Modeling and Testing Main IPv6 Protocols

Zheying Huang

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presenting in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science
Concordia University

Montreal, Quebec, Canada

April 2004

©Zheying Huang, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91044-X
Our file Notre référence
ISBN: 0-612-91044-X

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

Abstract
Modeling and Testing Main IPv6 Protocols

Zheying Huang

This thesis presents the modeling and testing of main network layer protocols in
IPv6, which are IPv6, ICMPv6, MLD and RIPng protocols. The purpose of this thesis is
to formalize these protocols and to automatically generate test suites for conformance and
interoperability testing. The protocols are specified using SDL (Specification and
Description Language) and the test suites are described with TTCN (Tree and Tabular
Combined Notation). The basic approach of formalizing tﬁese protocols applies the
principle of SDL: different abstract levels are covered from broad overview down to the
detailed design level. The test case suites are generated by test generator-testComposer in
ObjectGeode toolset. A brief overview of the four main protocols is given before the

general approach. The examples are given following all applied steps.

iii

TABLE OF CONTENTS

TABLE OF FIGURES VI
1. INTRODUCTION 1
2. RELATED WORK 5
3. OVERVIEW OF THE MAIN IPV6 PROTOCOLS 8
BULTPVO ettt ettt b bt e n e s s e s e reebe et e ebenbeneereasetas 11
311 PACKEE FOTTIALouoeeeeeniniiinieneeisiasieenesisaesteessaseestessastassassassessastessasassessanens 12
3.1.1.1 IPv6 Header FOrmatccccoeveivenirirnieeeieieiesieeisreesieessesie e snse s snesesnens 12
3.1.1.2 Options FOIMAL.......cc.coviririieiirireeiierieeresresieseesieseesenessaensessesassessennns 13

3.1.1.3 Hop-by-Hop Options Header Format.............cccocvrvvmniniinnieneecinieciereeee, 13
3.1.1.4 Routing header format............ccecvvieierieninienieienienieseersesresneereeseeeenssnenes 14

3.1.1.5 Fragment header formatccocvecvieeveenieesieeieesecceecrieeee e 14
3.1.1.6 Destination Options header formatcoccocevvrneiiesenneereenieeeeeeenne 14

3.1.2 PACKeEt SiZ€ ISSUEScouveceeeeieirienieiaeereiesaseseeessessseseessesssassesssassseseesnenserean 15
BZICMPVO ...ttt st s bt e et esaaseesasaeasesetensetassenis 16
3.2.1 Error MeSSages FOVMALc..cccveeeiesirecrerierisesesssesiesessssssensesesssseeesssnns 16
3.2.1.1 Destination Unreachable MeSSagec.cccerreerirnreirinnereniriiensesieseneenas 16
3.2.1.2 Packet T0O Big MESSAZEccvvurierieriiiniieiiieceeteee sttt 17

3.2.1.3 Time Exceeded MESSAaZEccvirererririeieiieniriienieseeienisessensessassassasnns 17
3.2.1.4 Parameter Problem Messageccoueveririecienienieineieeieieseeeee e 17

3.2.2 Informational MeSSAGEScccoueuecerieevenienueniiieesiieneensessessensesinensansnssssnssens 18
3.2.2.1 Echo Request MESSAZE........ccveriririririiniieeeieieeereie e eteneeseestansessnessesenas 18
3.2.2.2 Echo Reply MESSAZEuvevveeveiiierreieceeieecrecrie ettt ene et e 18
BIMLID ittt s e eeaeene et s ereebannensebetes 20
3.3.1 MeSSAZE FOFMAL...........ccoovveueiniinieieeeiesiensiessaesestesssestesseessssssasssteessenseseesens 20
3.3.2 Protocol DeSCHIPIIONoc.ccuvveivcieieersieesiesiesinirateniesesasssssesseessetessssansseneas 21
BUARIPNG ...ttt sttt ettt et b e anaen 25
34,1 MeSSAZE FOTIALcccuveieneaieeeeereesreeeesessessseessenssenssesseaesessssssnsesssosssssasseenes 25
3.4.2 Addressing CONSIAErALIONSccocecreveeveeiesieiiiresireseseessesseeessseeseeseseessenen 27
.3 TIMETS .ottt b ettt et bt easentensentersetesraneesens 27
3.4.4 INPUL PTOCESSING....c.vevveeiirriraraieeresiresaeesasseaesssessaesessseesseesssentseeseessensessssnses 28
3.4.4.1 REQUESE MESSAZEcuvovvnniiiienieiieieit ettt set et eie st sva e srasteeenees 28
3.4.4.2 ReSPONSE MESSALE.......cirurvirrirreiareristenisnirasantestassessessessenseseessesesssssessesens 29

3.4.5 OUIPUL PTOCESSINGcouovevvverararieareressiaseassiaesssssssssessassessessessseesesissssensssssassosens 29
3.4.5.1 Triggered UPatescoceivinieerienieeiiiniiniceeteeeseeeeeeeeseesseseeressenssnenas 30
3.4.5.2 Generating Response MesSage.......c.ccoevevvereiiienieenrenitiieerisseiereeeeseesnenns 30

4. SDL AND ITS SUPPORTING TOOL 31
AL SDL oottt bttt b et nsertennets et enneteatens 31
4.1.1 System Structure and BeRAVIOTccuocveveeeeeieeecreeieeeieesreeeeeieesesssesennenn 32
4.1.2 COMMURICALIONcceveeeeniairireeaiesiieetiessesteeisasseeeseeessseasseeseeesseesssastsenseeneeneenes 33

oL 3 TUIMET .ottt ettt ettt e a e et sseaseneen b ensentetaetensenesannes 33
4.1.4 Data and INheritance CONCEPLcccoruimivieeeeisreirieesiesiresaesseasreenssseenesenns 34

4.2 OBJECTGEODE TOOLSET.......cccsutteerterentrieentnieeentrnesseseesessasessassesssssssesesesessssesens 34

v

4.2.1 GrapRic EQUIOTS.......c.cccuverererioininnsisisiinierssnsisisssssssissssssessssssssessssssessssssssans
4.2.2 Efficient STIULAIOT..............cccuvoueouieiecieniecie s eae e eees et eerssneeesssneaneas
4.2.3 Test Generation TOOL.............cccmeieiniiiiseeeie st es e eessrsenns

5. SDL MODELING, VERIFICATION AND VALIDATION.......ccccceeevueueenserencarenes

5.1 EXTRACTING TECHNICAL INFORMATION........ccceeueriirinearariniasenesssasasessesesessasenesesens
5.2 CREATING AN SDL MODEL.....cotiiiiiiiiioteeeteeereeitieieeeeseeeeseeeieeessesssesssssseseeessessnenens
5.2.1 SDL DeCOMPOSTHIONSc.ovuecervinieiiaieeiisiasinsseiaieseessessassesssseessessessseseeseeseas
5.2.1.1 The Decomposition of Block Type HOSt........ccocovievereieiniiriceciceciereeeine
5.2.1.2 The Decomposition of Block Type RoOuterccocvvverrvveereverreeiecerenennes
5.2.2 Data Structure and Signalsc..cccccevunevvorevmieieeeeeeeeeeeeeee e,

5.4.1 Test PUIPOSES GERETALIONcccevueeeeraiesrereaeesreeeereetrerseesssessessseesssensensens
5.4.2 Test CaSeS GERETALIONcccoeveeueerreceeiresieeneaerereseeireeeeseesesasesesseessessssasonsesans
5.4.3 Test Suites DeSCrIPON...........ccoeeeuveecreeeiereeneanne. ettt et e e e s r e e eatreaann

6. CONCLUSIONS
REFERENCES
APPENDIX A: CONFORMANCE TEST CASES FOR HOSTS.....

Al: SENDING AND RECEIVING IPVO PACKETS ...ceeeeveeeeeueeeereeseeeiseeesirseessrsssessrssesssssesseses
A2: SENDING FRAGMENTS ..otiieutttittiieeeeeeeeeeeeeeseeeereesseseenssessasssssssesessnsssssssssssnsssesssrnesssss

APPENDIX B: CONFORMANCE TEST CASES FOR ROUTERS

B1: BASIC BEHAVIORS OF ROUTERS INIPVO AND RIPNG ...evvviveeieeeeeeeeeeeeeeeeeeeeeeeeeeans
B2: BASIC BEHAVIORS OF ROUTERS INICMPooovioieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseevesne s
B3: BASIC BEHAVIORS OF ROUTERS IN MDD ...coviiiiieeie et oo eeeee e

35

Table of Figures

FIGURE 3.1 OVERVIEW OF MAIN IPV6 PROTOCOLS.......ccoeitreieiiitrieeaeeeeeireeneeeeveeeenavnaaesenens 11
FIGURE 3.2.1: DESTINATION UNREACHABLE MESSAGE FORMATcooooovivvveinnrrinreeeeeisnnnenenns 16
FIGURE 3.2.2 PACKET TOO BIG MESSAGE FORMATc.cocvtiiiiiiirereeeeeereisseesieasseseesesssssinnssenes 17
FIGURE 3.2.3 TIME EXCEEDED MESSAGE FORMATcccoiitiviiiniirireeeeeieeeeeiieiessssnassesessiesnssnees 17
FIGURE 3.2.4 PARAMETER PROBLEM MESSAGE FORMATuceiiiiiivieeeieeeetreereeiisesesenereseons 18
FIGURE 3.2.5 ECHO REQUEST MESSAGE FORMATcccoiuviiiinieciirieeeiinresaeaneesenssensessessesesnnes 18
FIGURE 3.2.6 ECHO REPLY MESSAGE FORMATcccoruviiierrienereenisreeeeeesneessineseesssessseesansees 19
FIGURE 3.3.1 MLD MESSAGE FORMAT.........ccovteerreeeeueeeesseeeneeesssseseesninesesnssessssessssseansees 20
FIGURE 3.3.2 DESCRIPTION OF MULTICAST ADDRESSceitievrtitirieeerireieieersirsisnriesesscesnnneens 21
FIGURE 3.3.3 ROUTER STATES DIAGRAM ...ovviiiiiiiiriiieieeiieitieiie e et eeeetttetsssssas s sessnsnsssnsnnsnnns 23
FIGURE 3.3.4 NODE STATES DIAGRAMueioiuiiitieiinieeeistieeeinteeesseesensseresssssesesssssesesesssesssnnes 24
FIGURE 3.4.1 RIPNG PACKET FORMATccuvvviiiiieiiereerreeeieeeesiisesseessessreestesssnssmmmsssressssssssnnes 26
FIGURE 3.4.2 ROUTING TABLE ENTRYecciuriiiuierieiirtrereisansrsesimissreseeseonmssessessosssssnsssessesns 26
FIGURE 5.1 A ROUTER FORWARDS A PACKETccovvveeretveeenrreensneeissreseseessereeninsessseessssasessees 39
FIGURE 5.2 A ROUTER SENDS AN ERROR MESSAGEuvtiiiiiiiniiiiiteeeeenreeseeseeinsesesnesssseeas 40
FIGURE 5.3 A HOST SENDS A PACKETcovvieiiririveeerereeeitesensareeisseeensrresssesseeeassesessesessasssnes 41
FIGURE 5.4 AHOST SENDS FRAGMENTSccvuveieirreeieiiiieeeeeeiiesesisisrssesssesmsssseessisssesssnasesonns 41
FIGURE 5.5 AHOSTSENDS PDU et eeteterteetaaetee e eteteeaa———trtesiaaarteearareteearees 42
FIGURE 5.6 A HOST REASSEMBLES FRAGMENTS AND SENDS PDUcooooiiivviiiieceecne, 42
FIGURE 5.7 A HOST SENDS AN ERROR MESSAGEcccovuvieierrienieieesreeeeiesreseesneeeesesesisesanseeas 43
FIGURE 5.8 MINIMUM CONFIGURATION OF THE SYSTEMcvviiiuieiirrrreeenrieeeiresiereresneeesinees 44
FIGURE 5.9 OVERVIEW OF THE MODEL FOR CONFORMANCE TESTINGuuvvveeieinrreeeeeinreeanns 45
FIGURE 5.10 CONCEPTUAL VIEW OF SDL MODEL FOR CONFORMANCE TESTING................. 45
FIGURE 5.11 OVERVIEW OF THE MODEL FOR INTEROPERABILITY TESTING.......cccevveervreinnns 46
FIGURE 5.12 CONCEPTUAL VIEW OF SDL MODEL FOR INTEROPERABILITY TESTING............ 46
FIGURE 5.13 SYSTEM INTERCONNECTION DIAGRAM FOR CONFORMANCE TESTING 47
FIGURE 5.14 SYSTEM INTERCONNECTION DIAGRAM FOR INTEROPERABILITY TESTING 49
FIGURE 5.15 INTERCONNECTION DIAGRAM OF BLOCK TYPE HOSTceeivvieiiinieiciieecniee e 51
FIGURE 5.16 INTERCONNECTION DIAGRAM OF BLOCK TYPE ROUTER........cccovvreenreereeeennens 52
FIGURE 5.17 AUTOMATA FOR IPVOHOST PROCESS.......uvtiiivreeivreeretrrreeserreeeeresesssesesnessesees 56
FIGURE 5.18 ON-FLY MISC ..ottt et ire e snntvereeeesenessanessnesenntaeeanees 58
FIGURE 5.19 GENERAL FUNCTIONAL ARCHITECTURE.......ccovuiiveeereeinnnrenreessseenseenneeseranenes 59
FIGURE 5.20 MAIN WINDOW OF “TESTCOMPOSERc.uuvviieuvirerireiinreeeeitiessonesiseeseseessnns 63
FIGURE 5.21 TEST CASE IN TTCIN GR FORMATcccuviiiiieriiiieenieeeeseireeieesiaessesesseesnenaesaas 66
FIGURE A1.1 TEST PURPOSE FOR SENDING AND RECEIVING IPV6 PACKETSccovvvvreuvrerane 73
FIGURE A 1.2 TEST CASE FOR SENDING AND RECEIVING IPV6O PACKETS «..uvvveeevivereeereireneeinns 73
FIGURE A2.1 TEST PURPOSE FOR SENDING FRAGMENTSuuuviiiveeeereeseeeiiinmeeeesressssesnenesns 74
FIGURE A2.2 TEST CASE FOR SENDING FRAGMENTScoeoeveureeeireeereeeeeisssreresoniseesessiusessanns 75
FIGURE A3.1 TEST PURPOSE FOR RECEIVING FRAGMENTSvvevoviveieerieeiiereeeereireessssineeesnsns 76
FIGURE A3.2 TEST CASE FOR RECEIVING FRAGMENTSooiiiiriviittieeeeereeeeesieesieieeaeeeseeneaeees 76
FIGURE A4.1 TEST PURPOSE FOR RECEIVING IPV6 PACKETS WITH ERRORScvveeveennnen. 77
FIGURE A4.2 TEST CASE FOR RECEIVING IPV6 PACKETS WITH ERRORSovevveverieriieiiereeiinns 77
FIGURE A5.1 TEST PURPOSE FOR SENDING AND RECEIVING ICMP INFORMATIONAL
IMESSAGES ..ettteettireerieeerreraitereeasiteaasisssasssesesesensssessessanesssssssrssssessssssnssssessssesesesssnesenns 78

Vi

FIGURE AS5.2 TEST CASE FOR SENDING AND RECEIVING ICMP INFORMATIONAL MESSAGES

... 79
FIGURE A6.1 TEST PURPOSE FOR SENDING AND RECEIVING MLD MESSAGES..........ccu...... 80
FIGURE A6.2 TEST CASE FOR SENDING AND RECEIVING MLD MESSAGESccovveeveereeenen. 80
FIGURE A7.1 TEST PURPOSE FOR MAXIMUM QUERY RESPONSE TIMEOUTcccoveeveeeeeeannns 81
FIGURE A7.2 TEST CASE FOR MAXIMUM QUERY RESPONSE TIMEOUTc.uveeveereeeeereaneennn 82
FIGURE B1.1 TEST PURPOSE FOR BASIC BEHAVIORS OF ROUTERS IN IPV6 AND RIPNG........ 84
FIGURE B1.2 TEST CASE FOR BASIC BEHAVIORS OF ROUTERS IN IPv6 AND RIPNG............. 84
FIGURE B2.1 TEST PURPOSE FOR BASIC BEHAVIORS OF ROUTERS INICMP.......c.covuveeenn... 85
FIGURE B2.2 TEST CASE FOR BASIC BEHAVIORS OF ROUTERS INICMPcocvevvceeennnn. 86
FIGURE B3.1 TEST PURPOSE FOR BASIC BEHAVIORS OF ROUTERS INMLDcovoveeveaennn, 87
FIGURE B3.2 TEST CASE FOR BASIC BEHAVIORS OFROUTERS INMLDccovvvvvieierennnn. 88

vii

1. Introduction

The term IPv6 stands for “Internet Protocol Version 6”. IPv6 is described in
Request for Comments (RFC) 2460. It is the “next generation” protocol designed to
replace the current version of Internet Protocol, IP Version 4 (“IPv4”). IPv4 has proven
remarkably robust, easy to implement, and interoperable with wide range of protocols
and applications. However, with the ongoing explosive growth of Internet and Internet
service, IPv4 has become outdated for it cannot easily meet the requirements of a
multimedia, application-rich environment. IPv6 fixes a number of problems of IPv4, such
as addressing, address auto-configuration, security, Quality of Service (QoS), routing,
and fragmentation.

IPv6 extends addressing capabilities by increasing IP address from 32-bit to 128-
bit. It supports more levels of addressing hierarchy to overcome the limitation of the two-
level structure of the IP address in IPv4.

IPv6 also defines both a stateful and stateless address auto-configuration
mechanism to simplify configuration of a host. As a result, auto-configuration reduces the
time, cost, and complexity of renumbering new IPv6 addresses of existing hosts.

Security is mandatory in IPv6, whereas in IPv4 it is optional. Moreover, IPv4
lacks effective privacy and authentication mechanisms under the application layer.
Consequence, IPv4 can cause serious risk in guaranteeing a secure environment. In
contrast to IPv4, IPv6 offers security features at router level of the TCP/IP architecture,
where they can benefit all TCP/IP application. It provides security encryption,

authentication and data integrity safeguards.

IPv6 offers two QoS features: flow labels and traffic classes. The flow label
enables the flow’s source to identify a logical sequence of packets. The traffic class
allows a host to specify a packet priority to permit IPv6 routers to discriminate and
favourably execute TCP/IP applications that request faster response time.

Routing in IPv6 is similar to the routing in IPV;L Due to more levels of
hierarchical addresses, less amount of memory is required to store routing tables.

In IPv6, only source nodes can perform packet fragmentation; intermediate
routers on the packet’s delivery path cannot [3]. Intermediate routers drop the packets
that are larger than the network Maximum Transfer Unit (MTU) and send an ICMP error
message to the source. On the other hand, in IPv4, not only source nodes can perform
packet fragmentation, but also intermediate routers along a packet’s delivery path. As a
result, IPv4 slows down the routing process.

The term ICMPv6 stands for “Internet Control Message Protocols for Internet
Protocol Version 6”. ICMPv6 is described in RFC 2463. With numerous changes, it is
made to replace “Internet Control Message Protocols for Internet Protocol Version 4”
(ICMPv4). Like ICMPv4, ICMPV6 is fully implemented by IPv6.

The term MLD stands for “Multicast Listener Discovery”. It derives from version
2 of IPv4’s Internet Group Management Protocol (IGMPv2) and is described in RFC
2710. The MLD message types are actually subset of the set of [CMPv6 message types
and not IGMP message types.

RIPng is a routing protocol used by routers to compute routes through an IPv6-

based network. It is described in RFC 2080.

The corresponding standards of these protocols are described in nature language
in RFCs. In order to avoid ambiguous interpretation and incorrect implementation of
standards, it is necessary to formalize the protocols and facilitate their verification,
validation and test suite generation. Exhaustive testing is not practical that is why only
selected test cases are applied. The question of these test cases’ quality is fundamental.
The formal methods are used to assist for protocol simulation, validation and automatic
test suite generation.

This thesis presents formal specifications in SDL [12] and test cases in TTCN for
four main IPv6 protocols. The formalization of these protocols is accomplished in two
steps. The first step includes the extraction and modeling of related RFCs. One of the
encountered difficulties in this step is to extract the correct information from RFCs. In
order to extract the information correctly, it is necessary to define the functional
behaviours of the protocol by applying semiformal methods such as use case and
sequence diagram techniques. Frequently, the ambiguous or lack of description of the
parts in the standards causes difficulties. This step relates to the abstract level of
protocols.

The second step consists of writing the SDL code. The Telelogic ObjectGEODE
toolset [6] is used for specifying and simulating the specification. The SDL model is
composed in SDL Editor and is simulated with the SDL simulator. The simulator acts as
an SDL debugger. It also automatically detects design errors, such as deadlock and
answer unexpected in a decision, etc. The simulating of the model performs partial

verification and validation of the model.

A test case is generated from a test purpose and an SDL specification. The
TestComposer is a test generator. It takes an SDL specification and test environment
specification to compute a test purpose using reachability analysis technique and to
generate the corresponding test case. The test case can be saved in TTCN produce
module.

The remaining of the thesis is organized as follows: chapter 2 introduces and
comments related work. Chapter 3 briefly introduces main IPv6 protocols. Chapter 4
introduces SDL with its supporting tool —~ ObjectGEODE toolset. Whﬂe chapter 5
describes the applied approaches and corresponding examples. Finally, chapter 6
concludes the thesis and presents future work. Complete test cases of the protocols will

follow the latter.

2. Related Work

IPv6 cannot be successfully deployed unless equipment manufactures and service
providers can prove its conformance to the standards and interoperability with TPv4. A
complete solution is to offer the full range of IPv6 testing.

IPv6 protocols are defined by more than 60 RECs. These RFCs are described in
natural language; thus, they are ambiguous and incomplete. Moreover, there is a high
probability of misunderstanding and misinterpreting during implementation of such
complex and large documents such as IPv6 RFCs. Furthermore, the implementation of
IPv6 RFCs are inconsistent since they are different among developers. Due to
misunderstanding, misinterpretation and different implantations and incompleteness of
RFCs, the network products and services are possibly incompatible and inconsistent.
Therefore, conformance testing is used to identify these problems earlier in development
stage.

Conformance testing is the process of verifying if an implementation is consistent
with a particular standard, specification, or environment. It is exclusively concerned with
external behaviours of an implementation. Conformance testing is not intended to be
exhaustive, and a successfully passed test suite does not mean that the implementation is
100-percent perfect. However, it does ensure, with a certain confidence, that the
implementation is consistent with its specification, and it does increase the probability of
an implementation interworking.

With the deployment of IPv6 protocols, few projects have been built to perform
conformance testing and interoperability testing of these protocols. Among those few,

there are TAHI project, MSR IPv6 Verification project and ARMOR project.

TAHI project [1] is the joined effort of the University of Tokyo and the Yokogawa
Electric Corp. Its objective is to develop and provide the verification technology for IPv6.
It provides a test package, which consists of conformance testing tool and interoperability
testing tool. These testing tools require FreeBSD operating system, more than one
Ethernet interfaces and Perl Library. FreeBSD system offers advanced networking,
performance, security and compatibility features. It supports IPv6 Protocols. Perl API is
used for creating a packet, receiving a packet and packet memory control. Principally,
test will be performed by throwing a packet and checking the response. The test results
are output to a HTML file (index.html).

The advantage of TAHI project is using free system FreeBSD, which provides
many advanced features and powerful Internet solutions. The disadvantage of this project
is that the specifications of requirements are written in Perl script, which is an informal
language and the test result is reported in a HTML file, which is not a formal notation.

MSR IPv6 (Microsoft Research IPv6) Verification project [2] was built by the
Institute for System Programming of Russia Academy of Sciences (ISPRAS). It aims at
showing the applicability of formal techniques in specification and verification of
complex API like IPv6 implementation. CTesK toolkit is used for test development
automation. In CTesK, SeC (Specification Extension of C) language is used for test
development. One of the test developments is the formal specification of the
requirements of system under test. SeC translator translates SeC to C, which can be
compiled into an executable module. Report Generator gets information about test

execution. The information is reported in a HTML file.

The advantage of MSR 1Pv6 Verification project lay in using most powerful tool
for unit and integration testing. The tests can be developed based on specification only,
therefore, the tests are independent from implementation. The disadvantage of this
project is that the test development is described by SeC language, which is not a formal
language. The test result is reported in a HTML file, which is not a formal notation.

Moreover, both of TAHI project and MSR IPv6 Verification project do not have
formal method to verify and validate their specification from requirements.

In the current thesis, SDL is used to write the formal specifications of IPv6
protocols. Powerful commercial toolset ObjectGeode, which supports SDL formal
language, is used for the verification and the validation of the formal specification.
TestComposer is a test generator in ObjectGeode. It is used to automatically generate
abstract test suites from the formal specification and selective test purposes. The
generated test suites are stored in a standard notation TTCN.

Now that the related work are summarized and commented, we will give an

overview of the protocols used in this thesis.

3. Overview of the Main IPv6 Protocols

This chapter gives a brief overview of the main IPv6 protocols: IPv6, ICMPvV6,
MLD and RIPng. It begins with the basic concepts of the Open System Interconnection
(OSI) model and IP stack. Then, the requirements of the main IPv6 protocols are
described briefly.

A protocol is a set of rules used to enforce a standardized, structured language for
the communication between multiple parties. Using the same protocols, two different
systems can communicate regardless of their underlying architectures. It is easy to define
protocols for two systems. However, it is very difficult to define protocols for any
number of devices. The International Standardization Organization (ISO) has overcome
the problem of communication between many devices at once by developing the OSI
model. This model is a seven-layers model. Each of these seven layers performs a small,
well-defined set of tasks and communicates with the layers directly above and below it.

A protocol stack is a set of a certain number of such layers and is organized in
such a way that the highest level of abstraction lives at the top layer. Each layer of a stack
builds its function upon the services provided by the layer immediately below it. It adds a
header containing layer-specific information to the data packet. Using this concept, a
source node encapsulates data and sends the data to the destination node. The destination
node extracts layer information and process data accordingly.

In OSI model, the highest layer is called application layer: it works directly with
the user or application program. The presentation layer is responsible for presenting data
in a format its user can understand. The session layer allows applications on two different

computers: whether it is to establish a session, or a logical connection. The forth layer is

called transport layer. It is the lowest layer that handles primarily with end-to-end
communication. The transport layer may determine which network is to be used for
communication. The network layer deals with routing strategies; it is the highest layer in
subnet. It handles routing information and maintains customer billing. The network layer
provides the transport layer with the ability to establish end-to-end communication. This
ability allows the transport layer to do its tasks without worrying about the detailed
transmission between two stations. Data link layer supervises the flow of information
between adjacent network nodes. Finally, the physical layer (the lowest layer in OSI
model) transmits data bits over a network.

Internet is a collection of networks. Internet protocol (IP) is the standard that
defines the manner for interconnecting end systems across multiple networks in the
network layers. IP is implemented in each end system and in each router that provides
connection between networks. A source end system (called source node) encapsulates
higher-level data in an IP protocol data unit (called IP packet) for transmission. This IP
packet is passed through one or more networks and connecting routers, to reach its final
destination system (called destination node). A router is an essential device in the
Internet; it allows a packet to pass through different networks.

As the Internet has grown, it shows the limitation of the current version IPv4.
Therefore, the Internet Engineering Task Force issues the demand for proposals for next-
generation IP in July of 1992. In response to this demand, ‘The Recommendation for the
IP Next Generation Protocol,” is issued in January 1995. Finally, the IPv6 standard is

issued in December 1998.

Figure 3.1 is graphic overview of IP stack. It contains application layer, transport
layer, network layer, link layer and physical layer. Application layer protocols support
network applications. Such as file transfer protocol, small mail transfer protocol, and
hypertext transfer protocol. Transport layer protocols perform host-to-host data transfer.
Such as TCP and UDP. Network layer protocols route data from source to destination.
They allow data to be transferred over multiple networks. Internet Protocol and routing
protocols are this layer protocols. Link layer protocols allow data to be transferred
between neighboring network element of LAN (Local Area Network). Such as PPP and
Ethernet. Physical layer transfers data in bits.

In the IPv6-based network, all nodes must implement IPv6, ICMPv6, ND and
MLD. Only routers implement routing protocols. To simplify the implementation, RIPng
protocol is selected as routing protocol. Due to time limitation, the core IPv6 protocols
IPv6, ICMPv6, MLD and RIPng protocols are modeled.

IPv6 protocol defines the packet format and some possible options and validation
rules. If an IPv6 node failed one or more validation constraints, an ICMPv6 error
message might be sent to the packet’s sender. RIPng defines the packet format and rules
to allow routers to exchange information for computing routes over an IPv6 network.
MLD defines the packet’s format and behaviors to allow routers to discover the multicast

listeners on its directly attached link.

10

FTP, SMTP and HTTP Application layer i
— —— Transport layer
| 3 X \ 4
) 4 Network layer
1CMPv6
h 4
ND [€—» IPv6 [¢—P| Routing
A 4
PPP and Ethernet Link layer i
Physical layer i

Figure 3.1 Overview of main IPv6 protocols

The rest of this chapter is organized as follows: in next section, the requirements
of IPv6 protocol are described. In section 3.2, the brief overview of ICMPv6 protocol is
given. In section 3.3, the basic requirements of MLD protocol are given. The last section

describes the fundamental specification of RIPng protocol.

3.11Pv6

IPv6 [3] is the new version of Internet Protocol. It was designed to overcome the

inadequacies and limitation of IPv4. And indeed IPv6 did expand addressing capabilities

by increasing IP address from 32 bits to 128 bits, thus it can support more levels of
addressing hierarchy, a much greater number of addressable nodes, and simpler auto-
configuration of addresses. Moreover, a “scope” field is added to multicast addresses so

as to improve the scalability of multicast routing. In addition, a new type of address

11

called “anycast address” is defined, and used to send a packet to any one of a group of
nodes. Furthermore, IPv6 simplified header format by dropping some headers or making
some headers optional. Hence it reduces the common-case processing cost of packet

handling and limits the bandwidth cost of the header.

3.1.1 Packet Format

An IPv6 packet has a general format that includes IPv6 header, extension headers,
and transport layer data. Extension headers are optional and placed between IPv6 header
and transport layer data. A packet can have extension headers from zero to maximum
seven. These extension headers are 1) Hop-By-hop option header, which defines special
options that are required by each node along the way to the final destination; 2) routing
header, which provides one or more router to be passed on the way to a packet’s
destination; 3) fragment header, which contains fragmentation information for
reassembling; 4) authentication header, which provides authentication information; 5)
encapsulation security payload header, which insures privacy; 6) destination option
headerl, which contains optional information that will be examined by the destination
router; 7) destination option header2, which contains optional information that will be
examined by the destination host. Each one of those extension headers is identified by a

distinct next header value.

3.1.1.1 IPv6 Header Format
An IPv6 header has a fixed length of 40 octets. It includes eight fields, which are:
Internet Protocol version field, Traffic Class field, Flow Label field, Payload Length

field, Next Header field, Hop Limit field, Source Address field and Destination Address

12

field. The value of the Internet Protocol version field is six, which means the Internet
protocol’s version is six. The traffic class is available for use by originating nodes or
forwarding routers to identify and distinguish different classes or priorities of IPv6
packets. The Flow Label may be used by a source to label sequences of packets for which
it request special handing by the IPv6 routers. The Payload Length is the length of the
payload, which is the rest of IPv6 packet. The Next Header identifies the type of header
immediately following the IPv6 header. The Hop Limit is decremented by 1 by each node
that forwards the packet. The Source Address is a 128-bit address of originator of the
packet. The Destination Address is a 128-bit address of the intended recipient of the

packet.

3.1.1.2 Options Format

It is an option definition that includes Option Type, Opt Data Len and Option data.
The Option Type identifies the type of option. It may not be recognized during the IPv6
node processing. In such case, the action must be taken according to the highest-order
two bits of the Option Type. The Opt Data Len specifies the length of the option data.

The Option Data is a variable-length data of option.

3.1.1.3 Hop-by-Hop Options Header Format

The hop-by-Hop options header is identified by a Next Header value of 0 in the
IPv6 header. If it is present, it must be examined by each node along the way the packet
passes. It contains next header, which identifies the type of header immediately following
the Hop-by-Hop option header, and HdrExtLen, which is the length of the hop-by-hop

Options header, and options.

13

3.1.1.4 Routing header format

The Routing header is identified by a next header value of 43 in the immediately
preceding header. If it is present, it must be examined by all destination nodes. At that
point, the IPv6 packet and routing header contents are updated and the packet is
forwarded. Routing header contains Next Header, Hdr Ext Len, Routing Type, Segment
Left, and type-specific data. The Next Header identifies the type of header immediately
following; the Hdr Ext Len is the length of the routing header; Routing Type identifies a
particular routing header; the Segment Left indicates the number of intermediate nodes
left to be visited. The type-specific data is a variable-length field and the routing type

determines its format.

3.1.1.5 Fragment header format

The fragment header is identified by a Next Header value of 44 in the immediately
preceding header. If it is present, it can only be processed by final destination node. A
fragment header contains Next Header field, Reserved field, Fragment Offset field, M
flag field and Identification field.

The Next Header identifies the initial header type of the fragmentable part of the
original packet; the Fragment Offset is the offset of the data following this header and
relative to the start of the fragmentable part of the original packet; the M flag indicates

whether the packet is the last fragment; the Identification identifies the fragments.

3.1.1.6 Destination Options header format
The Destination options header is identified by a Next Header value of 60 in the

immediately preceding header; its format is the same as the hop-by-Hop options header.

14

3.1.2 Packet Size Issues

IPv6 requires that every link in the Internet have a Maximum Transmission Unit
(MTU) of 1280 octets or greater. On any link that cannot convey a 1280-octet packet in
one piece, link-specific fragmentation and reassembly must be provided at a layer below
IPv6. It is recommended for links to be configured with MTU of 1500 octets or greater to
avoid incurring IPv6-layer fragmentation.

This section has a brief overview of IPv6 protocol. The detailed information about
this protocol is described in RFC 2460. The next section will give a brief overview of

ICMPv6 protocol.

15

3.2 ICMPv6

ICMPvV6 [4] is defined for IPv6. It is an integral part of IPv6 and MUST be fully
implemented by each IPv6 node. The header is identified by a next header value of 58 in
the immediately preceding header. ICMPv6 affords message packets to report errors
encountered during packets processing and to perform other special tasks. The messages
are classified into two categories: error messages and informational messages. An ICMP
message is generated only once no matter if it can or cannot be delivered in order to

avoid an endless transmission of ICMP messages.

3.2.1 Error Messages Format

An error message is identified by its message type. The value of the message type

is marked on a scale of 0 to 127.

3.2.1.1 Destination Unreachable Message

A router generates a destination unreachable message when it is unable to send the
packet to its destination. The type value of the message is 1. The code value inside the
message defines four reasons for delivery failures: 1) no route to destination (code=0); 2)
communication with destination administratively prohibited (code=1); 3) unassigned
address (code=2); 4) unreachable address (code =3); 5) unreachable port (code=4). The

graphic view is figure 3.2.1

Type [Code | Checksum
Unused
As much of invoking packet as will fit without the ICMPV6 packet exceeding the
minimum IPV6 MTU

Figure 3.2.1: destination unreachable message format

16

3.2.1.2 Packet Too Big Message
A packet too big message is generated when the packet cannot be forwarded
because its size is larger than the MTU of the next-hop link. The type value of the

message is 2. The code value is 0. The graphic view is figure 3.2.2.

Type | Code | Checksum
MTU
As much of invoking packet as will fit without the ICMPv6 packet exceeding the
minimum IPV6 MTU

Figure 3.2.2 packet too big message format

3.2.1.3 Time Exceeded Message

A time-exceeded message is generated when a router receives a packet with zero
Hop Limit, or the router decrements the packet’s Hop Limit to zero, or reassembles
fragment packets timeout. The type value of the message is 3. The code value is 0 if the
problem is Hop limit exceeded; is 1 if the problem is fragment reassembly time exceeded.

The graphic view is fig. 3.2.3.

Type | Code] Checksum
Unused
As much of invoking packet as will fit without the ICMPv6 packet exceeding the
minimum IPV6 MTU

Figure 3.2.3 time exceeded message format

3.2.1.4 Parameter Problem Message

A parameter problem message is generated when IPv6 nodes find a problem in a
field of the IPv6 header, or extension headers. The message type is 4. The code value is 0
if erroneous header field is encountered. It is 1 if unrecognized next header type is

encountered. It is 2 if unrecognized IPV6 option is encountered. The pointer field in the

17

message identifies the octet offset within the invoking packet where the error was

detected. The graphic view is figure 3.2.4.

Type | Code | Checksum
Pointer
As much of invoking packet as will fit without the ICMPv6 packet exceeding the
minimum IPV6 MTU

Figure 3.2.4 parameter problem message format

3.2.2 Informational Messages

An information message contains message type, code, identifier and sequence
number. The value of the message type goes from 128 to 255. It identifies an information

message.

3.2.2.1 Echo Request Message
The type value of an Echo request Message is 128. The code value is 0. The
identifier and sequence number aid in matching Echo Replies to this Echo Request. The

graphic view is figure 3.2.5.

Type | Code Checksum
Identifier | Sequence Number
Data ...

Figure 3.2.5 Echo Request message format

3.2.2.2 Echo Reply Message

An Echo Reply message is sent to respond to an Echo Request. The type value is
129, and the code value is zero. The identifier and sequence number are identical to those

values in the Echo Request. The graphic view is figure 3.2.6.

18

Type

|

Code

Checksum

Identifier

Sequence Number

Data ...

Figure 3.2.6 Echo Reply message format

This section has a brief overview of ICMPv6 protocol. The detailed information

about this protocol is described in RFC 2463. The next section will give a brief overview

of MLD protocol.

19

3.3 MLD

MLD [13] is a sub-protocol of ICMPV6. It is used by an IPv6 router to discover if
there are multicast listeners on its directly attached links and to determine specifically
which multicast addresses are of interest to those nodes. Then routers use this information
to ensure that multicast packets are delivered to the interested nodes.

MLD is an asymmetric protocol. It specifies different behaviours for multicast
listeners and for routers. When a router is a multicast listener to itself for some multicast

addresses, the router performs both parts of the protocol.

3.3.1 Message Format

MLD message types are a subset of the set of ICMPv6 message types, and MLD
messages are identified in IPv6 packets by preceding next header value of 58. They are
sent with a link-local IPv6 Source Address, an IPv6 Hop Limit of 1, and an IPv6 Router

Alert option in a Hop-by-Hop Options header. Figure 3.3.1 is the format of the MLD

messages:
Type (8 bits) | Code (8 bits) | Checksum (16 bits)
Maximum Response Delay (16 bits) | Reserved (16 bits)

Multicast Address (128 bits)

Figure 3.3.1 MLD message format

Where the ‘“Type’ specifies the MLD message. The detailed descriptions are: the

type of Multicast Listener Query is 130, the type of Multicast Listener report is 131, and

the type of Multicast Listener Done is 132.
In figure3.3.1, the ‘Code’ is initialized to O by the sender, and is ignored by

receivers. It is used for further qualifying the MLD message. The ‘Maximum Response

20

Delay’ is set to O by the sender and is ignored by receivers in all messages except in
Query message. In Query messages, the ‘Maximum Response Delay’ specifies the
maximum allowed delay before sending a responding Report. The ‘Reserved’ field is
initialized to zero by the sender and is ignored by receivers. The ‘Multicast Address’ has

different meaning in different messages. The detailed descriptions are shown in

figure3.3.2:

Message Type Description of Multicast Address

In General Query Is set to O

In Multicast-Address-Specific Query Is set to a specific IPv6 multicast address

In a Report Is set to a specific multicast address where
the message is listening

In Done message Is set to a specific multicast address where
the message is ceasing to listen

Figure 3.3.2 description of multicast address

3.3.2 Protocol Description

Routers use MLD to discover which multicast addresses have listeners on each of
their attached links. For each attached link, a router selects one of its link-local unicast
addresses of that link to be used as the IPv6 source address in all MLD packets it
transmits on that link. For each interface over which the router is operating the MLD
protocol, the router must configure that interface to listen to all link-layer multicast
address that can be generated by IPv6 multicasts.

With respect to each of its attached links, a router may act either as a Querier or a
Non-Querier. Normally, there is only one Querier per link. All routers start up as a
Querier on each of their attached links. At the beginning, there is one Querier for each
link. It sends a General Query on that link and starts initial General Query Timer. After

the General Query Timer expired, the Querier sends another General Query and starts

21

General Query Timer again. The Querier repeats this action until it heads a Query
Message whose IPv6 Source address is numerically less than its own selected address for
that link. At that moment the Querier must start Other Querier Present Timer, and then
become a Non-Querier. A Non-Querier will become a Querier if Other Present Querier
Timer expired without receiving any Query from a router with an address less than its
OWn.

When a router receives a report from a link, it will update the router’s list of
multicast address having listeners on that link accordingly. When a router receives a
Done message from a link, if it is in Non-Querier state, it must ignore the Done message.
Otherwise, the router checks whether the multicast address of the link is in the multicast
address list. If the address is in the list, the router sends “Last Listener Query Count”
Multicast-Address-Specific Queries, one every “Last Listener Query interval” to that
multicast address. If no reports are received for the address from this link after
“maximum response delay”, the router assumes that there is no listener on the address of

the link. The figure 3.3.3 describes the state diagram of the router.

22

2:When general query timer
expires, sends general query, and
starts general query timer

1: Sends general query,
starts “initial general query

-—————— o e o

timer” Ouerd
FTTTTTTTTS i uerier
p Initial yoTTTTTTmImS » Tt -
N S N
:' |
3: Query is received f'fom a router E
3 3 . | .
with lgwer P ad@ress% and thgn 1t" 5: When “othér Querier present
starts “other querier p‘resent timer timer” expire 21', it sends general
i Query, starts ‘:‘general Query timer”
| |
i i
[} 1
] [}
L i
- Non [~
- Querier P R—

router with lower IP address, starts

t

t

|

[}

i

¢ 4: When a Query is received from a
i

i “other Querier present timer”

{

1

Figure 3.3.3 router states diagram

With respect to any single IPv6 multicast address on any single interface, a node
may be on Non-listener state, Delaying-Listener state, or Idle Listener state. The Non-
listener is the initial state of a node. At this state, the node is not listening to the address
on the interface. When a node wants to receive a multicast packet, it sends a Report to
Querier router attached to its link. And then the node is on Delaying-Listener state.

On the Delaying-Listener state, a node performs four actions up to its receiving
and timer. If a Query is received, it sets delay timer for the multicast address to which it
is listening on the interface from which the Query was received, excluding the Link-
scope all nodes address and any multicast addresses of scope reserved or node-local. If a

Report is received, the node stops the timer, clear the flag and then changes to Idle-

23

Listener state. If the timer expired, the node sends a report, sets the Flag and then changes

to Idle-Listener state. On the Idle-Listener state, a node starts timer and changes to

Delaying-Listener state if it receives a Query.

A node could stop listening by sending a ‘Done’ message to Querier Router when

it is on Delaying-Listener state or Idle-Listener state. The figure 3.3.4 is a node state

diagram with the corresponding behaviours:

Non-Listener

7: If flag is set, then
send done message

5:istops “report delay timer,
sehds done message if flag is

sei.

Delaying-Listener

|
v

1: Send Report, set flag, start:
“unsolicited report timer”

Y 7

6: If a query is received, then
getsdelaytimer . _________|

3: If a Report is received, then
stops ‘report delay timer’ and
clear flag message.

4: If timer expired, then send
report and set flag

D |

reset ‘report delay timer’

2:If a query is received and
maximum response delay is
Iess then current timer, then

Idle-Listener

Figure 3.3.4 node states diagram

This section has a brief overview of MLD protocol. The detailed information

about this protocol is described in RFC 2710. The next section will give a brief overview

of RIPng protocol.

24

3.4 RIPng

The term RIPng [5] stands for Routing Information Protocol New Generation for
an IPv6 Internet. It was designed to work as an Interior Gateway Protocol (IGP) in
networks of moderate-size. It is not intended to be used in a more complex environment.

RIPng is based on Distance Vector Algorithm to allow routers to exchange
routing information through an IPv6 based network. It should be implemented only in
routers. Any router that uses RIPng is assumed to have interfaces to one or more
networks. The protocol relies on access to certain information about each of these
networks, the most important of which is its metric. The metric is an integer between 1
and 15, inclusively. Moreover, each network will have an IPv6 destination address prefix
and prefix length associated with it.

The protocol is limited to networks whose longest path is 15 hops. It depends
upon ‘counting to infinity” to resolve certain unusual situations, therefore the resolution
of routing loop may require either much time or bandwidth. Furthermore, the protocol is
not appropriate for the situation where the routes need to be chosen on real-time

parameters.

3.4.1 Message Format

RIPng is an UDP-based protocol. Each router that uses RIPng has a routing
process that sends and receives datagrams on UDP port number 521. The RIPng packet

format is in figure 3.4.1:

25

Command (1 octet) | Version (1 octet) | Must be zero (2 octets)

Route Table Entry 1 (20 octets)

Route Table Entry N (20 octets)

Figure 3.4.1 RIPng packet format

In figure 3.4.1, the ‘command’ is used to specify the purpose of this message; the
‘version’ contains the version number of the protocol. The commands implemented in
version 1 are Request and Response. A Request Message is a request for a system to send
all or part of its routing table. A Response Message contains all or part of the sender's
routing table. It may be sent in response to a request, or be an unsolicited routing update
generated by the sender. Each of these messages contains a list of RTEs. Each Route

Table Entry (RTE) has the following format:

IPv6 prefix (16 octets)

Route tag (2 octets) | Prefix Len (1 octet) | Metric (1 octet)

Figure 3.4.2 routing table entry

In figure 3.4.2, ‘IPv6 prefix’ is prefix of the destination that is stored in 16 octets
in network byte order. The route tag field is an attribute assigned to a route that must be
preserved and readvertised with a route. The intended use of the route tag is to provide a
method of separating ‘internal’ RIPng routes from "external" RIPng routes, which may
have been imported from an Exterior Gateway Protocol or another Interior Gateway

Protocol.

The ‘Prefix Len’, prefix length field, is the length in bits of the significant part of

the prefix (a value between 0 and 128 inclusive) starting from the left of the prefix.

The ‘Metric’ contains a value between 1 and 15 inclusively, specifying the current
metric for the destination; or the value 16 (infinity), which indicates that the destination is

not reachable.

26

RIPng provides the ability to specify the immediate next hop IPv6 address a
packet must use to reach the destination specified by a route table entry (RTE). A next
hop RTE is identified by a value of OxFF in the metric field of an RTE. The prefix field
specifies the IPv6 address of the next hop. The route tag and prefix length in the next hop
RTE must be set to zero by the sender and ignored by the receiver. The purpose of the

next hop RTE is to eliminate packets being routed through extra hops in the system.

3.4.2 Addressing Considerations

The distinction between network, subnet and a host routes does not need to be
made for RIPng because an IPv6 address prefix is unambiguous. Any prefix with a prefix
length of zero is used to designate a default route. A default route is used when it is not
convenient to list every possible network in the RIPng updates, and when one or more
routers in the system are prepared to handle traffic to the networks that are not explicitly
listed. These "default routers” use the default route as a path for all datagrams for which

they have no explicit route.

3.4.3 Timers

Every 30 seconds, the RIPng process is awakened to send an unsolicited response
message to every neighbouring router. If there are many routers on a single network, the
unnecessary collision will happen on broadcast network. In order to avoid these
unnecessary collisions, the implementations are required to take one of these two
protections: 1) The 30-second updates are triggered by a clock whose rate is not affected

by system load or the time required servicing the previous update timer. 2) The 30-

27

second timer is offset by a small random time (+/- 0 to 15 seconds) each time it is set.
The offset derives from: 0.5 * the update period.

There are two timers associated with each route, a "timeout" and a "garbage-
collection time." Upon expiration of the timeout, the route is no longer valid; however, it
is retained in the routing table for a short time so that neighbours can be notified that the
route has been dropped. Upon expiration of the garbage-collection timer, the route is

finally removed from the routing table.

3.4.4 Input Processing
This section describes the handling of datagrams received on the RIPng port. The

processing will depend on the value in the command field.

3.4.4.1 Request Message

A Request is used to ask for a response containing all or part of a router’s routing
table. Usually, a Request is sent as multicast from the RIPng port. Nevertheless, if the
routing table of only a single router is needed, the Request should be sent directly to that
router from a UDP port other than the RIPng port.

The Request is processed entry by entry. For each entry, the router looks dp the
destination in its routing database; if there is a route, the router puts that route’s metric in
the metric field of the RT; If there is no explicit route to the specified destination, the
router puts infinity in the metric field. Once all the entries have been filled in, the router
changes the command from Request to Response and sends the datagram back to the

requestor.

28

However, some special cases have to be considered: if there are no entries, no
response is given,; if there is exactly one entry in the request, and if it is a next hop Route

Table Entry, then this is a request for sending the entire routing table.

3.4.4.2 Response Message

A Response can be received in response to a specific query, an unsolicited
response or a triggered update caused by a route change. The processing is the same no
matter why the Response was generated. In order to ensure to update the routing table
correctly, the Response must be validated. The validation includes several sending port
number valid, source address valid, destination prefix valid, prefix length valid, and
metric valid. The Response must be ignored if it is not from the RIPng port. If any other
check fails, the router ignores that entry and proceeds to next entry.

Once the entry has been validated, the router updates the metric by adding the

cost of the network on which the message arrived. If the result is greater than infinity, use

infinity. That is: metric = MIN (metric + cost, infinity)

If there is no such route, the router adds this route to the routing table, unless the

metric is infinity.

3.4.5 Output Processing
This section describes the processing used to create response messages that
contain all or part of the routing table. Input processing, regular routing update, or

triggered updates may trigger this processing.

29

3.4.5.1 Triggered Updates

There are two reasons why triggered updates require special handling. The first
one is that practice knows that triggered updates can cause excessive loads on networks
with limited capacity or networks with many routers on them. Therefore, the protocol
requires limiting the frequency of triggered updates. The second one is that triggered
updates do not need to include the entire routing table. In principle, only those routes that
have changed need to be included. Therefore, messages generated as part of a triggered
update must include at least those routes that had their route change flag set. When a
triggered update is processed, messages should be generated for every directly connected

network. If no routes need be sent on that network, the update may be omitted.

3.4.5.2 Generating Response Message
This section describes how a Response message is generated for a particular

directly connected network.

Normally, the IPv6 source address must be a link-local address of the possible
addresses of the sending router’s interface. It is important to use a link-local address
because the source address is put into the routing table in the router that receives this
Response. Therefore, If an incorrect source address is used, other routers may be unable

to route datagrams.

However, the source address must be a globally valid address if replying to a

unicast Request Message from a port other than the RIPng port.

30

4. SDL and Its Supporting Tool

This section is a brief overview of SDL and its supporting tool-Object GEODE
toolset. It covers the basic concepts and main characteristics of SDL to answer the
question: why and how to use SDL. It also covers essential functions of ObjectGEODE
toolset to clarify the advantages of the toolset. All elements concerning SDL are
described in section 4.1; all elements concerning ObjectGEODE toolset are described in

section 4.2.

4.1 SDL

It is in 1972 that scientists began to develop SDL. In 1976, the first version made
its appearance. Later in 1980, 1984, 1988, 1992, 1996,1999 and 2000, new versions
followed. The first recommendation Z.100 [10] is issued by the International
Telecommunications Union-Telecommunications Standardization Sector (ITU-T) in
1980. Each following version has better solution than previous version. The Object
Oriented features were included in the language in 1992. This was extended in the latest
version (SDL-2000) to give better support for object modeling and for code generation.

SDL [12] is a standard language for the description of a system. This language is
designed for the specification of complex, event-driven, real-time, and interactive
applications that involve many concurrent activities that communicate using discrete
signals. It has a well-defined set of concepts and an unambiguous, clear, precise, and
concise specification. It also has a precise basis for analyzing specification, determining

consistency and implementing the conformance of a specification.

31

SDL is based on a set of extended finite state machines (EFSMs). These machines
are independent and communicate asynchronously by using FIFO algorithm. A SDL
system consists of structure, communication, behaviours, data, and inheritance
components. The system structure and behaviour are described in section 4.1.1.
Communication is described in section 4.1.2. In order to enrich explanations about
communication in SDL, time and timer are described in section 4.1.3. Data and

inheritance are described in section 4.1.4.

4.1.1 System Structure and Behavior

A SDL system contains four main hierarchical levels. The first level (top level of
detail) is system, which can be partitioned into blocks and processes. The second level is
blocks that can be divided into processes and procedures. The third level is processes that
are described by extended finite state machines and procedures.

A system is an abstract machine that communicates with its environment [12].
The behaviour of a system is described by a number of processes. In SDL/GR model, a
system is called a system diagram. Basically, a system diagram contains system’s name,
signal descriptions, channel descriptions, data type descriptions and blocks descriptions.

A block is a part of the system that performs conceptual functions as a unit. In
SDL/GR model, a block is called a block diagram. Basically, a block diagram contains
block’s name, signal descriptions, signal route descriptions, channel-to-route connections,
and process descriptions.

A process is an extended finite state machine. It can be created at system start. It

can also be created by another process at run time. One or more instance of a process can

32

exist simultaneously. Each instance has a unique process identifier (PId). Therefore, it is
possible to send signals to individual instances of a process. The concept of processes and
process instances that work autonomously and concurrently makes SDL a true real-time

language.

4.1.2 Communication

SDL has two basic communication mechanisms: asynchronous signals and
synchronous remote procedure calls. Both mechanisms can interchange and synchronize
information between: 1) different processes, 2) different blocks, 3) SDL system and its
environment. SDL defines channels to perform communication between different blocks
of a system or communication between SDL system and its environment. It also defines
signal route to perform communication between different processes within a block.
Moreover, SDL defines time and timers to enrich the communication mechanism for real

time applications.

4.1.3 Timer

Timer is an essential concept in a real time system. In SDL, Time and timers are
defined in abstract manner. A timer must be described in a process. An inactivated timer
can be activated and vice versa. An activated timer can expire within certain periods.
When an SDL timer expires, the process that started the timer receives a notification
(signal) in the same way as it receives any other signal. Actually, an expired timer is

treated in exactly the same way as a signal.

33

4.1.4 Data and Inheritance Concept

SDL describes data type using basic predefined data type, such as integer,
charstring, and Boolean. It also accepts abstract data type (ADT) and ASN.1. An ADT
does not have specified data structure. However it specifies a set of values, a set of
operators, and a set of equations. Hence ADT can hide data manipulation and algorithm.
ASN.1 describes data using a set of predefined data types, and allows the definition of
composed data types, such as groups of elements (called SEQUENCE), sequence of
identical types (called SEQUENCE OF) and a type of alternatives (called CHOICE).

OO Inheritance concept of SDL is based on type declaration. Type declaration
can be placed in different level. It is possible to structure and reuse information.
Combining ADT and ASN.1, it is easy to define Protocol Data Unit in the SDL system.

Therefore, SDL is well known and suited for telecommunication applications.

4.2 ObjectGEODE Toolset

ObjectGEODE is an environment that supports the SDL language. It can produce
well-defined, complete an(d consistent specification, reduce the complexity of the
specification, and generate test cases automatically.

ObjectGEODE toolset [6] provides graphical editors, an efficient simulator, an actual
C/C++ code generator, and a test generation tool. Therefore, the designer can stipulate a
system graphically, achieve a formal verification and validation of the system, create
automatically the C or C++ code from the system, and generate test suites for

conformance testing by using ObjectGEODE.

34

4.2.1 Graphic Editors

ObjectGEODE contains five graphic editors: UML Class Diagram Editor, MSC
Editor, UML StateChart Editor, SDL Editor and SDL&MSC checker. The first four
editors are used to create, modify, and view the diagrams of a system description:
Architecture, Communication, State machines and Message Sequence diagrams. The
latter ensures the consistency and compliance of a system description with notation rules.
From a practical point of view, the designer only needs to use SDL editor combined with

SDL&MSC checker to describe the architecture and communication successfully.

4.2.2 Efficient Simulator

The simulator provides debugging, verification and validation techniques to detect
any modeling error. There are three modes: interactive mode, random mode and
exhaustive mode. With interactive simulation (interactive mode), the user plays a role of
environment by sending external signals or by increasing time. The system is observed as
a white-box. In intensive simulation (random mode), the simulator automatically fires a
series of transitions at random. In exhaustive simulation (exhaustive mode), the simulator
exhaustively explores the model’s behaviors under MSC and GOAL observers’

monitoring.

4.2.3 Test Generation Tool

‘TestComposer’ is one of the test generation tools. It is contained in ObjectGeode
toolset. The TestComposer [8] performs conformance testing by generating test suites for

an Implementation Under Test (IUT). The tool takes SDL specification, test environment

35

specification, and test purposes as input and generates a test case for each fed test
purpose. The generated test cases are stored in the test case database. Finally, test suites
are generated throughout the test cases database API, and are written a TTCN-mp file
(Tree and Tabular Combined Notation-Machine Processing). The TTCN-mp file can be
viewed in TTCN editor.

TTCN [9] is an ISO standard for describing test suites that are executed on
software application. It has been developed for the description of test cases for OSI
conformance test suites.

Now that the basic concepts have been established, we will pass to their

applications.

36

S.SDL Modeling, Verification and Validation

In this chapter, an explanation of the methodology and techniques, which are used
to formalize, verify and validate the model and generate test cases, is given. There are
four fundamental steps [12]: 1) extracting technical information, 2) creating SDL model,
3) verifying and validating the SDL model, and 4) generating TTCN test cases. The first

section treats the first of the four fundamental steps: ‘extracting technical information.

5.1 Extracting Technical Information

This stage is an indispensable phase. During this phase, many ambiguities and
incomplete information may be encountered, and any mistakes will lead to an erroneous
implementation. It takes the highest cost to correct this kind of erroneous implementation
during the software development life cycle. This stage is also the most challenging part of
the implementation because of the necessity to fully understand the RFCs and to
complete the ambiguities and incomplete information in the RFCs. The difficulty is even
greater since RFCs make multiple self-references (one RFC often refers to other RFCs
that refers to each other and to the first RFC). For example, in ICMPv6 (RFC 2463), the
description of ‘upper layer notification’ is incomplete. It does not describe what should
be notified when a node receives an error message. It does not describe the condition of
passing Echo Request message to processes receiving ICMP message nor the condition of
passing Echo Reply message to processes that did not originate the Echo Request
message. The repeated use of “maybe” underlines the uncertainties lied forth by the
RFCs. In IPv6 protocol (RFC 2460), it allows extension headers to occur in any order and

any number of times in the same packet. However, it does not mention any solution for

37

its implementation. There are many other examples, but we shall leave them unnoticed
and stay in topic. Therefore, because of the high difficulty to understand and complete
REC:s, it is helpful to present the extracted information and modeled it in any semi-formal
ways before describing it with SDL formal language or proposing any implementation,
especially considering the high cost of correcting mistakes made during this stage.

This thesis implements the protocols’ mandatory parts that refer to “must’ or
“should” statements in RFCs. The technical information has been extracted carefully and
correctly by using top-down design methodology. The extracted information is described
in MSC semi-formally. In the rest of this chapter, IPv6 protocol is used as an example to
demonstrate the general methodologies.

By learning IPv6 protocol, an IP node is a device that implements IPv6. A router
is a node that forwards IPv6 packets, and a host is a node that runs application. Hosts of
different networks can communicate through routers. In the rest of this thesis, the word
router refers to the network layer of a router; the word host refers to the network layer of
a host.

A router implements IPv6, ICMPv6, MLD and RIPng routing protocols. It may be
an intermediate router or a destination router. Normally, an intermediate router forwards
a packet to another router. A destination router plays the same role as an intermediate
router, except that it not only examines hop-by-hop header, but also examines destination
option headerl and routing header. At this moment, the routing header is updated by
placing the next address to be visited in the IPv6 header and decrementing the segment

left field in the routing header.

38

If a router receives a packet that contains errors, it may discard this packet, send
an error message to the source, or forward this packet anyway.

A router in IPv6 does not fragment a packet. When it tries to forward a packet
whose size is more than MTU, an error message will be sent to the source. These

extracted information are described in MSC semi-formally as follows:

Scenario 1: Figure 5.1 shows that a router forwards a packet.

routerForwardPacket
- niode router nede?
nedet router nodez
IPvBPackst

nzemors am no fragmentation

|PYWEPacket

Figure 5.1 a router forwards a packet

39

Scenario 2: Figure 5.2 shows a router sends an error message.

routersenderror
noded router
noce router

|PVEPackst

[errors or need fragmentation

|FYBPackat

Figure 5.2 a router sends an error message

A host can send and receive a packet. If a host sends a packet whose size is more
than MTU, then this host fragments this packet into several fragments, and sends these
fragments to the destination. If a host receives fragments, it reassembles these fragments
to the original packet.

A host has ability to examine a packet entirely. If a host is a source, it examines
hop-by-hop header only (if the packet contains this header). Consequently, this host may
send an error message to its upper layer, discard this packet, or send this packet to the
destination. If a host is a destination, it examines all headers (whichever the packet
contains). As a result, this host may send an error message to the source, discard this

packet, or send PDU to its upper layer.

40

Scenario 3: Figure 5.3 shows that a host sends a packet.

MSC hostSendPacket
i upperlayer E ! hast i ! ?DWEI‘?H‘{EF l
PDU
<nnerrm‘_and_ncfragmentatbn>

IP¥6Packet

Figure 5.3 a host sends a packet

Scenario 4: Figure 5.4 shows a host sends fragments.

MSC hostSendFragments
| upperlayer | | host [Towerayer |

FOU

oo
<mepmg~&rd_§fmen&aﬁm>

kop} i
<5ﬁnd_aﬁ_ﬁagﬁ5ﬁ&s>

IPVEPacket

Figure 5.4 a host sends fragments

41

Scenario 5: Figure 5.5 shows a host sends PDU.

MSC hostSendPDU
1 Ewer!ayer ‘1 | host l t upperlayer |
IPVBEPackat
<noarrcr_anc:l_nnFregmentatian>

PDU

Figure 5.5 a host sends PDU

Scenario 6: Figure 5.6 shows a host reassembles fragments and sends PDU.

MSC hostSendPDU
' i host l l upperiayer l
oop) | |pysPacket 1
L

£ noerror

reassembling

<f inish_reazsemble>
1

POU

Figure 5.6 a host reassembles fragments and sends PDU

Scenario 7: Figure 5.7 shows a host sends an error message.

42

MSC hostBendlICMPPacket

i

&

IPYEPacket

IPY8Packat

F

Figure 5.7 a host sends an error message

According to the scenarios presented above, we can describe a host or a router
separately to accomplish the conformance testing for a host or a router in network layer.
In such model, the environment plays two roles: transport layer and link layer. That
means, the environment can send or receive either the PDU from transport layer or the
PDU from link layer. Consequently, this model allows users to provide the requests of
transport layer and the services of link layer to stimulate the system to perform the
conformance testing.

In order to perform interoperability testing between routers and hosts, we have to
model networks. These networks have to contain an intermediate router, a destination
router, a source host and a destination host. To simplify the system, we abstracted the
minimum configuration of the system shown in figure 5.8. With this minimum
configuration, the environment becomes transport layer only. The connection between
hosts and routers plays the role of the link layer. That means the environment can send or
receive PDU from transport layer only. Consequently, this model allows users to provide

the requests of transport layer to stimulate the system to perform the conformance testing.

43

Let us consider a scenario in which Hostl sends a packet to a Host3. In this
scenario, Hostl is a source, it may send a packet, an error message or fragments
depending on the sending packet; Host3 is a destination, it may receive a packet or
fragments, then may send an error message to the source or PDU to its upper layer;
Routerl is an intermediate router; Roter2 is a destination router. Therefore, this minimum
configuration covers all scenarios that achieve the requirements of IPv6, ICMPv6, MLD
and RIPng protocols. This section has described the extracted technical information and

minimum configuration. Now we are ready to create an SDL system.

Host2

Hostl Routerl E

Figure 5.8 minimum configuration of the system

5.2 Creating an SDL Model

SDL sees the world as two parts: the system and its environment. The
specification written in SDL is limited to the system. It is a formal model that defines the
properties of an existing or planned system. Everything outside the system is a part of the
environment. Even though the environment is not specified formally, it can be considered
as a process, which can communicate with the system by signals.

This thesis considers network layer protocols IPv6, ICMPv6, MLD and RIPng.
That means the SDL model considered here describes behaviours of these network layer

protocols only. In order to perform conformance testing, the environment of the system

44

plays the roles of transport layer and link layer. Therefore, the network layer is the top

level of this model. Figure 5.9 is a graphic view of this concept.

Environment
Communicate with transport layer

Network Layer

I Communicate with link layer

Figure 5.9 overview of the model for conformance testing
SDL provides hierarchical structure to decompose a system into blocks. Blocks
are functional components used to simplify the complexities of a system. They can be
self-containing. They communicate using signals via channels. Blocks indirectly affect a
system by constraining signals between process instances.
Therefore, the conceptual view of SDL model for conformance testing can be
described in figure 5.10. It contains two blocks: H and R. H is an instance of block type

host. R is an instance of block type router.

Environment: plays transport layer

Network Layer i

Host: H Router: R

i i
-

Figure 5.10 conceptual view of SDL model for conformance testing

Environment: plays link layer

In order to perform interoperability testing, another model is designed. This

model’s first layer’s conceptual view is described in figure 5.11.

45

Environment
C

ommunicate with transport layer

Network Layer

Figure 5.11 overview of the model for interoperability testing

The conceptual view of SDL model’s second layer for interoperability testing can

be described from the minimum configuration presented above in figure 5.8. It contains

three hosts H1, H2 and H3, and two routers R1 and R2. It is described in figure 5.12.

Environment: transport layer

Network Layer

Host: H1

<D

letef R1

Host: H2

Router: R2

<«

Host: H3

J

Figure 5.12 conceptual view of SDL model for interoperability testing

The architectures of systems are described. In order to simplify implementation

and modification, this thesis uses object-oriented concept to classify two functional

components: host and router. Therefore, the remaining task is to develop SDL model in

ObjectGEODE.

46

5.2.1 SDL Decompositions

In order to simplify SDL models, there are two assumptions. We assume that a
host has two connections: one connects to transport layer, the other one connects to a
router. We also assume that a router has four connections: one connects to transport layer,
one connects to a router, and two connect to hosts. With these two assumptions, SDL
models are described.

Figure 5.13 is the SDL model for conformance testing.

system Nodel nidetwolklayer upperDatalut,
[dataOu, SSupperiaer |
Al upperDataCut, A
passUpparl aye ”
connlpper m—
¥ MLDListeneﬂ
[fead_data, ‘
teed_iompData) [eedt_iompoiats)
Z) £
UIPVBENY URouterEN ¥Gate
» H1:host R1:router
LPVEEMV gorouter gohost gohost2
i . ng ?{fﬂ:va acked] rost
[PvePalte] [iPvéPackel] [iPvepacke] |LFVOPAOKE]
F 1 & ; * outer
cannecthost?
hiri conngectHost
¥ k 4
[IP vﬁﬂaeﬁeﬂ conhectPuter v
i o | f ok
EIPWF Eﬂ‘]&ﬂ [eﬁ {IPmpameﬁ

Figure 5.13 system interconnection diagram for conformance testing

This model is called NodeInNetworkLayer and contains two block instances: Hl
and R1. H1 is an instance of block type host. R1 is an instance of block type router. In
HI, gate UIPV6ENV connects to transport layer. It allows H1 to receive PDU from
transport layer using signal feed_data or feed_icmpData, or send PDU to transport layer
using signal dataOut, upperDataOut or passUpperLayer. Gate LIPV6ENV connects to
link layer. It allows H1 to receive an IPv6 Packet from or send to link layer using signal
IPV6Packet. In R1, gate URouterENVgate connects to transport layer. It allows R1 to
receive PDU from transport layer using signal feed_icmpData, or send PDU to transport
layer using signal upperlayerdata or passUpperlayer. Gate goRouter, ogHostl and
goHost2 connect to link layer, they allow the receiving of an IPv6 packet from or sending

an IPv6 packet to link layer.

In consideration of the ICMP protocol implemented by every IPv6 node, process
type ICMP, which describes the properties of ICMP protocdl, is defined in system level.

Consequently, both a host and a router can use process type ICMP.

MLD is an asymmetric protocol. It specifies different behaviours for multicast
listener and for routers. For some multicast address, router itself can be a listener. In such
case, the router performs both parts of the protocol. Therefore, process MILDListener,

which describes the behaviours of multicast listener, is defined in system level.

48

Figure 5.14 is the SDL model for interoperability test.

[system netuoiks upperDataldut, dataom,ﬂpperﬂa?aOut,mss&operLayea
passupped e
datatkl, heconnUpper
;";ﬁ’ﬁéﬁ;ﬁfﬁ,‘;’ " [feed_a‘afa,feeq_ it:mpDa‘a]
riconnlipger UIPVBENY
HZ'host
‘v {feed_fm}pdaié[[iFVﬁ‘paakea -
URouterENV Gate
voae - onoste 1Pvepackel _comnecthost? \CuP
{feed daty ; gohost1 gaguter
feed:ia'np.‘]af 1PYBPacke
£ [3 host
UIPVBENY J
H1:host {Pi6Packe connectRouter
LIPVEENY
? [1evePacks]
connectHost1 {IPWPMH r2eonnh3d
goroutar lPVﬁPaukea
A2:outer
gohast! URouterENYGate LIPVBENY
: 4 H3:host
[1PvePacke] [iPvePacte] UIPVEBENY
4 eed fompDatg [teet data teed_iompDat]
dumimy raconnUpper haonnUpper
L]
eiDataCut [dataom, erDalaom]
g, f] passiipper! ayer

Figure 5.14 system interconnection diagram for interoperability testing

This system contains a dummy block defined to satisfy SDL semantics and five
block instances: two routers (R1 and R2) and three hosts (H1, H2 and H3). R1 and R2 are
instances of block type router. H1, H2 and H3 are block type host. When comparing this
model with the model in figure 5.13, one can notice a conceptual change. Block type host
connects to a router through gate LIPVOENV to perform the communication with the
router. In block type router, gate gohostl and gohost2 permit connection to hosts to
perform the communication with hosts. In block type router, Gate goRouter permit

connection to a router to perform the communication with a router. Consequently, a user

49

cannot communicate with this model as a link layer. This model simulates networks in

real world with minimum configuration.

In this section, the system interconnection diagrams for both conformance testing
and interoperability testing are described, the remaining task is to decompose block type

host and router.

5.2.1.1 The Decomposition of Block Type Host

This block type contains three processes: [PV6Host, MLDHost and ICMPHost.
Process IPV6Host implements the behaviours of IPv6 protocol for a host. Process
MLDHost, which is an instance of process type MLDListener, describes the properties of
MLD protocol for a host. Process ICMPHost, which is an instance of process type ICMP,
describes the properties of ICMP protocol. Generally, the host block receives or sends an
IPV6 packet through gate LIPVO6ENV. It receives or sends PUD through gate

UIPV6ENV. The specification of this block type is shown in figure 5.15.

50

LIPYEENY

[IPvBHast(1. 1)

IPYEICKPRoute

block type host
[1PvtPacke] [rPvePacke]
rd
MLOENVRaute MLDENY Gate
MLDHost{1):MLDListensr
PYBLowBoute
MLDICMPGate
MLDPacked
{Pveracie] ICHPMLDRoute

[oatace] .

errorGate
CMPPacket IGIAPMLDGate
error_Re ICHPHost1, 1):1CWP

ICMPENYGate

route2

[feed _vaiafesd_icmpDats]

UIPVEEN, .{d&%&@a!, pa&%gaper{ayer,upperﬂatao@

Figure 5.15 Interconnection diagram of block type host

5.2.1.2 The Decomposition of Block Type Router

This block type contains four processes: IPV6Router, ICMPRouter, RIPng and

MILDQuerier. Process IPV6Router describes the properties of IPV6 protocol for a router.

Process ICMPRouter is an instance of process type ICMP. Process RIPng describes the

properties of RIPng protocol. Process MLDQuerier describes the properties of MLD

protocol for a router. Generally, the router block receives or sends an IPv6 packet

through three gates: goRouter, goHostl and goHost2. it receives and sends PDU through

gate URouterENVGate. The specification of this block type is shown in figure 5.16.

51

[iovenacked

Hock Type fouter

JliPvaracked]

MDLQuerie1,1)

[MLDPacke]

outeb

ICMPRauter(1 1 ICMP

£
h errorGate | CGMPILDGate
IGMPEMNYGate

[Pveracke] routeg

upperDataQut,
3ssUippert ayel

[teed fempData) T URoUte ENVGate
[npperoafaom,pass{ipper{.ama

Figure 5.16 Interconnection diagram of block type router

5.2.2 Data Structure and Signals

This thesis designed the data structure by using abstract data type (ADT) and
ASN.1 data type. The data structure hides data information and simplifies the
implementation. Some data are scoped in the package in order to make the data consistent
and reusable for the IP stack. The type IPv6Packet is one of the examples. The following

is a detailed definition:

newtype IPv6Packet

Struct

52

IPv6Header IPv6Hdr; /* IPv6 header */
extenData extenHeader ;
wrapData contents; /* all possible data. */

endnewtype IPv6Packet;

The ‘IPv6Hdr’ is a general structure in ADT, which includes only basic
predefined data types. The type ‘contents’ and ‘extenHeader’ are two kinds of ASN.1

types. Their detailed definitions are as follows:

contents ::= CHOICE
{

ICMPErrorData ICMPErrMsg, /* carry ICMP error message. */
ICMPInfoData ICMPInfoMsg, /* carry ICMP information message. */
MLDData MLDMsg, /* carry MLD message. */

RIPngPacket RIPngMsg, /* carry RIPng message */
appData charstring /* other type data need to be wrapped in IPPacket. */
%
extenHeader ::= SEQUENCE
{
hopbyhop OptionHdr optional , /* hop-by-hop option header. */
destOptHeader] OptionHdr optional , /* destination option header, appears in the
routing table. */

routingHeader RoutingHdr optional , /* routing header. */

53

fragmentHeader FragmentHdr optional , /* fragment header. */

destOptHeader2 OptionHdr optional /* destination option header.*/

In the general point of view, any data type can be declared as a parameter of a
signal. A signal can have zero, one or more parameters. It carries these parameters to
perform communication between two components.

Until now, we have described system decomposition, defined data structure,

timers, signals and their parameters. It is time to write the SDL code.

5.2.3 Writing SDL Code

In SDL, the behaviour of a system is the joint behaviours of all process instances
contained in the system. An SDL process instance may communicate both with each
other and with environment through signals. It is a communicating extended finite-state
machine (EFSM). It is either in a stable state or in a transition between states. A transition
is triggered by the process instance receiving an input signal. Moreover, SDL allows the
use of data and variables in a process. When the value of a variable in a process is
changed, the global state of the process is changed. Therefore, the behaviour of the
process may change. Consequently, writing SDL code is a task that describes EFSM in
SDL graphic format supported by SDL Editor tool in ObjectGEODE. A procedure is a
state machine within a process. It can be used to hide detailed information or repeat the
same operation easily. As a result, defining a procedure may take place during a process’

specification.

54

In order to specify a process efficiently, it is very helpful to draw an automata
graph manually according to the extracted technical information, then refine and extend
SDL code accordingly. The SDL. code has to satisfy the SDL semantics.

The following is an example of the procedure of writing SDL code of process
IPv6Host in the host block type. Figure 5.17 is the automata graph. At the beginning, a
host is in its initial state. When it receives PDU data, which is shown in label L1, it
changes to the state ‘Form packet’. In this state, the host either sends a packet (packet’
size <= MTU) or several packets (the original packet’s size > MTU), which is shown in
label L2, and then it changes to the initial state or the host changes to state ‘Report error’
by the output of an IPv6 packet. In this state, it generates an error message and sends this
error message. Then it changes back to its initial state. When a host receives an IPv6
packet, which is shown in label LS, it changes to the state ‘verify headers’. In this state, it
verifies all headers included in the received packet. If any error has to be reported to the
source node, it goes to the state ‘report error’, otherwise it goes to the state ‘Get PDU’. In
this state, the host removes IPv6 header and outputs PDU. Then it changes back to the
initial state. We use this automata graph to develop EFMS for process IPV6Host in SDL

graphic Editor. The SDL code has to satisfy SDL semantics at this step.

55

/p1,p2...
/p

Initial state

L2

L3 /

Form packet Report error

Figure 5.17 Automata for IPv6Host process

5.3 Verifying and Validating the SDL Model

Verification and validation are corrective methods that aim to detect errors and

make corrections. Verification is a process of determining if the model is built correctly.
First, the model has to satisfy the SDL static semantic rules, such as correct balance of
the channel refinement, use of signals match to their declaration, use of data match to
their declaration. To do so the designer uses Quick Checker in SDL Editor tool. Once the
model is correct from the Quick Checker’s point of view, the SDL simulator can execute
the model. During the execution, the model is seen as a white box and the simulator acts
as a debugger. In this step, all relevant errors, such as deadlocks, livelocks and
unspecified receptions [7], should be captured and corrected. In order to avoid any new
error being introduced, the model has to be verified repeatedly. Verification is
complicated and time-consuming. However, it is simplified by using SDL simulator.

During the execution, it is easy to locate the errors by tracing on the process states,

56

queues and variables. Moreover, the cover rates on process transition can point out how
many transitions have been covered, which helps to refine input data.

Validation aims at knowing if the model is correct [7]. It means that validation
assures that the model was built to satisfy the related RFCs. In order to validate the
model, a set of MSC scenarios has to be specified for the main behaviors of extracted
technical information. To validate the model under a certain behavior, one has to execute
the related MSC scenario file and the SDL code together in SDL simulator. During this
execution, each MSC observes the behaviors of the model and compares them with the
expected behaviors. Any observed error would be reported by the simulator. SDL code
can only compile with one MSC file at a time.

Once the SDL model passes the syntax checker (Quick Check in SDL Editor), the
SDL model can be simulated with the ObjectGEODE interactive simulator. The SDL
model is opened and can be seen as a white box. The user plays the role of environment
by sending the model’s input and by controlling timer. In order to send input to the
model, a set of input data have to be derived by combining sequence diagrams and SDL
implementation codes. These input data will be refined during the simulation.

The principle of designing input data is that each input data should focus on a
single or related set of conformance requirements. As a white box test, the designed data
should try to execute as many different branches as possible, in a process or a procedure.
Consequently, the more branches are executed, the more the possible behaviours appear,
and the higher the transition cover rate will be.

The environment sends data to an SDL model by using ‘feed’ command, which is

performed by compiling the SDL model with a MSC file. In verification stage, the MSC

57

file defines input data only. In validation stage, the MSC define both input data and
output data. Once the environment stimulates the SDL model with the input data,
verification and validation takes place in the interactive simulation model. Figure 5.18 is
an on-fly MSC generated during simulation. Using this MSC file, we can trace the
communication between components in the system under implementation. By doing this,

it is much easier to verify the implementation and consult logical errors.

PUBRGITET
inst_1_mdiquarier inst_1_tipng inst_1_iempiauter inst_1_r1 ipvBrouter
PROCESS ¢ PROCESS ! PROCESS PROCGESS/
ipeBrouters ipvrauter ipwtrouter ipwBrauter
- irtiripng oo oo
md kquerier 13 kemprouter ipvGrauter
1 . (43} {1

‘ ippacketi f. | 6,2,372,0,1,FFO2:21010,FF02:1" L[hopbyhop { 88,12(. '0000010] ;2,/010°)]], micdata : {. 130,0,10,10.0,0,({. '0'.2 1,24))

é startuptimer30.0)
unsolizitecpkatetime 300)

checktimedui{180.0)
checkgarbfgecolisction{120.0

feed_kcmpHatal ismpinfodata : { g_o,ﬂ,‘FFOZ::ZﬂBO::SSEB‘,2,’an €cho request data from upper layer’ .y }

ippackeli {. {. 6.0.0.45,58 3, FFOR,2" 27808866 J{ | itmpinfodata : {. 128,00 [FFD2:22750::5868° 2, "an &cho request data from upper layer') 13
ippackel! (. [6,0.0.4558 3 FFDE:2' ' 2780::6868' 1 }. ibmpinfodata : {. 128,0,0 fFF02:22750:5868",2,'an echo request data from upper layer') J)

*

igpacket! (. {. 0,080688. 108004174 FFG2:2'1) [], icmpinfodata : {. 1%3,0,0,’1 80 A17AFFD2:2" 2 echo reply’)))
iemppadkati (. { 6,0,0,90,58,31D80: 4174 FFO2:2) { 2 mpinfodata © {. 129,0,0,/1080:417AFFD2:2 2'echo reply’) '3
perdataoul ‘echo reply’) ~
ippacket{ {. {. 60,002,583 1 080:4174" FFO2:2')| }, icmpinfodata ¢ 12‘3;,0,‘1 08041 7AFFIR::2 2 'echo request'.))}
icmppacket{ {. {. 6,0,092,583.1 8804174 FF02:2 .1,{ }, icmpirfociata : (. 128,00, 050::41 7AFF02:2',2, 'echo reguast’ .})"}

ippacket (. {. 6,0,0,92,58,3 FF02}:2 10804174 1f }, igmpinfodata : {. 129,0,0,§080:417AFF02:2, 2 "scho request J))

ippacketi {. (. 6.0,0.92 58,3 FF02}2" 1080 4174 §{ }, bmpinfodata : {. 129,0.0,'1080::417AFFD2:2°, 2 "echa request’) 33

Figure 5.18 On-fly MSC

Once the system has been proven correct, it is ready to generate test cases. Section 5.4

describes the principle of test generation.

58

5.4 Test Generation

The aim of test generation is to produce test suites. TestComposer generator is
used to perform test generation. Generally, it works in three phases [8]:
1). Test purpose design phase: test purpose can be either computed automatically or
written by the user,
2). Test case generation phase: each test purpose is entered in the test case generation
engine, the generated test case being stored into the test case database,
3). Test suite production phase: a production model uses the database through an API,
and generates the test suite in a user-define format.

These three phases are depicted in figure. 5.19.

4) \
| Shi. Test environment I
{ specification }
\‘ -

Py

T T T T =~

Test purposes Test prrposes Interactive Elser defined
desion computation stmlation fest purposes

/

NON, MSC

Test cases

CGieneration engine

genaration
Test cases
database
Fest suite Application Programming Interfac
production
TTCN Liser
production production
mierdude maxdule

Figure 5.19 general functional architecture

59

As described in figure 5.19, TestComposer takes SDL specification and test
environment specification to produce test suites.

SDL specification describes the system under test (SUT), which includes the
description of the implementation under test (IUT), and of the test architecture.

IUT is a given implementation on which the test suites will be applied. It is the
first part of the SDL specification to be built.

The test architecture is constituted by points of controls and observation (PCO)
together with service access points (ASP). PCO corresponds directly to a channel. It is a
gate through which the tester can communicate with the system under test. ASP is a
special interface used to access IUT, because it happens very often that IUT cannot be
accessed directly.

The test environment can be modeled using either ‘output’ instruction, which
sends a signal once, from environment to system; or ‘feed’ instruction, which describes
the kind of signals that the environment is ready to send to the system at any time.

There are two advantages to the use of ‘feed’ command. The first one is that it can
avoid a complicated manual typing when using ‘output’ command to send data from
environment to the system under test. The other is that it can avoid corresponding test
case errors in TTCN editor, such as ‘incorrect channel define’, ‘the channel is impossible
to receive this kind of UDP’, or ‘the channel is impossible to send the packet’. All these
kinds of errors will occur during the analysis of the test case in TTCN editor if ‘output’
command has been used. The disadvantage of using ‘feed’ command is that any message
can be sent at any moment. If any unexpected message is sent, execution errors will

occur. In order to solve this problem, the tester has to stimulate transactions properly

60

during the simulation. In other words, the tester has to control message sending properly

and accurately.

5.4.1 Test Purposes Generation

A test purpose is some abstract properties that the system must have. It
corresponds to the answer to the “What do I want to test?” question. It is used for
selecting different behaviours described in the SDL specification. The selected
behaviours will be used as a basis for defining a test case. In ObjectGEODE, a test
purpose can be created manually by using SDL & MSC Editor, or automatically during
the test purpose generation phase by using testComposer. During the test purpose
generation, the structural coverage of the SDL specification is computed for analysis.

Test coverage, which is called structural coverage, identifies the parts of the SUT
actually tested by the generated test cases. The coverage is computed from the beginning
of the test, at test purpose level. Basically, each test purpose corresponds to a set of a
behavioural paths identified in the specification. The structural entities entered along
these behavioural paths can be said to be covered, and thus meet the test purpose.

Each computed test purpose involves one observation step, which is a sequence of
basic blocks that lead from one stable testing state to another stable testing state. A stable
testing state is defined as an SUT state in which the only possible actions are the input of
an observable test event, or the timeout of an internal timer.

A basic block is a coverage unit. It begins with start, input, priority input,
continuous signal or an answer to a decision. It ends with a nextstate, a join, a stop or the

return instruction of a procedure.

61

The coverage defined in a test purpose is expressed as the set of basic blocks of
the SDL specification it allows to be covered. Each test purpose corresponds to the
coverage of one or several blocks.

Figure 5.20 is the main window of ‘TestComposer’, an interface through which a
tester can generate test purpose and test cases automatically. A tester can easily describe
its environment in the command window. The detailed description is as follows:

1). “define tp_msc_gen true”, which requests to generate a test purpose when a scenario
file is generated;

2). “define tp_dir ‘testpurposeFolder’ ”, which sets generated test purposes to be saved in
folder ‘testpurposeFolder’;

2

3) “define tp_interpretation ‘complete’ ”, which specifies the completion of the
interpretation mode associated to a generated test purpose;

4) “define tp_coverage_limit 100”, which specifies the aim coverage to be reached during

test purpose generation.

62

i @ /),, S -
Warning: files fhomesz/zheying/geadesm.startup and fIPV

:> define tp_msc_gen true

= define tp_dir "host"

> define tp_interpretation “complete"
define tp_coverage_limit 100

A RS P T P E T pd PRV Ry e POrey
mand here

R

Figure 5.20 main window of ‘TestComposer’

As shown in figure 5.20, the ‘firable’ transitions can be fired in ‘firable
transitions” window. After executing all necessary ‘fireable’ transitions, the test purpose
can be generated by clicking ‘Generate Current Button’ in test purpose command

Interface.

5.4.2 Test Cases Generation
A test case corresponds to a test that is run on the SUT. It is an operational view

of the test. It contains all necessary information such as all expected events, timers setting

63

and test verdicts. In other words, it describes what are the expected events leading to the
test success, but also reactions to not expected events, as well as control of the time one
should wait for an expected event. It corresponds to the answer to the “How do I test?”
question.

A test case can be computed in TestComposer by taking a test purpose and a SDL
specification and is stored in a test case database in an internal format.

The most important elements are ‘behavior description’, ‘constraints Ref’ and
‘verdict’. The behavior description shows information about ‘input signal’, ‘output
signal’, related PCOs and timers. Some timers, which are called test timers, are
automatically generated in the test cases. There are four kinds of test timers:

1). TAC: it is set when the tester is waiting for a SUT output event. If there is a TAC
times out, test verdict should be FAIL.

2). TNOAC: it is set to detect an output block. No verdict is associated with a TNOAC
times out.

3). TWAIT: it measures the maximum time to execute an implicit sending. A FAIL
verdict is related to a TWAIT times out.

4). TEMPTY: it measures the maximum time for expiration of specification timer. No
verdict is related to a TEMPTY times out.

The ‘constraints Ref’ are references of input signals~and output signals. According
to these signals, one can get the values of parameters of these signals in ‘constraints
definition part’ of TTCN editor. The verdict is related to the different conclusions of a
test case. The PASS verdict corresponds to the successful execution of a test case. The

INC (inconclusive) verdict corresponds to a valid outcome, described in the test case, but

64

not relevant to the test purpose corresponding to this test case. The FAIL verdict
corresponds to an invalid behavior such as an unexpected message, or the expiration of
some of the test timers.

Figure 5.21 is a test case in TTCN GR format. The test case presents a source
sending two fragments after it received data.

The principle of the execution is that a source can only send a packet whose size
is less than or equal to MTU. Consequently, if the packet is too big to send, the source
must fragment the packet.

The first entity shows that the environment inputs the data, which is carried by
signal feed_data through PCO hlupper. The actual value of the input is referred to
feed_data_5 in constrains part. Meanwhile TAC timer is set for waiting the output. The
second entity shows the system sends output, which is carried by signal ippacket through
PCO hlrl. The actual value is referred to ippacket_6 in constrains part. At this moment,
the timer TAC is cancel (means the output is sent before the TAC times out), and other
TAC is set to wait for another output. The third entity shows the system sends output,
which is carried by signal ippacket through PCO hlrl. The actual value is referred to
ippacket_7 in constrains part. At this moment, the timer TAC is cancel (means the output
is sent before the TAC times out), and no more TAC is set; that means that there is no

more output. As a result, the test verdict P indicates the test case is successful.

65

PvoNode May 2, 2004 TTEX 4.1.1

Test Case Dynamic Behaviour

Test Case Name : sendFragments
Group :

Purpose : from state idle of ipeBhost, receive feed_data, send (ippacket,ippacket) and go to state idle
Configuration

Default :DEF_O
Comments : Generated by test oriented simulation of the current test purpose scenario

Nr | Label Behaviour Description Constraints Ref Verndict Comments
1 hiupperifead data START TAC feed_data 5

2 hirt?ippacket CANGEL TAG, START TAC | ippacket_B

3 hir?ippacket CANGEL TAC ippacket 7 (P}

Detailed Comments -

Figure 5.21 test case in TTCN GR format

5.4.3 Test Suites Description

A test suite is a collection of test cases with all necessary declarations such as:
data type, timer, and signals. It can be structured by grouping test cases into categories.

The generated test cases are stored into a database in TestComposer generation
tool. This database is accessible through an Application Programming Interface. In the
test suite graphical interface, ‘publish button’ translates the internal test cases database
into a file. The format of this file depends on the selected production library. In our case,
the file is in TTCN-MP format. A MP file is not readable, a dedicated TTCN editor
should be used to edit and visualize this format.

A TTCN suite includes test suite overview, declaration part, constraints part, and
dynamic part. The test overview consists of test suite structure, which gives general
information on the test suites, test case index, which lists all the test cases of the suite,

test step index, which lists all the test steps of the suite, and default index, which lists the

66

only default test case generated by TestComposer. In our case, test suite structure and test
step index are empty. Default index equals to DEF_0.

The declaration part includes all type definitions generated by TestComposer. The
type definitions are global to the test suite. All SDL data types and ASN.1 declarations
are translated into ASN.1 definitions compliant with the TTCN standards. The detail
description of ASN.1 type definition, PCO type declarations, timer declarations and
ASN.1 PDU type definitions can be viewed in this part.

The constraints part includes PDU constrains that describes ASN.1 PDU
constraint declarations, which are related packets for modeling test environment.

Dynamic part includes test cases, test step library and default library. The test

cases are the most interesting part. In this part, individual test case can be reviewed.

67

6. Conclusions

The current project presents an overview of modeling, specifying and testing the
main protocols in IPv6 stack, such as IPv6, ICMPv6, RIPng, and MLD. It describes the
general methodology considered to obtain formal specification, test purpose and TTCN
test cases. It also described the rational behind the modeling. The project produces an
SDL specification, accomplishes conformance testing and interoperability testing, and
generates a TTCN test suite for IPv6 protocols. From the generated TTCN test suite one
can manually generate executable test cases in C and execute them in an active
environment called FLAME [12]. In this active environment, test cases are loaded into a
“Tester Node” that will execute the test case and report the observed result.

The conformance and interoperability tests are produced according to information
extracted from the RFCs. RFCs are difficult to understand due to their ambiguity, their
incompleteness and multiple self-references (one RFC often refers to other RFCs that
refers to each other and to the first RFC). Moreover, RFCs are not written in formal
language. As a result, it is very difficulty to model RFCs in a formal language, which
gives very precise and complete description.

According to the experience of modeling IPv6 protocols, SDL is suitable to
describe IPv6 protocols. With graphic presentation of SDL, the static and dynamic
behaviour of the system can be described at the same time. Moreover, it is easy to define
an IPv6 packet with SDL abstract data type concept.

Data type definition is inconsistent between SDL and TTCN notation. SDL is
formal, object-oriented, and standardized. It allows a data type definition to exist in

different objects with the same name. However, data type definitions are global in the test

68

suite of TTCN. Therefore, TTCN only allows data type definitions that are global to the
test suite. In order to be consistent with TTCN, global data types have to be defined in the
SDL model. Therefore, SDL loses its object-oriented specificity. In addition, in
ObjectGEODE, the description of test environment is inconsistent because there are two
instructions to describe the test environment: ‘output’ instruction and ‘feed’ instruction.
These two instructions give different test cases and only the test environment described
using ‘feed’ instruction is consistent with TTCN. This might be caused by the
TestComposer type definition translation mode or by the standards themselves.

In order to accelerate and expand IPv6’s deployment, it is necessary to formalize

all IPv6 protocols and generate corresponding test cases.

69

References

[1] WEB Documents, www.tahi.org

[2] WEB Documents, www.ispras.ru/~RedVerst

[3] S. Deering, R. Hinden, RFC 2460, Internet Protocol Version 6 (IPv6) Specification,
December 1998

[4] A. Conta, S. Deering, REC 2463, Internet Control Message Protocol (ICMPv6) for
Internet Protocol Version 6 (IPv6) Specification, December 1998

[5] G. Malkin, R. Minnear, RFC 2080, RIPng for IPv6, January 1997

[6] ObjectGEODE 4.2 Document, tutorial, October 2000

[7] ObjectGEODE 4.2 Document, SDL Simulator-Reference Manual, October 2000
[8] ObjectGEODE 4.2 Document, TestComposer —Reference Manual, October 2000

[9] WEB Documents, www.iec.org/online/tutorials/ttcn/

[10] Gregor v. Bochmann, Protocol Specification for OSI, Computer Networks and ISDN
Systems 18 (1989/90) 167-184

[11] ITU-T Recommendation Z.100 (11/99)

[12] Abdelghani Benharref, Rachida Dssouli, Zineb Berbich, Formal Specification,
TTCN and Executable Test cases for Main IPv6 Protocols, The 2" [EEE International
Symposium On Signal Processing and Information Technology, P348

[13] F. Belina & D. Hogrefe, the CCITT Specification and Description Language SDL,
Computer Networks and ISDN Systems, September 1989

[14] S. Deering, W. Fenner, B. Haberman, RFC 2710, Multicast Listener Discovery
(MLD) for IPv6, October 1999

[15]J. Postel, ISI, RFC 768, User Datagram Protocol (UDP), 28, August 1980

70

[16] Web Documents: unitesk.ispras.ru/products/ctesk/tools/

71

Appendix A: Conformance Test Cases for Hosts

This section presents selected test purposes and their corresponding test cases for
conformance testing for IPv6 hosts. An IPv6 host considered here should have properties
of IPv6, ICMPv6 and MLD protocols. The selected test purposes should have proper
input data, whose observable behaviours should be shown after it stimulates the SUT.

The following are these selected test purposes and corresponding test cases.

Al: Sending and Receiving IPv6 Packets

This test purpose shows the basic behaviors of a source and a destination. In
figure Al.1, both signal feed_data and dataout carry PDU of transport layer. Signal
ippacket carries IPv6 packet. The first transition shows that the system receives a PDU
from transport layer. The second transition shows that the system sends an IPv6 packet to
link layer. The third transition shows that the system receives an IPv6 packet from link
layer. The last transition is the system sending out PDU to transport layer. Figure A1.2 is

the corresponding test case.

72

sendbeceivePacket

PCG_hlupper inst_ipveMade PEQ hin
CHANNEL / SYSTEM CHANNEL ;
ipvBnods ! ipvBnods
Mupper ipvBrode shirt

feed_datal appda%’ normal size packet',

ipwBpacketf {. {. s,n,o,:19,6,3,;‘2?5::5&6&1 noo', 1080
datagu tf

appdata : ' normal sizq packet’)
.

roextension’, 1080:417A1000, ' 2780::586A1000")

ipEpapket! { (. 6,0,0,19,63, 1108041741 [100’,12?&"?::586&1 0o0*) }.appdata ;' nomal size packet')

ATTAIDOD 3 [| appdata: ' normal size packet')

Figure Al.1 test purpose for sending and receiving IPv6 packets

IPv6Node May 2, 2004 ITEX 4.1.1
Test Case Dynamic Behaviour
Test Case Name : sercPeceirePacket
Group :
Puipose : from state idle of ipwBhost, receive ippachket, send (dataout)andgoto state idle
Configuration
Default : DEF_G
Gomments : Generated by test oriented simulation of the current test purpose scenario
Hr { Lebel Behaviour Description Canstraints Ref Verdict Comments
1 hlupperlfeed data START TAC feed_data_1
2 hiri?ippacket CAMGEL TAC ippacket 2
3 hirlippacket START TAC ippacket 3
4 Hluppar?dataout CANCEL TAC clatacut 4 {P)
Detailed Comments :

Figure A1.2 test case for sending and receiving IPv6 packets

73

A2: Sending Fragments

This test purpose shows a source sending fragments. In figure A2.1, the first
transition shows the system receiving PDU from transition layer, and then system

sending out two IPv6 packets to link layer, which are shown in the second and the third

transition. Figure A2.2 is the corresponding test case.

[cEndFragments

PCO_hiupper inst_ipwBnode PCO_hirl
CHAMHNEL / SYSTEW CHANMEL §
ipvEniods i ipvbnode
Miupper ipeBnode hiri

feed daty(appdata : "too big dita 1o transfer with rougng header "

‘rolt inghgader’ﬂ 080N 7A1000°, 278058641 000")

ippakel . {8.0,0,1456,613,1080:417A1000,/4890:-8090 &

{ destoptheader1 {. 43,1,(. '00000001" 428, destinationt] .}) destoptheader? (. 17.1,{. ‘00000001 420, destination?’ } .),

fragmenthefucler (. 60,0,0,0,1,108]::417A10004880:804D" j hopbyhop {. 60.1,(. ‘00000001 428, "hap by hop header') J,
rautingheader |. 44,4,02,{. 0.modify(l{. ‘2780:5868"), 2, '2780:586A1000))},

appdata - ' joo big data to transfer jwith routing header™ e R]

ippacket((. (. 6,0,0,1410,831080::4 1741000, 4890::809D" .,

{ destapthgaciert {.43,1,(. '00000001' 428, destination] .}) destoptheadar? {. 17,1,(. 'D0000001", 420, destination?')),
fragmenthegder {. 60,0,120,0,0,10180::41 7410004830:: 640D ") hopbyhop ¢. 60,1 {. ‘06000001’ 425 hop by hop header’)),
routingheader . 44,4,02, ify((. ‘27805868), 2, ‘276058610007 3)],

_ : e 3

appoata - g Bt .

T
Figure A2.1 test purpose for sending fragments

74

Pv6Node May 2, 2004 ITEX 4.1.1
Test Case Dynamic Behaviour
Test Case Name : sendFragments
Group :
Pumpose : from state idie of ipvBhost, receive feed_data, send [ippacket,ippacket] and go to state idls
Configuraticn
Default : DEF_O
Comments : Generated by test oriented simulation of the current test purpose scenario
Hr { Label Behaviour Description Constraints Ref Veudict Comments
1 hlupperlfeed data START TAC feed_data &
2 hiri%ippacket GANCEL TAC, START TAC | ippacket B
3 hirl7ippacket CANCEL TAC ippacket 7 (P}
Detailed Comments :

Figure A2.2 test case for sending fragments

A3: Receiving Fragments

This test purpose presents a destination that will not reassemble the original

packet from its fragments until all fragments are received. No fragments should contain

an error that causes the system to discards it. In figure A3.1, the first transition is the last

fragment of a fragmented IPv6 packet, which is identified by M flag (the value is 0) in

the fragment header. The second transition is the first fragment of a fragmented IPv6

packet, which is identified by offset field (the value is 0) in the fragment header.

Therefore, the original IPv6 packet is reassembled. Consequently, the PDU carried by

this original IPv6 packet is sent to the transport layer. This behavior is shown in the last

transition. figure A3.2 is the corresponding test case.

75

recenerragments

PCO_hir inst_ipvBincde PCO_h1upper
GHANNEL / SYSTEM CHAMNEL !
ipv6node i ipvEinade
Airt ipvBnode Al uppar

ippacket({ { 6,0,0,1410,6,3,'2780::586A1 000 1 0BU: 41741000)| destoptheader] {

destoptheader? {. 17

p0OD0GT’ 428 hop by

hopbyhop (. 60,1,{ ‘0
appdata :

ippacket { {. 6,0,0,1
éjgstapmiegéem { 17§

hopbylop (. 0,1, 0
appdata ;' toa bigdat

ODO001' 428 "hap by

6.6,3, 2780:.586A10p0', 1 080:: 41701000 ’j’}
{. 00000001420 ‘céstination?’ .} .jfragme

desioptheader1 (. 43,1,f, ‘00000001428 ‘destinationt’ .j),

header (. 60,0,0,0,1, 2740::586410001080: 41741000),

1,{. ‘00000001420 /'destiration2’ .} .} fragmentheader {. 60,0,120,0,0,'2780: :586A10001D80::417A1000' 3,

. 43.1,(. ‘00000001428, destination*)),
hop header)) routingheadsr { 44 4.0,0(. d, odlify((. 4890:8080"), 2, '1080::4174%)).},
e i)

dataout{ appdata '
=

hop header.)) foutingheader (. 44,4,0,0 f. 0. modify{ {. '4890: 800D), 2, "1080-4174) j)},
to transfer with routing faadg(s s+ serersroms o v ' n

o0 big dala to transfer with routing headey® =+

")
Figure A3.1 test purpose for receiving fragments
IPv6Node May 2, 2004 ITEX 4.1.1
Test Case Dynamic Behaviour

Test Case Name - meeiveFragments
Group :
Puipose : trom state idie of ipvBhost, receive ippacket, send jdataout) and go to state idle
Configuration :
Default : DEF_O
Comments : Generated by test ariented sinwulation of the tast purpoze

fromedzizheyinglPVbidemoiinteg mted'receiveF mgme nts. mec

HNr | Label Behaviour Description Constraints Ref Verdict Comments

1 hirllippacket START TAL ippacket 8
2 hirtlippacket CANCEL TAC, START TAC ippacket 8 End of preamble
2 hlupper?datanut CAMCEL TAC dafaout_10 4]
Detailed Comments :

Figure A3.2 test case for receiving fragments

A4: Receiving IPv6 Packet with Errors

This test purpose presents the system that will act differently according to the

value of the first two bits in unrecognized option type error. In figure A4.1, the first

transition shows the system receiving an IPv6 packet from link layer. This packet

contains errors in destination header2 (the option type ‘10000001’ is unrecognized),

76

consequently, this packet is discard and an ICMP error message is sent, which is shown
in the second transition. The third transition shows the system receiving another IPv6
packet, which contains errors in destination header2 (the option type ‘00000011 is
unrecognized), as a result, this error is skipped, and the PDU is sent out to the transport

layer. Figure A4.2 is the corresponding test case.

TECEE PACKETMTNETTOTS

PCO_hir inst_ipwGnade PCO_Mupper
CHANNEL / BSYSTER GHANNEL /
ipvEnode ¢ ipvBnode
hirt ipuBrade hlupper

ippackett {.{. e,c.u.ass.ﬁnz:zzan;ﬁammm'nnau::« 7A1000°.),{ cektoptheadier? {.17,1,(. *1 Q000001 420, desfination?') .} }, appdlata : ‘test destination aption header2’)

ippacket{ . {. £4.0,1454,58 1, 1080::4 1741 D{D", 2780::586B1 000 .),£ . empemordata : (. 4,204 43, { 60045560,1, '2780::586B1000, "1 080:4 1741000’),
{ destoptheader2 { 17, 1.(. "10001001", 420, 'destination?) .} }, Yestdestination option header?' J .j)

ippacket; . (. 6,,0455,60,3,11,"1111111010]) { desioptheader2 {. 14,1, V0000011420, destinaton®’) }}, appciata : fest destination option header2"))

dataout{ appciata : tef! destination option L\ggaerfz)

L] T
Figure A4.1 test purpose for receiving IPv6 packets with errors

IPv6Node May 2, 2004 ITEX 4.1.1
Test Case Dynamic Behaviour
Test Case Hame : receivePacketwithErnors
Group :
Puipose : from state idle of ipvBhost, receive ippackst, send {ippacket) and go to state ile
Configuration
Detoult : DEF_D
Comments : Generated by test oriented simulation of the curent test purpose scerario
Hr | Label Be haviour Descriplion Constraints Ref Verdict Comments
1 hiritippacket START TAC ippacket_11
2 hirl?ippackst CAMCEL TAC ippacket_12
3 hirilippacket START TAC ippacket_13
4 hiupperfdatacut CANGEL TAC datacut_14 {Py
Detailed Comments :

Figure A4.2 test case for receiving IPv6 packets with errors

77

AS: Sending and Receiving ICMP Informational Messages

This test purpose describes the basic behaviors of a host in ICMP protocol. In
figure AS5.1, the first transition is the request from transport layer. Therefore, an Echo
Request is sent. It is shown in the second transition. The third transition shows that a
destination receives an Echo Reply. As a result, the destination passes the Echo Reply
message to the transport layer, which is shown in the fourth transition. The fifth transition
shows a destination receiving an Echo request. Therefore, an Echo Reply is sent. It is

shown in the last transition. Figure A5.2 is the corresponding teat case.

SENTICMPIT TOME83age

PCO_htupper inst_ipvBnods: PCO R
CHANNEL CHANHNEL
fipuBniode/ BYSTEM JipvBnodp ApvBnace’

hiuppar hirt

feeﬂ_bmgdatag 'r:mghmamta o 128,0?0,,’1(13@::41 TA2TE0. 586 2, 'an echo request data from upper ayer ¥ }

ippacket{ { { 6,0,0,45,58.3,1080:41742780:.5868" .),[I}, icmipinfockata : {. 128,0,0, 030::417A2780;:5858' 2, an echo request data from upper layer) })

ippacket({1 {. 6,0,0,90,58,3,1080:M7A"'€780::6868" [|, icmpinfodata © {. 129,0,0,1080::41 7A2780: 5868 2, 'echa repl’)))

upgerDataQutiecho reply

ippacket({}{. 6.,0.0.92,68,3 10804174 2780:586B"){{ }. icmpintadata : {. 128,0,0,1 80::417A2780:5868',2, echo request' .})

ippacket((}{. 8,0,0.92,58.3,2780):5868",1080:417A° J{[], iempinfodata : {. 129,0,0,080:417A42780:5868' 2, ‘echo request .}))

Figure AS.1 test purpose for sending and receiving ICMP informational messages

78

IPv6Node

May 2, 2004 ITEX4.1.1
Test Case Dynamic Behaviour
Test Case Hame © sandReceivelCMplnfotdessags
Group :
Puipose : from state idal of icmphost, receive feed_icmpdata, send {ippacket) and go to state idie
Configuration :
Detfoult : DEF_Q
Commients . Generated by test oriented simulation of the test purpose
fhomedz/zheying/IPVB/dsmiinteg misdicmpte stpurpose/sand ClPintohds ssage. msc
Hr | Label Behaviour Description Constrainis Ref Verdict Gommenis
1 hlupperfteed_jcmpdata START TAC feed_icmpdata_15
2 hiri tippacket CANCEL TAG ippacket 16
3 hirtlippacket START TAG ippacket 17
4 hlupper?upperdataout CANCEL TAC upperdataout_18
5 hirllippacket START TAC ippacket 19
B hir %ippacket CGANCEL TAG ippacket_20 (2]
Detailed Commients :

Figure AS5.2 test case for sending and receiving ICMP informational messages

A6: Sending and Receiving MLLD Messages

This test purpose shows that when a host is interested in a multicast address, the

host sends unsolicited report. In figure A6.1, the first transition shows that the unsolicited

report timer times out. As a result, listener reports are sent, which are shown in the

second and third transitions. The last transition shows the host receiving a General Query,

which causes the host to reset Maximum Query Response timer internally. Figure A6.2 is

the corresponding test case.

79

EenaRBcEveLD
inst_ipvénocle BCC hint

CHANNEL !
SYSTEHM / h
ipeBincde ipuGnod

it
% unsolicitedreport

ippacketf [{ 6.2.5,72.01/FE2: 11110 FFOZ:2 J.{ hopbyhop (. 58,12/ '2,010') 3}, mickiama : (. 131,0,10.0.00, FFE2:10010,0).24.))}

ippackel (. (. 6:2,3,72,0,1 FRO2:11110", FF02:2° 1, hapbyhop {. 68,12, '0,2,010"))}, middata : {. 131,0.10,0.00, 'FFOZ:10110'0 J,24 .})}

ippacketi {. {. 6,0,0.80,58.3 1D80:417A", FFOZO:D:D.0:0:0:9' [}, middata : (. 130,0,0,10,0,{.°0°,0 2.24 3 .))

Figure A6.1 test purpose for sending and receiving MLD messages

IPv6Node May 2, 2004 ITEX 4.1.1

Test Case Dynamic Bshaviour

Test Case Hamme © sendRecziveliLD

Group .

Puipose : from statz idle of midhost, recelie unsolictedrepon, send {ippacket, ippacket) and go to state idle

Configuration

Default : DEF_O

Comments : Generated by test oriented simulation of the curent test purposs scenario

Nr § Label Be haviour Description Constrainis Ref Verdict Comments

1 FTIMEQUT TEMPTY START TAC Timeout af timer
unselicitedrepor
tof process
midliste rer

2 hir1 PipwBpacket CAMGEL TAC, START ippacket_21

TAL
3 Wil TipeBpacket CANCEL TAC, START | ippacket_22
TAC
4 hirlippacket CANCEL TAG ippacket 23 {F)
Detailed Comments :

Figure A6.2 test case for sending and receiving MLD messages

80

A7: Maximum Query Response Timeout

This test purpose shows that a host will send [Startup Count] Listener Reports

after the Maximum Query Response Timer timeout. Figure A7.2 is the corresponding test

case.

qieTyrespand 1 imeaut

PCQ_hin inst_nodeinnetworkiayer
CHANNEL / . ¢
SYSTEM !/
ipeBnioda ;
i ipvBriode

g unsoliciteckepot

ippackett {|f, B2,3.72,01,'FF02:1 11101, FFU2:2' J{ hophyhop { 58,12, '0°2,010" J)}, middata : {. 131,0,10,0.0,0,¢. 'FF02:10010'0 J24.))}

ippacket{ (.. 823,72 01, FFO2:1 111 'FF02:2' . },{ hopbyhop {. 58,12. '02,010° J 3}, middata : {. 131,0,10,0.0,0,{. ‘FF02:10110°0 1,24 . .})
quaryiesponseintersatimer

queryresponseintervaliimer

quaryresponseinterzatimsr

End_of mamble,

¥ queryresponseintervatimer

ippacket| {. {|§2272. 0.1 EE021 11107 FFO2:10016".1{ hopbyhap {56,124, 'TOD00IG1'2°010°) 3}, middata © ¢ 131,0,10,10.0,0,¢ FF02:10010,0 3,24 J .})
ippacketf {. {| £.2.3.72,0.1 FF02:111104FFD2:10110".){ haphyhop (. 58,12,(. ‘000001012010) } §, middata : {, 181,0,10,10.0,0,f FFOZ:10110°,0).24 J .})

Figure A7.1 test purpose for maximum query response timeout

81

IPvENode

May 2, 2004

ITEX 4.1.1

Test Case Dynamic Behaviour

Tesi Case Name © queryRespondTimeout
Group :
Pumpose : from state idle of midhost, receive queryresponseinte rvaltimer, send (ipvBpacket, ipvBpacket) and go
o state dle
Canfiguration
Default : DEF_O
Comments : Generated by test ariented simulation of the current tast purpose scenarico
Hr | Label Behaviour Description Constraints Bef Verdict Comments
1 FTIMEQUT TEMPTY START TAC Timeout of timer
unsolicitedrepor
tof piocess
midlistaner
2 h1rl Tippacket CANCEL TAC, START ippackat_21
TAC
3 h1r Zippackst CANCEL TAC, START ippackst_22
TEMPTY(10)
4 TTIMEQUT TERPTY START Timeout of timer
TEMPTY{20) Cueryresponsein
terva timar of
pracess
midliste ner
5 FTIMEQUT TEMPTY ETART Timeout of timer
TEMPTY{20) qUEeryresponsein
teraltimer of
proce ss
midlistener
B YTIMECQUT TERMPTY START Timeout of timer
TEMPTY (20} Cueryresponsein
terda timar of
process
midlistener
7 TTIMEQUT TEMPTY START TAG Timzout of timer
queryresponggin
tervatimer of
process
midlistener
8 h1rt ?ippacket CANCEL TAC, ippacket_23
STARAT TAC
g hirl Pippacket CANCEL TAC ippacket_24 {Pl
Detailed Comments :

Figure A7.2 test case for maximum query response timeout

82

Appendix B: Conformance Test Cases for Routers

This section presents selected test purposes and their corresponding test cases for
conformance testing for IPv6 routers. An IPv6 router considered here should have
properties of IPv6, ICMPv6, RIPng and MLD protocols. The selected test purposes
should have proper input data, whose observable behaviours should be shown after it
stimulates the SUT. The following are these selected test purposes and corresponding test
cases.

B1: Basic Behaviors of Routers in I[Pv6 and RIPng

This test purpose presents the basic behaviors of a router in IPv6 and RIPng
protocols. In figure B1.1, the first transition shows the router sending a General Query in
order to set up its Querier state. The second transition shows the router receiving an IPv6
packet, which its destination is the address of this router. In other word, the router is a
destination router for this packet. After the router analyzes the received packet, it
forwards this packet to a host, which connects with the router directly. The following two
transitions have the same explanation. The difference is that the received packet is
forwarded to another host. The last two transitions show that the router is an intermediate
router because the received packet is forwarded to another router. Figure B1.2 is the

corresponding test case.

83

BasEIPa
PCO_connecthost| PCQO_connectiouter inst_ipvBrouter PCQO_cshnscthost?

CHANKEL / CHANNEL ! SYSTEM CHANNEL /
ipvBnouter? ipvBroutery 1 ipreBratter
cannecthost! cannectrouter igeBrouter cannecthest?
ippackett {. {. 5.2.3.72,0.1. FFOZ: 21110 FFD2: 1 3,{ hopbyhog ¢ 58,12.1. 00000101 4,010° § 3}, middata: {. 136.0,10,10.008.'0,2 1,24 |)}

ippacket({. ¢ 5,0,0,9038,3,’1DEO::M?A.’.'Z?BQI S8EA' [] iempinfodata © (. 129,0.0,1080::417A2780::5864".2'echo reply* })}

ippakketi [[6.0,09053,3 H1080: 4174 '2760::586A" J,{ }, iempinicdata © (. 129.0,0,1080::41 7A2780::586A' 2,'scho reply’ § §)

ippacket({. (. 6,0,082,58,3,°2750.:586B8",'1 0804 17B° i } jempinfodata : ¢, 128,0,0,'2780:58681080::4178" 2,'echa request’ § .y}

ippackett {. {. &0,0,92,5&3,'278&158% 1080::4178')] } iembinfodata © €. 128,0,0,2330:58661080::4178 2 ‘echa request .))}

Ippeicket(£. (. 4.0,0,52,17 2,'2780: 58681, FFO2:2' .J.{], ripngdata : {. ‘@780::5868",'108p::41 74" 265,42,521,521.1,1,"00000000D0000000" modify((. {. ".°,0.0 J.}, 0, {.'0, 00,016)) J)

ppadiety (. {. 80.0.132,17.0,HF02:2,'00",){ 1, ripngehta.: (. 'FF02:2°00'25 1&,521,5:1,21 000000000050000",
modity{ m&gmm.mmmmmmm hodifyt {. £ *+.0.0.5 4, 1, /00000000000000p0 0,255), 2. [1030:4174'%.00 Jj,
3, (. '2780:5868", 0,0)), 4, ¢ ‘0, 00RO00ODOO0N000G,0 258 .5, ¢ 10804178, D0 1), 6, {. -

2780:586A.,0,0 J)) .1

Figure B1.1 test purpose for basic behaviors of routers in IPv6 and RIPng

IPV6Router May 2, 2004 ITEX 4.1.1

Test Case Dynamic Behaviour

Test Case Hame © muterBasicBehaviom|n Py

Group s
Purpose :
Configuration :
Default : DEF_Q
Commenls . Generated by test arignted simulation of the test purpose
fhomeiziz heyingdIPYEidemaintegatedia pril2Birou ter/ba sicl PYB.msc
Hr | Label Behavipur Description Constraints Ref Verdict Comments
1 connectrouter Tippackat ippacket_1
2 canrectrouter lippacket START TAC ippacket 2
3 wonnecthest? ?ippacket CANCEL TAG ippacket 3
4 conrectrouter tippackat START TAC ippackat_4
5 oonnecthost! Zippachket CANCEL ippacket & End of preambie
TAC
B connectrouter lippacket START TAC | ippacket_B
7 .}wrgectrou ter Tippacket CANGEL ippacket_7 (P
AC:

Detailed Comments -

Figure B1.2 test case for basic behaviors of routers in IPv6 and RIPng

84

B2: Basic Behaviors of Routers in ICMP

This test purpose presents the basic behaviors of a router in ICMP protocol. In
figure B2.1, the first transition is a General Query, which is for setting the Querier state
of the router. The second transition is the request from transport layer. Therefore, an
Echo Request is sent. This is showﬁ in the following transition. The fourth transition
shows that a destination receives an Echo Reply. As a result, the destination passes the
Echo Reply message to the transport layer, which is shown in the following transition.
The sixth transition shows a destination receiving an Echo request. Therefore, an Echo

Reply is sent. It is shown in the last transition. Figure B2.2 is the corresponding test case.

basicicmnp
PCO_connectrouter Inst_ipvBrouter PCO _contupper
CHANNEL /
CHANNEL ! SYSTEM g
ipvBrouter! o |pv61?uter
connectrauter ipvBrouter connuppet
ippacketi {. { §2372 0.1 FFD2: 21110, FF02:1° .1.[hopbyhop (. 58,12,{. ‘0000010172010) J}. middata : {. 130,0,10,10.00,(.'0°;2.)24) .))
feed_icmpdata(iempinfodata : (. 1284 &'FFQQ::ZQ?&O: BO6E 2 an echo request data from upper layet’))

ippacket({. { g“'O,DAS,SG,S,’FFOE::Z”__,‘:« 780::8868°.1,{ }. iempnfodata ;| (. 128,0,0,FFU2::22780: :5366' 2, 'an echo request data from upper lyer .})}

Ippacket { (. 6.0,0.90,36,3,"1080:417A’ FFOp:2" [}, lempirfociata : (. 123,0,0,"1080:417AFF02::2,2,echo raply))

uppardataout] ‘echa téply’)

ippacket| | (. S,O,U,gg 38.3,1080:417A FFOR:2". 1 { }. lempinfodata : { 128,0,0,1080::417AFF02::2'.2, 'echo request’)))

ippacket({. {. 50,092 55 3 'FF02::2' '1080:417A') | iempinfodata : { 129,0,0,1080: 417 AFF02:2, 2 'echa request’ j 3}

Figure B2.1 test purpose for basic behaviors of routers in ICMP

85

IPV6Router May 2, 2004 ITEX 4.1.1

Test Case Dynamic Behaviour
Test Case Name : wuterBasicBzhaviorsinl CKMP
Group B
Puipose
Configuration
Default : DEF_O
Comments : Gareratad by tast orisnted simulation of the test purpose
fhomedeizheying/| PVEdemadintegratedia pril26router/ba sicl ChP.mse
Hr | Label Be haviour Description Constraints Bef Verdict Comments
1 cannsctrouter 7ippacket ippacket 1
2 connuppear feed_jcmpdata START TAG feed_kcmpdata_2
3 connectrouter Yippacket CANCEL TAG ippacket 3
4 conngctrouter lippacket START TAC ippacket_4
& connupper fupperdatacut CANCEL upperdataout 5 End of preamble
TAG
& oonnectrouter lippacket START TAC | ippacket 8
7 connecirouter Yippacket CANCEL | ippacket 7 P
TAG
Detatled Cornments -

Figure B2.2 test case for basic behaviors of routers in ICMP

B3: Basic Behaviors of Routers in MLD

This test purpose presents the basic behaviors of a router in MLD. In figure B3.1,
the first two transitions send two General Query at startup of the system. After General
Query Interval Timer timeout, the router sends two General Query again; these General
Query are the same General queries sent at startup. The second to last transition shows
that the router receives a Listener Report message and then adds the multicast address it
contains into the multicast address list internally. The last transition shows that the router
receives a Listener Done message and then deletes the multicast address it contains from

the multicast address list internally. Figure B3.2 is the corresponding test case.

86

[basI L0

PCO_connectrouter inst_ipvBrouter
CHANNEL ¢ SYSTEM
ipvBrouter! N
conrectrouter ipvBroutar
ippacket({. { £.2.3.72.0,1, FFU2.: 21110, FFO2:1" 5[hapbyhop { 58,12 ‘0000010172, 0107 .}, middata: (. 130,0,10,10.00('0,2 1,24 § J}

? startuptimer

ippacket((. ¢ £2.3,72.0,1,FF0Z:211 B0', FFOZ: 1" J,(hopbyhop | 58,12.(. '000D0101°2,010') 1}, middata : {. 130,0,10,10.0,0,. 0'2 124))

ippacketi . {
ippackett . {

unsolicitedupdatetimer
unsolictedupdatetimer
unsolictedupdatetimer
uneolictedupdatetimer
checkgarhagecollection
unselictedupdatetimer

cueryintervatimer

B.2,3.72,0,1,FFU2:211}0°, FFD2:1°),{ hopbyhop { 58,12,{. ‘0000010172, 010°) §}, micklata : {. 130,0,10,10.00,(.°0,2 J.24 § J)

B,23,72,0,1,FF02:211 80, FFOZ:1°),{ hopbyhop { 58,12.(, '00000101°2,010" } J}, micdata® {. 130,0,10,10.00.'0'2 }24] J}

b1, FFO2:111107 FF02:2" J,{ hapbyhop {. 58,12,¢. 000000012010) . }, middata: {. 131,0,10,10.0,0,(. 'FF02:10010°,2),24)))

1, FRO2:111107 FF02:2" 1| hopbyhop {. 58,12,¢. '00000001,2,010° 5 j }, mkdcata © (. 132,0,10,16.0,0,(. 'FFO2:10010'2 3,24 3)

Figure B3.1 test purpose for basic behaviors of routers in MLD

87

IPVoRouter May 2, 2004 TTEX 4.1.1
Test Case Dynamic Buhaviour

Test Case Hame : wuterBasicBehaviosintALD

Group H

Purpose

Configuration :

Default : DEF_G

Commenls : Ganerated by test orisnted simulation of the test purpese

‘home/zizheying/IP¥6idemavinteg mtedda pril26/router/ba sichdLD. msc
Hr | Label Be haviour Description Caonstraints Ref Verdict Comments
1 connectrouter Yippacket START ippacket_1
TEMPTY(3a)

2 PTIMEQUT TEMPTY START TAC Timeaut of timer
startu ptimer of
process
mdiqueriar

a connectrouter Yippacket CANCEL TAG, ippacket 2

START TEMPTY
4 FTIMEQUT TEMPTY START Timeout of timer
TEMPTY{30) unsolictedupdat
etimer of
process ripng

5 TTIMEQUT TEMPTY START Timeaut of timer

TEMPTY(2D) unsolicitedu pdat
etimer of
process ripng

] TTIMEQUT TEMPTY START Timeout of timer

TEMPTY(20} ungolicitedu pdat
etimar of
process ripng

7 TTIEQUT TEMPTY START Timeout of timer

TEMPTY checkga ibagscol
lection of
process ripng

8 TTIMEQUT TEMPTY START Timeout of timer

TEMPTY{3G} unsolicitedupdat
etimer of
process ripng

g FTIMEQUT TEMPTY START Timeout of timer

TEMPTY(S) unsoliciteduy pdat
etimer of
process ripng

1Q YTIMEQUT TEMPTY START Timeout of timer

TAC queryintervaltim
erof process
mdiqueriar

1 cannactrowter Zippacket ippacket 1

CANCEL TAC, START

TAC
12 connectrouter Tippacket ippacket 2

CANCEL TAC
13 connectrouter lippacket | ippackst_3 End of preamble
14 connectrou ter ippackst 4 (P
lippacket

Detailed Commenis :

Figure B3.2 test case for basic behaviors of routers in MLD

88

