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ABSTRACT

Impulse Control of Harmonic Drive Motors for High Precision Positioning

Applications

Yu Kun Yang

Harmonic drive motors are widely used in precision control systems due to several
advantages such as zero backlash, high gear ratio, compact size and light weight. However, the
combination of friction and flexibility in harmonic drives often limits the performance in
positioning applications when using conventional control methods. One problem that often
occurs is that the system sticks before the desired position is reached. An alternative and
effective solution is to apply a large impulse input for a very short period of time to achieve small
motion increments.

In this thesis, a new control approach using impulse inputs is developed to improve the
resolution of harmonic drive motors. The main objective is to achieve maximum resolution in
the presence of high friction levels. A model capable of predicting the impulse response of
harmonic drive motors is developed and used to guide the development of an optimal impulse
waveform that is robust to parameter variations. The optimal input is then used in the
development of an adaptive impulse control method. The performance of the approach is
verified with extensive simulations and experiments. Use of the impulse control method
demonstrates that the resolution of harmonic drive motors can be increased by more than an order
of magnitude. Together, these results provide an effective new approach for control of harmonic

drive motors in high precision positioning applications.
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Chapter 1 Introduction

1.1 Motivation

Precise position control using harmonic drive motors is very important for many
industrial applications. For example, in the optoelectronic automation industry, the
process of attaching optical fibres to optoelectronic devices (pigtailing) requires
submicron alignment accuracy in positioning. A robotic manipulator was previously
developed to automate such precise optical alignments [1]. The key parts of this
manipulator are two arms driven by harmonic drive motors and one linear stage actuated

by a timing belt driven lead screw. Figure 1-1 illustrates the manipulator.

Figure 1-1 The robotic manipulator



1.2 Research objectives

The main objective of this thesis is to develop a new control approach using impulse
inputs to improve the positioning precision of harmonic drive motors. A model capable
of predicting the impulse response of harmonic drive motors is developed and used to
guide the development of an optimal impulse waveform that is robust to parameter
variations. The optimal input is then used in the development of an adaptive impulse
control method. The performance of the approach is verified with extensive simulations

and experiments on the manipulator introduced in the previous section.

1.3 Literature review

This thesis mainly deals with following areas: friction measurement and modelling,
harmonic drive, and impulse control. In the following literature overview, the above

three areas are presented respectively.

1.3.1 Friction modelling

Friction force is proportional to load, opposes the motion, and is independent of the
contact area—this was all known to Leonardo Da Vinci in 1519. Da Vinci’s friction
model was rediscovered by Amontons (1699) and developed by Coulomb (1785), among
others in the field. = Amontons’ claim that friction is independent of the contact area
(the second of Da Vinci’s laws) originally attracted scepticism, .but was soon verified.

Morin (1833) introduced the idea of static friction and Reynolds (1866) introduced the



equation of viscous fluid flow, completing the friction model that is most commonly used
in engineering: the static + Coulomb + viscous friction model.

The science of tribology, Greek for the study of rubbing, was pioneered in England
in the 1930s.  Basic questions of wear mechanisms, true contact area, relationships
between friction, material properties, and lubricating processes were addressed and
answered. Dowson (1979) wrote an engaging work that illuminates the 3000 year
history of humankind’s attempts to understand and modify friction. Hamrock’s work
(1986) is a brief handbook survey of the relevant methods of tribology and Halling
(1975) provides a survey that is rigorous, not overly detailed but sufficiently sweeping to
address such issues as friction induced instability and solid lubrication. Ludema’s work
(1988) is an interesting critique of tribology and the cultural barriers of interdisciplinary
pursuits, and Rabinowicz (1978) presents a discussion of the priorities of tribology.

So far, about thirty friction models have been presented. Dahl (1968) concluded
that for small motions, a junction in static friction behaves like a spring; he then
considered the implications for control.  There is a displacement (presliding
displacement) that is an approximately linear function of the applied force, up to a critical
force, at which breakaway occurs.  In 1985, Karnopp proposed an improved friction
model. In 1991, D.A. Haessig et al. presented two new models [19]. One is the
“bristle model” which is an approximation designed to capture the physical phenomenon
of sticking. However, numerically, it is relatively inefficient. The second model is
called the “reset integrator model” and it is numerically efficient and exhibits behaviour
similar to Kamopp’s model, but it does not capture the details of the sticking

phenomenon. All above four models poorly represent friction force at zero velocity.



A dynamic friction model was proposed by C. Canudas de Wit et al. in 1995 [21].
The model, called the LuGre model, captures most of the friction behaviour that has been
observed experimentally. This includes the Stribeck effect, hysteresis, spring-like
characteristics for stiction, and varying breakaway force. This model was compared
with a standard simple kinetic friction model (KFM) by Friedhelm Altpeter et al. through
a singular perturbation analysis [23]. They concluded that in a unidirectional motion
and Fs=Fc, KFM is sufficient to model friction. However, if Fs #Fc, the LuGre model
captures more dynamic properties. The LuGre model was also tested experimentally by
Rafael Kelly[24] . C. Canudas de Wit’s experimental results validated the LuGre
friction model in an adaptive control scheme with friction compensation [27]. In his
Ph.D. thesis, Prasanna S. Gandhi uses the LuGre model to identify the friction in
harmonic drives [2][10].

The shortcomings of the LuGre model lie in [22] its inability to account for nonlocal
memory and in that it cannot accommodate arbitrary displacement-force transition curves.
Jan Swevers et al. [22] proposed a new dynamic friction model that overcomes the
shortcomings mentioned above. This model allows accurate modelling both in the
sliding and the presliding regimes. However, no literature was found to use this model
in real applications.

In recent years, many other friction models have been proposed. Fitsum A. Tariku
et al. [25] proposed two dynamic models for simulation of one-dimensional and
two-dimensional stick-slip motion. Ruh-Hua Wu et al. [26] presented a modified
Coulomb friction model integrating presliding displacement in the microsliding regime.

Milos R. Popovic et al. [30] noticed that most friction models available describe friction



only as a function of velocity. This is not always true. In many cases, friction is
dependent on position; for example, with harmonic drives. Milos proposed a new
spectral-based modelling technique that ably describes nonlinear friction as a function of

position and velocity.

1.3.2 Harmonic drive

Harmonic drive has captured more and more researchers' attention in the last decades.
Because it has many advantages including near-zero backlash, high gear reduction ratio
and compact design, it is more and more widely used in precision control systems. On
the other hand, the nonlinear attributes are responsible for performance degradation.
Therefore, accurate modelling of these nonlinear attributes is critical for the use of
harmonic drives. Hamid D. Taghirad et al. [3] developed an overall friction model for
harmonic drives and Timothy D. Tuttle et al. (1996) developed a nonlinear harmonic
drive model [13]. This latter model captures most nonlinear behaviours, such as
kinematic error, friction, and flexibility. Hamid D. Taghirad also modelled the harmonic
drive including friction and compliance in his Ph.D. thesis [3][8]. However, the above
two models do not consider the position dependent friction. Prasanna S. Gandhi (2001)
proposed an overall model for harmonic drives [2]. He modelled all main nonlinear
attributes in the harmonic drive such as kinematic error, hysteresis, and friction. He first
observed the position dependent friction in harmonic drives, and used the Fourier series
to model the position dependent friction. He also came up with a new hysteresis model
for harmonic drives. In his friction model, he only considered one revolution friction on

motor side, and did not observe that the friction in harmonic drives is also dependent on



load side position.

Han Su Jeon [36] studied the vibration in harmonic drives from a material point of
view. He studied the different materials and found that they will result in different
natural frequencies in harmonic drives. This is the first literature on the vibration of

harmonic drive that so far has been found.

1.3.3 Impulse control

Several researchers have developed impulse controllers to position mechanical
systems precisely. Hojjat and Higuchi [20] presented an apparatus designed especially
to demonstrate impulse control; Sangsik Yang and M. Tomizuka [32] developed an
adaptive impulse controller in 1988; M.R.Popovic, D.M.Gorinevsky and A.A.Goldenberg
[18] tested the displacement for different pulse amplitudes and different durations, and
designed an impulse controller based on the experimental results; Armstrong and
Armstrong-Helouvry [20] demonstrated an impulse controller on a industrial PUMA
robot; and Brandon W. Gordon [1] used impulse to position a fibre alignment manipulator
in his master’s thesis [1]. All of the above impulse controllers satisfy control precision.
Their detailed work will be presented in section 4.1.

Input shaping is a new method to study flexible structure vibration. Some recent

papers investigate the effect of how time-varying impulses shape sequence on the flexible

structure [38][39].

1.4 Thesis outline and contribution



A new approach for high precision control of harmonic drive motors using impulse
control inputs is presented in this thesis. Chapter 2 develops a dynamic model including
the effects of friction and transmission flexibility. In Chapter 3 identifies the model
experimentally. This model is shown to be capable of accurately predicting the impulse
response of harmonic drive motors and demonstrates a usefulness for the development of
impulse control systems in Chapter 4. Chapter 5 investigates the effect of parameter
variations on impulse response. The determination of an optimal impulse waveform and
pulse rate is also performed. Finally, an adaptive impulse feedback controller is
developed to account for variations in load friction. A large amount of experimental
testing is performed to verify the approach. The conclusions are stated in Chapter 6.

The results of this thesis represent the first known comprehensive study of applying
impulse control to harmonic drive motors for high resolution positioning applications.
This approach demonstrates that resolution can be increased by more than an order of
magnitude over conventional control methods. This will allow harmonic drives to be
economically used in many new applications where high precision positioning capability

is needed.



Chapter 2 Modelling

In order to guide the development of an impulse controller specifically for harmonic
drive motors, a good model for the system is required. This model should include the
main attributes of the system.  This chapter will present a mathematical model for the

system.

2.1 Experimental apparatus

2.1.1 Overall scheme

In order to control the manipulator with a computer, an amplifier and an interface
card are required. The interface card includes A/D, D/A and an encoder accessing
device. Two capacitance sensors are mounted parallel to the arms of the manipulator

and are used to measure the position of the arms.

The overall control scheme is illustrated in Figure 2-1

B Arm
w Interface w Amplifier Rabotic :I
. Card Manipulator Capacitance
3 Sensor
e N EncoderFeedback
Computer i
Capacitance. Sensor Feedback

Figure 2-1 Overall control scheme



In the process of experimentation, some other apparatus are required. These
apparatus are: multi-meter, oscilloscope, and DC power supply. The experimental

apparatus are shown in Figure 2-2.

Figure 2-2 Experiment setup

2.1.2 Robotic manipulator

The manipulator shown in Figure 1-1 was built at MIT. It has three degrees of
freedom: X, Y, Z direction respectively. The X and Y directions are driven by two
harmonic drive motors. The harmonic drive motors are from HD systems INC., model
number Hi-TDrive RH-SA-5502.V The harmonic drive’s gear ratio is 1:80. On both
sides of the manipulator arms, two capacitance sensors are installed to measure the arm

positions. Four sensors are fixed beside the arms. These sensors can be used to find



the same start point for the experiments.

The manipulator is carried by a linear stage (Z-direction) actuated by a DC motor
through a lead screw. The model of the DC motor is the Pittman 8424. The 40 thread
per inch lead screw is driven by a 5:1 timing belt connected to a DC motor.

The RH-5A-5502 harmonic drive motor consists of a DC motor and a harmonic drive
transmission. The output of the harmonic drive is connected to the arm of the

manipulator.

2.1.3 Interface card

The MultiQ-PCI interface card is from Quanser Consulting, Inc. It consists of a
PCI card and an outside connection board. There are 6 encoder input ports, 16 A/D
input ports, 4 D/A output ports and 6 banks of digital I/O on the board. Each bank of

digital I/O has 8 channels, so there are a total 48 I/O channels on the board.

2.1.4 Amplifier

The amplifier is also from Quanser Consulting, Inc. The gain is adjusted to 3 in the
experiments. The measured static input and output relationship is shown in Figure 2-3.
The maximum output of the amplifier is 22.76 V.

Using a signal generator, a bode plot can be obtained as shown in Figure 2-4.
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Figure 2-4 Measured bode plot of amplifier
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2.1.5 Capacitance sensor

The accumeasure 5000 acquisition device is required to connect capacitance sensors.
This acquisition device amplifies the sensor signal to a voltage signal that can be read by
the computer and has dual channels. The measurement can reach nanometer accuracy.
It is ideal for high-precision positioning and vibration applications.

The output signal for each channel is 0 to 10 VDC. The measurement range is 508
um. In this range, the change of voltage corresponding to the change of displacement is
quite linear. Every 1 V voltage change indicates a 50.8 um displacement change in the
arm.

The sensor measurement noise can be filtered by averaging the measured data, as
shown in Figure 2-5. It is apparent that the noise can reach 0.002V (100 nm). If we
take 100 measured data and average them, the accuracy can reach 10 nm. In Chapter 4
and Chapter 5, the data is filtered in this method.

The sensor is mounted parallel to the arm. A 1 um displacement in the sensor

position is equal to the 3.8955¢e-5 radian.
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Figure 2-5 Capacitance sensor noise and filter

2.2 Harmonic drives

One of the key points of this research project is modelling the nonlinear attributes of
the harmonic drives. Harmonic drives are special flexible gear transmission systems
that have a non-conventional construction with teeth meshing at two diametrically
opposite ends. The construction and operation of harmonic drives are in Appendix A
and their advantages are listed in Appendix B. Because of their unique construction and
operation, they have many useful properties. Hence, they are widely used in precision
applications including wafer-handling machines in the semiconductor industry, space
robots, lens grinding machines, and medical equipment. However, these drives possess
nonlinear transmission attributes that are responsible for transmission performance

degradation. The main nonlinear attributes are:

13



Kinematic error - what harmonic drive literature refers to as kinematic error is a
difference between the ideal and the actual output position. In an ideal gear system, one
may expect the gear transmission ratio to be constant and the output position to be
proportional to the input position. However, in harmonic drives, a small amplitude of
periodic kinematic error exists between the ideal and the actual output position, thereby
making the gear ratio dependent on the input position. The error also has a dynamic
component.

Flexibility and presliding - flexibility in a harmonic drive results from various
compliant elements including the flexspline cup, elliptical ball bearing and gear teeth.
Nonlinear interactions of the elliptical ball bearing, the flexspline, and the circular spline
with friction at the contact surfaces along with flexibility effects produce a presliding
signature. Presliding is the flexible displacement in harmonic drives. In mechanical
systems, presliding makes a system’s output have hysteresis attributes. A hysteresis
curve can be obtained by locking its output port and controlling the input displacement to
follow a periodical reference waveform. The displacement, when plotted against the
output (generated due to the periodic motion), gives rise to a hysteresis signature similar
to that shown in Figure 2-6. A similar hysteresis signature in the harmonic drive motors

is measured in Figure 3-3 and is simulated in Figure 5-31 and Figure 5-32.
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Figure 2-6 Typical hysteresis behaviour in the harmonic drives

Friction - friction is a critical problem for precision positioning. Friction in the
harmonic drive, as in any other system, produces nonlinear dynamic effects, especially at
slow velocities and when there is a reversal in the direction motion. The additional
peculiarity of harmonic drive friction is its periodic dependence on the motor or wave
generator position, and also on the load or circular spline position as illustrated in
Chapter 3. The friction in a harmonic drive is very complicated and has significant

influence on positioning.

2.3 Modelling approximations

2.3.1 Initial modelling approximations

The arms of the manipulator are driven by harmonic drive motors. Because the

hysteresis effect in harmonic drives is relatively small, especially in precision impulse

15



control, it can be negligible. A harmonic drive can be modelled as two masses connected
with a spring, as shown in Figure 2-7 [1] (see Appendix A for harmonic drive
construction and operation). The control input acts on the motor and wave-generator
inertia J,,, which is connected via a gear reduction r to the flexspline and arm inertia

J,. The flexibility of the harmonic drive motor plays a significant role in system

dynamics and is modelled using a torsional spring that produces a torque T, .

Figure 2-7 Harmonic drive model

F, and F; stand for frictions in motor side and load side respectively in Figure 2-7.

Newton’s second law is used for both motor and load side:

VoG, =T,+F, —rT, 2-1)

J1g, =T+ F (2-2)
4, and g, are the positions of motor and load inertia; T,,is the motor input torque; T,
is given by:

T =K (rq, —q,) (2-3)
K 1s aspring constant of the harmonic drive.

For the armature controlled motor, the circuit is shown in Figure 2-8.
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Motor torque can be written as

T,=K,i, 24

ut)

Figure 2-8 Motor circuit

K,, 1s the motor torque constant, i, is the armature current. It is apparent that the

a

input voltage is,

cz;’ +K,w, (2-5)

u(t)=i,R+L

where R is armature resistance, L is armature inductance, K, is voltage constant (back
emf), and @, is motor velocity.

From the manual, L = 2.7mH; it is very small and can be neglected. Then

— — bq.m + u(t) (2—6)
¢ R
The substitution of (2-6) into (2-4) yields
K K K
T =——mbg + Myt 2-7
m R It R (0 2-7)
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The substitution of (2-7) and (2-3) into (2-1) and (2-2) yields

1, = F, ~ 1K, (rg, — 4,) —%K—qu +%u(r> (2-8)

Jig, = F + K (rq, —q,) (2-9)

2.3.2 Initial values of parameters

The initial parameter values are listed in Table 2-1.

2.3.3 Friction measurement

2.3.3.1 Friction profile

In order to measure the friction inside the harmonic drive motor, a 1.11 € resistor is
connected in the motor circuit. The motor torque is equal to the torque constant K,

multiplied by the current across the resistor. When the velocity of the motor is constant,
the motor torque is equal to friction.

As mentioned in Chapter 1, friction is dependent not only on motor side position, but
also on load side position. In this manipulator, the arm can move in a range of about 2.6
radians. That is, the motor can move in a range of 2.6x80 = 208 radians. When the
arm moves at a velocity of 0.11 rad/s, the friction in this range is measured as shown in
Figure 2-9. This verifies that the friction in the harmonic drive is quite position

dependent.
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Table 2-1 Initial parameter values

item unit value initial measurement
estimate method

motor side inertia  J, Kgm?* 2.435e-7 | Manual

load side inertia J, K ng 3.51e-5 Estimated

spring constant K Nm/rad 50.42 In Chapter 3

gear ratio r 1:80 Manual

motor torque constant K, | Nm/A 1.11 Manual

voltage constant K, V/rpm 0.12 Manual

armature resistance R Q 8.6 Manual

viscous coefficient in motor | Nm/rad/s 0.0004 In Chapter 2

side b,

viscous coefficient in load | Nm/rad/s 5e-3 Estimated

side b,

motor side static friction | Nm measured in

fom Chapter 2&3

motor side Coulomb friction | Nm measured in

fom Chapter 2&3

load side static friction f,, | Nm 0.0011 In Chapter 3

load side Coulomb friction | Nm 0.0011 In Chapter 3

fa
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From the motor side, the kinematic error between the wave generator and flexspline
causes the friction variation. The friction changes periodically with every motor
revolution, as shown in Figure 2-10. From the load side, the kinematic error between
circular spline and flexspline causes friction change. When the arm moves from 0 to 2.6
radians, the friction decreases. We can conclude that the friction also changes
periodically with the arm position. The period is 21 of the arm position. The average

friction is plotted in Figure 2-11.

0.14
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8 8

motor position (rad)

Figure 2-9 Friction profile in harmonic drive
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Figure 2-11 Average friction
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2.3.3.2 Coulomb friction

In this thesis, a range of about 45 degrees is chosen as the “work-range”. The
friction in the work-range will be measured in detail. The start-point of the work-range
is found by a fixed sensor and the motor encoder index pulse.

When the motor moves at a very low velocity, for example at 0.8 rad/s (the velocity
of the output side of the harmonic drive is 0.01 rad/s), the measured friction can be
considered Coulomb friction. The Coulomb friction profile in the work-range is shown
in Figure 2-12.

The average of the friction in the work-range is shown in Figure 2-13. The shape of
the curve is parabolic.

The average friction torque in the work-range is 0.0635 Nm.

2.3.3.3 Viscous friction

The measured friction in the work-range is quite consistent at different velocities.

For example, the Coulomb friction and friction at a velocity of 2.18 rad/s are shown in

Figure 2-14. The friction at a velocity of 2.18 rad/s is a little bigger than Coulomb

friction. This is the effect of viscous friction.
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Figure 2-12 Coulomb friction in work-range
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Figure 2-13 Average of Coulomb friction
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Figure 2-14 Friction at two different velocities

2.3.3.4 Friction modelling

Because the friction varies periodically and the period is 27, the friction can be
modelled as follows: the average of the friction can be modelled as a parabolic curve,
periodical changes of friction can be modelled as a Fourier series, and the viscous effect
can be modelled as a viscous coefficient multiplied by motor velocity.

The average Coulomb friction is simulated using a second order polynomial:

2
faver = slqm + S2Qm + s3 (2_10)
By using the ‘fminunc’ function in Matlab, it is possible to minimize the Euclidian norm
of error between the simulation and experimental data. The coefficients obtained are:

5,=1.5738e-006 s5,=-3.7901e-004  s,=0.0720
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The simulation and experimental data are plotted in Figure 2-15.
For the periodical term of friction, the first 27 is chosen for our simulation period.
In the period of 0-271t, we remove the average of the friction from the experimental data.

Using the 10™ order of Fourier series to simulate it, the friction can be expressed as:

10
Fro =%+Z[ak cos(kg,, ) + b, sin(kg,,)] 2-11)
k=1

The Fourier coefficients (a, ,b, ) are obtained using numerical integration:

1 2z
a,=— j Foeri (@) c0s(kg,,)dq, (2-12)

0

1 2
bo=— [ £en(a,)sin(kg,)dg, (2-13)

0

The coefficients are obtained in Table 2-2. The experiment and simulation for
periodical friction in the first 27 are shown in Figure 2-16.

The Coulomb friction is the sum of the periodical term and average term:

ay | :
fwul = faver + fperi = slqm2 + sz‘]m + S3 + EO- + Z [ak COS(k qm )+ bk Sln(k qm )]

k=1
(2-14)
The final simulation result of Coulomb friction is shown in Figure 2-17. The
experimental data is also plotted for comparison.
By measuring the friction in the work-range at different velocities as in section
2.3.3.3, and calculating the average value of friction, a viscous tendency can be found
and it is illustrated in Figure 2-18. The minimization of the Euclidian norm of error

between the simulation and experimental data points is shown in Figure 2-18:

fvisc = bm qm +B (2'15)
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b,, = 0.0004 Nm/rad/s, B = 0.0642

The viscous coefficient b, is 0.0004 Nm/rad/s.

Table 2-2 Coefficients of periodical friction

a, 0
a, -0.0039 b, 0.0037

a, 0.0013 b, 0.0098

a, 0.0003 b, 20.0011
a, 0.0041 b, 0.0034

ag 0.0004 b, -0.000677
ag 0.0031 3 -0.0011
a, 0.0017 b, 0.00031
a -0.0017 by -0.00041
a, 0.0010 b, 0.000381
ay 0.0022 by 0.0000
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2.3.3.5 Static friction

Static friction can only be measured while the motor is moving. Therefore, only a
manual measurement method can be used. Because noise exists in the system, and the
kinematic error changes irregularly for different positions, static friction cannot be
averaged between sampling times. The voltage across the 1 Q resistor can be measured
as the input voltage increases. When the motor begins moving, the voltage across the
resistor can be used to calculate the static friction torque. However, the voltage when
the motor starts moving often changes dramatically, and so the measured value is not
accurate. In this thesis, only the static friction in the first 7 radian range is measured.
The result is shown in Figure 2-19. The graph illustrates that there is a consistency
between static and Coulomb friction. The average static friction is larger than that of
Coulomb by about 3.88%. We can simply assume that the static friction is 1.0388 times

that of the Coulomb friction at any position. Static friction f,, (g, ) can therefore be

expressed as:

fsm (qm) = (Sl qr2n+s2 Qm+s3
a 10
2 +3 [, cos(kg, )+b, sin(kg,,)])1.0388 (2-16)
k=1

The simulation result is shown in Figure 2-20.
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2.3.3.6 Overall friction model

We can assume that the viscous coefficient is the same for different positions. This
assumption is reasonable because the conditions affecting the viscous coefficient, such as
lubrication, are the same for the different positions. We also assume that the periodical

friction is not velocity dependent, just that the average friction varies with the velocity.

So the overall friction f,,(q,,.q, ) can be expressed by:
Fm :_l//m lf qm=07 ll//mlsfsm
F, =—sgn(¥,,) fom if  4,=0, |W.|> fu (2-17)

F,=(s qi + 8, q,+5;)%X((gq, -Vc)x0.0004+1)

10
+£2°— +Z [a,cos(kg, )+b,sin(kg,,)]) if g, [>0

k=1
where

K
v, =-rK.(rq,—q,) +7'"u(t)

v, isinput torque when ¢,=0, f,, is calculated in equation (2-16), and Vc=0.8 rad/s

stands for the motor side velocity of Coulomb friction.
2.3.3.7 Average friction model

The measured friction is quite position dependent. In the following precision impulse
control, the control range is about 500um. In this small range, static friction and

Coulomb friction can be averaged and considered constants. The friction used in
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equation (2-8) and (2-9) can be modelled as static + viscous + coulomb. This model is
accurate enough for most engineering applications. The motor side and load side

friction can be written as:

Fm =—l//m if qm=0’ ll//mlsfsm
F, =—sgn¥,) fum if g,=0, |w.|>fa
F, ==580(d,) fo ~ B if |g,|>0 (2-18)

K
v,=-rK.(rq, - q,) +—ﬁu(t)

and
F =-v, if  ¢,=0, |w|</f,
F, =—sgn(y) f, if ¢=0, |w|>/f,
F, =—sgn(q,) f, —b4, if |g,,|>0 (2-19)

l//l = Ks(rqm —ql)
, is the spring torque when ¢,=0, f,, and f, are motor side static friction torque

and Coulomb friction torque. f, and f, are load side static friction torque and

Coulomb friction torque.

2.4 State equations

We define the state variables as:
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xl qm

x2 = qm (2_20)
X3 q,
X4 q,

Then, the equations of (2-8) and (2-9) can be written in state variable format:

X,

K K
(rx, —x,)——2Lx,

J.R

X4
F K
—+—=(rx,—x
J, J,(‘ s)

K
+ —Z-u(t
7 )

33
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Chapter 3 Parameter Identification

The parameters used in the mathematic models should be accurate. In this chapter,
the parameters are identified in order to make the simulation as close to the experiment as

possible.

3.1 Initial parameter estimates

3.1.1 Armature resistance R

From the manual, the armature resistance of the RH-5A-5502 harmonic drive motor
is R= 8.6€2. The armature resistance of the harmonic drive motor can also be tested
manually by moving the motor in one direction, and using a multi-meter to measure the
armature resistance for every 2 degrees. The measured armature resistance is plotted in
Figure 3-1. Since noise exists in the measurement, there are spikes in the graph. The
measured resistance is not accurate. The average value of R will be tuned in the

following sections.

3.1.2 Spring constant K

The harmonic drive has some flexibility. That is, when torque is applied between
the input and output, there is elastic deformation between them. The spring torque can

be expressed as:
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In order to measure the spring constant K _, the load side position g, is fixed, and
when torque is applied to the motor side, the motor position g, is obtained. A series
of g, and their corresponding torque are obtained through an experiment, as shown in
Figure 3-2.

From the above experimental data, K, can be calculated. That is, K =0.00275

Nm/encoder count. If it is equivalent to the load side, the spring constant is 50.42
Nm/rad.

3.1.3 Presliding displacement

When the motor is driven forward and then backward, the motor position and arm
position can be measured as demonstrated by Figure 3-3. The hysteresis signature can
be clearly seen. From this figure, the average presliding displacement can also be

obtained. The presliding displacement 2A0 is equal to the 0.7942 encoder count.

arm displacement (um)

encoder count

Figure 3-3 Hysteresis signature in harmonic drive
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3.1.4 Parameters classification

All of the parameters listed in Table 2-1 are significant except the motor side and
load side viscous coefficients. This is because the viscous coefficients are very small
and have a very small effect on the simulation and experimental results. The other
parameters are important because they have a much stronger effect on the system’s output.
The parameters can be classified as:

1) Significant parameters: J,,J,, K,, K,,R, K., f.. (f..). fa (f4)

2) Insignificant parameters: b, b,

m

b, and K  have been already measured. K, is believed to be accurate from the
manual. So these parameters can also be classified in another way:

A) Parameters that are well known: K, K, ,b,

B) Parameters that are not well known: J,,J,,K,,R, b, f.,, (f..) fa (fi)

In the precision position control, the control range is normally very small. Friction
can be considered a constant average value in that small range. In the following tuning
process, the static frictions both in motor side and load side are assumed to be equal to

Coulomb friction. Where f,, = f,,, and f,=f,. The constant average frictions are

not known now and are still classified as not well-known parameters.
Now we define those parameters that are important but not well known as ‘tuneable
parameters’. These parameters are: J,, f..,K,, R,J,, and f,. The first four

parameters have more effect on the motor side position, but they also have an effect on

load side position. The last two parameters have less effect on the motor side position,
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but they do have much effect on the load side position.

There are two steps in the following tuning process: first, J, , f,,,K, and R are
tuned to make motor side simulation results consistent with the experiment. Second,
J,and f, are tuned to make the load side simulation results consistent with the
experiment. Because the capacitance sensor can only measure load side positions in a
region of 508 um, it is hard to keep the low-frequency open-loop experiment in that

range. Instead, we use a close-loop experiment with small proportional gain Kp to tune

the parameters.

3.1.5 Parameters tuning: J, ,f.,K, and R

These parameters are tuned in two steps. In the first step, large ranges of values are
taken since we do not know which range the optimal values will fall into. Ten values
are used respectively for the simulation as shown in Table 3-1. The difference between
the real J, and the value from the manual should be small and is taken from 2.1e-7 to
2.55e-7Kgm®. R is taken from 8.6 Q (data from manual) to 26 Q; the measured f.
is around 0.07 Nm, so we take f, to be from 0.04—0.09Nm; K, is 0.12 in the
manual, so K, is taken to be from 0.07—0.25V/rpm. Seven frequency experiments

(0.2Hz, 0.5Hz 1Hz, 2Hz, 5Hz, 10Hz, 20Hz) are used to minimize the least-square value
between experiment and simulation. We take 85 points in every frequency in four

periods. The cost function is:

7 85 z
‘/lx = Zz(qsimu - qex) (3'1)
1 1
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where g, is the motor position simulation value, and g, is the motor position

experimental data.

It is found that when J, =2.25xe-7 Kgm®’, R=14 Q, K,=0.21 V/rpm, and

f.n=0.045 Nm is an optimal value.

That is to say, the optimal value should be:

J,=2.2—23)xe-T Kgm?,f,, = (0.04--0.05) Nm, K,=(0.19—0.23) (V/rpm), and R=

(12—16)Q.
Table 3-1 Tuning parameters
item value
J, (xe-7 Kgm®) |2.1 |2.15 |22 225 |23 235 (24 |245 |25 (255
f., (Nm) 0.04 | 0.045 | 0.05 | 0.055|0.06 |0.065|0.07 {0.0750.08 |0.09
K, (V/rpm) 0.07 {0.09 |0.11 |0.13 |0.15 0.17 |0.19 | 0.21 [0.23 |0.25
R(Q) 86 |10 12 14 16 18 20 |22 24 26

In the second step, we take ten values for each parameter in the above range, and

repeat the above optimization process.

The final optimal parameters can be obtained as:

J,=2.23xe-7 Kgm?®, f,, =0.048 Nm, K,=0.21 (V/rpm), and R=14 Q. The motor side

position of experiment and simulation are plotted in Figure 3-4 through Figure 3-10.
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3.1.6 Parameters tuning: J,,and f,

Seven frequencies (0.2Hz, 0.5Hz, 1Hz, 2Hz, 5Hz, 10Hz, 20Hz) are used in this
experiment to minimize to the least-square value between the simulations and
experiments. The cost function is the same as with (3-1), but here g, 1is the load side
position simulation value, and ¢, is the load side position experimental value. Since
the parameters J, and f, have no priori, they also have to be tuned by two steps.

First, as shown in the previous section, we find a reasonable priori for J, and f,

Then the parameters can be finely tuned.

First, J,, and f, are estimated. A large range of values are taken as shown in

Table 3-2.
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Table 3-2 Initial value of J,,and f,

parameter value
J,(Kgm?) | le-6 5e-6 le-5 5e-5 le-4 5¢-4
f,(Nm) | 0.0001 0.0005 0.001 0.005 0.01 0.05

Using the least-square process, it is found that the optimal values lie in: J,=
5e-5—5e-4 (Kgm?®), f, =0.001-0.014 (Nm)

Now the values of J;, and f are taken as shown in Table 3-3.

Table 3-3 Fine value of J,,and f,

parameter value

J,(Kgm?) | 5e-5 | Te-5 9e-5 le-4 |24 |3e4 |4e4 |5e4

f,(Nm) | 0.001 |0.003 |0.005 |0.007 |0.009 |0.01 0.012 | 0.014

After repeating the process by searching the optimal range, the final optimal value

can be found: J,=9.4e-5(Kgm2), f,=0.0018(Nm).

Using the above optimal parameters, the motor side and load side position simulation
results and comparisons with experiments are shown in Figure 3-11 through Figure 3-17.

The simulation and experiment have a good consistency at low frequencies. In high
frequencies (20Hz), there is small difference between them. This may be caused by
some un-modelled dynamics in the system.

The final values of the parameters are listed in Table 3-4.

44



Table 3-4 Final parameter values

item unit value
motor side inertia  J, Kgm2 2.23e-7
load side inertia J, K gmz 9 4e-5
spring constant K Nm/rad 50.42
gear ratio r 1/80
motor torque constant K, Nm/A 1.11
voltage constant K, V/rpm 0.21
armature resistance R Q 14
viscous coefficient in motor side | Nm/Rad/s 0.0004
bm

viscous coefficient in load side b, | Nm/Rad/s 5e-3
motor side static friction f,, Nm 0.048
motor side Coulomb friction f,, |Nm 0.048
load side static friction f, Nm 0.0018
load side Coulomb friction f,, Nm 0.0018
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3.2 Parameter variation and uncertainty

In section 2.3, the motor side friction is measured. Different from other
mechanisms, the friction in the harmonic drive varies dramatically with the position.
The instant friction at some sampling times may reach 0.14 Nm, while others go down to
0.02 Nm. This variation in friction makes the experimental results not always consistent
for different times.

When the Coulomb friction is measured in Chapter 2, a fixed start point is needed.
Because sensor noise and measurement error exist, the start point is not always exactly

the same every time. The friction variation with position can be regarded as the
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existence of asperities on relative moving surfaces in harmonic drives. Even 1 um error
in a fixed start point may result in quite different experimental data. Although the
friction has been measured in detail, it seems that the friction in the harmonic drive in
some designated positions is still an uncertainty. Consequently, in this project, we try to
keep the start point as accurate as possible and the experimental data is averaged from
several measurements.

In a precision control system, the friction has significant effects on positioning. The
quantity of friction must be modelled and identified as accurately as possible so that the
friction compensation can be implemented. Since the discipline of friction is still active
and the principles of friction are still not very clearly revealed, it is hard to compensate
for friction accurately here. 'When conventional linear control techniques are applied to
high friction systems, the system sticks before the desired position is reached resulting in
a steady state error. Increasing control parameter gains often does not help beyond a
certain point due to the instability that arises. An alternative solution is to apply a large
control input for a very short period of time to achieve small motion increments (Figure
3-17). This is known as the impulse control approach. This approach has received
more and more attention in recent literatures about precision control [1][18][20][32].

This approach will be used to control the manipulator in the following chapters.

3.3 Parameter validation

In order to position the arm using an impulse control approach for the next two
chapters, parameters previously identified are validated using an open-loop pulse

simulation and experimental response. Two pulse shapes are used here: square pulse
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and first harmonic pulse. The stick-slip phenomenon is also simulated.

3.3.1 Square pulse

In order to overcome the static friction, a square pulse amplitude is fixed in four
times of static friction; h=4Vs. Vs is the voltage required to overcome static friction.
The pulse shape is shown in Figure 3-18. When the pulse width is W=1ms, the open
loop simulation and experimental response to the square pulse are shown in Figure 3-19
and Figure 3-20. Though the arm shows some vibrations during the experiment, it is

apparent that the simulation is consistent with the experiment.

3.3.2 First harmonic pulse

We use the first harmonic pulse and set the pulse width to W=1ms:
V=h, sin(Tt/W) (3-2)
where h, is the amplitude. Let A, be equal to four times the static friction: h,=4Vs.

The pulse shape is shown in Figure 3-21, the open loop simulation response is shown in
Figure 3-22 and the open-loop experimental response is shown in Figure 3-23.
From the simulation and experimental response, it is clear that the model and

parameters express the real system very well.

3.3.3 Stick-slip simulation

Since there exists flexibility and load side friction in harmonic drives, when the
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motor side moves slowly, the load side will only move when the spring force has
accumulated enough to overcome the load side friction. This will result in a stick-slip
phenomenon in the arm motion.

We choose an input voltage that can just overcome the static friction. The
simulated motor and arm position are shown in Figure 3-24. A stick-slip phenomenon

can be observed in the arm’s motion.

45+ .
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(8]
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Figure 3-18 Square pulse shape
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Chapter 4 Impulse Control

In order to control the manipulator precisely in the presence of a high friction level,
the impulse control method is applied in this chapter. First, the simulation and
experimental impulse responses are determined. Then, an impulse feedback controller
is developed. Finally, the resolution of the system for the conventional linear control

and impulse control is investigated.

4.1 Previous work

A number of researchers have devised impulse controllers that achieve precise
positioning in the presence of friction [1][18][20][32]. By making an impulse of a large
magnitude but of a short duration, the static friction is overcome and sensitivity to the
details of friction is reduced. Hojjat and Higuchi [20] presented an apparatus especially
designed to demonstrate impulse control. They reliably achieved a remarkable 10nm
per impulse motion and speculate that a repeatable 1nm per impulse motion may be
possible. They controlled the amplitude of the impulses, typically applying a force of
about 10 times the static friction for about 1ms, and show that displacement is given by
the square of the amplitude times an empirical constant.

Armstrong and Armstrong-Helouvry [20] demonstrated an impulse controller on a
PUMA robot. Their objective was to achieve a very high precision force control needed

to manipulate an object with a crushing strength of only 1/60™ the level of static friction
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in the mechanism. Using a calibrated table of impulse magnitude and duration,
Armstrong-Helouvry (1991) applied impulses that are only 10-20% bigger in magnitude
than the static friction and achieved 10 micro-radians per impulse motions of the
industrial manipulator.

M.R.Popovic, D.M.Gorinevsky and A.A.Goldenberg [18] (2000) tested the
displacement for the impulses with different pulse amplitudes and different durations, and
then designed an impulse controller based on their experimental results. An innovative
feature of the controller is that the pulse amplitude and duration generated by the
controller are computed using a fuzzy logic approximation of the dependence between
the desired displacement and the pulse shape. The controller is able to achieve
positioning precision close to the limits of position encoder resolution (less than 0.4 um).

The above impulse controllers use a square pulse shape as impulse input. They
have in common the use of a long sampling interval. Underlying these impulse
controllers is the requirement that the system be in the stuck condition when each impulse
is applied. The method is, in essence, a small bang followed by an open-loop slide.
Returning to the stuck condition imposes a number of limitations, but improves the
predictability of response to the impulse. To reduce the sampling interval, Brandon W.
Gordon (1995) [1] used a generalized impulse shape consisting of the first two harmonics

of a general series expansion with fixed endpoints. That is,
t t
u(t)= h sin(r-—)+h,sin(2r— 0<t<W 4-1
(t)=h, sin( W) 2 Sin( W) (4-1)

The proposed controller can achieve a resolution of 0.2 um using a sampling rate of 250
ms.

Yang and Tomizuka [32] presented a variable structure controller in 1988. A
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standard linear controller operates away from zero velocity. At or near zero velocity, the
adaptive impulse controller takes over. Because of the existence of the parameter
uncertainty, mainly friction uncertainty, the corresponding displacement (delta) of the
controlled object to the duration of the square pulse is a non-predictable parabolic curve.
The parameter of the parabolic curve is estimated online. Then, the impulse is tuned by
varying the impulse duration (width), selected to achieve the desired displacement.
They chose a force of about 4 times the level of static friction. This adaptive impulse
control algorithm can achieve the control objective effectively. The authors also
presented a rigorous demonstration of the stability of both their controller and the
adaptive element. This variable structure controller exploits the capability of impulse
control better.

In the following sections of this chapter, the experimental response based on a pulse
shape of the equation (4-1) is tested for A, and h,. Then an impulse controller is
devised. The resolutions for conventional linear controller and impulse controller are

tested. In next chapter an adaptive impulse control will be presented.

4.2 Physics of impulse: momentum, motion and energy

4.2.1 Motion and momentum of the motor inertia

The harmonic drive model in Figure 2-7 can be simplified as illustrated by Figure

4-1. Assume the motor input voltage is,

u(t) = h, sin(zm /W) 4-2)
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Figure 4-1 Harmonic drive model

where h, is the voltage amplitude, and W is the pulse width. For simplicity, assume

that the motor torque is proportional to the input voltage:

T ()= %’"—u(t}=%sin(m/W)=psin(m‘/W) 4-3)

(4-4)

The motor torque pulse is shown in Figure 4-2.
Because load side friction is much smaller than motor side friction, it is reasonable to

assume that the spring torque T,
T, << f, and T, <<T,(2)
f . 1s motor side friction. In the period 0<?<W, we use Newton’s second law:

J.0,= T,(t)=f, (4-5)
1 H
0, =—[(T,(0)~ f, Mo (4-6)
m 0
The substitution of (4-3) into (4-6) yields

o, =P (1 —cosBy—In, @-7)
J T woJ

m m
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The momentum of the pulse is:
m=[T,(o)do= 22 (1-cos ) (4-8)
° 7 w

From (4-7), it is apparent that the momentum is converted into two parts. The first part

is the motor inertia momentum J,®, that drives the motor inertia motion. The motion
of motor inertia will accumulate potential energy in the spring and the load inertia will be
driven by the potential energy in turn. The second part of the pulse momentum is
consumed by friction. The momentum of the pulse is:
m= J w, +f,t (4-9)
Motor position can be obtained from (4-7):

- W W B ]
qm—_([wm(a)da—Jmﬂ(t ﬂ_sm(W)) et (4-10)

m
It is evident that when t=W, the motor velocity obtains its maximal value. At t=W,

the motor velocity and position are:

w
2 2

Assume the motor stops at time ¢ 5o as shown in Figure 4-4. When W <t<t¢ ;o

J o =—f, (4-13)

m-—m

The motor velocity and position can be obtained by the integral:

w =—5—”‘t+cl (4-14)

m
m
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q, =—i'f—t2 +Ct+C, (4-15)

2J

m

The position response and velocity response are shown in Figure 4-3 and Figure 4-4. At

t=W, w, =V, and ¢q, =gq,,. Thentheconstant C, and C, can be calculated;

_pw?

C, =
° J.

_2pW
Y

m

The substitution of C, and C, into (4-14) and (4-15) yields:

. =__]_”ﬂt_l_ZpW
J J,.

m

(4-16)

2
S g2 2PV PW (4-17)
2J J,. J,.

m

4y =~

The motor position and velocity are shown in Figure 4-3 and Figure 4-4.
4.2.2 Motion of the load inertia

The load inertia is driven by the spring torque. We use Newton’s second law:
J,0, =K (rq,—q,)- [, (4-18)

r is the harmonic drive gear ratio, f, is load side friction. If we define

4
Xy q,

(4-18) can be expressed as the following state equation:
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X, ) X2
L'Cj: — (K (14, %)= 1)) (4-20)

l

4.2.3 System energy

Energy is conservative in any system. When a pulse is applied to the system, the
work done by the pulse is converted to the motor inertia kinetic energy and the spring
potential energy. When potential energy has accumulated to a certain amount, it will be
converted into load inertia kinetic energy. Therefore, the arm will move a certain
displacement (delta).

System potential energy:

1
E, =5Ks(rqm —q,)2 4-21)

System kinetic energy:

1 1
By =210+ 1,0} (4-22)

4.2.4 Simulation

Figure 4-3 and Figure 4-4 show that the motor side will get stuck about 6ms after the
pulse is applied. Due to the flexibility, the load side will get stuck after 20ms. We
apply five pulses to the motor at an interval of 50ms. The input pulses are shown in
Figure 4-5. Every pulse shape zoom is shown in Figure 4-2. The motor and load
inertia position responses are shown in Figure 4-6 and Figure 4-7. The motor and arm

velocity responses are shown in Figure 4-8 and Figure 4-9. The results demonstrate that
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the arm moves after the spring deformation has accumulated to a special quantity because
of the load side friction.

Since the load side friction is small, the arm moves fast once it starts moving and
makes the spring tensional. Then the arm moves back towards the motor and the spring
tension becomes small, as shown in Figure 4-7 and Figure 4-9. The spring deformation
in Figure 4-12 shows a vibration in the arm. This is verified by the experimental pulse
response in Figure 3-20 and Figure 3-23. The motor’s kinetic energy is converted into
potential energy and then converted into the load kinetic energy, as shown in Figure 4-10

and Figure 4-11. The spring deformation ( rg,, — g, ) is shown in Figure 4-12.
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Figure 4-2 Motor torque pulse
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4.3 Impulse response

Use the pulse shape with the form of equation (4-1):
t t
u(t)= h, sin(x—)+h, sin(27— 0<tsW
()= hy sin( W) , Sin( W)

Where h, and h, are variable coefficients, and W is the pulse width. In this pulse
shape, the first harmonic is the main pulse to drive the arm to move a displacement.
The second harmonic has two functions: it enforces the main harmonic pulse in its first
half that will help it to eliminate the dead zone (see Figure 4-17 and Figure 4-18), and it

provides a minus pulse in its second half to stop the arm motion quickly. Set h =4V,
h,=7.5V, and W = 1ms; the pulse input read from the oscilloscope is shown in Figure

4-13. The pulse voltage across the 1 € resistor is also shown in Figure 4-13. The
motor position and arm position in the simulation and experiment are shown in Figure
4-14 and Figure 4-15. It is apparent that most of the motor motion occurs during the 3
ms, and most of the arm motion occurs during 20 ms. The simulations of motor and
arm velocity are shown in Figure 4-16. The arm has some vibration due to the

flexibility in the harmonic drive.
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Figure 4-13 Input pulse and corresponding pulse across 1 £ resistor
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Figure 4-14 Simulation of pulse position response (s, =4V, h,=7.5V)
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Figure 4-16 Simulation of impulse velocity response (h, = 4V, h,=7.5V)
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In general, the displacement (delta) of the arm due to a pulse is a function of A, h,
and W. It is desirable to have W as short as possible to provide insensitivity to friction
parameter uncertainty, but in practice, the system bandwidth limitation, amplifier
saturation, and unwanted excitation of mechanical vibrations tends to limit the input
frequency. For this investigation, W is set equal to 1ms to simplify analysis. This
value seems to provide good control performance.

The input voltage to the motor is about Vs=1.8V in order to overcome the static
friction. The values of h, and h, are divided by Vs to set them as non-dimensional
quantities. The simulated arm displacement (delta) versus h,/Vs and h,/Vs is shown
in Figure 4-17. The experimental arm displacement versus #,/Vs and h,/Vs is shown
in Figure 4-18. Note that the experimentally obtained data in Figure 4-18 may have
some local deviations that are caused by the random parameter variations such as friction

uncertainty. For each pulse shape, the result shown in Figure 4-18 is the average of five

experiments.

It is apparent that the system moves forward only when A, is bigger than some
threshold. In other words, there is a dead zone in respect to A;. The size of this dead
zone can be decreased by increasing h,. The dead zone is undesirable for control
system design, so A,/Vs will be chosen to eliminate the dead zone. This occurs when

h,/Vs=3.1278 in simulation and h,/Vs=3.2 in experiment.

The friction is symmetrical when motor motion reverses. When implementing the
controller, if the error between the desired position and current position is positive, we

choose h,/Vs=3.1278 in the simulation and £,/Vs= 3.2 in the experiment; if the error is
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negative, we choose h,/Vs= -3.1278 in the simulation and A, /Vs= -3.2 in the
experiment.

The simulated arm displacement varies with k /Vs when h,/vs=3.1278 and is
shown in Figure 4-19; the experimental arm displacement varies with A, /Vs when
h,/vs=3.2 and is shown in Figure 4-20. The curves can be fit approximately by a
parabolic function of h, /Vs:

d = bx (h, /Vs)* xsgn(h,) (4-23)

delta (um)

h1/Vs 0 o h2/Vs

Figure 4-17 Generalized simulation impulse response
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4.4 Impulse feedback control

4.4.1 Controller

In impulse control, the position is the accumulation of the displacements. Hence,

the appropriate discrete time state equation is,
x(k+1)=x(k)+d(k+1) (4-24)
Where x(k) and x(k+1) represent the arm position at time t and t+At, and d(k+1) is the

arm displacement (delta) due to an impulse input at time t. This equation represents a
first order difference equation with input d(k+1).

Equation (4-23) can be written as:

d(k+1)=bh; sgn(h,) =bu , (k) (4-25)
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where
u,(k) = hi sgn(h) (4-26)
d(k+1) can be considered an input variable since for any desired displacement value
within a given range, we can calculate the required h, with equation (4-26). This
technique is dependent on our ability to invert the relationship between d and h;, which
shows why a dead zone is highly undesirable in the system response as it makes the
relationship difficult to invert.
If the desired position is x, , the error can be defined by
e(k) = x, — x(k) (4-27)

If b is treated as known, for the feedback control law,
1
u,(k)= 3 K e(k) (4-28)

e(k+1) can be expressed as

e(k+1)=(1-K)e(k) (4-29)

Equation (4-29) is asymptotically stable for
0< K, <2 (4-30)
The controller proposed here should be used after a conventional controller (such as
a PID controller) brings the system into the vicinity of a desired position and should
operate as follows: first, the difference between the desired and actual positions of the
system are determined using (4-27), and second, we use equations (4-28), (4-26) and
(4-25) to calculate the d[k+1] and h,. After sending the calculated pulse to the motor,

the controller waits until the system is stuck (250 ms or more). If the difference
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between the newly measured and the desired position is outside the bounds of the

required precision, a new impulse control cycle is initiated.

4.4.2 Simulation

Using a sampling rate of 250ms, the simulation results for desired arm displacement

x,=100um and x,=-100um are shown in Figure 4-21 and Figure 4-22.

4.4.3 Experiment

The impulse controller is implemented using a capacitance sensor for feedback and a
sampling rate of 250 ms. Before every impulse is input into the system, the saturation

condition for the amplifier must be checked. We choose K_ =1, and the results for the

desired displacements x,=100um and x,=-100um are shown in Figure 4-23 and Figure
4-24.

It is evident that the system has a settling time of under 1s and that a steady state
error of less than 0.3 um could be achieved. This is less than one fifth of an encoder
count (about 1.5 um). Here, the sampling rate is 250 ms in order to make the impulse
response more predictable. The physical reason for this is that the load inertia must
slide to a complete stop in order for the next impulse response to be consistent. The

optimal sampling rate will be investigated in next chapter.
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4.5 Resolution Characterization

One of the most critical performance characteristics of the manipulator is the ability
to consistently move in small motion increments. This characteristic is known as
resolution and is defined as the smallest reproducible motion step the machine can
consistently make during point to point motion. A machine’s resolution effectively puts
an upper limit on the repeatability and precision that can be achieved even with
closed-loop feedback. The resolution of a machine should be verified experimentally
since it often depends on subtle machine dynamic factors that are difficult to model; these
can include gear meshing, bearing noise, and transmission stiffness. Statistical
measurements should also be used since the factors that influence resolution can vary
over time and the range of the mechanism.

The resolutions of one mechanism for different inputs may be different. For
example, the resolution for a linear controller is different from that for an impulse

controller. The resolutions under these two controllers are tested as follows.

4.5.1 Resolution for linear controller with motor position feedback

For this test we consider only the motor encoder sensor for feedback since it is the
most common type used in industry. It is also much more practical (in terms of range)
and more economical than other high accuracy sensors (such as capacitance sensors).
The resolution test for the arm consists of 1000 steps in one direction from which a
histogram of the resultant displacement is made. The displacements are determined

using a capacitance sensor that measures the output of the arm. The initial step size
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used is one motor encode count. If this size produces inconsistent increments, the
magnitude of the step is increased by one encoder count and the test is run again. This
process is repeated until consistent motion is observed. By consistent motion we mean
that for every input, the output of the arm is approximately the same. For example,
Figure 4-25 shows the output of the arm motion when the motor moves one encoder
count every time, and it is an inconsistent motion; in Figure 4-26 the arm motion is
consistent. The minimum value of the arm consistent increments is the resolution of the
mechanism.

For the 1000 steps of one encoder count increment (approximately 1.5 um of arm
displacement), the arm displacement is shown in Figure 4-27. The histogram of the arm
displacement is shown in Figure 4-28.

It is apparent from the histogram that consistent motion of one encoder count is
possible. It should be noted that due to the non-Cartesian nature of the arm kinematics,
one encoder count can represent between lum to 2um depending on the position of the
sensor mounted. However, for most of the workspace, one encoder count is less than
1.5um; all motions that occur are less two encoder counts (3um). Therefore, the

resolution of the arm for linear controller is 3um.

4.5.2 Resolution for impulse controller

For the resolution of the impulse controller, if the capacitance sensor is used for
feedback, the motor can have a step motion less than one encoder count. To determine
the resolution under impulse control, the pulse width is set to some nominal value (W=1

ms) and the impulse amplitude is increased from zero until the smallest consistent arm
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motion is observed. In order to obtain consistent resolution measurements from
simulations and experiments, the following mathematical definition of resolution was

used:

Definition: Resolution for impulse inputs

A sequence of N impulse inputs with the same amplitude is applied to the system and
the median and maximum value of the N increments is recorded. Starting from an
impulse amplitude of zero, it is gradually increased until a consistent median increment is
achieved that is larger than a small threshold tolerance &,. This threshold input is then
multiplied by (1+¢&,) where ¢, is the small tolerance that provides consistent motion in
the presence of small input and parameter variations. The maximum increment due to
this input is defined as the resolution of the system.

In our application we set & =0.1lum and &,=0.01. This above definition was used

to test the resolution under an impulse control with N=1000 pulses. The measured arm
position is shown in Figure 4-29. The histogram of the arm increment is shown in
Figure 4-30. It is evident from the histogram that almost all motion increments are less
than 0.3um so the resolution under impulse control is 0.3um. This resolution is ten

times better than can be achieved using conventional linear control.
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Chapter 5 Adaptive Impulse Control

5.1 Introduction

Some issues must be considered when using impulse control. The first is resolution,
the second is dead zone, the third is settling time, and the fourth is robustness to
parameter variations. Resolution is related to control precision; the higher the resolution,
the better control precision we can achieve. A dead zone is quite undesirable in impulse
control. Getting rid of the dead zone is our objective in impulse control. The settling
time is related to production rate and should be small so that the system converges as
quickly as possible. Since parameter uncertainties exist in the system, the selected
control algorithm should be robust so that the control results are consistent.

In order to make the impulse control more predicable, every pulse must be applied
after the system sticks. Additionally, the pulse rate must be long enough. If the pulse
rate is too long, the system will still be stuck when another pulse is applied, but if the
settling time is too long, the production rate will decrease. Section 5.2 investigates if
there are any optimal pulse rates for impulse control. One attempt made to decrease
settling time is through adaptive impulse control, which will be presented in Sections 5.5
and 5.6.

Equation (4-9) demonstrates that the motor inertia can be moved only when the pulse

momentum is big enough to overcome the motor inertia friction momentum. Once the

86



motor inertia moves, the motor inertia kinetic energy also must be exceed a certain
amount so that the accumulated potential energy can drive the load inertia motion. If the
work done by pulse momentum is smaller than that threshed, the load inertia cannot
move. This is why a dead zone appears in Figure 4-17 and Figure 4-18. From the above
analysis, we can conclude that the product of pulse amplitude and pulse width must be
bigger than the threshed to eliminate the dead zone.

As mentioned in the last chapter, the combination of the first two harmonic pulses is
one option to get rid of a dead zone. In this pulse shape, the function of the first
harmonic is the main control input to drive the arm to move a desired displacement.
When the amplitude of the second harmonic is bigger than the threshed, the dead zone is
eliminated. Other questions such as, is there any other pulse shape can also get rid of
dead zone? and which is the best pulse shape for impulse control? will be answered in
section 5.3

When h2 = 3.2Vs, the dead zone can be eliminated. But when system friction is
increased, the dead zone may come back again. Is there any way to increase system
friction that will be robust to the friction variation? This will be also presented in section
5.3 and 5.4.

In the last chapter, the resolution is tested for the harmonic motor system. As the
friction of the system changes, the resolution and dead zone may change as well. Other
parameters such as flexibility (spring constant K ), and load inertia J, may also have
an effect on the resolution. How do they influence the resolution and dead zone? This
will be studied in section 5.4.

The main issues that must be considered and the factors that may have influence on
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the issues are listed in Table 5-1;

Table 5-1 Main issues in impulse control and their factors

issue factors
resolution load side friction, flexibility, load inertia
dead zone load side friction, flexibility, load inertia
settling time pulse rate, control approach
robustness pulse shape

5.2 Pulse rate optimization

When a pulse is applied to the motor side of harmonic drives, the momentum of the
pulse makes the motor inertia motion. The kinetic energy of motor inertia is then
converted to potential energy. The load inertia starts moving only when the potential
energy has accumulated to a certain amount. Since flexibility exists in harmonic drives,
the load inertia has a vibration during its motion. Furthermore, because the load side
friction is relatively small, it will take a relatively long period to make the load inertia
stick; it is important to find an optimal pulse rate.

We take nine pulse rates (10ms, 20ms, 50ms, 100ms, 200ms, 250ms, 400ms, 600ms,
800ms) and test resolutions under impulse control for these pulse rates; it is found that
the resolutions are different, as shown in Figure 5-1.

It is clear from Figure 5-1 that the resolution goes up if the pulse rate is less than
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250ms. This is because the arm is still in vibration condition and the maximum delta is
big. The measured displacement is not consistent. Figure 5-2 shows the motion of the
arm in the first 6 pulses when the pulse rate is 50ms. After 250ms, the system is stuck
and the resolution becomes steady. When the pulse rate is 400ms, the motion of the arm
in the first 6 pulses is shown in Figure 5-3.

It is apparent that the optimal pulse rate is around 250ms. This pulse rate can assure

that the system sticks and also provides the highest production rate.
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Figure 5-1 Resolution varies with pulse rate
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5.3 Pulse shape optimization

Normally, the pulse shapes used are square, sine wave and their combinations. The
different pulse shapes have different control effects. These pulse shapes are studied in

detail in this section.
5.3.1 Square pulse

In order to overcome the static friction, the square pulse amplitude is fixed in four
times of static friction, h=4Vs. The pulse shape is shown in Figure 5-4.

For different pulse width and amplitude, the simulation of arm displacement to the
pulse is shown in Figure 5-5. The experimental results are similar to that of the
simulation and are shown in Figure 5-6. There is a dead zone that appears in the graphs.
Even when the pulse amplitude is 4 times that of the static friction, the pulse width must
be bigger than 0.2ms so that the pulse momentum is big enough to drive the arm’s

motion.

45}

351

251

imput amplitude / Vs

1.5p

0.5

Figure 5-4 Square pulse shape
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Figure 5-5 Simulation of arm response to the square pulse
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Figure 5-6 Experiment of arm response to the square pulse
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5.3.2 First harmonic pulse

We use the first harmonic pulse shape:
V=h,sin(mt/W) (5-1)
where h, is the amplitude. Similar to the square pulse, let k, equal four times the
static friction: h,=4Vs. If we set W= 1ms, the pulse shape is shown in Figure 5-7.

For different pulse widths and amplitudes, the simulation and experimental responses
are shown in Figure 5-8 and Figure 5-9. It is clear that there is a dead zone similar to
that in the square pulse. The dead zone is bigger than that in the square pulse and is

apparent because the momentum is smaller.
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Figure 5-7 First harmonic pulse shape
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Figure 5-8 Simulation of arm response to first harmonic pulse
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Figure 5-9 Experiment of arm response to first harmonic pulse
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5.3.3 Pulse of the sum of two harmonics

For the combinations of the first four harmonics, the following three forms of pulse
shape are studied:
(1) First and second harmonics:
V=hsin(mt/W)+ h,sinut/W) 0<t<W (5-2)
(2) First and third harmonics
V=h,sin(mt/W)+ h,sinBmt/W) 0<t<W (5-3)
(3) First and fourth harmonics
V=h,sin(mt/W)+ h,sin(4nt/'W) 0<t<W (5-4)
In equation (5-2),
V(hy, hy)=h;sin(M/W)+ h,sin(2nt/W)
If we use a negative amplitude
V(-h,,-h,)=-h,sin(mt/W) - h,sin(2nt/W)=- V(h,, h,) (5-5)
V(-h,, hy)=-h,sin(mt/W) +h,sin(2nt/W)=- V(h,,-h,) (5-6)
Meaning that the arm displacement in the first quadrant is a negative symmetrical to the
third quadrant, and arm displacement in the second quadrant is a negative symmetrical to

the fourth quadrant, Similarly, this applies to equations (5-3) and (5-4). This can be

verified in the following simulations.

5.3.3.1 First and second harmonics

The pulse shape is shown in Figure 4-13. The simulation arm displacement to the
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above pulse shape is shown in Figure 5-10. When hk, is set to zero, the arm’s
displacements vary with A, as shown in Figure 5-11. When h, is set to zero, the
arm’s displacements vary with A, as shown in Figure 5-12.

It is evident that the main displacement is produced by the first harmonic pulse.

The second harmonic pulse can eliminate the dead zone when h, 23.1278 Vs.

delta (um)

Figure 5-10 Simulation response to the pulse of first two harmonics
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Figure 5-12 Arm increment varies with A, when h,=0
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5.3.3.2 First and third harmonics

The pulse shape is shown in Figure 5-13. There are two of the same pulses in 1ms.

Simulation arm displacement to the above pulse shape is shown in Figure 5-14. When

h, is equal to zero, the arm’s displacements varied with A, like in Figure 5-11. When
h, is equal to zero, the arm displacements varied with h, as shown in Figure 5-15.

Clearly, the third harmonic pulse has a similar effect as the first harmonic, but it produces
much less arm displacement than the first harmonic pulse. Furthermore, the frequency
of the third harmonic is three times that of the first harmonic. It is harder to keep the
pulse shape in a small pulse width in experiments, so it is better not to use the third

harmonic pulse.

8 T T T T
—— First harmoninics
- - Third harmonics
— Sum of above two harmonics

input voltage / Vs

4 / . L I
0 1 2 3 4 5

time (ms)

Figure 5-13 Pulse shape of first and third harmonics
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5.3.3.3 First and fourth harmonics

The pulse shape is shown in Figure 5-16. There are three pulses in Ims: two

pulses are positive and one is negative. The simulation arm displacement to the above
pulse shape is shown in Figure 5-17. Similarly, when A, is equal to zero, the arm
displacements varied with h and are the same as in Figure 5-11. When h, equals
zero, the arm displacements varied with #, as shown in Figure 5-18. It is evident that

the fourth harmonic has a similar effect as the second harmonic, but the arm displacement
is even smaller than that of the second harmonic. It can eliminate the dead zone only
when h,>5Vs. The large amplitude of A, will produce the problem of amplifier

saturation.

— First harmoninics
————— Fourth harmonics
— Sum of above two harmonics

input voltage / Vs

_4 N L ir‘ 1 O L e L L
0 1 2 3 4 5

time (ms)

Figure 5-16 Pulse shape of first and fourth harmonics
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Figure 5-18 Arm increment varies with h, when h =0
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5.3.3.4 Robust impulse shapes

In impulse control, if a pulse shape can eliminate a dead zone every time in load side
friction variation, this pulse shape is a robust pulse shape.

When h,=3.1278Vs in simulation, the dead zone can be eliminated. The arm
displacement varies with %, and is shown in Figure 4-19. If it is extended to the third
quadrant, there is still a dead zone when #, is a small negative value, as shown in Figure
5-19. Since the friction is symmetrical, when the error is negative, the h, needs to be
negative to drive the motor’s movement in a negative direction, and 4, is also required

to be equal to -3.1278Vs in order to extend the parabolic curve to the third quadrant

negative symmetrically as shown in Figure 5-20.

To see the robustness of the pulse shape in relation to the friction variation, the load
side friction f; is increased from its original value of 0.0018Nm to 0.00313Nm
(increase friction about 75%), keeping h,=3.1278Vs even when the motor moves in a
negative direction, and a dead zone appears again, as shown in Figure 5-21.

In order to eliminate the dead zone after load side friction increases, h, is required
to be increased to h,=5Vs, as shown in Figure 5-22. It is clear that the curve is not a
negative symmetrical in the first and third quadrant since h, is kept positive when the
motor moves in a negative direction.

Now if the load side friction returns to the original value of f,;=0.0018Nm, the dead

zone does not appear again, as shown in Figure 5-23. In both graphs, the points of the

curve across the x-axis are almost the same.
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So we can use a large value of h, (bigger than 3.1278Vs) to eliminate the dead zone
even if we do not change the sign of the A, when the error is negative. It is robust to

the friction variation by using 4, to eliminate the dead zone. This will be verified in

robust adaptive impulse control in section 5.6.
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delta (um)
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Figure 5-19 Arm increment (simulation) (h,/Vs=3.1278, f,=0.0018Nm)
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Figure 5-23 Arm displacement (simulation) (h,/Vs=5, f,=0.0018Nm)
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5.3.3.5 Conclusion for pulse shape optimization

Since single square pulse or first harmonic pulse has dead zone problems, and they
cannot be eliminated in practical control, they are not the optimal pulse shape. Using
the sum of two harmonic pulses can eliminate the dead zone.

The arm displacement can mainly be produced by odd order harmonic pulses, and
the dead zone can be eliminated by even order harmonic pulses. The higher order the
harmonic pulse is, the harder it is to realize the pulse shape in practical digital control.
For the even order harmonic pulse, the higher the order is, the bigger the amplitude
required to eliminate the dead zone. Furthermore, the harmonic pulse effect decreases
when the order increases.

From the above analysis, the optimal pulse shape is the sum of the first two

harmonics. When a large h, value is used, the system is robust to the friction variation
in eliminating the dead zone. The bigger h, is, the more robust to the friction variation,

as long as the amplifier is not saturated.

5.4 Parameter variations

5.4.1 Non-dimensional equation

The system parameters have a great effect on the impulse control effect such as
resolution and dead zone. Unfortunately, there is almost no literature investigating this
area so far.

In order to understand how the parameter variations affect the output displacement

and make the following analysis more general to other systems, the non-dimensional
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equations are derived first. The system’s mathematical model stated in Chapter 2:

K, .

i +%u(r> (5-7)

.. K
qum=Fm_rKs(rqm—ql)— ’;2

J14, = F +K(rq, - q,) (5-8)
when the velocity is not zero and we neglect the viscous friction, set f, =f,. =f.. ,‘ fi
= f,, = f,;, the friction can be written as:
F, =-sgn(q,)f, (5-9)
F, =—sgn(q,) f; (5-10)

The motor input torque is T, =%u(t} - K’;aKb

q,, > then equation (5-7) and (5-8) can be

written as:
J.4,=-sgnq,)f,—rK,(rq,—q)+T, (5-11)
Jig, =—sgn(q) f, + K, (rq,, —q;) (5-12)

We define system characteristic frequency as:

o = |fn (5-13)

T,=—= |== (5-14)

r=— (5-15)

Then
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t=Tt (5-16)
dt=Tdt (5-17)

(5-11) and (5-12) can be written as:

(‘Z?;; =- TJf = sgn(“L) - TCZJ’f (g —4) + TJT
=—sgn(CZT ) —%(rqm —q,)+%m- (5-18)
= L Lagn 1 T g, —g)
=Tl ggn By 4 LoKe (1 g, (5-19)

J [ dt J [

We define following non-dimensional parameters:

K = ’f‘ (5-20)
J; = JJ—; (5-21)
fr=a (5-22)
= % (5-23)
=y (5-24)

The substitution of (5-20) to (5-24) in equations (5-18) and (5-19) yields:

—n = —sgn(iliqt;” )— r*K:(r*qm -q,)+ T (5-25)

108



dq,. K. .
—)+—= = 5-26
% ) 7 (raq,-q) (5-26)

42 .
(dt*q)lz —T f sgn(
1

5.4.2 Friction variation

5.4.2.1 Simulation for friction effect on resolution

The load side friction level f,* is defined in equation (5-22).

Take 25 friction levels from 0.01 to 1. For different friction levels, we use 1000

pulse inputs to simulate the resolution as defined in section 4.5. A simulated histogram

can be obtained. For example, the histograms for f,"=0.01, 0.1, 0.3 0.6 and 1 are

plotted in Figure 5-24 through Figure 5-28.

The simulation demonstrates that when friction level is big, the arm can only move
after a number of pulses are applied and the spring deformation has accumulated to a
certain amount. This is because the spring potential energy must accumulate to a certain
amount to overcome the friction. The higher the friction level, the bigger the potential
energy needed to drive the arm’s motion. The first step of the delta is very big, and then
gets smooth afterwards, as shown in Figure 5-29. The potential energy is accumulated
before the load starts moving. Once the load moves, the system’s potential energy
decreases just like an avalanche, as shown in Figure 5-30.

The friction and flexibility in harmonic drives create a hysteresis signature. The

bigger the friction is, the more effect the hysteresis has. The simulated hysteresis curve

for friction level f° =0.01 and 0.1 are shown in Figure 5-31 and Figure 5-32.
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For different friction levels, the maximum delta, median delta, and minimum delta
are plotted in Figure 5-33 which shows that the resolution gets worse proportional to the

friction level. We use the following equation to calculate the standard deviation:

N
z (5average - 51‘ )2
— i=1
N -1

o

The standard deviation is plotted in Figure 5-34.

5.4.2.2 Experiment for friction effect on resolution

The following experiments are devised to verify the above simulation results:

We put a wedge under the output arm and push the wedge towards the arm to

increase the load side friction. We then measure the friction f; and calculate the

friction level f,* using equation (5-22). The resolution is then tested in the different

friction levels. The histograms are plotted in Figure 5-35 through Figure 5-38. The
delta versus friction level is plotted in Figure 5-39. From this graph, we can see that the
resolution is degraded linearly to the friction level. The experimental results are
consistent with the simulation. The standard deviation is plotted in Figure 5-40.

From the last section and this section, we can conclude that friction does not only
increase the dead zone, but also degrades the resolution. It is very important to decrease

the friction in precision control systems.
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Figure 5-24 Simulation histogram for friction level fl* =0.01(1000 pulses)
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Figure 5-25 Simulation histogram for friction level fl* =0.1(1000 pulses) (There is one
point at 2.139um)
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Figure 5-26 Simulation histogram for friction level f,”=0.3(1000 pulses) (There is one
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Figure 5-27 Simulation histogram for friction level f,"=0.6 (1000 pulses) (There is one
point at 12.972um)
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5.4.3 Flexibility variation

5.4.3.1 Simulation of effect of flexibility on resolution

K™ has been defined in (5-20). For K =520.8, 730, 1050.4, 1250, and 1458.3,
we simulate the resolution as defined in Section 4.5. The histogram is shown in Figure
5-41 through Figure 5-45. The resolution is plotted in Figure 5-46. It is apparent that
the resolution improves as the spring constant increases. The standard deviation is

plotted in Figure 5-47.

5.4.3.2 Simulation for effect of flexibility on dead zone

For each K', a different pulse amplitude can be used to simulate the arm
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displacement (delta) response. For each of the pulse amplitudes, 1000 pulses are
applied. The simulated delta responses are shown in Figure 5-48 through Figure 5-50.
When K increases, the dead zone does not change at first. When K~ gets big
enough, the maximum and minimum value of delta get close to each other. That means
the arm moves more consistently.

From the above analysis, we can see that the resolution gets worse when the
flexibility in harmonic drives is bigger (K~ is small). The flexibility also makes the

arm’s motion inconsistent. Therefore, the flexibility in harmonic drive degrades the

performance of impulse control.
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Figure 5-41 Simulation histogram for K" =520.8 (1000 pulses) (There is one point at
1.348 um)
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Figure 5-42 Simulation histogram for K" =730 (1000 pulses) (There is one point at 1.093
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Figure 5-43 Simulation histogram for K =1050.4 (1000 pulses) (There is one point at
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Figure 5-50 Simulation of dead zone for K =1354

5.4.4 Load inertia variation

5.4.4.1 Simulation for effect of load inertia on resolution

For different load inertias, calculation of J , has been defined in (5-21). The

simulated histograms are shown in Figures 5-51 through 5-57. The resolution improves

slightly with an increase of J,, as shown in Figure 5-58. The standard deviation is

plotted in Figure 5-59.

5.4.4.2 Simulation for effect of load inertia on dead zone

For different values of J, , the dead zone is simulated in Figure 5-60 through Figure

5-66. It is evident that the load inertia has almost no effect on the dead zone.
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The above analysis shows that the load side inertia has less effect on impulse control.
When load inertia increases, the resolution improves slightly, and it has almost no effect

on the dead zone.
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Figure 5-51 Simulation of histogram for J l* =100 (There is one point at 0.856um)
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5.5 Adaptive impulse control

5.5.1 Adaptive impulse controller

Since the friction uncertainty exists, the coefficient b in equation (4-23) is not a
constant in a real system. It may vary with position dependent friction. As an attempt
to reduce the settling time in impulse control, an adaptive controller is developed as
follows.

Let

a=

1
2 (5-27)

the control law of equation (4-28) can be written as,
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u, (k+1)=K_alkle[k] (5-28)

We use the model reference adaptive controller (MRAC) developed in [32]:
a[k] = a[k — 1] + Fe[k — 1]e[k] (5-29)

_ K elk —1]-d[k]

1+ Ke[k —1] (5-30)

e[k}

The block diagram of adaptive control based on the MRAC approach is depicted in

1i(1:112)
%K) 4 v
Xd ) Kealk) 1faz

- dik)

Eq(5-29), (5-30) ___)%

d*(k)

Figure 5-67.

Koz

reference ‘model

Figure 5-67 Block diagram of adaptive control system

5.5.2 Adaptive control simulation

For the previous adaptive controller, the simulation results for x,=100um and x,=

-100um are shown in Figure 5-68 and Figure 5-69.

5.5.3 Experimental testing

We choose K = 0, K, = 0.5 and F = 1.0e-3. The experimental results for

c

x,=100um and x,= -100um are shown in Figure 5-70 and Figure 5-71 which
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demonstrate that it can get the tracking error of the system resolution (0.3um). The
settling time is about 0.6s. It is faster than an impulse feedback control.

The parameter tracking performance for different initial values is shown in Figure
5-72.  The conclusion is that the parameter converges. The converged values have a

small difference between them that may be caused by the different initial position.

120 T T

100 | —

displacement (um)
3

20 ~

T

time (s)

Figure 5-68 Adaptive impulse control simulation x,=100um
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Figure 5-69 Adaptive impulse control simulation x,=-100um
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Figure 5-72 Parameter estimation performance
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5.5.4 Friction variation

In this adaptive control, h, is just set to eliminate the dead zone. That is, h,=
3.1278Vs in simulation and h,=3.2Vs in experiment. If the load side friction varies,
for example, if f, increases from 0.0018Nm to 0.005Nm, we see a steady state error of

lum occurring as put forth in the simulation results shown in Figure 5-73,. This
happens because when the load side friction increases, the dead zone appears again.

The experiment shown in Figure 5-74 also verifies this result.
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Figure 5-73 h,=13.1278Vs, f,=0.005Nm, a steady state error of lum(simulation)
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5.6 Robust adaptive impulse control

In the adaptive control presented in the previous section, A, is set to the value that

just eliminates the dead zone. The controller is not robust to the friction variation. Is

there any approach to make the controller more robust to the friction variation? This

question can be solved with a large value of h,.

5.6.1 Simulation and experimental response

When the load side friction is f,=0.005Nm, hk,=7.43Vs eliminates the dead zone.
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Select a bigger h,=10Vs to eliminate the dead zone completely even when A is

negative. The simulated response when h,=10Vs is shown in Figure 5-75. It can be
summarized by approximately two lines:
d=b,, ,(h/V +1) h IV, <-n, (5-31)

d

bsimu2 (hl /Vs + ns) h1 /Vs > —”s (5'32)
where 77,=0.9. 7, does not vary much with friction level f".

The experimental response when h,=10Vs is shown in Figure 5-76. It is can also

be summarized by approximately two lines:

d

beper (i 1V +17,) h 1V, <-7, (5-33)

d

bexpe2 (hl /Vs + ”e) hl /Vs >-1, (5_34)

where 77, =1.55.

5.6.2 Simulation

When h,=10Vs, f,;=0.0018, we use K_=0.2, F=1.0e-6, and the simulation of the
adaptive control result for x,=100um is shown in Figure 5-77. The result of a friction
increase to f,;=0.005Nm is shown in Figure 5-78. The control precision can reach

0.25um in both cases. The controller is robust to the friction variation.

5.6.3 Experiment

We use the same parameters used in simulation, and the result of the adaptive control
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In the

experiment for f; =0.0018Nm, and x,=100um are shown in Figure 5-79.

experiment, since A, is big, the amplifier saturation condition must be checked for every

The experiment for f,=0.005Nm, x,=100um is shown in Figure 5-80.

pulse input.

The settling time is less than 1s.

The results verify the simulation result.
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Figure 5-75 Simulation of arm increment to pulse for h,=10Vs
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Figure 5-76 Experiment of arm increment to pulse for h,=10Vs
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5.6.4 Conclusion for impulse control

In impulse control, if the pulse rate is bigger than 250ms, the amount of time is too
long time for the system to get stuck. If the pulse rate is less than 250ms, the system is
still in motion and the pulse response is non-predictable. The optimal pulse rate is
250ms.

The pulse shape of the sum of the first and second harmonics can get good control
effect in impulse control. The first harmonic supplies the main force to drive the system.
The second harmonic can be used to eliminate the dead zone. The odd order harmonic
pulses have similar effects as first harmonic pulses and the even order harmonic pulses
have a similar effect to the second harmonic pulses. The higher order harmonic pulses
are hard to keep the real pulse shape in experiment due to bandwidth limitations. So the
optimal pulse shape is the sum of the first two harmonics.

The load side friction has a significant effect on impulse control. It can degrade the
control resolution and enlarge the dead zone. The flexibility also has much effect on
resolution and dead zone. It is important to decrease the friction and flexibility in the
system.

By choosing a large amplitude 4, for the second harmonic, we can make the

impulse control system robust to the friction variation, as long as the system is not

saturated.
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Chapter 6 Conclusions and Future Work

6.1 Conclusions

A new approach for high-resolution control of harmonic drive motors using
impulse control inputs is presented in this thesis. The main results and contributions are
summarized as follows:

1) Dynamic model of harmonic drive motors

A dynamic model including the effects of friction and transmission flexibility is
developed and identified experimentally. This model is shown to be capable of
accurately predicting the impulse response of harmonic drive motors.  Also
demonstrated is the model’s usefulness for the development of impulse control systems.
2) Effect of parameter variations on impulse response

The load side friction level has a significant effect on the resolution and dead zone in
impulse control systems. The resolution gets worse and the dead zone increases
proportionally as the load side friction level increases. It is therefore very important to
account for load friction variations for impulse control to be effective.
3) Determination of optimal impulse waveform and pulse rate

The optimal impulse shape is the sum of the first two harmonics. This pulse shape

146



is relatively simple and it is shown that the second harmonic can be used to eliminate
undesirable dead zone behaviour. Robustness of dead zone elimination to friction
variation can be achieved by using a large second harmonic amplitude. Additionally,
the pulse rate must be reduced to a sufficiently slow rate to achieve maximum resolution.
4) Adaptive impulse feedback control

It was determined that the impulse response curve varies depending on parameter
variations such as load friction. To help compensate for this problem, a MRAC adaptive
controller was successfully combined with the impulse control method. The reduction
in dead zone behaviour using the second harmonic was shown to be highly effective in
this approach.
5) Experimental testing and verification

A large amount of experimental testing and verification was performed in this thesis.
Results show that the impulse feedback control and adaptive impulse control have a
settling time of 1s, a steady state error of less than 0.3 um, and a resolution of 0.3 um.
The resolution that could be obtained was ten times better than could be achieved using

conventional linear control.

The results of this thesis represent the first known comprehensive study of applying
impulse control to harmonic drive motors for high resolution positioning applications.
This approach demonstrates that the resolution can be increased by more than an order of
magnitude over conventional control methods. This will allow harmonic drives to be
economically used in many new applications where high precision positioning capability

is needed.
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6.2 Future work

1. As an attempt to estimate system parameters more precisely, the use of tachometers
to measure the motor and load side velocity is suggested, as well as adding the data to the
online parameter estimator.

2. In impulse adaptive control, more parameters may be adapted to estimate the
parameters precisely. This may reduce the system settling time.

3. Try to identify the effect of the combination of the friction and flexibility on the

resolution and dead zone.
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Appendix A: Construction and Operation of Harmonic

Drives

A typical harmonic drive is composed of the components identified in Figure A-1.
The wave generator (A) is an elliptical cam enclosed in an antifriction ball bearing
assembly. It normally functions as the rotating input element. When inserted into the
bore of the flexspline, it imparts its elliptical shape to the flexspline, causing the external
teeth of the flexspline to engage with the internal teeth of the circular spline at two
equally spaced areas 180 degrees apart on their respective circumferences, thus forming a
positive gear mesh at these points of engagement. The externally toothed flexspline(B)
is a non-rigid or flexible, thin-walled, cylindrical cup which is smaller in circumference
and has two less teeth than the circular spline. It is normally the rotating output element
but can be utilized as the fixed, non-rotating member when output is through the circular
spline. The circular spline(C) is a thick-walled, rigid ring with internal teeth. It
normally functions as the fixed or non-rotating member but can, in certain applications,

be utilized as a rotating output element as well.
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(b)

Figure A-1 (2) Harmonic drive gear components (b) Assembly

A fully assembled harmonic drive is shown in Figure A-1(b). In the most common
speed reduction configuration, the wave generator is the input port, the flexspline is the
output port, and the circular spline is immobile.

Figure A-2 illustrates the operation of the harmonic drive in the most common

configuration. The teeth on the non-rigid flexspline and the rigid circular spline are in
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continuous engagement. Since the flexspline has two teeth less than the circular spline,
one revolution of the input causes relative motion between the flexspline and the circular
spline equal to two teeth. With the circular spline rotationally fixed, the flexspline

rotates in the opposite direction to the input.

Figure A-2 Principle of operation of a harmonic drive

In general, the gear ratio formula for a harmonic drive gearing is

FS
r:___._—_
(CS - FS)

with the tooth differential between the circular spline (CS) and the flexspline (FS)
accounting for the gear ratio (r) achieved. For example, to satisfy the formula, an 80:1
ratio would have 160 teeth on the flexspline and 162 teeth on the circular spline. The
two-tooth difference permits a two-tooth advance for every revolution of the elliptical
generator, or one flexspline advance for every 80 revolutions of the wave generator in

this particular example.
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Appendix B: Advantages of Harmonic Drives

Because it consists of only three simple parts, harmonic drive gearing offers design
engineers the freedom to integrate drive components directly into machines or equipment.
Harmonic drive is a pure torque couple with all concentric elements and requires less
bulky support structures than conventional gearing.

Harmonic drive gearing is in a class of its own when it comes to motion control and
mechanical power transmission. With operating principles and construction that
maximize output torque and minimize size and weight, harmonic drive gearing offers
advantages such as high reduction ratios, zero backlash, and high precision that cannot be
equalled by conventional gear trains. The typical advantages of harmonic drive are as
follow:

Excellent positional accuracy and repeatability - Positional accuracy may be
minimized within one arc minute and repeatability within a few seconds.

High torque capacity - Since power is transmitted through multiple tooth
engagement, harmonic drive gearing offers high output torque capacity.

Single-stage high reduction ratio - With only three elements, the single-stage
reduction ratios range from 50:1 to 320:1 with the same weight and mechanical
dimensions.

Zero backlash - Cup-type harmonic drive gearing operates with zero backlash
between mating teeth because of natural gear preload and radial tooth movement. The
only shaft-to-shaft backlash that exists, originates in the input coupling and ranges from

2-36 arc-sec depending on unit size and reduction ratio. This coupling can be
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eliminated if necessary, resulting in zero backlash for the entire drive.

In - line configuration - Harmonic drive gearing input and output shafts are
concentric, allowing machine designers to dramatically reduce the required packaging
space compared to other high ratio, high torque drives.

High torsional stiffness — The torsional stiffness of harmonic drive gearing allows
greater precision and higher servo gains.

Efficiencies - Operating efficiencies of up to 90% can be obtained. Ratings are
based on actual shaft-to-shaft tests.

Back driving - Harmonic drive units are reversible and can be back driven. If
necessary, loads can be held in place by braking the wave generator when the servo

system is not powered.

Because of these properties, harmonic drives are popular in many industrial and space

applications.
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Appendix C: Online Parameter Estimation

As an attempt to figure out the parameter’s uncertainty in the system, online

parameter estimation is studied here. The model of (2-8) and (2-9):

Ty =Fy—Xne i 1k (rg, - q)+ 2 ur) C-1)
R R
qul = F} + Ks(rqm - ql) (C'z)

When |g,[>0, and |g, >0, the friction can be written as:
F, =-sgn(g,,)fon = bnds (C-3)

F, =-sgn(q,)) f, —bgq, (C-4)

Substitute  (C-3), (C-4) into (C-1) and (C-2) yields:

} f ) b, KK, . 1K K

=—Jmgon(g )— (-1 —— —g)+—2u(t C-5
7 7 gn(qg,,) —( 7RI ). 7 (rq,,—q,) R u(t) (C-5)
) f. .. b . K

= SN L -+ 5 ¥ - C_6
7 7 gn(q,) TR Jl(q,,. q,) (C-6)

m

Casel: §,and ¢, canbe measured.

Let
me
81=—Z
b K K
= (2 om b
S T
rK,
g3:_]

m
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84 = RJm
_Ja
85 J,
__b
86 J,
— KS
87 7,
then
_gl_
82
. &3
9
y =[ . ]=[W] g4 (C-7)
9 g
5
8s
|87 ]
where

[W]:{Sgn(ém) g, (rgq,—q) u 0 0O 0 }
0 0 0 0 sgn(qg) g (rq,-q)

Case 2: When ¢, and ¢, can not be measured.

Convolving both sides of (C-5) and (C-6) with e—,u yields [5]

[ -At-p) - [ ao- KK, .t -
o~ A €2, (p)p = L[ &P sgn(g,, )dp - (~—+ )I g, (p)p +
0 J 0 RJ

m m

RJ

m

K | K. ¢ i
___,,,_J‘e—,l(t—p)u(p)dp _Ij_i(j oM p)(rqm(p) —q,(p))dp)
0 0

m

(C-8)
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t

Y ST - : bt aiep s
ql_/lje At p)ql(p)dp_____?];_gl_-[e At P)Sgn(ql)dp___jl_je At p)q,(p)dp+
0 0

1o 1

# 22 ([ g, (p) =, (P))p)
I o

(C-9)
They can be written as
. b KK, { —ap- Fom € - .
=(]—--m - m b eli(tp) —Jam |, (tp)sn( m)d
T >£ 4. (pMp Jj gn(q,)dp
4 [ dp—— K(j 4P (rq,,(p) - q,(p))dp)
=[P up)dp == K. ([P (g, (p) — a, ()P
m 0 m 0
(C-10)
b t f t K t
g =(A="1)[ e P4 (p)p—I+[ P sgn(g,)dp + ([ ¢ (rq,,(p) ~ 4,(P))dp)
Jl 0 Jl 0 Jl 0
(C-11)
let
b, KK,
g =A-————r—
J. R,
gzz_§C:
—_ Km
83 RJ,
rK,
84 =" T
b
—A-2
8s 7,
86__'&
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K

g7—Jl

t

[P, (p)dp

0

Wi

t

w, = [ €7 sgn(q,)dp

0

t

w, = [ Pu(p)dp

0

t

w, = [P (rq, (p) =~ q,(P))dp

0

!

[e P4, (p)dp

0

Ws

t

W, = Ie"“'"” ) sgn(q,)dp

0

then (C-10) and (C-11) can be written as

&
8,

. 83
y =[‘{’”}=[W] % (C-12)
8s
8
87 ]

where

[W]:wl w, w, w, 0 0 O
0 0 0 0 w, w, w,
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Implement a parameter estimator using equation (C-12). Take measured data (t,

ut), q,. q,)fromexperiment. ¢, and g, canbe calculated from ¢, and g, in

different sampling time:

q,(k+1)—q, (k-1)

T (C-13)

4, (k)=

%(k'*'l)"%(k_l)
2T

q,(k) = (C-14)

T is the sampling time. Because there are seven parameters to be estimated, use a sum
of more than 8 sine waves with different frequency as a reference input. Put[g, g,

q,, ¢, u(t)] into a data file as the input of the estimator.

As the result, the estimated parameters do not converge. The reasons probably are:

1. The encoder resolution is not high enough. That makes the calculated velocity (q,,
and ¢,) not consistent with the real velocity.

2. The parameter variations and uncertainties in the system make the estimator difficult
to track the real parameters

3. There are some un-modelled attributes in the system

If tachometers are available in the future, the measured velocities can be used to

estimate the parameters.
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