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Abstract

This dissertation compares the performance of five existing Genetic
Algorithms (GAs) that do not require the manual tuning of their parameters,
and are thus called Parameterless Genetic Algorithms (pGAs). The five
pGAs selected for evaluation span the three most important categories of
Parameterless GAs: Deterministic, Adaptive and Self-Adaptive pGAs. The
five test functions used to evaluate the performance of the pGAs include
unimodal, multimodal and deceptive functions. We assess p erformance in
terms of fitness, diversity, reliability, speed and memory load. Surprisingly,
the simplest Parameterless GA tested proves to be the best overall
performer. Last, but not least, we describe a new parameterless Genetic
Algorithm (nGA), one that is easy to understand and implement, and which
bests all five tested pGAs in terms of performance, particularly on hard and

deceptive surfaces.
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Chapter 1

Overview of Genetic Algorithms

1. Introduction

A Genetic Algorithm is a method of computation that simulates the
mechanisms of natural selection. It is typically used to optimize functions
that are intractable to solve or problems with large or unknown search
spaces. The simple GA inspired by Holland [34] starts with a randomly
generated population of individuals, each corresponding to a particular
candidate solution to the problem at hand. Candidate individuals are allowed
to evolve over a number of generations. The best individuals survive, mate
and create offspring, the worst typically die or/and do not produce offspring.
Typically evolving individuals over time leads to better populations.

This chapter is a review of GA theory, operations, representation,

selection, reproduction, and mutation.



1.1 Genetic Algorithm Operation

This s ection provides an overview of the basic operation ofa simple GA
[34], including:

e Representation

o Fitness Evaluation

e Genetic Operators

e Parameters

e Initialization and Termination Criteria

1.1.1 Representation

We represent a possible solution to a problem in the form of a structure of
variables. T his structure is called a chromosome or individual. The set of
values assigned to the decision variables represent a particular solution to the
problem. A variable is called a gene and its value 1s called an allele. The set
of possible solutions is called search space, and a particular solution in the
population represents a point in that search space. In practice, the
chromosome could be presented in various forms, including among others,

strings, trees or graphs. In simple genetic algorithms, a string of Boolean



variables is used usually gray code. Gray code is an ordering of 2" binary

numbers such that only one bit changes from one entry to the next.

1.1.2 Fitness Evaluation

Each chromosome in the population is assigned a “fitness” value as a
measure of how well the chromosome optimizes an objective function. The
mapping that does that is called a fitness function. At each generation, the
fitness value of each chromosome is calculated. The task of a GA is to find
solutions that have high fitness values among the set of all possible

solutions.

1.1.3 Genetic Operators
After the fitness of each individual is computed, a number of genetic
operator (typically, two) and selection are applied to evolve new solutions.
Selection simulates the survival of the fittest. The fitter the
chromosome the more likely it is to survive and reproduce. There are several
selection techniques used in GAs. The one used by Holland is Roulette
Wheel Selection (fitness-proportion selection).
As shown in figure 1, the idea behind roulette wheel selection is that

each individual is given a chance to become a parent in proportion to its



fitness value. Roulette wheel selection can be implemented in the following
way. Sort the individuals by fitness. Then, compute an aggregate fitness
value (AF) for each individual in the sorted list, equal to the sum of the
fitness values of all the individuals up to (and including) the target
individual. Generate a random number r, between 0 and AF of the last
individual in the list. Return the first population member with an AF that 1s
greater than or equal to 7.

The problem with roulette wheel selection is that one member can
dominate all the others and get selected many times, and this leads to
premature convergence. For that various fitness normalization techniques are
used such as tournament selection. In tournament selection potential parents
are selected randomly and a tournament is held to decide which of the
individuals will be the parent. Tournament selection can be implemented by:
Select two individuals at random. The individual with the highest fitness
becomes the parent. Repeat to find a second parent. This is tournament
selection with size two. Figure 1 illustrates the process of roulette selection

using a population of 5 individuals.



No of Fitness | Sum of No of Fitness
Individual value individual Individual value
fitness and its
proceeding
1 0.8 0.8 1 0.6
2 0.9 1.7 2 0.9
3 0.6 2.3 3 0.3
4 0.2 2.5 4 0.8
5 0.3 2.8 5 0.9
Current Population Mating Pool

[ Generatedr [22 [09 [27 J0.02 [16 |
Random r generated 5 times to create mating pool. » bounded between 0 and 2.8.

Figure 1: The Roulette Wheel Operator applied to a Population of 5
Individuals

Using selection will not result in the introduction of new
chromosomes into the population. To generate new chromosomes, crossover
and mutation are used. Crossover is inspired by the role of sexual
reproduction in creating new and different individuals from two (or more)
parents. The mechanism works by mixing the genes of one (good) solution
with genes from other (also good) solutions. Two chromosomes with high
fitness are selected randomly from the mating pool. These selected
chromosomes are called parents. Then, two new chromosomes are created

by pairing the parents. The new pair of chromosomes is called children.



There are many types of crossover ranging from single- and dual-point
crossover to uniform crossover.

Figure 2 illustrates a commonly used crossover operator: single-point
crossover. After two chromosomes are selected, a random variable » is
chosen as a crossover point (here r = 4). The genes before r are taken from
parent one and are copied into the first child and the genes after » from the
second parent is copied into first child too. The second child is created in a
similar manner — see figure 2. Crossover is applied with a high probability

(>0.5) and is responsible for most of the search activity performed by a GA.

tlolololalals tialtltjo]olo

"

Crogsover Poirt

%13@93;9[9;1111131%

Figure 2: Single Point Crossover
Another commonly used crossover operator 1s uniform crossover. You
randomly generate a template string of binary digits of equal length to that of
the parent strings. Two children are created from two randomly chosen
parents. The first child is created by copying the values of the first parent

when the template value is 1 and from the second parent when the template



value is 0. The second child is created in a complementary matter as shown

in figure 3.

Parent 1 1 o jJ1 {1 j1 |Jo J1
Patent 2 1 J1 Jo jo J1 |1 |oO
Tetnplate o |t ]t Jo jo |1 |O

Child 1 i1 |Jo |t jo Jjt Jo ja
Child 2 tfr jo J1v 1t v i1

Figure 3: Uniform Crossover

Mutation is inspired by the role of mutation in natural evolution. With
binary coded GAs, this means flipping a 0 bit to a 1 bit or vice versa.
Mutation yields a new ¢ hromosome, w hich m ostly 1 ess fit than its p arent.
Nevertheless, mutation used in order to prevent the GA from getting trapped
in a local minimum. Mutation, hence, is often used as a means of
diversifying converging population, but is usually used with a very low
probability (<< 0.1). Figure 4 illustrates bit-flip mutation, as applied to

binary-coded chromosomes.

Figure 4: Bit-Flip Mutation



1.1.4 Parameters

Before a GA is run, the user must specify some parameters. These include
population size, crossover probability and mutation probability. These
values are problem dependent. It is not an easy to specify the correct values

of parameters for an optimization problem.

1.1.5 Initialization and Termination Criteria

A Genetic Algorithm starts by randomly generating a population of
chromosomes; sometimes a percent of the initial population created using a
number of good solutions.

After the initial population is created, a GA starts to evolve the
population in order to find an optimal (or near-optimal) solution to the target
problem. This evolution continues over a number of generations (using
selection and the genetic operators) until a termination condition is met.
There are several potential termination conditions, including: evolving an

optimally fit individual and reaching a maximum number of generations.



1.2 Basic Genetic Algorithm Theory

This section reviews the basic theory of genetic algorithms, which was
developed by J ohn Holland. Holland’s theory relies heavily on the notion
that a good solution can be constructed by combining good pieces, called
building blocks, from different solutions. Holland introduced the notion of
schema to analyze the effects of the GA operators on these pieces (or sub-
solutions). The results of his analysis are summarized in the Schema
Theorem.

A schema is a similarity template that represents a set of solutions
from the search space. In the context of binary alphabets, a schema is a
string o ver the ternary alphabet {0,1,*}. The star (*) symbol represents a
“don’t care”. For example, schema H = 1**0* represents all strings that have
a1l in the first position and a 0 in the fourth position. Strings 10101 and
11100 are members (or instances) of schema H, but 11111 and 00100 are
not. Two important d efinitions are the order and the defining length of a
schema. The order is the number of fixed-positions (ones and zeroes) in a
schema. The defining length is the distance between the two outermost fixed
positions. For example, schema H = 1**0* has order 2 and defining length

3. Holland quantified mathematically how the numbers of representatives of



a schema change when going from one generation to the next, and

summarized it in the schema theorem:

m(H,t+1)2m(H,t)M(l—ﬂ—a(i)—PmO(H)) 1
v -1 (1)
f(@)
where:

m(H,1) is the number of instances of schema H at time t;

TS s the average fitness of the instances of schema H at time t;

F® s the average fitness of the population at time t;

P is the probability of crossover;

9(H) ig the defining length of schema H;

¢ is the string length;

P is the probability of mutation;

O(H) is the order of schema H.

Holland’s schema theorem is written assuming fitness-proportion
selection, and single point crossover. The overall lesson of the schema
theorem is that highly fit schemata that are not too disrupted by the variation

operators, those that are of low order and of short defining length, tend to

10



grow from generation to generation. A more general version of the schema

theorem can be written as:

M(H,t+1)2m(H,t)O(H,t)(1-(H,t)) Q)

The effect of selection is given by the reproduction ratio ®*9 which

is equal to @and the effect of the variation operators is given by the
1@

disruption factor?>9 Overall, a schema can grow or decay according to

the net growth factor defined by:

O(H,1)1-&(H, 1)) 3)

In intuitive terms, this theorem says that the number of instances of a
building block increase (decrease) when the observed fitness in the current

schema H is above (below) the observed population average.

1.3 Criticisms of the Schema Theorem

The Schema Theorem has traditionally formed the basis for theoretical
analyses of Genetic Algorithms. It provides insights into the nature of the

evolutionary process. Holland’s theory asserts that genetic algorithms work

11



by combining highly fit sub-solutions (or “building blocks™). Unfortunately,
the simple genetic algorithm can only process well a small fraction of these
building blocks, those whose genes are located close to each otherin the
chromosome. For that reason, the schema theory does not work in cases of
“deception”. Deceptive problems have two characteristics that cause genetic
algorithm serious difficulties: the global solution is isolated, and information
misleads the genetic algorithms to sub-optimal solutions. In this case, low-
order schemata that are highly fit do not combine to form high-order
schemata that are also highly fit.

Also, the Schema Theorem fails to predict the behaviour of small
populations. For example, consider the two competing schemata: 1*** and
0***_ Suppose that, on average, the strings belonging to 1*** have higher
fitness than the strings belonging to 0 ***, Clearly, the genetic algorithms
should prefer strings of the form 1***, but it can sometimes prefer 0***
because the population might be too small to properly sample the competing
schemata. For all of these reasons (and more), the schema theorem has come
under increasing criticism from serious GA researchers such as Vose [55],
Grefenstette e al. [25] and Muhlenbein [39].

Two obvious limitations of the schema theorem restrict its usefulness.

First: the schema theorem does not provide adequate characterization of the

12



genetic search. The inexactness of the inequality is such that if one were to
try to use the schema theorem to predict the representation of a particular
schema over multiple generations, the resulting predictions would in many
cases be useless or misleading Vose [55]. Second: the observed ﬁtness of a
schema at time ¢ can change dramatically as the population concentrates its

new samples in more specialized sub-partitions of schema Grefenstette et al.

[25].
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Chapter 2
A Review of Parameter-less Genetic Algorithms

2.1 Introduction

The performance of a GA depends on a number of factors, such as candidate
solution representation, and fitness evaluation and manipulation: via
crossover and mutation. One of the main difficulties that a user faces when
applying a genetic algorithm is to decide on an appropriate set of parameter
values. Both crossover and mutation have parameters - probability of
crossover P, and probability of mutation P,, - that require initialization and
adjustment. For a given problem, these parameters, as well as the size of the
population of candidate solutions (S), require careful manual optimization,
often done through trial and error. Several studies have shown that the GA
can tolerate some variation in its parameter values without affecting much its
overall performance. But even though a GA can robust in respect to some of
its settings, that does not mean that a GA will perform optimally (or even
near-optimally) regardless of the way it is set up.

Choosing a proper set of parameter values is not an easy task due to

its dependency on many aspects of the particular problem being solved; such

14



as dimensionality and density of the search space and shape of the fitness
surface. Many of these features are not available or computable prior to
application of the GA; there are no formal guidelines for setting parameters
up for any GA applied to an arbitrary problem. This diminishes the
autonomy of GAs, and renders them much less attractive to potential users,
such as engineers, that are not experts in GAs, and view them as nothing
more than a tool for solution or optimization.

This chapter surveys the most important research efforts expended to
date in pursuit of GAs that require no manual tuning of their parameters, and
are thus called Parameter-less GAs (or pGAs). We divide them into two
categories:

e Parameter Tuning;

e Parameter Control.

Parameter tuning involves finding good values for the parameters on a
variety of test problems before the GA is run, and then using these values
during the GA run. Parameter control includes several techniques that
change or adapt the parameter values as the search progresses. Below, we

review each category in detail.

15



2.2 Parameter Tuning

De Jong 1975

In 1975, De Jong [20] empirically investigated various combinations of
parameter values using a set of five test functions. These functions included
continuous and discontinuous functions, convex and non-convex surfaces,
unimodal and multimodal functions, and deterministic and noisy functions.
Since then, De Jong’s functions have been used by researchers to test and
compare various types of Genetic Algorithms.

De Jong tested the influence of four parameters: population size,
crossover probability, mutation probability, and generation gap. Generation
gap allowed him to study the effect of overlapping populations. De Jong did
his study by applying a simple GA with roulette wheel selection, single-
point crossover, and bit flip mutation. He observed that larger populations
returned good results in the long-term. On the other hand, smaller
populations responded faster, but sometimes converged prematurely.
Mutation was needed to restore lost alleles and to explore new search areas,
but its probability should be low; otherwise a GA turns to a random search
engine.

Overall, the De Jong discovered a set of parameter values, which were

good for the classes of test functions that he used. The following set of

16



parameters gave good performance: p opulation sizes in the range 50-100,
crossover probability of 0.6, and mutation probability of 0.001. These
parameter values have been used often by researchers, and have thus become
a kind of “standard” set. Unfortunately, this set of parameter values is not
optimal for all application domains. Subsequent research has shown that

using these settings blindly can be a serious mistake.

Grefenstette 1986

In 1986, Grefenstette [24] used a meta-GA to find a combination of
parameter values using De Jong’s test functions. The set of parameter values
he found are: population size of 30, a crossover probability of 0.95, and a
mutation probability 0.001.

The aforementioned studies suggested a low value for mutation
probability, proposed double-digit values (< 100) for p opulation size, and
used high (> 0.5) values for crossover probability. Although none of these
researchers were able to prove that their sets were optimal for every
optimization task, many GA users viewed their results as sound empirically

founded guidelines.

17



Schaffer et al. 1989

In 1989, Schaffer et al. [43] investigated various combinations of parameter
settings on a set of test functions. They used De Jong’s functions, but
included five more functions. They used a simple GA with roulette wheel
selection, two-point crossover and bit flip mutation. For each combination of
parameter values, ten independent runs were performed. They observed a
reverse relation between mutation probability and population size: high
mutation probability is needed for smaller populations and vice versa. Also,
they observed that the following set of parameter settings performed well:
population sizes in thé range of 20-30, crossover probability in the range of

0.75-0.95, and mutation probability in the range of 0.005-0.01.

2.3 Parameter control

In Parameter Control, one starts with certain initial parameter values;
possibly the De Jong or Grefenstette’s sets or some amalgamation thereof.
These initial values are adjusted, during run-time, in a number of ways. The
manner in which the values of the parameters are adapted at run-time 1s the
basis of Eiben’s classification. Eiben et al. [21] classified Parameter Control

into three different sub-categories:

18



e Deterministic Control;
¢ Adaptive Control;

o Self-Adaptive Control.

Parameter adaptation techniques have two main advantages. First, the
user does not have to specify in advance the values of the parameters.
Second, time-dependent values for the parameters may actually be beneficial

to the search. Below is a review of these parameter adaptation methods.

2.3.1 Deterministic Control
In this type of Parameter-less GAs, the values of the parameters are changed,
during a run, according to a heuristic formula, which usually depends on

time (i.e. number of generations or fitness evaluations).

Fogarty et al. 1989
Fogarty et al. [22] experimentally examined dynamical mutation probability
control for genetic algorithms and he proposed to change the probability

mutation in line with equation (4)- ¢ is the generation number.
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1 0.11375
=t

240 2! (4)

The probability of mutation decreases exponentially over generations;
a small ¢ onstant v alue w as added t o prevent mutation from decreasing to
zero in later generations. The researchers found that varying the probability
of mutation over generations significantly improved the performance of the
genetic algorithm. They examined the effect of applying this formula to a
generational genetic algorithm with single-point crossover, a probability of

crossover equal to 0.95.

Hesser et al. 1991

Hesser et al. [30] theoretically derived a general formula for probability of
mutation using the current g eneration number, in addition to a number of
constants (“C-and ©) used to customize the formula for different
optimization problems. Unfortunately, these constants are hard to compute
for some optimization problems. In equation (5) # is the population size, / is
the length of a chromosome (in bits), and ¢ is the index of the current

generation.

P - &exp(—Cg/Z)
ToVe e ®)
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Muhlenbein 1992, and Back 1993

Independently of each other, Mouhlenbein [40] and Back [7] did a
theoretical investigation of the effects of the mutation operator in a simple
(1+1) evolutionary algorithm. The notation (1 + 1) is borrowed _ﬁom
evolutionary strategies (which are similar to GAs, but use real numbers and
matching operators, instead of bit strings). A (1+1) GA is an algorithm that
sees single parent chromosomes each producing a single child by means of
mutation. Hence, the best of parent and child is passed to the next
generation. Proportional selection is used and no crossover is used in their
study. Both Muhlenbein and Back concluded that for a fixed mutation rate
throughout the run, the optimal mutation probability in the case of a
unimodal problem is 1/, where / is the chromosome length.

In other studies, Back [10] proposed a general formula for P,, one
that is a function of both generation number (¢) and chromosome length (/).
The formula is presented as equation (6); T" is the maximum number of
generations allowed in a GA run. Excellent experimental results where

obtained for hard combinatorial optimization problems.

(6)
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The mutation probability value in all formulae presented above is
handled as a global parameter, i.e. one mutation probability value P, is valid
for all chromosomes of the population. All formulae presented above are
variations on a single theme presented symbolically by 1/, where ¢ is the
generation number. In this theme the probability of mutation is initially very
high, but is quickly reduced to a low and reasonably stable value. This
agrees with common sense, as most GAs go through a short and frantic
period of locating areas of interest on the fitness surface, followed by a
lengthy and deliberate exploration of those locales (mainly via crossover).
Naturally, random search, and hence mutation, are ineffective methods o f
exploration of large spaces. This simple fact leads to the incorporation of 1//
(and variants) into many formulae for P, — [ is the length of the
chromosome, which is a direct reflection of the dimensionality of the search
space.

Not only is the need for manual tuning of P, eliminated, but also the
performance of GAs is much improved by the use of time-dependant

formulae for P,,.
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2.3.2 Adaptive Control

In this mode of parameter control, information fed-back from the GA is used
to adjust the values of the GA parameters, during runtime. However, (as
opposed to self-adaptive control) these parameters have the same values for
all individuals in the population. This topic has been investigated since the

early days of the evolutionary computation field.

Rechenberg 1973

Rechenberg [41] empirically introduced the 1/5 successful rule to (1+1)
algorithms. He presented equation (7) as rule for determining how severely
to mutate fixed-length real-valued vector representations using Gaussian
noise:

, if p>1/5

o
<
o =40.C , if p<1/5 (7)
o , if p=1/5

where p is the relative frequency of successful mutations, measured over
each generation. A choice of ¢ = 0.817 was theoretically derived by
Schwefel [46]. After each generation, the ratio of the number of successes

(successful mutations) to the total number of trials (mutations) is obtained. If
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the ratio is greater than 1/5, increase the variance; if it is less than 1/5
decrease the variance.

Essentially, this heuristic codifies the valid association that if the ratio
of successful mutations is larger than 1/5 then the distribution of offspring is
too focused and should be broadened. L ikewise, i f the ratio o f s uccessful
mutations is less than 1/5 then the distribution of offspring is spread over too
large an area and should be more focused. This heuristic is useful in smooth
multimodal environments of the type well studied by the Evolutionary
Strategies community but would be less applicable in discontinuous or

extremely irregular fitness surfaces.

Bryant et al. 1995

Bryant et al. [16] tried to adapt crossover and mutation probabilities in a
steady-state genetic algorithm. They updated the probabilities of crossover
and mutation (from initial values) according to the contribution of each
operator to the generation of fit individuals. Bryant et a/ mechanism updates
the operator probabilities after the generation of each new individual. To do
this, a new data structure binary tree associates with each individual, and it
maintains a queue that records the operators’ contributions over most recent

new individuals.

24



In Bryant’s et al. algorithm two individuals are selected per one
round. If these two individuals go under crossover one child will be created.
If the children fitness greater than current population average, Bryant’s
mechanism assigns credit to crossover operator. It is called immediate
operator credit. Mutation operator assigned credit too if it creates individuals
with fitness greater than current average fitness. The mechanism records
also the credit to the operator that generated the individual’s parent.
Therefore, Bryant et al. attaches operator tree with each individual. When
the algorithm applies crossover or mutation, the operator copies entries from
the parental operator tree into offspring’s operator tree. When the GA
generates an improved individual, Bryant’s et al. mechanism scans the
individual’s operator tree to update the operator probability. Crossover

probability p, is updated according to the following formula:

~ C. /N,
"TC,/N,+M,IN,,

)
where C, is the credit of the immediate crossover operator, N,, is the total
amount of crossover credit recorded in the tree, M, is the credit of the
immediate mutation probability, and N, is the total amount of mutation

credit recorded in the tree. Mutation probability 1s 1-p,.
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Bryant et al. tested their mechanism using a steady-state genetic
algorithm that does not allow duplicate individuals in the population.
Mutation and crossover each produced one offspring. This mechanism
shows good performance in optimizing mathematical functions and

minimizing tour length in the traveling salesman.

Hinterding et al. 1996
Hinterding et al. [32] ran three populations simultaneously. These
populations had an initial size ratio of 1:2:4 or, in absolute terms: 50, 100
and 200. A mutation function uses the best fitness to update population
sizes. Let us denote the best fitness found after a set number of function
evaluations in population one as P/, population two as P2, and for
population three as P3. Then the population sizes are updated according to
two mechanisms. First if the best fitnesses converge:

If PI and P3 have the same best fitness then size (PI) = size (P1)/2,

and size (P3) = size (P3)*2

If P/ and P2 have the same best fitness then size (P]) = size (P1)/2

If P2 and P3 have the same best fitness then size (P3) = size (P3)*2
Second, where the best fitness values for P/, P2, and P3 are distinct. The

following set of rules are used to update the population sizes:
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P1 P2 P3: move right

P1 P3 P2 or P2 Pl P3: compress left

P2 P3 Pl or P3 P1 P2: compress right

P3 P2 P1: move left
Theses cases are ordered by best fitness, smallest on the left, largest on the
right. The adjustment operator ‘move’ and ‘compress’ are defined as:

Move right: size (PI) = size (P2); size (P2) = size (P3); and size (P3)

= size (P3)*2

Move left: size (PI) = size (P1)/2; size (P2) = size (P1); and size (P3)

= gize (P2)

Compress left: size (PI) = (size (PI) +size (P2))/2; rest unaltered

Compress right: size (P3) = (Size (P2) +size (P3))/2; rest unaltered

Using these rules the researchers tried to maximize the performance of
the middle population size. A steady-state genetic algorithm is used with
tournament selection (with a tournament size of two). A bit string
representation is used for chromosomes. Crossover and mutation are applied
independently, i.e. new individuals are produced either through crossover or
through mutation, but never by both. This mechanism returns good

performance in optimizing multimodal functions.
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Schlierkamp ez al. 1996

Schlierkamp et al. [44] focused their efforts on adapting the size of the
population. It is based on a competition between subpopulations. They
simultaneously evolved a number of populations with different sizes. After
each generation, the subpopulation with the best maximum fitness is stored
in a quality record. After a specific number of generations (called evaluation
interval), the population size of each group is modified according to its
quality record. Normally, the size of the group with the best quality is
increased, and the sizes of all other groups are decreased. In addition after a
number of generations (called immigration interval) the global best
individual is copied into the other groups. They used real-coded
representation. Experimentally, they showed impressive results in

optimizing difficult multimodal functions.

Thijssen 1997

Thijssen [14] used steady state genetic algorithms to adapt crossover
probability and population size. He ran several subpopulations of equal size
each with its own crossover operator. If one crossover is better than the
other, then its subpopulation should increase in size according to a migration

mechanism between subpopulation. This is explained below.
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The average fitness f; of every subpopulation is monitored after a set
number of function e valuations. Second, the differences in relation to the

subpopulation with the largest average fitness are calculated:

Afz :fmax _fi (9)

where f,... is the average Fitness of the best subpopulation. Defined f,,;, is as
the average fitness of the worst subpopulation. Then If f,,,, = fuin there will
be no migration, where. If f,.. > fu. there will be migration between

subpopulations. af;” is defined to determine how much individuals should be

taken from subpopulation i to the migration:

o Af;
Afl B fmax _fmin (10)

These ar; are multiplied with a constant ¢, which is a parameter of the
mechanism. Then s, c multiplied by subpopulation i size is the number of
individuals to be taken from subpopulation i to migration pool. Equation
(10) gives subpopulation with a bad average fitness to migrate more
individuals to the immigration pool than subpopulations with a better
average fitness. Finally redistribute the individuals in migration pool back to

the subpopulations in random.

29



Harik et al. 1999

Harik et al. [29] ran multiple p opulations s imultaneously. The idea is to
establish a race among populations of various sizes. Harik et al. allocates
more time to those populations with higher maximum fitness, and firing new
populations whenever older populations had drifted towards suboptimal

(search) subspaces. See section 3.2.4 for details

Annunziato et al. 2000

Annunziato et al. [4] asserted that an individual’s environment contains
useful information that could be used as a basis for parameter tuning. They
used a trip-partite scheme in which a new parameter (meeting probability)
influences the likelihood of meeting between any two individuals, which (if

they meet) can either mate or fight- see section 3.2.3 for details.

2.3.3 Self-adaptive Control
These GAs use parameter control methods that utilize information fed-back
from the GA, during its run, to adjust the values of parameters attached to
each and every individual in the population.

This technique was first used by Schwefel in an Evolutionary Strategy

[46], where he tried to control the mutation step size. Each chromosome in
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the population was combined with its own mutation variance, and this
mutation variance is subjected to mutation and crossover, as was the rest of

the chromosome.

Arabas et al. 1994

Arabas et al. [3] defined a new quantity called Remaining Life Time (or
RLT) to use as part of a new mechanism for controlling population size.
Every new individual is assigned a RLT variable. Each time a new

individual is created, an RLT value is assigned to it using the formula below:

WorstFit— fitnes(i)
WorstFit— AvgFit
AvgFit— fitness(i)
AvgFit— BestFit

MinLT+7n
RLTG) =
7 (MinLT+ MaxLT)+n

if  fitness(i) > AvgFit

if  fitness(i) < AvgFit (11)

n= %(MaxLT—MinLT)

MinLT  MaxLT are minimum and maximum remaining life time, they are set

to 1, and 11 respectively; WorstFit BestFit are the worst, and best individual

AvgFit

fitness in the population; is the average fitness of the population;

Jfitness(i) is the fitness of the i chromosome.
After each generation, RLT for individuals are decremented by one
except the RLT for the maximum fitness. Once the RLT of an individual

reaches 0, it dies (is removed from population).
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Srinivas ef al. 1994

Srinivas et al. [50] varied P,, and P, to prevent premature convergence of
the GA to local optimum. They used the relation between population
average fitness f and the maximum fitness value fu..x as an indicator for
population convergence. The difference frax — f decreases when the GA
converges to any optimum (local or global). Just to be on the safe side, we
can assume that when fi,.x — f goes down, the GA is converging towards a
local optimum, and as such both P, and P,, should be increased. In addition,
Srinivas et al. used the fitness value of each individual in the population to
vary its own P, and P, fitter individuals were less likely to be mutated or
crossed-over. So in summary, each individual has it is own values of P, and
P,, based on a) its own fitness f and b) a population statistic fmax — f. The

expressions that used for P, and P, are:

Po= ke (foax = o) (e = )
Pm=k2(fmax—f)/(fmax—f’) (12)

[ 1s fitness of the fitter of the two selected individuals for crossover, k; and
k, are mechanism parameters limited to [0,1].
For an individual with less than average fitness, P. and P, are

constrained to:
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3.f‘mg.f‘v

1

P, =k,
Pm = k4 ,f S f (13)

The values of &y, k,, k3, and k4 are 1.0, 0.5, 1.0, and 0.5, respectively.
A generational GA was used with single-point crossover, and roulette wheel

selection is used for selecting parents. Experimentally, they showed a good

result for complex multimodal functions.

Back et al. 2000

Back et al. [13] extended Schwefel’s [46] work in Evolution strategies to
GAs. They tried to adapt all three parameters of evolution: P,, Pc and S. At
the end of each chromosome, extra bits are added to store both P, and P.. P,
is allowed to take values from [0.001, 0.25] and P, from [0, 1]. See section

3.2.2 for details.
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Chapter 3

Experimental Setup

3.1 Introduction

For the purpose of our research, we choose five frequently used GAs. Each
one of them belongs to a category of Parameter Control GAs. These
algorithms are: Traditional Steady-State Genetic Algorithm (TSSGA) [13],
Self-Adaptive Mutation Crossover and Population Size for Genetic
Algorithms (SAMXPGA) [13], Adaptive Evolutionary Algorithm via
Reproduction and Competition (AEARC) [4], Adaptive Population Size
Genetic Algorithm (APSGA) [29] and Deterministic Intelligent Mutation
Rate Control Canonical Genetic Algorithm (DIMCCGA) [10]. To compare
the performance of the five GAs, we examined the five parameterless GAs
using the same test functions used in [13]. Namely De Jong [20],
Rosenbrock [42], Ackley [1], Rastrigin [11], and a fully deceptive function
[11]. This set of test functions have:

e Problems resistant to hill-climbing;

34



e Nonlinear non-separable problems;

e Scalable functions;

e A canonical form;

e A few unimodal functions;

e A few multi-modal functions of different complexity with many local
optima;

e Multi-modal functions with irregularly arranged local optima;

¢ High-dimensional functions.

All these functions have 10 dimensions; we used a bitstring of length
200, 20 bits/variable except for f5, which uses 6 bits/variable. Uniform
crossover is used for producing new individuals. For selection, a tournament
of size two is used. Simple bit-flip mutation is applied. The GA represents
the values of the variables using a Grey code scheme. The GAs runs
terminates when the (known) optimum is found or the maximum number of
fitness evaluations is reached. The maximum number of evaluations is

500,000 for all test functions.
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3.2 Test Algorithms

3.2.1 Traditional Steady-State Genetic Algorithm (TSSGA)

This algorithm is not a true parameter-less GA, but we make as one by
fixing the values of its parameters, without any preparatory tuning via trial
and error. It comes from Back et al. [13]. It uses a variable mutation
probability Pm of 1/, a fixed crossover probability P. of 0.9, a fixed
population size S of 60. The genome (or chromosome) is made of 200 bits
(20 per dimension), plus 20 bits used to encode both Py, and P.: these are
included - though obviously not used - to ensure a level playing field
between this and the other parameter-less GAs. Uniform crossover is used.
For selection, a tournament is used for selecting two parents of two new
individuals, which in turn replace the worst couple of individuals in the
current population. Simple bit-flip mutation is applied after crossover. The

GA represents the values of the variables using a Grey code scheme.

3.2.2 Self-Adaptive Mutation Crossover and Population Size for
Genetic Algorithms (SAMXPGA)
Back et al. [13] extended Schwefel’s [46] work in Evolution strategies to

GAs. They tried to adapt all three parameters of evolution: P,, P, and S. At
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the end of each chromosome, extra bits are added to store both P,, and P,. P,
is allowed to take values from [0.001, 0.25] and P, from [0, 1].

Mutation takes place in two steps. First, the bits that encode the
mutation rate are themselves mutated (using their own value as P,,). Second,
the new mutation probability is used to mutate the remaining bits (those
encoding the candidate solution and P.). For reproduction, two
chromosomes are selected via tournament selection. The bits that encode the
crossover rate P, are decoded, and a random number » (<1) is compared to
P.. If r is less than P, the selected chromosome is ready to mate. If both
chromosomes are ready to mate, two children are created by uniform
crossover, then mutated and inserted in the next g eneration. On the other
hand,‘if both chromosomes are not ready to mate then two children are
created via mutation (as described above). If only one of the selected
chromosomes wants to mate but the other does not, then a child is created by
mutating the chromosome that does not want to mate; the other chromosome
is put on hold until a willing unmatched partner is found in a future round of
reproduction. As to S, this is decided by a scheme similar to Arabas et al.

[3]- mentioned in chapter 2. The initial population has .§ = 60.
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3.2.3 Evolutionary Algorithm via Reproduction and Competition
(AEARC)
Annunziato et al. [4] introduced a dynamic environment dominated by
reproduction and competition among chromosomes. Various environmental
mechanisms are responsible for adapting the GA parameters. The
environment is constrained by a maximum population size (M,) set before
the GA run. The mode of interaction between the chromosomes of a given
population is determined largely by a new parameter called population
density (or meeting probability P,,). This is equal to the size of the current
population size C, divided by M,

If and when two chromosomes meet then they can engage in either
one of a) sexual reproduction (crossover): to produce two offspring; b)
competition: 1in which the fitter individual survives; or c) asexual
reproduction: in which identical or/and mutated offspring are created. The
probability of crossover is P, =1 — P,,, and the probability of competition is
P, = 1 — P, For each generation, every (primary) individual in the
population gets an opportunity to interact with another randomly chosen
(secondary) individual form the same population. A randomly generated
number » (<1) is compared to the meeting probability P, of the current

population.
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If » is less than P, then interaction occurs between the two
individuals. In that case, another randomly generated number r; (<I) 1s
compared to P,. If r; < P, then two children are created by uniform crossover
and inserted in the next generation with their parents. When the population
reaches its maximum allowed size, then reproduction gets destructive in the
sense that children will replace their parents if they are fitter than their
parents, or else the parents stay.

If, on the hand, r is not less than P,, then a single child is created by
mutating the primary individual and hence inserting the result into the next
population with its parent. As in the case of crossover, when the population
reaches its maximum size, then mutation operation will replace the original
individual with the mutated one if the mutated one is fitter, or else leave the

original one in place.

3.2.4 Adaptive Population Size Genetic Algorithm (APSGA)

Harik et al. [29] ran multiple populations simultaneously. The idea is to
establish a race among populations of various sizes. The algorithm starts
with a small population, then runs it for 3 generations, then it fire a second

population and runs it for 1 generation, then runs population one for 3 more
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generations, then population two for 1 generation, and so on as per the
schedule shown in table 1.

A base 4 counter is used to determine which population should be run.
This counter is incremented, and the position of the most significant digit
that changes during the increment operation is noted. That position indicates
which population should be run. If at any point in time, a larger population
has an average fitness greater than that of a smaller population or if a
population converges, then the GA gets rid of that population, and then
resets the counter. Overall, population i is allowed to run 4 times more
generations than population i + 1, and each new population that gets fired is
twice the size of the previous population.

The idea behind this mechanism is to allocate more function
evaluations to smaller populations. Consequently, the smaller populations
are more likely to converge faster than the larger ones. That is, smaller
populations get a head start at the beginning, butifthey start to drift too
much, they will be caught by a larger population. When that happens, the

smaller populations become inactive.

Fixed crossover probability is used, no mutation, and proportional

selection.
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Table 1: Mechanics of Harik et al. GA

Counter Most significant Action
base 4 digit changed

0

1 1 run 1 generation of population 1
2 1 run 1 generation of population 1
3 1 run 1 generation of population 1
10 2 run 1 generation of population 2
11 1 run 1 generation of population 1
12 1 run 1 generation of population 1
13 1 run 1 generation of population 1
20 2 run 1 generation of population 2
21 1 run 1 generation of population 1
22 1 run 1 generation of population 1
23 1 run 1 generation of population 1
30 2 run 1 generation of population 2
31 1 run 1 generation of population 1
32 1 run 1 generation of population 1
33 1 run 1 generation of population 1
100 3 run 1 generation of population 3
101 1 run 1 generation of population 1

3.2.5 Deterministic Intelligent Mutation Rate Control Canonical
Genetic Algorithm (DIMCCGA)

This GA comes from Back et al. [10]. In this algorithm, crossover is
not used, the size of the population is fixed at 60 and the probability of
mutation is updated in line with equation (6) chapter 2. During every
generation, one chromosome is selected to be parent by tournament
selection. Then one child is created by mutation and the better of both parent

and child survives to the next generation.
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3.3 Test Functions

3.3.1 De Jong Function

h (;) = inz
=1 (14)

Figure 5: Fitness Surface of f;

With n = 10; x; , [-5.12, 5.12].fl is continuous and unimodal. De Jong
problem was designed to be very easy for a genetic algorithm. The function

has global optimum at point zero.
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3.3.2 Rosenbrock Function

n—1
£2()=D,000¢x” = x.,)* +(-x;)%)
i (15)

Figure 6: Fitness Surface of />

With n = 10; x;, [-5.12, 5.12]. It is a standard test function in optimization

which was proposed by Rosenbrock. /2 has an apparently simple surface,
but is quite hard to optimize due the nature of the local neighborhood of the
global minimum. The function has global optima inside a long, narrow,
parabolic shaped flat valley. To find the valley is trivial, however
convergence to the global optima is difficult. The function has global optima

forx,=1,I=1...n.

43



3.3.3 Ackley Function

%Zx,-z —exp %ZCOS(Z?I)C[) +20+e
i=1 i=1 (16)

f3(x) ==20exp| —0.2

Figure 7: Fitness Surface of f;

With n = 10; x; , [-5.12, 5.12].f3 is a multimodal function with a global

minimum located at the origin.
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3.3.4 Rastrigin Function

fa(x)=10n+ Z (x,.2 ~10 cos(27x; ))
i (17)

Figure 8: Fitness Surface of /,

Withn = 10; x;, [-5.12, 5.12].f 4 is another non-linear multimodal function.
The main characteristic of this function is that, within the assigned variation
range for the variables, it is characterized by 11" local minima, and only one
global minimum at point zero. It is therefore very easy for an optimizer t be
trapped in local minima, which makes this function a suitable candidate to

investigate the robustness of an optimization procedure.
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3.3.5 Fully Deceptive Function

0.92 .
n 4 (4—xi) lf X <4

fsx)=n-)
T ERw- f x> (18)

x; is the number of 1's € genei

100

Figure 9: Fitness Surface of f;

J5 is the fully deceptive six-bit function. Deceptive problem was designed to
push the genetic algorithm a way from the solution. The deceptive function
used in our research is piecewise-linear functions of units. A unit x; is
defined as the number of 1s in a string and is considered to be the hamming
distance of the string from the local optima. They depend only on the
number of 1°s in an individual and not on the positions of the 1’s, In our case

10 units are used for f;. Each unit contains 6 bits. Number of 1’s bit in each
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unit determines which part of equation (18) should be used. Deceptive
function divides the search space into two peaks in the hamming space; one
leads to the global optimum “all bits are 1s in the string” and the other to a
local optimum “all bits are Os in the string”. F5 is considered fully deceptive

because all schemata with /-1 “/ is string length” defined bits are misleading.
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Chapter 4

Experimental Results

4.1 Introduction

Thirty runs were executed for every combination of test algorithm and test
function. Hence, every result presented in the graphs and in the tablés
represents the average results of thirty runs. To compare the performance of
the five different GAs (pGAs), several statistical measures and performance

metrics are calculated.

4.2 Basic Statistics

The following statistics are defined:
e Percentage of Runs to Optimal Fitness;
e Average Number of Evaluations to Best Fitness and Coefficient of
Variation (C.V.);
e Average Number of Evaluations to Near-Optimal Fitness;

e Average Best Fitness;
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e Average Mean Fitness;

e Average Mean Population Size to Optimal Fitness;

e Average Maximum Population Size to Optimal Fitness;
e Average Mean Population Size to Near-Optimal Fitness;

e Average Maximum Population Size to Near-Optimal Fitness.

4.2.1 Percentage of Runs to Optimal Fitness
Each GA was run 30 times. This measure reflects the percentage of runs
that were successful in converging to the optimal solution at or before 500

thousand (fitness function) evaluations.

4.2.2 Average Number of Evaluations to Best Fitness and Coefficient of
Variation

Average number of evaluations is used as a measure for reliability. This
measure represents the average number of evaluations that are required for a
GA to achieve its best fitness value in a run. In cases where the best fitness
is 1(fitness 1 is the fitness map of the global optimum), it serves as a
measure of convergence velocity. Every run produces a different number of
evaluations to best fitness. Therefore, Coefficient of Variation (C.V.) is

calculated to measure the deviation between runs. Coefficient of Variation
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(C.V.) is equal to the standard deviation of that set of evaluations, divided by

the average.

4.2.3 Average Number of Evaluations to Near-Optimal Fitness

Near-Optimal fitness is defined as a fitness of 0.95. In cases where optimal
fitness is not obtained, near-optimal fitness is the next best measure of
convergence velocity. This measure is defined in the same way as the

preceding measure, except that we substitute near-optimal for optimal.

4.2.4 Average Best Fitness and Standard Deviation (S.D.)

This is the average of the set of best fitness values achieved in all 30 GA
runs. S.D. is standard deviation of that set. Naturally, this is a crucial
measure; GAs that are able to achie\}e a best fitness of 1 (and reliably) are
taken seriously; those that return best fitnesses of less than 1 (or 1 but

inconsistently) are not as good.

4.2.5 Average Mean Fitness and Standard Deviation (S.D.)
This is the average of the set of average fitness values of population,
achieved at the end of the 30 GA runs. S.D. is the standard deviation of that

set.

50



4.2.6 Average Mean Population Size to Optimal Fitness

In a given run, the size of the population may differ from one generation to
the next until (and after) the GA converges to the optimal value (if ever). In
one run, the average size of all the populations preceding optimal
convergence is called Average Population Size to Optimal Fitness (or
APSOF). Every one of the 30 runs may return a value for APSOF. The
average value for the set of APSOF values is the Average Mean Population

Size to Optimal Fitness.

4.2.7 Average Maximum Population Size to Optimal Fitness
For each GA run, the largest population size prior to optimal convergence 1s
stored in a set. The mean of that set is the average maximum population size

to optimal fitness.

4.2.8 Average Mean Population Size to Near-Optimal Fitness

In a given run, the size of the population may differ from one generation to
the next until (and after) the GA converges to the near-optimal value of 0.95
(if ever). In one run, the average size of all the populations preceding near-
optimal convergence is called Average Population Size to Near-Optimal

Fitness (or APSNOF). Every one of the 30 runs may return a value for
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APSNOF. The average value for the set of APSNOF values is the Average

Mean Population Size to Near-Optimal Fitness.

4.2.9 Average Maximum Population Size to Near-Optimal Fitness

For each GA run, the largest population size prior to near-optimal
convergence is stored in a set. The mean of that set is the average maximum
population size to near-optimal fitness.

Population size measures allow GA users to assess the memory
requirements for a given GA. The smaller the size of the population required
to get an optimally fit individual the better. This is because smaller
populations require less memory. And, memory 1s a serious concern, still, if
one is using large populations for real-world optimization and design
problems.

The following set of tables reports the values for the various statistics
described above for each one of the test algorithms as applied to all 5 of the
test functions f; — f;5. Please note that, in the tables, N4 stands for not
available, and means that the associated GA failed to converge (on average)
to an optimal or near-optimal fitness value. This was the case, for example,

with all the test algorithms, when they were applied to f5, which is the fully
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deceptive function. Also, none of the GAs achieved optimal convergence on

f>; some, however, did manage to converge to near-optimal values.

Table 2: Results of Application of Test Algorithms on Test Function f;

Function 1 TSSGA | SAMXPGA | AEARC | APSGA | DIMCCGA
Percentage of Runs to 100% 100% 100% | 100% 100%
Optimal Fitness

Ave. No. of Evaluations | 12,561 25,172 247,612 | 191,991 153,038

to Best Fitness
ATA 6.9 81.0 22.8 445 6.0

Ave. No. of Evaluations
to Near-Optimal Fitness

3,540 2,160 26,520 | 21,760 42,960

Average Best Fitness 1 1 1 1 _ 1
S.D. 0 0 0 0 0
Ave. Mean Fitness 0.9997 0.9605 0.353 0.9676 0.9041
S.D. 0.0009 0.049 0.0699 | 0.0156 0.0093

Ave. Mean Population
Size to Optimal Fitness
Ave. Max. Population
Size to Optimal Fitness
Ave. Mean Population
Size to Near-Optimal 60 7.8 76.6 354 60
Fitness

Ave. Max. Population
Size to Near-Optimal 60 60 79.4 54.4 60
Fitness

60 8.8 76.9 122.2 60

60 60 79.6 189.3 60
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Table 3: Results of Application of Test Algorithms on Test Function f;

Function 2 TSSGA | SAMXPGA | AEARC | APSGA | DIMCCGA
Perc.entage' of Runs to 0% 0% 0% 0% 0%
Optimal Fitness

Ave. No. of Evaluations | 500,000 500,000 500,000 | 500,000 500,000
to Best Fitness

cv! 0 0 0 0 0
Ave. No. of Evaluations

to Near-Optimal Fitness 63660 217260 NA NA 134160
Average Best Fitness 0.9879 0.9816 0.9482 | 0.9458 0.977
S.D. 0.014 0.0185 0.0044 | 0.0028 0.0077
Ave. Mean Fitness 0.98 0.7765 0.2518 | 0.9111 0.6387
S.D. 0.0127 0.2213 0.0648 | 0.0062 0.0168
Ave. Mean Population

Size to Optimal Fitness 60 496 NA NA 60
Ave. Max. Population

Size to Optimal Fitness 60 182.1 NA NA 60
Ave. Mean Population

Size to Near-Optimal 60 27.9 NA NA 60
Fitness

Ave. Max. Population

Size to Near-Optimal 60 85.4 NA NA 60

Fitness
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Table 4: Results of Application of Test Algorithms on Test Function f3

Function 3 TSSGA | SAMXPGA | AEARC | APSGA | DIMCCGA
Percentage of Runsto | 15500 | 100% | 16.7% | 100% 100%
Optimal Fitness

Ave. No. of Evaluations | 20,304 | 44,547 | 491,031 | 197,959 | 252,547
to Best Fitness

cv.! 48.2 61.5 4.6 41.5 53
Ave. No. of Evaluations

to Near-Optimal Fitness 12,960 6,900 67,560 | 35,280 76,080
Average Best Fitness 1 1 0.9997 1 1
S.D. 0 0 0.0005 0 0
Ave. Mean Fitness 0.9979 0.9889 0.3305 | 0.9667 0.8629
S.D. 0.0042 0.0264 0.0638 | 0.0173 0.0145
Ave. Mean Population

Size to Optimal Fitness 60 474 766 71.6 60
Ave. Max. Population

Size to Optimal Fitness 60 87 7 115.2 60
Ave. Mean Population

Size to Near-Optimal 60 6 76.6 37.4 60
Fitness

Ave. Max. Population

Size to Near-Optimal 60 60 79.5 58.7 60

Fitness
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Table 5: Results of Application of Test Algorithms on Test Function f4

Function 4 TSSGA | SAMXPGA | AEARC | APSGA | DIMCCGA
Percentage of Runs to 100% 100% | 2333% | 0% 53.33%
Optimal Fitness

Ave. No. of Evaluations | 148,562 115,360 494,680 | 500,000 458,050
to Best Fitness

cy! 44.1 76.7 3.7 0 15.3
Ave. No. of Evaluations

to Near-Optimal Fitness 248,580 121,800 NA NA NA
Average Best Fitness 1 1 0.8485 0.1233 0.8086
S.D. 0 0 0.2510 | 0.0298 0.2535
Ave. Mean Fitness 0.9973 0.9800 0.1966 | 0.1171 0.1257
S.D. 0.0056 0.0330 0.0967 | 0.0286 0.0092
Ave. Mean Population

Size to Optimal Fitness 60 3532 NA NA NA
Ave. Max. Population

Size to Optimal Fitness 60 1318.2 NA NA NA
Ave. Mean Population

Size to Near-Optimal 60 148 NA NA NA
Fitness

Ave. Max. Population

Size to Near-Optimal 60 568.5 NA NA NA

Fitness
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Table 6: Results of Application of Test Algorithms on Test Function fs

Function 5 TSSGA | SAMXPGA | AEARC | APSGA | DIMCCGA
Percfentagc? of Runs to 0% 0% 0% 0% 0%
Optimal Fitness

Ave. No. of Evaluations | 500,000 | 500,000 | 500,000 | 500,000 | 500,000
to Best Fitness

cy! 0 0 0 0 0
Ave. No. of Evaluations

to Near-Optimal Fitness NA NA NA NA NA
Average Best Fitness 0.6197 0.6348 0.6055 | 0.6288 0.8066
S.D. 0.0352 0.0539 0.0318 | 0.0325 0.0811
Ave. Mean Fitness 0.6187 0.4645 0.3352 | 0.3762 0.5557
S.D. 0.0351 0.0919 0.0282 | 0.0109 0.1603
Ave. Mean Population

Size to Optimal Fitness NA NA NA NA NA
Ave. Max. Population

Size to Optimal Fitness NA NA NA NA NA
Ave. Mean Population

Size to Near-Optimal NA NA NA NA NA
Fitness

Ave. Max. Population

Size to Near-Optimal NA NA NA NA NA

Fitness

4.3 Evolution of Fitness and Diversity

Measuring fitness is easy when one is trying to optimize a mathematically

described fitness surface. In our case, fitness is simply I/ (I+ the value of

the test function at a given point). This is the case because we are trying to

find global minima rather than global maxima. The evolution of (maximum)

fitness is the most important and most exhibited measure of dynamic
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performance of a GA. However, a GA’s ability to evolve optimally fit
individuals much depends on the diversity of the population. The idea is that
some level of diversity must be retained for as long as the GA is still
searching for an optimal individual. Early loss of diversity leads to
premature ¢ onvergence, and late loss of diversity 1eads to stagnation near
(but not at) the highest point in the fitness surface. Diversity, hence, is
important, and measuring it, even more so.

We use entropy to measure population diversity in genetic algorithms.
James et al. [36] used entropy to measure the convergence o f the genetic
algorithm. Jonathan et al. [37] used entropy to describe the dynamics of a
number of genetic operations for some very simple problems.

In a typical genetic algorithm run, the initial population's
neighborhood is very large, but as the optimization progresses, the
neighborhood size shrinks to reflect the reduced uncertainty that we have in
any given population member. In the best conceivable case, the global
optimum is found by all population members and in this unique case, we
have no uncertainty in any of our population members. Hence, in order to
quantitatively assess the cumulative effect of uncertainty in our population,

we can use entropy as a metric for population diversity.
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While a continuous form of entropy measure exists, the discrete form
is sufficient for estimating our metric. It is also simpler and far more
intuitive to understand. We begin by reviewing that the uncertainty (u)

associated with the value x; for a random variable X is given by:

1

Where P; is the probability that X=x;. The expected value of all of the

(19)

entropy (H) associated with the random variable is given by the following

expression:

mn=2mmmh&ﬂ
i i (20)

If two random variables are distributed jointly, then the joint entropy

H(X,Y) is given as:

1
mxn=2{2m@ym{ D

In other words the joint uncertainty is computed from the joint
distribution of the two random variables. Of course, if the random variables

are independent, we have:
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1
H(X, Y)= ; (Z p(x,) p(¥;) IH[WD

]

(22)

which is clearly:

H(X, ¥) =H(X) + H(Y) (23)
Finally we extend this result to an n-dimensional vector of
independently distributed random variables. The entropy in this case is the

sum of all of the individual entropies:

H(Z)= Y H(X)
=1 (24)

Finding the discrete entropy of a population on a fitness landscape can
be done by first estimating the joint probability density function of the
combined feature space (the domain of the fitness landscape). By first
constructing a discrete partitioning scheme in the solution space, we are able
to acquire density information about each of the resulting regions. From
this, a frequency histogram can be tabulated and converted into a discrete
probability density function. Under the assumption that the feature vectors
are orthogonal in the solution space, we can assume that they are
uncorrelated and have independent probability density functions. The

discrete marginal probability density functions are then very easily tabulated
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along each feature vector in the solution space giving us a means for
computing the entropy for that particular subspace. The total entropy
associated with the population distribution within the solution space on the
fitness landscape is the joint uncertainty of all features of all population
members. In this way, every member of the population will contribute to the
overall uncertainty of the genetic algorithms ability to move the
neighborhood of candidate solutions through feature space. It should be
noted here that the base of the logarithms used in the computations here is
unimportant, but is selected tobe e for the purposes o f comparison, as is
partitioning scheme used for the initial probability density function
estimation.

By measuring the final amount of diversity in a genetic algorithm’s
population through estimation of jbint entropy, we should be able to make
very clear statements about the consistency of its performance on a given
fitness landscape type. If for a given fitness landscape, the resulting entropy
is consistently high, then we know that the genetic algorithm that was used
to move the population was not very effective on this type of surface. If the
entropy is consistently low on a given fitness surface, then we know that the
genetic algorithm that was used for the optimization was performing well.

Having s aid this, we know that there are upper and lower bounds for the
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metric. Of course the best case is where all of the population members find
the same optimum point, resulting in no uncertainty in the population (H(X)
=0). The worst case possible would be where all of the population members
are uniformly spread across the fitness surface with equal probability. In the
case of a uniform distribution of a given feature we have the following
associated entropy, given p(x;) = 1/N, where N the number of uniform

partitions of the feature:

N
H(X)=Zln§vN)

= 25)
H(X )= In(N) (26)

Finally this gives us the upper bound on the joint entropy for the

population:

H(Z)= Z In(N)
=1 27)

H(Z)=nln(N) 28)

where # is the number of features in the solution space. Our metric is now
bounded:

0 < H(Z) < Hu(Z) (29)
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" (N 1 1
p(x. ) In
0< Z:l [; b [p(xi,f)] < nn(N) (30)

Summarizing, we propose to measure the resulting entropy in the
population in order to judge its consistency and hence its effectiveness on a
given fitness surface type. Computing the diversity of the population in this
manner will give us a means for comparison through our proposed metric.

We present, below, paired plots for the evolution of both maximum
fitness and entropy of p opulation as a function o f number of evaluations.
Fitness/Entropy is represented on the vertical axis (using a linear scale),
while the number of fitness evaluations is presented on the horizontal axis
(using a logarithmic scale). Each GA was run 30 times and the plots
represent average values for all the plots generated during all the runs. In all
the plots, red stands for SAMXPGA; dark blue is for TSSGA; light green is
for AEARC; magenta is for APSGA; and finally light blue is for
DIMCCGA. |

We make the following comments on the results below. E xcept for
APSGA, entropy invariably starts at or about its highest value within the

run, then either collapses relatively quickly (as is the case with TSSGA and
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SAMXPGA), or much later (as is the case with DIMCCGA and AEARC).
This is to be expected, as the first population is randomly generated.

In case of DIMCCGA mutation only used so it is like a random
search. Therefore, high diversity is preserved in early stages until highly
solutions dominated the population. That’s why entropy collapses in much
later stage. For AEARC Annunziato et al. [4] used a selection mechanism
that gives equal opportunity for each individual in the population to be
selected for reproduction. Weak individuals have a good opportunity to
survive to the next generation. Therefore high diversity is preserved in the
population which makes the entropy collapses in later stages of run. In
contrast to the other GAs, the entropy of APSGA increases with time, except
when applied to f;. The reason is that when APSGA fails to optimally
converge, it starts firing new populations in random and continues to so,
until an optimally fit individual is evolved.

The manner in which the entropy of a given GA evolves: whether it
starts from a low or high level, whether it decreases or increases initially;
whether it collapses early or late; is characteristic of a given GA. It does not
depend on the type of test function (being optimized). The entropy of two
GAs (TSSGA and SAMXPGA) collapses well before the associated GA has

approached near-optimal convergence. Though, TSSGA proves to be our
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best performer, collapsing entropy is a concern in any GA: it is important

that some measure of diversity is maintained until the global optimum is

actually found.
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Figure 10a compares the five pGAs on test function f;. All the five
pGAs reach an optimal solution within 500,000 evaluations. The fastest one
is TSGA,; it takes an average of 12,561 function evaluations in order to reach
an optimal solution. The SAMXPGA takes an average of 2,160 function
evaluations to reach a near-optimal fitness, while it takes an average of
25,172 function evaluations in order to reach the optimal solution. That is
because SAMXPGA shows a good ability to find good parameter values in
first few generations. However, once the algorithm comes close to
convergence it takes much more time to adapt the parameter values. The
third fastest pGA is DIMCCGA: it takes an average of 153,038 function
evaluations to reach the optimal solution. While APSGA and AEARA take
an average of 191,991 and 247,612 function evaluations, respectively, before
reaching the global optimum.

Figure 11a compares the five pGAs on test function f,. All the pGAs
failed (in 30 runs) to reach the optimal solutions. Three pGAs: TSSGA,
SAMXPGA and DIMCCGA reach near-optimal convergence and then
stagnate at (or near) that level. AEARC and APSGA both stagnate before
even reaching near-optimal levels.

Figure 12a shows a comparison of the five pGAs on test function f;.

TSSGA reached the optimal solution in an average of 20,304 function
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evaluations. TSSGA i1s the fastest algorithms among all the five pGAs.
Second in speed is SAMXPGA. It takes an average of 44,547 function
evaluations to reach the optimal solution. In case of APSGA and
DIMCCGA, they take an average of 197,959 and 252,547 function
evaluations, respectively, in order to reach the optimal solution. AEARC
reaches the optimal solution 5 times out of 30 runs.

Figure 13a shows a comparison of the five pGAs on test function f;.
Only SAMXPGA and TSSGA reached the optimal solution within 500,000
function evaluations, and they did so only 3 times. SAMXPGA is the fastest;
it takes an average of 1 15,360 functions evaluations in order toreach the
optimal solution. TSSGA takes 148,562 function evaluations. DIMCCGA
and AEARC reach the optimal solutions 16 and 7 times (respectively) out of
30 runs. Finally, APSGA never reached the optimal solution in any one of
the 30 runs.

In Figure 14a all the five pGAs did not reach the optimal solution on
test function f5. Function five is a fully deceptive function that leads the GAs

away from the global optimum.
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4.4 Metric and Rankings

4.4.1 Performance Metrics
In order to compare the performance of any number of parameter-less GA’s
— not just those used for in our research - one requires a standardized set of
metrics that are
e Fair, i.e. algorithm- and platform-independent.
e Meaningful, i.e. reflect those properties of a GA that are relevant to
the human user.

To ensure fairness, variables that may discriminate in favor of a
particular type of GA must not be used. For example, number of generations
is not an acceptable component of a formula measuring speed of
convergence. This is so, because some GA’s may use big populations and
run them for a small number of generations, while other GA’s may run for
somewhat longer periods (in terms of generations) but us.ing much smaller
populations. On the other hand, time is not a good measure of speed, since
different computers can run at radically different speeds. Algorithmic
complexity is not either, because what actual users (mostly engineers) care

about is not some idealized measure of complexity but a portable measure of
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real speed. We use number o f fitness evaluations. T his and the other two
measures are explained in detailed below.

As to being meaningful, the metrics we propose are: reliability, speed
and memory load. GA’s are often accused of being unreliable since they are
non-deterministic and few things are proven about their performance — this
situation is changing but slowly. What we can do, empirically, to remedy
this situation, is attach a sound statistical measure of reliable performance to
GA’s. As to speed: speed is important for real-time near real-time and on-
line applications. Speed is also important for off-line applications that
operate within industrial and/or commercial environments. Finally, memory
load determines if a computer with specific physical (and virtual) memory
resources is able to run a given GA or not. If a given computer is slow then a
GA will simply take longer to converge. However, if a GA requires more
memory than is available then the computer will not be able to run the GA at
all, unless additional memory is added. Together, speed and memory load
are the two core measures of any computational algorithm. When-defining

reliability, speed and memory load, we assume that each algorithm is run (at

least) 30 times and that the maximum number of fitness evaluations allowed

during one run is 500, 000.
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A. Reliability

Reliability is primarily defined as the percentage of runs that were able to
return an optimally fit individual (within 500,000 evaluations). Of course, it
is possible for more than one GA to return 100% reliability. In order to
differentiate between these GAs, we use C.V. as a further means of
differentiation. The lower the C.V. is, for a given GA, the more reliable it is,
and vis versa. Once all G As with 100% reliability are r anked, those G As
with less than 100% reliability (and > 0%) are ranked simply according to
their reliability percentage. To mark the fact that their reliability is less than
100%, an asterisk (*) is attached to their rankings. If a given GA completely
fails to return any optimally fit individuals in all the runs (reliability = 0%),
then it is given an N4 (not applicable) designation, for such a GAs is totally
unreliable.

For example, assume 3 of 5 parameter-less GAs (call them GAl, GA2
and GAS) return an optimally fit individual 100% of the time, with GA3 and
GA4 optimally converging only 0% and 98% of the time, respectively.
Further assume that the C.V.s for GA1, GA2 and GAS5 are: 10, 14 and 64,

respectively. This will lead to a ranking of 1, 2, N4, 4* and 3 for GA1-GAS.

73



B. Speed
Speed is primarily defined as the average number of fitness evaluations to
optimal convergence. First, GAs with the same primary reliability of 100%
is ranked according to the average number of evaluations executed up to
optimal convergence. Then, those GAs that have, on average, reached a
maximum fitness of 0.95 (or more, but less than 1) are ranked according to
the average number of evaluations executed before 0.95 fitness was reached;
to mark the fact that their convergence is near-optimal, an asterisk (*) is
attached to their rankings. Any GA that, on average, failed to reach even the
near-optimal fitness (of 0.95), is given an NA (not applicable) assignment.
For example, assume five GAs: GA1-GAS. GA1-GA4 all achieved
positive reliability (>0%), but only GA1 and GA2 returned 100% reliability
with the rest (GA3-GA4) achieving 85% and 33% reliability. Assume the
number of evaluations required for optimal convergence in GA1 and GA2
were (on average) 42545 and 56010, respectively. Further assume that the
number of evaluations r equired for near-optimal c onvergence in G A3 and
GA4 were (on average) 65050 and 32545, respectively. Finally, the average
maximum fitness of GAS never reached 0.95. This leads to the following

speed rankings for GA1-GAS5: 1, 2, 4*, 3* and NA.
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C. Memory Load

Memory load is primarily defined as the average size of the largest
populations encountered during runs that resulted in optimal convergence
(call that ave-max); populations that were evolved after the moment of
optimal convergence are excluded. First, GAs with 100% reliability are
ranked according to their ave-max values; GAs requiring smaller populations
receive better rankings and visa versa. Then, those GAs that have, on
. average, reached a maximum fitness of 0.95 (or more, but less than 1) are
ranked according to the average size of the largest populations encountered
during runs that resulted in near-optimal convergence; to mark the fact that
their convergence is near-optimal, an asterisk (*) is attached to their
rankings. Finally, any GA that, on average, failed to reach even the near-
optimal fitness (of 0.95), is given an NA (not applicable) assignment.

For example, assume five GAs: GA1-GAS. GAl and GA2 both
achieved 100% reliability. GA3 and GA4 only achieved near-optimal
convergence, on average. Further assume that the largest size population (on
average) encountered on or before optimal convergence was 45000 for GA1
and 32333 for GA2. On the other hand, the largest size population (on
average) encountered on or before near-optimal convergence was 50231 for

GA3 and 132133 for GA4. Finally, GAS never achieved optimal or near-
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optimal convergence. This leads to the following memory load rankings for

GA1-GAS: 2,1, 3%, 4* and NA.

4.4.2 Ranking tables
All the rankings presented in the following tables (table 7-11) are based on
the application of the formulae for reliability, speed and memory load to the

data provided in tables 2-6 (in section 4.2).

Table 7: Overall Rankings for Test Algorithms as applied to Test Function f;

Metric TSSGA SAMXPGA AEARC APSGA | DIMCCGA
Reliability 2 5 3 4 1
Speed 1 2 5 4 3
Memory Load 2 1 4 S 2

Table 8: Overall Rankings for Test Algorithms as applied to Test Function f;

Metric TSSGA SAMXPGA AEARC APSGA | DIMCCGA
Reliability NA NA NA NA NA
Speed 1* 3* NA NA 2%
Memory Load 2% 1* NA NA 2%
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Table 9: Overall Rankings for Test Algorithms as applied to Test Function f;

Metric TSSGA SAMXPGA AEARC APSGA | DIMCCGA
Reliability 3 4 5* 2 1
Speed 1 2 5* 3 4
Memory Load 1 3 4% 3 1

Table 10: Overall Rankings for Test Algorithms as applied to Test Function fy

Metric TSSGA SAMXPGA AEARC APSGA | DIMCCGA
Reliability 1 2 4* NA 3*
Speed 2 1 NA NA NA
Memory Load 1 2 NA NA NA

Table 11: Overall Rankings for Test Algorithms as applied to Test Function f5

Metric TSSGA SAMXPGA AEARC APSGA | DIMCCGA
Reliability NA NA NA NA NA
Speed NA NA NA NA NA
Memory Load NA NA NA NA NA

Tables 7-11 show that the simplest Parameter-less GA (TSSGA) is the

best overall performer. SAMXPGA is the fastest pGA for multi-modal

fitness surfaces i.e. function f.
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Chapter 5

A New Parameter-less Genetic Algorithm

5.1 Introduction

Setting the parameters of a genetic algorithm is not trivial task. It is needs a
lot of knowledge and care from the user. User is interested in solving a
problem. He is not interested in tuning the population size, crossover rate,
mutation rate, or any other GA technicalities. He would like to have a black-
box algorithm, and simply press a start button. In chapter two we see several
technique used by researcher to get rid off tuning GA parameters. In chapter
4 we compared the performance of five parameter-less GAs, which were
implemented ‘as is’ without any attempt at improvement. In this chapter, we
present a new parameter-less GA (nGA), which adds a number of features to
the classic Simple GA (SGA) [34] in order to achieve much better results. A
number of elaborations were implemented in order to boost the performance
of the simple GA and simultaneously make it into a parameter-less GA.
These are:

e Stagnation-Triggered-Mutation (STM);
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e Reverse Traversal- Phenotopic (RTP) and Genotopic (RTG);

e Non-Linear Fitness Amplification (NLA).

5.2 Stagnation-Triggered-Mutation (STM)

The idea behind STM is simple: older individuals stuck at a sub-optimal
points on the fitness surface for a long time need to be given some kind of
‘push’ (e.g. mutation) to reach a new potentially more promising position on
the surface. This feature helps GAs deal with fitness functions that are hard
(and hence take long) to optimize, such as multi-modal functions (e.g test
functions f; and f;).

Attached to each chromosome are two numbers; a mutation
probability (p,,), and a new quantity, Life Time (or LT), which measures the
number of generations passed since the chromosome was last modified (via
crossover or mutation). Initially, P,, is equal to 1//, where / is number of bits
in the rest of the chromosome. In later generations, every chromosome that
passes through (probabilistic) crossover and/or mutation is tested to see if it
is identical to any of its parents. If it is, then its P,, is multiplied by its LT
(and its LT is incremented by 1). If, on the other hand, this chromosome is

altered (via crossover or/and mutation) then its P, is reset to 1// and its LT is

79



reset to 1. Also, the population size could increases due to the STM
mechanism. This increases the number of individuals in the stagnated area.

The population increases until reach upper bound defined in section 5.4.

5.3 Reverse Traversal (RT), Phenotopic (RTP) and
Genotopic (RTG)

Phenotopic Reverse Traversal deals with fitness surfaces that tend to drive
the majority of the population toward one (or more) local maxima, and away
from the global maximum like in figure 1 5. SGA drives most population
members towards local optima rather than the global optimum. To avoid that
case we should force some individuals to traverse towards minima in order
to find the global optimum. RTP does this by getting a portion of the
population to traverse the fitness surface against the gradient, i.e. towards
minima rather than maxima. This also has the side effect of producing a
more diverse population than simple fitness-proportional selection. 20% of
the next generation is produced by RTP. RTP selects individuals via fitness
proportional selection, but instead of selecting those individuals with the
greatest fitness, RTP selects those with the lowest fitness. Then these

individuals go through probabilistic crossover/mutation.
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Figure 15. Fitness surface with global optimum in the minimum area of the

surface.

On the other hand, Genotopic Reverse Traversal (RTG) deals with
deceptive fitness surfaces (e.g. test function f5). 20% of the next generation
is produced by RTG. RTG selects individuals via proportional selection.
Applies the genetic operator’s crossover and mutation. In case of crossover,
it inverts the bit string (turning 1’s to 0’s and 0’s to 1°s) for one individual.
Then it crosses over the inverted individual with the other individual whose
bits are not inverted. The created offspring are added to the next generation

after mutation is applied. This simple trick was the main factor behind the
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100% reliability figure returned by the nGA for the fully deceptive function

fs.

5.4 Non-Linear Fitness Amplification (NLA)

This enhancement of the SGA is designed to deal with situations where the
population converges to a rather flat neighborhood of a global optimum. In
such cases, it is important that the selection mechanism becomes very
sensitive to slight variations in the gradient of the fitness surface.

The way NLA works is straightforward: once the average fitness of
the population exceeds 0.9, the fitness is scaled using the following formula
(31); £ is the scaled fitness, f is the original unscaled fitness and ¢ is a

constant (that we set to 100).

1
Ce(l- f)+1 (D

’

The nGA introduces the three main new features explained above, but
also uses a fixed probability of crossover equal = 0.7 (~ De Jong [20]
empirically determined value), and implements elitism at 10%.

To determine the minimum size of the population, a (pre-run) large

population of 1000 individuals is created and the fitness of each individual is
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computed. Hence, the standard deviation of fitness of the population is
computed (call that SDfitness) and used in equation 32 (below). The size of
the initial population is set to LowBound; but the population is allowed to
grow to as much as double that value (as a result of STM). Constant k”is set
to 3; the probability of failure («) is set to 0.05; and sensitivity (d) to 0.005-

see [29] for more detailed information about equation 32.

kel SDfitnes
LowBound=-2"" In(x) — (32)
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5.5 Experiments and Results

This section presents computer simulations of nGA. Six controlled
experiments are executed the results are compared to those of the simple
GA. For each test problem, 30 independent runs were performed in order to
get results with statistical significance. The experiments executed are:

e Investigate the effect of stagnation-triggered mutation on test function

/>, test function f; and test function f;

Investigate the effect of phenotopic reverse traversal on test function

/>, test function f; and test function f;

e Investigate the combined use of stagnation-triggered mutation and
phenotopic reverse traversal on test function f, test function f3 and test
function fy;

e Investigate the effect genotopic reverse traversal on test function fs;

¢ Investigate the effect of non-linear fitness amplification on test
function f3;

e Investigate the combined use of all new features of nGA on test

functions f; — fs.
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10 dimensions are used for each test functions, at 20 bits/variable,
which makes 200 bits long. Uniform crossover, bit flip mutation, and
proportional selection were used in all the experiments. A fixed crossover
rate equal to 0.7 was used in all the experiments. In the nGA, we designed
the lower bound and upper bound of population size according to equation
32. The simple GA used exactly the same parameters values detailed above,
except for the population size, which was fixed at 60.

Table 12 illustrates the result of SGA on the five test functions. These
results are meant to act as a means of comparing the p erformance of the
nGA to the simple GA. The test functions used are those of section 3.3. The
measures used are those of section 4.2. ‘NA’ stands for not applicable and
means that the GA was not able to achieve optimal and/or near-optimal

convergence.
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Table 12: Results of Application SGA on Test Functions f; — f5

SGA Fy F F3 F, Fs
Percentage of Runsto | 1550 | 1009 | 100% | 100% 0%
Optimal Fitness

Ave. No. of Evaluations | 12,534 | 500,000 | 25,324 | 182,922 | 500,000
to Best Fitness

A 11.28 0 11.78 52.61 0
Ave. No. of Evaluations

o Near-Optimal Fitness 4,260 51,522 8,386 18,051 NA
Average Best Fitness 1 0.9734 1 1 0.6778
S.D. 0 0.035 0 0 0.0474
Ave. Mean Fitness 0.8952 0.5110 0.8572 | 0.7495 0.5084
S.D. 0.04 0.09 0.39 0.064 0.0245
Ave. Mean Population

Size to Optimal Fitness 60 NA 60 60 NA
Ave. Max. Population

Size to Optimal Fitness 60 NA 60 60 NA
Ave. Mean Population

Size to Near-Optimal 60 60 60 60 NA
Fitness

Ave. Max. Population

Size to Near-Optimal 60 60 60 60 NA
Fitness

As shown in table 12 the SGA return 100% on functions f;, f3, and f,.
f; is easy to optimize, but f3 and f, are multimodal functions. SGA failed to
find the global optimum for test function f5; it also returned 0% on test
function f5.

Figure 16 represents paired plots on applying SGA on test functions f;
— f5. Fig. 16a presents maximum fitness of population as a function of

number of evaluations, and fig. 16b presents entropy of population as a
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function of number of evaluations. In all the plots presented below,
Fitness/Entropy is represented on the vertical axis (using a linear scale),
while the number of fitness evaluations is presented on the horizontal axis
(using a logarithmic scale). Each function was run 30 times and the plots
represent average values for all the plots generated during all the runs. In
figure 16 red stands for result obtained on test function f;; dark blue is for
test function f;; light green is for test function f3; magenta is for test function

f5; and finally black is for test function f,.

Figure 16. 16a Fitness (left) and 16b Entropy (right) of SGA

SGA starts at its highest value within the run, and then collapses relatively

quickly.
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5.5.1 The Effect of Stagnation Trigger Mutation on Test Functions f5, -
J4

To see the performance of STM mechanism on solving hard problems, we
add STM only to SGA and apply the resulting algorithm to test functions f; ,

/> and f,. Table 13 contains the results.

Table 13: Results of Application STM on Test Functions f> — f4

STM F, F; F,
P§rcentage of Runs to Optimal 100% 100% 100%
Fitness

Ave. No. of Evaluations to Best 226,610 32,439 106,630
Fitness

cv.! 30.5 14.23 41.84
Avq. No. Qf Evaluations to Near- 8,100 10,719 18,345
Optimal Fitness

Average Best Fitness 1 1 1
S.D. 0 0 0
Ave. Mean Fitness 0.6770 0.8029 0.6846
S.D. 0.02 0.0344 0.0441
Ave_. Meal} Population Size to 112.9 111.3 158
Optimal Fitness

Ave. Max. Population Size to

Optimal Fitness 112.2 111.3 158
Ave. Mean Population Size to

Near-Optimal Fitness 107 78.4 158
Ave. Max. Population Size to

Near-Optimal Fitness 107 784 158

STM return 100% for test function f; , while SGA returns 0% on the
same test function. Also STM speeds up the performance when applied to

hard problems like f;: it takes it an average of 106,630 function evaluations
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to reach the optimal solution, while SGA needs 182,922 function
evaluations.

Paired plots of maximum fitness/entropy of population as a function
of function evaluations are presented in figure 17. In figure 17, the solid line
refers to test function f3, the dashed line refers to function f3, and dotted line

refers to function f,.

Figure 17. 17a Fitness (left) and 17b Entropy (right) of STM
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5.5.2 The Effects of Phenotopic Reverse Traversal on Test Functions f5,
fi
The results on applying RTP on test functions f> — f; are shown in table 14.

The performance is not too different from SGA on the same test functions.

Table 14: Results of Application RTP on Test Functions f; — f4

SGA F F; F,
P?rcentage of Runs to Optimal 0% 100% 100%
Fitness

Ave. No. of Evaluations to Best 500,000 30,862 139,764
Fitness

cv! 0 11.73 48.38
Avq. No. qf Evaluations to Near- 123,060 14,100 18,678
Optimal Fitness

Average Best Fitness 0.9782 1 1
S.D. 0.0306 0 0
Ave. Mean Fitness 0.4327 0.8186 0.7126
S.D. 0.0967 0.0603 0.0858
Avg. Meap Population Size to 102 101 147
Optimal Fitness

Ave. Max. Population Size to

Optimal Fitness 102 11 147
Ave. Mean Population Size to

Near-Optimal Fitness 100 734 147
Ave. Max. Population Size to

Near-Optimal Fitness 100 734 147

Figure 18 presents paired plots of maximum fitness/entropy of
population as function of function evaluations. The lines refer to the same

functions as the previous experiment.
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Figure 18. 18a Fitness (left) and 18b Entropy (right) of RTP

5.5.3 The Combined Use of Stagnation Trigger Mutation and
Phenotopic Reverse Traversal on Test Functions f5, -f;

Table 15 and figure 19 illustrate that STM and RTP combined, enhanced the

speed on test function f, but the speed for test function f; and test function f;

is decreased. However, 100% reliability was returned.
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Table 15: Resuits of Application STM & RTP on Test Functions f; — f4

STM & RTP F, F; Fy
Pfarcentage of Runs to Optimal 100% 100% 100%
Fitness

Ave. No. of Evaluations to Best 272,040 40,157 96,479
Fitness

cv.! 23.46 9.98 37.15
Ave.. No. qf Evaluations to Near- 11,504 11,397 14,688
Optimal Fitness

Average Best Fitness 1 1 1
S.D. 0 0 0
Ave. Mean Fitness 0.6559 0.7520 0.6368
S.D. 0.0399 0.0506 0.0643
Ave. Mean Population Size to

Optimal Fitness 107 131 157
Ave. Max. Population Size to

Optimal Fitness 110 141 157
Ave. Mean Population Size to

Near-Optimal Fitness 103 100 157
Ave. Max. Population Size to 104 100 157

Near-Optimal Fitness
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Figure 19. 19a Fitness (left) and 19b Entropy (right) of RTP & STM
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5.5.4 The Effects of Genotopic Reverse Traversal on Test Function fs.
Applying RTG on function f5 returned results illustrated in table 16 and
figure 20. RTG is designed to deal with deceptive functions, and as shown, it

actually works as it returned 100% reliability.

Table 16: Results of Application RTG on Test Functions fs

STM & RTP Fs
P@rcentage of Runs to Optimal 100%
Fitness

Ave. No. of Evaluations to Best 17,674
Fitness

cv 29.21
Ave. No. of Evaluations to Near- 8.340
Optimal Fitness ’
Average Best Fitness 1
S.D. 0
Ave. Mean Fitness 0.6521
S.D. 0.0487
Ave. Mean Population Size to 73
Optimal Fitness

Ave. Max. Population Size to 73
Optimal Fitness

Ave. Mean Population Size to Near- 65
Optimal Fitness

Ave. Max. Population Size to Near- 67
Optimal Fitness
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Figure 20. 20a Fitness (left) and 20b Entropy (right) of RTG

5.5.5 The Effects of Non-Linear Fitness Amplification on Test Function
J2

Applying NLA on test function f; retuned 100% reliability. In speed it is the
fastest. It returned the global optimum in an average of 181,870 function
evaluation; it takes an average of 226,610 using STM. Table 17 and figure

21 present the results of applying NLA on test function f5.
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Table 17: Results of Application NLA on Test Functions f;

NLA F;
Pgrcentage of Runs to Optimal 100%
Fitness

Ave. No. of Evaluations to Best 181,870
Fitness

cv.! 29.85
Ave. No. of Evaluations to Near- 9.480
Optimal Fitness ’
Average Best Fitness 1
S.D. 0
Ave. Mean Fitness 0.7850
S.D. 0.0415
Ave. Mean Population Size to 117
Optimal Fitness

Ave. Max. Population Size to 120
Optimal Fitness

Ave. Mean Population Size to Near- 110
Optimal Fitness

Ave. Max. Population Size to Near- 111
Optimal Fitness

£ i
[T S

0 10* 10° 10 10 10 10
Evaluations Evaluations

Figure 21. 21a Fitness (left) and 21b Entropy (right) of RTG
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5.5.6 The Combined Use of All New Features of nGA on Test Functions

Si—ts
The results of applying the nGA to the five test functions are shown below.

Table 18: Results of Application nGA on Test Functions f; — f5

nGA F] F2 F3 F4 F5
Percentage of Runsto | 1550, | 1009 100% | 100% | 100%
Optimal Fitness

Ave. No. of Evaluations | 14,345 145,980 28,873 | 94,640 10,413
to Best Fitness

AL 18.85 18.34 16.8 40.85 40.64
Ave. No. of Evaluations

to Near-Optimal Fitness 4,912 15,512 9,175 90,465 6,793
Average Best Fitness 1 1 1 1 1
S.D. 0 0 0 0 0
Ave. Mean Fitness 0.7784 0.51 0.7307 0.6 0.5241
S.D. 0.0423 0.0252 0.03 0.04 0.0339
Ave. Mean Population

Size to Optimal Fitness 111.78 132.2 121.3 178 114.7
Ave. Max. Population

Size to Optimal Fitness 111.78 132.2 121.3 178 114.7
Ave. Mean Population

Size to Near-Optimal 77 117 78.4 178 98.2
Fitness

Ave. Max. Population

Size to Near-Optimal 77 117 78.4 178 98.2
Fitness

In figures 22a and 22b below: blue stands for f;, red stands for f5,
green stands for f3, black stands for f; and magenta for f5. The nGA was run
30 times per test function and the figures used to plot the curves represent
average values (over the 30 runs) of both fitness and diversity (entropy).

Figure 22a demonstrates the evolution of fitness. For four out of the

five test functions, nGA’s behavior is exemplary: it succeeds in converging
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by about 10* fitness evaluations; this speed of convergence is not achieved
by any of the evaluated (older) pGAs, except in the case of function 1 (see
figure 10a), which is the easiest to optimize. The only exception is function
fs which is the hardest multi-modal test function used. Indeed, the nGA
performs better on the deceptive surface of function f5 than on function f,
which is a testimony to the power of the anti-deceptive measures (Reverse
Traversal of both colors) included in the nGA.

Figure 22b, on the other hand, demonstrates that the nGA maintains a
high degree of diversity (Entropy >= 10) throughout evolution- a positive
feature of any GA. As seen in figures 10b — 14b, only one of the five pGAs
(AEARC) consistently achieved a higher level of diversity at convergence
than nGA. This is due to AEARC’s use of special means of selection that do
not involve fitness-proportional selection or tournaments: but sexual and
asexual reproduction, as well as competition between individuals randomly

selected from the current population.
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Chapter 6

Case Study

6.1 Introduction

Researchers usually test genetic algorithms on artificial problems, and that is
precisely what we have done in chapters 4 and 5 when testing the parameter-
less GAs. Artificial problems are useful for testing GAs due to a number of
reasons:

e We can create problems of different sizes;

e We can create problems with varying degrees of difficulty;

¢ We can study boundary cases of GA performance.

The goal of this chapter is to show how the nGA can be applied to
real-world problems. For purpose of illustration, we will be applying the
nGA to the problem of optimizing the parameters of various edge detectors.
We intend this as a case study, but similar design principles may be applied

to other problems.
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6.2 Edge Detectors

Edge detectors are a collection of very important local image pre-processing
methods used to locate changes in the intensity function of an image. Edges
are pixels where the brightness function changes abruptly. Figure 23 shows a
sketch ofa continuous domain, o ne-dimensional r amp e dge modeled as a
ramp increase in image amplitude from low to high intensity, or vice versa.
The edge is characterized by its height, slope angle, and horizontal
coordinate of the slope midpoint. An edge exists if the edge height is greater
than a specified value. An ideal edge detector should produce an edge

indication localized to a single pixel located at the midpoint of the slope.

I
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Ramp edge

Figure 23. One —dimensional, Continuous Domain Edge

There are two generic approaches to the detection of edges in an image:
e Model Fitting;

e Differential Detection.
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Model Fitting edge detection involves fitting of a local region of pixel
values to a model of the edge. If the fit is sufficiently close, an edge is said
to exist, and its assigned parameters are those of the appropriate model. With
Differential Detection, spatial processing is performed on an original image
fG,k) to produce a differential image g(j,k) with accentuated spatial
amplitude changes. Next, a differential detection operation is executed to

determine the pixel locations of significant differentials. There are two major
classes of differential edge detection:
e First-order derivative;

e Second-order derivative.

For the first-order derivative, some form of spatial first-order
differentiation is performed, and resulting edge gradient is compared to a
threshold value as shown in Figure 24. An edge is judged present if the
gradient exceeds the threshold. For the second order derivative, an edge is
judged present if there is a significant spatial change in the polarity of the

second derivative.
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Figure 24. Differential Edge Detection

6.2.1 First-Order Derivative Edge detection

First-order derivative edge detection involves generation of gradient in two
orthogonal directions in an image. Figure 25 describes the generation of an
edge gradient g(j,k) in the discrete domain in terms of a horizontal gradient
gi(j,k) and a vertical gradient g,(j,k). The spatial gradient amplitude is given

by:

20 =24 U0 + 2,0/, k)’ (33)
The simplest method of discrete gradient is to form the running
difference of pixels along rows and columns of the image. The row gradient
is defined as
g U, k)= £ )=,k =) (34)
and the columns gradient is

g, k)= £, k)= f(+Lk) (35)
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For ramp edges, the running difference edge detector cannot localize
the edge to a single pixel. Therefore, Robert introduced two 2x2 filters to be
convolved with the image to produce the gradient. Also Sobel uses two 3x3

filters to evaluated the gradient.

Row ghG.k)

S gradient
generator

Gradient
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> g6.k)

Cobamn

S — gradient
generator ek

Figure 25. Orthogonal Gradient Generation

6.2.1 Second-Order Derivative Edge detection
An edge is marked if a significant spatial change occurs in the second
derivative. The Laplace operator is a very popular operator approximating

the second derivative.

6.3 Experimental Setup

For our application, we chose three edge operators frequently used for edge

detection: the Sobel operator [53] and the Robert operator [53] (of the firs-

103



order derivative edge detection class of operators), and the Laplacian
operator [53] (of the second-order derivative edge detection class of
operators).

The Sobel operator uses two 3x3 filters to evaluate the gradient. These
two filters are presented in section 6.4.2. We will consider the filter’s
coefficients in section 6.4.2 as the standard setting for the Sobel operator.
Two filters of size 2x2 are used for the Robert operators. The standard
settings of the Robert filter’s coefficients are presented in section 6.4.1. With
respect to the Laplacian operator, one filter of size 3x3 is used. The standard

setting of the Laplacian filter coefficients are also presented in 6.4.3.

6.3.1 Chromosome Representation

All the filter coefficients have a domain interval of [-10, 10]. The nGA
represents the values of the filter coefficients using Grey code, at 20
bits/coefficient. For each edge operator, 5 independent runs were performed.
Then the run that returned the best edge results is taken. The nGA runs
terminate when the maximum fitness reaches 0.99, or a maximum number of

500,000 fitness evaluations is exceeded- whichever comes first.
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6.3.2 Fitness Evaluation

For fitness calculation, chromosomes are converted back to filter
coefficients and applied to the training image. A resultant edge image results
and is called the “binary image”. This image is compared to the image with
highlighted (ideal) edges to calculate the fitness value for similarity. The
ideal edges (of the training image) are marked by hand. The input edge
feature image and the resultant edge image formed by each chromosome in
the population are compared on a pixel-by-pixel basis. Two calculations are
made based on those edges identified in the input edge feature image, but
not in the resultant edge image, and vice-versa.

e Underdetection (P,) is the number of edge pixels not detected in the
resultant edge image divided by the total number of edge pixels in the
input edge feature.

e Overdetection (P,) is the number of non-edge pixels detected in the
resultant edge image divided by the total number of non-edge pixels

in the input edge feature image.

We need to minimize both of these values simultaneously, and this is

achieved by maximizing the following equation:
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The schematic diagram of the nGA, as it is used in optimizing edge
operators, is shown in figure 26. The input of the algorithm consists of two
images. One is a simple image and the other is a corresponding edge image,
such as those shown in figure 27. These two images are used as the input to
the GA training algorithm, in order to optimize the coefficients of the filters.
The evolved filters or filter are then applied to different images to test their

edge detection performance. The results are illustrated for each edge

operator.

1

T 1+(Py +Py)

Inpnat Image

Input Image
with Edge
Feature

Applied

Image

Figure 26. Block Diagram of nGA in Optimizing Edge Operators

Trained
Filter
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Figure 27. 27a (left) Input Image, 27b (right) Input Edge Image

6.4 Results

6.4.1 Robert Operator
The Roberts operator is one of the oldest operators. It is very easy to
compute as it uses only a 2x2 neighborhood of the current pixel. Its

convolution filters are:

h]=|:1 o} ,h2=[0 1] 37)

0 -1 -1 0

The magnitude of the edge is computed as:

g(i, J) =|f U, k) = fG+LE+D|+|f Gk +D) = (i +1,k) (38)

nGA 1is used to optimize the coefficients of the Robert filters. First of

all, the eight coefficients of the edge detection filters are converted into bit
format and combined to form a single chromosome. We use a chromosome

of length 160, at 20 bits per coefficient. For fitness calculation,
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chromosomes are converted back to filter coefficients and applied to the

training image. The best filter coefficients obtained within the 5 runs are:

lo —

H 20 —

[-1.13803 8.0421 }

3.61579 -1.50714
-4.3939 1.45732

-1.03438 0.341025 (39)
These values are obtained after 11,527 fitness evaluations. Figures 28

and 29 show the edge images resulting from the application of the standard

Robert filter and the nGA-optimized Robert filter, respectively.

: |7 -/1’]'1\.' ~
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Original Image  Standard Robert Filter nGA-Optimized Robert Filter

Figure 28. Lina Edge Image Results of the Application of Robert Operator
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Figure 29. House Edge Image Results of the Application of Robert Operator

6.4.2 Sobel Operator
The Sobel edge detection method used two 2-dimensional filters of size 3x3
to process vertical edges and horizontal edges separately. Its vertical and

horizontal filters are:

1 2 1 -1 0 1
h={0 0 0| , v=[-2 0 2 (40)
-1 -2 -1 -1 0 1

nGA is used to optimize the coefficients of the Sobel operators. First
of all, the eighteen coefficients of the edge filters are converted into bit
format and combined to form a single chromosome. We used a chromosome
of length 360, at 20 bits per coefficient. For fitness calculation,
chromosomes are converted back to filter coefficients and applied to the
original image. The best filters coefficients are obtained after 49,108 fitness

evaluations. Those filters are:
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-5.57252 -2.43282 -5.84549 -6.16537  8.8022  8.48327
h,=|7.02083 -7.12869 844736 | , v, =|-7.82224 0.177584 8.24062 (41)
-6.40888 8.22819 -1.41591 -4.69886 122192 -3.32546

The resultant edge images of the application of those filters on real
images are illustrated in figures 30 and 31. The nGA-optimized Sobel filter

retuned better edge images than the standard Sobel filter.

\
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Original Image Standard Sobel Filter nGA-Optimized Sobel Filter

Figure 30. Lina Edge Image Results of the Application of Sobel Operator
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Figure 31. House Edge Image Results of the Application of Sobel Operator
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6.4.3 Laplace Operator
The edge Laplacian of an Image function f{x,y) in continuous domain is

defined as:

g(x, ) =-V*{f(x,»)}

where
, , 42)
\V} 2 _ 8_2 + a_
oyt

The Laplacian g(x,y) is zero if f{x,y) is constant or changing linearly in
amplitude. The zero crossing of g(x, y) indicates the presence of an edge. In

the discrete domain, the simplest approximation to the continuous Laplacian

is to compute the difference of slopes along each axis by the convolution

operation
g, k) = £(j, k)@h(j, k) (43)
with
111
h=[1 8 1 (44)
11 1

Figures 32 and 33 show the resultant edge images of the application of
the standard Laplacian filter and nGA-optimized Laplacian Filter,

respectively. nGa-optimized Laplacian filters coefficients are:
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2.09386  -2.23645 -0.81153
h, =| 7.88854  0.187292 -7.35468 (45)
1.05395  1.44857 -2.183491

nGA returned these values in 41,973 fitness evaluations.

Original Image  Standard Laplace Filter nGA-Optimized Laplace Filter

Figure 32. Lina Edge Image Results of the Application of Laplace Operator

Original Image Standard Laplace Filter nGA-Optimized Laplace Filter

Figure 33. House Edge Image Results of the Application of Laplace Operator
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Chapter 7

Summary and Conclusions

6.1 Summary

This dissertation represents an attempt at establishing standardized means of
empirical evaluation and comparison of Parameter-less Genetic Algorithms.
We started by pointing out some pitfalls of genetic algorithms (chapter 1).
Chapter one looked at GAs from an application perspective and realized that
users of genetic algorithms usually have to do a lot of tuning with coding,
operators, and parameters in order to have success with the GA. Second, we
present a review and classification of parameter-less GA’s (chapter 2).
Following that, w e e xecute a thorough e valuation o f five ¢ ommonly u sed
pGA’s (chapter 3 and 4). In order to do that:
e We ran extensive simulations of the genetic algorithms on five
carefully chosen test functions (section 3.2), and presented the results
‘in tables (section ,4.2) and graphs (section 4.3);
e We proposed and used three fair and meaningful measures of GA

performance (section 4.4).

113



o We ranked the five test algorithms, in terms of reliability, speed and
memory load, in a clear and immediately usable fashion (section
4.4.2).

Finally we developed an algorithm that took the task of setting critical
parameters of the GA away from the user (chapter 5). The nGA was
implemented and tested on five carefully chosen test functions (section 3.2).

Also the nGA tested on real application.

6.2 Conclusions

The most significant contributions of this study are:
e A standardized means of measuring and comparing parameter-less
Genetic Algorithms using three metrics;
e An extensive empirical evaluation and ranking of five parameter-less
GA’s;
e A mathematically founded measure of the diversity of a population.
e Review and classification of all types of parameter-less GA’s.

e Developed a new more reliable parameter-less GA and tested it.
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The new metrics we proposed are applicable to any parameter-less
GA; they are also platform-independent. Having them would facilitate the
process of comparing many GA’s without having to repeat other people’s
work. They are also meaningful, in that they allow GA users to choose those
GA’s that are most reliable, fastest, or require the least amount of memory.

The five pGA’s we evaluated displayed much variance in
performance, and as such we were able to make well-founded
recommendations about which of them should be used, and when. Finally,
the review chapter provides a good first reference for researchers that wish
to familiarize themselves with the field of parameter-less GA’s.

Finally, we developed a new parameter-less GA, one that was born
out of the problems encountered with the five tested pGAs. Our main goals
in proposing the nGA 1s to:

e Build a more reliable pGA (which is proven by the results of Table

18).

e To have a reliable pGA, we add a small number of easily realizable
amendments to the simple GA.

It is our hope that given our success here, people would be more willing to

adopt pGA as a common tool of optimization, rather than normal GAs,

which require quite a bit of manual tuning by domain expert.
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7.3 Future Research

e Integration of a Variable Crossover Rate in the nGA. The new GA

introduced in this dissertation uses a fixed value for the crossover rate.
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