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Abstract

Wavelet and Ridgelet Transforms for Pattern Recognition
and Denoising

Guangyi Chen

The application of wavelet and ridgelet transforms in pattern recognition is still in
its infancy; while their use in denoising has been a very hot topic in recent years. The
aim of this thesis is to study these two important problems. In the area of pattern
recognition, we develop a handwritten numeral recognition descriptor using multi-
wavelets and neural networks. We perform multiwavelet orthonormal shell expansion
on the contour to get several resolution levels and the average. Then we use the shell
coeflicients as features to input into a feed-forward neural network to recognize the
handwritten numerals. We also present two novel descriptors for feature extraction
by using ridgelets. Fourier spectrum and wavelet cycle-spinning are used to achieve
rotational invariance. The descriptors are very robust to noise even when the noise
level is high. Experimental results show that the new descriptors are excellent choices
for pattern recognition.

In the area of denoising, we first study multiwavelet thresholding by incorporating
neighbouring coefficients. Experimental results show that this approach outperforms
neighbour single wavelet denoising for some standard test signals and real life images.
Then, we propose a wavelet image thresholding scheme by incorporating neighbour-
ing coeflicients. Experimental results show that translation invariant (TT) denoising
with neighbour dependency is better than VisuShrink and the TI denoising method
developed by Yu et al. Finally, we propose to use Simulated Annealing to find both
the customized wavelet filters and the customized threshold for the given noisy image
at the same time. The results we obtained are promising compared to other results

published in the literature.
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Chapter 1

Preliminaries

In this Chapter, we will review some basic aspects of the Fourier transform, single

wavelet transform, multiwavelet transform, ridgelet transform, and neural network.

1.1 The Fourier Transform

The Fourier transform’s utility lies in its ability to analyse a signal in the time domain
for its frequency content. The transform works by first transforming a function in
the time domain into a function in the frequency domain. The signal can then be
analysed for its frequency content because the Fourier coefficients of the transformed
function represent the contribution of each sine and cosine function at each frequency.
An inverse Fourier transform does just what you expect, transform data from the

frequency domain into the time domain.

1.1.1 The Continuous Fourier Transform

Let f(z) be a continuous function of a real variable in L*(R). The Fourier transform

of f(z) is defined by the equation



Given f(u), f(z) can be obtained by the inverse Fourier Transform

$@) = o [ Fuedu @)

The Fourier transform can be easily extended to a function f(z,y) of two variables:

~ +oo p+too .
fluw) = | f (@, e =) dady (3)

and

~

1 +oo  ptoo )
flz,y) = 4—7r2/_00 - f(u,v)e’(“”"y)dudv (4)

where © and v are the frequency variables.

1.1.2 The Discrete Fourier Transforms

The discrete Fourier transform(DFT) estimates the Fourier transform of a function
from a finite number of its sample points. The sample points are supposed to be
typical of what the signal looks like at all other times. Suppose that a continuous
function f(z) is discretized into a sequence of {f(zo), f(zo + Az),..., f(zo + (n —

1)Az)} by taking n samples Az apart. We may define

f@) = f(zo + 2Az)

where x now assumes the discrete values 0, 1, ..., n—1. With this notation in mind,

the discrete Fourier transform pair that applies to sampled functions is given by

flw) = =3 fla)eraln ()
z=0
foru=20,1,2,...,n—1, and
(@)= 3 Fuyeaim 6)
u=0

forzx=10,1,2,...,n—1.



In the two-variable case the discrete Fourier transform pair is given by the equa-
tions

1 n—1n-—1

Z Z f(.CC, y)e—i(ux-i-vy)/n (7)

z==0 y=0

foru=20,1,2,....,n—1,v=0,1,2,...,n—1, and

flu,v) =

n2

n—1n-1

flz,y) =303 flu,v)elroln (8)

u=0 v=0

forr=0,1,2,....,n—-1,y=0,1,2,...,n— 1.

1.1.3 The Fast Fourier Transform

To approximate a function by samples, and to approximate the Fourier integral by
the discrete Fourier transform, requires applying a matrix whose order is the number
of sample points n. Since multiplying a matrix by a vector costs on the order of O(n?)
arithmetic operations, the problem gets quickly worse as the number of sample points
increases. However, if the samples are uniformly spaced, then the Fourier transform
matrix can be factored into a product of just a few sparse matrices, and the resulting
factors can be applied to a vector in a total of order O(n log, n) arithmetic operations.

This is the so-called Fast Fourier Transform(FFT).

1.1.4 Some Properties of the Fourier Transform

In this section we review the properties of the Fourier transform which will be of value

in subsequent discussions.

Translation: The translation properties of the Fourier transform pair with one

variable or two variables are given by

f(z)e™®" = f(u— o) (9)



flz —x0) = f(u)e_i“””"/” (10)

and

f(z,y) i@t/ 0y f(y — ug, v — vp) (11)
flz =0,y — yo) &= f(U, v)eHuzotvyo)/n (12)

It is interesting to note that a shift in f(x) or f(x,y) does not affect the magnitude

of its Fourier transform since

[fu)e =l = | f(u)] (13)
[ (u, w)e "0t = | f(u, v)| (14)

This property is especially useful in deriving invariant features in pattern recognition.

Rotation: If f(z,y) is rotated by an angle 6, then f(u, v) is rotated by the same
angle. Similarly, rotating f (u,v) causes f(z,y) to be rotated by the same angle.

1.2 The Single Wavelet Transform

In this section we briefly review the most important properties of the wavelet trans-
form and the wavelet based multiresolution decompositions. More detailed informa-
tion about wavelet transform can be found in [2], [21], [28], [29], [48]-[52]. Wavelets
are functions that satisfy certain mathematical requirements. The very name wavelet
comes from the requirement that they should integrate to zero, “waving” above and
below the z-axis. The diminutive connotation of wavelet suggest the function has to
be well localised. Other requirements are technical and needed mostly to insure quick
and easy calculation of the direct and inverse wavelet transform.

The orthonormal basis of compactly supported wavelets of L?(R) is formed by the



dilation and translation of a single function ¥(z)

Yjp(T) = 2~ p(277z — k),

where j, k € Z. The function ¢(z) has a companion, the scaling function ¢(z), and

these functions satisfy the following relations:
-1
$(z) = V23 ho(2z — k), (15)
k=0

L-1
$(z) = V2 ged(2m — k), (16)
k=0
where hy and g are called low-pass and high-pass filter coefficients respectively, and
g = (=) hp—p—1, k=0,...,L—1
+00
/ éd(z)dz = 1.

—00

The filter coefficients are assumed to satisfy the orthogonality relations:

Ehnhn+2j =6(4), (17)

and

Z hngn+2j =0. (18)

for all j, where 6(0) = 1 and 6(j) = 0 for j # 0.
The vanishing moments property simply means that the basis functions are chosen
to be orthogonal to the low degree polynomials, namely, if the set of functions {¢(z —

k)}kez is an orthonormal basis of Wy, then

+o00
Y(z)z™dr =0, m=0,...,M —1. (19)

The number of coefficients L in (15) and (16) may be related to the number



of vanishing moments M. However, no matter what conditions are imposed, L is
always even. It should be mentioned that a wavelet with higher vanishing moments

is desirable in real applications such as image compression and denoising.

1.2.1 Multiresolution Analysis

The wavelet basis induces a multiresolution analysis on L?(R), i.e., the decomposition

of the Hilbert space L?(R), into a chain of closed subspaces

CcVocVicWecV V- (20)
such that
1. NjezV; = {0} and U,ezV; is dense in L*(R)
2. For any f € L*(R) and any j € Z, f(z) € V; if and only if f(2z) € V;_,
3. For any f € L*(R) and any k € Z, f(z) € V; if and only if f(z — k) € Vp

4. There exists a function ¢ € V; such that {¢(z — k) }xecz is an orthogonal basis
of V.

Let us define the subspaces W; as an orthogonal complement of V; in V_;,

Via=VioW, (21)

and represent the space L?*(R) as a direct sum

I*(R) = P W, (22)

jeZ

Selecting the coarsest scale J, we may replace the chain of the subspaces (20) by

Vic---cVacVicVyCV CVaC--- (23)

and obtain



L(R) =V, W, (24)

i<J
If there is a finite number of scales then, without loss of generality, we set 7 = 0

to be the finest scale and consider

Vic---cVacVicVy, Voc L*(R) (25)

On each fixed scale 7, the wavelets {1, x(z)} ez form an orthonormal basis of W;
and the functions {¢;(z) = 273¢(2 77z — k)};cz form an orthonormal basis of V;.
The coefficients H = {hx}£=, and G = {gx}+Zs are quadrature mirror filters. Once
the filter H has been chosen, it completely determines the functions 1) and ¢. Let us
define the function

1 L-1 )
mo(p) = - > ettt (26)
k=0

then the function mg(p) satisfies the equation

[mo(u)|* + [mo(u + m)* = 1. (27)

for the coefficients hy.

1.2.2 The Fast Wavelet Transform

Daubechies [29] has discovered that the wavelet transform can be implemented with a
specially designed pair of Finite Impulse Response(FIR) filters called a “Quadrature
Mirror Filter” (QMF) pair. The output of the QMF filter pair are down-sampled by a
factor of two, that is, every other output sample of the filter is kept, the others are dis-
carded. The low-frequency filter output is fed into another identical QMF filter pair.
This operation can be repeated as a pyramid algorithm, yielding a group of signals
that divides the spectrum of the original into octave bands with successively coarser

measurements in time as the width of each spectral band narrows and decreases in



frequency.

The fast wavelet transform is actually more computationally efficient than the
Fast Fourier Transform. As we know, a FFT of length n (where n is an integral
power of 2) takes on the order of O(nlog, n) operations. A fast wavelet transform of

length n requires approximately O(n) operations - the best efficiency possible.

1.2.3 Some Wavelet Families

There are many kinds of wavelets. One can choose between smooth wavelets, com-
pactly supported wavelets, wavelets with simple mathematical expressions, wavelets
with simple associated filters, etc. In this section we list some of the most frequently
used wavelets. Figure 1 shows these wavelets reproduced from WAVELAB developed
by D. L. Donoho.

The Haar filter is discontinuous, and can be considered a Daubechies-2. Its scaling

filter is
H=(1/V2,1/V2).

The Daubechies-4 filter has its advantage on its most compact support of 4
and its orthogonality. The size 4 is indeed shortest even span in which the second

derivatives are computable. Its scaling filter is

H =(0.482962913145, 0.836516303738, 0.224143868042, ~0.129409522551).

The Coiflet filters are designed to give both the mother and father wavelets 2, 4,
6, 8, or 10 vanishing moments. Here we only test the 6 vanishing moment case. Its

scaling filter is

H = (0.038580777748, —0.126969125396, —0.077161555496, 0.607491641386,
0.745687558934, 0.226584265197).

The Symmlet-8 is the least asymmetric compactly-supported wavelets with 8

vanishing moments. Its scaling filter is
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Figure 1: Some single wavelet families frequently used in the literature



H = (—0.107148901418, —0.041910965125, 0.703739068656, 1.136658243408,
0.421234534204, —0.140317624179, —0.017824701442, 0.045570345896).

1.3 The Multiwavelet Transform

Multiwavelets are also very powerful in many real applications. In this section, we will
give a short introduction to multiwavelet transform. Multiwavelets are generalization
of single wavelets. Multiwavelet basis uses translations and dilations of M > 2 scaling
functions {¢x(z)}1<k<mr and M mother wavelet functions {(z)}1<k<pr. If we write

®(z) = (¢1(z), da(x), ..., du(x))" and U (z) = (Y1 (), Ya(z), - ., ¥u(x))T, then we

have

®(z) = \/iLz—l H,®(2z — k), (28)

k=0

and L
U(r) =v2Y Gy @(2z — k). (29)

k=0

where { Hy. }o<k<z—1 and {Gy }o<k<r—1 are M x M filter matrices. The scaling functions
#i(x) and associated wavelets 1);(z) are constructed so that all the integer translations
of ¢;(z) are orthogonal, and the integer translations and the dilations of factor 2 of
;(z) form an orthonormal basis for L?(R).

As an example, for M = 2, L = 4, we give the most commonly used multiwavelets

developed by Geronimo, Hardin and Massopust [36]. Let

o 3/10  2v/2/5 o 3/10 0
o\ —vao 320 )0 T \ovarao 172 )

0 0 0 0
H2 = s H3 = )
( 9v/2/40 —3/20 ) ( —/2/40 0 )

10



and

|

o —v2/40  —3/20 o - 9v2/40 —1/2
’ “120 —3va/20 )\ 90 o )

Il

9v2/40 —3/20 G —/2/40 0
—9/20 3v2/20 | 1/20 0

then the two functions ¢1(z) and ¢s(x) can be generated via (28). Similarly, the
two mother wavelet functions 1 (z) and t9(z) can be constructed by (29). Let V;
be the closure of the linear span of 27/2¢y(27x — k),l = 1,2; k € Z. With the
above constructions, it has been proved that ¢;(z — k), Il = 1,2; k € Z form an
orthonormal basis for V;, and moreover the dilations and translations 2//24,(2/z — k),
! =1,2; j,k € Z form an orthonormal basis for L?(R) [31]. In other words, the
spaces V;, 7 € Z, form an orthogonal multiresolution analysis of L?(R). The two
scaling functions ¢;(z) and ¢2(z) are supported in [0, 1] and [0, 2], respectively. They
are also symmetric and Lipschitz continuous. This is impossible to achieve for single
orthogonal wavelets.

The original signal f () should be first discretized into the vector { f;}1<;<27, Where
n = 27 = signal length, and prefiltered before it can be used as input of the dis-
crete multiwavelet transform (DMWT). While single wavelet transform has one input
stream of size n x 1 which is provided by {fi}1<i<2s, multiwavelet transform requires
input that consists of M streams each of size n x 1. Therefore a method of mapping
the data {f;}1<i<os to the multiple streams has to be developed. This mapping pro-
cess is called preprocessing and is done by a prefilter or a repeated signal filter [34].
We will return to the prefilter later in this section.

For the sake of clarity, we use {S9}o<k<27-1 to denote the multiple streams ob-
tained by applying a prefilter to the original discretized signal {fi}i<;<2s. Also, we
use S,Z and Di, which are periodic in k£ with period 2971, to represent the low-pass and

high-pass coefficients. The forward and inverse DMWT can be recursively calculated
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L-1
SIT =23 HuS) o, (30)
=0
. L.’l .
Diﬂ = \/§ Z GnSvjz+2k7 (31)
n=0
and
L/2—-1
, " 11
S%Ic—i-p = \/§ Z (H2Tn+p5iik + ngﬂsz:}—k)a (32)
n=0

forj=0,1,...,J—1;p=0,1; Kk =0,1,... It is noted that Eq.(32) is different from
Eq.(3.7) of [78]. A simple verification can show that the inverse DMWT in Eq.(3.7)
of [78] is incorrect. For example, let us consider reconstructing Sj from {S¢*'}, and
{Di“} x- Before passing through the synthesis filters, we have to upsample (i.e. insert
zeros) {SI™'}; and {D{*'}; first. Since the upsampled version is 0 in every other

sample, Sg can only be the sum of the form
St =+2(Hy S + G DY + HY SIY + GE DI + -+ ),

that is, with coefficients of Hy, Hs, Hy, ... and similarly with G. However, the equation
in [78] has terms with Hy, Hy, Ho, H3, ...

Because a given signal consists of one stream but the DMWT algorithm requires
that the input data be multiple streams, a method of mapping the data to the multiple
streams has to be developed. This mapping process is called preprocessing and is done
by a prefilter Q [34]. A postfilter P just does the opposite, i.e., mapping the data

from multiple streams into one stream. Thus, with M = 2,

fomaky1
Sk=2_Qn

Jomtk)+2

The postfilter P that accompanies the prefilter ) satisfies PQ = I, where I is the
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identity filter. So, if one applies a prefilter, DMWT, inverse DMWT and postfilter to
any sequence the output will be identical to the input. The commonly used prefilters
are:

Identity prefilter

Xia prefilter

24+/2/10 2—+/2/10
V2+3/20 V2-3/20

Minimal prefilter
2V2 -2
1 0

Qo =
Repeated signal prefilter is different from the definition above. It is defined by

V2
Sl(c) = fres1

It has been shown by Downie and Silverman [34] that the repeated signal filter is very
good for denoising purposes.

Multiwavelets have some advantages in comparison to single ones. For example,
such features as short support, orthogonality, symmetry, and higher order of van-
ishing moments, are known to be important in signal processing. A single wavelet
cannot possess all these properties at the same time, but multiwavelets can. It is con-
firmed that multiwavelets can give better results than the single wavelets in image
compression and denoising [67].

As an alternative, complex wavelets can also achieve short support, orthogonal-

ity, symmetry and maximum vanishing moments at the same time. They have been
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proved to be advantageous in many applications. One good example is their applica-

tions in image denoising.

1.4 The Ridgelet Transform

As we know, ridgelets have been recently developed for image processing applications
([33], [63], [35], [6], [7], [8], [30]). For each a > 0, each b € R and each 6 € [0, 27), the
bivariate ridgelet 1,4 : B2 — R is defined as

Yapo = a_l/Qw((mlcosﬁ + z95in6 — b)/a)

A ridgelet is constant along the lines z;cosf + z9sitnf = constant. Transverse to these
ridges it is a wavelet. Given an integrable bivariate image f(x1, x2), we can define its

ridgelet coeflicients as

R(a'a ba 9) = /wa,b,ef(xlaxQ)dxlde

Fig. 2 shows a ridgelet function and its scaled, shifted and rotated versions.
The ridgelet transform can be represented in terms of the Radon transform. The

Radon transform of an image f(z1,x2) is defined as

RA(6,t) = /f(ml,x2)5(x10030 + zo8inf — t)dz1dxo

where ¢ is the Dirac distribution. So the ridgelet transform is precisely the application
of a 1D wavelet transform to the slices of the Radon transform where the angular
variable 6 is constant and ¢ is varying. Ridgelets are different from wavelets in a sense
that ridgelets exhibit very high directional sensitivity and are highly anisotropic.
A fast ridgelet transform can be performed in the Fourier domain. First the 2D
FFT is computed. Then it is interpolated along a number of straight lines equal

to the selected number of projections. Each line passes through the center of the
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Ridgelets Scaled

Rotated

Figure 2: The ridgelets used by Candes and others.

2D frequency space, with a slope equal to the projection angle, and a number of
interpolation points equal to the number of rays per projection. After the 1D inverse
FFT along each interpolated ray we get the ridgelet transform coeflicients. Fig. 3

illustrates the steps of this fast transformation.

1.5 Neural Networks

The term neural network is used to describe various topologies of highly intercon-
nected simple processing elements (neurons) that offer an alternative to traditional
approaches to computing. Neural networks offer important new approaches to infor-
mation processing because of their adaptability and ability to learn as well as their
massive parallelism. Neural network research has matured greatly since the percep-
tron of 1950’s. This maturation has three resources: an advancement in mathematical
theories, development of new computer tools, and increased understanding of neurobi-

ology. The limits of today’s computing devices such as inadequacies in storage, speed,
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Figure 3: The fast ridgelet transform proposed by Candes [64].

and user flexibility have restricted present neural network efforts. There have been
significant demonstrations of neural network capabilities in speech, signal processing,
control, OCR, and robotics, etc.

Neural networks are fundamentally different from a traditional computer. Neural
networks do not sequentially execute instructions nor do they contain memory for
storing operation instructions or data. Neural networks respond in parallel to a set
of inputs. Neural networks are more concerned with transformations than algorithms
and procedures. Neural networks do not contain only one or a few complicated com-
putational devices, but are comprised of a large number of simple devices often doing
little more than computing weighted sums. Neural networks are not replacements
for traditional computers, but are an entirely different class of computational devices
that are capable of qualitatively different tasks.

Neural networks provide a completely new and unique way to look at information
processing. Procedural programming requires a procedural statement to calculate the

solution to the problem, i.e. an algorithm. Expert systems require a statement of
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the solution to the problem whose symbolic elements can be linked by the inference
engine to achieve the goal or solution. Neural networks require a statistically relevant
set of training examples of the desired mapping.

Neural networks have either fixed weights or adaptable (adjustable) weights. Learn-
ing laws are used to adjust the weights, which represent the interconnection strengths.
There are two types of learning, namely supervised and unsupervised. Supervised
learning occurs when the neural network is supplied with both the input values and
correct output values, and the neural network adjusts its weights based upon the
error of the computed output. Unsupervised learning occurs when the neural network
is only provided with the input values, and the network adjusts the weights based
solely on the input values and the current network output. Neural networks have
two phases to their operation: training of the network and the recall or computation
phase. Neural networks learn from experience, generalize from previous examples to

new ones and abstract essential characteristics from inputs containing relevant data.

1.5.1 Backpropagation Neural Network

Multilayer perceptrons are feedforward, nonrecurrent networks with one or more lay-
ers of nodes between the input and output layers called hidden layers. They overcome
many of the limitations of a single layer perceptrons. The capabilities stem from the
nonlinearities used within nodes. The activation function attenuates large signals
and amplifies small signals. Training assumes that each input vector is paired with
a target vector representing the desired output. Before training starts, weights are
initialized to small random numbers. During training, the network selects a train-
ing pair from the training data set and calculate the output. Error between the net
output and the desired output is calculated. Weights are adjusted according to the
error backpropagated from the output layer to the previous layers. After training,
the network can be used to generalize the output of a new unseen input pattern.

There are various issues in designing and training a neural network, including
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1. Selecting the number of neurons for input, hidden and output layers.
2. Selecting the number of hidden layers.
3. Selecting the fan-in and fan-out of the hidden units.

4. Selecting the number of training pairs or the complexity of the mapping from

input to output.

1.5.2 Convolutional Network

Convolutional network was developed by LeCun et al. [24] - [26] for handwritten digit
recognition. In convolutional network, each unit takes its input from a local receptive
field from the previous layer, forcing it to extract a local feature. Furthermore, units
located at different places on the image are grouped in planes, called feature maps,
within which units are constrained to share a single set of weights. This makes the
operation performed by a feature map shift-invariant, and equivalent to a convolution,
followed by squashing functions. The weight-sharing technique greatly reduced the
number of free parameters.

There are several versions of convolutional networks, including LeNet 1, LeNet
4, LeNet 5, etc. LeNet 1 has six layers with each layer extracting invariant features
or making a down-sampling from the previous layer. For each feature map, a set of
weights are constrained to be the same. In order to make optimal use of the large size
of the training set, LeNet 4 was introduced so that it has more free parameters in the
network. Experimental results show that LeNet 4 gives much higher recognition rate
for handwritten digits. LeNet 5 has more feature maps and a larger fully-connected
layer. It uses a distributed representation to encode the categories at the output layer.
LeNet 5 produces the state-of-the-art recognition rate and it is used in many banks
in the United States. Figure 4 illustrates the network structure of a convolutional

network.
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Figure 4: The network structure of a convolutional network [24].

1.6 Translation and Scale Normalization

In this section, we review some of the most frequently used normalization techniques
to eliminate translation and scale variance. To achieve translation invariance, we
can use the regular moments of an image. Recall that the regular moments m,, are
defined as my, = [*X 287 f(21, 22)dx1d7o. Translation invariance can be achieved
by transforming the image so that its first order moments, mg; and myg, are both

equal to zero. Let Z; and Z, be the centroid location of the original image, then

_ My _
Ty = 3 Ty = .
Moo Moo

mMo1

therefore, we can transform the image f(z1,z2) to f(z1 + Z1, 22 + Z2).

There are three commonly used methods to achieve scale-invariance. First, it can
be accomplished by scaling the image such that its zeroth order moment mq is equal
to a predetermined value 3 [42]. By calculation, we can choose the scaling factor
a = \/m‘oo . Thus scale invariance is achieved by transforming the original image
function f(z;,z;) into a new function f(&,2) with ¢ = \/I Second, we can

moo

\/(:cl — I1)% + (z9 — To)?, the longest

achieve scale invariance by setting a = max
f(z1,22)70
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distance from (Z;,Z2) to a point (z1,22) on the pattern. This method, however, is
rarely used in noisy environment since it is very sensitive to noise. The third method
is to normalise the image so that the average radius rg for the image pixels is a quarter

of the input grid dimension; i.e., we have

1 n T
ro=——> > fla 332,k)\/ 3 + 15 g

100 j=1 k=1

n
aq = ——,
47‘0

In summary, an image function f(z;,2,) can be normalised to be scale and trans-
lation invariant by transforming it into f(%Z + Zy, % 4 ), with (%1, Zp) being the
centroid of f(z1,z2) and a suitable scaling factor a. When (% + 7, 2 + Zo) does
not correspond to a grid location, we can interpolate it from the values of the four

nearest grid locations around it.

1.7 Outline of the Thesis

In this thesis, I propose different approaches to find good features for pattern recogni-
tion and different methods for signal /image denoising by using wavelets and ridgelets.
In Chapter 2, we develop a handwritten numeral recognition descriptor using mul-
tiwavelets and neural networks. We first trace the contour of the numeral, then
normalize and resample the contour so that it is translation- and scale-invariant. We
then perform multiwavelet orthonormal shell expansion on the contour to get several
resolution levels and the average. Finally, we use the shell coefficients as features to
input into a feed-forward neural network to recognize the hand-written numerals. The
main advantage of the orthonormal shell decomposition is that it decomposes a sig-
nal into multiresolution levels, but without down-sampling. Wavelet transforms with
down-sampling can give very different coefficients when the input signal is shifted.

This is the main limitation of wavelet transforms in pattern recognition. For the shell
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expansion, we prefer multiwavelets to scalar wavelets because we have two coordi-
nates x and y for each point on the contour. If we extract features from x and y
separately, just as Wunsch et al. did [77], then we may not get the best features.
In addition, we know that multiwavelets have advantages over scalar wavelets, such
as short support, orthogonality, symmetry and higher order of vanishing moments.
These properties allow multiwavelets to outperform scalar wavelets in some appli-
cations, e.g. signal denoising [3]. We conducted experiments and found that it is
feasible to use multiwavelet features in handwritten numeral recognition.

In Chapter 3, we present two novel descriptors for feature extraction by using
ridgelets, wavelet cycle-spinning, and Fourier features. Ridgelets have been developed
recently and have many advantages over wavelets in applications to image processing.
However, those ridgelets have been developed over a square domain. For pattern
recognition, ridgelets over a square cannot be used to extract invariant features. To
avoid this difficulty, we have successfully implemented ridgelets on a disk. For the
first descriptor, we combine this new implemented ridgelets with Fourier transform to
extract rotation-invariant features for pattern recognition. For the second descriptor,
we extract rotation-invariant features by using ridgelets, wavelet cycle-spinning, and
Fourier transform. The two descriptors are very robust to Gaussian noise even when
the noise level is very high. Experimental results show that the two descriptors are
excellent choices for pattern recognition.

Multiwavelets give better results than single wavelets for signal denoising ([67],
[34], [3]). In Chapter 4, we study multiwavelet thresholding by incorporating neigh-
bouring coefficients. Experimental results show that this approach is better than
the conventional approach which only uses the term-by-term multiwavelet denoising.
Also, it outperforms neighbour single wavelet denoising for some standard test signals
and real life images. This is an extension to Cai and Silverman’s work [5].

The denoising of a natural image corrupted by Gaussian noise is a classical prob-
lem in signal or image processing. Donoho and his coworkers at Stanford pioneered

a wavelet denoising scheme by thresholding the wavelet coefficients arising from the
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standard discrete wavelet transform. This work has been widely used in science and
engineering applications. However, this denoising scheme tends to kill too many
wavelet coefficients that might contain useful image information. In Chapter 5, we
propose one wavelet image thresholding scheme by incorporating neighbouring coef-
ficients for both TT and non-TT cases. This approach is valid because a large wavelet
coeflicient will probably have large wavelet coefficients as its neighbours. Experi-
mental results show that our algorithm is better than VisuShrink and the TI image
denoising method developed by Yu et al. [81]. We also investigate different neigh-
bourhood sizes and find that a size of 3 X 3 or 5 x 5 is the best among all window
sizes.

Image denoising by means of wavelet transforms has been an active research topic
for many years. For a given noisy image, which kind of wavelet and what threshold we
use should have significant impact on the quality of the denoised image. In Chapter 6,
we use Simulated Annealing to find the customized wavelet filters and the customized
threshold corresponding to the given noisy image at the same time. Also, we consider
a small neighbourhood around the customized wavelet coefficient to be thresholded.
Experimental results show that our approach is better than VisuShrink, NeighShrink
and the wiener?2 filter that is available in Matlab Image Processing Toolbox.

Finally, Chapter 7 gives the conclusions of current work and proposes the future

work in the areas of pattern recognition and denoising.
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Chapter 2

Contour-Based Handwritten
Numeral Recognition using
Multiwavelets and Neural

Networks!

2.1 Introduction

Handwritten numeral recognition is an important problem of optical character recog-
nition (OCR) [74]. Among all existing techniques, one important approach is to
extract the outer contour of the handwritten numeral. Since the contour is periodic,
it is well suited for Fourier-based methods. Zahn and Roskies [82] defined the cumu-
lative angular function ¢(!) as the net amount of angular bend between the starting
point and the point with arc length /. They normalized ¢(I) so that it is periodic.

Suppose the Fourier expansion is

¢(t) = po + > _(ax cos kt + by sin kt)

1This work was published in the Pattern Recognition Journal [14]. We believe this is the first
published paper using multiwavelet transforms in pattern recognition.
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They defined rotation- and mirror-invariant features A, = m and rotation-
invariant features Fy; = j x a — k * oj, where oy, = tan~*(bg/ay). However, they
warned that o4 is unreliable when Ay is very small. Therefore, Fj; may be unreliable
under this condition. Granlund [38] generated a complex-valued function u(t) for the

contour. Suppose the Fourier coefficients a,, is defined as
1 /T :
Uy = —/ u(t)e I T gy
T Jo

then he defined scale- and rotation-invariant features

b . af1+na1—n
n 2
aj

and
n/k
D _ Qg
mn — m/k
a1—p

where k is the greatest common divisor of m and n. He also defined features that are
scale-invariant, but depend on rotation.

Spline curve approximation is also frequently used on contour. Paglieroni [55]
represented contours in the spatial domain by far fewer B-spline control points than
the contour samples. Under proper conditions, there exists a fast transform from con-
tours to these control points. It was shown that discriminant analysis between pairs
of normalized and similarly modelled contours can be efficiently performed directly
from control points. Taxt et al. [69] approximated the contour by a parametric spline
curve. The curvatures are calculated and the values measured at regular intervals
of these derived spline curves were used as descriptors in a statistical classification
scheme. The features are translation-invariant by nature, but are dependent on ro-
tation. Sekita et al. [57] used splines to approximate the contour and defined the
breakpoints as the maximum points of curvature functions of the contours. The con-
tours between adjacent breakpoints are extracted in the form of directed curves which

compose the features of a character. Yang et al. [79] calculate the curvature of the
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contours of handwritten numerals by means of high order B-splines to recognize sim-
iliar handwritten numerals. The features extracted are rotation-invariant. Artificial
neural network and support vector machines are used in the classifier.

Recently wavelet descriptor has been used for printed handwritten character recog-
nition. Wunsch et al. [77] proposed to use wavelet features in combination with
feed-forward neural networks. Because they employed the wavelet transform with
down-sampling, the wavelet features can get quite different coefficients even if the
contour is shifted very little. In addition, they extracted wavelet features from z and
y coordinates independently.

In this Chapter, we present a novel shape descriptor for the recognition of hand-
written numerals. The descriptor is derived from the multiwavelet shell expansion of
an object’s contours. The motivation to use multiwavelet basis is threefold. First,
multiwavelets provide a localized frequency representation, which can reflect local
properties much better than Fourier based method. Second, orthonormal multi-
wavelets provide a natural hierarchical multiresolution representation, and there is
substantial evidence that the human visual system use similar mutiscale representa-
tions. Third and more importantly, the contour is represented by two streams of data
(z,y)T, so it is natural to use multiwavelet transform instead of the scalar one. Since
we decompose the contour into orthonormal multiwavelet shell, the bad behaviour
of down-sampling in pattern recognition can be avoided. To make it more clear,
for wavelet transform with down-sampling we can get quite different wavelet coeffi-
cients even if we only shift the input signal a few sample points. On the contrary,
the orthonormal shell decomposition does not have this problem. In fact, we have
successfully used scalar orthonormal shell and Fourier transform to extract invari-
ant features in [4]. We trained the neural network with 4000 handwritten numerals.
The test dataset consists of 2000 handwritten numerals. The handwritten numeral
databases are from the Centre for Pattern Recognition and Machine Intelligence at
Concordia University (CENPARMI). Experimental results show that our proposed

method is better than the wavelet neural network method in [77].

25



The Chapter is organized as follows. Section 2.2 explains what an orthonormal
shell is. Section 2.3 presents the orthonormal multiwavelet neural network descriptor.

Section 2.4 shows some experimental results.

2.2 The Orthonormal Shell Expansion

In this section, we generalize the orthonormal shell expansion, developed in [56] for
the scalar wavelet, to the multiwavelet case. Basically speaking, a shell is a mul-
tiresolution wavelet decomposition of the original signal where no down-sampling is
performed. That means we get the same number of wavelet coeflicients for every
decomposition scale. It should be mentioned that the coefficients of an orthogonal
multiwavelet expansion are not shift-invariant. However, if all the multiwavelet co-
efficients of n circulant shifts of the streams are computed, we may use them when
shift invariance is important. Based on this observation, the notion of a shell (much
more redundant than a frame) was introduced in [56] to obtain a redundant but
shift-invariant family of functions.

In our applications, there is always the finest and the coarsest scales of interest and
therefore the number of scales is finite and we can consider only shifts by multiples
of some fixed unit. Assuming that the finest scale is described by the n-dimensional
subspace Vj and consider only circulant shifts in V4. Let V; be the subspace describing
the coarsest scale (1 < jo < J) where n = 27, and let U, ;(t) = 23 ¥(2/(¢ — k)) and
O, 4(t) = 2‘%<I>(2"j(t — k)). Therefore, the functions {W;x}1<;<jo0<k<2s-i—1 and

{®@jo,1 }o<k<ai—io—1 generate the coefficients S? and Di:

Si = / F(t)®;4(t)de, (33)

and

Di = / F()U, 4(t)ds. (34)

where j = 1,2,..., jo regulates scale and k = 0,1,...,2/77 — 1 regulates shift. Here
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F(t) is the original input multi-stream functions. The coefficients {Di}lf <o 0<k<2T—i~1
are known as orthonormal wavelet coefficients.

In the case of orthonormal shell decomposition, Saito and Beylkin defined the
functions {W;x(t)}1<j<jo0<hcor—1 and {®j, x(f) Yo<k<a7—1 as a shell of the orthonor-
mal wavelets for shifts in V5. As a consequence, the coefficients {D£}1§j§jo,0§k§21—1
and {Sio}oskszJ_l are called the orthonormal shell coefficients. Clearly the set of
coefficients in the orthonormal shell is much more abundant and overly redundant
compared to the set of coefficients in the orthogonal multiwavelet transform. How-
ever, this redundancy is needed for our shift invariant property.

Assuming that the orthonormal multiwavelet coefficients of the finest scale {Sp }o<k<n-1
are given as an original signal stream and let us consider the function F' = Y37 S2® .
The orthonormal shell coefficients of this function F' are obtained from the filters

H = {HZ}OSlSL—l and G = {Gl}OglgL—l

L-1 )
SI=v2Y HSI -, (35)
=0
and
. L_1 v
Dl =v2Y GiSiTh, (36)
=0

forj=1,...,50, k=0,...,2779 — 1. The complexity of (35) and (36) is O(nlogn).
It is easy to show that the recurrence relations (35) and (36) compute the or-
thonormal wavelet coefficients of all circulant shifts of the function F. For DI, the

first scale is:

-1 I—1 -1
Dy = V2 Z GlSIS—i—l =2 > Gngk-{—l +V2 Z Glsgk+1+l =Dy, + D;k+1' (37)

for k=0,...,2 1.
It is clear that the sequence {DJ,} contains all the orthonormal multiwavelet

coeflicients that appear if F'(x) is circularly shifted by even numbers and the sequence
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{D}; 11} contains all the orthonormal multiwavelet coefficients for odd shifts.

Similarly, at the j-th scale

2ch+m =2 Z GiS; 25— 1 (2k-+1)+m> (38)

and

2Jk+m =2 Z H, S50 1 (2k+1)+m (39)

fork=0,1,...,277%, m=0,1,...,22 - 1.

The sequences {DJ;,}, {D%;, IR (D%, +0i_1} contain the orthonormal multi-
wavelet coefficients of the j-th scale of the signal shifted by 0,1,...,27—1, respectively.
Therefore, the set {Di}lgjgjo,ogkgﬂ—io_l and {Sﬁ°}0§k§2J—jo_1 contain all the coef-
ficients of the orthonormal wavelet expansion of F(t), F(t+ 1), ..., F(t +n —1).
This set of coefficients defines the orthonormal shell decomposition. The diagram for

computing these coefficients is illustrated in Figure 5.

rlfz/ﬁ/....O...0.0.
T//O/O0.0Q0.0.0

s2 O%/' O O
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Figure 5: A scheme illustrating the algorithm for expanding a signal into multi-
resolution scales using the filter H = (Hy, Hy, Hy, H3).
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2.3 Orthonormal Multiwavelet Neural Network De-
scriptor

Feature selection is the critical step in the recognition process, and what distinguishes
OCR methodologies from each other are the types of features selected for represen-
tation. For a good feature extraction algorithm, it is desirable to have the properties
of invariance in terms of translation, rotation, and scale. In handwritten recognition,
however, the property of rotation invariance is not necessary, on the contrary it may
lead to confusion of characters like ’6’ and ’9’.

In this section, we introduce a descriptor which uses an orthonormal multiwavelet
and a neural network to recognize handwritten numerals. In order to get invariant
features, we have to normalize the handwritten numeral and its contour. Translation-
invariance can be easily achieved by moving the coordinate system origin to the
centroid of the handwritten numeral. For the starting point of the contour, we adopt
the normalization method used in [77]. Suppose O is the upper-left corner of the
minimal bounding rectangle of the handwritten numeral, we select the starting point
as the point on the handwritten numeral that has the shortest distance from O. After
finding the starting point, we can trace the contour by following the outer contour in
the clock-wise direction. In order to eliminate the size difference, we have to resample
the contour so that the total number of contour points is fixed, say 64. We also need
to size-normalize the contour so that the handwritten numeral falls into a unit circle.
This finishes the normalization stage. We perform orthonormal multiwavelets shell
expansion on this normalized contour and input the multiwavelets coefficients or the
average to a feed-forward neural network.

The algorithm can be summarized as follows:

1. Find the starting point and trace the outer contour of the handwritten numeral.

2. Resample the contour to a fixed number of points and scale the contour so that

it falls into the unit circle.
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3. Apply orthonormal multiwavelet shell expansion to the contour (z,y)7.

4. Feed the multiwavelet coefficients or the average into neural networks.

Figure 6 gives an example of this algorithm applied to a handwritten numeral. The
numeral is displayed in binary format in (a). The contour of the numeral with a
staring point is shown in (b). The z and y coordinates of the normalized contour are
showed in (c) and (d), respectively. The orthonormal multiwavelet expansions of the
contour are shown in (e) and (f). Here the orthonormal multiwavelet expansions are
applied to (z,y)T together instead of x and y separately. It should be mentioned that
in this figure —1, —2, —3 mean multiwavelet levels D', D2, D3, respectively, whereas
—4 means the average S3.

The main advantage of the orthonormal shell decomposition is that it decomposes
a signal into multiresolution levels without down-sampling. As we know, the wavelet
transform with down-sampling can produce significantly different coefficients even
if the input signal is shifted only slightly. This is the main limitation of wavelet
transforms in pattern recognition. For the shell expansion, we prefer multiwavelets
to scalar wavelets because we have two coordinates z and y for each point on the
contour. If we extract features from x and y separately, just as Wunsch et al. did
[77], then we may not get the best features. In addition, we know that multiwavelets
have advantages over scalar wavelets, such as short support, orthogonality, symmetry
and higher order of vanishing moments. These properties allow multiwavelets to
outperform scalar wavelets in some applications (e.g. signal denoising [3]).

In theory, the matching process can be performed from coarse to fine resolution.
For each resolution, we input the features of the handwritten numeral into the neural

network and have three decisions to make:

1. Accept the handwritten numeral as a specific pattern if the minimum distance
between the network output and the desired output for every class is below a

predefined threshold e;.

30



(a)

(b)

5 5
10 10
>
15 15
20 20
25
25
0 10 20
X Contour
) (e)
0.8 0
0.6 -l ——
x
0.4 £
B D]
[:3)
> 02 3
e e e VN
0 kS
=)
-0.2 -4 /\_\/
~0.4 \

Figure 6: An illustration of the orthonormal multiwavelet descriptor: (a) the hand-
written numeral in binary format, (b) the contour of the numeral with a starting
point, (c) the z coordinate of the normalized contour, (d) the y coordinate of the nor-
malized contour, (e) the first component of the orthonormal multiwavelet expansion,
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2. Reject the handwritten numeral if the distance is above a predefined threshold

€9 .

3. Mark the handwritten numeral whose distance is between ¢; and ¢, as to be

determined and begin the next iteration.

If the handwritten numeral is accepted or rejected, the matching process is then
terminated. If the handwritten numeral is undetermined, we continue the matching
process to the next finer resolution, but only those entries that are marked as “to be
determined” are used. Even though the above mentioned multi-resolution approach
is similar to human simultaneous interpretation of visual information, it is not trivial
to apply it in real applications. There are two aspects to consider. First, we have to
determine a threshold in order to provide guidelines for acceptance, rejection, and “to
be determined”. There is no way to determine an optimal threshold mathematically.
One has to choose it experimentally. Second, significant features are lost at very
low resolutions and it is likely that for very high resolutions the intraclass variance
will become larger because of the deformation of the pattern and the accumulation
errors during the transformations. Therefore, it is desirable to use only intermediate
resolutions during the classification phase.

Multilayer feed-forward neural networks [39] have been used in OCR for many
years. These networks can be treated as feature extractors and classifiers. In our
work, the network has 10 output nodes, one for each of the ten digit classes '0’ - '9’
(Figure 7). Each node in a layer has full connections from the nodes in the previous
layer and the proceeding layer. During the training phase, connection weights are
learned. The output at a node is a function of the weighted sum of the connected nodes
at the previous layer. We can consider a feed-forward neural network as constructing
decision boundaries in a feature space. As the number of layers and nodes increases,
the flexibility of the classifier increases by allowing more and more complex decision
boundaries. Neural networks can also perform hierarchical feature extraction. Each

node sees a window in the previous layer and combines the low-level features in
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this window into a higher level feature. So the higher the layer, the more global
the features that are extracted. A typical example of this kind of network is the
convolution networks whose performance is very good in recognizing handwritten

characters [24], [25], [26].

2.4 Experimental Results

In order to evaluate the performance of our proposed recognition system, we use a
3-layer feed-forward neural network in our experiments. The number of nodes in each
layer is given by 40 x 20 x 10. The input layer is not given here because it depends
on the input feature size. Our experiments are performed on the CENPARMI hand-
written numeral database. This database contains 6000 unconstrained handwritten
numerals originally collected from dead letter envelopes by the U.S. postal service at
different locations. The numerals in the database are stored in bi-level format. We
use 4000 numerals for training and 2000 for testing. A sample of 100 numerals from
the database is shown in Figure 8. Some of the numerals are very difficult to recognize
even with human eyes. One thing we want to mention is that it would be best if our
proposed descriptor can be applied to a database which contains both numerals and
characters. However, since some characters have isolated parts, e.g. i’ and ’j’, it is
not a good idea to use contours to represent them. We restrict the application of our
proposed descriptor to handwritten numeral recognition. We train the neural net-
work up to 50000 epochs for all the experiments conducted in this section. For every
handwritten numeral in the database, we apply the above-mentioned orthonormal
multiwavelet shell expansion on the contour and input the multiwavelet coefficients
into the neural network. Since the numeral centroid is used as the reference point of
the system, the translation invariance property is obviously satisfied. We normalize
the number of points on the contour to 64. The orthonormal multiwavelet expansion
is performed up to level 3, i.e., we have multiwavelet coefficients levels D!, D? D3

and the average S®. The main idea of our proposed technique is to represent the
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object contour by fine-to-coarse approximation. We implemented a multi-classifier in
our experiments. For level D? we input it into the neural network to get a decision.
Also, we get a decision for level S3. If the the two decisions are the same, then the
numeral is classified. Otherwise, we use features S* and D? together to input into
the neural network and make the final decision. We get 92.20% recognition rate for
this multiclassifier.

We compare our method with the scalar wavelet neural network method intro-
duced by Wunsch et al. [77], where the scalar wavelet transform is applied to the
contour coordinates x and y separately and then different levels of wavelet coefficients
are fed into the neural network. Here, the wavelet transform uses down-sampling for
every decomposition level, so the number of wavelet coefficents is reduced by half for
every successive level. On the other hand, the orthonormal shell wavelet expansion
has the same number of wavelet coefficients for every level. In our experiment we
use the intermediate level 3 of the wavelet coefficients as features to input into the
neural network. For the same data set and neural network, the method in [77] only
gets 85.25% recognition rate. It is clear that our proposed method obtains higher
recognition rate. The main problem with Wunsch’s method is that scalar wavelets
with down-sampling are used. A wavelet transform with down-sampling can cause
quite different wavelet coefficients. That is not good for pattern recognition. Also, a
scalar wavelet does not have properties as good as a multiwavelet transform.

As mentioned in [77], the limitation of a contour-based method is that the contour
may not be closed or it may be composed of isolated parts. This is true for any
methods based on the outer contours of the objects. The positive side of this approach
is that we reduce the feature space from 2D to 1D which saves a lot of space and
processing time. Basically, this saving can be approximated as from O(n?) to O(n).
On the other hand, we sacrifice some recognition rate because of this feature reduction.

We can see this by looking at the recognition rate of this section.
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Figure 7: A neural network with two hidden layers
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Chapter 3

Rotation-invariant Pattern

Recognition using Ridgelets

3.1 Introduction

Feature extraction is a crucial step in pattern recognition. In general, good features
must satisfy the following requirements. First, intraclass variance must be small,
which means that features derived from different samples of the same class should
be close (e.g., numerically close if numerical features are selected). Secondly, the
interclass separation should be large, i.e., features derived from samples of different
classes should differ significantly. Furthermore, features should be independent of the
size, orientation, and location of the pattern. This independence can be achieved
by processing or by extracting features that are translation-, rotation-, and scale-
invariant.

The Fourier transform has been a powerful tool for pattern recognition ([1], [38],
[46], [75], [82], [44], [47]). One important property of the Fourier transform is that
a shift in the time domain causes no change for the spectrum magnitude. This can
be used to extract invariant features in pattern recognition. Translation invariance
of a 2D pattern can be achieved by taking the spectrum magnitude of the 2D Fourier

transform of the pattern. Rotation invariance can be done by performing 1D Fourier
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transform along the angle direction in polar coordinates. Scale invariance can be
accomplished by taking the logarithm of the polarized image and then conducting a
1D Fourier transform along the radius direction.

Wavelet transforms have proved to be very popular and effective in pattern recog-
nition. Here we briefly review some of the previous works on pattern recognition
by using wavelets. Bui et al. [4] proposed an invariant descriptor by using an or-
thonormal shell and the Fourier transform. The descriptor is invariant to translation,
rotation, and scaling. Chen and Bui [13] invented an invariant descriptor by using
a combination of the Fourier transform and a wavelet transform. They polarize the
pattern first, and then perform a 1D wavelet transform along the radius direction and
1D Fourier transform along the angle direction. A more elaborate version of these
two descriptors and their experiments is available in [11]. Yang et al. [80] proposed
a novel approach for image recognition based on nonlinear wavelet approximation.
They showed that the nonlinear wavelet approximation contains much more infor-
mation of the original image than the linear wavelet approximation. Lee et al. [45]
proposed a scheme for multiresolution recognition of unconstrained handwritten nu-
merals using wavelet transform and a simple multilayer cluster neural network. The
wavelet features of handwritten numerals at two decomposition levels are fed into
the multilayer cluster neural network. Wunsch and Laine [77] gave a descriptor by
extracting wavelet features from the outer contour of the handwritten characters and
feeding the features into neural networks. Their experiments were done for hand-
printed characters. In Chapter 2 we developed a descriptor by using multiwavelets
and neural networks. The multiwavelet features are also extracted from the outer
contour of the handwritten numerals and fed into neural networks. This descrip-
tor gives higher recognition rate than the one given in [77] for handwritten numeral
recognition. Khalil and Bayoumi investigated to use wavelet modulus maxima for
invariant 2D pattern recognition [41]. Tieng and Boles used wavelet zero-crossing to
recognize 2D patterns [71]. Tao et al. proposed a technique for feature extraction

by using wavelet and fractal [68]. Shen and Ip presented a set of wavelet moment
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invariants for the classification of seemingly similar objects with subtle differences
[60]. Tieng and Boles considered wavelet-based affine invariant pattern recognition
in [72] and [73].

Recently ridgelet transform has been successfully proposed to analyze digital im-
ages ([33], [63], [35], [6], [7], [8], [30]). Unlike wavelet transforms, the ridgelet trans-
form processes data by first computing integrals over different orientations and loca-
tions. A ridgelet is constant along the lines z1cosf+z4sinf = constant. Transverse to
these ridges it is a wavelet. Ridgelet transform could be successfully applied in invari-
ant pattern recognition. However, no known paper has considered this new transform
for pattern recognition. This is because the ridgelet transform defined on a square is
not suitable for extracting invariant features. In order to extract rotation-invariant
features, we implement our ridgelet transform on a unit disk. This means we discard
all those pixels that are outside the outer unit circle of the disk and consider only
the region that is within the unit circle. Our implementation is quite similiar to the
methods described in the literature, but we work on a disk. Details on our ridgelet
implementation will follow later.

In this Chapter, we present two novel descriptors for feature extraction by using
ridgelets, wavelet cycle-spinning, and Fourier transform. We extract ridgelet coeffi-
cients by doing the following. First, we normalize the pattern so that it is translation-
and scale-invariant. Second, we discard all those pixels of the pattern that fall out-
side the circle containing the pattern. This means we only work on the region that
is within the circle. Third, we project the pattern on each slice segment that passes
through the center of the circle and ends at the boundary of the circle. These slice
segments are equally spaced in angle. This is the Radon transform, but it works on
a disk rather than a square. Fourth, we perform 1D wavelet transform along each
Radon slice so that we get our ridgelet transform coefficients. In order to achieve
rotation invariance, we do it in the following two ways. First, we conduct 1D Fourier
transform along the angle direction so that the rotation variance can be eliminated.

Second, we apply wavelet cycle-spinning in the angle direction and take the Fourier
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spetra for each subband. Experimental results show that these two descriptors are
excellent choices for pattern recognition, and they are also robust to noise.

The organization of the Chapter is as follows. In Section 3.2, we explain wavelet
cycle-spinning and how to match the features of a pattern in the cycle-spinning
tree. In Section 3.3, we propose two rotation-invariant descriptors by using ridgelets,
wavelet-cycle-spinning, and Fourier transform. In Section 3.4, we conduct some ex-
periments on a database of Chinese characters and get very high recognition rate.

Noisy data are also considered in our experiments.

3.2 Wavelet Cycle-Spinning

The cycle-spinning table, also called translation-invariant (TI) table, is for discrete
scalar wavelet transform [31] and multiwavelet transform [3]. The cycle-spinning table
of a signal is an n x (J + 1) matrix S with J = log,n. Every row i of the matrix
is partitioned into n/2'! blocks. These blocks contain all the wavelet coefficients at
scale ¢ for different shifts. The first row of the matrix is used to store the low pass
coefficients. This matrix is dynamically filled during each resolution scale. The fill-in
of the cycle-spinning table is fulfilled by a series of decimation and filtering operations.
Let g and A stand for the usual down-sampling high pass and low pass operations of
the wavelet theory. Also let R, stand for circular shift by h. Set Spo = f, the 1D

signal, and initialize
Dio = gRoSop; D11 = gR1S00,

51,0 = hROSO,o; 51,1 = thso,o-

then, the recursive equations follow

Dji10k = 9RoSik;  Djy12641 = 9R1Sjk,
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Figure 9: Wavelet cycle-spinning table and the tree for calculating the distance be-
tween the unknown pattern and the pattern database.

Sjr12t = hRoSjk;  Sjyr,2k+1 = RSk

forj=1,...,J—1land k=0,1,...,271 — 1.

Fig. 9 illustrates how we can match the features of the unknown pattern to the
cycle-spinning feature tree in the feature database. As we know, the wavelet cycle-
spinning table contains the wavelet coefficients of a signal for all the shifts. For a sig-
nal with given shift, we can perform 1D wavelet transform and calculate the Fourier
spectrum of the wavelet subbands {d;,ds_1,- - -, ds3, ds, d1 }. Because the Fourier spec-
trum is symmetric, we only keep half of the coefficients. This can make the processing
time faster. In order to calculate the distance between the spectrum features of the
unknown pattern and the cycle-spinning table of the pattern database, we take the
difference between d; and every D;; for 0 < k < 2¢ in the ith row of the cycle-
spinning table. If we represent every wavelet subband as a node, then we can denote
the wavelet cycle-spinning table as a tree. Every node in the tree has two children
except the leaves. The distance can be evaluated from bottom up. For every node,
we take the minimum distance of the two children and add it to the distance of the
current node. Finally at the top, we get the distance between the unknown pattern

and the wavelet cycle-spinning table.
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3.3 Rotation-invariant Pattern Recogniton using

Ridgelets

Projection histograms have been successfully used in many applications such as seg-
menting characters, words, and text lines, as well as detecting the orientation of an
image. Basically, the horizontal projection h(z;) is defined as the number of pixels
that have the same z-coordinate z;. Similarly, the vertical projection v(y;) is de-
fined as the number of pixels that have the same y-coordinate 3;. Even though these
projections are very useful in many applications, they have such limitations as very
sensitive to rotation and writing style. Also, some important information is lost due
to the projections.

In this section, we propose two novel descriptors that overcome all these limitations
and have rotationally invariant properties. As we know, ridgelets have been recently
developed for image processing applications. However, so far ridgelets have only been
investigated on a square image. This makes it difficult to extract invariant features
by using ridgelets over a square. We successfully overcome this issue by implementing
ridgelets on a disk containing the pattern image. To be more specific, we discard all
those pixels of the pattern that are outside the outer circle of the disk and consider
only the region that is within the circle. The ridgelet transform of the pattern image
can be done by applying 1D wavelet transform on each slice of the Radon transform.
The slices of the Radon transform can be obtained by summing all the intensity values
of those pixels that are within the circle surrounding the pattern to be recognized
and on the line that is perpendicular to the ridge. The length of our ridge is the same
in the horizontal and vertical directions compared to ordinary ridgelet transform.
However, it is shorter for all other orientations especially in the diagonal directions.
Note that the variable r in the Radon domain R(r,#) is discretized using the same
dimension as the diameter of the circle, and we select twice the dimension for 6.
Due to the orientation changes of the pattern image, we arrange the Radon slices in

counter-clockwise direction in terms of 6. Therefore, the same slice is saved twice but
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in reverse order, one in the normal order for orientation (0 < # < ) and the other
one for 6 + 7. After storing the slices in this way, we can only get circularly shifted
rows for the Radon slice matrix no matter how the pattern image is rotated.

In order to eliminate the rotational variance, we can perform 1D Fourier transform
along the 6 direction and get the spectrum magnitude. Therefore, we have successfully
extracted rotation-invariant features from the pattern image. The translation- and
scaling-invariance can be achieved by the normalization techniques mentioned before.

The steps of our first invariant Ridgelet-Fourier descriptor (Descriptor A) can be

listed as follows:

1. Normalize the pattern f(z,z,) so that it is translation- and scale-invariant.

The pattern is represented as an n X n matrix.

2. Discard all those pixels that fall outside the circle with center at (n/2,n/2) and

radius n/2.

3. Project the pattern within the circle onto different orientation slices so that we
get the Radon transform coefficients. The orientation slices are line segments
that pass through the center of the circle and end at the two intersection points
of the line with the circle. The orientation angles of the slices are ordered in

counter-clockwise direction with incremental angle step 7 /n.

4. Apply 1D wavelet transform on each Radon slice to get the ridgelet coeflicients
R(r,0).

5. Perform 1D Fourier transform along the 6 direction and take the spectrum

magnitude to obtain the invariant feature FR(r,9).

6. Use the resulting invariant features to query the pattern feature database at

different resolution scales.

Fig. 10 shows the steps of out Ridgelet-Fourier descriptor in the following order: a
2D pattern, the Radon transform coefficients, the ridgelet transform coefficients, and

the invariant Fourier spectrum magnitude.
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Figure 10: The steps of our Ridgelet-Fourier descriptor A.

44



The other way to achieve rotational invariance can be done by performing wavelet
cycle-spinning along the angle direction and get the Fourier spectrum magnitude
of each wavelet subband. These features are stored in the feature database as cycle-
spinning tables for each pattern in the pattern database. For the unknown pattern, we
conduct 1D wavelet transform along the angle direction and get the Fourier spectrum
magnitude of each wavelet subband. We can guarantee that these subband features
will match exactly one branch of the cycle-spinning table tree. The distance between
the unknown pattern and the patterns in the pattern database can be done following
the idea in the previous section. The only difference is that we work on multiple
streams of data at the same time instead of a 1D signal.

The steps of operations for the patterns in the pattern database can be described

as follows:

1. Normalize the pattern so that it is translation- and scale-invariant.

2. Discard all those pixels that are outside the surrounding circle with center

(n/2,n/2) and radius n/2.

3. Project the pattern in different orientations to get the Radon transform coeffi-

cients.

4. Perform 1D wavelet transform in the Radon domain along the radius direction

to obtain the ridgelet coefficients.

5. Conduct 1D wavelet cycle-spinning along the angle direction and get the Fourier

spectrum of every wavelet subband.

6. Save these features into the feature database.

The steps of our rotation-invariant descriptor for the unknown pattern can be

described as follows:

1. Normalize the unknown pattern so that it is translation- and scale-invariant.
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2. Discard all those pixels that are outside the surrounding circle with center

(n/2,n/2) and radius n/2.

3. Project the pattern in different orientations to get the Radon transform coeffi-

cients.

4. Perform 1D wavelet transform in the Radon domain along the radius direction

to obtain the ridgelet coefficients.

5. Conduct 1D wavelet transform along the angle direction and get the Fourier

spectrum of every wavelet subband.

6. Use the resulting features to query the pattern feature database at different

resolution scales.

We call this descriptor as Descriptor B.

The main advantages of our proposed descriptors are that we project the pattern
onto all different orientation slices. Therefore, important features are extracted in the
Radon slices. The wavelet transform on each Radon slice also gives us multiresolution
representation in the feature space. In addition, the Fourier spectrum is a very
popular tool to eliminate translation/shift variance. All these good properties join
in our proposed descriptors, making it a very successful choice in invariant feature
extraction. We conduct some experiments on a database of printed Chinese characters
by using our proposed descriptor and find that it is an excellent choice for pattern
recognition. Note that our proposed descriptors work for not only Chinese characters,

but also any other 2D pattern recognition problems.

3.4 Experimental Results

In order to test the efficiency of our new descriptors, we use the same set of 85
printed Chinese characters in our experiment as in [4], [13], [11], and [83]. Fig. 11

shows the database of our 85 printed Chinese characters. Each original Chinese
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Figure 11: The Chinese character database used.

character is represented by 64 x 64 pixels. The size of the pattern in the Radon

domain is 128 X 64, and so is the number of ridgelet coefficients R(r,f). We conduct

experiments for Descriptor A and Descriptor B separately.

3.4.1 Descriptor A

For this descriptor, the size of the invariant features FR(r,6) is 64 x 64. This is
because the spectrum of 1D Fourier transform is symmetric. So we only keep half
of the Fourier coefficients. Because translation will not change the relative position
of the centre of mass of the character, our major concern is the performance of the

system on rotation and scaling. For each character, we tested ten rotation angles and
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five scaling factors. The ten rotation angles are 30°, 60°, 90°, 120°, 150°, 180°, 210°,
230°, 240° and 270°, and the five different scaling factors are 0.4, 0.6, 0.8, 1.0 and 1.2.
Fig. 12 shows a combination of rotation and scaling factors for the printed Chinese
character “zai”.

We use four kinds of wavelet transforms in our experiments, namely, Haar, Daubechies-
4, Coiflet-6, and Symmlet-8. Table 1 gives the recognition rates for different rotation
angles and scaling factors. The invariant features used here are d3 and d4 subbands.
The distance metric L; is also used in this table. We find the Daubechies-4 obtains
the best recognition rates for all rotation angles and scaling factors. It is clear that
the choice of a wavelet makes a difference in the recognition process.

The wavelet coefficients of an image have multi-resolution representation of the
original image. The coarse resolution wavelet coefficients normally represent the
global shape of the image, while the fine resolution coeflicients represent the details
of the image. Due to noise introduced in the original image and the errors accumulated
in the process of computation, the detail coefficients are becoming less important than
the intermediate scale coefficients. Also, the low frequency wavelet subbands have
lost important information of the original image. Therefore, it is desirable to use
intermediate scale wavelet coefficients as robust features in the classification phase.
We test the descriptor by using Daubechies-4 wavelet and the ridgelet coeflicients at
different resolution scales. Table 2 show the experimental results of our Descriptor
A with regard to recognition rates by using features at different scales. It is clear
that intermediate scales d3 and d4 carry the most significant invariant features and
achieve the highest recognition rates for all orientation angles and scaling factors.
The high frequency subbands d; and d; are very sensitive to noise and accumulation
errors. Also, the average sg and the low frequency subbands dg, ds have lost important
information. Therefore, all these subbands are not very good for pattern recognition.
On the contrary, the intermediate frequency subbands d; and d4 are our best choices.

We also test the noise tolerance and sensitivity of our proposed descriptor. The

noisy images with different orientations are generated by adding white noise to the
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noise-free images. The signal to noise ratio (SNR) is defined as

\/Ei,j(fi,j —avg(f))?
\/Zi,j(ni,j — avg(n))?

SNR =

where f is the noise-free image, n is the added white noise, and avg(f) is the average
value of the image f. Fig. 13 shows some noisy patterns for SNR = 20, 15, 10, 5,
4, 3, 2, 1, and 0.5, respectively. We test our descriptor for SNR = 20, 15, 10, 5,
4, 3, 2, 1 and 0.5, and for rotation angle = 30°, 60°, 90°, 120°, 150°, 180°, 210°,
240°, and 270°. Daubechies-4 wavelet is used in this experiment. The features d3
and d4 are used in the classification phase. Also, two different distance metrics, L,
and L4, are employed. The results are tabulated in Table 3 and Table 4, respectively.
Our experiments verify that our proposed descriptor A is very much robust to white
noise. Also, L; metric gives slightly better results than L, metric. However, the two
distance metrics do not make too much difference.

We compare the recognition rates of our descriptor A with those of [4], [13], and
[11]. In [4] an invariant descriptor using orthonormal shell and the Fourier transform
was proposed. The descriptor is invariant to translation, rotation, and scaling. In [13]
we described an invariant descriptor by using a combination of Fourier transform and
wavelet transform. The pattern was first polarized, then a 1D wavelet transform along
the radius direction and 1D Fourier transform along the angle direction are performed.
A more elaborate version of these two descriptors and their experiments is available
in [11]. We use the same database for our proposed Ridgelet-Fourier descriptor and
for [4], [13], and [11]. Our descriptor A consistently gets higher recognition rates for
all combinations of rotation angles and scaling factors. For noisy pattern recognition,
the results are shown in Table 3 and Table 4, and Table 5 for our descriptor and the
one used in [13], respectively. It is clear that our descriptor A is much better than
the descriptor described in [13]. For SNR = 0.5, it is even difficult for humans to
recognize the noisy patterns, however note that the proposed descriptor A performs

very well. This indicates that our descriptor A is very robust to noise even when the
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Different Scaling Rotation
Wawvelets Factor | 30° 60° 90°  120° 150° 180° 210° 240° 270°
1.2 08.82 98.82 98.82 9882 97.65 97.65 98.82 98.82 98.82
1.0 100 100 100 100 100 100 100 100 100
Haar 0.8 100 100 100 100 100 100 100 100 100
0.6 100 100 100 98.82 98.82 100 98.82 100 100
0.4 92.94 95.29 95.29 88.24 88.24 95.29 91.76 89.41 97.65
1.2 100 100 100 100 100 100 100 100 100
1.0 100 100 100 100 100 100 100 100 100
Daubechies-4 0.8 100 100 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 100 100 100
04 97.65 100 100 97.65 95.29 98.82 96.47 97.65 08.82
1.2 100 100 98.82 98.82 98.82 95.29 97.65 100 100
1.0 100 100 100 100 100 100 100 100 100
Coiflet-6 0.8 100 100 100 100 100 100 100 100 100
0.6 100 100 100 98.82 98.82 100 98.82 100 100
0.4 97.65 100 97.65 97.65 95.29 98.82 95.29 96.47 98.82
1.2 100 100 97.65 97.65 95.29 97.65 97.65 97.65 97.65
1.0 100 100 100 100 100 100 100 100 100
Symmlet-8 0.8 100 100 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 98.82 100 100
0.4 08.82 98.82 97.65 97.65 96.47 98.82 95.29 96.47 98.82

Table 1: The recognition rates for different wavelets.

noise level is very high.

We also tested our descriptor under occlusion. For every pattern in the pattern

database, we cut off the upper left-hand side corner and set the pixel values to zero.

Fig. 14 shows an original Chinese character and a series of more and more partially

occluded images. We produce the occluded characters for the whole pattern database,

and test the recognition rates of our proposed descriptor for all combinations of ro-

tation and scaling. The ridgelet-Fourier works well for low to intermediate levels of

occlusions and it breaks down when we trim more than 50% of the pixels of the orig-

inal image. Table 6 gives the recognition rates for the occlusion case (c) in Fig. 14.

It is clear that the proposed descriptor is quite robust to occlusion.
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Figure 12: A combination of rotation and scaling factors for character “zai”



Wavelet | Scaling Rotation
features | Factor | 30° 60° 90° 120° 150° 180° 210° 240° 270°
1.2 100 100 100 100 100 100 100 100 100
1.0 100 100 100 100 100 100 100 100 100
doy,d3,dy 0.8 100 100 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 98.82 100 100
0.4 96.47 100 100 96.47 96.47 97.650 94.12 98.82 98.82
1.2 100 100 100 100 100 98.82 98.82 100 100
1.0 100 100 100 100 100 100 100 100 100
da,ds 0.8 100 100 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 98.82 100 100
0.4 9647 97.65 97.66 94.12 92.94 95.29 90.59 90.59 97.65
1.2 100 100 100 100 100 100 100 100 100
1.0 100 100 100 100 100 100 100 100 100
d3,ds 0.8 100 100 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 100 100 100
0.4 97.65 100 100 97.65 95.29 98.82 96.47 97.65 98.82
1.2 100 100 100 100 100 100 100 100 100
1.0 100 100 100 100 100 100 100 100 100
ds,ds,ds 0.8 100 100 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 100 100 100
0.4 95.29 95.29 100 95.29 92.94 96.47 94.12 95.20 98.82
1.2 100 100 100 100 100 100 100 100 100
1.0 100 100 100 100 100 100 100 100 100
ds3,dy,ds,dg 0.8 100 100 100 100 100 100 100 100 100
0.6 100 100 100 100 98.82 100 98.82 100 100
0.4 94.12 90.59 95.29 92.94 87.06 91.76 85.88 90.59 95.29
1.2 100 100 100 100 100 98.82 100 100 98.82
1.0 100 100 100 100 100 100 100 100 100
dy,ds,dg 0.8 100 100 100 100 100 100 100 100 100
0.6 100 97.65 100 98.82 95.29 100 96.47 94.12 100
0.4 78.82 87.06 78.82 71.76 69.41 70.59 67.06 71.76 81.18
1.2 100 100 100 100 98.82 98.82 98.82 98.82 98.82
1.0 100 100 100 100 100 100 100 100 100
dy,ds 0.8 100 100 100 100 100 100 100 100 100
0.6 100 98.82 100 98.82 97.65 100 98.82 100 100
0.4 94.12 90.59 90.59 88.24 85.88 85.88 83.53 87.06 88.24

Table 2: The recognition rates for different rotation and scaling factors. Daubechies-4
is used in this table.
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Figure 13: The noisy patterns with SNR = 20, 15, 10, 5, 4, 3, 2, 1, and 0.5, respec-
tively.

Different Rotation
SNR 30°  60° 90° 120° 150° 180° 210° 240° 270°
20 100 100 100 100 100 100 100 100 100
15 100 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100
0.5 98.82 100 100 100 100 100 100 98.82 100

Table 3: The recognition rates for different SNR’s using L, distance by using features
d3 and d4.
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Different Rotation
SNR 30° 60° 90° 120° 150° 180° 210° 240° 270°
20 100 100 100 100 100 100 100 100 100
15 100 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 98.82 100 100
0.5 100 100 100 100 100 98.82 100 97.65 100

— DD QO

Table 4: The recognition rates for different SNR’s using L, distance by using features
d3 and dj.
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Figure 14: The original and occluded patterns.

3.4.2 Descriptor B

We give the memory requirement of this descriptor here. The wavelet cycle-spinning
table has a dimension of 128 x 64 x 9. Since the spectrum of 1D Fourier transform
is symmetric, we only keep half of the Fourier spectrum of every wavelet subband.
Therefore, the size of the final invariant features in the feature database is 64 x 64 x 9.

Our major concern in our experiments is the performance of the system on rota-
tion. For each character, we tested ten rotation angles 30°, 60°, 90°, 120°, 150°, 180°,
210°, 230°, 240° and 270°. We use two intermediate wavelet subbands, ds and dy, for
the wavelet transform in the process of obtaining ridgelet coefficients. We use three
wavelet subbands, D4, Ds and Dg, for wavelet cycle-spinning. Daubechies-4 wavelet
is used in this experiment. For all these rotation angles, we get 100% recognition rate
without errors.

We also test the performance of our proposed descriptor B on noisy data. The
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Different Rotation
SNR 30° 60° 90° 120° 150° 180° 210° 240° 270°
20 100 100 100 100 100 100 100 100 100
15 106 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100
2 100 100 100 97.65 97.65 98.82 100 98.82 100
1 90.59 89.41 89.41 85.88 84.71 87.06 87.06 84.71 89.41
0.5 60.00 55.29 56.47 44.71 50.59 48.24 45.88 47.06 60.00

Table 5: The recognition rates of [13] for different SNR’s.

Scaling Rotation

Factor | 30° 60° 90° 120° 150° 180° 210° 240° 270°
1.2 97.65 97.65 96.47 97.65 97.65 95.29 97.65 97.65 96.47
1.0 100 100 100 100 100 100 100 100 100
0.8 100 100 100 97.65 98.82 98.82 98.82 98.82 98.82
0.6 98.82 98.82 97.65 96.47 96.47 95.29 98.82 98.82 98.82
0.4 95.29 95.29 95.29 90.59 88.24 82.35 88.24 91.76 90.59

Table 6: The recognition rates of the proposed descriptor for the occlusion case (c)
in Fig. 14.
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Different Rotation
SNR 30° 60° 90° 120° 150° 180° 210° 240° 270°
20 100 100 100 100 100 100 100 100 100
15 100 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100 100
1 100 100 100 98.82 98.82 100 100 100 100
0.5 97.65 97.65 100 88.24 94.12 97.65 90.59 89.41 100

Table 7: The recognition rates for different SNR’s.

noisy images with different orientations are generated by adding white noise to the
noise-free images. Daubechies-4 wavelet is used in this experiment. The same features
are used as before. The results are listed in Table 7. It is clear that our proposed
descriptor is very robust to white noise.

We also compare the recognition rates of our proposed descriptor with those of
[4], [13], and [11]. Chen did some experiments in [11] by using the descriptor given
in [13] and got about 97% recognition rate when SNR = 2. By using our proposed
descriptor and setting SNR = 2, we obtain 100% recognition rate for all the rotation
angles. In addition, we get nearly 100% recognition rate for SNR = 1 and nearly
95% for SNR = 0.5. This indicates that our proposed descriptor B is very robust to
Gaussian white noise even when the noise level is high.

By looking at the recognition rates for algorithm A and B, we find that algorithm
A performs better than algorithm B when the noise level is high. However, when the

nosie level is low or moderate, the two algorithms have similiar performance.
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Chapter 4

Signal Denoising using

neighbouring coefficients?

4.1 Introduction

Let g(t) be the noise-free signal and f(t) the signal corrupted with white noise z(t),
ie., f(t) = g(t) + oz(t), where 2(t) has a normal distribution N(0,1). The basic pro-
cedure to denoising is transforming the signal into wavelet domain, thresholding the
wavelet coeflicients, and then performing the inverse wavelet transform. Traditional
approaches use a term-by-term method that does not consider the influence of other
wavelet coefficients on the wavelet coeflicient being thresholded.

Many authors have proposed denoising schemes that consider the influence of
other wavelet coefficients in addition to the current coefficient. Cai and Silverman [5]
gave a new thresholding scheme by taking the immediate neighbour coefficients into
account. They claimed that this approach gives better results over the traditional
term-by-term approach for both translation invariant (TI) and non-TI single wavelet
denoising. Simoncelli and Adelson [62] proposed a bayesian wavelet coring approach

by incorporating the higher-order statistical regularity present in the point statistics

2This work was published in IEEE Signal Processing Letters [12)].
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of subband representation. Crouse et al. [23] developed a framework for statisti-
cal signal processing based on wavelet-domain hidden markov models (HMM). The
framework enables us to concisely model the non-Gaussian statistics of individual
wavelet coefficients and capture statistical dependencies between coefficients. Sendur
and Selesnick [58] developed a bivariate shrinkage function for denoising. Their re-
sults showed that the estimated wavelet coefficients depend on the parent coefficients.
The smaller the parent coefficients, the greater the shrinkage. Mihcak et al. [54] per-
formed an approximate maximum a posteriori (MAP) estimation of the variance for
each coeflicient, using the observed noisy data in a local neighbourhood. Then an
approximate minimum mean squared error estimation procedure is used to restore
the noisy image coeflicients.

In this Chapter we extend Cai and Silverman’s idea to the multiwavelet case.
Multiwavelets have been developed by using translates and dilates of more than one
mother wavelet functions ([36], [67], [78]). In multiwavelet transform, the low-pass
and high-pass filters are two sets of M x M matrices. We need to perform a prefilter
on the 1-D input signal in order to convert the 1-D input signal to multiple stream
data. Also, we need to do a postfilter to transform from the multiple stream data
into a 1-D signal. This postfiltered signal is equal to the original signal if no thresh-
olding is performed. Multiwavelets are known to have several advantages over single
wavelets such as short support, orthogonality, symmetry, and higher order of vanish-
ing moments. It is claimed that multiwavelet denoising outperforms single wavelet
denoising in [67], [34] and [3]. The experimental results in this Chapter show that by
using neighbouring coefficients we get smaller mean-square-errors (MSE) for both T1
and non-TT multiwavelet denoising. Also, we find that neighbour multiwavelet de-
noising outperforms neighbour single wavelet denoising for some signals, e.g. Blocks
and Doppler, and real life images.

The organisation of this Chapter is as follows. Section 4.2 explains how we can
incorporate neighbouring multiwavelet coefficients into signal denoising. Section 4.3

shows some experimental results.
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4.2 Incorporating Neighbouring Coefficients in Mul-
tiwavelet Denoising

The basic motivation of neighbour thresholding is that: if the current coefficient
contains some signal, then it is likely that the two neighbour coefficients also do. For
this reason, at each location we threshold every coefficient by using the coefficient at
that location as well as the coefficients of the two neighbours. Cai et al [5] proposed the
following thresholding scheme for single wavelet denoising. If S, = d?, ,+d5 +d%;,,
is less than or equal to A%, then we set the wavelet coefficient d; x to zero. Otherwise,

we set it to
dig = dip(1—N/S2})

where A = y/202logn, ) is the variance of the Gaussian noise and n is the length of
the signal. This threshold A was proposed by Donoho and his coworkers ([31], [32])
and it is shown to be an optimal threshold. It should be mentioned that if d;x is at
the left (right) boundary of level j wavelet coefficients, we omit the first (last) term
in 7.

For multiwavelet denoising, we have multi-streams of multiwavelet coeflicients
Djr. Suppose we apply the discrete multiwavelet transform with an appropriate
prefilter to a noisy function, then we get M stream coeflicients of the form, D, =
Dz, + Ejk, where Ej has a multivariate normal distribution N (0, V). The matrix
V; is the covariance matrix for the error term which depends on the resolution scale
j. Using the standard transform 8, = DT, V. "' D, ;, we obtain a positive scalar value
which in the absence of any signal component will have a x2, distribution, where M
is the number of elements in D; ;. It is these §;; values that are thresholded, and the
coefficients vectors can then be adapted accordingly. More detailed explanation on
the optimal threshold and the x?2, distribution of 8, is given in [34].

We can use a robust covariance estimation method to estimate V; directly from
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the observed coefficients [40]. The pseudo code for robust covariance estimation can

be listed as follows:

#define mad(y) 1.4826 * median(abs(y — median(y)))
float ay, as, by, by, V;[2][2);

a = 1.0/mad (row);

as = 1.0/mad (row,);

by = mad (a; * row; + ay * row,);
by = mad (a; * Tow; — ag * rowWs);
Villll] = 1/(a1*a);

Vi[2]12] = 1/(ap *as);

Vill][2] = (b1 = b2)/((b1 + b2) * a1 * az);
Vil2lll] = V5[],

In the first row, y is a row vector and we give the definition of mad(y). We use this
definition to calculate a;, ag, b1, and by by replacing y with row;, row,, etc. Here
row, and rows, are the two rows of multiwavelet coefficients at scale j that contains
Djy.

Applying the highpass and lowpass multiwavelet filters will spread the depen-
dence between multiwavelet vector coefficients. A large multiwavelet coefficient will
probably have large coefficients as its neighbours. Therefore, incorporating neighbour
multiwavelet coefficients in the thresholding step should also work for signal denois-
ing. Let 7 be a non-negative integer and ST, =07, _,+07,+67 . ,, then the neighbour

multiwavelet thresholding formula is given by

Dy =

) { Dis(1— &) i Sjp >y

0 otherwise

where p is given by 2logn. Since u is a threshold for the multiwavelet coefficients

0k, we know that " is a threshold for 87 ,. If we want to incorporate the immediate
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neighbour coefficients into the thresholding formula, we can threshold the above de-
fined S}, using u" as a threshold. When r =1 and the coefficients are not correlated,
57 will have a x2,, distribution in the absence of any signal component. This means
a larger i should be chosen for neighbour multiwavelet denoising [34]. However, since
the multiwavelet coeflicients may be correlated, it is not easy to analyze it theoreti-
cally. In our experiments, u is set to the same value 2logn for different r. We also
find that r = 2 always performs better than r = 1. So we prefer r = 2 when using

neighbour multiwavelet denoising.

We can give the neighbour multiwavelet denoising algorithm as follows:

1. Use a prefilter to change the original 1-D noisy signal into multiple stream data.
2. Perform forward multiwavelet transform (TI or non-TI) on this multiple data.
3. Apply the thresholding scheme by using neighbouring multiwavelet coefficients.

4. Perform inverse multiwavelet transform (TI or non-TI) on the thresholded mul-

tiple stream data.

5. Apply a postfilter to the denoised multiple stream data to get the denoised 1-D

signal.

4.3 Experimental Results

In our experiments we use the standard test signals given in [22|: Blocks, Bumps,
HeaviSine, and Doppler. Gaussian white noise is added to the signals so that the
root-signal-to-noise-ratio (RSNR) is 7. The RSNR is defined as \/W, where
var(f) is the variance of the signal f(¢). The number of sample points for each
signal is n = 2048. Unless otherwise specified, we use the minimal repeated signal
prefilter for the TT multiwavelet denoising experiments. The prefilter and forward
multiwavelet transform are performed, and then the coeflicients are thresholded using

neighbouring coefficients. We experiment with both the TI and non-TT cases. Also the
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thresholding is done for both term-by-term and neighbouring coefficients. The inverse
multiwavelet transform and post-filter are applied to obtain the smoothed estimate of
the noise-free signal. All detail scales except the five coarsest scales are thresholded.
The mean square error (MSE) is used as the distance measure between the noise-free
signal and the denoised signal. We use NeighCoeff to represent wavelet thresholding
using neighbouring coefficients. We give our experimental results in Table 8. In
this table, GHM is the well-known GHM multiwavelet transform [36]. Also, D4 is the
Daubechies-4 single wavelet. It is shown that the neighbour multiwavelet thresholding
method is better than the term-by-term multiwavelet thresholding method for both
TI and non-TI cases. This is true for both » = 1 and r = 2. Note that TI NeighCoeff
multiwavelet denoising is better than non-TI NeighCoeff multiwavelet denoising. We
can also see that r = 2 is better than » = 1 for all four signals. Also, when r = 2
neighbour multiwavelet denoising outperforms neighbour single wavelet denoising for
signals Blocks and Doppler. However, neighbour single wavelet denoising is better for
Bumps and HeaviSine. We illustrate some figures from our experiments. Figure 15
shows the four noise-free signals and the noisy signals. Figure 16 illustrates the
denoised signals with TI D4 term-by-term thresholding. Figure 17 shows the denoised
signals with T1 D4 neighbour coefficient thresholding. Figure 18 gives the denoised
signals by using term-by-term multiwavelet thresholding, whereas Figure 19 illustrates
the TT version denoised signals. Figure 20 and Figure 21 show the denoised signals
obtained by NeighCoeff GHM (r = 2) and TI NeighCoeff GHM (r = 2), respectively.

We also tested the well-known real life image Lena with 256 X 256 pixels. Since
we are considering signal denoising in this Chapter, we randomly extract a scan-line
of the image, say the 128th line, and add noise to it. Again the RSNR is set to 7.
All detailed scales except the six coarsest scales are thresholded. For this scan-line,
the experimental results are shown in the last column of Table 8. We can see that
neighbour multiwavelet denoising outperforms the neighbour single wavelet denoising.
Figure 22 shows the image Lena, the extracted scan-line, the same scan-line with

noise added, the denoised scan-line with TI NeighCoeff D4, the denoised scan-line
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with term-by-term TT GHM, and the denoised scan-line with TT NeighCoeff GHM.
By studying the denoised signals in Figure 22, we see that multiwavelet can capture
more local features than single wavelet in signal denoising. Single wavelet denoising
tends to obtain an over smoothed version of the signal. Since a natural image has
a lot of details in it, we suggest to use neighbour multiwavelet for denoising natural
images. As mentioned before, multiwavelets also always outperform single wavelets

in the term-by-term denoising [67], [34] and [3].

Blocks | Bumps | Heavisine | Doppler | Lena

TI D4 34.175 | 35.173 11.838 25.383 | 22.058

TI NeighCoeff D4 19.019 | 15.121 9.588 11.640 | 15.451
GHM 28.246 | 30.582 13.001 21.297 | 18.451

TI GHM 23.869 | 20.428 11.387 13.586 | 16.429

NeighCoeff GHM (r = 1) 22.821 | 21.054 12.769 156.364 | 16.308
TI NeighCoeff GHM (r = 1) | 21.052 | 18.107 11.267 10.560 | 13.985
NeighCoeff GHM (r = 2) 19.993 | 19.436 12.023 14.949 | 15.639
TI NeighCoeff GHM (r = 2) | 18.077 | 16.804 11.064 10.098 | 13.802

Table 8: MSE for TI and non-TI wavelet signal denoising.
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Figure 15: Four noise-free signals and four noisy signals



(a) Daubechies,Soft, TI[Blocks] (b) Daubechies,Soft, TI[Bumps]
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Figure 16: TI D4 denoising by term-by-term thresholding
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Figure 17: TI D4 denoising using neighbouring coefficients
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Figure 18: Multiwavelet denoising by term-by-term thresholding
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Figure 19: TI Multiwavelet denoising by term-by-term thresholding
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Figure 20: Multiwavelet denoising using neighbouring coefficients
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Figure 21: TI Multiwavelet denoising using neighbouring coefhicients
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Figure 22: Denoising by using term-by-term and neighbour coefficients.
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Chapter 5

Image Denoising Using

Neighbouring Wavelet Coeflicients

5.1 Introduction

Donoho and his coworkers pioneered a wavelet denoising scheme by using soft thresh-
olding and hard thresholding. This can be summarized as follows. Let A(%,j) be
the noise-free image and B(%,j) the image corrupted with white noise Z(i, j), i.e.,
B(i,j) = A(i,7) + 0Z(t,j), where Z(4,j) has normal distribution N(0,1). The

Donoho’s wavelet denoising scheme can be summarized as follows:

1. Transform the noisy image B(%,7) into an orthogonal domain by 2D discrete

wavelet, transform.

2. Apply soft or hard thresholding to the resulting wavelet coefficients by using
the threshold A = ov/2log N where N = n X n is the number of pixels in the

image.

3. Perform inverse 2D discrete wavelet transform to obtain the denoised image.

The following theorem proves that for an appropriate choice of A, the risk of a thresh-

olding is close to the risk of an oracle projector r,(f) = ¥ min(|fu[m]|?, 0?), where
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fw[m] is the wavelet coeflicients.
Theorem (Donoho & Johnstone): Let A = 0/2log N. The risk r;(f) of a hard

or soft thresholding estimator for all N > 4 satisfies
ro(f) < (2log N +1)(0® + 1p(f))-

This method performs well under a number of applications because wavelet transform
has the compaction property of having only a small number of large coefficients. All
the rest of the wavelet coefficients are very small. The denoising is done only on
the detail coeflicients of the wavelet transform. It has been shown that this algo-
rithm offers the advantages of smoothness and adaptation. However, as Coifman and
Donoho [22] pointed out, this algorithm exhibits visual artifacts: Gibbs phenomena
in the neighbourhood of discontinuities. Therefore, they propose in [22] a transla-
tion invariant (TT) denoising scheme to suppress such artifacts by averaging over the
denoised signals of all circular shifts. The experimental results in [22] confirm that
single TI wavelet denoising performs better than the traditional single wavelet de-
noising. Bui and Chen [3] also proposed a TI multiwavelet denoising scheme that
gave better results than the TI single wavelet denoising. Recently, several important
approaches are proposed by considering the influence of other wavelet coefficients on
the current wavelet coefficient to be thresholded. The motivation of this idea is that a
large wavelet coefficient will probably have large wavelet coefficients at its neighbours.
This is because wavelet transform produces correlated wavelet coefficients. Cai and
Silverman [5] proposed a thresholding scheme by taking the immediate neighbour coef-
ficients into account. Their experimental results showed apparent advantages over the
traditional term-by-term wavelet denoising. Chen and Bui [12] extended this neigh-
bouring wavelet thresholding idea to the multiwavelet case. We found that neighbour
multiwavelet denoising outperforms neighbour single wavelet denoising for some stan-
dard testing signals and real-life images. Shengqian et al. [61] proposed an adaptive

shrinkage denoising scheme by using neighbourhood characteristics. They claimed
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that their new scheme produced better results than Donoho’s methods. Sendur and
Selesnick [58] [59] proposed bivariate shrinkage functions for denoising. It is indi-
cated that the estimated wavelet coefficients depend on the parent coefficients. The
smaller the parent coefficients, the greater the shrinkage. Mihcak et al. [54] per-
formed an approximate maximum a posteriori (MAP) estimation of the variance for
each coefficient, using the observed noisy data in a local neighbourhood. Crouse et al.
[23] developed a framework for statistical signal processing based on wavelet-domain
hidden markov models (HMM). The framework enables us to concisely model the
non-Gaussian statistics of individual wavelet coefficients and capture statistical de-
pendencies between coefficients. Simoncelli and Adelson [62] gave a Bayesian wavelet
coring method that incorporates the higher-order statistical regularity present in the
point statistics of subband representation. The statistical model accounts for joint
statistics of wavelet coefficients, both within and between bands.

In this Chapter we extend Cai and Silverman’s idea to the image case. For images,
we need to consider a neighbourhood window around the wavelet coefficients to be
thresholded. We propose one way to thresholding the wavelet coeflicients for both
translation invariant (TT) and non-TI cases. Our algorithm thresholds the wavelet co-
efficients according to the magnitude of the square sum of all the wavelet coefficients
within the neighbourhood window. Experimental results show that by using neigh-
bouring coefficients our algorithms obtain higher Peak Signal to Noise Ratio (PSNR)
for all the denoised images. Also, we find that neighbour wavelet image denoising
algorithms for both TT and non-TI cases outperform the same algorithms without
neighbour dependency.

The organization of this Chapter is as follows. We explain how to incorporate
neighbouring wavelet coefficients into image denoising in Section 5.2. Experimental

results are shown in Section 5.3.
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5.2 Incorporating Neighbouring Wavelet Coefficients
in Image Denoising

The wavelet transform can be accomplished by applying the low-pass and high-pass
filters on the same set of low frequency coefficients recursively. That means wavelet
coefficients are correlated in a small neighbourhood. A large wavelet coefficient will
probably have large coefficients at its neighbours. Therefore, Cai et al. [5] proposed
the following wavelet denoising scheme for 1D signal by incorporating neighbouring
coefficients in the thresholding process. Suppose d,x is the set of wavelet coefficients
of the noisy 1D signal. If 83, = dZ, , + d5, +d7 ., is less than or equal to A, then

we set the wavelet coefficient d;x to zero. Otherwise, we shrink it according to
dik = dik(1 = N*/Sy)

where A = /20%logn and n is the length of the signal. Note that we should omit
the first (last) term in S}, if d; is at the left (right) boundary of level j wavelet
coefficients.

For image denoising, we have to do a 2D wavelet transform. At every decom-
position level, we get four frequency subbands, namely, LL, LH, HL, and HH. The
next level should be applied to the low frequency subband LL only. This process is
continued until a prespecified level is reached. Since the Gaussian noise will be nearly
averaged out in the low frequency wavelet coefficients and we want to keep small
coefficients in these frequencies, only wavelet coefficients in the high frequency levels
need to be thresholded. That means we need to threshold all LH, HL, and HH within
these high frequency subbands. For every wavelet coefficient d;; of our interest, we
need to consider a neighbourhood window B, ; around it. We choose the window by
having the same number of pixels above, below, on the left or right of the pixel to
be thresholded. That means the neighbourhood window size should be 3 x 3, 5 x 5,

7x7,9%9, etc. Figure 23 illustrates a 3 X 3 neighbourhood window centered at
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wavelet coefficient
to be thresholded

Figure 23: An illustration of the neighbourhood window centered at the wavelet
coefficient to be thresholded.

the wavelet coefficient to be thresholded. We threshold different wavelet coeflicient
subbands independently.
Let

S;'z,lc: Z d?,l

(’i,l)EBj,k

when the above summation has pixel indexes out of the wavelet subband range, we
omit the corresponding terms in the summation. For the wavelet coeflicient to be

thresholded, we shrink it according to the following formula:

dik = dj kB

where the shrinkage factor can be defined as:

Bik = (1— )‘Q/sz,k)-f-

here, the + sign at end of the formula means to keep the positive value while set it to

zero when it is negative, and A = /202logn?. Note that this thresholding formula

73



is a modification to the classical soft thresholding scheme developed by Donoho and
his coworkers. The neighbourhood window size around the wavelet coefficient to be
thresholded has influence on the denoising ability of our proposed algorithm. The
larger the window, the relatively smaller the threshold is. If the size of the window
around the pixel is too large, a lot of noise will be kept, so an intermediate window

size of 3 X 3 or 5 x 5 should be used.

The neighbour wavelet image denoising algorithm can be described as follows:

1. Perform forward 2D wavelet decomposition (TI or non-TI) on the noisy image.

2. Apply the proposed shrinkage scheme to threshold the wavelet coefficients using
a neighbourhood window B, and the universal threshold /202 log n2.

3. Perform inverse 2D wavelet transform (TI or non-TI) on the thresholded wavelet

coeflicients.

We call this algorithm NeighShrink. As we know VisuShrink kills too many small
wavelet coefficients, our shrinkage schemes should perform better. From our ex-
periments we find that NeighShrink outperforms VisuShrink and the TI image
denoising developed by Yu et al. [81] for the TT case.

We also consider the shrinkage scheme that calculates the average value in the
neighbourhood window and then threshold the current wavelet coeflicient according

to this average value. This thesholding formula can be given as:
Biw=(1—N?>X/S3,)+

where NN is the neighbourhood window size in one dimension. However, by using the
average we get worse denoising results than VisuShrink. We give this thresholding
formula because taking the average is a natural choice.

This algorithm has higher computational demands. We give the computational

complexity of the algorithm for the non-TI case. The forward 2D wavelet transform
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needs 2Ln? flops of computation, where L is the wavelet filter length and n is the
image size in one dimension. The thresholding process using neighbour information
requires N2n? flops of calculation, where N is the neighbourhood window size in one
dimension. The inverse 2D wavelet transform also needs 2Ln? flops of computation,
just like the forward 2D wavelet transform. In total, the algorithm NeighShrink
for the non-TI case takes (4L + N%)n? flops of computation. On the other hand,
VisuShrink only needs 4Ln? flops of computation. We get better quality denoised

images by sacrificing some amount of computation time.

5.3 Experimental Results

We perform our experiments on the well-known images Lena, MRIScan, Fingerprint,
Phone, Daubechies, and Canaletto. We get these images from the free software pack-
age WaveLab developed by Donoho et al. at Stanford University. For comparison,
we implement VisuShrink, NeighShrink, TI and TI NeighShrink. VisuShrink is the
universal soft-thresholding denoising technique [31]. 77 is the TI wavelet denoising
algorithm developed by Yu et al. [81]. The Daubechies wavelet with 8 vanishing
moments is used for the wavelet decomposition. Five detailed wavelet decomposi-
tion scales are thresholded using the universal threshold \/202logn2. Note that this
threshold is the same as Donoho’s threshold for 1D signal except we replace n in 1D
signal with n? in 2D image. For different Gaussian white noise levels, the experimen-
tal results in Peak Signal to Noise Ratio (PSNR) are shown in Table 9 - Table 14
for denoising images Lena, MRIScan, Fingerprint, Phone, Daubechies, and Canaletto,

respectively. The PSNR is defined as

Zz,J(B(’La]) _ A(Za .7))2

PSNR = —10logy T

where B is the denoised image and A is the noise-free image. The first column in

these tables is the PSN R of the original noisy images, while other columns are the
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PSNR of the denoised images by using different denoising methods. From Table 9
- Table 14 we can see that NeighShrink outperforms VisuShrink and the TI image
denoising method developed by Yu et al. for all cases. VisuShrink does not have
any denoising power when the noise level is low. Under such a condition, VisuShrink
produces even worse results than the original noisy images. However, NeighShrink
performs very well in this case. When the noise level is low, the improvement of
NeighShrink (TI and non-TI) over VisuShrink is large. When the noise level is
high, the improvement is low even though NeighShrink for non-TI and TT is still
better than VisuShrink and the TT image denoising method developed by Yu et al.
[81], respectively. Figure 24 - Figure 29 show the noise free image, the image with noise
added, the denoised image with VisuShrink, the denoised image with NeighShrink, the
denoised image with TTimage denoising, and the denoised image with 77 NeighShrink
for images Lena, M RIScan, and Fingerprint,Phone, Daubechies, and Canaletto,
respectively. By studying the denoised images in Figure 24 - Figure 29, we see that
NeighShrink produces smoother and clearer denoised images. We also threshold the
wavelet coefficients by looking at the average value in the neighbourhood window, and
we find that it does not perform as well as VisuShrink for all denoising experiments.
We conduct this experiment in this Chapter because taking the average of the wavelet
coefficients in the neighbourhood window is a natural choice. Unfortunately, it does
not provide better performance.

In order to investigate the influence of neighbourhood window size to the denoising
ability, we list the experimental results for different window sizes in Table 15. These
experiments are done using non-TI NeighShrink. We can see that the window sizes
of 3x 3 and 5 x 5 are the best. When the window size is getting larger, the denoising
ability is getting worse. However, when the window size is extremely small, just like
the term-by-term thresholding, the denoising ability is not very high. We have found
that the intermediate neighbourhood window sizes of 3 X 3 and 5 x 5 are good choices

for our proposed algorithm NeighShrink.
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Noisy Image | VisuShrink | NeighShrink | TI | TI NeighShrink
28.14 25.87 32.34 27.30 33.61
22.12 23.13 28.26 24.69 29.38
18.59 21.85 26.06 23.59 27.12
16.09 21.07 24.64 22.97 25.67
14.16 20.48 23.68 22.55 24.65
12.57 20.03 22.94 22.23 23.87
11.23 19.68 22.36 21.97 23.25

Table 9: The PSNR (dB) of the noisy images of Lena and the denoised images with
different denoising methods.

Noisy Image | VisuShrink | NeighShrink | TI | TI NeighShrink
28.14 26.30 33.05 28.09 34.49
22.12 23.28 28.97 25.22 30.25
18.59 21.75 26.77 23.79 28.01
16.09 20.79 25.33 22.86 26.57
14.16 20.13 24.26 22.18 25.49
12.57 19.62 23.40 21.67 24.62
11.23 19.20 22.68 21.27 23.87

Table 10: The PSNR (dB) of the noisy images of MRIScan and the denoised images
with different denoising methods.

Noisy Image | VisuShrink | NeighShrink | TI | TI NeighShrink
28.15 25.63 30.94 26.27 31.89
22.13 23.50 27.58 24.00 28.38
18.61 22.67 25.75 23.14 26.46
16.11 22.24 24.65 22.73 25.27
14.17 21.99 23.92 22.49 24.46
12.59 21.83 23.42 22.35 23.88
11.25 21.71 23.04 22.23 23.45

Table 11: The PSNR (dB) of the noisy images of Fingerprint and the denoised images
with different denoising methods.
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Noisy Image | VisuShrink | NeighShrink | TI | TI NeighShrink
28.13 25.07 30.08 27.42 30.95
22.11 22.49 26.88 25.41 27.94
18.59 21.29 24.95 24.39 26.13
16.09 20.61 23.52 23.68 24.76
14.15 20.20 22.45 23.05 23.66
12.57 19.91 21.64 22.41 22.71
11.23 19.65 21.06 21.76 21.88

Table 12: The PSNR (dB) of the noisy images of Phone and the denoised images
with different denoising methods.

Noisy Image | VisuShrink | NeighShrink | TI | TI NeighShrink
28.13 31.21 35.92 33.28 36.87
22.11 29.16 32.75 31.53 33.74
18.59 28.26 30.84 30.63 31.91
16.09 27.73 29.68 29.89 30.68
14.15 27.36 28.85 29.19 29.69
12.57 27.15 28.18 28.51 28.82
11.23 26.94 27.63 27.84 28.02

Table 13: The PSNR (dB) of the noisy images of Daubechies and the denoised images
with different denoising methods.

Noisy Image | VisuShrink | NeighShrink | TI | TI NeighShrink
28.15 25.44 31.43 26.37 32.34
22.13 22.61 27.97 23.49 28.83
18.60 21.15 26.00 22.06 26.78
16.11 20.25 24.59 21.21 25.33
14.17 19.66 23.50 20.67 24.25
12.58 19.24 22.61 20.30 23.39
11.25 18.92 21.92 20.02 22.72

Table 14: The PSNR (dB) of the noisy images of Canaletto and the denoised images
with different denoising methods.
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Figure 24: Image denoising by using different methods on a noisy image with PSNR
= 22dB.

504

100

150]

200

2504 <
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Noise-free image Noisy image VisuShrink

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
NeighShrink Tl T1 Neighshrink

Figure 25: Image denoising by using different methods on a noisy image with PSNR
= 22dB.
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Figure 26: Image denoising by using different methods on a noisy image with PSNR
= 22dB.
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Figure 27: Image denoising by using different methods on a noisy image with PSNR
= 22dB.
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Figure 28: Image denoising by using different methods on a noisy image with PSNR
= 22dB.
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Figure 29: Image denoising by using different methods on a noisy image with PSNR
= 22dB.
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Noisy Window Size
Image | VisuShrink (1x1) | 3x3 5x5 | 7x7
Lena 22.11 23.13 28.26 | 28.39 | 25.69
MRIScan | 22.11 23.28 28.97 | 28.93 | 25.91
Fingerprint | 22.13 23.50 27.58 | 28.72 | 26.21
Phone 22.12 22.49 26.88 | 26.85 | 24.89
Daubechies | 22.12 29.16 32.75 | 31.33 | 26.71
Canaletto | 22.13 22.61 27.98 | 28.77 | 26.17

Table 15: The PSNR (dB) of the denoised images with different neighbourhood win-
dow sizes for the non-TT case.
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Chapter 6

Image Denoising with Customized

Wavelet and Threshold

6.1 Introduction

Wavelet transforms have been proven to be very successful in many applications.
For a given application, which wavelet should we choose to use? It is desirable to
choose a wavelet that is best suitable for the problem at hand. We call this a cus-
tomized wavelet. Customized wavelets have been used in several areas such as image
compression, signal representation, signal denoising, feature extraction, face recogni-
tion, image pattern recognition, etc. Here we briefly review some of the customized
wavelet papers. Mallet et al. [53] proposed a new and innovative technique based
on adaptive wavelets, which aims to reduce the dimensionality and optimize the dis-
criminatory information. Instead of using standard wavelet bases, they generate the
wavelet which optimizes specified discriminant criteria. Wang et al. [76] used Genetic
Algorithm (GA) to find an optimal basis derived from a combination of frequencies
and orientation angles in the 2-D Gabor wavelet transform. This approach provides
a more accurate and efficient projection scheme and therefore a better face classifica-
tion result. Chapa et al. [9] developed a technique for deriving a bandlimited wavelet

directly from the desired signal spectrum in such a way that the mean square error
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between their spectra is a minimum. The technique includes an algorithm for finding
the scaling function from an orthonormal wavelet, and algorithms for finding the cus-
tomized wavelet magnitude and phase from a given input signal. A revised version of
their paper appeared in IEEE Transactions on Signal Processing [10]. Zhuang et al.
[84] studied the problem of choosing an image-based customized wavelet basis with
compact support for image data compression and provided a general algorithm for
computing the optimal wavelet basis. Tewfik et al. [70] studied the problem of choos-
ing a discrete orthogonal wavelet with a support size that is equal to or smaller than
a prespecified limit to represent a given finite support signal up to a fixed resolution
scale. The techniques are based on optimizing certain cost functions. The optimiza-
tion with a set of constraints can be converted to an optimization problem without
constraints by means of parametrization. Das et al. [27] proposed an algorithm for
construction of optimal compactly supported N-tap orthonormal wavelet for signal
denoising. Simulated Annealing is used for the optimization of the parametrization
of the wavelet FIR filter bank coefficients. Golden [37] considered the problem of
optimizing at each resolution level the parameters of a two-band quadrature mirror
filter analysis bank to achieve maximal decorrelation of the two decimated output
sequences.

In this Chapter we use Simulated Annealing to find the customized wavelet filters
and the customized threshold for denoising the given noisy image. We consider a
neighbourhood window around the wavelet coefficients to be thresholded in the same
way as in the previous Chapter. We call this method as Customized NeighShrink.
Customized NeighShrink thresholds the wavelet coeflicients according to the mag-
nitude of the square sum of all the wavelet coeflicients within the neighbourhood
window. Experimental results show that Customized NeighShrink gets higher Peak
Signal to Noise Ratio (PSNR) for all the denoised images. It outperforms VisuShrink,
NeighShrink and wiener2 filter for different noise levels and testing images.

The organization of this Chapter is as follows. Section 6.2 reviews how to parametrize

the compactly supported wavelets. Section 6.3 explains how to denoise a noisy image
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by means of customized wavelet and threshold. Section 6.4 conducts some experi-

ments.

6.2 Parametrization of Compactly Supported Wavelets

The construction of a wavelet depends on a scaling function ¢(z) that obeys a 2-scale

dilation equation:

o(z) = V23 cxd(2z — k)

where ¢y is a set of real filter. The sequence {c,} must satisfy the following conditions

[29], [65]:

ch:\/é

Z CkChiom = 0(m)

S (-1)*kMc, =0,m =0,1,---,M — 1

where M > 1 and §(m) denotes a discrete Kronecker delta function. M controls the
compact support of the wavelet, and it is equal to the number of vanishing moments
of the wavelet 1(z) corresponding to ¢(z).

The wavelet 1(x) is defined as

¥(x) = V2 did(2z — k)

where dj, = (—1)*cpr—1-4-

It can be shown that discrete orthonormal wavelets of support less than 2N — 1,
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where N is an even number, can be parametrized by N — 1 real parameters each

taking values in [0, 27) [85]. Let

H(z) =Y cyz*

G(z) = dy2*

where z = e, Then we can have

where E(z) is a polyphase matrix defined by

E(2) = Vv-1(2)Vy-2(2) - - - V1(2) Vo

cosBy —sind
Vo = 0 0
sinfy cosfy

Vi(2) =T+ (z— Dyl 1<k < N-1.

cosly,
Vg —
sinly

By looking at the definition of E(2) we know that a sequence ¢, of length 2N is

and

actually parametrized by N free parameters. Furthermore, the wavelet ¥(z) has at
least one vanishing moment if and only if §, = 37 /4. We give some of the parametrized
sequences for N = 2, N = 3 and N = 4, respectively. The sequences {cx}3_, can be

listed as follows:
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co = sin(br) ( )
ci = sin(f) * sin(6 +7/4)
ca = cos(fy) * sin(0; + 7/4)

) * sin( )

c3 = cos(f)* sin(n/4— 6,
where 6; € [0, 2).

The sequences {cx}5_, can be listed as follows:

co = (sin(02)? * (sin(61)? — sin(61) * cos(61))+
(5in(6y) * cos(8y) — cos(61)?) * sin(fs) * cos(6:))/V/2

e = (sin(62)? x (sin(61)% — sin(61) * cos(61)) + 2 * sin(f)? x sin(6;) * cos(0;)+
(cos(81)? + sin(8;) * cos(81)) = sin(fs) * cos(6s))/V/2

ca = (cos(Be)? x (—sin(6r) x cos(8y) + sin(6;)?) + 2 * sin(fs)? * sin(61) * cos(61)+
sin(f2)? * (cos(61)* — sin(61) * cos(6:))+
(cos(01)% — 2 x sin(6:) * cos(6;) — sin(61)?) * sin(6a) * cos(62)) /2

cs = (cos(B)? * (sin(6)? — sin(6:) * cos(01)) + 2 * cos(62)* * sin(0;) * cos(61)+

sin(02)? * (cos(61)? — sin(61) * cos(6:))+

(—cos(81)? — 2 % sin(0;) * cos(61) + sin(01)?) * sin(6) * cos(8:))/v/2

e = (2% cos(B2)?* sin(0) * cos(01) + cos(02)? x (cos(01)? — sin(6y) * cos(0;))+
(5in(0;) * cos(0;) + sin(6;)?) * sin(6y) * cos(6))/ V2

(cos(02)? * (cos(01)? — sin(6) * cos(0;))+

(sin(8y) * cos(6;) — sin(61)?) * sin(6s) * cos(62)) //2
where 6, € [0,27) and 6, € [0, 27).

Cy =

The sequences {c; }i_, can be listed as follows:
ap = sin(62)? * (sin(61)? — sin(6:) * cos(61))+

(sin(6:1) * cos(01) — cos(61)?) = sin(62) * cos(8s)

(61)

) (62)

a1 = sin(6)% * (sin(61)? — sin(8y) * cos(01)) + 2 * sin(62)? * sin(8;) * cos(H,)+
) (62)

(cos(81)? + sin(6;) * cos(61)) * sin(8y) * cos(6s)
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a2

as

G4

as

b0

bl

b2

b3

b4

b5

Co

C1

Co

c0s(02)? * (—sin(0;) * cos(61) + sin(61)?) + 2 * sin(f2)? * sin(6:) * cos(61)+
511(02)% x (cos(61)* — sin(8;) * cos(61))+

(cos(61)2 — 2 x sin(6:) * cos(61) — sin(01)%) * sin(62) * cos(6,)
cos(f2)? * (sin(6;)? — sin(61) * cos(61)
sin(62)? x (cos(81)? — sin(61) * cos(6:))+

(—cos(61)? — 2 * sin(0,) * cos(8;) + sin(01)?) * sin(fs) * cos(62)

2 % cos(02)2 x sin(0;) * cos(01) + cos(62)? * (cos(61)* — sin(6;) * cos(6:))+
(sin(0y) * cos(8y) + sin(0:1)?) * sin(fs) * cos(fz)

cos(02)? * (cos(81)? — sin(8;) * cos(61))+

(sin(f1) x cos(0;) — sin(61)?) * sin(a) * cos(f2)

—sin(0;) * (sin(61) — cos(61)) * sin(fs) * cos(62)+

cos(02)? * (cos(0,)? — sin(6y) * cos(61))

(—sin(0;)? — 3 * sin(61) * cos(61)) * sin() * cos(f2)+

cos(0)? * (—cos(61)? — sin(61) * cos(6y))

(sin(61)% — 2 * sin(61) * cos(0;) — cos(61)?) * sin(f2) * cos(62)+

sin(fa)? * (cos(61)? — sin(6:) * cos(6))+

sin(0;) * cos(01) * cos(62)* + cos(62)? * sin(h)?

) + 2 * cos(f2)? * sin(8;) * cos(6:1)+
)

(sin(61)? + 2 * sin(0;) * cos(6,) — cos(01)?) * sin(fs) * cos(B)+

sin(62)? * (—sin(0;) * cos(6:) — cos(01)?) + cos(02)? * (sin(6;) * cos(6;) — sin(61)?)
(cos(01)? + sin(6:) * cos(01)) * sin(f2) * cos(0)+

sin(02)? * (sin(61) * cos(01) + sin(61)?)

(cos(81)? — sin(6y) * cos(6;)) * sin(fs) * cos(fa)—

sin(0)? x (sin(61)* — sin(0;) * cos(6;))

(ag * sin(63)? — by * sin(Bs) * cos(63))/v/2

(aq * sin(f3)? — by * sin(f3) * cos(63))/v/2

(ag * cos(B3)? + ag * sin(63)% + (bo — by) * sin(63) * cos(03)) /2
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c3 = (a1 %cos(03)? + ag * sin(B3)? + (b — bz) * sin(fs) * cos(63))/v/2
ca = (g cos(03)® + ag * sin(63)? + (ba — bs) * sin(f3) * cos(63)) /2
cs = (as*cos(03)? + as * sin(63)* + (bs — bs) * sin(fs) * cos(63))/v/2
ce = (ag*cos(f3)%+ by * sin(63) * cos(63))/V2
cr = (as * cos(8s)? + b * sin(B3) * cos(63))/v/2

where 6; € [0,27), 6, € [0,27) and 63 € [0, 27).

After the parametrization, the optimization problem to find the customized wavelet
for a specific cost function becomes an optimization problem without constraints.
This is much easier to solve in practice. In this Chapter, we use the filter with length
equal to 8. We choose 8 because the Daubechies wavelet with 8 vanishing moments

is a very popular and effective choice in image denoising.

6.3 Image Denoising using Customized Wavelet and

Threshold

In this section, we still consider the image denoisng technique with neighbour depen-
dency as described in the previous Chapter. We will study the non-T1 case and try to
customize the wavelet filter and universal threshold used in the denoising process. As
we know, the choices of the wavelet and the threshold should make significant differ-
ence in the quality of the denoised image. We propose to use Simulated Annealing to
adaptively learn the customized wavelet filters and customized universal threshold at
the same time. Simulated Annealing [43] is a Monte Carlo approach for minimizing
an optimization problem. The term Simulated Annealing is from the physical process
of heating and then slowly cooling down a substance to obtain a crystalline structure.
The minimum of the cost function corresponds to this ground state of the substance.
In an annealing process, the substance melts at a high temperature and it is disor-
dered. As it cools down, it becomes more ordered and approaches a frozen ground
state. The Metropolis step is the fundamental procedure of Simulated Annealing. If

the change in energy is negative compared to the previous one, then the change is

89



accepted and the system is updated. If the energy is greater than the previous one,
then it is accepted with a probability given by the Boltzman factor. This process is
continued for many times until a frozen state is achieved. In Simulated Annealing,
we need a cost function to minimize. This cost function is defined as the mean square

error of the denoised image A with another noisy copy of the image B:

cost( filter, threshold) = Y (4;; — B;;)*/n”
i,
where filter represents the wavelet filter, threshold is the threshold in the wavelet
thresholding process, and n? is the number of pixels in the image. We are trying to
customize filter and threshold by means of Simulated Annealing. We assume that
we have two noisy copies of the same image. One is what we want to denoise and
the other one is used as the target. This assumption is reasonable because sometimes
we can have two sensors at the same time. Every time when we calculate the cost

corresponding to the current wavelet filter and threshold, we should follow these steps:
1. Calculate the customized wavelet filter from the filter parameters.

2. Perform forward 2D wavelet transform on the noisy image using the customized

wavelet filter.

3. Threshold the wavelet coefficients by considering the influence of neighbour

wavelet coefficients.
4. Perform inverse 2D discrete wavelet transform to obtain the denoised image.
5. Calculate the cost based on the denoised image.

We call our neighbour wavelet image denoising algorithm with customized wavelet
and threshold as Customized NeighShrink. From our experiments we find that Cus-
tomized NeighShrink performs the best. It outperforms VisuShrink, NeighShrink, and
wiener2 filter for all noisy levels and testing images. For some case, choosing the cus-

tomized wavelet filter and customized threshold gives us about 1.20dB improvement
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over the same method by using the Daubechies wavelet with 8 vanishing moments and
the universal threshold A = o4/2logn?. This indicates that customizing the wavelet
and the threshold makes significant improvement.

It should be mentioned that our Customized NeighShrink causes edges to be
smoothed while denoising. This is also true for many other denoising methods. When
the noise level is low, this is not a problem. However, when the noise level is high,
the denoised image has visually visible smoothed edges. One way of improving this
is to apply any of the edge enhancement techniques right after we get the denoised

image using our proposed method Customized NeighShrink.

6.4 Experimental Results

We conducted some experiments in Matlab by calling the free software package
WaveLab developed by Donoho et al. The testing images are Lena, MRIScan, Fin-
gerprint, Phone, Canaletto, and Lincoln. These images are available in WaveLab.
Noisy images with different noise levels are generated by adding white noise to the
original noise-free images. For comparison, we implement VisuShrink, Customized
NeighShrink, non-TI NeighShrink, and wiener2 filter to denoise the noisy images. Vi-
suShrink is the universal soft-thresholding denoising technique [31] and NeighShrink
is our proposed algorithm in the previous Chapter. The wiener2 function is available
in the MATLAB Image Processing Toolbox, and we use a 5 x 5 neighbourhood of
each pixel in the image for it. The wiener2 function applies a Wiener filter (a type of
linear filter) to an image adaptively, tailoring itself to the local image variance. When
the variance is large, wiener2 performs little smoothing. When the variance is small,
wiener?2 performs more smoothing. This approach often produces better results than
linear filtering. The adaptive filter is more selective than a comparable linear filter,
preserving edges and other high frequency parts of an image. In addition, there are no
design tasks; the wiener2 function handles all preliminary computations, and imple-

ments the filter for an input image. wiener2, however, does require more computation
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time than linear filtering. Simulated Annealing is used to find the customized wavelet
filter and the customized threshold. In Simulated Annealing, we need to define a cost
function. This is defined as the mean square error of the denoised image with an-
other noisy copy of the image. We assume we have two noisy copies of the same image
because sometimes we can have two sensors at the same time. In our experiments,
using another noisy image as a target works very well. The wavelet filter length in
our experiments is set to 8. Five detailed wavelet decomposition scales are thresh-
olded. For different Gaussian white noise levels, the experimental results in Peak
Signal to Noise Ratio (PSN R) are shown in Table 16 - Table 21 for denoising images
Lena, MRIScan, Fingerprint, Phone, Canaletto and Lincoln, respectively. The first
column in these tables is the PSN R of the original noisy images, while other columns
are the PSNR of the denoised images by using different denoising methods. We can
see that Customized NeighShrink outperforms VisuShrink, NeighShrink, and wiener2
filter for all experiments. Note that VisuShrink does not have any denoising power
when the noise level is low. It produces even worse results than the original noisy
images. However, Customized NeighShrink performs very well in this case. The im-
provement of Customized NeighShrink over VisuShrink is large when the noise level
is low. When the noise level is high, the improvement is low even though Customized
NeighShrink is still better than VisuShrink. Figure 30 - Figure 35 show the noise-
free images, the same image with noise added, the denoised image with VisuShrink,
the denoised image with Customized NeighShrink, the denoised image with non-TT
NeighShrink, and the denoised image with wiener2 filter for images Lena, M RIScan,
Fingerprint, Phone, Canaletto, and Lincoln, respectively. It is not difficult to see
that Customized NeighShrink produces smoother and clearer denoised images than
other denoising methods tested in this Chapter. For some case, choosing the cus-
tomized wavelet filter and customized threshold gives us about 1.20dB improvement
over the same method by using the Daubechies wavelet with 8 vanishing moments and
the universal threshold A = o1/2logn?. This indicates that customizing the wavelet

and the threshold makes significant improvement.
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Noisy Image | VisuShrink | Customized NeighShrink | NeighShrink | wiener2
28.14 26.35 33.08 32.34 30.66
22.12 23.88 28.90 28.26 25.00
18.60 22.87 26.62 26.06 21.61
16.10 22.31 25.08 24.64 19.17
14.14 21.90 24.14 23.68 17.25
12.58 21.53 23.30 22.94 15.66
11.24 21.23 22.74 22.36 14.30

Table 16: The PSNR (dB) of the noisy images of Lena and the denoised images with
different denoising methods.

Noisy Image | VisuShrink | Customized NeighShrink | NeighShrink | wiener2
28.14 26.85 33.46 33.05 30.74
22.12 24.08 29.34 28.97 25.05
18.60 22.74 27.20 26.77 21.60
16.10 21.91 25.92 25.33 19.11
14.16 21.34 24.79 24.26 17.17
12.58 20.90 23.68 23.40 15.58
11.24 20.50 22.90 22.68 14.23

Table 17: The PSNR (dB) of the noisy images of MRIScan and the denoised images
with different denoising methods.

It should be mentioned that we only implemented the non-TI1 NeighShrink for
our algorithm Customized NeighShrink. We obtained better results than non-TI
NeighShrink for all the testing images. However, these results are not as good as
TI NeighShrink. We are sure that if we incorporate TT NeighShrink in our algorithm
Customized NeighShrink, we can obtain better denoising results than TI NeighShrink.

We leave this to our future work.
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Noisy Image | VisuShrink | Customized NeighShrink | NeighShrink | wiener2
28.15 25.98 32.12 30.94 30.65
22.13 23.86 28.13 27.58 25.32
18.61 23.03 26.67 25.75 21.87
16.11 22.61 25.17 24.65 19.32
14.17 22.36 24.35 23.92 17.34
12.59 22.19 23.96 23.42 15.72
11.25 22.06 23.26 23.04 14.36

Table 18: The PSNR, (dB) of the noisy images of Fingerprint and the denoised images
with different denoising methods.

Noisy Image | VisuShrink | Customized NeighShrink | NeighShrink | wiener2
28.14 26.19 30.84 30.08 29.75
22.12 24.12 27.06 26.88 24.72
18.60 23.07 25.02 24.95 21.56
16.10 22.37 23.70 23.52 19.18
14.16 21.73 22.59 22.45 17.25
12.57 21.08 21.68 21.64 15.63
11.24 20.41 21.12 21.06 14.24

Table 19: The PSNR (dB) of the noisy images of Phone and the denoised images
with different denoising methods.

Noisy Image | VisuShrink | Customized NeighShrink | NeighShrink | wiener2
28.15 25.58 32.44 31.43 30.38
22.13 22.85 28.51 27.97 25.00
18.61 21.48 26.18 26.00 21.70
16.11 20.67 24.76 24.59 19.25
14.17 20.17 23.66 23.50 17.32
12.59 19.83 22.93 22.61 15.72
11.25 19.58 22.35 21.92 14.37

Table 20: The PSNR (dB) of the noisy images of Canaletto and the denoised images
with different denoising methods.
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Noisy Image | VisuShrink | Customized NeighShrink | NeighShrink | wiener2
28.19 33.05 33.76 33.23 30.89
22.17 27.88 31.17 27.87 24.83
18.64 24.53 29.69 24.48 21.22
16.14 22.10 28.25 22.04 18.66
14.21 20.19 24.05 20.13 16.68
12.62 18.62 22.62 18.56 15.05
11.28 17.29 21.35 17.23 13.67

Table 21: The PSNR (dB) of the noisy images of Lincoln and the denoised images

with different denoising methods.
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Figure 30: Image denoising by using different methods on a noisy image with PSNR

= 22dB.
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Figure 31: Image denoising by using different methods on a noisy image with PSNR
= 22dB.
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Figure 32: Image denoising by using different methods on a noisy image with PSNR
= 22dB.
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Figure 33: Image denoising by using different methods on a noisy image with PSNR
= 22dB.
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Figure 34: Image denoising by using different methods on a noisy image with PSNR
= 22dB.
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Figure 35: Image denoising by using different methods on a noisy image with PSNR
= 34dB.
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Chapter 7

Thesis Summary and Future Work

In this thesis, we have studied the applications of wavelets and ridgelets in two im-
portant areas: pattern recognition and denoising. We have proposed three invariant
descriptors for handwritten numeral recognition and general 2D pattern recognition
by using multiwavelets, ridgelets and the Fourier transform. We also proposed three
methods for denoising signals and images by considering a neighbourhood of the
wavelet coefficients to be thresholded and customizing the wavelet filter and thresh-
old. Our experimental results are promising compared to the current results published
in the literature.

In Chapter 2, we introduce a novel set of features that is well-suited for represent-
ing digitized handwritten numerals. The features are derived from the multiwavelet
shell expansion of the numeral contour. The numeral contours are represented by
fine-to-coarse approximations at different resolution levels by means of orthonormal
multiwavelet expansion. It is suggested to use the low to intermediate levels of the
shell coeflicients since these features are relatively insensitive to the shape variation
caused by the writing styles of different persons. Multiwavelet shell coefficients depend
on the scale and the parameterization starting point of the original function. There-
fore, we present normalization that allows us to derive a scale- and shift-invariant
multiresolution representation for numerals of known orientation. Experimental re-

sults show that our proposed method is better than the scalar wavelet neural network
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method in [77].

In Chapter 3, we propose two invariant descriptors for pattern recognition by using
ridgelets, wavelet cycle-spinning, and Fourier transform. QOur ridgelets work on the
circle surrounding the pattern to be recognized. This is different from other ridgelet
papers where a square is considered. We achieve rotation- invariance by taking Fourier
spectra along the angle direction and by using wavelet cycle-spinning together with
Fourier spectra, respectively. Note that our proposed descriptor works for not only
Chinese characters, but also any other 2D pattern recognition problems. We plan
to investigate texture classification by using ridgelets and wavelet packets. We are
expecting a significant improvement over existing techniques for texture classification.
It is evident that the two descriptors are very robust to Gaussian white noise.

In Chapter 4, we discuss and implement multiwavelet denoising by incorporating
neighbouring coefficients as suggested by Cai and Silverman. Experimental results
show that Neighbour multiwavelet denoising gives better results than the term-by-
term multiwavelet denoising scheme for both TI and non-TI cases. In addition, neigh-
bour multiwavelet denoising outperforms neighbour single wavelet denoising for some
standard test signals and real life images. We conclude then that neighbour multi-
wavelet denoising can be used in place of neighbour single wavelet denoising. Future
work may be done by choosing a better threshold in the neighbour multiwavelet de-
noising scheme. We may also consider a bigger neighbourhood instead of just the
immediate neighbours.

In Chapter 5, we study image denoising by incorporating neighbouring wavelet
coeflicients. Experimental results show that NeighShrink gives better results than
VisuShrink and the Ti image denoising method developed by Yu et al. under all
experiments. It should be mentioned that in this Chapter we investigate only how the
classical soft thresholding approach should be modified to take into account neighbour
wavelet coefficients. We conclude that NeighShrink, for both TI and non-TI cases,
can be used for practical image denoising applications. Future work may be done

by considering the technique of incorporating neighbour multiwavelet coeficients in
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the thresholding process for multiwavelet image denoising. Also, better denoising
results may be obtained by combining parent-child relationship with the immediate
neighbours in the same wavelet subband.

In Chapter 6, we study image denoising by using customized wavelet and cus-
tomized threshold. The thresholding process incorporates neighbouring wavelet coef-
ficients. Experimental results show that Customized NeighShrink gives better results
than VisuShrink, NeighShrink and wiener2 filter for all experiments. It should be
mentijoned that in this Chapter we only investigate how the classical soft threshold-
ing approach should be modified to take into account neighbour wavelet coefficients.
We suggest to use Customized NeighShrink for practical image denoising applications.
Future work may be done by customizing multiwavelets in image denoising. Also, in-
stead of using the universal customized threshold, we may also investigate different

customized thresholds for different pixel locations.
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