

<SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>

rels(< SFW >) = rels(< SL >) Urels(< FL >) U rels(< Cond >)

attrs(< SFW >) = attrs(< SL >) U attrs(< FL >) U attrs(< Cond >)

<SelList> ::= <Attribute>, <SellList>
rels(< SL >) = rels(< Attr >) U rels(< SL >)

attrs(< SL >) = attrs(< Attr >) U attrs(< SL >)

<SellList> ::= <Attribute>
rels(< SL >) = rels(< Attr >)

attrs(< FL >) = attrs(< Attr >)

<Attribute> ::= AII Cas IAlel| cas IBJ[Cﬂ ce IOk

rels(< Attr >) =)

<FromList> ::= <Relation>, <FromList>
rels(< FL >) = rels(< Rel >) U rels(< FL >)

attrs(< FL >) = attrs(< Rel >) U attrs(< FL >)

<FromList> ::= <Relation>
rels(< FL >) = rels(< Rel >)
attrs(< FL >) = attrs(< Rel >)
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7. <Relation> ::= Ry|...|R;|S1|...|S;|U4]...|Uk

attrs(< Rel >) = {.

8. <Condition> ::= <Attribute> = <Attribute>
rels(< Cond >) = rels(< Attr >) Urels(< Attr >)

attrs(< Cond >) = attrs(< Attr >) U attrs(< Attr >)

9. <Query> ::= <SFW> Union <SFW>
rels(< Cond >) = rels(< Attr >) Urels(< Attr >)

attrs(< Cond >) = attrs(< Attr >) U attrs(< Attr >)

Unambiguity of the Grammar

Theorem 1 Grammar Gggy, is unambiguous.

Proof: We will prove the result in two steps. First we show the set of rules without
Union is unambiguous; then we extend the set of rules to include Union, and prove
its unambiguity. In either case, the start symbol is <Query>.

Step 1:

Consider the set of rules without Union.

We will prove the theorem by induction.

Basic:

The length of shortest of query strings generated by grammar Gggr, is 8.

<Query>=—
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<SFW>=—

Select <SL> From <FL> Where Condition —

Select <Attribute> From <FL> Where Condition —

Select A From <FL> Where Condition =

Select A From <Relation> Where Condition —

Select A From R Where Condition —

Select A From R Where <Attribute> = <Attribute> —

Select A From R Where B <Attribute> —

Select A From R Where B = C

where A, B, C are arbitrary terminals as attribute names, and R arbitrary terminal
as relation name. There is only one leftmost derivation for query string w, where
lw| = 8.

Induction: Assume for query string w, where |w| = n > 8, there is only one left-
most derivation. We observe variable <Cond> expands to a fixed length, but variables
<SL> and <FL> can expand to various length. Moreover, the length of query strings
increase by 2 for an additional attribute in the <SL>, for example, ’, B’, or for an
additional relation in <FL>. Consider now query string w’, where |w'| = n + 2, as
follows:

Select Ai,...,A;, From Ry,...,R; Where <B> = <C>.
where 7,7 > 1.

If 4 > 2, there exists a query string w, where |w| = n, as follows:

Select Aj,..., A1 From Ry,...,R; Where <B> = <C>,
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By our assumption, there exists a unique derivation for string w, as follows:

<Query>=> <SFW>== Select Ai,...,A;_; From <FL> Where <Condition> ==
Select Aj,...,A;_; From Ry,...,R; Where <Condition> = w.

Hence, we can obtain a unique leftmost derivation for string w':

<Query>== <SFW>==> Select A;,..., A;_1, <SL> From <FL> Where <Condition>
=> Select Ay,...,A;_;, <8L> From <FL> Where <Condition> = Select Ai,...,
<Attribute> From <FL> Where <Condition>== Select Ai,...,A; From Ry,...,R;
Where <Condition> == w'.

If © = 1, then j > 2, since |w'| = n+2 > 10. There exists a query string w, where
|w| = n, as follows:

Select Aj,...,A;, From Ry,...,R; | Where <B> = <C>.

By our assumption, we have a unique leftmost derivation for w as follows:

<Query>=> <SFW>== Select Ai,...,A; FromRy,..., R;_; Where <Condition>

== W.

Hence, we obtain a unique leftmost derivation for string w'.

<Query>==> <SFW>== Select A;,...,A; From Ry, . .. ,R;_1,<FL> Where <Condition>=—
Select A;,...,A;From Ry,...,R;_1, <Relation> Where <Condition> = Select
Ay,...,A; From Ry,..., Rj Where <Condition> == /.

We showed query strings generated by Gsqy, has only one leftmost derivation.
Step 2:
We extend the rules to include Union.

Let w be a query string generated by grammar Gsgr,.
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If no Union is involved, then w is in the following form:

Select A;,...,A; From R,,...,R; Where <B> = <C>.

This is exactly the case of step 1. We are done.

If Union is involved, then w is in the following form:

Select A,...,A;,From Ry,...,R;Where <C> = <D> Union Select Bi,...,B;,
From Si,...,5; Where <E> = <F>.

We have

<Query> =—> <SFW> Union <SFW>.

By step 1, we have a unique leftmost derivation for variable <SFW>. Hence, we
have unique leftmost derivation ,

<Query> == Select A,,...,A; From Ry,... , Rj Where <C> = <D> Union <SFW>
== Select A,,...,A; From Ry,... , R;jWhere <C> = <D> Union Select By,...,B;,
From Si,...,S; Where <E> = <F>.

We showed the whole set of rules is unambiguous. Proved.

Testing for Circularity

Now we need to show that the collection of semantic rules, as described previously,
is well defined. Note attribute schemas(v) of a node in derivation trees is decided by
attributes rels(v) and attr(v) of the node only as discussed earlier, hence, attribute
schema(v) does not introduce extra degree of complexity in terms of deciding the

circularity. For brevity, we omit its presence in the directed graph.

Theorem 2 The collection of semantic rules of grammar Gggr, is non-circular.
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Dy s rels( <Query>) » attrs(<Query>) Dy s rels(<Query>) s attrs( <Query>)
\ rels( <SFW>) « attrs( <SFW>) rels( <SFW‘>)\- attrs( <SFW>)

rels( <SFW2>)  “sattrs(<SFW>)

Dy -rels(<SFW>)  «anrs(<SFW>) D, .rels(<SL>)  eattrs(<SL;>)
- attrs( <SL>) x rels( <A>)§ s attrs( <A>)
- attrs( <FL>) rels(<SLy>)  * »attrs( <SL2>)

rels( <Cond>) ‘s attrs( <Cond>)

rels( <SL>)

rels( <FL>)

-

Ds: « rels( <SL>) > attrs( <SL>) Dg: - rels( <A>) « attrs( <A>)

/

rels( <A>) - attrs( <A>)

Dy s rels( <FL;>) « attrs( <FL>) Dy: « rels{ <FL>) -€<rs( <FL>)
x rels( <R>) cattrs( <R>) \ rels( <R>) s attrs( <R>)

rels( <SLy>) s attrs( <FL,>)

Dy: « rels( <A>) s attrs( <A>) Dy - rels( <Cond>) s attrs( <Cond>)

\ rels( <A1>)§- attrs( <A;>)

rels( <A,>) «attrs( <Ay>)

Figure 2: Directed Graphs of the Rules

‘Proof: We will prove it in two steps. First we show the semantic rules without
Union is non-circular; then we extend the rules to include Union, and prove its non-
circularity.

According to the algorithm [9], we have a collection of directed graphs, shown in
Figure 2, that corresponds to the semantic rules. Then we can build a direct graph
for each derivation tree by “pasting together” various subgraphs.

Step 1:
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« rels( <Query>) «aftrs( <Query>)

o rels( <SFW>) « attrs( <SFW>)

cattrs( <FL>)§L)‘(?'<S( <Cond>)
! el ( <AS)™ rels( <A>) " atirs( <A>)

s <A>

srels(<SL>)  satirs(<SL>) o rels(<FL>)

Is(<A>) ~attrs( <Na

orels(<A>} e attrs( <A>) «rels( <SL>)

atirs( <SL>)

Figure 3: Non Circularity of Semantic Rules of Gggr,

We will prove it by induction. Let D(w) be the directed graph corresponding to
the derivation tree of string w.

Basic: The basic case is query string of length of 8, as follows:

Select A From R Where B = C

Its corresponding directed graph is shown in Figure 3. Obviously, there is no
oriented circle.

Induction: Assume D(w) is non-circular, when |w| = n > 8. As we discussed
earlier, the length of strings grows by 2, for an additional attribute in <SL>, or an
additional relation in <FL>. Given a string w’, where |w/| = n + 2, as follows:

Select Aj,...,A; From Ry,..., R; Where <Condition>.

where 7,7 > 1.
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If 7 > 2, there exist a query string w, where |w| = n, as follows:

Select Aj,...,A;_1 FromR;,..., R; Where <Condition>.

Since D(w) is non-circular as we assumed, we can construct D(w') by adding the
subgraph of Dj to D(w). which obviously does not result in oriented circle. So, D(w')
is non-circular too.

If i =1, then j > 2, since |w'| = n + 2 > 8. There exist a query string w, where
|lw| = n, as follows:

Select Aj,...,A; FromR;,...,R; 1 Where <Condition>.

Since D(w) is non-circular by our assumption, we can construct D(w’) by adding
the subgraph of D5 to D(w), which obviously does not result in oriented circle. So,
D(w')is non-circular too.

Step 2:

We now extend the rules to include Union. Consider string w generated by gram-
mar Gggr.

If no Union is involved in string w. This is exactly the case in steps 1. We are
done.

If Union occurs in w, it is in the following form:

Select Aj,...,A; From Ry,...,R;Where <C> = <D> Union Select Bi,...,B;,
From Si,...,5; Where <E> = <F>,

We have a unique leftmost derivation,

<Query>==><SFW> Union <SFW>== w.
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By step 1, the directed graphs corresponding to derivation trees whose root are
labelled <SFW> is non-circular. So, we have two subgraphs for derivation tree whose
roots are labelled <SFW>. We can construct the directed graph D(w) by “pasting
together” the two subgraphs and subgraph Dy. Obviously, this does not result in any
oriented circle. We showed the semantic rules with Union is non-circular.

Proved.

Well-typed Query

Let ¢ be an SQL query generated by the grammar above, and let ¢ be a schema. We

say that the query ¢ is well-typed wrt o, denoted

TFEq

if the parse tree O, of ¢ has the following properties:

1. For v labelled <SFW>, let 14,...,1s be the children of v, from left to right. We
have o |= v if for all A € attrs(is), there is an R € rels(v,), and an i > 0,
such that o(R, A, 1) is defined. Furthermore, for all A € attrs(vg), there is an

R € rels(vs), and an © > 0, such that o(R, A, 1) is defined.

2. For v labelled <Cond>, let vy, 15, 13 be the children of v, from left to right, and

let attrs(vy) = {A}, and attrs(v;) = {B}. Then we require that there exist

{R,S} Crels(vy), and 4,5 > 0, such that o(R, 4,i) = o(S, B, j).

There are two fundamental issues in typing, that is, type checking and type infer-

ence.
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The type checking problem is, given a query ¢ and a schema ¢, to decide whether ¢
is well typed wrt 6. This is done routinely in every database system, for every query,
but not always that well, as we shall see later.

The type inference problem is, given a query ¢ and its parse tree ©, with root v ,

to determine schemas(v).

3.2 Schema Tableaux

Researchers showed conditional table is a powerful representation form of incomplete
database [1, 6]. Potentially, all information is not available in database schema com-
prehension. Hence, a c-table-like structure will be desired as we will introduce next.
Assume countably infinite sets Attrvars = {X,Y, ...}, and Typevars = {z,y,...}.
An expression such as R(A:int, B: char) is called schema atom. A schema atom
can take one of several forms.
Definition Schema Atom

A ground schema atom is an expression of the form

R(Ay:m,..., Api )

where R € Rels, 7; € Types, and A; € Attrs, fori € {1,...,n}.

The position of each attribute in the table to which it belongs is reflected by this
sequence notion of the schema atom.

A schema atom is called non-ground schema atom, if some attribute names are

replaced by attribute name variables from Attrvars, and/or some type names are
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replaced by type variables from Typevars.

A schema atom can also be of one of the following forms:
R{A;:7m,...,An: T}

Intuitively, such an atom means that the schema of R contains attributes A; of type

7, for i € {1,...,n}, but the order of the attributes are unknown.
R{A; :z1,...,An: zp}x

The meaning is similar to the previous atom, except in this case there might be more
attributes than the A;’s in the schema of relation R.

When convenient, we will use the underscore character '/ as an anonymous at-
tribute name or type name variable. Not that each occurrence of '’ stands for a
different variable.

Example: We have already seen schema atoms of the forms R(A : int, B : char),
R{A :int,B : char}, R{A : int,B : char}x, and R{A : z,B : x}. The first atom
means that table R has exactly attribute A of type int in its first column, and B of
type char the second column.

If we know attributes A and B are in relation R, but we do not know their data
types, or relative order, we write R{A: _,B: _}.

The output of a query is usually an unnamed relation, which we denote L(A :
int, B : char), for instance.

Schema atoms are denoted «, 3, . . ..
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Let a be a schema atom. By rel(a) we mean the relation name occurring in a.
For example: rel(S{A : int}x) = S, and rel(R{(A : int, B : char)) = R.

A condition box is a finite set of attribute constraints of the form

(A:7): ¢

where A is an attribute name, 7 a data type, and ¢ a Boolean formula with atoms
from Rels.

For instance,

(A:int) . (RVS)ANU

is a constraint saying attribute A is of type int, and A is in either relation R or S,
but not in relation U.

Definition AD Pair

A pair consisting of an attribute name or variable, and data type or variable, is
an important component used in our discussion. For brevity, we call such a pair an
AD pair. An AD pair is denoted (X : ). Its instance could be of one of the following

forms:
- (X : z), where both X and z are variables;
- (A: z), where A is a concrete attribute name, while z is data type variables;
- (X : 7), where X is a attribute name variable, while 7 is a concrete data type;

- (A7), where A is a concrete attribute name, and 7 is a concrete data type.
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A schema tableau T is a finite set of schema atoms , each over a different relation
name, and a condition box, denoted T.

Example:

T={R(X:z2,Y:y,Z:2),S{A:2,B:y,C: 2z} %},

Te={(D:.):RVS,(F:_): RV S}

While schemas tableaux are represented concisely by expressions as seen earlier,
they might be displayed in tableaux too. There is no semantic difference between the
two forms of representation, except the form of a tableau may be more visual.

The following is the tableau form of the schema tableau for the same example.

(D:.):RVS
(E:_):RVS

(X :z,Y:y,Z:2)
{A:z,B:y,C: z}x

|

As we have seen, a schema tableau represents incomplete information about a
schema, as it partially specifies the state of a schema. In formalising this notation we
shall use the Open World Assumption (OWA) [14]. Instead of completely identifying
one schema, a schema tableau is compatible with many schemas. A representation of
a schema tableau is a possible schema. The set of schemas represented by a schema
tableau T', denoted rep(T), is defined as follows using‘the concept of valuations.

A wvaluation is a mapping from attribute variables to attributes, and type variables
to types.

Given an atom o € T, we define h(c) as the following (homomorphic) extension
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of h:

1. If « is of the form R(X; : x1,..., Xy ZTn),

then h(a) = R((M{(X1) : h(zy),..., h(X,) : A(zy)).

2. If o is of the form R{X : zy,..., X, : z,},
then h(a) = R(h(X;,) : h(zy),. .., h(X;) : h(z;,)), for some non-deterministically

chosen permutation iy,...,i, of 1,...,n.

3. If ais of the form R{X; : &1,..., Xy : Ty }*, then h(a) = R(Ay;: 71, .., AniTy)

for some n > m, and h(X;:z;) = (A;: a;), for some j € {1,...,n}.!

A valuation h satisfies a condition box, for each AD pair (X:z): ¢, we have that
(R(X) : h(z)) satisfies ¢. Let ¢ be an atomic formula, say R. Then (h(X) : h(z))
satisfies R if h(X) = R. If ¢ is not atomic, we just apply standard propositional
semantics.

We are now ready to define the set of schemas represented by a schema tableau:

rep(T) = {h(T') : h is a valuation that satisfies T }.

Example:

Assume T is a tableau, with T, = {R{A : int, B : int}x, S(Y; : int,Y; : char)},
and Ty = {(X1 : char) : R}. Since we follow the OWA, each of the following schemas,
among others, is a member of rep(T):

L. {R{A:int,B:int,C : char}, S(E :int, F : char)};

INote that in a proper substitution each i will correspond to a unique j. See proper substitution.
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2. {R{A:int,B :int,C : char,E : char}, S(F :int,G : char)};

3. {R(C : char,B :int, A :int), S(E : int, F : char)};

4. {R(C : char,B :int, A :int, F :int,G : char), S(H : int, I : char)};

However, both schemas {R{A : int, B : int}, S(E : int,F : char)} and {R{A :
int,C : char}, S(E :int, F : char)} are not in rep(T), because condition box is not
satisfied in the former, while (B : int) is missing from R in the latter. If a specified
order of attributes in tableau T is not respected in a given schema S, S is not a member
of rep(T), either. Schema {R{A :int, B : int,C : char},S(E : char, F : int)} is such
an example.

We shall also need substitutions. A substitution is a mapping from variables
to variables and constants, which is extended to be the identity on constants and
generalised to schema atoms and condition boxes in the natural fashion.

Definition Substitution of schema atom

Fix a schema o. Let schema atom o = R{X; : z1,..., X, : T}, ¥ a substitution

from the variables occurring in « to constants and/or variables in ¢. We define

o = R{X10: z19,..., X0 : z,9}

Example: Assume o = R{X) : 21, B : 25, X3 : 2;} and ¥ = {z;/int, X;/A}, then

aV = R{A :int, B : z9, X3 : int}

Definition Substitution of schema tableau
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Fix a schema 0. Assume T(v) = {ay,...,a,} for some n > 0, where q; is a schema
atom. Let 9 be a substitution from the variables occurring in T'(v) to constants and/or
variables in 0. We define

T(w)d ={a?,...,a:}

We observe * can be “substituted” to one or more AD pairs.
Example: Suppose schema atom o = R{X : int}*, each of the following, among

others, is a possible state of the world described by « :
1. R(A :int, B :int,C : char);
2. R(A:int,C :int);

3. R(A :int).

Merging Schema Tableaux

Type inference algorithm calls for some form of unification. In our case, type is in
the form of schema tableaux. We will introduce an operator that takes as input two

schema tableaux, combines and unifies them, and generates a schema tableau.

Lemma 1 Given schema tableaux T and T', there exists a schema tableau U such

that rep(U) = rep(T) Nrep(T").

Proof:

If rep(T) = 0, or rep(T’) =, then U = (). We are done.

Now assume rep(T}) # 0 and rep(T3) # 0. We construct U such that U, has
exactly the schema atoms in T and T, , and Us has exactly the AD pairs in Tp and
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Tg. If rep(U) = 0, there does not exist valuation h of U, that satisfies Up. This is to
say there does not exist a substition that is a valuation of T and satisfies T, and in the
mean while, a valuation of T, and satisfies T. In other words, rep(T) Nrep(T") = 0.

Suppose S € rep(U), then there is a valuation h that satisfies U,;. Therefore, h is a
valuation of T, that satisfies Ts. That is, S € rep(T"). Similarly we have S € rep(T").
Hence, S € rep(T) Nrep(T").

Next, assume schema S € rep(T) Nrep(T"), we will show S € rep(U). Schema S
is a valuation h(T}) that satisfies Ts. In the mean while, schema S is also a valuation
h(T;) that satisfies Tp. So S is a valuation h(U;) that satisfies Upy. We showed
S € rep(U).

Proved.

Definition Operator Merge

Operator Merge, denoted ©, takes as input two schema tableaux T} and T3, and

generates an schema tableau 17 ® T5, such that

rep(Ty © Ty) = rep(Th) Nrep(Ty).

3.3 Rules to Compute Schema Tableaux

Let ¢ be an SQL query generated by the grammar above, and let ©, be the parse
tree of g. We shall associate a tableau (7', ) with each node of ©,.

Let £ be a leaf of ©,. We associate tableaux (7', «)(¢) with £ as follows:

- if £ is of the form of attribute A, then T'(¢) = 0, a(f) = (A: ), and Te(£) =
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{(A: )L}
- if £is of the form of relation r, then T'(¢) = {r{}x*}, To(£) = 0, and a(¢) = r{}*.
- For all other leafs ¢, we set T'({) = Tg(£) = 0.
For the internal nodes of v of ©¢ we associate tableaux as follows:

1. Let v correspond to rule

<SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition> and
let 41,..., 4 be the children of v, from left to right. Let U be the tableau with
Us=0,Us={(A:_-): RiV...VR,: A € attrs(fy) U attrs(fs)}. Then

Tw)=T{) 0OT{y) ©Tls) ®U

2. Let v correspond to rule <Query> ::= <attribute>,<SellList> and let ¢y,

{3 and /3 be the children of v. Then T'(v) = T'(¢1) ® T(43).

3. Let v correspond to rule <SellList> ::= <attribute> and let ¢ be the child

of v Then T(v) = T(¥).

4. Let v correspond to rule <attribute> ::= A and let £ be the child of v Then

5. Let v correspond to rule <FromList> ::= <Relation> and let ¢ be the child

of v Then T'(v) = T(¥).

6. Let v correspond to rule <FromList> ::= <Relation>, <FromList> and let

vy, V2 and v3 be the children of v Then T(v) = T(v1) © T(v2) ® T(v3).
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7. Let v correspond to rule <Relation> ::= R and let ¢ be the child of v Then

<attribute> = <attribute> and

8. Let v correspond torule <Condition> ::
let 1, 5, and v3 be the children of v, from left to right. Let A; be the child of

v, and Ay be the child of vs.

Let T(V') = {(A1:2) 'L, (Ay s ) . L} T(v) =T(4) © T(ly) © T(4s).

Theorem 3 Let ©, be the parse tree of query q € L(Gsqr), and v the root of T(8,).

Let T(v) be the schema tableau associated with v. Then

rep(T(v)) = schemas(v).

Proof
Let 14, ..., be the children of v.
First we prove the soundness. Assume o € rep(T(q)). Let v be the root of .

Then from the construction of T'(¢), we know

Tw)=Tu)o...0T(v) ©T ()

T(W)={(A:.): RiV...VR, | A€ Attrs(SelList) U Attrs(Condtion)}.

Since o € rep(T'(¢)), by the definition of operator ®, we have

o= T(wn),...,T(ve), T(V).

45



By o = T(V'), A € attrs(1s), there is an R € rels(vy), and an 5 > 0, such that
o(R, A, i) is defined. Furthermore, for all A € attrs(vg), there is an R € rels(vy), and
an ¢ > 0, such that o(R, A,1i) is defined. And this exactly matches the definition of
o |= v, where v is labelled <SFW>.

Then we prove the completeness. Assume o |= ©,. We need to show there exist
an valuation ¥ such that ¢ = 8(T(¢)). Obviously, we have o = vy, ..., 15, and for all
A € attrs(i,), there is an R € rels(vy), and an i > 0, such that o(R, A,7) is defined.
Furthermore, for all A € attrs(vs), there is an R € rels(v4), and an 4 > 0, such that

o(R, A,i) is defined. On the other hand, from the construction of T(q), we know
Tw)=T)O...0T(v) ©TE)
where
TW)={(A:_): RiV...VR, | Ac Attrs(SelList) U Attrs(Condtion)}.

Hence, there exist an valuation h of T'(v) that satisfies Tp. We showed o € rep(T(q)).

Proved.

3.4 Implementation of Operator Merge

Definition Equivalent schema tableaux
Schema tableaux o and § are equivalent if and only if for every schema ¢ such

that
ocE
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it is also true that

and vice versa.
Property of Merge

Operator Merge © is idempotent, commutative and associative.

Procedure of Merging schema tableaux

But first, we shall define a few preliminary terms.
Definition Proper substitution

Let schema atom « is of one of the following forms
- R{Xy:x,..., Xn; T0};

- R(Xy iz, .., X,

- R{X1:zy,..., Xy mp b

Let vdom(§) be the domain of variables in substitution §, and ran(6) the range.
A substitution @ is said to be proper for « if and only if vdom(6) N ran(f) = @ and
there exists a schema o such that ¢ = ().

The condition vdom(a) Nran(f) = () forces no inter-substitution among existing

variables.

Example: If existing variables X and Y can replace one another, we introduce a

new variable Z, for instance, and have substition {X/Z,Y/Z}.
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Lemma 2 Let o be an atom, and § a proper substitution. Then 6(X) # 0(Y') when-

ever X £Y.

Let T be the schema tableau {4, ..., ay,}, for some n > 0. Then a substitution
is said to be proper substitution for T if and only if there exists a schema o such that
ok=6(T).

Definition Isomorphism

Two schema atoms « and [ are isomorphic if there exists a one-one onto substi-
tution # that maps variables to variables such that 6(a) = 8.

In other words, o and g are the same up to renaming of variables.

Similarly, two schema tableaux T and T” are said to be isomorphic if there exists
a one-one onto substitution ¢ that maps variables to variables such that 6(T") = T".

In other words, T and 7" are the same up to renaming of variables.

Definition Most General Merger

A proper substitution 6 is a most general merger, or mgm, of two schema atoms
a and B, if and only if it can unify a maximal subset of the variables of a and £ in a

unique way, such that

rep(a) Nrep(B) = rep((a)) N rep(6(8)).

It follows that 6 is unique up to isomorphism.
Example: Assume schema atoms o = R(X; : 21, X5 : 2, X3 : 71), and 8 = R{A:
int, B :int,Y : char}.

Substitutions 6 = {X1/A, X,/Y, X3/C, xy/int, z2/char, z3/int} and &' = {X;/C,
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X,/Y,X3/A, x1/int,xs/char, z3/int} are both proper substitution of a and 3. How-
ever, neither of 6 or §' is unique, hence neither is the mgm.

Intuitively, mgm of two schema atoms is the upper bound of the “sure” things of
merging two schema atoms. In the previous example, R(X,/Y, z5/char) is a mgu of
a and g.

We shall define mgm of schema tableaux similarly.

Definition Unifier of schema atoms

A proper substitution @ is a unifier of schema atoms o and g if 6(«) = 6(0).

A unifier is a special case of a mgm, which fully merges two atoms and results in
two identical copies of atoms. On the other hand, a mgm may just partially merge
two atoms, with some parts unresolved yet. If this is the case, we need to keep the
unresolved parts, for example, in a condition box.

The set of AD pairs in schema atoms « and § that remain not unified after being
applied a mgm 0 is denoted ADpsure(e, 8), and ADy,sure(5,0).

In the previous example, ADynsure(r,0) = {(A : int),(C : int)}.

A subroutine: Finding mgm of two schema atoms and a condition box

This is a major subroutine we shall use in operator Merge. The goal is to merge o
and [ as much as possible without losing the generality, such that the condition box
is satisfied. That is to find out the “sure” things about the structure of two atoms
have in common.

Let T be a condition box. Let o and 8 be two schema atoms, each in one of the

49



following forms:

L R(Xy:my,..., Xy &)

2. R{X1:21,..., Xy : zp )

3. R{Xy @y, .., Xyt T}

The steps of finding mgm is as follows:

1. Choose one atom whose number of AD pair is not fewer than the other. Let

assume it is o.

2. For every AD pair in 0, unify one distinct AD pair in o with some substitution
0;, such that no attribute occurs twice in the resulting atom. Discard the
resulting atom if it does not satisfy Ts. Let 6 be the composite substitution for

a survived resulting atom. We have 6 = (J6;.

3. Look up the results in previous step, find out those results that hold for all cases.
For each of such results, find out the necessary substitution that contributes,

say 6;.

4. Composite substitution § = (6, is a mgm.

This is a naive algorithm that remains to be optimised.
Procedures of Merge Operator
Now we are ready to define the procedures of operator Merge.

Given schema tableaux T3, and T5. Then T} ® T3 is defined as follows:
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. The result of merging two schema tableaux is a schema tableau, say T', prelim-

inarily initialised to ().

. Resolve variables in T7 and T3, such that the set of variables used in 7} and

that in T3 are disjoint.

. Add every schema atom from 77 and 75 to 7.

. Add condition boxes To(T1) and Te(T3) to condition box Te(v).
. Repeat {

(a) Let Ty =T.

(b) For every pair of schema atoms « and 3 in 7', such that r(a) = (), find

mgm 6 of o and .
Apply 0 to T, i.e. 6(T).

(c) If one atom in previous step is in the form R(.,...,.), say «, keep 6(c)
in T§; for every AD pair (X : z) that are not fully merged in the other

participating atom, add (6(X) : 6(z)) : R; to Ts.

(d) If none of the participating atoms is in the form R;{.,...,.), find one atom
whose number of AD pair is not fewer than the other, say a. Keep ()
in Ty; for every AD pair (X : z) that are not fully merged in the other

participating atom, add (6(X) : 0(z)) : R; to Ts.

(e) In condition box Tg, if there are more than one identical AD pair (X : )
with different boolean expression ¢;, replace them by (X : z) : A¢;. If
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there are AD pairs (X : z;) : R and (X : z;) : R, for i # j, then we have

to unify z; and x;. Apply ¢ to T, and Ts.

}Whlle (T 74 Told)

3.5 Extension of Grammar Gggr,

Having built a well-defined framework for type inference on a small subset of the
standard SQL, we would extend it to include more SQL features. Since the standard
SQL is a very big family, currently we would consider the subset that is sufficient
to solve textbook examples. Some of them may be readily to be added to the ex-
isting Gggr, such as <Query> ::= <SFW> Except <SFW>. Others may need some
extra care. Correlated nested queries, for example, seems to add certain degree of
complexity to the problem. However, all nested queries can be flattened and remain

essentially the same. A detailed treatment can be found in the report [7].
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Chapter 4

Applications and Experiments

This chapter demonstrates applications and experiments of our work. We design two
artificial databases in each of which there exists a problem that will be tackled by our
work. In the first case, we introduce the architecture of a system to recover database,
as much as possible, from a set of queries. Consisting of a parser, a type inference
engine, and a conjugator, the system takes as input a collection of SQL queries and
generates a schema tableau of the database. In the second case, we employ the schema
tableau to build a data structure to help manage stored procedures. Solving these
problems is motivation of our work, too.

We also perform the initial set of experiments on realistic inputs, the suite of
queries of TPC-H, which has broad industry-wide relevance with a high degree of

complexity. The experiment results are analysed and summarised as well.
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4.1 Application: Discovering the Database

Assume we have a crucial application which relies on some antiquated RDBMS. For
some reasons, say, the vendor ran out of business, and the system is no more sup-
ported. Or even worse, it crashed before the user has the chance to migrate to a
modern DBMS. Since the application is critical , the user cannot afford to lose the
data and have to recover the system as much as possible. Fortunately, there is a
reasonably comprehensive set of queries available, for example, embedded in some
host language. In such a situation, our work could come to the rescue. Incorporated
with other techniques of reverse engineering, we believe the system can be restored

to some extent.

The Architecture

The steps of the discovering are illustrated in Figure 4. Each query is fed as input
to the SQL parser, which will generate a regular parse tree accordingly. The parse
tree is then run on the type inference engine and results in tableau, which specifies
the database schema information inferable from the SQL expression. The tableaux
associated with roots of parse trees are merged to form a tableau for the set of queries

under discussion. Usually, there are many instantiations that satisfy the tableau.

Outputs and Analysis

Attributes, data types, and positions can be reconstructed to some extend by this way,

depending on the 'quality’ of the queries. The more comprehensive the queries are,
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SQL Queries

SQL Parser

Parse Trees

Type Inference Engine

Tableaux

Tableaux Merger

l

Tableaux for Queries

Figure 4: From Queries to Tableaux

the more we will find out. Ideally, we hope the scopes of <FromList> as restricted
as possible, namely the relations involved as few as possible, and the number of
attributes as many as possible. This is the most direct way to locate the scopes of
attributes. If an attribute is known to be in two scopes, independently inferred from
different sources, then we could further narrow down the scope of the attribute to
the overlapping part of the two, as the merger does. This is based on the assumption
that attribute names are unique across the database.

Additionally, we identify a set of candidate pairs for relationships among tables.
We argue that the attributes that are compared in where clause are good candidates

for relationships, in that we often take use of relationships by comparing attributes
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on two sides of relationships. However, this is just one side of the situation. While
we tend to compare two sides of relationships, all comparisons are not necessarily
involved in attributes of relationships. Nonetheless, an entity in third normal form
would represent only one theme, it is less likely there are more than one attribute
with same semantics.

Assume we have tables students and marks:

students(Fname char(10), Lname char(10), ID char(10), Phone char(10)),
and

marks (StudentID char(10), Course char(10), Mark double).

While nothing prevents one posing an ad hoc query such as

Select Phone From students, marks Where Fname = Course.
since attributes Fname and Course are of same type, we expect more meaningful
queries such as

Select ID, Course, Mark From students, marks Where ID = StudentID.

As for the multiplicity of relationships, it cannot be decided by this work itself. To
ultimately determine it, we need to look into other available information. For exam-
ple, investigation at instance level can provide information that cannot be obtained
from schema level. Linguistic analysis technique is used to evaluating description in
some prototypes, too. In fact, this is a schema matching issue that attracts more and

more attention [13].
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tA |t
tD | string
tG |t
I
§
r A |t ‘ 5D | string
B |date ‘ s B | date
r C |string s B | date
s F | string

Figure 5: An Illustrative Example

An Illustrative Example

Fix a database schema as shown in Figure 5, so that we can compare it with what we
will discover. The arrows point in the direction of one-to-many relationships between
tables. There are three tables, R, S and 7. The naming convention is attributes
are preceded by table names, such that each attribute name is unique across the
database. We treat each attribute name as a string and do not infer any information
from the table names. For example, we do not know attribute R_A is from table R
by the string itself.

We assume the DBMS supports only the following types: int, double, date, string.
The types int and double are comparable as assumed elsewhere. Hence they are
subtypes of a more general type, called number.

The set of queries and their type formulas are:
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1. Query 1

Select R_A, R_B
From R, T
Where R_A = T_A

and T_D like ’%computeri’

Its schema tableau is shown in Figure 6.

(RRA:z):RVT
(T/A:z):RVT
(RB:_):RVT
(T_D : string): RVT

R | {}*
T | {}x

Figure 6: Schema Tableau of Query 1

2. Query 2

Select T_D, S_B
From T, S
Where T_D = S_D
And S_B > (
Select R_B
From R
Where R_A = 100
)

Its schema tableau is shown in Figure 7.

3. Query 3
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(T-D:z):TVS
(S.B:y):TVvS
(SD:z):TVS

R | {R_A: number, R_B : y}x
S| {}*

Figure 7: Schema Tableau of Query 2

Select S_D
From R, S
Where R_B Between S_B And S_E

And S_E < date ’1998-10-22°

Its schema tableau is shown in Figure 8.

(SSD:z):RVS

(R-B:date): RV S
(S-B:date):TVS
(S.E :date): TV S

R | {}*
S| {}x
T | {}x*

Figure 8: Schema Tableau of Query 3

(T_A : number): RVT
(S_E : date): RV S

{R_A : number, R_B : date}x
{T_D : string}x
{5_D : z,5_B : date}*

W+

Figure 9: Schema tableau of Queries 1, 2, and 3

Schema tableau obtained from Queries 1, 2 and 3 is shown in Figure 9.
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s E IS

Figure 10: Database Schema Comprehension — Example

The result is shown in Figure 10. If an attributes is preceded by a question mark,
it means the known scope of the attribute cover more than one tables. The attribute
belongs to only one tables, but we do not know which one precisely. R_A and S_E
are such attributes. R_A is possible from r or t, while S_E is possible from R or S.
There are also attributes with a bar, such as R_C, which means we do not know the

existence of them.

4.2 Application: Stored Procedure Maintenance

A stored procedure is a precompiled collection of Transact-SQL statements stored
under a name and processed as a unit that users can call from within another Transact-
SQL statement or from the client applications .

Using stored procedures has several advantages over giving direct users direct
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access to the underlying data [16]. Firstly, it improves the performance. Stored
Procedures run quickly because they do not need to repeat parsing, optimising and
compiling with each execution. Moreover, stored procedures reduce the loading of
client computer and the network traffic, which results in increasing speed, as they
run on the server side. Secondly, Stored procedures can be used to enhance security
and hide underlying data objects from unauthorised users. For example, you can give
the users permission to execute the stored procedure to work with a restricted set of
the columns and data, while not allowing permissions to select or update underlying
data objects. By using the store procedures, the permission management could also
be simplified. You can grant EXECUTE permission on the stored procedure instead
of granting permissions on the underlying data objects. Thirdly, Stored procedures
can be used to enhance the reliability of your application. For example, if all clients
use the same stored procedures to update the database, the code base is smaller and
easier to troubleshoot for any problems. In this case, everyone is updating tables in
the same order and there will be less risk of deadlocks. Stored procedures can be
used to conceal the changes in database design too. For example, if you denormalize
your database design to provide faster query performance, you need only to change
the stored procedure, but applications that use the results returned by this stored
procedure, will not be rewritten.

Assume we have tables R and S, with the following schemas

R : ((A,int), (B, char(20)), (C,int))
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and
S {((D,int), (E,int), (F, char(20))).
And we have the query:

Select A, D
From R, S
Where A = F
And A = 10

And E like ’%tom’

where 10 and fom are user inputs.
Assume data types the DBMS supports are int, double, char. And int is com-
parable with double. Let us call the family of int and double number. Using our

algorithm, the type formula of this query is shown in the following tableau.

(A :number): RV S
(D:):RVS
(E:char): RV S
(F': number): RV S

{1+
{3

w| =

Now we write an equivalent stored procedure, that takes two parameters. Syntax
of creating stored procedures differs from one DBMS to another, but most would be

similar to the following:

Create or Replace Procedure myProc
inputl IN int,
input2 IN char(10),

outputl OUT int,
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create or replace procedure myProc

as
begin

end

S l create or replace procedure myProc2

T

as
begin

end

index on table names

stored procedure sources

buckets

Figure 11: Maintenance of Stored Procedures

output2 OUT char(20)

As
Begin
Select A, D

into outputl, output2
From R, S
Where A = F

And A > inputl

And E like (%input2})
End

If the structures of R and S are changed, this query may or may not be valid. If

column C' is dropped, it is not affected. However, if column F is dropped, then the
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query is not valid any more. This is also the case of the stored procedure.

When the schema of a table changes, the DBMS should respond accordingly to
maintain the integrity of the database. Among what needed to be examined are those
stored procedures related to the table and ensure these stored procedures still valid,
and prompt the user to take proper step when the schema change affects the validity
of some stored procedures. The type formulas of stored procedures can be used as a
tool to help perform this task efficiently, along with other techniques such as indexing

on tables. Figure 11 is an illustration of the idea.

4.3 Experiments on TPC-H

This section describes the initial set of experiments concerning the usability of our
algorithm. We design a system that takes as input a collection of SQL expression and
generates a type context of the database. The system consists of a parser, and type
inference engine, and a conjugator. Then we run the system manually on the suite
of queries of TPC-H, which has broad industry-wide relevance with a high degree of

complexity. The results are presented.

What is TPC-H

The TPC Benchmark™ H (TPC-H) is a decision support benchmark. It consists
of a suite of business oriented ad-hoc queries and concurrent data modifications.
The queries and the data populating the database have been chosen to have broad

industry-wide relevance [18].
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This benchmark illustrates decision support systems that

¢ Examine large volumes of data;

o Eixecute queries with a high degree of complexity;

¢ Give answers to critical business questions.

The performance metric reported by TPC-H is called the TPC-H Composite
Query-per-Hour Performance Metric (QphH@Size), and reflects multiple aspects of
the capability of the system to process queries. These aspects include the selected
database size against which the queries are executed, the query processing power when
queries are submitted by a single stream, and the query throughput when queries are

submitted by multiple concurrent users. The TPC-H Price/Performance metric is

expressed as $/QphH@Size.

Why Use TPC-H Queries As Input?

We choose TPC-H queries as input for our algorithm because they are representative
of complex business analysis applications. They have been given in a realistic context,
portraying the activity of a wholesale supplier to help the reader relate intuitively to

the components of the benchmark. The queries have following characteristics:

e Give answers to real-world business questions;

e They are of an ad hoc nature;

e Are far more complex than most OLAP transactions;
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¢ Include a rich breadth of operators and selectivity constraints;

o Generate intensive activity on the part of the database server component of the

system under test;

o Are executed against a database complying to specific population and scaling

requirements;

o Are implemented with constraints derived from staying closely synchronised

with an on-line production database.

o They all differ from each other;

Business and Application Environment

TPC-H does not represent the activity of any particular business segment, but rather
any industry which must manage , sell or distribute a product worldwide (e.g., car
rental, food distribution , parts, suppliers, etc.). TPC-H does not attempt to be a
model of how to build an actual information analysis application.

These selected queries provide answers to the following classes of business analysis:

¢ Pricing and promotions;

e Supply and demand management;

e Profit and revenue management;

Customer study;
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MFGR AVAILQTY SUPPKEY ORDERSTATUS
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Figure 12: TPC-H Schema

o Market share study;

¢ Shipping management;

Database Entities, Relationships, and Characteristics

The components of the TPC-H database are defined to consist of eight separate and

individual tables (the Base Tables). The relationships between columns of these tables

are illustrated in Figure 12.

A Glimpse of A Few Queries

We provide details of a few queries and the primitive output of each query, followed by

a summary. The reader may want to find out details of other queries in the Appendix.
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Note the output of a query is a view and it is less relevant in terms of discovering

attribute information from base tables, unless it is fed as an input of next operation.

We show the more relevant type context only for each query, for brevity too.

In TPC-H, the attribute names are proceeded by relation names, for example,

n_nationkey and r_nationkey, such that each attribute is unique across the database.

We adopt this assumption as well.

1. Pricing Summary Report Query (Q1)

This query reports the amount of business that was billed, shipped, and re-

turned.

(a)

Business Question

The pricing Summary Report Query provides a summary pricing report
for all lineitems shipped as of a given date. The date is within 60-120 days
of the greatest ship date contained in the database. The query lists totals
for extended price, discounted extended price, discounted extended price
plus tax, average quantity, average extended price, and average discount.
These aggregates are grouped by returnflag and linestatus, and listed
in ascending order of returnflag and linestatus. A count of the number

of lineitems in each group is included.

Functional Query Definition

Select
l_returnflag,
l1_linestatus,
Sum(l_quantity) As sum_qty,

68



Sum(1_extendedprice) As sum_base_price,
Sum(1l_extendedprice*(1-1_discount)) As sum_disc_price,
Sum(1l_extendedprice*(1-1_discount)*(1+1_tax)) As sum_charge,
Avg(l_quantity) As avg_qty,
Avg(l_extendedprice) As avg_price,
Avg(1l_discount) As avg_disc,
Count (*) As count_order
From
lineitem
Where
1_shipdate <= date ’1998-12-01’ - interval 90 day
Group By
1l_returnflag,
1_linestatus
Order By
1l_returnflag,
1_linestatus;

(c) The schema tableau is shown in Figure 13.

L | {lreturnflag : _ I linestatus : _,l_quantity : _,l_tax : _ H

[_extendedprice : _, 1l _discount : _ I_shipdate : date}x

Figure 13: Schema Tableau of Query 1

2. Minimum Cost Supplier Query (Q2)

This query finds which supplier should be selected to place an order for a given

part on a given part in a given region.

(a) Business Question
The Minimum Cost Supplier Query finds, in a given region, for each part
of a certain type and size, the supplier who can supply it at minimum cost.

If several suppliers in that region offer the desired part type and size at the
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same (minimum) cost, the query lists the parts from supplies with the 100
highest account balances. For each supplier, the query lists account balance
of the supplier, name and nation; the part’s number and manufacturer; the

supplier’s address, phone number and comment information.

(b) Functional Query Definition

Select
s_acctbal,
s_name,
n_name,
p-partkey,
p_mfgr,
s_address,
s_phone,
s_comment
From
part,
supplier,
partsupp,
nation,
region
Where
p_partkey = ps_partkey
And s_suppkey = ps_suppkey
And p_size = 15
And p_type like ’%Brass’
And s_nationkey = n_nationkey
And n_regionkey = r_regionkey
And r_name = ’Europe’
And ps_supplycost = (
Select
Min(ps_supplycost)
From
partsupp, supplier,
nation, region
Where
p_partkey = ps_partkey
And s_suppkey = ps_suppkey
And s_nationkey = n_nationkey
And n_regionkey = r_regionkey

[
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And r_name = ’Europe’
)
Order By
s_acctbal desc,
n_name,
S_name,
p_partkey;

(c) The schema tableau is shown in Figure 14.

(sacctbal : ) : PVSVPSVNVR
(scname:_): PVSVPSVNVR
(n-name:_.): PVSVPSVNVR
(p-partkey : z,) : PVSVPSVNVR
(p-mfgr:-): PVSVPSVNVR
(s_address:_): PVSVPSVNVR
(sphone: _): PVSVPSVNVR
(s_.comment:_): PVSVPSVNVR
(s_supplykey : zo) : PVSV PSVNVR
(ps_supplykey : z3) : PV SV PSVNVR
(ps_partkey : ) : PV SV PSVNVR
(p-size : number)PV SV PSVNVR
(p-type : char)PV SV PSV NV R
(s_nationkey : z3)PV SV PSV NV R
(n-nationkey : z3) : PV SV PSVNVR
(n-regionkey : z4) : PV SV PSV NV R
(r_regionkey : z4) : PV SVPSVNVR
(r-name : char): PVSVPSVNVR
(ps_supplycost : ) : SV PSVNVR

P | {}x
R | {}x
N | {}x
S | {}«
PS | {}«

Figure 14: Schema Tableau of Query 2

3. Shipping Priority Query (Q3)

This query retrieves the 10 unshipped orders with the highest value.
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(a)

()

Business Question

The shipping Priority Query retrieves the shipping priority and poten-
tial revenue, defined as the sum of 1_extendedprice * (1-1_discount),
of the orders having the largest revenue among those that had not been
shipped as of a given date. Orders are listed in decreasing order of revenue.
If more that 10 unshipped orders exist, only the 10 orders with the largest

revenue are listed.

Functional Query Definition

Select
1_orderkey,
Sum(1_extendedprice*(1-1_discount)) As revenue,
o_orderdate,
o_shippriority
From
customer,
orders,
lineitem
Where
c_mktsegment = ’Building’
And c_custkey = o_custkey
And 1_orderkey = o_orderkey
And o_orderdate < date ’1995-03-15°
And 1_shipdate > date ’1995-05-15°
Group By
1_orderkey,
o_orderdate,
o_shippriority
Order By
revenue Desc,
o_orderdate;

Schema tableau is shown in Figure 15
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(o_orderdate : date) : CV OV L
(o_shippriority : ) : CVOV L
(comarketsegment : char) : CV OV L
({_shipdate : date) : CVOV L
(I_extendedprice : ) : CVOV L
(I_discount: _): CVOVL
(lorderkey : z9) : CVOV L
(c.custkey :z1) : CVOVL
(o-custkey : x1) :CVOV L

(

0
o_ortherkey : z3) : CVOV L

L | {}x
C i {}x
O | {}x

Figure 15: Schema Tableau of Query 3

Findings of the Experiment

As mentioned earlier, one goal of the experiment is to find out as much information
of attributes and relations as possible. We want to know what attributes there are in
a certain table. If we can locate it exactly, we want to know the scope of the attribute
as precisely as possible. The test exhibits a very good results in terms of the amount
of such information discovered. We found 35 out of 61 attributes are located exactly
in the relation they belong to, which amounts to a ratio of 57.3 % of all the attributes.
The scope of 8.2% of attributes is limited to two relation; namely, these attributes
exist in one of two relations we know, but we don not know which relation they

exactly exist. In total, the scope of 29.5% of attributes are narrowed down to some

extent, in addition to the 57.3% that are precisely determined. We unsurprisingly

have no clue about the rest of 13.1% of attributes, which are not mentioned at all.
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Attribute Scope In | Number of Attributes | Percentage (%)
1 Relation 35 57.37

2 Relations 5 8.2

3 Relations 7 11.46

4 Relations 4 6.55

5 Relations 2 3.27

N.A 8 13.11

Table 1: Summary of All Relations

Note the assumption adopted is every attribute name is unique, which is a re-
strict one. Under such assumption, n_nationkey and r_nationkey are two distinct
attributes, and we don’t infer any extra information, for instance, from an expression
n nationkey = r_nationkey except their data type are the same. Realistic assump-
tions are usually more relaxed than this. It is a convention to proceed a certain subset
of attributes by relation names, hence it implies attribute nationkey appears in both
relation N and R by the expression n.nationkey =r.nationkey. Therefore, one can
expect more information are inferable if a more realistic assumption is adopted.

The result is summarised in Table 1. The detail of each table is shown in Table 3
to Table 10 in the next subsection.

As for the data types of the attributes, we find out the data type family of 22
attributes, that amounts to 36.1% of all attributes. By data type family, we mean
we do not know the precise data type. To pinpoint the exact data type by SQL
expression, we need to know the built-in data types of the DBMS under examination,
and we need some heuristics and estimation. For example, by o_orderdate >= date

’12-Mar-2001’, we can conclude that attribute o_orderdate is of type date, if we
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know the DBMS does use it to describe the general concept of time. Similarly, by
nname = ’Japan’, we can say attribute n_.name is of char. However, we should be
careful to infer the data type of attribute {_quantity from expression 1_quantity =
3. It could be int or real, if the DBMS supports both. Nonetheless, since int and
real are in the same family of hierarchy, and thus comparable, in most DBMS. We are
safe to say it is of this type family of hierarchy. If more information is available, such
as 1_partkey = ’computer’, then we may be able to arrive at a conclusion closer to
the truth based on our experience.

Other facts gathered by our work lead to some interesting finding as well. Ob-
taining knowledge of the relationships of an information system allows a better un-
derstanding of it. Researchers proposed an array of diversified approaches to extract
relationships through database reverse engineering [15]. Experimental results of our

work indicates our finding provides important evidence in determine relationships.

Our Finding Relationships
T (p-partkey) =T (ps_partkey) l:n
T (s_suppkey) =T (ps_suppkey) 1:n
T (n_nationkey) =T (s_nationkey) |1:n
T (n_nationkey) =T (c_nationkey) |1:n
T (ps_partkey) =T (I_partkey) l:n
T (ps_suppkey) =T (I_partkey) l:n
T (c_custkey) =T (o_custkey) l:n
T (o-orderkey) =T (I_orderkey) l:n
T ({_commitdate) =T (I_receiptdate | None

Table 2: Relationships Discovery

We note that the multiplicities are not determined by our work. Other techniques,
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such as exploring instance-level data, can give important insight into the contents and
meaning of schema elements. This is especially true when useful schema information
is limited [5].

However, we barely find any information concerning the position of the attributes
and the arity of the relations. This is because the information of position and arity
is inferred for the union operator, which does not exist in this set of queries. This
finding indicates the position of attribute is an implementation issue, which does not
have impact on all queries.

Figure 16 illustrates our discovery of the eight tables in a comparable manner to
the actual database. In Figure 16-(a), some attributes are preceded by a question
mark, which means there is evidence that those attributes may be part of the tables.
Attributes p_container and ps_supplycost are such attributes. The degree of certainty
of this belief is different from one to another of these attributes, which is summarised
in Figure 16-(b). For example, p_container is possible from one of P or L, while the
scope of ps_supplycost is one of P, S, or N. There are also attributes with a bar, such
as p_partsupp, which means we do not know the existence of them.

Other results of the experiments are listed here, including the discovery of data

type, and the scopes of attributes for each relation.
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PART

PARTSUPP

LINEITEM ORDERS
PARTKEY | PARTKEY ORDERKEY ORDERKEY
NAME T SUPPKEY PARTKEY ? CUSTKEY
? MFGR AVAILQTY SUPPKEY ? ORDERSTATUS
BRAND 2 SUPPLYCOST LINENUMBER ? TOTALPROCE
TYPE - QUANTITY ORDERDATE
SIZE EXTENDEDPRICE | | ORDERPRICRITY
? CONTAINER || custonen DISCOUNT SLSE;:;RIORITY
RETAILPRICE ] X !
OMMER— || | CUSTREY RETURNFLAG [COMMENT— |
? NAME LINESTATUS
2 ADDRESS SHPOATE
~| 2 NATIONKEY COVMITORTE
SUPPLIER PHONE RECEIPTDATE
SUPPKEY T | | ACCTBAL 2 SHIOINSTRUCT
NAME ? MKSEGMENT SHIPMODE
-ABBRESS— 2 COMMENT SOMMENT
2 NATIONKEY |
PHONE AL NATION REGION (a)
?ACCTBAL | [ NATIONKEY ? REGIONKEY
OOMMENT— NAME 2 NAME
REGIONKEY COMMENT—
TOMMENT—
P_CONTAINER | 7P,L
S_NATIONKEY 78N
L_LINENUMBER | 7P,L
C_CUSTKEY 7C,0
0_CUSTKEY 70,C
PS_SUPPLYCOST | 7PS,S,N
C_NAME 1CL,0
C_MKTSEGMENT | 7C,L,0
O_TOTALPRICE 70,C,L
O_SHIPPRIORITY | ?70,C,L
R_REGIONKEY | 7R, S,N
R_NAME 7R,5,N
C_ADDRESS ?7C,L,O,N
C_NATIONKEY | ?C,L,O,N ®)
C_COMMENT  [?7C,L,O,N
O_ORDERSTATUS | 70, S,L,N
P_MEGR 7P,5,PS,N,R

7

Figure 16: TPC-H Database Schema Comprehension




Relation | Attribute | Discovery
Part Partkey P
Name P
MFGR PvSVPSVNVRe
Brand P
Type P
Size P
Container | PV L
Retailprice
Comment

Table 3: Summary of Relation Part

Relation | Attribute | Discovery
Supplier | Suppkey | S

Name S

Address

Nationkey | SV N

Phone S

Acctbal Pv SVPSV NV R

Comment | S

Table 4: Summary of Relation Supplier

Relation | Attribute | Discovery

Partsupp | Partkey PS

Suppkey PS

Availqty PS

Supplycost | SV PS VvV N

Comment

Table 5: Summary of Relation Partsupp
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Relation

Attribute

Discovery

Lineitem

Orderkey

L

Partkey

L

Suppkey

L

Linenumber

Quantity

Extendedprice

Discount

Tax

Returnflag

Linestatus

Shipdate

Commitdate

Receiptdate

Shipinstruct

Shipmode

o e e e e e e e ey e

Comment

Table 6: Summary of Relation Lineitem

Relation | Attribute Discovery
Costumer | Custkey CvoO
Name LvCvO
Address LVvCVvOVN
Nationkey LvCvOVN
Phone C
Acctbal C
Mktsegment | LV CV O
Comment LVCVOVN

Table 7: Summary of Relation Costumer
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Relation | Attribute Discovery
Orders | Orderkey O
Custkey ovC
Orderstatus |SVLVOVN
Totalprice Cv OV L
Orderdate 0]
Orderpriority | O
clerk C
shippriority | Cv OV L
Comment
Table 8: Summary of Relation Orders
Relation | Attribute | Discovery
Nation | Nationkey | N
Name N
Regionkey | N
Comment

Table 9: Summary of Relation Nation

Relation | Attribute | Discovery

Region | Regionkey | SV N V R
Name SVNVR
Comment

Table 10: Summary of Relation Region
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Chapter 5

Conclusions and Future Work

We have studied the SQL version of type inference problem: given an SQL query
g, under which database schema ¢ is well-typed? We have developed a framework
for type inference in SQL. First we have formally defined schema as a mapping from
Rels, Attrs and N to a data type 7. Then we have considered grammar Gggy, that
covers the core features of the standard SQL. The important characteristic is that
there is a set of semantic rules besides the syntactic rules such that a “meaning” is
assigned to string generated by the grammar. Furthermore, we have shown Gggy, is
unambiguous and well-defined. We have defined when a schema S satisfies a query
string q.

Since potentially we need to deal with incomplete database schemas, we have pro-
posed a powerful conditional-table-like representation called schema tableau, which
are associated with nodes of the derivation trees of query strings. We have also in-

troduced an important operator, merge, on schema tableaux, and a set of rules to
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compute schema tableaux.

We have established that schemas satisfying nodes of the derivation trees can be
represented by schema tableau. Furthermore, the schema tableau can be compute
using the rules devised.

In addition to the theoretical significance, we have shown our work fits in many
applications from reverse engineering to recent trend of programming such as main-
tenance of stored procedures. Having illustrated the idea in a few artificial database
applications, including a manner to merge schema tableaux obtained from each query
string, we have applied the approach on the suite of TPC-H queries which has broad
industry-wide relevance with a high degree of complexity. The experiment and re-
sults indicate the framework proposed is useful for database schema comprehension.
In this experiment, the scopes of 57% of attributes can be precisely located, in addi-
tion to 29.5% of attributes whose scopes can be narrowed down to some extent. This
system also generates quality candidates of relationships among tables. The results
exhibits an potential that in a broader context such as automatic schema matching,
the framework proposed can land itself as a tool as well.

Expanding the set of inference rules to cover other SQL statements is among
topics of future work. In this work, we have focused on a typical subset of SQL
query language. But the concept can migrate smoothly to this goal. We would like
to implement the system described in Figure 4 such that it can run on real DBMS.
We would like to explore the complexity of testing whether a given query q is well-

typed. The typability of a query can be efficiently reduced to satisfiability of MFO
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sentences. And the latter problem is known to be decidable in non-deterministic
time 20(/logn) Tt remains to be investigated whether we can improve it. Type
checking attracts attention in semistructured data lately [17], and we would like to
look into related issues in the context of semi-structured data models rather than
the relational data model can be a avenue of future work. Query languages for these
models are essentially schema-independent, since the assumption of a given fixed
schema is relaxed or even abandoned. Nevertheless, querying is more effective if at

least some form of schema is available, computed from the particular instance [4, 2].
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