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Abstract

Absolutely Continuous Invariant Measures For Random Maps

‘Wael Bahsoun

A random map is a discrete time dynamical system consisting of a collection of trans-
formations which are selected randomly by means of probabilities at each iteration.
We prove the existence of absolutely continuous invariant measures for different classes
of position dependent random maps under mild conditions. Moreover, we prove that
these measures are stable under small stochastic perturbations. We also apply these

results to forecasting in financial markets.
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Introduction

Ergodic theory of dynamical systems is concerned with the qualitative analysis of it~
erations of a single transformation. In general, the long time behavior of trajectories
of a chaotic dynamical system is unpredictable. Therefore, it is natural to describe
the behavior of the system as a whole by statistical means. In this approach, one at-
tempts to describe the dynamics by proving the existence of an invariant measure and
determining its ergodic properties. In particular, the existence of invariant measures
which are absolutely continuous with respect to Lebesgue measure is very important
from a physical point of view, because computer simulations of orbits of the sys-
tem reveal only invariant measures which are absolutely continuous with respect to

Lebesgue measure.

Ulam and von Neumann [42] suggested the study of more general systems where,

at each iteration, a transformation is selected randomly from a collection of trans-
formations. Such dynamical systems have recently found application in the study of

fractals [8] and in modeling interference effects in quantum mechanics [15].

Recently, random dynamical systems have been shown to provide a useful frame-



work for modeling and analysis of economic phenomena with stochastic components
[30]. In fact, the theory and applications of random dynamical systems are at the

frontier of research in both mathematics and economics [30].

We now describe briefly what is meant by a random map. Let 71, 79,...,7x be
a collection of transformations. Usually, a random map T is defined by choosing
T With constant probability pg, pr > O, Zle pr = 1. The ergodic theory of such
dynamical systems was studied in [37, 34, 29]. Random maps with position dependent
probabilities with 71, 79, ..., T continuous contracting transformations were studied in

[41].

In this thesis we deal with piecewise continuous transformations 1y, 75, ..., 7 and
position dependent probabilities px(z), k = 1,..., K, pe(z) > 0, Zlepk(x) =1,
i.e., the pi’s are functions of position. We point out that studying such dynamical
systems was first introduced in [23] where sufficient conditions for the existence of
an absolutely continuous invariant measure were given. The conditions in [23] are
applicable only when 71,7, ..., T are piecewise C? with a relatively big expanding

factor.

We prove the existence of absolutely continuous invariant measures for different
classes of position dependent random maps under fairly mild conditions. Moreover,
we prove that these measures are stable under small stochastic perturbations. We

also study absolutely continuous conditionally invariant measures of random maps



with holes. Finally, we apply our results to forecasting in financial markets.

In Chapter 1, we present preliminaries that we need. Chapter 2 includes the
derivation of the Frobenius-Perron operator of a position dependent random map
and a proof of a random ergodic theorem. In Chapter 3 we prove the existence of
absolutely continuous invariant measures for position dependent random maps of the
interval. Chapter 4 contains existence results in higher dimensions and on the real line.
It also includes the existence of absolutely continuous conditionally invariant measures
for random maps of an interval with holes. In Chapter 5, we prove that absolutely
continuous invariant measures for position dependent random maps on the interval
are stable under small stochastic perturbations. Different models of perturbations
are considered. Finally, in Chapter 6, we apply our results to forecasting in financial
markets. We represent the binomial model by a position dependent random map and
answer the following question: With what frequency do the future prices of a risky
security occur in an interval? Markets which are arbitrage free and markets with

arbitrage opportunities are considered.



Chapter 1

Preliminaries

After a brief review of measure theory, this chapter presents various results about
functions of bounded variation, which will play an important role throughout this

text.

1.1 Review of Measure Theory

We recall some fundamental ideas from measure theory. Let X be a set. In most

cases we will assume that X is a compact metric space.

Definition 1.1.1 A family B of subsets of X is called a o-algebra if and only if:
1) X e%B;
2) forany Be€ B, X\Be€'B,

3) if B, €W, forn=1,2,..., then U ., B, € B.



Elements of B are usually referred to as measurable sets.

Definition 1.1.2 A function p: B — RY is called a measure on B if and only if:

1) u@) =0;

2)  for any sequence {B,} of disjoint measurable sets, B, € B, n=1,2,..,

wllJ B) = 3 (B

The triplet (X, B, 1) is called a measure space. If u(X) = 1, we say it is a normalized
measure space or probability space. If X is a countable union of sets of finite y-measure,
then we say that u is a o-finite measure. Later on we shall work with probability

spaces.

Definition 1.1.3 A family A of subsets of X is called an algebra if:
1) Xed
2) forany Ae U, X\A e

3)  forany A, Ay €A, AjUA; €.

For any family J of subsets of X there exists a smallest o-algebra, B, containing
J. We say that J generates B and write B = o(J).

In practice, when defining a measure p on a space (X, ), p is known only on an
algebra 21 generating 8. We would like to know if i can be extended to a measure

on ‘B. The answer is contained in



Theorem 1.1.1 Given a set X and an algebra A of subsets of X, let uy: A — Rt

be a function satisfying p1(X) =1 and

251 (U An) = Z 1 (An)

whenever A, € A, forn =1,2,...,U2 A, € A and {A,} disjoint. Then there exists a

unique normalized measure p on B = o(~A) such that p(A) = p1(A) whenever A € 2.

Definition 1.1.4 Let X be a topological space. Let O denote the family of all open

subsets of X. Then the o-algebra B = o(9O) is called the Borel o-algebra of X and

its elements, Borel subsets of X.

Definition 1.1.5 Let (X,B, u) be a measure space. The function f : X — R is said
to be measurable if for all c € R, f~(c,00) € B, or, equivalently, if f1(A) € B for

any Borel set A C R.

If X is a topological space and B is the o-algebra of Borel subsets of X, then each

continuous function f : X — R is measurable.

Definition 1.1.6 Let B, be a o-algebra of Borel subsets of X, n = 1,2.... Let
ny < ng < ... < n, be integers and A,, € B, i =1,...,r. We define a cylinder set

to be a set of the form
C(Anyy oy An) = {{z1,29,... Y€ XN 13, € A, 1<i<7}

Definition 1.1.7 (Direct Product of Measure Spaces)
Let (X, B4, i), © € N be normalized measure spaces. The direct product measure

6



space (X, B, p) = 112, (X;, B;, i) is defined by
X = H;)ile and M(C(Anla ) Anr)) = H::l:u'm(Am)

It is easy to see that finite unions of cylinders form an algebra of subsets of X. By
Theorem 1.1.1 it can be uniquely extended to a measure on ‘B, the smallest o-algebra

containing all cylinders.

1.2 Spaces of Functions and Measures

Let § be a linear space. A function || - || : § — R" is called a norm if it has the

following properties:

Ifl=0&f=0
leefll = [ e L]l

I1F + gl < WA+ lgll,

for f,g € § and a € R. The space § endowed with a norm || - || is called a normed

linear space.

Definition 1.2.1 A sequence {f.} in a normed linear space is a Cauchy sequence if,

for any € > 0, there exists an N > 1 such that for any n,m > N,

”fn - fm” <E€.

Every convergent sequence is a Cauchy sequence.



Definition 1.2.2 A normed linear space § is complete if every Cauchy sequence
converges, i.e., if for each Cauchy sequence {f.} there exists f € § such that f, — f.

A complete normed space is called a Banach space.
Let (X, B, 1) be a normalized measure space.

Definition 1.2.3 Let 1 < p < 0o. The family of real valued measurable functions

(or rather a.e.-equivalence classes of them) f : X — R satisfying

/le(x)l”du <0 (1.1)

is called the £F(X,B, u) space and is denoted by £F(u) when the underlying space is

clearly known, and by £P where both the space and the measure are known.

The integral in (1.1) is assigned a special notation

1= ( /. If(:v)l”d/J)%,

and is called the £7 norm of f. £° with the norm || - ||, is a complete normed space,
i.e., a Banach space.

The space of almost everywhere bounded measurable functions on (X, B, 1) is
denoted by £°. Functions that differ only on a set of y-measure 0 are considered to

represent the same element of £*°. The £ norm is given by

[[flloc = ess sup|f(z)| = inf {M : p{z : f(z) > M} = 0}.

The space £ with the norm || - || is a Banach space.

8



Definition 1.2.4 The space of bounded linear functionals on a normed space § is
called the adjoint space to § and is denoted by §*. The weak convergence in § s
defined as follows: A sequence {f,}5° C § converges weakly to an f € F if and only
if for any F € §*, F(f,) — F(f) as n — +oo. Similarly, a sequence of functionals
{Fn}$° C §* converges in the weak-x topology to a functional F' € §* if and only if

for any f €5, Fu(f) = F(f) as n — 400.

Theorem 1.2.1 Let 1 < p < oo and let ¢ satisfy

Then £7 is the adjoint space of £P.

If f € £P, g € £9, then fg is integrable and the Hélder inequality holds:

/X Foldi < £l

Let g € £7. We define a functional F; on £F by setting

Clearly Fy is linear.

Proposition 1.2.1 Each function g € £7 defines a bounded linear functional F, on

L8 with Fy(f) = [ fgdp and || Fy|| = ||gllq-



Theorem 1.2.2 (Riesz Representation Theorem) [18] Let F' be a bounded linear
functional on £P,1 < p < co. Then there exists a function g in £9 such that
F(f) = / fgdp.
b'e
Furthermore, ||F|| = ||g|q-

We will use the following kinds of convergence in £P spaces.

(1) Norm (or strong) convergence:
fo—f in & —nomm <= ||fu— flp — 0, n — +oco.
(2) Weak convergence: f, — f weakly in £°, 1 <p < 400, <
1 1
Vg € £, /fngdu — /fgd,u, where Z;+ p =1.
(3) Pointwise convergence:
fn— [ almost everywhere (a.e.) <= f.(z) — f(x),

for almost every =z € X.
The following results give several characterizations of these types of convergence

and connections between them:
Theorem 1.2.3 Let a sequence { .}, fn € £, n=1,2, ... satisfy
(1) |\ fulh < M for some M;

(2) Ve >0 36 >0 such that for any A € B, if u(A) < § then for all n,

| / fudp] < €.
A

Then {fn} contains a weakly convergent subsequence, i.e., {fn} is weakly compact.

10



Corollary 1.2.1 If there exists g € £ such that f, < g forn = 1,2,..., then {f,}

15 weakly compact.

Theorem 1.2.4 (Scheffé’s Theorem) [11] If fn > 0, [ fadp = 1,n = 1,2,... and

fo— f ae with [ fdp=1, then f, — f in £-norm.

Theorem 1.2.5 If f, — f weakly in £' and almost everywhere, then f, — f in

£l-norm.

We now consider spaces of continuous and differentiable functions. Let X be a com-

pact metric space.

Definition 1.2.5 C%(X) = C(X) is the space of all continuous real functions f :

X — R, with the norm

[fllce = sup | f(z) .
zeX

Definition 1.2.6 91(X) denotes the spaces of all measures p on B(X). The norm,

called the total variation norm on IM(X), is defined by

lull =" sup  {| p(Ad) | +...+ | p(An) I},

1ULLUAN=

where the supremum 1is taken over all finite partitions of X.

A more frequently used topology on M(X) is the weak topology of measures, which

we can define with the aid of the following result [18]:
Theorem 1.2.6 Let X be a compact metric space. Then the adjoint space of C(X),
C*(X), s equal to M(X).

11



Definition 1.2.7 The weak topology of measures is a topology of weak convergence

on M(X), i.e.,

Mr%u¢ﬁ/gmm—+/lﬂm for any g € C(X).
X X

In view of Theorem 1.2.6 this is sometimes referred to as the topology of weak-x

convergence.

Theorem 1.2.7 The weak topology of measures is metrizable and any bounded (in

norm) subset of M(X) is compact in the weak topology of measures.

We now present two important corollaries of Theorem 1.2.6.

Corollary 1.2.2 Two measures py and po are identical if and only if

/Mm=/ﬂm
X X

for all g € C(X).

Corollary 1.2.3 The set of probability measures is compact in the weak topology of

measures.

For excellent accounts on the weak topology of measures, the reader is referred to [10]

and [36]. We now collect a number of results which will be needed in the sequel.

Theorem 1.2.8 [18/ Let §, ® be Banach spaces and let {T,,} be a sequence of bounded
linear operators on § into &. Then the limit Tf = lim,_, o T, f exists for every f
in § if and only if

12



(i) the imit Tf exists for every f in a set dense in §
and
(i1) for each finF, sup, |Tnf| < oco.

When the limit T f exists for each f in §, the operator T is bounded and
IT]| < lim infosyoo | Toll < supn || T5]] < +oo.

Definition 1.2.8 Let v and p be two measures on the same measure space (X, B).
We say that v is absolutely continuous with respect to u if for any A € B, such that

w(A) =0, it follows that v(A) =0. We write v << p.

A useful condition for testing absolute continuity is given by

Theorem 1.2.9 v << pu if and only if given € > 0 there exists 6 > 0 such that

w(A) < 6 implies v(A) < e.

The proof of this theorem can be found in [18].
If v << p, then it is possible to represent v in terms of y. This is the essence of

the Radon—-Nikodym Theorem.

Theorem 1.2.10 (Radon-Nikodym) Let (X,B) be a space and let v and p be two
normalized measures on (X, B). Ifv << u, then there exists a unique f € £1(X, B, u)

such that for every A € B,
v(A) = / fdu.
A
f is called the Radon—Nikodym derivative and is denoted by j—:.

13



Definition 1.2.9 Let X be a compact metric space and let p be a measure on (X, B),
where B is the Borel o-algebra of subsets of X. We define the support of i as the

smallest closed set of full p measure, i.e.,

supp(p) =X\ |J ©.

O—open

#(0)=0
It is worth noting that two mutually singular measures may have the same support.
Let 2t(X) denote the space of measures on (X,%). Let 7: X — X be a measur-
able transformation (i.e., 77*(A4) € Bfor A € B). 7 induces a transformation 7, on

M(X) by means of the definition: (7,u)(A) = p(771A). Since 7 is measurable, it is

easy to see that 7, € M(X). Hence, 7, is well defined.

Definition 1.2.10 Let (X,B, 1) be a normalized measure space. Then 7 : X — X

is said to be nonsingular if and only if T, u << p, i.e., if for any A € B such that

p(A) = 0, we have T u(A) = p(r™*A) = 0.

Proposition 1.2.2 Let (X,B, 1) be a normalized measure space, and let 7: X — X

be nonsingular. Then, if v << i, TV << Tt << .

Proof. Since v << p, u(A) =0 = v(A) = 0. Since 7 is non-singular, u(4) =0 =
pu(r7tA) = 0 = (77 1A) = 0. Thus, 7.V << T.p. Since 7 is nonsingular, we obtain

Teph << 4. W
Definition 1.2.11 Let (X,B, ) be a normalized measure space. Let

D=0D(X,B,p) ={f € LX,B,p): f 20and|fl =1}

14



denote the space of probability density functions. A function f € © s called a density

function or simply a density.

If fe®, then
ps(A) =/Afdn << p
is a measure and f is called the density of 1y and is written as duy/dp.
Theorem 1.2.11 (Kakutani—Yosida Theorem) [18] Let § be a Banach space and let

T : % — T be a bounded linear operator. Assume there exists ¢ > 0 such that

1T € ¢, n=1,2,.... Furthermore, if for any f € A C §, the sequence {f}, where
fo=Lyomy
n n b)
k=1
contains a subsequence {fn, } which converges weakly in §, then for any f € A,
1 & k *
k=1

*

(norm convergence) and T(f*) = f*.

Theorem 1.2.12 (Schauder-Tykhonov Theorem) [18] Let A be a convex subset of a
Banach space. Let T be continuous such that T(A) C A. Then T has a fized point in

A.

1.3 Functions of Bounded Variation

Let [a,b] C R be a bounded interval and let A denote Lebesgue measure on [a, b].
For any sequence of points a = zy < 1 < ... < Zp_1 < &, = b,n > 1, we define a

15



partition P = {I; = [z;_1,7:) : 1 = 1,...,n} of [a,b]. The points {zo,z1,...,2,} are

called end-points of the partition P. Sometimes we will write P = P{z¢, z1, ..., Tn }-

Definition 1.3.1 Let f : [a,b] — R and let P = P{xq,z1,...,2,} be a partition of

[a,b]. If there exists a positive number M such that
S lf@w) = flo) < M
k=1
for all partitions P, then f is said to be of bounded variation on |a,b].

If f is increasing or if it satisfies the Lipschitz condition

|f(z) — fy)] < Kl|z —yl,

then it is of bounded variation.
Note that the Holder condition
[f(@) = f)l < Hlz -yl 0<e<T,
is not enough to guarantee that f is of bounded variation. This can be seen by
considering the function
zsin(l), O<z<2r

fle) = ,
0, z=0

which is Hélder continuous, but not of bounded variation.

Definition 1.3.2 Let f : [a,b] — R be a function of bounded variation. The number

Ve f = SI;P{Z |f(zx) — f(zr-1)[}

is called the total variation or, simply, the variation of f on [a,b].

16



Many of the following results are well known and can be found in the excellent book

[35).

Theorem 1.3.1 If f is of bounded variation on [a,b], then f is bounded on [a,b]. In
fact,

[f (@) < 1f(a)] + Vian f

for all z € [a,b].

Lemma 1.3.1 Let f be a function of bounded variation such that ||f||; < co. Then

If(@)| £ Vieu f + |,|)—f_-”;ll- for all z € [a,b], where || - ||1 is the £' norm on [a, b].

Proof. We claim there exists y € [a,b] such that |f(y)| < LA

€ [a,b]
(b= a)lf(z)] > [I£lx-

Hence, ||fll1 = f |f (z)|dA(z) > Pl g\(z) = ||f||l. and we have a contradiction.

a b—a

Since

| f(@) <] f(@) = F) [+ 1 () |

we have

7@ < Vs + 2L

17



Theorem 1.3.2 Let f and g be of bounded variation on [a,b]. Then so are their

sum, difference and product. Also, we have
Vi (f £9) < Vien S + Viang

and

Vsl (f - 9) < AVieif + BViay9,
where A = sup{|g(z)| : = € [a,b]}, B =sup{|f(z)| : = € [a,b]}.

Quotients are not included in Theorem 1.3.2 because the reciprocal of a function of
bounded variation need not be of bounded variation. For example, if f(z) — 0 as
& — o, then 1/f will not be bounded on any interval containing zo and therefore
1/f cannot be of bounded variation on such an interval. To extend Theorem 1.3.2 to

quotients, we must exclude functions whose values can be arbitrarily close to zero.

Theorem 1.3.3 Let f : [a,b] — R be of bounded variation and assume f is bounded
away from 0; i.e., there exists a positive number a > 0 such that |f(z)| > « for all

x € [a,b]. Then g =1/f is of bounded variation on [a,b] and

1
‘/[a,b] f

‘/[a,b]g < ;

Proof. Let {zq, ..., z,} be a partition of [a,b]. Since f € BV|a,b], we have

S 1F(ax) — flanm)| < My

18



Then,

1 |f 37k SUk 1)|
k:1|f($k) f(@p=1) Z |f (z ]|f Tr_1)]

< —a—Q—Ml.
Therefore € BV|a,b] and V[a b < a2 Viep f- ™
If we keep f fixed and study the total variation as a function of the interval [a, b],

we have the following property:

Theorem 1.3.4 Let f : [a,b] — R be of bounded variation and assume c € (a,b).

Then f is of bounded variation on [a,c| and on [c,b] and we have

Vienf = Viedf + View f-
The following result characterizes functions of bounded variation.

Theorem 1.3.5 Let f be defined on [a,b]. Then f is of bounded variation if and

only if f can be expressed as the difference of two increasing functions.

Theorem 1.3.6 Let f be of bounded variation on [a,b]. If z € [a,b], let V(z) =
View S and let V(a) = 0. Then every point of continuity of f is also a point of

continuity of V.. The converse is also true.
Combining the two foregoing theorems, we have

Theorem 1.3.7 Let f : [a,b] — R be continuous. Then f is of bounded variation on
[a,b] if and only if f can be represented as the difference of two increasing continuous
functions.

19



We now distinguish an important subspace of functions of bounded variation.

Definition 1.3.3 Let f : [a,b] — R. f is called an absolutely continuous function if

and only if for any € > 0 there exists a 6 > 0 such that for any {si, t;}Y,

N N
Slti—sil <6 = D _|f(t:) — fs:)l <e.
i=1 i=1

If f has a continuous derivative (or more generally, if f is absolutely continuous),

there is a very useful representation for its variation.

Theorem 1.3.8 Let f: [a,b] — R have a continuous derivative f' on [a,b]. Then

Ve = [ 17@I0AG).

We now briefly discuss the interesting relation between absolute continuity (non-
singularity) of a function and nonsingularity of a transformation defined by this func-
tion.

Recall, that f : [0,1] — [0, 1] is called nonsingular (as a transformation) < for
any A€ B([0,1]) MA) =0 = Af}A) =0 (®1e & fid << for fLA4) =
A(f~Y(A))). Then, by the Radon—Nikodym Theorem, there exists a function g(z) > 0

such that

A7) = [ aax), (1.2
for all A € B([0,1]). Note that the function g may vanish on some set of positive
measure. If f is increasing and f(0) = 0, then applying the formula (1.2) to A = [0, z],
we obtain

fHz) = /Owg(t)d)\(t) for =z €10,1].
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On the other hand, the function ¢ : [0,1] — [0,1] is called nonsingular or ab-

solutely continuous (as a function) < ¢ is differentiable a.e., and

o(z) = /Om‘ ¢ (t)dA(t) for = €[0,1].

(This characterization is equivalent to Definition 1.3.3).

We present an inequality that will play an important role in the sequel:

Theorem 1.3.9 Let f : [a,b] — R be of bounded variation. Let z,y € [a,b] and

x <y. Then

£ @)+ 1f®)] < View f + w_f_l / Y F ).

Proof. We have

[f@)]+ f )] <2 inf |fO)]+]f(2) = @O+ () - F)l-

z<t<y

By the Mean Value Theorem for integrals, we obtain

| 50) 141 £6) 1< =27 [ 1) 1d00) + Vit S
n
We define a norm on BV ([a,b]) as follows: For f € BV ([a,b]),
I fllBv = [ f]l1 + flizl}g.e' Vi f1-
Without the £!'-norm, || - ||pvy would not be a norm, since a function that is not 0

could have 0 variation.
We now collect some miscellaneous properties of BV ([a, b]).
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Proposition 1.3.1 BV ([a,b]) is dense in £'([a,b]).

Proof. Since C'([a,d]) is dense in £!([a,b]) and BV ([a,b]) contains C*([a,b]), the
result is true. m
Below we present two results of [28], which we will use later in the text. Let us

define the indefinite integral [(®) of a function ® € £' by

J@e- | _ 2)ixE)

Lemma 1.3.2 Let f € BV and ® € £'. Then,
| / FodN < V(f) - | / (@)oo + | / S|« | flloo < 201f 5Vl / ()]
Theorem 1.3.10 For f € £},

V(f) =sup
P

/f@dx1,

where the supremum extends over all ® € £ with || [(?)]leo <1 and [ Pd\ = 0.

1.4 Conditional Expectations

Definition 1.4.1 Let (X,B, ) be a normalized measure space. For f j-measurable,

we define the expectation of f, will be denoted by E(f), by

E(f) =/deu,

if the integral exists.
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Definition 1.4.2 Let (X,B,u) be a normalized measure space and let € C B be
a o-algebra. For f € £Y(X,B,u), we define the conditional expectation of f with
respect to € as the Radon—Nikodym derivative of the measure f), with respect to the

measure pe and denote it by E(f|C):

E(le:) _ d(flu’lc)‘

d(pe)

Theorem 1.4.1 For a function g € £ X, €, u), we have g = E(f|€) if and only if

/Agdu= /Afdﬂ

for any A € €.

1.5 Stochastic Processes

In this section, we briefly present definitions and theorems of the theory of stochastic
processes, mainly Markov processes. For a deep treatment of the subject, we refer

the reader to [17].

Let (92,8, P) be a probability space. A function X, defined on (2, is called random

variable if it is B-measurable.

Definition 1.5.1 A stochastic process is a family of random variables {X;,t € T}.

If T is an infinite sequence, the process is called a discrete stochastic process.

An important class of stochastic processes are martingales. Martingales are use-

ful tools in game theory, in particular in financial mathematics. One would like to
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differentiate between an unbiased game and an unfair game. Martingales are the

mathematical tool which detect whether a game is fair or not.

Definition 1.5.2 A stochastic process {X;,t € T} is called a martingale if E(|&4]) <

oo for all t, and if for any times t; < -+ < tpy1,
E(th+1|th, e ,th) = th,
with probability 1.

Another important class of stochastic processes, which plays crucial role in later

chapters of this book, are Markov processes:

Definition 1.5.3 A discrete Markov process is a stochastic process {X;,t € T} satis-
fying the following condition: for any integern > 1, ift; <--- <1, are any parameter
values, the conditional expectation of X,, relative to X, ..., A, is the same as the

one relative to X;,_,, i.e.,

E(th-l—llxtl? A 7th) = E(th-l-l‘th)’

with probability 1.

In general the dependence of the &; ., on X;, may depend on time t,. We will
consider only the case where this dependence does not change, i.e., stationary Markov
processes.

A special case of Markov process is called a Markov chain. In a Markov chain,
the phase space, i.e., the space of possible states of the process is finite or at most
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countable. Let the consecutive states of the chain be X, s, .... If P{X,,(w) =i} >

0, define p;; by

P{ X (w) = 4, Xy (W) = j}
P{X(w) =i} ’

and let P be the matrix (p;;). Note, we assume that these probabilities are inde-

Pij = P{Xp(w) = JlXn(w) =i} =

pendent of m. Then , the matrix P called the transition matrix, has the following

properties:
pij > 0, > opii=1 (1.3)
J
Any matrix satisfying the above conditions ia called a stochastic matrix. Since
P{Xmi2(w) = j|dm(w) = i}
= ZP{Xm+2(w) = j|Xmt1(w) = k} - P{X11(w) = k| X (w) = 1} (1.4)
k

= Zpikpkj-
k

the matrix of transition probabilities from 7 at time m to j at time m + 2 is the
product P - P of the matrices of one step transition probabilities. In general the

matrix of transition probabilities in n steps is

n n—1) n—s s
o) = (zp< p,w> (zp< >pgj>,

for any 0 < s < n.

If there exists a vector of initial probabilities {p;} satisfying
pi 20, Zpi =1, Zpipij = p;, for any j, (1.5)
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they are called invariant or stationary probabilities of the Markov chain. The following

theorem can be proved:

Theorem 1.5.1 If the matriz P™ is positive for somen > 1 then the limit lim,_,, P" =
Q exists. The matriz Q = (g;;) has constant columns and the probabilities g1 ; form

a vector of stationary probabilities. We have qi; > 0, for all j.

For a nondiscrete phase space we define Markov process by a transition function:

Definition 1.5.4 A function P :  x B — [0,1] is called a stochastic transition
function if it has the following properties:
(i) for any A € B, P(-, A) : Q@ — [0,1] is a B-measurable function;

(i3) for any z € Q, P(x,-) : B — [0,1] is a measure.

Then, if p is a probabilistic measure on ‘B called initial probability, we can define

all probabilities related to the Markov process using p and P.
P(% € A) = p(A);
P(X, € AlXy = z) = Pz, A); (1.6)
P(%; € A)= [ Pla, A)dpla)

Q

and in general:

P(Xn—i—l € A|Xn = :1;) = P(va)v

P(Xn_|_1 € A) = /Q . /Q dp(xo)P(.’L‘o, dl‘l)]P)(l'l, dmg) Ca P(.’I)n_l, de’n)]P)(fEn, A) (17)

(n+1)—times
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Equivalently, Markov process can be understood as a measure on the product space

0, = ONO} given by:
P(A()XAl Xooes XAn):P(XQGAo,Xl €A1,...,Xn EAn),

for all n > 1 and Ag, As,..., A, € B.
Now, we state a generalization of Theorem 1.5.1 and an ergodic theorem for
Markov processes. We define

P*(z, A) = P{X, € AlXy =1z}
(1.8)

/ / P(ao, dwy P21, ds) . .. P(n_2, dn1)P(2n_1, A).
Q Q

(n—1)—times

The measure m on B is called a stationary probability of the Markov process if
m(A) = / dm(z)P(z, A), (1.9)
Q

for all A € B. Then, obviously m(A) = [, dm(z)P"(z, A).
Hypothesis: There is a finite measure ¢ on B with ¢(2) > 0, an integer v > 1, and

a positive € such that
p(A)<e =P(z,A)<1-¢,

for all z € Q. An ergodic Markov process means: if P(z, A) = 1 for all 2 € A then

m(A) = 0 of m(A°) = 0. The following theorem can be found in [17].
Theorem 1.5.2 If the hypothesis holds, then the limit

m(A) = lim P"(z, A),

n—o0
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exists for any A € B and is independent of the initial point x. The measure m is a
stationary measure for the Markov process. Moreover, for any B-measurable function
f with
E(7(0)1 = [ IF©)m(de) < o,
the limit
R
Y 5 2 (%)

exists with probability one. In particular, under the above hypothesis, if there is only

one ergodic set,
im L3 1) = [ flemiae
noee m=1 Q

with probability one.

Remark 1.5.1 Theorem 1.5.2 will be used to prove an ergodic theorem for position

dependent random maps.
The Markov process induces two operators:
M : L®(Q,8) — L™(Q,B),

defined by

(MF)(y) = / f(@)P(y, dx),

and

M, : M(Q,8) - M(Q,*B),
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defined by

(Mop)(A) = / du(z)P(z, ), AeB.

Note that a measure m is stationary for the Markov process if and only if m is a fixed

point of M,. The operators M and M, are conjugate to each other, i.e.,

[y | fatn,

for any bounded function f.

1.6 Review of Ergodic Theory

Now, we present a brief review of ergodic theory. Many of the results will be used in
the sequel. For a more complete study of ergodic theory the reader is referred to the
excellent text [38]. We start the chapter with a brief review for one map dynamical
systems. Then we study random maps with constant probabilities. For detailed
study on the existence of absolutely continuous measures and their properties for one
map dynamical systems the reader is referred to [14]. Let (X,, ) be a normalized
measure space. Let 7 : X — X be transformation. The nth iterate of 7 is denoted
by 7", i.e.,

"(z) = To..07(x)

n times.

Definition 1.6.1 The transformation T : X — X is measurable if 771(B) C B, i.e.,
B e B = rY(B) € B, where 77Y(B) = {z € X : 7(z) € B}.
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Definition 1.6.2 We say the measurable transformation 7 : X — X preserves mea-

sure ji or that p is T-invariant if u(t71(B)) = w(B) for all B € B.

Remark 1.6.1 We interpret the Definition 1.6.2 as follows: we have pu(X) = 1.
Think of X as a metal bar with mass 1 and non-homogenous mass density determined
by . A measurable transformation 7 : X — X preserves p means that if one folds

X wvia T one obtains again the original distribution on X.

Definition 1.6.3 Let (X,B, 1) be a normalized measure space and let 7 : X — X

preserve p. The quadruple (X,B, p,7) is called a dynamical system.
The following theorem gives a necessary and sufficient condition for 7-invariance of
7

Theorem 1.6.1 Let 7: X — X be a measurable transformation of (X,B, ). Then

T 18 p-preserving if and only if

[ s@in= [ s (1.10)

for any f € £=. If X is compact and (1.10) holds for any continuous function f,

then T 1s p-preserving.

Let (X,9,u) be a normalized measure space and let 7 : X — X be a measure-
preserving transformation on (X,%,u). If 77'B = B for some B € 9B, then

7 1(X\B) = X\B and the study of 7 splits into two parts: 7 |g and 7 |x\p. It
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is useful to have a concept of indecomposability for measure-preserving transforma-
tions, so that if 7 has this indecomposability property then the study of 7 cannot be

split into separate parts. This property is called ergodicity.

Definition 1.6.4 We call a measure-preserving transformation 7 : X — X ergodic

if for any B € B, such that T 'B =B, u(B) =0 or u(X \ B)=0.

Since ergodicity is a property of the pair (7, ), we often say that (7, ) is ergodic.

Now, we define the notion of random map with constant probabilities.

Definition 1.6.5 Let (X,B, 1) be a measure space. Let 71,72, ..., Tk be a collection
of point transformations from X into X and define the random map T by choosing
T, with probability px, pr > 0, Zszl pr = 1, where pi’s are constants. The collection

T ={m,72,-.-,TK;P1,. .-, Pk} 15 called a random map with constant probabilities.
Definition 1.6.6 A measure p on X is called invariant under T f
K
w(A) =" peul(ryt A)
k=1
for all A € B.

Example 1.6.1 Let T be a random map which is given by {1, T2; p1,p2} where

(
2z, 0<z<L %—
i(z) = < , (1.11)
2-2z, $<z<l1
\
2z, 0<z< —%
To(z) = . (1.12)
2z — 1, % <z <1

\

Then, for any py,p2, obviously T preserves Lebesgue measure on [0, 1].
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In [37] the following sufficient condition is used ensure the existence of absolutely

continuous invariant measures for these random maps:

K
SR
k=1

X~

for some constant . In [34] a spectral decomposition theorem is proved.

There is a rich literature on random maps with constant probabilities which are
often treated as random perturbations of transformations [29]. Usually, random maps

with constant probabilities are represented by skew products [37].

Definition 1.6.7 Let (Q,%,0,v) be a dynamical system and let (S,B, T, pw)wea be
a family of dynamical systems such that the function 7,(z) is % X B measurable. A

skew product of o and {7,}uecq s a transformation T : Q x X — Q x X defined by

T(w,z) = (0(w), 7 (2)),

we zeX.

In fact an important application of a skew product construction is the random map.
Let = 2+ = YN0} where Y is a compact space with Borel probability measure p.
Let v = p{NU(O} be the product measure and o :  —  be the shift to the left. Let
{X,%B, A} be a measure space and {7, }yey a family of transformations 7, : X — X,
such that 7,(z) is a 2 x B measurable function. A skew product T' of o and {7, }yey
can be interpreted as a “random map” {7,,n}, where the transformation 7, is chosen
according to the probability p. If Y is a finite space, this model (introduced in
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Definition 1.6.5) is especially simple: we have a finite number of transformations

{r;}~_, that act with probabilities {p;}¥_,.
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Chapter 2

Position Dependent Random Maps

2.1 Introduction

There is a rich literature on random maps with position dependent probabilities with
T1,T2,. .., Tk being continuous contracting transformations [41]. In this chapter, we
deal with piecewise monotonic nonsingular transformations 71, 7, . .., Tk and position
dependent probabilities pi(z), k =1,..., K, px(z) > 0, Zle pr(x) =1, i.e., the py’s
are functions of position. We point out that the study of such dynamical systems was

introduced in [23].

2.2 Invariant Measures for Random Maps

In this section we formulate the definition of a random map 7" with position dependent.

probabilities. Let (X, 9, ) be a measure space, where X is an underlying measure.
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Let 7, : X — X, k=1,..., K be piecewise one-to-one, non-singular transformations

on a common partition P of X : P = {I},...,[,} and 7; = 7% |, ¢ = 1,...,q,

k=1,...,K (P can be found by considering finer partitions).

Definition 2.2.1 Let T = {r,...7x;p1(2),...px(2)}. We call T a random map

with position dependent probabilities or simply a position dependent random map.

Definition 2.2.2 Let T = {m,...Tx;p1(2), ... pr(z)} be a position dependent ran-

dom map. Then T preserves a measure p if and only if

K
pA) =) / n pi(z)d,

for all A € %B.

Example 2.2.1 Let T be a random map which is given by {7, 72; p1(x), p2(z)}
(

[\]
B
<
IA
8
IA
-

71(Z) = , (2.1)

To(x) = | ; (2.2)
L2—2x, %<m§1
5 0<2<3
pl(x): ) (23)
1

= (2.4)
= A(A).

Thus, T preserves Lebesgue measure on [0, 1].
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Lemma 2.2.1 p is T-invariant if and only if [, gdp = Zle Jrox(2) - (9 0 Tw)dp(z)

for g € C(I).

Proof. p is T-invariant if and only if p(A) = Ele fT_l(A) pr(z)du(z) for any A € B;
k

i.e., if and only if

[xat@ina) =3 [ @) Geaomdauta).

For any g € C(I), we can find a simple function which is arbitrarily close to g. Thus,

the lemma is true for any g € C(I). =

2.3 The Frobenius-Perron Operator of a Position

Dependent Random Map

In this section, following the ideas of [23], we introduce the Frobenius-Perron operator

of a position dependent random map and study its properties.
We define the transition function for the random map
T ={r,...7;01(2), .. . Px(x)}

as follows:

P(z, A) = Y pr(@)xal(m(2)), (2.5)

k=1

where A is any measurable set and {pg(z)}_, is a set of position dependent measur-
able probabilities, i.e., 211;1 pe(z) =1, pr(z) > 0, for any z € X and x4 denotes the
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characteristic function of the set A. We define
T(z) = () with probability p(z)

and

TN(2) = Thy © Thy—y © "+ © T (2)
with probability
Proy (T © **+ © T, 1)) Py (Thn_y 0+ © Thy (7)) -+ Pra ()

The transition function P induces an operator P, on measures on (X, B) defined by

PLu(A) = / P(z, A)dy(z)

/ P (@) (e (@))dis() (26)

Z / PP

If 1+ has density f with respect to A, then P, has also a density which we denote by

WMx ™M=

Prf. By a change of variables, we obtain

/ Prf(z Z / z)d\(x)

-1
k=1 i=1 (A)
K g

. /A pi(Tiiw) (7, L @)

=1 i=1 Jk,i(Tk—,il)

2.7)

I

X

where J;.; is the Jacobian of 7 ; with respect to A, J(7) = d-T—%’—\l the Radon-Nikodym

derivative. Since this holds for any measurable set A, we obtain an a.e. equality:

1

k=1 i=1 2 —mXTk(I)( z), (2.8)



or
K
(Prf)(@) =Y Py (oef) (), (2.9)
k=1
where P, is the Frobenius-Perron operator corresponding to the transformation 7
[14]. We call Pr the Frobenius-Perron operator of the random map T'. This operator
has very useful properties which will be developed in the following Lemma. These
properties resemble the properties of the traditional Frobenius-Perron operator for a

single map.

Lemma 2.3.1 Pr satisfies the following properties:

(1) Pr is linear;

(i1) Pr is non-negative; i.e., f >0 = Ppf > 0;

(111) Prf = f < du = fd\(z) is T-invariant;

() ||Prflli < |Ifll1, where || - ||: denotes the £ norm;

(v) Pror = Pr o Pg. In particular, (P f)(z) = (Prw f)(z).

Proof. The proofs of (i)-(iv) follow from the properties of P, (See [14], Chapter 4).
For (v), let T and R be two random maps corresponding to {1, 7y, ..., 7k; P1, P2, - - -, Pic }

and {¢, G, ..., CL;71,79, ..., } Tespectively. We define {7 }£, and {{}, on a
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common partition P. We have

(ProPpf)(z <PR > P (prf) )

Z (PClePTk(pkf)) (:U)

1

I
Mh

=1

£
Il

I
M=

M- I
M- 1M

(Tl(sz ) Tk(pkf)(glz ) (Clz )X§z1(1)> (z)

Z Ty Clz Dk Tk] 0 G )f(Tk—Jl ° Cl,_il) (2.10)

=1
o 1 1
ka(Tk;—jl ° Cfil) Jl,z’(Cl,_il

L
> Prog (px(G)if) ()

= (PToRf)(x)'
In particular, (PN f)(z) = (Prv f)(z). m

™)~

II
-,

ol
I
MR

l 1

17

) Xi(15) (Cl,—il)XCl,i(Ii)) (z)

I
[M™] =

£
I

Remark 2.3.1 In the case where X = [a,b], to prove that T admits an absolutely
continuous invariant measure on [a, b, it is enough to prove that for any f € BV (X)

there exist an N € N, and real numbers A, B such that

1P fllsv < Allfllsv + BlIfl], (2.11)

where 0 < A< 1 and 0 < B < oo (See [14] for details).

2.4 Random Ergodic Theorem

The main goal of this section is to prove that position dependent random maps satisfy
an ergodic theorem. In the case of a one map dynamical system, the Birkhoff Ergodic
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Theorem establishes the dynamical importance of invariant measures in general, and
of the absolutely continuous invariant measures in particular [14]. This motivates
us to prove that position dependent random maps satisfy a Birkhoff "type” Ergodic
Theorem. The following theorem was proved in [7] and the proof is based on ideas

from [19].

Let Q@ = K® = {(k1,ks,...) : 1 < k; < K and k; is an integer for each j}. Let
2 be the o-algebra generated by the cylinders in §2. For each z € X, let P, be the
probability measure on 2 defined on cylinders by P,((k1,k2,...,kn)) = Pry(Thy_, ©
0T (7)) - Phy_y (Thy_g © *++ © Ty (®)) - - - Py (). This is the probability measure for
realizations of the Markov process starting at z. For instance, if we consider a Markov
process {Z,,n = 0,1,...} with state space X and transition probability I’ as defined

in (2.5), then

P(Zo,Zl,...) € BIZ() = .’E) = Pw{(kl,kg,...) : (a?,Tkl(CB),Tk2(Tk1(ZI:)), . ) € B}

for any measurable B € (£2 x X)*.

Theorem 2.4.1 If p is T-invariant, u is absolutely continuous and unique among
absolutely continuous invariant measures, Pr satisfies (2.11), then for almost every

1 point © with probability 1:

for any f € £4(X, p).
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Proof. Let {Z,} be the Markov process with transition probability P such that Z,
has distribution . Then the process is stationary since u is an invariant measure and

it is ergodic and Pr satisfies (2.11). Let f € £(X, ). Define

n—1

A= (oo ) € X523 flay) = [ fau}
=0
By Theorem 1.5.2,
P((Zo, Z1,...) €A)=1. (2.12)

Observe that

P(Zo, Z1,...) €N) = | P((Zo,Z,...) € A|Zo = z)dp()

= /Pm((kl, ko, ...) (@, Ty (%), Tho (T8, (), . .. ) € A)dpu(z).
(2.13)

Then by (2.12) and (2.13) we have

Pmo((kl,kg, .. ) . (CL‘o,Tkl(.’Eo),TkZ(Tkl(CI)())), .. ) € A)) =1

for some 2o € X. Let H = {(ky, kg, ... ) : To, Ty (Tky (20)), - .. ) € A)}. Thus, Py (H) =
1 and for (k1,ks,...) € H,

1n—1
=) [l 00 omy(mo)) — [ fdp.
nj:O Tk Tk \Zo / H

Thus, for almost every p point z with probability 1:

LS @) — )

=0

for any f € £1(X, ). m
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Chapter 3

Absolutely Continuous Invariant

Measures on the Interval

In this chapter we present results on the existence of absolutely continuous invariant

measures for position dependent random maps of an interval [1, 2].

3.1 The Expanding on Average Case

Let ([a,b],8, ) be a measure space, where X is Lebesgue measure on [a,b]; 7% :

[a,b] — [a,b], k =1,...,K be piecewise one-to-one and differentiable, non-singular

transformations on a partition P of [a,b] : P = {[1,...,I;} and 7o; = 7% |1, ¢ =
1,...,q9,k=1,...,K. Let pi(z) be the probability of choosing 7. Let gi(z) = %.

We assume that

Condition (A): Y15 sup, gi(z) < a <1, and
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Condition (B): g, € BV(I);k=1,.K .

Under the above conditions our goal is to prove:

ViPrf < Avif + BlIfllx (3.1)

where A < 1 and B > 0. The inequality in equation (3.1) guarantees the existence

of a T-invariant measure absolutely continuous with respect to Lebesgue measure.

Lemma 3.1.1 Let T be a random map which satisfies condition (A). Then

Z sup I?‘fgil <ab. (3.2)

Proof. We write

with probability
Py (T 1 © 0 T,1(2)) * Pl s (Thy_g ©*++ © T () - - - Py ().
The maps defining TV may be indexed by {1,2,...,K}". Set
Tw(Z) = Thp © Thy_y © ¢+ + © Tiey ()

where w = (ki,..., Kn),

pw(ZE) = DPky (TkN_l O 0Tk ("E)) ’ pkN-—l(TkN—2 00Tk (m)) ©Pry (:L‘)

and



Suppose that T satisfies condition (A). Using induction on IV, we will show that

pw(m) N
i sa. 3.3)
we{l,Z,Z,K}N T (@)l (

For N =1, we have

Z sup Pu(2) <a (3.4)
by condition (A). Assume (3.3) is true for N — 1. Then,

wup P@) o, Pe(@)Po(7i(2))
e P DR v )]

Z w

we{l,2,... K}V we{1,2,..., K}N-1 k=1
K
pr(@) pu(Te())
< sup SUP T (3.5)
2@l 2 )
V-1 up i () N
- g |m(z)| T
n
Lemma 3.1.2 Let T satisfy conditions (A) and (B) and let § = min;_y . 4 A(I;).
Then for any f € BV (I),
ViPrf < AVif + B||f|]1, (3.6)

where A = Zszl max;<i<q(Vrgx) + 2 Zszl sup, gx(z) and B = % Z,i{zl sup, gx(z) +
Ly maxicic, Vi,g.

Proof. Let a = 290 < 1 < --- < x, = b be an arbitrary partition of I. Define

¢ = 77'. We have,

ViPrf < ZVIPm (or.f)(z). (3.7)

k=1
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We will estimate Vi P, (pxf)-

Vil (e f)(z lem Dif) :L’J) Tk(pkf)(xj 1)l

q

= Z (32 98(Bra() (D) () =

> g ri(@i-0)) f (Brilzsa ) xnao(@im))) - (38)

i=1
r

<Y Igr(Bra(@)) f (Bra(25)) Xty (25)

j=1 i=1

— gr(Pri(z5-1)) F(Dri(@5-1)) Xm (1) (25-1))

We divide the sum on the right hand side »into three parts:
(I) the summands for which X, (7,)(%;) = X @) (Zj-1) = 1,
(IT) the summands for which X, (r,)(z;) = 1 and X, ,)(z;-1) = 0,
(III) the summands for which xr,(,)(z;) = 0 andx, ;) (z;-1) = 1.

First, we will estimate (I).

T

Z Z |gk(¢kz($y))f(¢kz(%)) - gk(¢k,z‘($j~1))f(¢k,i($j—1))|

T

< Z | f(Dr,i(5)) [98(Dr,i(25)) — gr(Pri(@i-1))]|

=1 j=1

+ZZ|gk ni(@i)) [ (Bri(w5)) = F(@na(zi—))]|
=1 =l (3.9)

q
SZ(Sgplfl‘/}igk) (sup gi (e ZVI

=1

<1IE?<X(Vng) (V1|f|+ /Ifld/\> (sup gi(x ZVI

< pax (Vigo) (Vif + 3 [ 1/IN@0)) + (sup gu(e))Vi
S AN/, I x
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We now consider the subsums (II) and (III) together. For 1 < k < K we notice that
Xro(1 (%) = 1 and X1,y (z;-1) = 0 occurs only if z; € m(l;) and ;1 & (1), i-e.,
if z; and z;_; are on opposite sides of an end point of 74(/;), we can have at most

one pair z;, ;1 like this and another pair z’; ¢ o(L;) and z;_1 € Te(1;).

> (Uge(dn,i(2:)) (Bri(@3))] + |98 (Dri(@5-1)) f (Prs(z-1))])
=1 (3.10)

q

< sup gi (x) > (1 F(@rs(@))] + fDralay-1))

i=1
Since s; = ¢p.:(z;) and r; = ¢y ;(2;_1) are both points in I;, we can write

q

Y F )+ 1)) < Y @U@+ 1F (i) = Fra)l + 1f (vs) = £(s:)]),

i=1 g=1

where v; € I; is such a point that |f(v;)| < 57y f I

). Thus, (3.10) is bounded

by

q

supau(o) 3 (Vi + 5775 [ 19)) < supgueif + 22 s

(3.11)
Therefore,
VP, (pif)(z) < ({gggfl (V1,gx) + 2sup gk(fv)> Vif
== @ (3.12)
e T Vi ) [ 1£1A(ds)
It follows that
ViPrf < (Z max (Vi,g) +2ZSUng )) Vif
k=1 P (3.13)
1
+ (5 Zsupg;c 5 Z max Vu%) /|f|)\(df’3)
k=1 © k=1 I
]
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Lemma 3.1.3 Letg, = %—‘, where T,, is defined as in Lemma 3.1.1, w € {1,..., K}".

Define

il

W,

)
weil, iy 7T

where P™ s the partition for all T,,. Then for alln > 1

K
> maxVig, end Wi=) maxVig,
k=1

W, < na™ Wy,

where a is defined as in condition (A).

Proof. We prove the lemma by induction on n. For n = 1 the lemma is true by

definition of W,,. Assume that the lemma is true for n; i.e.,

W, < na™ W, (3.14)
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Let J € P"tY) and 2y < 21 < -+ < 2; be a sequence of points in J. Then

-1
Z Z Igw (xj+1)

w =0

-1
@)= lguleien) - gulzs)
=0 we {1, K}t
<SS Iowlmesen)on(asen) — g0(mk(z)ge(25)

7=0 we{l,..,K}" k=1
-1

< > lgw(me(@i41))gr(@541) — gl (@541)) g0 (25)]
7=0 we(l,....K}" k=1

+> Z Zlgw T(@541))98(25) — (7258 ()]

=0 we{1,..., K} k=1
-1 K
<Y > lge(mi) — gzl > gw(me(zin))
j=0 k=1 wel{l,.., K}»
-1 K
+ ng(%‘) Z |9 (7k(@541)) — ga(Ta(=;))]
j=0 k=1 we{l,..., K}n
-1 K
<0 Y lgr(@ii) — grla;)]

< aWj + na™Wi = (n+ 1)a"W;.

(3.15)

We have used condition (A), Lemma 3.1.1 and the fact that {7(z;)}\_y form a parti-

tion of some element of P, m

Lemma 3.1.4 Let vy, = na™ W, +2a™. Then, there exists an N such that vy < 1.

Proof. Since o < 1, we can find an N such that yv <1. =
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Theorem 3.1.1 Let T be a random map which satisfies conditions (A) and (B).
Then T preserves a measure which is absolutely continuous with respect to Lebesgue

measure. The operator Py is quasi-compact on BV (I) and has a number of useful

properties [14].

Proof. Let N satisfy Lemma 3.1.4. Let v = yn. Then, by Lemma 3.1.2, we get

IPEY fllsv < "I fllv + Rl £l (3.16)
and the theorem follows by (2.11) (See [26] and [14] for details).

Remark 3.1.1 It is enough to assume that condition (A) is satisfied for some iterate

" m > 1.

Remark 3.1.2 The number of absolutely continuous invariant measures for random
maps has been studied in [21]. The proof of [21], which uses graph theoretic methods,
goes through analogously in our case. Thus, if T is a random map with position
dependent probabilities built from piecewise expanding maps 7, k =1,... K, then the

number of T-acim is not greater than the minimum of the 7-acim.

We now present two examples of random maps which are expanding on average.

Example 3.1.1 Let T be a random map which is given by {11, T2; p1(2), p2(x)} where

22z, 0<z<
m(z) = , (3.17)

<zx<1

[ 3 I

o=

Z,
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To(z) = ; (3.18)
2z — 1, % <z <l
and
5, 0<z<3
p(z) = 4 ) (3.19)
1
\ ER) % <z < 1
5 0<z<3
pa(z) = 1 . (3.20)
%, % <zr<l1
\

Then, sup, gi(z) = 3, sup, g2(z) = % and S 2 sup, gi(z) = 2 < 1. Therefore, T
satisfies conditions (A) and (B). Consequently, by Theorem 38.1.1, T' preserves an
invariant measure absolutely continuous with respect to Lebesgue measure. Notice
that 71,7y are piecewise linear Markov maps defined on the same Markov partition
P : {[0,4],[5,1]}. For such maps the Frobenius-Perron operator reduces to a matriz

[14]. The corresponding matrices are:

5 3 0 1
P, = , P, = . (3.21)
01 :
Their invariant densities are fr, = [0,2] and fr, = [2,0]. The Frobenius-Perron
operator of the random map T is given by [23]:
2 9 11 19 0 1 1 2
pr=]® 2 2|, |3 _1 3| (3.22)
2 2
0 3 0 1 0 3 3 3 33
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If the invariant density of T is f = [f1, f2], normalized by f1 + fo = 2 and satisfying

equation fPr = f, then fi =2 and f, = 3.

Example 3.1.2 Let T = {1, 72;p1,p2} be a random map with position dependent
probabilities. We give an example of a family of random maps which admits an
absolutely continuous invariant measure for a set of parameters of positive measure.
The family of the random maps consists of two families, the first family is the tent

map family and the second family is the logistic map family. Let x € (0,1]. Let

2K, 0<z<
(x) = ) (3.23)

26(1—1z), i<z<1

and
T2(z) = 4k (1l — z); (3.24)

with

m(z) = : (3.25)

4 — 8
pa(z) = ———l 1 I (3.26)
Let T,, = {7y, 72;p1(x), p2(z)}. Using the convention 8 = 0, we see that sup, -—l—lﬁz(gi =

1 p2
and sup, E

- 2 T
o (zgl = . Therefore, > ;_, sup, % =2 <1 for k€ (3,1]. Thus,

for k € (%,1], T admits an absolutely continuous invariant measure. It is worth

mentioning that 7, does not admit an acim for certain values in (3,1].
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3.2 Convex and Concave Random Maps

In this section we consider position dependent random maps which are not necessar-

ily expanding on average, i.e. Zk 1 Sup, |T’7E §| may be greater than 1. However, we

assume a convexity (or concavity) condition on the transformations 7. The main
result of this section proves the existence of absolutely continuous invariant mea-
sures for weakly convex and weakly concave random maps with position dependent

probabilities.

3.3 Absolutely Continuous Invariant Measures for

Weakly Convex Random Maps

Let ([0, 1],8, \) be a measure space, where A denotes Lebesgue measure on [0, 1]. Let

7 : [0,1] — [0,1], £ = 1,..., K be piecewise continuous, increasing transformations

on a common partition P of [0,1] : P ={[,...,L,}, I, = [ai—1,a:] and 7; = 7% |1,

i=1,...,q,k=1,...,K. Define F}; = 2—;"/,:—%’;—5:—;% We assume that
(D) 7k4(aim1) =0,1<i< g, forall 1<k < K.
(E) Ei=1 Fy.;, 1 <1<g, is decreasing, for all 1 <k < K.
(F) oo, g <<l
We call a random map T weakly convex if it satisfies the above conditions. Our

goal is to prove the existence of absolutely continuous invariant measures for weakly

convex random maps.
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Remark 3.3.1 In the previous section, we could consider maps defined on different
partitions and redefine them on a common one. Here we assume that the transforma-

tions are already defined on a common partition.
The following lemma is a slight modification of Lemma 2.2 of [12].

Lemma 3.3.1 Let T be a weakly conver random map and let f be a nonincreasing

positive function. Then Prf is also nonincreasing.

Proof. Let f be a nonincreasing positive function. Define 7, H(z) =24, Let z < y.
Since 73 is increasing and 7i(ai—1) = 0, if X5 (z)(z) = 0, then x;,,)(y) = 0. Thus,

we consider the case when they are both nonzero and we have

K

(Prf)(@) = (Prf)(y) = Y (Pupif)(@) = (Prpif)(®)

+ Foi(y) f (@ki) — Friy) f(yr,i)) (3:27)

+ ZZ(f(mk ) — [yki)) Fri(y)
> NN (Fes(@) = Feay) f(@ns)

since f is nonincreasing and Fj; > 0. Equation (3.27) implies that Prf is nonincreas-
ing, if -7 (Fri(x) — Fri(y))f(zk,;) > 0 for all k. Define the following g-dimensional
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vectors

and

b =(1,...,1,0,...,05 i =1,2,...,q.
7 times
Using this notation, we can rewrite > ¢, (Fri(z) — Fri(y))f(Tr:) as

Fy - fr.

Condition (E) implies

Moreover,
Jio= " (F (@) = £ ) + 1o, )by
j=1
Then

qg—1

—_ -

Fo- fio= S "(Flan,) = f(@iyy)) e - by + fl@n,) Fe - by 2 0

j=1

by (3.29) and the fact that f is positive and nonincreasing. =

(3.28)

(3.29)

(3.30)

(3.31)

Lemma 3.3.2 If f is positive and nonincreasing, then f(z) < 2X(f), for z € [0,1],

where

A = [ Fax
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Proof. For any 0 < =z < 1, we have

A(f) > / HOdrE) > o ().

Lemma 3.3.3 Let T be a weakly convex random map. If f : [0,1] — R is nonin-

creasing, then
1Prflloe < @l flloo + Bl f]1, (3.32)

where ﬂ — Zszl Zq pr(ai—1)

=2 g;_q-7,(ai 1)

Proof. By Lemma 3.3.1, since [ is nonincreasing, Prf is nonincreasing. It follows

that

|| Prfllee < (Prf)(0)

=1 'k k=1 i=2 Tk(Tk,z‘
<afO)+Y_ ) 7 :Eaii f(ain) (3.33)
<af(0)+ Y Y 2l )

< o|flleo + BlIf1]1-

Theorem 3.3.1 Let T be a weakly convex random map. Then T admits an absolutely

continuous imwvariant measure, p = f*\, and the density f* is nonincreasing.
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Proof. Let f = 1. f is nonincreasing. Then by Lemma 3.3.3, we apply inequality

(3.33) iteratively. We obtain

n n n— 1
IPE flloo < @"[[flloc +B(L+a+- +a 1||f|l1§1+ﬁ1—_a-
Thus, the sequence { P2}, is uniformly bounded and thus weakly compact in £'.

By the Yosida-Kakutani Theorem (Chapter 1), the sequence % 2?2—11 Pif converges

in £! to a Pr-invariant function f*. It is nonincreasing since it is the a.e. limit of a

subsequence of nonincreasing functions. m
Now, we present an example of a weakly convex random map 7" which satisfies

conditions (D), (E) and (F) and thus preserves an absolutely continuous invariant

measure.

Example 3.3.1 Let T be a random map which is given by {1, 7o; p1(x), p2(x)} where

m(z) = , (3.34)

(z) = : (3.35)

and

() = : (3.36)

pa(z) = | . (3.37)




Observe that,

1
Tk,l(O) = Tk72(§) = 0

fork=1,2;

1+22 1 1,1
Fio=(2)(=
12 =()(5)

F ., =
MO0 w3 (w+ 1)

are nonincreasing;

3 -2z 6 2
Py, = Fp=(3)1
are monincreasing;
1
P}(O) P?(O) -1 1.9 <1
n(0)  70) 2 3 6

Therefore, T satisfies conditions (D), (E) and (F) and thus, preserves an absolutely

continuous tnvariant measure.

3.4 Absolutely Continuous Invariant Measures for

Weakly Concave Random maps

Let ([0,1],%, \) be a measure space, where A denotes Lebesgue measure on [0, 1]. Let

7 : [0,1] — [0,1], kK = 1,..., K be piecewise continuous, increasing transformations

on a common partition P of [0,1] : P = {I1,...,,}, I; = [a;-1,a;] and T3 = 7% |1,,

P
t=1,...,q,k=1,..., K. Define Fj,; = % We assume that
(D*) 1i(a;) =1,1<i<gq,forall 1 <k < K.

(E*) Zi=1 Fyi, 1 <1<gq, is increasing, for all 1 < k < K.

(F¥) TF 2l < <1,

k=1 (D)
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We call a random map T weakly concave if it satisfies the above conditions. Our
goal is to prove the existence of absolutely continuous invariant measures for weakly
concave random maps. In this section we only state the results since the proofs are

analogous to those in the weakly convex case.

Lemma 3.4.1 Let T be a weakly concave random map and let f be an increasing

positive function. Then Prf is also increasing.

Lemma 3.4.2 If f is positive and increasing, then f(z) < £=A(f), for z € [0,1],

where

A = [ fan

Lemma 3.4.3 Let T be a weakly concave random map. If f : [0,1] — R* is increas-

ing, then

1Prfllee < @flflloo + BlIf]]1, (3.38)

where /6 — Zi{zl Zq_l _ pe(ai)

i=1 (l—ai)-r;c(ai) ’

Theorem 3.4.1 Let T be a weakly concave random map. Then T admits an ab-

solutely continuous invariant measure, p = f*A, and the density f* is increasing.

Remark 3.4.1 The existence of an absolutely continuous invariant measure for piece-
wise concave maps of [0, 1] was studied in [16]. Condition (E*) is a weaker concavity
assumption. Thus, the generalization of the result of [16] is a corollary of Theorem
9.4.1.
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Now, we present an example of a weakly concave random map 7" which satisfies

conditions (D*), (E*) and (F*) and thus, preserves an absolutely continuous invariant

measure.

Example 3.4.1 Let T be a random map which is given by {11, 72; p1(z), p2(z) }

—z?+2x+3%, 0<z<3

(z) =
2z — 1,
2z,
() =
2z — 1,
and
.
3
20
47
p1(z) = ¢
1 1
3 2
4
1
=0
)
pa(z) =
2 1
[ 30 2
Observe that,
Tie2(1) = Tha(

for k=1,2;

are increasing;

o
AN
8
VAN

=
AN
8
IA
[

(A

8

A
[

A
8
IA
—

IA
8
IA
[T

(3.39)

(3.40)

(3.41)

(3.42)



are increasing;

e
—~~
[a—
—
o
~—~
—
~—

Therefore, T satisfies conditions (D*), (E*) and (F*) and thus, preserves an ab-

solutely continuous invariant measure.
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Chapter 4

Other Existence Results

4.1 Absolutely Continuous Invariant Measures in

Higher Dimensions

In this section we prove the existence of absolutely continuous invariant measures
for position dependent random maps in higher dimensions [1]. Let S be a bounded
region in R™ and let A\, be Lebesgue measure on S. Let 7, : S — S, k=1,... K
be piecewise, one-to-one, and C? non-singular transformations on a partition P of .S,

where P = {S1,...,5,} and 73, = 7%

s,i=1,...,¢, k=1,...,K and each 5, is a
bounded closed domain having a piecewise C? boundary of finite (n — 1)-dimensional
measure. We will also assume that the probabilities pi(z) are piecewise C* functions
on the partition P. Set sup, || D || := ox, where D7 1 is the derivative matrix of

7} and sup, pi(z) := m;. We assume:

3y
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Condition (C): Zszl opmr <o < 1.

Under this condition, our goal is to prove the existence of an acim for the random
map T = {m,...,Tk;P1,---,Px}. The main tool of this section is multidimensional

variation defined using derivatives in the distributional sense [20]:

V() = [ DAl = s | fdivigdh.:o=(on,....0 € YRR}
where f € £1(R™) has bounded support, Df denotes the gradient of f in the distri-
butional sense, and C3(R™ R") is the space of continuously differentiable functions
from R" into R™ having a compact support. We will use the following property of
variation which is derived from [20], Remark 2.14: If f = 0 outside a closed domain

A whose boundary is Lipschitz continuous, fi4 is continuous, fjiny(4) is C', then

V(= [ IDfld+ [ (fldde,
int(A) 24
where \,_1 is the (n — 1)-dimensional measure on the boundary of A. In this section

we shall consider the Banach space ([20], Remark 1.12),
BV(S) ={f € £(5) : V(f) < +oo},
with the norm || f||gy = V(f) + || fll:. We adapt the following two lemmas from [24].

The proofs of the following two lemmas are exactly the same as in [24].

Lemma 4.1.1 Consider S; € P. Let z be a point in 8S; and y = 1(x) a point in

O(1e(S:)). Let Jy, be the Jacobian of Ts, at « and J; be the Jacobian of Tyas, at .
Then

P

k< gy

7, =
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Let Z denote the set of singular points of 3S. Let us construct at any z € Z the
largest cone having a vertex at z and which lies completely in S. Let 6(z) denote the

angle subtended at the vertex of this cone. Then define

B(S) = min f(z).

TE€EZ
Since the faces of S meet at angles away from 0, 3(S) > 0. Let a(S) = n/2 + 8(S)
and
a(S) = |cosa(S)|.

Now we will construct a C* field of segments L,, y € 05, every L, being a central
ray of a regular cone contained in S, with angle subtended at the vertex y greater
than or equal to 8(S).

We start at points y € Z, where the minimal angle 5(S) is attained, defining L, to
be central rays of the largest regular cones contained in S. Then we extend this field
of segments to the C! field we want, making L, short enough to avoid overlapping.

Let 6(y) be the length of L,, y € 0S. By the compactness of 0S we have

6(S) = inf 6(y) > 0.

Now, we shorten L, of our field, making them of length §(S).

Lemma 4.1.2 If S is some closed domain with piecewise C* boundary of finite (n —
1)-dimensional measure, whose smooth surfaces meet at angles bounded away from

zero, and f is a C function on S, then

[ 100 < =i (507 [+ vigine(s))
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We prove the following :

Theorem 4.1.1 If T is a random map which satisfies condition (C), then

V(Prf) < o(L+1/a)V(f) + (M + Il

where a = min{a(S;) : i = 1,...q} > 0, 6 = min{6S;,: ¢ = 1,...q} > 0, M =
Yoy My and My, = sup,(Dpi(z) — 5pi(z)).

Proof. We have V(Prf) < S5 V(P prf). We first estimate V(P ppf). Let

Gr; = S 1=1 Then
kg — Jk(Tk—,il)’ =L...,q. )

q
IDPapufllihn < 3 / 1D(Gripexa)l|dN
]Rn , m

< Z < || D(Gripr) XR:||dAn + / |Gk (Dxr,)||dn )

(4.1)
Now, for the first integral we have,
[ ID(GLp / 1D(Grpi)llds
Pr(ii)
IID( f7, )) Id/\ + Ilf T _) [[dAs
b (4.2)
/an oD o, +/ [EI
< oume [ 1DFldh + M, / 1f1ldn
Si Si
For the second integral, we have
Pi(T z)
GrapeDxrlldre = [ I b
K ons ki (4.3)

JO
:/ If'pk_d)m 1-
aS;
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By Lemma 4.1.1, < 0. Using Lemma 4.1.2, we obtain,

I

X |Gk, ipk(Dxr;)

(4.4)
< Ry (f,8) + = / |£ldAn.
Using (4.2) and (4.4) and summing over i, we get
V(Prpif) < oL+ 1/@)V (1) + (M + =21 |
Summing over k, we get
[0}
V(Prf) < o(1+1/a)V(f) + (M + —)lIf]]x.
[

Theorem 4.1.2 Let T be a random map which satisfies condition (C). If o(14-1/a) <
1, then T preserves a measure which is absolutely continuous with respect to Lebesgue

measure.

Proof. The proof of the theorem follows by the standard technique [14]. m The
operator Pr is quasi-compact on BV (S) and has a number of useful properties [14].
Now, We present an example of a random map which satisfies condition (C) of The-
orem 4.1.1. It preserves an absolutely continuous invariant measure by satisfying the

condition of Theorem 4.1.2.

Example 4.1.1 Let T be a random map which is given by {1, 7a; p1(x), p2(x) } where
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11,72 : 1% — I? defined by:

T1($1,332) =

9

;

7'2(501,332) =

(Il,ib‘g) 651 {0<.Z‘1,£E2 < 3}

{3<$1<§,0§$2S%}
{2<21<1,0<z,< 3
{O<SE1<

2
3,3<m2<§}

(z1,22) € S5 = {3 < 21,22 < 3}

(3z1,2x),
(3zy — 1,2zy), (x1,m3) € S =
(3z1 — 2,2z5), (z1,20) € S5 =
(3z1,3z2 — 1), (z1,%2) € Sy =
(321 — 1,3z — 1),

(Bzy —2,3z5— 1), (z1,22) € Ss
(31,329 — 2), (x1,22) € S7 =
(3zy — 1,323 — 2), (z1,22) € Sg=
\ (3z; — 2,320 —2), (z1,22) € S =

(
(321, 32),
(2 — 31, 3z2),
(3z1 — 2,3x2),
(3x1,3z9 — 1),

={{<z <Li<a<

\

(2 — 3z1,3z2 — 1),

(3zy — 2,3z5 — 1),

(33?1, 3zg — 2)’

(2 — 3z1,329 — 2),

(31 — 2,329 — 2),
\
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<z <2<z, <1}

<o <2<z <1}

(z1,22) € 5y
(z1,22) € Sy
(z1,29) € S5
(x1,29) € Sy
(z1,22) € S5 >
(z1,22) € Sg
(z1,22) € St
(@1,22) € Sy

(z1,22) € So



and

( 0.215, (z1,z2) € 51 ( 0.785, (z1,z2) € 51
0.216, (21,22) € S» 0.784, (21,22) € Sz
0.216, (x1,z2) € S3 0.784, (x1,22) € S3
0.216, (z1,z2) € Sy 0.784, (z1,xz2) € S4

pi(z) =19 0215, (z1,23) €85 » P2A€) =19 0.785, (z1,22) € Ss

0.216, (z1,z2) € S 0.784, (z1,z2) € Se
0.216, (x1,z9) € Sy 0.784, (z1,z2) € Sy
0.216, (z1,z2) € Ss 0.784, (z1,x2) € Ss
\ 0.215, (x1,22) € Sy i 0.785, (x1,z2) € Sy

The derivative matriz of (11;)7", 1s

1 1
3 0 3 0
or :
0 3 0 3
and the derivative matriz of (12;)7t, 1s
1 1
Ly ~1 0
or
0 3 0 3

Therefore, the Buclidean matriz norm, ||D(r1,)7Y|| is %2:, or % and the Euclidean

matriz norm, ||D(re;)7| is lé—z Then

1 2
o171 + oy = 0.216—‘%_§ + 0.785-§.

For this partition P, we have a = 1, which implies

13 2
o(1 +1/a) = 2(0.216—*@— + 0.785%) ~ 0.9998 < 1.
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Therefore, by Theorem 4.1.2, the random map T admits an absolutely continuous
invariant measure. Notice that 71, Ty are piecewise linear Markov maps defined on the
same Markov partition P = {S1,S,,...,Ss}. For such maps the Frobenius-Perron
operator reduces to a matriz and the invariant density s constant on the elements of
the partition. The Frobenius-Perron operator of the random map T s represented by

the following matrix
M =111 M + o My,

where M, My are the matrices of Pr, and Py, respectively, and I1;, 11, are the diagonal
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matrices of p1(x) and pa(x) respectively. Then, M is given by

1 1 1 1 1 1
5 36 5 66 000
1 1 1 1 1 1
5 5856 8678 000
1 1 1 1 1 1
5 55 85 8696 000
101111 11 1 1
9 9 9 9 9 9 9 9 9
M=pIdgx| 1 1 1 1 1 1 1 11
9 9 9 9 9 9 9 9 9
10111111 11
9 9 9 9 9 9 9 9 9
10101 1 11 1 1 1
9 9 9 9 9 9 9 9 9
1011 1 1 1 1 1 1
g 9 9 9 9 9 9 9 9
1010111 1 1 1 1
9 9 9 9 9 9 9 9 9
bbb b)) [ecaaaann
Phbb bbb feeecccdad
bEd bbb |eccecccaa
bbb bbb |ecececce
+p21d9><%%%%%%%%—é=eeeeeeeeea
PhE bbb |eeeec e
PR bbb feecccece
SRR EEE R
bib bbb bbd) \eeceecee

where p; = (0.215,0.216,0.216,0.216,0.215,0.216,0.216,0.216, 0.215),

po = (0.785,0.784,0.784,0.784,0.785,0.784,0.784,0.784,0.785), Idy is 9 x 9 identity
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matriz and

a = 0.12306
b = 0.087222
c = 0.12311
d = 0.087111
e=0.11111.

The invariant density of T' is

f=(f17f2>f31f47f57f6af7af87f9)7 fi:f|S¢> i=1727"')97

normalized by

ht+h+ft+fut+tfs+fot+fitfetfo=9,

and satisfying equation fM = f. Then, fi=fo=fa=fa=fs = fe = Wgﬂﬁ and

fo="fs=fo="22087.

4.2 Position Dependent Random Maps On The

Real Line

In [27], Géra and Jabloniski proved a general result on the existence of absolutely
continuous invariant measures for piecewise nonsingular transformations on the real
line. In this section, we deal with piecewise monotonic nonsingular transformations
T, To,..., Tk, Where 7 is a transformation from A to itself, A is an interval of R
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not necessarily bounded, with countably many branches, A C R not necessarily
bounded, and position dependent probabilities pi(x), k = 1,..., K, satisfy pr(z) > 0,
S pe(z) = 1. Sufficient conditions for the existence of absolutely continuous
invariant measures for position dependent random maps on the real line is the main

result of this section [3].

Notation and Conditions: Let m denote the Lebesgue measure on R. Let us recall

the definition of BV (A), which will be used below:
BV(A) = {f € £Y(A) : 3g € £(A),g = f a.e,Vog < oo}.

Let T = {m,...,7x;p1(z),...,px(x)}. For k=1,..., K we assume:

(1) 7 : UR,IF — A, where IF, i = 1,..., are open intervals, ¥ C A and A is an
interval not necessarily bounded,

(In) I NI} =0 for i # j,

(III) sup;», m(If) = L < oo, and m(A \ UR,IF) =0,

(IV) 74 = 7e|r, isof class Ct, i =1,2,....

(V) sup,ea % < A

(VI) There exists constants My, 8,7, 7%, ¥% such that

K
S+ F+AB ) <a<l,
k=1

and

(a) for any i € Jf, where Jf = {i € N: Vj (%) < Mym(IF)}, and for any points
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z,z' € IF with |z — 2’| < &, we have
Pr k
Ve < 7115
T
(b) 2 Siess Vir () <%, where Jf = N\ JE,
(©) 2 (14 (@) px () + 194 (7 (0i)) |pr (Bi)) < 75, where
J¥ = {i € N : |9}, (i(a)) Ipw(as) > Mim(IF) or |4 ,(7(b:) Ipa(bi) > Mym(IF)},

Vi = 'r,;il and I¥ = (a;, b;),

(VII) There exists WF, W¥ C N, WENW§ = 0 and W U W5 = N, such that the

functions supcys Iwk,z(wizz,;{(jk,z(z)) and Zleer |¢;€l(:c)|pk (k1 (z)) are integrable.

Remark 4.2.1 The above assumptions allow the transformation T to have critical
points; i.e., Ti(c) = 0. This does not violate (V) since we can compensate by taking
pr(c) = 0. Similarly, we do not assume that 1y ;(a;) = 0 of Tx(a;) = Loo. This does

not violate (VI) since we can compensate by taking px(as) = 0.

Absolutely Continuous Invariant Measures on R:

Lemma 4.2.1 Let T be a random map satisfying conditions (I)-(VII). Then there

exist constants 0 < o < 1 and C > 0 such that
VaPrf < aVpf + ClIf|-
Proof. Let f € BV(A). We have

K
VaPrf < Z VAP pef. (4.5)

k=1
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First, we estimate Vy P, pi f for k € {1,..., K} which is given by:
VaPrpif = Va Zf Ve (€))Pr (Yr,i (%)) [9,6 (2) X (2 (%)

Z 1) (F © Yis(@))Pi (0 ()| (W 1(2)|
(4.6)

Z | F(@i)|pr (@) |9 s (Te(as)) + | F(0:) i (0) 19 4 (2 (B3)))

=1

= Sl + SQa
where IF = (a;,b;). Since V,(xy (px(¥r:)|(¥30)]) = V() < oo, we can assume

that either 13 ;(7x(a;)) = 0 or pi(tp(a;)) = 0 (either ¢y ,(7%(b:)) = 0 or px(¥(bi)) = 0)

if 7x(a;) = oo (74(b;) = £o0). For every h : [a,b] — R with Vj;yh < oo there is

1 b
(e, b])/a [hldm.

For such ¢, |h(a)| < |h(c)| + Viaqh and |h(b)| < |h(c)| + Vicyh. Therefore, for each

¢ € [a, b] such that

i > 1 and appropriate ¢; € [a;, b;] we have

|f (@) |pe (@) [9ks (@) + | (00) 1pi (0:) [ (7 (8:))]

< (If ()l + Via, c]f)pk(az)ltbm(fk( ))|+ (1f (el + Vieopa ) Pr(b6) [0 5 (x(84))|
< Pila Wk: (%) |/ | fldm + 2 W'” Tk |/ | Fldm + AV i) f-

a

(4.7)

Now, we estimate the second summand Sy of (4.6). Let J¥ = N\ J¥. By (4.7) and
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(VI)(c) we have

ﬁMg

(If(az)lpk(a@)llﬁk (7(0:)) + | £ (03) 1w (03) [ (7 (8:))

pk a; |¢kz Tk | sz |
(D o 2 )

+ > <st | £1 (o (@), i (e ()] +pk(bi)1¢§c,i(Tk(bi))|)>

icJk
k
A ) Y3

= v+ af) s + (20t 28 )) £l

IA

=,
-

< 2Mi||flls + AVaf + (“ (K)

(4.8)

In (4.8), we have used the inequality sup, | f| < ML‘C + Vi f, with M_LLI) =0if m(A) =

oo, which holds for functions in BV (A). Now, we estimate the first summand S; in

74



(4.6). Let & be as in (VI) and y, = 7 4(@,), where z, € If. If m(If) < 6k, we have

VTk([k)(fOwkz)pk('(/)kZ)lw;czl
="sup ZI fo Q/sz yr)pk(%z(yr))l(%,i(yr))l

Tk(I )

= (f © s) (Yr—1) % (Vs (Yr— 1)) (W i (1))
< Sp Z (f © Un) (wr)Pe(n () | (s ()|

Tk(I ) r=1

— (f © ¥) Wr—1)2w (Wi () | (P15 () | (4.9)

q

+75UD 3 |(f 0 i) (e 1)Pe (Wi (9 )| (V3 (90))|

Tk:(IZC) r=1

— (f 0 Yue) Wr—1) Dk (Drs (Yr 1)) (W (Yr 1))

<)\kVka—|—supZ|f Ty_1 |'| o) pelor)

(@)l I7i(zr)]

z r=1

CUT) Di\Tp— 1)
/

<AV f + (sup ifl ()] |Tk2x7" Ol

where Sup,, (;x and Sup;» indicate the suprema over all finite partitions of 7 (I¥) and
I* respectively. To estimate the second summand on the right hand side of (4.9), we
consider the cases of i € J* and i € J§ separately. For i € JF we estimate (4.9) as

follows:

Pk
< k - kT k k:
s(AkH{“)VI;eHMk/ | f-
1

(4.10)
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For 1 € J§ we estimate (4.9) as follows:

Vet (F © )Pl < MV S +sup |71V (411)
k
This finishes the estimate on S; when m(IF) < 8. If m(IF) > &, then there is a

partition a; = ¢y < ¢; < -+ < ¢,; = b; such that

0
516 < |Cj - Cj_1| < b, for j=1,...,n; (412)

We have

Ve (F © Y )pr (P) [t il = Z Viwtes—ven) (F © W) Pk (W) |9 . (4.13)

Using the same estimate of (4.9), we get

Pk
Vietejorne) (f © Vi i) k(W) [¥k o] < MeVigj_y,e50f + ( sup ]If!)‘/[Cj-l,CjJ'—T/‘l = R;;.
Cj—1,Cj k

(4.14)
We consider the cases i € J¥ and 5 € J¥ separately. If i € JF, then using the estimates

of (4.11) and the inequality of (4.12) we get

1 % D Dk
Ri' <A Cjm1,C4 7 RE VC‘_.. Gl T 77 Vc-_ c; Vc-_ cilT 71
] — k‘/[ J—1s J]f+ (m([cj—lacj] /Cj—-1 |f|> [.7 1, J]|Tllc| + [J 1, ]]f [] 1, ]]ITIIC‘

2V e &
S )\k‘/[cj_l,cj]f + —_ |f| + ,Yl Wcj—lvcj]f

bk Jo;_,
< (M + M)Vigorenf + Mi’“L / £l
(4.15)
Summing over all j's we get
V(£ o Uedpulno)lid < Out 9bVoanf + 2= [ Ul (19
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If ¢ € J¥, then we have

R'L] S )\k‘/[cj‘_l,c]‘]f + Sup ‘/[Cj_l,Cj]-p—If‘
A |75l

Summing over all j's we get

Pr

Vo) (f © Uroi) P (i) [Wks) < AV f + sup Vi ]
k

(4.17)

(4.18)

Using the estimates of equations (4.18),(4.15), (4.10), (4.11) and using assumption

(VI)(b) we obtain the following estimate on Si:

M, L
51 (Ve o) Vs + ok oupf] + mas (—5—M) 11l

k
< Outk +o8) Var + (s e (25, 1)) 7

Now, using (4.19) and (4.8) we obtain

VaPrpef < (20 + 78 + 95 +98) Vaf

k k
73 Y2 2MyL
i (sz+ R R (———5k M)) 111

Thus, using (4.20) and (4.5) we have

K
VAPrf <> (20 +9% +95 +5) Vaf
k=1
+§K: oM+ Bt 2 e (225 V) s
LN\ n(a) T m(A) \ e Tk !

< aVaf + Cllfll,
where

Yo+ R B ) Sa<l,

K
k=1
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and

K
C= Z (2Mk+ s + ’YZA + max (?—]\gk—L,Mk>> > 0.
k=1

Lemma 4.2.2 If T satisfies (I)-(VII) and B C £(A) is such that
Vaf +1Iflh <D
for some D and any f € B, then PrB 1s weakly compact.

Proof. Recall that PrB = Zk P, pxB. Therefore, it suffices to prove that the

lemma is true for P, pyB for all k. For f € B we choose points 2; € [, * such that

> miilfta) < / |f(z)de.
We have

—Zlf Vi1 () |0 (Yr1 () |94 1 ()]

B Pk(¢k,l($))|l¢kz( )] k .
_ pk(wk,l(m))!lwk,z(mﬂm " .
+ O 1 (Wi (@)) px (ra () [ 4 ()]
lewk
Pre(¥r,(2) |95, ()] k
< S lzwj m(I)|f (s ()

+sup|f| Z Pr(Wr (@) ||ty 1 ().

lew}
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By (IIT), we get
> mIRf@ra(@))] < Y mUIf @) = F2)] + £ (20))]
lewk lewf
< LVAf +Iflh £ (L +1)D,

and

171k
m(A)

+VAf§D<—-1—+1>.

siplfi < ")

Hence, (VII) implies uniform integrability of the set P, Bfork=1,...,K. =

Theorem 4.2.1 Let T be a random map satisfying conditions (I)-(VII). Then T

admits an absolutely continuous invariant measure on A.
Proof. Let f € BV(A). Then, by Lemma 4.2.1 we have
VaPRf <o Vaf+ (@ '+ +a+1)||flh (4.22)

Thus, for every n,

o
VAPRf < &™Vaf + 17— IIf I,

and ||P2f|l. < ||Ifll:- Therefore, by Lemma 4.2.2, the set Pr{Pf}:2, = {PFf}?°
is weakly compact in £'(A). By the Yosida-Kakutani Theorem (see Chapter 1), the

n—1

1 i o oal - : - *
sequence = » " Pp.f converges in £ to a Pr-invariant function f*. m

Now, we present an example of a random map which satisfies conditions (I)-(VII)

and thus admits an absolutely continuous invariant measure.

Example 4.2.1 Let T = {m,72;p1(x),p2(x)} be position dependent random map
where T(z) = 10tan(z), n(z) = sin(z), pi(z) = w@l and ps(z) = lc—olsé@—l.
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Obuviously, conditions (I)-(V) are satisfied. First, we check condition (VII). For 1

and 75 we consider W1 = N. For k=1, we have

/+Oo sup LI AGYIC) < /+oo(tan”1(w))'dw = g

—0o0 l€W11 m(Ill) h 4_7l" —o00

For k =2, we have

/1 o [Pu@pa(ra(@) 1 / . 1

= Cdp = ——
11lew? m(I?) — /110 Y= Ton
It remains to prove that T satisfies condition (VI). Observe that J¥ = J¥ = 0 for

k =1,2. Therefore, we only prove that

2
> Ru+) <a<l,
k=1

For k = 2, we have v = 0 and Ay = 5. For k = 1, we have \; < 35 and cal-

culate, with out loss of generality, vi on [—%,%]. Observe that (10_|1cgs(x)'> Cosfo(z) 18

monotonic on [—%,0] and [0,5]. Then

o I(lO— |cos(—g)\) cos?(—%) B <10 - |cos(0)|> 0082(0)}

10 10 10 10
N 10 — [ cos(0)] ) cos*(0) (10 —|cos(§)|\ cos®(§)
10 10 10 10
18
~100°
Therefore,
2
. 11 18
< 2(—= + - — = 0. .
> (2x+1) _2(10+ 1O)+ o5 =088 <1

k=1

Thus, T satisfies conditions (I)-(VII) and, by Theorem 4.2.1, admits an absolutely

continuous nvariant measure.
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4.3 Random Maps of an Interval With Holes

The theory of expanding maps with "holes” has been studied recently in [9] and [33].
The word ”holes” means that some open subintervals are removed from the domain.
In the case of expanding maps with holes, almost every point of the domain eventually
escapes through the holes. Thus, such transformations have no absolutely continuous
invariant measure. In this case, conditionally invariant measures which are absolutely
continuous with respect to Lebesgue measures are constructed. Expanding maps with
holes are believed to have interesting applications in chaos and statistical mechanics
[9]. This motivates us to consider the problem in a more general setting.

In the following sections, we study random maps with holes and we allow the
probabilities to be functions of position. We prove the existence of absolutely con-
tinuous conditionally invariant measures for position dependent random maps on the

unit interval with holes [4].

4.4 Notation and the Frobenius-Perron Operator

In this section, we formulate the definition of position dependent random maps with

holes and introduce the "normalized” Frobenius-Perron operator. Let

T: {%17,7A—Kap1($),apK(x)}

be a position dependent random map, where 7 : R = R, k =1,..., K, are piecewise
one-to-one, nonsingular differentiable transformations and px(z) > 0, k =1,..., K,
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are position dependent probabilities, Zszl pr(z) = 1; ie, T(m) 7(z) with prob-
ability pi(z). Let H be a finite union of disjoint open intervals, H = UJIle H
H c [0,1), I = [0,1]\ H and #(I) C [0,1]. Let Px be a partition of [0,1],
={IF,...,I*} and 71; = % i =1,...,q6 k=1,...,K. Define 7. : I — [0,1]
to be the restriction of 7, to I, k = 1,..., K. We define the position dependent
random map with holes by T' = {1, ..., 7x;p1(z), ..., px(x)}. Let I¥ = I* N T and

Thi =Tk |#, % = 1,...,qs. We denote by L the number of holes and by h = A(H) the

Lebesgue measure of H.

Recall that the Frobenius-Perron operator of a position dependent random map

is given by:
K
(Prf)(@) = Pr, (pxf) (
k=1

where P, is the Frobenius-Perron operator corresponding to the transformation 7.
In the case of random maps with holes, the Frobenius-Perron operator decreases the

norm of measures; i.e., for f > 0, we have

|1Prflla =/Pde$=i/(Pkakf) (z)dz
—Z/T_l dx<z/pk z)da = ||f]|1

Therefore, we consider the normalized Frobenius-Perron operator

Prf
|[Prfll,’

which is defined only when ||Prf||; # 0. A probability measure p on [0,1], u = f*A,

Prf =

is said to be an absolutely continuous conditionally invariant measure if there exists
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p > 0 such that Prf* = pf*. Let Ay = {f € £Y(I) : f > 0,||fl1 = 1,Vif < b}.

Observe that A, is compact convex subset of £}([).

4.5 Absolutely Continuous Conditionally
Invariant Measures. Result Independent of

the Number of Holes

In this section we assume:
(i) No hole covers the interior of the domain of 73, ; for 1 <¢ < ¢;1 < k< K.

(i) & € BV(I), k=1,... K.

|7

(iid) (2 K sup, 2@ 4 7K Vlf';—';') <a<l
k

|7 ()]

Lemma 4.5.1 Let T be a random map satisfying conditions (i)-(iii). Then there

exist constants 0 < a < 1 and B > 0 such that

ViPrf < aVif + 8| fll,
for f € BV(I).
Proof. Let f € BV(I). Define ¢,; = 7;;. We have

K
ViPrf <> ViPpif. (4.23)

k=1
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First, we estimate ViP, prf, k € {1,..., K}, as follows:
ViPpif < Z o) [(F 0 s (2))Pr (91,6 (2)) | (W3 (2)) ]
+ z; Z (1 £ (@i Ipr(as ) ks (@) + [F O Ipr(big) i a(r (o)) (424)
=1 J
=51+ 59,
where IF = [a;, b] = Uj[ai, big]. Define [ai;,bi5] = I, and & = min A(ZE)). Let us

estimate Sy of (4.24). We have

S, < s jzz F (@)l + 17 0:))- (4.25)

Now, observe that

|flaig)| + 1 f(ig)| < 2|f(vig)| 4 [ f(vig) — flaii)| + | f(vig) — f(bij)l,

where v; ; € [a; ;, b; ;] such that |f(v; ;)| < @ flﬁj | fldz. Therefore,

Z‘faij|+|f zy|<z / |dx+Vka

(4.26)
<5 [ \i@lda+ Vs
5k
Summing over ¢ in (4.26) and using (4.25) we get
Pr(z) (2 )
So <sup —— | — +Vif). 4.27
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Now, we estimate S; of (4.24). Let y, = 74 :(%,), where z, € IF. We have

T(Ik) [(f ?sz)Pk(d’kz)Wm”

=50 ) |(f 0 %ri) (Ur)Pr (Wi (5:) | (Vi (9)|

T(Izk) r=1

- (f ° ¢k,i)(yr—l)pk(wk,i(yr—l))’(1/)12,i(yr—1))||

<UD Y |(f 0 Uha) Wr)pe(¥ri (ye) | (h s ()]

T(Iik) r=1
— (£ © Pr,0) (Yr—1)Pe (P, ()| (Wl s (wr)|
+ % Z (£ © Pr,) (Yr—1)Pr (P (Y)) | (Y, ()| (4.28)

= (f © %) (Yr—1)Pe (Vi W21 ))| (¥ 5 (9r-1)) |

Pe(2) - pk(xr) _ pe(zr—1)
< “ipz"f z-)l|; g(xm (@ 1)]
su pi(T) . su ) _ pr(Tr-1)

< sup ooy Vi + i lFDsTD r>| 7l (@]

(z)
su —Z?’@‘(—ml k su k
< $p|7é(x)|V1 f+( plfI)V}lk|
su M k X k k
<sup BV f 4 ( /lf )ldz + Vy >VI| i

where TP, (;+) and 5pp indicate the suprema over all finite partitions of 7(IF) and

I¥ respectively. Summing over 7 in (4.28), we get

pi(z) Dk Pr
i< (B (i o) b 6o

7]
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Therefore,

sk < (smup P i i

o\ 2 (4.30)
Dk De\Z) \ =
*(Wﬂ*fﬂmm>wm“

It follows that

VIPTfs< ’7;’; +ZVI| 1)
k‘

.
2
i (lu “mgﬁwm

Let 6 = min{6; }/< ;. Thus V;iPrf < aVif + B||f]: with 3= 2.

(4.31)

Lemma 4.5.2 Let T be a random map satisfying conditions (i)-(iit). There exists a
bmin > 0 such that for every bypax > b there is an hg > 0, hy depends on buax, bmin,
such that whenever h < hg, then the normalized Frobenius-Perron operator Prf is

well defined on Ay for b € (byin, bmax) and Prf € Ay for f € A,

Proof. By Lemma 4.5.1, we have

ViPrf < aVif + BlIflh,

with 8 = 259. Put by, = % Let bpax > bmin be given and observe that || f||e <

bmax + 2.

liPTle—/Pdew-Z/ Popif) (@ dm—z/ d

1<1)

- Z /pk z)dz — Z f(z)dz (4.32)

\Tk ! (I
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Observe that I\ 772 (1) = 7. *(H). Let ¢ = max{q,...,qx} and 31, sup,

Pk(z) < y.

7@ =

Notice that condition (iii) implies 0 < v < a < 1. Using this and (4.32), we obtain

WWMA—ZXM; (@)dA(z)

k=1 i=1 (H)

1
_I‘ZZ/MT;@ )W

P(7) &
=1- vam@%ﬁ @)
)

m~zmﬁ&wm@wm

k=1 ©

Zl_thQ(bmax+2)

Let

((bmax + 2)’7 * q)_l .

We have

11—« 1—a
HPTf||1>1——2—=oz+———2———>O.

Thus, Prf is well defined on Ay, b < byay, and

ViPrf <||PrfllT" (@Vif + B)

1- 1-—-
a)“l(ab+ o

< (a+ b) = b.

Thus, ?T(AQ CAy. m

Theorem 4.5.1 Let T satisfy conditions (i)-(i1i) and

(1- )%

b < 11
8a+46(1—a) v q

Then T admits an absolutely continuous conditionally invariant measure.
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Proof. By Lemma 4.5.2, the Schauder-Tykhonov Theorem (Chapter 1) implies that

Pr has a fixed point f*, f* € A,. Thus, Prf* = pf* with p = ||Prf*|[;. =

4.6 Absolutely Continuous Conditionally
Invariant Measure. Result Depending on the

Number of Holes but Allowing Larger Holes

In this section we assume:
(I*) Ay > hfor k=1,..., K, where A, = min; A(I¥).

(I1*) & € BV(I), k=1,...,K.

|7l

(%) ((L+2) S sup, 28+ S0 Vi) <n < L.

|7 (=

Lemma 4.6.1 Let T be a random map satisfying conditions (I*)-(1IT*). Then there

exist constants 0 < n <1 and C > 0 such that
ViPrf <nVif + Clfll,

for f € BV(I).

Proof. Let f € BV(I). Define ; = 7, ;. We have

K
ViPrf <> ViP.,pif. (4.34)
k=1
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First, we estimate V7P, prf, k € {1,..., K}, which is given by:

Vi Tkpkf<z o) [ 0 Yra(@))pr ($r,0(2)) | (Wi ()]

+ Z > (1£(@ig) (@i ) Wi (7(@s )]+ 1F (i) Pe(bi) [ (7 (Bi1)1)

=1 j
=5 + 5y,

where If = [a;,b;] = |J;[as;,bi5]- Let us estimate Sp of (4.35). We have

Sy < sup zlzz |f(@i)] +1f(bij)]) -

i=1 3
Now, observe that

2
AIF\ H)

2
< £k
S E o, M Vi

F @)+ 1£(bi)] < / @+ Vi

(4.35)

(4.36)

(4.37)

where we used fact that A(I* \ H) > Aj, — h. Summing over i in (4.37) and using

(4.36) we get

pr(z) 2
<(L+1 .
Sy < (L+ )sgp o (Ak_hllfllwv}f)
The estimate on S; of (4.36) is similar to that in Lemma 4.5.1.

sv< (s By vty i+ (v s M

Therefore,

Pr(T)
@) TV |>fo

|
+ (Vi sup 2 ) i

|77 (x

+Vr

S1+8; < ((L+ 2)sup
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It follows that

K
VIPTfs<(L+z)Z m(;” +Zvlp’“>vff

—~ 7]

K2 G
+,§;Ak—h(v’|k| (L+ ysup 2L s

Let A = min{Ag} . Thus ViPrf <nVif + C||f]ly with C = 2. =

Lemma 4.6.2 Let T be a random map satisfying conditions (I*)-(111*). There exists
@ byin > 0 such that for every byax > buin there is an hy > 0, hy depends on by,
bmin, such that whenever h < hy, then the normalized Frobenius-Perron operator Py f

is well defined on Ay for b € (buin, bmax) and Prf € Ay for f € Ay,

Proof. Let 0 < hy < %. Then by Lemma 4.6.1
ViPrf <nVif+C||f|h,

with C = 4—A’l. Put by, = 120n Let byax > bmin be given and observe that |||l <
bmax + 2. Using (4.32), we obtain
K
|Prflli=1- Z/ (z)dz. (4.41)
\T,zl(f
Observe that I\ 7, *(I) = 7, (H). Let ¢ = max{qy, ..., qx} and 35, sup, % <.
Notice that condition (III) implies 0 < v < 1 < 1. Using this and (4.41), we obtain

||PTf||1—1~22/_1 2)dA ()

k=1 i=1

Zl—th(bmax"‘z)
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Let

R A
hy = min{— ((busx +2)7-0) . 5
We have
1-— 1-—
||PTf1|1>1———2—"=n+—2-’1>o.

Thus, Prf is well defined on Ap, b < byay, and
ViPef <||Prfllc" (0Vif +B) <b.
Thus, Pr(Ay) C Ap. =

Theorem 4.6.1 Let T satisfy conditions (I*)-(1II*) and

1-m°A 11
16n+4A(1—-1n) v ¢

h <

Then T admits an absolutely continuous conditionally invariant measure.

Proof. By Lemma 4.6.2, the Schauder-Tykhonov Theorem implies that Pr has a

fixed point f*, f* € Ay. Thus, Prf* = pf* with p = ||Prf*||;. m

4.7 Absolutely Continuous Invariant Measures and

Conditionally Invariant Measures

In this section we give an example showing that the conditional invariant measure is
not necessarily a restriction of an invariant measure to a smaller domain. More pre-
cisely, let 7 : I — I be a transformation preserving a measure [ and let 7: I — I be
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a map with holes obtained by restricting 7 to I C I preserving a conditionally invari-
ant measure x. Then, it may happen that p # fi;, properly normalized. (Example,

where this equality holds is easy to construct.)

Example 4.7.1 Let [ = [0,2] with partition P = {I,,...,Is}, where

A

L=[(i-1)/4,i/4],i=1,...,8. Let us define
(

4z, for ¢ € fl U fg;

4 —4x, for m€f3Uf4;
2z —1), for z e ls
2z —5/4), for z € I
8(z —6/4), for z € Iy

8(x —7/4), for z €I

\

Let I=5L Ul and 7 = 7. It is easy to see that T-conditionally invariant absolutely
continuous measure is normalized Lebesque measure on I. 7-invariant density is

piecewise constant on P and can be found from the equation f = fM, where f =
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[ft, fo,---, fs] and

1/4
0
0

1/4

1/2

1/2

1/8

1/4
1/2
1/2

1/8

1/8

\1/8 1/8 1/8

Then, we have fi =2fs. Thus, p % fur.

1/8

1/8
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Chapter 5

Stochastic Perturbations of

Random Maps

Physical systems are usually subjected to small perturbations from external noise
or round-off errors. There are well known results [14] that study the stability of
absolutely continuous invariant measures for piecewise expanding transformations.
In this chapter, we prove that absolutely continuous invariant measures for position

dependent random maps are stable under small stochastic perturbations [5, 6].

5.1 Notation and Set Up

Let T = {m,...,7k;p1(x), ..., px(z)} be a position dependent random map where
7, are piecewise expanding and piecewise C%, 7, : [0,1] — [0,1], defined on the

same partition P. P can be found by refining the defining partitions of all the
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transformations. We define
o= mkininf ()] > 1,
x

and assume that {p,(z)}£ , are piecewise C' with respect to the partition P.

We consider a perturbation of the random map 7T'. Let G be a family of functions g
that are piecewise C? on the partition P, g(z) : [0,1] — [0, 1] such that sup, |¢'(z)| <
=1 and |¢"(z)| < M, where M is independent of g € G. We further assume that G is
endowed with a regular probability measure 7. Usually G will be a family of functions
with parameter in a bounded region of R™ having normalized Lebesgue measure. At
each iteration, to the map 7, we add a function g from G chosen at random. Thus,

at each iteration, with probability p(z), the next map is
Ti,g(%) = Ti(z) + g(z) (mod 1),

where each ¢ is chosen from G according to the probability . The perturbed random
map is denoted by T, if the perturbing maps {g} are fixed and by T¢ if {g}’s are
chosen at random from G. For the case of one map similar models were considered
in [34].

The iteration of the random map T is performed as follows:
T(I;V(m) = Tkyn,g © Thn-1,9 © " ° Tkl»Q(‘”)
with probability

pkN(TkN—lyg 0---0 Tkhg(m)) .pkN—l(TkN—Q»g OO0 Tkl,g(x)) -+« Pky (:12),
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where the perturbations are chosen independently at each step.

T can be viewed as a Markov process with the transition function

K

P(z,4) = S pu(a) / (i (@))dn(g),

k=1

where A is a measurable set and x4 denotes the characteristic function of the set
A. We say that a measure p is Tg-invariant if it is invariant for the above Markov
process. We are interested in absolutely continuous invariant measures with respect
to Lebesgue measure. Our main tool is the Frobenius-Perron operator which de-
scribes the transformation of densities under the action of the process T¢;. For fixed

perturbations {g}, the Frobenius-Perron operator of T} is given by:

(Pr,f)(@) =) Pn, (pef) (@), (5.1)

where P,  is the Frobenius-Perron operator corresponding to the transformation 7 4.
The transition function P induces an operator P, on measures on ([0, 1],B) defined

by

P.utd) = [P, Ayiuts) = [ [ Zpk 2)Xa(7ig(2))d(9)dp ()

= / (i / pk(w)XA(Tk,g(w))dﬂ(m)> dn(g)
-/ (zz [ <w>) dnlg),

k=1 p=1

where t, is the number of branches of 7 4. We used Fubini’s Theorem in the above
argument. If ;2 has a density f with respect to A, then P, (A) also has a density which
we denote by Pr,, f, where Pr, denotes the Frobenius-Perron operator associated with
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Tc. By a change of variables, we obtain,

[ (Prop)@ara) = | (Z - (w)dA(m) n(g)

-1 -1 1
), (ZZ/ (o)) (7o) "”)J<Tk,g,p><<rk,g,p>—l(w>)dm)) )
-1, 1 1 .
/(/G;;pk Tkgp ((Tk,gp) )J(Tk,g,p)((Tk,g,p)_l(l’))dn(g)) d/\( ),
(5.2)

where J(, ) denotes the Jacobian of 744, with respect to A. We have again used
Fubini’s Theorem in the above argument. Since (5.2) holds for any measurable set

A, we obtain an a.e. equality:

(Prs f)(= /sz Thgp) 2 ((Thgp) ') —dnlg). (53)

k=1 p=1 J(Tk,g,p)((Tk,g,;D) l(x)

Therefore, by (5.1), the Frobenius-Perron operator of T¢; is given by:

(Pro f) () = / (Pr, f)(@)dn(g). (5.4)

5.2 Stability of Invariant Measures

The following theorem was proved in [23].

Theorem 5.2.1 Let T be as above. If ?—Zﬁﬂi:px—pk(m) < 1, then T admits an ab-

solutely continuous invariant measure.

In this section, we assume:

- a—1
2ngppk(x)(1 +— )< L (5.5)
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If (5.5) is satisfied then by Theorem 5.2.1, T admits an absolutely continuous invariant

measure. We prove:

Lemma 5.2.1 For any g € G, T, admits an absolutely continuous invariant measure.

In particular, for f € BV; and, for any g € G, we have:
ViPr,f < AVif + Bl[f|]i, (5.6)

where A = 20(1 + 21)71,

B=4§@u+ 5 )7t

+ K1+

) mgssup((ri (2)] + M) (pe(a) + (@) (7<) +

8 =min;_y ., A(I;), and © = SOE  sup, pi(z).
The proof of Lemma 5.2.1 follows from the following lemma. Now, define
74(z) = 7(z) + g() (mod 1), z € [0,1].

Lemma 5.2.2 Let 7 : [0,1] — [0,1] be piecewise expanding and piecewise C? on
P ={L}_,. Letg € G and 7, be as above. Then, for any f € BV}, and for any g

we have:

ViP., f < AVif + B||flh, (5.7)
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The goal of this lemma is to obtain an uniform bound for the variation of the invariant
densities over all perturbed maps and thus for random maps.

P = {I;}L_, is the defining partition of the unperturbed map 7. {I,},_; will denote
the defining partition of the perturbed map 7,. Note that {1, ;,:1 is a refinement of
P, see Figures 1 and 2.

Proof. Since f is Riemann integrable, for any arbitrary € > 0, we can find a number
f such that for any I; € P and any partition finer than: I; = Uf:il[sl,l,sl] with
8 — 811 < 0, we have

L;

folls— sl < [ Ifldre,

=1 L
Let 0 =2y < z; < --- < z, = 1 be such a fine partition of . When 7 is perturbed
by g, T, is not necessarily injective on I;. The condition |g;| < 95* ensures the
monotonicity of 74 + gk, but taking the values modulo 1 may introduce small extra
intervals of monotonicity, see Figures 1 and 2. The dotted lines in the figures are
the pieces of the perturbed map branches which are moved up or down by (mod 1)

operation. Thus, a refinement of the original partition is required. We refine the

partition, I = U!_, I, such that 7, = Ty, is injective.
Y4
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Define ¢, = 7,7. Let h(z) = IT’(T)Jlrg-’(—m)T and observe that sup, h(z) < (1 +
=1)=1 < 1. We have,

r t

ViPr,(£)(@) < D10 h(op(@i)) £(p(:) X1 (35) =

o+

> 1 p(m-1)) F(Bp(%5-1)) Xy (1) (252)))
= (5.3)

=59 IICREN{CHEN PAIES

j=1 p=1
— h(@p(xj-1)) f(¢p(j-1)) Xy (1) (% 1))
We divide the sum on the right hand side into three parts:
(I) the summands for which X, (1,)(z;) = Xr,(1,)(zj-1) = 1,
(IT) the summands for which xr,(,)(z;) = 1 and xr,(1,)(zj-1) =0,
(III) the summands for which X,,z,)(z;) = 0 andx,(,)(z;-1) = 1.

First, we will estimate (I).
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Z 1(p(5)) £ (Dp(35)) — B Bp(@j-1)) F(Bp(@j1))]

-

= ZZ |f (8p(z)[1(p(2;)) — P(@p(zj-1))]]
+ Z Z P (8p(25-2))[f (8p(25)) = f(dp(z5-1))]]
< S‘ip |1 (z)] ZZ | (8p(2:))0p(2;) — Sp(zi)]| + SuPh ZVI

< sng(x)[Z (/I | fldA(z) -I—e) suph ZVIP

< (

252 eup 7)) + M) [ IfdAe) + (1+ S5V + tsup (o))
(5.9)
We now consider (II) and (III) together. Here, we make use of the old partition
{L;}L_,. Notice that x, (1,)(x;) = 1 and xr,,)(2j—1) = 0 occurs only if z; € 74(Ip)
and z;_1 & 7,(I,). For this situation we have four cases. This is illustrated in Figures
1 and 2: Recall that P = {L;}{_, is the defining partition of the unperturbed map 7.
{I,}}-1 will denote the defining partition of the perturbed map 7.
(a) 7, is monotonic on I, and I, € {I;}{,, then it happens if z; and z;_; are on
opposite sides of an end point of 7,(I,). We can have at most one pair z;,z;_; like

this and another pair z; & 7,(I,) and z;_1 € 74(1,).

(b) If 74(Ips1) N 74(Ip) = O, then 7y

= Tq, for some I;. The above situation
p+1Y Ip i

happens if z; and z;_; are on opposite sides of an end point of 7,(1,). We can have at

most one pair z;,z;_1 like this and another pair & & 74(Ip+1) and zj_1 € T4(Lp41)-
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(c) If LT is not injective on some I;, then either 7,(l,1) C 7,(I,) or 74(1p) C
Tg(Ips1) o T4(Ip11)UTg(Ip-1) C 74(Ip) with Tg(Ip-1)N7g(Ip41) = O and I, 1 UL, UL 4, =
I; for some I;. Moreover, 7,(I,) = [0,1], 1 € 74(Ip41) and 0 € 7,(I,—1) (or vice versa).
The last statement is true because g(z) is continuous on I;. We consider the last case
because it is more general. Then the above situation happens if z; and z;_; are on
opposite sides of an end point of 7,(I,.1) or on opposite sides of 7,(I,_;). We can
have at most one pair z; € 74(Ipt+1), Tj—1 & To(Ip+1)
and another pair z;s & 7,(I,—1) and ;1 € T4(Ip1).

(d) If Toitgot, in is not injective on some I; with 7,(Ip11) & 74(Lp), 7o(lp) & To(Ipt1)
and I,U I,;; = I; for some I;. Then, 1 € 7,(I,) and 0 € 7,(I41) (or vice versa). The
last statement is true because g(z) is continuous on I;. Therefore, the above situation
happens if z; and z,_; are on opposite sides of an end point of 7,(I,11). We can have
at most one pair z;,z;_; like this and another pair z; & 74(I;) and x5 _y € 7,(Ip).

Thus, (II) and (III) can be estimated by:

t

> " (1h(bp(x3)) F (dp(2))] + |P(Dp(250-1)) f(dp(57-2))])

= (5.10)

t

< sup h(z) Y (1 F(@plz)] + F(p(zi-))))

p=1

Since s; = ¢p(x;) and r; = ¢p(z;—1) are both points in I;, we can write (and switch

the sum to i)

L]

Z(If(& |+ 1f(rs)l Z 21 (i)l + | (vi) = fOro)l+ 1 (v:) = £(s0)]),

i=1 =1
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where v; € I; is such a point that |f(v;)| < 575 f [fIA(dz). We get

(IT) + (I1I) <

q

suph(@) Y- (Vi + 57 [ 1FM@)) < (0 S52788 + 2 004 S50

=1

(5.11)
Thus,

ViP,f <21+ 05

o —

+(g(1+a—1)_1+(1+

5 9 1)_2(831) 7" (@) +M)> |[f|11+t(81iph’(x))e.

(5.12)

Since ¢ is arbitrarily small this proves the lemma.

Lemma 5.2.3 Let g, G and n be as above . Let F, be a family of functions such

that f, € BV(I) for f, € Fy. IfV(fy) < A, A > 0, for all f; € Fy, then

V([s fo(z)dn(g)) < A.

Proof. Let 0 =29 < 77 < --- < z, = 1 be an arbitrary partition of /. We have

/fg z)dn(g Z|/fngd77 /fymyldn )|
< Z / ) = Fols—n)ldn(g)
- /G S 1fale) = folass)ldn(o)

=/V(fg)d77(g) <A
G
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Te.i Tep

/ Tg,pﬂ
I, I,=1.I,,
Figure 5.1: Cases (a) and (b)
g.pl |
Tg.p Te.p
/ Tg.pti / g,ptl
I1,=1,0I,Ul,, I,=1,1,,

Figure 5.2: Cases (c) and (d)
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Corollary 5.2.1 Under the assumptions of Section 5.1, for any f € BV ([0, 1]),

Vi(Prof) < A-Vi(f) + B - |,

where the constants A, B are the same as in Lemma 5.2.1. This implies that Pr,

admits an invariant density.

Proof. We have

(Pro f)(x) = / (Pr, £)(@)dn(g). (5.13)

Thus, by Lemma 5.2.1 and Lemma 5.2.3, we obtain the inequality

Vi(Pro f) < A-Vi(f) + B - |1,

with 0 < A < 1. From here, the proof may follow, for example, the classical proof
of [32]. Applying the inequality iteratively to Pr f we prove that the sequence
{P}.f}o2, is bounded in the space BV(I). Thus, the sequence of the averages
{(1/n) Y%y PE f}52, is also bounded in BV(I) and thus weakly precompact in
£1([0,1], A). By the Yosida-Kakutani theorem the operator P, has a fixed point f*.

It can be proved that f* € BV(I). m

Theorem 5.2.2 Let g, G, 1, T and T be as above. Let us consider a family of sets
G : {G:}eso such that sup,eq, sup, |g(z)| < e. Let f. be an invariant density of Pr,_.
Then, the densities {f.} form a precompact set in £1([0,1],X). Any weak limit point
f* of invariant densities f. as ¢ — 0 is an invariant density of T
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Proof. The density of f., where index ”¢” denotes dependence on the perturbation
family G., is a fixed point of the operator Pr, . By Corollary 5.2.1 all Pr,_satisty
the same estimates independently of the functions G.. Thus, the densities f. have
uniformly bounded variation and form a precompact set in £'([0,1],A). Let G, be
a sequence of perturbations such that sup,cg, sup, |g(z)| — 0, as n — +oo. The
corresponding sequence of invariant densities f,, contains a convergent subsequence.
We can assume it converges: f, — f*in £1([0, 1], ). We claim that f* is an invariant
density of T. It is enough to show that Prf* = f*. Since Tg, converges almost
uniformly to T', as n — +00, this can be proved in the same way as in Lemma 11.2.2

of [14]. m

5.3 Expanding on Average

In the previous section, we assumed that all the transformations are piecewise ex-
panding. This condition can be weakened to expanding on average case (see Section

3.1) if we modify our conditions. We need three assumptions:

L. Zszl sup, |€ZE3I < p < 1. (expanding on average).

2. Zszl sup, W%% < B < 1. (expanding on average of the random map Tj).

3. sup, |¢'(z)| < minginf, |7 (z)| (mild noise).

The following theorem is a weaker version of the existence Theorem of 3.1.1:

Theorem 5.3.1 Let T be as above. If Zle sup, l—’l’ﬂ < p < 1, then T admits an

(@) =
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absolutely continuous tnvariant measure.
The following lemma, is analogous to Lemma 5.2.1.

Lemma 5.3.1 Forany g € G, T, admits an absolutely continuous invariant measure.

In particular, for f € BV and, for any g, we have:

ViPr,f < AVif + Bl|f]lx, (5.14)

/
where A =283, B = (30 + K max; sup, ( pe(z) ) ), 6 = min=1_, MU).

fritay] ) 10 © 7 M=,
Remark 5.3.1 All the results of Section 5.2 remain valid in the expanding on average

case if we assume that conditions 1, 2 and 3 hold.

5.4 Estimates in Case of Perturbations with Small

Derivative

In this section we assume that T, T, satisfy conditions of Section 5.3. We estimate
the error in the invariant density in the case when derivatives of perturbing maps g
converge to 0. Our considerations are based on the ideas of Keller ([28] or [14]).
We introduce the Skorokhod metric on the space of all piecewise monotonic maps
on [:
dg(11,Te) = inf {s >0: JAC T and 3o : I — I such that
MA) > 1 —¢,0 is a diffeomorphism, 7y, =m0 0|,

andVz € A, |o(z)—2z| <e,

ﬁ-—ll<s}.
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Let G, ¢,,0 be a family of piecewise C? functions such that

sup|g(z)| < e , suplg'(z)| < e < a=inf|r'(z)] >0,
z€l z€l

and sup,.; |¢"(z)| < M.

Proposition 5.4.1 Let 7 be a piecewise C?, piecewise monotonic map with a =

inf |7/(z)] > 0. Let g € Geyepa and 7, =7+ g (mod 1). Then,

4qe; max|t"|er/a+ €2
o o ’

ds(r,7,) < max{ ,

where q 1s the number of inverse branches of 7.

Proof. We will construct the diffeomorphism o. Let I; = [a;, a;41] be an element of
the defining partition. We will show how to construct o on I;. We assume that 7;
(and thus also 7; + g) is increasing.

First, we find small subintervals next to a; and a;;; which will belong to the
complement of the set A from the definition. Let ¢, = max{7;(a;), 7(a:) +g(a:)} +e1,
where we assume that €; > 0 is sufficiently small. Let b; = 7,7 '(y;). Since |y1 —
7i(as)| < 261 we have by — a; < 2e1/c. Let by = (1, + g) " (11)-

Similarly, let ¥, = min{7i(ai41), 7s(aip1) + g(aip:)} — €1. Let by = 77 (y2). Since
ly2 — 73 (air1)| < 261 we have a;41 — bs < 2¢1/a. Let by = (1,4 ¢g) ' (y2). The intervals
[a:, 1], [b3, ait1] are the intersection of A with the interval I;. Thus, our construction
gives A(A) < q-4e;/a. We define o : [a;, b1] — [a;,be] and o : [bs, @iy1] — [bs, @iy1] as

linear with necessary smoothing at the end points to make o a diffeomorphism.
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On the remaining interval we define o : [by,bs] — [b2,by] as o(z) = 7, (7(z)).

Obviously, we have 7 = 7,00 on [by, bs]. We have to estimate |o(z)—z| and | (m) - 1‘.
Since |7(z) — 7(0(2))| = |1,(o(z)) — T(0(x)| < €1, we have
lo(z) — z| < e1/a.
ow, o' (z) =1/(1(z)) - 7' (z) = () an
Now, o/(a) = 7(r(w)) () = T s, and
1 ll _|T(e(2)) T'(%’)+9'(U(ﬂﬁ))|
o'(z) 7'(z) (5.15)

T"(€)(o(z) — 2) + ¢'(0(z))

max |7"|(e1/a) + max |¢/|
m'(z) '

«

m For operators P : BV — £!, we introduce the norm

1P|l = sup{l|Pfll1 : f € BV,||fllv < 1}.

Lemma 5.4.1 Let Pr and Pr, be the Frobenius-Perron operators of T and T respec-
twely. Then |||Pr — Pr,||| < 14 Zle sup, Pe(x) - ds(Tk, Thg)-

|PTf'_PTsf|

Proof. The proof follows that of Lemma 11.2.1 of [14]. Let f € BV, h = Fri P

Then

[ 1Bes = o fiar - [ 1 Pes = iy

= Z/ ‘rkpkf Tk gpkf)d)\

=

N

= /hOTk—hO’T’kg) pkaD\

WH

< Z suppula) [(hom ~hom,)- fix
k=1

K z
<2|fllsv 3 suppi(c) - sup| / (hom — homg)dA,
k=1 z z 0

109



by Lemma 1.3.2. The estimate of sup, | [, (hoT, —hoTsg)d)| is the same as in Lemma

11.2.1 of [14]. =

Theorem 5.4.1 Let T satisfy assumptions of Section 5.3. We also assume that T'
has a unique invariant density. Let ge, ey € Gei g0, Where a = minginf |1p|. Let

e = max{ey, €2}, then
If = foe,zylls £ O(elne) as e — o', (5.16)

respectively.

where f and f,, ., are the invariant densities of T' and Ty, .,

Proof. By Lemma 5.3.1 the family {7,, . }, ¢ = max{e, s} is small enough, is S-

€162
bounded, i.e., satisfies inequality (5.14) with common constants A and B (see Chapter
11 of [14] for details). Then by Lemma 5.4.1 and Proposition 5.4.1 and Theorem 11.1.1
of [14] inequality (5.16) holds. m

The following is a consequence

Corollary 5.4.1 Let T satisfy assumptions of Section 5.8. We also assume that
T has a unique invariant density. Let G c,o be as in Section 5.1, where a =

minyg inf |7{|. Then
If = fu,s,ll1 £ Ofelne) as e — 0T,

where f and f,, .. are the invariant densities of T and Tg,, ,, respectively.

110



5.5 Perturbations and Stochastic Operators

In the remaining part of this chapter, we deal with a different model of stochastic
perturbations. Let I = [0, 1], and let *B be Borel o-algebra, A Lebesgue measure on
(I,B). Let £ = £Y(I,%8,)). Let T = {m,...,7k;p1(z),...,pr(z)} be a position
dependent random map where 7, are piecewise differentiable nonsingular transforma-
tions, 7 : [0,1] — [0, 1], defined on the same partition P. We assume expanding on

average conditions (see Chapter 3):

Condition (A): S5 sup, B <y 1,

ITe(@) —

Condition (B): & ¢ BV(I);k=1,..K,

|7 ()]

which imply

HPQI“VHBV < a“f“Bv-l-CHlea

where C' > 0, and 7' admits an absolutely continuous invariant measure. Following

[28], we present,

Definition 5.5.1 We say that an operator P : £ — £ is a linear stochastic operator
if it satisfies the following:

(o) P(BV) C BV;

(b) there exist constants o < 1, C > 0 and a positive integer N such that, ||P||py <
oo, and [|PV|[sv < allfllsv + C|Ifll1, f € BV; and

(¢) P is stochastic, i.e., P >0 and [, Pfdu = [, fdu, f € L'. Hence ||P||y = 1.
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Let S denote the class of all linear stochastic operators and let S(a, C) be a subclass

of S that satisfies Definition 5.5.1 for a fixed o and C.

5.6 Stochastic Perturbations

Let Q.(z, A), € > 0 be a family of probability transition functions. The family of

Markov processes ¥, with transition functions

K
" pu(@)Qulri(z), 4),

k=1

is called a small stochastic perturbation of T if, for any 6 > 0,
E.(6) =ir€1§(@s(a:,[a:—9,x+9]ﬂl) - 1, (5.17)

i.e., the measures Q.(z, ) are concentrated around z uniformly as ¢ — 0. Denote by
1€ the invariant measure associated with T, (Section 1.5). (We prove the existence of
pf later). Our goal is to prove that u® — u weakly, where p is the invariant measure

of the position random map 7'

Proposition 5.6.1 Let the family ., € > 0, be a small stochastic perturbation of
a position dependent random map T which admits an invariant measure p. If pe
is an invariant measure of X., then any weak limit point of the family {§f}eso i a

T-invariant measure.
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Proof. Let us assume that u° — u in the weak topology of measures. We will prove

that u is T-invariant. By Lemma 2.2.1, it is enough to prove that for any g € C(I),

/gdu Z/pk (g 0 ™)dp(z).

We have

K

|/Qdﬂ Z/pk (g o Tr)dp(z)| < I/gdu — > | pela) - gdps|
I k=171
+|Z/pk - gdp® —Z/pk - (g o k)|
K
+|Z/pk (9o me)dp® — Z/pk(:v)-(gom)dul
k=1

I

K K
< \/gdu(fv) - /gdlfl +mgxsuppk(w)|2/gdus - Z/gomdffl
® k=1 k=1

I I

+|Z/pk gode,U“Z/pk (g o i) dul.

The first and the third summands on the right-hand side converge to 0 as ¢ — 0
since pf — p weakly. To estimate the second summand, it is enough to show that
| [; 9dp — Zle [; 9 o Tedp?| is arbitrarily small for all k. The proof of this fact is

exactly the same as in Proposition 11.3.1 of [14]. =

5.7 Stability of Invariant Measures

In this section we consider the class of probability transition functions which is gener-
ated by doubly stochastic kernels. We define ¢(z,y) to be a doubly stochastic kernel

if
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(1) q(7) I x 1 —_>R+7
2) [;q(z,y)d\(y) =1 for any z € I,

3) [, a(z,y)d\(z) =1 for any y € I.

Let

sk(z,y) = q(me(x),y),k=1,..., K.

Define the transition function

me=zﬂmmmwww

The Markov process ¥ defined by the transition function P,(z, A) is called a non-
singular perturbation of the random map T'. The following corresponds to (5.17):

If

x40
inf ¢:(z,y)dA\(y) > 1lase — 0,6 >0 (5.18)

zel r—0
is satisfied for the family ¥, then we call them small stochastic perturbations of T'.

Let Q be the stochastic operator induced by the kernel (-, ), @ : £! — £!, defined

=[fwmw@mxw.

The time evolution of the densities of the process ¥ is given by Py : £} — £!, where

(Pef)(= Z/Pk u)s(u, z)dA(u Z/ka (u), z)dA(u)

Z/ P i f)(u)q(u, z)dA(u) Z/I(PTf)(u)q(u’x)d)\(u) (5.19)

by

= (@ o Pr)f) (2).
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For operators P : BV — £!, we introduce the norm

1P|l = sup{||Pf]l : f € BY,[|fllpv <1},

Theorem 5.7.1 Let Pr be the Frobenius-Perron operator induced by the random map

T. For z € I, let us define

) =/ g(z,y)dA (@),

b_// (z,y)d(z)dA(y),

where B(z) = {(z,y) 1z <2<y ory <z <z}, and let ¢(q) = sup,¢; b,. Then,
(a) [|Pglh < ||1Prll = 1;

(b) V(Pg) < sup,; V(g:) - V(Prf);

(c) IIPr — Pxll| < e(q) - || Prlsv.

Proof. (a) We have

I1Pfll = [ 1Peflarie <Z / [ s 2) MW G)
< Z / Dkl () ( / sk<u,w>dx<x>) (W) (520
-/ S pew)lFldAw) = [ Ifia) = 1)

k=1

We have used Fubini’s Theorem and property (2) of g(-,-).
(b) to estimate V(Pxf), we will use Theorem 1.3.10. Take ® € £! with || [ @[] < 1

and [ ®dX = 0. Then,

/I Prf®d\(z) = /1 ( /1 PTf(u)q(u,m)d)\(u)) (2)d\()

(5.21)
- /1 PrfUdi(u),
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where ¥(z) = [, q(z,y)®(y)dA(y). We have

/\Ild)\=/<1>d>\:0,
I I

and
|/I<w><z>1 _ I/qu-cbdxsqu).

Using Theorem 1.3.10, we obtain V(Pxf) < sup,¢; V(g,) - V(Prf).
(c) See [14]. m

Our considerations prove the following theorem:

Theorem 5.7.2 Let T be a position dependent random map which satisfy conditions
(A) and (B), and condition (b) of Definition 5.5.1 for N = 1. If q(:,-) is a doubly
stochastic kernel and q.(y) is nonincreasing, i.e., ¢.(y1) > ¢.(y2), for y1 < ya, then

Pr and Ps are in the same class S(a,C). In particular, T admits an absolutely

continuous muvariant measure.

Theorem 5.7.3 Let T be a position dependent random map which satisfy conditions
(A) and (B), and condition (b) of Definition 5.5.1 for N = 1. Let q.(-,-) be a family of
doubly stochastic kernels satisfying condition (5.18) and such that q. ., is nonincreasing
for any € and z € I. Let f¢ denote the invariant density of the Markov process ..
Then any limit point of {f}eso in the weak topology of £' is a T-invariant density.
Proof. The operators Ps, are all in the same class S(o,C). Thus {f}e>0 15 a
precompact set in £'. Let us assume that f& — f* as e — 0 weakly in £'. Then
the measures fé\ converge to f*\ in the weak topology of measures. By Proposition
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5.6.1, since q.(-,-) satisfy (5.18), f*X is an invariant measure of T'. Thus, f s an

invariant density of T. m

5.8 Additive Noise

A common model of a dynamical system contaminated by noise is given in [13],
namely:

Tnt+1 = T(mn) +¢,

where 7 is an expanding transformation of the interval to itself and £ is a random
variable having a probability density function ¢. This model is often used in physical
applications such as filtering and stochastic control.

Let us suppose that X is a random variable with probability density function
f(z), then the probability density function of the random variable 7(X) is given by
the Frobenius-Perron operator P, f. Consider the random variable 7(X,) + £ (mod
1), where X,, is a random variable with density function f(z) and £ has probability
density function ¢(z). If we assume that £ is independent of X, the density of
7(X,) + & is given by (P, f) * ¢, where % denotes convolution. For the stochastic

equation
Xt = 7(Xn) + €, (5.22)
it is also assumed that the density of X,,,1 is f(z). The solution of

(Prf)xo=f
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is the invariant density of the Markov chain (5.22).

Similarly, if we consider instead of 7 a random map 7" we get the equation
(Prf)x¢=f

for the invariant density of the perturbed process.

In our model, any point x is first moved by T to T'(z) and then dispersed around
T(x) according to a probability distribution ¢(7'(z),y). This generalizes adding a
random variable £ at each iteration of the process. Moreover, the operator Py which

was constructed in Section 5.7 generalizes the convolution (Prf) x ¢. Observe that

(Prf) % §) () = / (Prf)(@ — 5)$(y)dA(y).

Let u =2 —y. Then"

(Pef) * 8) (z) = / (Prf)(w)d(z — u)dA(y),

which is the same as Py when q(u,z) = ¢(z — u).
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Chapter 6

Financial Application

In this chapter we find an application for position dependent random maps in finance

[7]-

6.1 Financial Markets Driven by Random Maps

In this section, we suggest a discrete-time model. We define a multiperiod model as

follows:
1. N + 1 trading dates: n = 0,1,...,N, T = {0,1,..., N}, where the trading
Horizon N is treated as the terminal date of the economy activity being modeled.
2. A finite probability space 2 with K < oo elements:

Q= {wy,ws,...,wk},

for instance, when dealing with binomial model, the cardinality of 2 is 2.
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3. A probability measure P on €2 with a P(w) > 0 for all w € §.

4. A bank account process B = {B,;n = 0,...,N}, where B is a stochastic
process with By = 1, B,(w) > 0 for all n and B, is the value of the bank account
Bn—B
B

2=l >0, n=1,..., NN is the interest rate in

at time n. The quantity 7, = =g—=

the interval (n — 1,n). We suppose that the interest rate is constant over time

and in some situations, with out loss of generality, we suppose it is equal to 1.

5. L risky security processes s; = (s1(n),...,sr(n)), n=0,1,..., N, where s; is a
Markov process for [ = 1,..., L. s(n) is the price of the risky security [ at time
n. For example, s; is the price of one share of common stock of a particular

corporation. In our discussion, we deal with L = 1.

6. Let F = {F,;n =0,..., N} be a filtration defined on [0, 1], with the Lebesgue

measurable sets 9B, where F, is the smallest sub-o-algebra generated by

(81(0), ceay sl(n)).
The measure we consider is the invariant measure for the transition function of

Markov process s;.

We assume that the price of the s; risky security is an adapted, i.e. s1(n) is F,
measurable, stochastic process. Thus, the investors will have full knowledge of the

past and present prices. For instance , at time n s;(n) will be known.
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The prices of the securities are assumed to be smaller than a finite number (see
Remark 6.1.1); i.e., the prices have an upper bound M € R, 0 < M < oo, such that

0 < s;(n) < M. We normalize the prices over M so that
0<s(n)<l1
forl<[<Landn=0,...,]N.

Remark 6.1.1 This assumption can be removed if we work on the real line instead
of the unit interval. Our goal is to build a random map which drives the risky prices
and at the same time has an absolutely continuous invariant measure. The conditions
for the existence of absolutely continuous tnvariant measure of a random map on the
unit interval are weaker than those of a random map on the real line (compare the
conditions in [1] and [3]). Thus, we can remove the condition that the prices has
an upper bound M ; however, we have to compensate by imposing stronger conditions

which assure the existence of the absolutely continuous invariant measure [3].

In this chapter, we suggest a model where we give the investor some knowledge about

the stochastic process. Here is a description of the process that drives the prices:

Let T = {r,...,7k;p1(2), .. .,px(2)} be a position dependent random map where

T are piecewise monotonic nonsingular transformations, 7 : [0,1] — [0,1], defined

on the same partition P.

With out loss of generality, we focus our attention on the binomial model. The
binomial model is a simple yet very important model for the price of a single risky
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security. It is commonly used by practitioners, for example, to determine the price
of various kinds of stock options. In this model we study one risky security price s;.
At each period there are two possibilities: the security price may go up by the factor
u or it may go down by a factor d; i.e., s;(n) =u-s;(n—1) or s1(n) =d- s;(n —1).
The probability of an up move during a period is equal to the parameter p,, and the
probability of going down is p; = 1 — p,. The moves over time are independent of

each other.

We introduce a generalization of the binomial model. We assume that the factors
u and d are functions of the prices, u(z) : (0,1) — (1,00) and d(z) : (0,1) — (0, 1);
i.e., at time n, v and d depend on the price of the risky security s; at time n — 1.
The examples of u and d are: u and d are constant over subsets of (0,1); w and d
are piecewise linear or piecewise non-linear over (0, 1). Similarly, the probabilities p,
and P, can be constant or price dependent. Price dependent probabilities are more
realistic because in practice the probability for the market to go up or down is not

constant in time and may depend on current price.

We believe that this generalization of the binomial model is more realistic since
the real market does not go up always with the same factor. In all other models, for
instance Black Scholes, or models based on time series, the change in the price is not

constant.
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At time n = 0, we estimate the functions u, d, and the probabilities p, and p,.
For example , we can estimate u and d by the historical data. The only assumption
that we need is that u tends to 1 as the price tends to 1. This assumption is natural
because as the price approaches oﬁr bound M, the price may still go up but by a very
small amount. We need this assumption because our transformation 7 is defined as
a map from [0, 1] to itself. For this reason, the estimation of M is very important in

the model.

Once we are given the functions u(z), d(z) and the probabilities p, and p, at time
n = 0, we can construct the random map T which consists of the transformations
T., T4 and the position dependent probabilities p, and pg. The subscript u for 7,
illustrates that the transformation 7, is the law which moves the price up and the
subscript d for 74 illustrates that the transformation 7, is the law which moves the
price down. The construction of the random map T is straight forward. At time
n + 1, consider the up price to be 7,(s,) and the down price to be 74(s,). Also
Sng1 = u(Sp) - 8 OF Spiy = d(sy,) - p. Therefore, the transformations 7, and 74 are

given by the following formulas:
() =u(z) -z and T7y(z)=d(z)- . (6.1)

Moreover, we extend 7, and 7; from (0,1) to the closed interval [0, 1] continuously.

For the probabilities, we assume p,, = p,, and p; = pq.

We give an example to illustrate our model:
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Example 6.1.1 Suppose that u(z),d(z),p, and b, are given ( for instance they can

be calculated from historical data) by:

u(z) = 4

and

[

wro

N
N

oo
win

=

(6.3)

(6.4)

By the above discussion, we construct a random map T = {7,(x), 74(z); pu(x), pa(x)},

where

Tu(T) = ¢

Td(.’L‘) ES <

[ 7]
o Nt

wino

D=
wiNy D=

Wi

(6.5)

(6.6)



pu(z) = D, (x) and pa(z) = Py(x). For example, if the price of the risky security at

time n = 0 is 0.25, then the orbit of the price at times n = 1,2 is given by:

Pu=0T8u=13  _ (05) = 065
/
Pe=073w=2 L (0.25) = 05
y N
p4=0.25,d=0.75 74(0.5) = 0.475
(6.7)
51(0) = 0.25
. oo PSRN L 02) = 04
Pa=025,4=08 _ 0.25) = 0.2
N
pa=0.25,d=0.8 4(02) = 0.16

Remark 6.1.2 The random map T of Ezample 6.1.1 satisfies the assumptions of
Theorem 8.1.1. Thus, it admits an absolutely continuous invariant measure . In
Figure 6.1, the histogram approzimating the invariant density of T is shown after
2,000,000 iterations of random map T. The invariant density allows us to find the
following probability: p{z : T(z) € (61,02)} = u(d1,62), where p = f*X, f* 1is the

invariant density.

Under some conditions on u(z) and d(z), we prove that 7, = u(z) -z and 74 =

d(z) - = are arbitrage free prices. First, we need some definitions.

We define a trading strategy H = (Hy, H; ... Hy) as avector of stochastic processes
H ={Hn);n=0,...N}1=0,1,...,L. H(n),l=1,...L,is the number of units
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Figure 6.1:

The invariant density of 7' in Example 6.1.1, histogram after 2 000 000 iterations.

of security with price s; that the investors owns from time n — 1 to time n, whereas

Hy(n)B,_; is the amount of money invested in the bank account at time n — 1.

We define a value process by V ={V,,;n=0,... ,N}:

Vo = H0(1)30+ZH1(1)31(0) (6.8)
Vo = Ho(m)Bn+» Hin)si(n) n>1. (6.9)

A trading strategy H is said to be self-financing if

L
V., = Ho(n+1)Bn+zHl(n+1)sl(n), n=1,...,N—1,
1=1

i.e., the time n values of the portfolio just before and just after any time n trans-

actions are equal. Intuitively, if no money is added to or withdraw from the portfolio
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between times n = 0 and time N, then any change in the portfolio’s value must be

due to a gain or loss in the investments.

Definition 6.1.1 An arbitrage opportunity in the case of a multiperiod securities

market is some trading self-financing strategy H such that:
1. Vo =0,
2. Vn 20,

3. E[Vy] > 0.

Definition 6.1.2 A risk neutral probability measure (also called a martingale mea-

sure) is a probability measure Q such that
1. Q(J) >0 for all J €]0,1],
2. the discounted price process.

st (n) 5u(n) n=0,...,N 1=0,...,L

s a martingale under @ for everyl=0,...,L.

In other words, a risk neutral probability measure () satisfies

Eg[si(n+t)|F) =s/(n), n>0,t>1. (6.10)

One of the principal results in finance is the following :
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Theorem 6.1.1 There are no arbitrage opportunities if and only if there exists a

martingale measure Q).

In our case, there are no arbitrage opportunities if and only if the process s; satisfy

%* 1 *
B jp ) S s (6.11)

In the binomial model, if we suppose that the interest rate, r, is constant over the

time, then by using (6.1) and (6.11) we obtain for ¢(z) = p,(z):

o(o) MDA 1 - o) | R -0 (6.12)

for all z.

Observe that the martingale measure @@ depends on sy because the functions u
and d depends on the initial price. Let g(so) be the conditional probability that the

next move is an up move given the information F,. Hence:

. 14+7r— d(So)
ls0) = u(so) — d(s0)

for all F,, and n. Since @ is a probability, it is easy to see that:

u(z) > 1+r>d(z) forallaz. (6.13)

Thus, if we assume that u(z) and d(z) satisfy (6.13), which is satisfied by the
binomial model built in this section, then s; is arbitrage free price.
If the interest rate changes with the time, the we require the functions » and d to

satisfy a more general condition:

u(zr) >1+r, >d(z) forallzandn=0,...,N. (6.14)
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6.2 Arbitrage Opportunities

In this section, we suggest a discrete-time model of a market which is not arbitrage
free. Discrete time models which are not arbitrage free are believed to be realistic

and may lead to a deeper understanding of the nature of markets.

We define our multiperiod model as in Section 6.1 and assume that (6.13) is
satisfied. The prices will be driven by the random map T which is a perturbation of
the random map T'( See Section 5.1 and assumptions 6.15). Thus, the price of stock

[ at time n will be given by
si(n) = Ta(si(n — 1)),

wheren =1,..., N.

In this model, the g’s create the arbitrage opportunities. Hence, the prices will
be really driven by the random map Tg, associated with the random map T =
{Tus Tp; Pu(z), pa(z)}. The g’s are considered small perturbations which are unknown
to the investor. Moreover, since in our model we assume 7, 4(z) > z and 74,4(z) <
for all z, and we want the same properties of the perturbed maps, the perturbation
Tg is slightly modified. Assume 7, is increasing. For 7, we define 7, 4(z) as follows.

Let z € (a;, Git1]

;

Tu(2) + 9(2), z < 7y(z) +g(z) <1
Tug(2) =4 7u(@) +9(2) — (ru(ain)) + 9(ais)),  ml@) +g(@)>1 - (615)
| (@) +9(@) = () + glai)), (@) + g(z) <z
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The definitions for decreasing 7, and for 7; are similar. All perturbation results of
Chapter 5 hold for this model as well.

When the market is very sensitive, the ¢g’s may cause considerable changes in the
outcomes of the risky security price. Therefore, in the following section, instead of
viewing the long term behavior of the outcomes themselves, which we do not really

know because the g’s are unknowns, we will view the probabilities of these outcomes.

6.3 Frequency of Future Prices

In this section we answer the following question: starting with price s;(0), With
what frequency do the points of the orbit {s;(0), Ta(5:(0)), T2(s:(0)), ..., T~ (5:(0))}
occur in the set E? We answer this question when T, T¢, GG satisfy the assumptions

of Section 5.3.

Example 6.3.1 In this example, we suppose that in the market the changes (d and
u) in the price are constants when the price is smaller than half of the mazimum
price (M). Then, when the price becomes bigger than half of the mazimum price, the
change in the price to go up (u) is decreasing and the change in the price to go down
(d) is increasing. For example, this situation may occur if we suppose that some of

the investors sell their shares when they see an increase in the price.

We model u(z),d(x),p, and By by ( for instance they can be calculated from his-
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torical data):

2, O<z<j3
= 5 1 2
we)={ S+ 3<e<io (6.16)
3 1 2
\ Tt $<z<l
)
%) 0<z<i
= 3 1 1 2
d(z) = < 81 l<az<?, (6.17)
3 1 2
\'2-““5;, §<.’£<1
and
)
08, 0<z<i
Pu(z) =4 0725, i<az<?, (6.18)
0.4, §<m§1

Pa(z) =1 - pi(2).
Observe that u(z) is decreasing and d(zx) is increasing. From u(z),d(z),p,(z) and

Py(z), we construct a random map T = {1,(x), 7a(z); pu(z), pa(z)},

)
20, 0<z<j
(@) =9 Sz 4+ L, i<z<i, (6.19)
3 1 2
| @t 3<zsl
)
1 1
5L, 0Sf13<§
(@)= %3z-1 i<az<?, (6.20)
3 1 2

131



pu(z) = P, (x) and pg(z) = By(x). Now, observe that

pu(a:)
2 (@)

psup 2B g5 04-008 <1,
z |T3(z)]

Remark 6.3.1 The random map T of Fxample 6.5.1 satisfies the assumptions of
Theorem 3.1.1. Thus, it admits an absolutely continuous invariant measure p. In
the left hand side part of Figure 2, the histogram approximating the invariant density
of T is shown after 2,000,000 iterations. The invariant density allows us to find the
following probability: pu{z : T(z) € (61,62)} = u(b1,02), where p = f*\, f* is the

invariant density.

Remark 6.3.2 In most cases, condition 2 is satisfied. In Ezample 6.1.1, u(z) is
not decreasing between 1/2 and 2/3 and d(z) is not increasing between 1/2 and 2/3.
Moreover, some extreme situations were allowed in the same example. For instance,
in the interval (0,1/2), we have a big gain with a high probability and in the interval

(2/3,1) we have a big loss with a high probability.

The results of Chapter 5 say that the invariant densities of T; and T' are ”very close”.

Thus, to find the relative frequency that points of the orbit

{51(0), Ta(s:(0)), T&(:(0)), - - -, Tg ™ (s1(0))}

occur in the set F, it is enough to find f* and use the ergodic Theorem 2.4.1. The

method of approximating f* will be discussed in the following section. For now, let us
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Figure 6.2:

On the left: The histogram of invariant density of T of Example 6.3.1.

On the right: The density of Markov random map T)y.
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assume that we have already approximated f* and illustrate the meaning of Theorem

2.4.1:

For a price s;(0) we are interested in the following question: With what frequency
do the points of the orbit {s;(0),Tc(s:(0)), T2(s:(0)),...,Ta "(s1(0))} occur in the
set E. Clearly, T&(s:(0)) € E if and only if xg(T§&(s:(0))) = 1. Thus, the number of
points of the orbit {s;(0),...,T% (5,(0))} in E is equal to 375 xz(T&(s(0))), and
the relative frequency of the elements {s;(0),Tg(s:(0)), T2(5:(0)), ..., T& " (s:(0))} in

E equals to %Z::Ol xe(Tée(s1(0))).

6.4 Approximation of the Invariant Density

In this section, we approximate the invariant density f*. Note that, if the trans-
formations 7, and 74 are Markov [14], and the probabilities p, and p; are piecewise
constant, we can find the exact unique invariant density f* using the methods of
[23]. When the transformations are not Markov, the invariant density can be approx-
imated by matrix operators [23]. This method is known as Ulam’s method. Now, we
are going to approximate the invariant density of T in Example 6.3.1. First, we find

two Markov transformations 7, and 74, which approximate 7, and 74 respectively.
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Let

2z, 0<2<05

27— 03, 0.5<xz<06
Tum (%) = ) (6.21)

z+0.1, 06<z<07

| z, 0.7<z<1
and
)
z, 0<z<0.1
z-01, 01<z<03
Ten(T) =4 z-02, 03<z<05 - (6.22)

20— 09, 07<2x<09

2¢ —-0.1, 09<z<1
\
Observe that 7, and 7,4, are Markov transformations on the common partition
[4/10, (i +1)/10)2_,. The Frobenius-Perron operator of a Markov transformation can

be represented by a matrix [14]. Also, the Frobenius-Perron operator of the random

map Tar, Trnr = {Tupn» Tdon; Pus P}, [23] 1s represented by the following matrix

M =11, M, + I M, (623)
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where M, My are the matrices of P, ~and P, respectively, and II,, Il are the

diagonal matrices of p,(z) and py(z) respectively. We have

1/2 1/2 0O 0 0 0 0 0 0 0
0O 0 1/21/2 0 0 0 0 0 0
o 0 o0 0 1212 0 0 0 0
0 0 0 0 0 0 1/2 1/2 0 0
6o 0 0 0 0 0 0 0 1/2 1/2

o 0 0 0 0 0 0 1/2 1/2 0
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f

o

0 0
0 0
0 0
0 0
0 0
0 0
0 0
1/2 1/2
0 0
0 0

137

0 0 0
0 0 0
0 0 ©0
0 0 0
0 0 0
0 0 0
0 0 0
12 1/2 0
0 1/2 1/2




and

06 02 0 0 O 0 0 0 0 0O

04 0 02 02 0 0 0 0 0 O

0 04 0 0 02 0275 0 0O 0o 0

0 064 0 0 O 0 0275 0 0 O

0 0 04 0. 0 0 0 0 0 0
M= :

0 0 04 0 0 0 0 03 0 0

0 0 0 04 0 0 0 03 0 O

0 0 0 04 0 03625 0725 04 03 O

0 0 0 0 04 03625 0 0 07 0.3

0 0 0 0 04 O 0O 0 0 071
where p, = (0.8,0.8,0.8,0.8,0.8,0.725,0.725, 0.4, 0.4, 0.4);, pg = 1 — py,, Idyg is 10 x 10

identity matrix. The invariant density of Ty, is

f:(flaf2,f37f4af57f67f7af87f9af10)7 fi=f|1i7 i=172a"'597 (624)

normalized by

fit fot+ fas+ fa+fo+ fo+ fr+ fs+ fo+ fro =10, (6.25)

and satisfying equation fM = f. Then,

fi=0.11591, f, =0.23183, fs=0.48548, f4 =0.44184, f5 = 0.19419,
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fo = 1.28694, fr = 1.26949, fs = 3.64250, fo=2.07290, fio = 0.25892 .

The Ty-invariant density is shown on the right hand side of Figure 6.3. Comparing
left and right parts of Figure 6.3, we see that the invariant density of T); approxi-
mates the invariant density of 7" in Example 6.3.1. Notice that, had we used Markov
transformations on a finer partition than that in the above construction, we would

have obtained a better approximation for the invariant density of T in Example 6.3.1

[23].
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