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ABSTRACT

Tracking Control of Nonholonomic Mechanical Systems

Including Actuator Dynamics

Chandra Mouli Anupoju

The Control of nonholonomic systems is extremely challenging and stimulates
researchers to design controllers for these highly nonlinear and complex systems.
The control of these systems is important for the reason that they have numerous
engineering applications such as mobile robots, space manipulators, multi-fingered
robot, etc. The control techniques proposed for the nonholonomic systems can be
divided into two types. The first is the kinematic control, which provides solution
only at the pure kinematic level which yields driving speeds. The second is dynamic
control, which takes inertia and forces into account and yields physical controls such
as driving torques. But both of the above said schemes do not consider the actuator
dynamics, which is an inherent part of the complete system and can affect the
performance of the control system. In this thesis a strategy for designing a position
tracking controller for a class of mechanical systems with nonholonomic velocity
constraint is presented. Two controllers are designed at the actuator level taking
into account the uncertainties in dynamics and actuator dynamics. The stability
analysis for the complete system shows that the desired motion tracking is achieved
by using the proposed methods. The design procedures are illustrated on a three
wheeled mobile robot with simulations. Simulation results show the effectiveness of

the controllers.
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Chapter 1

Introduction

Nonholonomic mechanical systems have been known to the scientific community
for more than 150 years but not until the last decade the researchers have shown
interest in solving the control problems related to these systems. This is partly due
to limited availability of tools to tackle these systems and partly due to lacking
necessity for industrial oriented practical applications. The term "Nonholonomic
systems" originates from classical mechanics and has a widely accepted meaning of
"Lagrangian systems with linear constraint being non-integrable". Nonholonomic
behavior can arise from either bodies rolling without slipping on top of each other
or conservation of angular momentum during motion. Nonholonomic systems can
be found frequently in mechanical systems such as wheeled mobile robots, car-like
vehicles, the knife-edge systems, etc., which makes the study of these systems more

important.

1.1 Types of Constraints in Mechanical Systems

Constraints on mechanical systems are defined as restrictions that limit the motion
of the particles of a system. For instance, the motion of billiard balls are constrained

to move within a plane, particles connected by a rigid rod are constrained to stay



apart, etc. Constraints can be classified into two types depending on whether they
are imposed on position or velocity. The constraints imposed on position are called
geometric constraint and those imposed on velocity are called kinematic constraints.

A geometric constraint can be expressed as

ft,g)=0 (1.1)

where f is a vector function of class C?, ¢ denotes time and g is a n-dimensional
vector whose components are generalized co-ordinates. Kinematic constraint can be
expressed as

ft,q,4)=0 (1.2)

When a geometric constraint is differentiated with respect to time a differential or
a kinematic constraint is always obtained. However the reverse is not always true,
i.e., an existence of differential or kinematic constraint does not necessarily mean
the existence of the geometric constraint. On this basis the kinematic constraints

are classified as either holonomic or nonholonomic constraints.

1.1.1 Holonomic Constraint

A kinematic constraint which can be reduced to a geometric constraint or in other
words a kinematic constraint which is integrable is called a holonomic constraint.

Consider a kinematic constraint which is expressed as
Ji+b=0 g(t,q,4) =0 (13)

If the matrix J and b can be expressed as J = Z—J;— and b = g—{, this forms necessary and
sufficient condition for the integrability of the kinematic constraint to a geometric
constraint of the form f (¢,¢) = 0. Each holonomic constraint reduces the number
of degrees of freedom (DOF) by one. The reason being that it allows us to express
one of the original generalized co-ordinates as a function of the other and deletes

it from the set. For instance, two particles are connected by a massless rigid rod,
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so that they are constrained to move a fixed distance apart. Let the position of
first particle with respect to a stationary cartesian frame be (z1,y1, 21) and that of

second particle be (3,2, 22), the rigid rod constraint equation is then given by
(21— 22)" + (11 — 92)* + (21 — )" = I’ (1.4)

This reduces the number of DOF from 6 (1, Za, ¥1, Y2, 21, 22) t0 5 (z1,1, 21,0, B),
which are taken to be position of the first particle, (1, y1, 21) and the spherical polar
angles 6 and ¢. In general, the representation of a n-particle system in 3-space is

given by 3n — o, where o is the number of holonomic constraints.

1.1.2 Nonholonomic Constraint

A kinematic constraint which cannot be reduced to a position or geometric constraint
ie., non-integrable kinematic constraints are called nonholonomic constraints. -Non-
holonomic constraints are divided into kinematic and dynamic nonholonomic con-
straints. Kinematic nonholonomic constraints are imposed by kinematics, such as
rolling constraints, these constraints are linear in velocity. Dynamic nonholonomic
constraints are constraints preserved by basic Euler-Lagrange or Hamilton equa-
tions, such as angular momentum. These constraints are not externally imposed on
the system but rather a consequence of equation of motion. The focus of this thesis
is only on the kinematic nonholonomic constraints and which can be represented by

the Pfaffian constraint. Kinematic constraints which can be represented by
g=20 (1.5)

where a(g) € R"** are a k set of velocity constraints is called Pfaffian constraint.

The vertical rolling disk is a basic and simple example of a system subjected to a
nonholonomic constraint. Consider a homogeneous disk rolling without slipping on
a horizontal plane, as shown in Fig. 1.1. It is assumed that the disk does not tilt.

The configuration space for the vertical rolling disk is @ = R2? x S! x S! and is



Figure 1.1: Disk rolling without slipping

parameterized by the generalized co-ordinates ¢ = (z,y,0, ¢), denoting the position
of the contact point in xy-plane, the rotation angle of the disk, and the orientation
of the disk, respectively. The systems generalized velocities cannot assume arbitrary

values but have to obey the constraint imposed by the no slip condition given by
& = Rcos pf

i = Rsin @0 (1.6)

where R is the radius of the disk. The kinematic constraints (1.6) are not integrable
and as a consequence, there is no restriction on the configuration the disk attain. The
above statement can be verified by the fact that disk can be driven from configuration

(x1,y1, 01, ¢1) to a configuration (xs, ¥z, 02, p2) through the following sequence:

1. Roll the disk so as to bring the contact point from (z1,¥1) to (z2, y») along any

curve of length R (6; = 01 + 2kw), where k is an arbitrary nonnegative integer.

2. Rotate the disk around the vertical axis from ¢; to @,.

This proves that the constraints imposed on the motion of the vertical rolling disk

are nonholonomic.



1.2 Classifications of Mechanical Systems Accord-
ing to the Kinematic Constraint

A singles Pfaffian constraint can be written as

@)=Y 0 @)ds =0 (1.7
j=1
where
[ 0, | [ G |
as o
0= §= (1.8)
| an | K

The constraint (1.7) is integrable if there exists a function h : * — R such that

/aT<q>q':o<:>h(q>=c (1.9)

where c is the integrating constant. The constraint (1.7) becomes a holonomic if it

satisfies

RN : N

" (@i=> al (@g=0=>> ~—¢=0 (1.10)
j=1 j=1 aq]
This implies that there exists some function of form a (g), such that
oh ,
a(9)aj (4) = 5-(9),4 =1,.om (1.11)
qj

and «(q) is called the integrating factor. From the above illustration, it can be
stated that a single Pfaffian constraint is holonomic if and only if there exists an
integrating factor a (q) such that o (g) a” (g) is the derivative of some function h. It

cannot be easily verified that the constraint is integrable or not from the condition



(1.11), because it involves the unknown function h (¢). But using Schwarz’s theorem,

the integrability condition (1.11) may be replaced by

0 (aag) _ 9 (aaj)
9(g;)  O(ax)

which does not involve the unknown function A (g).

Ik =1,..,n. (1.12)

Example: For the following kinematic constraint in 13

G+ qge+g=0 (1.13)

using the integrability condition (1.10) one can get

Oa O
0qy oq B
o O _
Ogs oq
oo 156
—q—— =0 1.14
3(13(]1 J0qo ( )

Solving for a(g), the only possible solution is a(q) = 0. Hence, the constraint is not
integrable.
The above example considered is only a single Pfaffian constraint. Finding a(q)

becomes more difficult in the presence of multiple Pfaffian constraints of the form

i (g)af (9)§=0 (1.15)

where ¢ = 1, ..., k > n. To check the integrability of £ number of Pfaffian constraints,
one has to check all the & constraints individually whether they are integrable or not
and also which linear independent combinations of these constraints are integrable or
not. From k& number of kinematic constraints. One can often come across a system
where 0 (0 < 0o < k) number of constraints that are integrable and the number of

constraints, m = k — o are not integrable. An example of such a system is given

below.



Example: The constraints on the omnidirectional symmetric three wheeled mobile

robot can be represented by

AT (@) g =0
where
—‘éﬁ cosgs — 3sings singg —Llsings — ‘/T?_’ oS ¢3 ¢
Lcosqs + @ sings —cosqz 1cosqs— @ sin g5 do
{ l l ) g3
A = q=
A 0 0 (j4
0 T 0 q'5
0 0 T (].6

in which r is the radius of the wheels, ¢ € 15 and [ is the distance between the center
of gravity and the wheels. The three constraints cannot be individually integrated

but when all the three constraints are added the constraint becomes

. ro,. . .
Q3+§7(Q4+Q5+%) =0 (1.16)
and can be integrated as
T
qs =“§(CI4+Q5+¢16)+C (1.17)

On the basis of the integrability of the constraints, a mechanical system can be
classified into three types that affect the reachable configuration of the system, each
in an unique way.

Completely holonomic: If all the kinematic constraints are integrable i.e., k = o
then the system is completely holonomic. In this case, there exists o number of

independent functions h; (g) such that

oh Oh, n
span {5 @), G2 @)  span (ol @) ol @} Ve E R (119



From the equation (1.18), it can be inferred that the system configuration are re-
stricted to the (n — 0)- dimensional manifold identified by the level surfaces of the
h;s, i.e.,

{geR":hi1(q) =c1,-, ho (@) = o} (1.19)

on which motion has started.

Partially nonholonomic: An interesting case arises when o < k , i.e., there are
o holonomic constraints and m = (k — 0) nonholonomic constraints. These kind of
systems are called as partially nonholonomic systems. The reachable configurations
are restricted only to the holonomic constraints 0. The m nonholonomic constraints
do not restrict the system configuration.

Completely Nonholonomic: If £ = m or 0 = 0 then all the kinematic constraints
are nonholonomic. Here m constraints do not restrict the reachable configuration of
the system i.e., if ¢ € R™ then system can take any values in the configuration space
R™. It is to be noted that from now onwards we are only concerned with systems

that are completely nonholonomic.

1.3 Thesis Layout

In Chapter 2, a brief review of the control techniques applied for the nonholonomic
system at the kinematic, dynamic and actuator dynamics level is presented. In ad-
dition, the problems related to the control of nonholonomic systems, background
and importance of canonical chained forms, motivation and objective of the thesis
are presented.

In chapter 3 the modeling Qf the nonholonomic mechanical system considering the
kinematics, dynamics and actuator dynamics are presented.

Chapter 4 presents controller design based on the combination of robust and adaptive

control techniques for the complete nonholonomic mechanical system with stability



proof. Simulation results are presented to illustrates the effectiveness of the control
algorithm designed.

In Chapter 5, a new adaptive controller is designed, the stability analysis and sim-
ulation results are presented.

Finally, Chapter 6 concludes with a general discussion highlighting the contributions

of this research and suggestions for further research work.



Chapter 2

Control of Nonholonomic Mechanical

Systems: Literature Review

In this chapter a procedure for converting a nonholonomic constraint to a nonholo-
nomic control system, a brief review of the various control approaches and impor-
tance of including the actuator dynamics are presented.

Consider a multiple Pfaffian constraint which can be written as

a; (9)¢=0, (2.1)

where i=1,...,k. The constraint (2.1) is considered as a restriction on the velocity in
the direction of the matrix a;, but the motion is not restricted on the null-space of

the matrix a;. The null-space of the matrix a; can be computed as shown below
al (9) g (@) =0,i=1,...k,j=1,..,n—k=p (2.2)

where, g; is the orthogonal component of the matrix a} (q) and are considered to
be smooth vector fields. A nonholonomic control system can be formed with some
appropriate controls u € R? such that the system can move without violating the

nonholonomic constraint(2.1). The control system can be represented by

q:gl (Q) Ui + g2 (Q) u2+~--+gp (Q) Up (23)

10



It implies that if g (¢) is a feasible trajectory for the system (2.3), then it also satisfies

the constraint equation (2.1).

The basic objectives for control of the nonholonomic systems are

1. To find out whether the system is controllable i.e., a system is said to be
controllable if it can be driven from one point to another point with a given
class of controls and not concerned with the path taken. Although the system

is controllable, if a path is prescribed, this is called path planning.

2. To analyze the stabilizability of the system i.e., finding the feedback laws.
The feedback laws are particularly suited for motion control, to counteract

the presence of disturbance, initial errors and modelling inaccuracies.

In order to achieve the above stated control objectives, there are few difficulties en-
countered for designing controller for the nonholonomic systems which are discussed

in the next section.

2.1 Problems related to the Control of Nonholo-

nomic Mechanical Systems

The system (2.3) is controllable if, for any choice of ¢;, g2 € R", there exists a finite
time T and an input u : [0, 7] — U such that ¢ (7,0, ¢, u) = ¢» where u € RP takes
values in the class of piecewise-constant function U over time. The controllability
can be checked from the Chow’s theorem [16]. For Chow’s theorem see Appendix.
It is known that these kind of control systems (2.3) can be controllable but many of
the standard control techniques which can be used to control the nonlinear systems
cannot be directly applied to the nonholonomic systems. The difficulty in COIItI"Ol—»
ling the nonholonomic systems is that there are more state variables ¢ € R" to be
controlled by less number of controls v € R?, which leads to an underactuated sys-

tem.

11



The first thing that needs to be checked is to see whether a nonlinear system can
be linearized around the equilibrium. In case of nonholonomic systems it is not
possible because the linearized nonholonomic systems does not satisfy the Kalman
controllability rank condition [62]. Hence the linearized nonholonomic system is un-
controllable. Feedback linearization is another approach to nonlinear control design
which transforms a nonlinear systems dynamics into a linear one, so that the linear
control techniques can be applied. There are two conditions discussed in [62], for the
existence of input-state linearization: controllability and involutivity. It is known
from the Chows theorem that nonholonomic systems are controllable. For the invo-
lutivity condition to hold, the vector fields {g1, g2, -.., gp} should be expressed as a
linear combination of {g1, g2, ..., gp}. But in nonholonomic systems, the vector fields
are linearly independent, so the involutivity condition doesn’t hold. Therefore it can
be concluded that the nonholonomic systems cannot be state feedback linearizable.
Another difficulty with the control of nonholonomic systems is stabilizability. Stabi-
lization problems are concerned with obtaining feedback laws which guarantee that
an equilibrium of the closed loop system is asymptotically stable. If a linear system
is controllable then there exists a smooth state feedback to make the closed loop
system asymptotically stable. But this does not hold for nonlinear systems.

A general theorem on necessary condition for feedback stabilization of nonlinear
systems was given by Brockett [17]. It is well known that nonholonomic systems do
not satisfy necessary condition of Brockett [17]. Hence nonholonomic systems with
restricted mobility cannot be stabilized to a desired configuration via differentiable,

or even continuous, pure-state feedback.

12



2.2 Control of Kinematic Nonholonomic Mechani-

cal Systems

Taking into account the limitations stated in the previous section in designing a con-
troller for the nonholonomic systems, the control problem can be divided into motion

planning or open loop control and feedback stabilization or closed loop control.

2.2.1 Open Loop Control

The basic idea of motion planning is to obtain an open loop or feedforward controls
which steer a nonholonomic control system from an initial state gy to a final state gy
over a given finite time interval ¢ = [0, T]. The input u doesn’t depend on the system
state ¢ nor on the error e. As a result, a feasible trajectory is obtained connecting
go and ¢y without violating the nonholonomic constraint. However such a solution
is not robust with respect to the disturbances, error on the initial condition or
modelling inaccuracies.

There are many motion planning algorithms that have been proposed. One of the
early and important work on motion planning mentioned in [21], used sinusoids at
integrally related frequencies to steer a class of canonical systems called chained
forms. The importance of chained forms are with an appropriate control input, the
system can be driven to any configuration in ¢ € R"®. A brief review of chained
forms is given.

From the theory of nonlinear control, the controllability of the system (2.3) can be

characterized in terms of Lie algebra generated by the vector fields g;. Lie bracket
can be defined by two vector fields f, g, as

of

0
[f, 9] = 8—‘31” ~ % (2.4)

The Chows theorem states that if the system can move in every direction using Lie

bracket motions (may be using higher order), then the system is controllable. This

13



can be illustrated as follows. Consider a control system with two control inputs
(p=2)

¥ g = quuy + goug (2.5)

where ¢ € R?, n = 3 and uy,us € R2, let the above control system be the result of
a no slip condition imposed on the system. Since the system is completely nonholo-
nomic according to the Chow’s theorem, the system X is controllable and can reach
any configuration in R3. It is known that if g, and g, are two linearly independent
vector fields, then the Lie bracket operation on these vector fields i.e., [g1, go] results

in flow concatenated by ¢; and g- in a independent new direction given by g3 where

93 = [91, 9] (2.6)

The vector fields g1, g2, g3 span all of ®3. By using the first order Lie bracket
operation the system can be made to move in a completely independent direction,
which is not possible alone by ¢g; and go. Let the nonholonomic control system ¥
has ¢ € R"and v € RP where n > 3 and p = 2, in this cases higher order of Lie
brackets are used in order to move in all the directions. From the above it is clear
that by using the first or higher order of the Lie brackets, system can reach all the
configurations in ™. Brockett [17] derived the optimal controls for a set of canonical
systems in which the tangent space to the configuration manifold is spanned by the
input vector fields and their (first order) Lie brackets. In [21], the authors used
the higher order Lie brackets to achieve controllability and had given the sufficient
condition by which system of the form %, which is a two input nonholonomic control
system can be converted to a canonical chained form. In [55] a sufficient condition
for the conversion of the general multiple input system with p > 2 to a multiple
input chained form is given. Two input chained system is broad enough to handle
most of the nonholonomic systems, such as mobile robots, car like vehicle, car with
trailers, etc.

The chained system, depending on the order of Lie bracket can be divided into first

14



order systems, second order systems and so on. The general first order chained

system is given by

Qij = QiU 1> ] (2.7)
In ¢ € 3 with p = 2, the system become a two-input chained form

¢ = U

g2 = U

do1 = g3 = Qals (2.8)

Second order chained system can be obtained where first level of bracketing is not
enough to span R", by extending the canonical form (2.7) to the next higher level

of bracketing given by

Gijk = QiU; 1> ]

Gijk = QijUk (2.9)

where £ is called the order of nilpotency. A Lie algebra is nilpotent if there exists
an integer k£ such that all Lie products of length greater than k are zero.

The above chained form can be steered using simple sinusoidal control that may
be used for generating motions affecting the i set of coordinates while leaving the

previous sets of coordinates unchanged. The idea is:

1. Steer ¢; to the desired value using any input and ignoring the evolutions of

the ¢;’s (i > 1).
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2. Using sinusoids at integrally related frequencies, iteratively find the inputs

steering the ¢;’s without changing the g;’s, j < «.

Tilbury and Sastry in [23] used sinusoidal control to steer all coordinates at once
for systems with two inputs. They also demonstrated how polynomial controls may
be used to steer the two input chained form. The use of piecewise-constant inputs
is another method to steer a chained form system. Under such kind of control,
nonholonomic systems behave as an piecewise-linear system. Hence, forward integral

of motion equation is very simple [24].

2.2.2 Feedback or Closed Loop Control

Stabilization problems are concerned with obtaining feedback laws which guarantee
that an equilibrium of the closed loop system is asymptotically stable. From the
Brockett’s necessary condition for feedback stabilization [17], it is known that no
smooth or continuous time-invariant static state feedback is possible which makes
a specified equilibrium of the closed loop system locally asymptotically stable [25].
Moreover, there exists no dynamic continuous time-invariant feedback controller
which makes closed loop system locally asymptotically stable [26]. Hence, a non-
holonomic control system cannot be stabilized to an equilibrium using feedback
linearization or any other control design approach that uses smooth time-invariable
feedback.

The feedback stabilization of nonholonomic control system can be classified into
three approaches using non-smooth or discontinuous time-invariant stabilization,

time-varying stabilization and hybrid stabilization.
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Discontinuous Time-invariant Stabilization

In [27] a discontinuous feedback law is obtained by transforming wheeled mobile
robot system to a two dimensional system. Under this discontinuous feedback con-
troller every path of the cart asymptotically approaches a particular circle which
passes through the origin of the plane and is centered on the y-axis. In this way
asymptotic stability is achieved.

In [28, 29, 30, 31] a nonsmooth state transformation is used to overcome the prob-
lem of stability caused by Brockett’s theorem [17] and then a smooth time-invariant
feedback is used to stabilize the transferred system. In the original coordinates the
resulting feedback law is discontinuous.

In [32, 33] sliding mode approach is proposed to develop time-invariant feedback
laws. These discontinuous feedback laws force the trajectory to eventually slide
along a manifold of codimension one towards the equilibrium. The main disadvan-

tage of sliding mode is that it may cause chattering effect.

Time-Varying Feedback Stabilization

Samson [34] proposed smooth time-varying feedback ie., feedback which explicitly
depends on the time variable. Other works on the time-varying feedback control
of nonholonomic systems [35, 36, 37] and its extension in robotic systems [38]. In
[39, 40, 41|, the method of averaging and saturation type functions are used to
construct a smooth time-periodic laws for system in chained form. As demonstrated
in [39] the rates of convergence provided by the smooth time-periodic feedback
laws are necessarily nonexponential. A nonsmooth feedback laws with exponential

convergence rate has been proposed in [42].
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2.2.2.1 Tracking of Nonholonomic Mechanical Systems

Consider a nonholonomic control system in chained form is given by

Gij = quj 1> (2.10)

where ¢; € R"denotes the state of the system, u; € RP denotes the input by means
of which the system can be controlled and t is the time. Further more, a feasible
desired state trajectory gq; (t) is assumed to be given for the system to track. Hence

there exists a reference input uy; (), such that

Gai =ug t=1,..,p

Gaij = Qai%qj > J (2.11)

The feasible reference trajectory for the system is assumed to be given. The tracking
problem can be stated as finding an appropriate control law , finding an appropriate
control law

u; = Ui (T, Gai, Udis 9) (2.12)
for a given reference trajectory (qu;, ug;) such that the resulting closed loop system

guarantees (2.10,2.12)

tim [lgs (1) — g ()] = 0 (2.13)

There have been many number of elegant control schemes for tracking control of
nonholonomic systems [43, 48, 44, 47, 45]. Jiang and Nijmeijer in [49] proposed
a backstepping based tracking control method for the kinematic and simplified dy-
namic model of the two wheeled mobile robot. Integrator backstepping is introduced
by Kokotovic [50]. In [51, 52], integrator backstepping was successfully exploited to
tackle the problem of global asymptotic stability and adaptive control of some class

of nonholonomic systems.
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2.3 Control of Nonholonomic Mechanical Systems
including Dynamic

The dynamics of a mechanical system describes how the system responds to the ac-
tuator forces. For simplicity it is assumed that the actuator do not have dynamics
of their own. The dynamic equation of mechanical system with nonholonomic con-
straint (2.1) using Euler-Lagrangian formulation was given by [56, 57]. The control
of nonholonomic systems at the dynamic level takes inertia and forces into account
and provides physical control such as driving torques. The dynamic model for the
n- dimensional mechanical system with m nonholonomic constraint can be derived
using Lagrange formulation. Let T be the total kinetic energy of the mechanical

system

T =D (e (2.14)

and the potential energy G associated with the mechanical system is only a function
of position ¢

G=G(q). (2.15)

Lagrange L is defined as the difference between systems kinetic and potential energy
. 1. .
L(g@)=T-G=354"D(@i-G(9) (2.16)

where D (¢) is the positive definite inertial matrix of the mechanical system. The

Euler-Lagrange equation of motion are

(- () -

where () is the external force applied on the system.
The above equation can be simplified and can generally be represented in the form
given by

D(¢)i+C(q9)i+G@)=J(@)" A+B(g)7 (2.18)
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with nonholonomic constraint of the form

J(@)g=0 (2.19)

where B (g) is an n X r input transformation matrix with r =n—m , 7 € R is the
applied torque on the system, J (¢) is a m X n constraint matrix, ) is the external
force applied on the system, A € R™ are lagrange multipliers and

T T
cudi-p@i-5(2@0w)) +(%L) e

In the previous section we have discussed various approaches for achieving different
control objectives, but all of these take into account the kinematics of the system
only. Kinematic control provides the solution only on a pure kinematic level, yield-
ing kinematic controls such as driving speed. Control at the dynamic level takes
inertia and forces into account and yields physical controls such as driving torques.
Recognizing the importance of considering the system dynamics, several researchers
have started to pay attention to this problem in recent years. A brief review of the
control strategies considering the dynamics is presented below.

In [43] a kinematic controller is designed so that the tracking error between a real
robot and reference robot converges to zero and a torque controller is designed by
using backstepping control technique so the velocities of a mobile robot converge
to the desired velocities which are given by the kinematic controller design. Su [7]
studied the dynamic tracking problem of nonholonomic system with unknown iner-
tial parameters. In [58], a variable structure control law was proposed with which
mobile robot converges to the reference trajectories with bounded errors of position.
Chen [53] discussed the dynamic tracking problem with uncertainties using H., tech-
niques. In [54] the trajectory tracking control problem of dynamics nonholonomic
systems was discussed when the system dynamics are not known and a robust con-

troller were proposed. Oya, Su and Kotoh [6] proposed a position/ force tracking
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control of nonholonomic system with classical nonholonomic constraint with model
uncertainties taking into account the system dynamics and providing a control at

the dynamic level.

2.4 Dynamics of the Complete Nonholonomic Me-
chanical System

Actuators are used in order to produce mechanical movement in machines. There
are different types of actuators that can be used for the nonholonomic mechanical
systems and they can be broadly classified as hydraulic, pneumatic, piezoactuators,
shape memory alloys (SMA), electrical, etc. In the present day application electrical
actuators are the most popular. Electrical actuators are of two types DC motor and
AC motor. AC motors are used for driving heavy loads and are commonly found
in industries. DC motors are commonly used for smaller jobs. The most popular
actuator is the DC motor because they are cheap and easy to control. A simple

schematic diagram of a DC motor is given in Fig. 2.4.

Kol 1)
Vistous
A\ friction

"D Motor

Torque wit)
Angulorcate

Figure 2.1: DC Motor

The torque 7 seen at the shaft of the motor is proportional to the current I induced
by the applied voltage,
=Kyl (2.21)
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where K, the armature constant, is related to physical properties of the motor.
The back electromotive force venf, is a voltage proportional to the angular velocity

w, with K, the emf constant, also depends on the properties of the motor,
Vems = Kqw. (2.22)

The electric equation of the motor can be described by

dI
Vapp = LE + RI + Kyw (2.23)

As stated in the previous section, actuator dynamics, system dynamics along with
the kinematics form a complete system. Not many researchers have focused on con-
trolling of nonholonomic system considering system kinematics, system dynamics
and actuator dynamics. The justification for not considering the actuator dynamics
could be that operating velocities are low. But when the systems have to perform
accurately at high velocities, not including actuator dynamics can have a major
impact in the overall performance of the system and in few circumstance can cause
instability.

The above statement can be supported by the results obtained from the other robotic
systems, such as robotic manipulators. Robotic manipulators are fixed robots with
links and control problems related to these system have been very well understood
and especially when actuators are not included. Experimental results [59] and the-
oretical results [60] indicated the detrimental effects of neglected actuator dynamics
including instability and limited bandwidth. In [61] experimental tests with a Puma
560 manipulator are presented confirming the improved performance obtained when
actuator dynamics is considered. After these experimental results there has been
extensive research that is done and is still going on.

As wheeled mobile robots, legged mobile robots, multi-finger grasping robots, un-
derwater robots, space robots, etc., are all subjected to nonholonomic constraint and
these systems have been used extensively. The need for the error free motion control

has motivated us to design a controller for a class of nonholonomic system whose

22



kinematic system can be converted to a chained form, including system dynamics

and actuator dynamics.
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Chapter 3

Dynamic Modeling Including

Actuator Dynamics

Consider a mechanical system with a classical nonholonomic constraint including
actuator dynamics, whose dynamics are described, in local coordinates, by the fol-

lowing formulation

J(9)g=0 (3.1)
D(@)§+C(g,9)q4+G (@) =J" (@) A+ B(q) Knl (3.2)
L% +RI+ Kw=v (3.3)

where ¢ denotes a n vector of generalized coordinates; I denotes a r vector of arma-
ture current; A € R™ is associated Lagrangian multipliers which expresses the con-
tact force at the contact point between the rigid body and the environmental surface;
D(g) is a (n x n) symmetric, bounded, positive definite inertia matrix; C (q,q) ¢
presents a n vector of centripetal and Coriolis torques; G (g) is a n vector of gravita-
tional torques; B (¢) is a nx r input transformation matrix assumed to be known be-
cause it is a function of fixed geometry of the system; Ky is a positive definite diago-
nal matrix which characterizes the electromechanical conversion between current and

torque; J (q) is (m x n) constraint matrix and the terms L = diag [L1, L, L3, ..., L],
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R = diag Ry, Ry, Rs, ..., R,], K, = diag [Ka, Kag, Koz, -y Kar], w = [w1, way oy wy]©
and v € R’ represents the equivalent armature inductances, resistances, back emf
constants, angular velocities of the driving motors and the control input voltage vec-
tor, respectively. The constraint (3.1) is assumed to be completely nonholonomic
for all ¢ € R and ¢t € R. To completely actuate the nonholonomic system, B (q) is
assumed to be a full-rank matrix and r > n — m.

Two simplifying properties can be stated regarding the dynamic structure of the
system (3.2) are mentioned as follows

Property 1: There exists a so-called inertial parameter p vector 3, with components
depending on the mechanical parameters (mass, moment of inertia, etc.,)|7] such

that
D(q)v+C(g,9)v+G(q) =P (q,4,v,9) B, (3.4)

where @ is a n x [ matrix of known functions of ¢, ¢,v and ¥; and 3, is a [-vector of
inertia parameters [11] and assumed completely unknown in this thesis.

Property 2: A suitable definition of C (g, ¢) makes matrix (D - 20) skew symmet-
ric [7].

The control objective can be specified as follows. Given desired trajectories g4 and
g4 which are assumed to be bounded and satisfy the constraint (3.1), with unknown
inertial parameters (3,, determine a control law for v such that ¢ and ¢ asymptoti-
cally converge to ¢; and ¢g.

To solve the above tracking problem, we recall that n is the necessary and sufficient
number of generalized coordinates required to describe the configuration of the sys-
tems. Likewise, the difference p = n — m corresponding to unconstrained degrees of
freedom is termed as velocity of degree of freedom. It is important to note that p
denotes the number of generalized velocities, or of linear combinations thereof, that
can be freely assigned without violating the kinematic constraint [9]. Henceforth,
any set, of linearly independent velocity variables will be termed as a set of indepen-

dent generalized velocities.
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We thus let v be a p dimensional vector of independent generalized velocities ¢ that

obeys the kinematic constraint (3.1). That is
§=R(q)v (3-5)

Methods of obtaining the expression of R (q) can be referred in [7] and [8]. Based
on (3.1) and (3.5), it is verified that

R"(9)J" (9) =0 (3.6)

Thus, R(q) is an orthogonal complement of J(g). Differentiating (3.5) and sub-
stituting the expression for ¢ in (3.2), then the dynamics (3.2), which satisfies the

nonholonomic constraint (3.1), can be reformulated as
§=R(g)v (3.7)

D(q)R(¢9)9+Ci(g,9)v+G(q) = B(q) KnI+J" (q) A (3.8)

where C; (¢,4) = D(g) R(q) + C(g,4) R(q). In the actuator dynamics (3.3) the
relationship between w and v is dependent on the type of mechanical systems and
generally can be expressed as

W= p (3.9)

The structure of i depends on the mechanical systems to be controlled. For instance,
in the simulation example a type (2,0) mobile robot is used to illustrate the controller

design, where p can be derived as

p=—= (3.10)
Pl _E

where P and E are shown in Fig. 3.

Eliminating w from the actuator dynamics (3.3) by substituting (3.9), one gets

I
L%? + RI+ Kypv = v, (3.11)
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Figure 3.1: Type (2, 0) mobile robot.

Until now we have brought the kinematics (3.1), dynamics (3.2) and actuator dy-
namics (3.3) from the generalized coordinate system g € R" to feasible independent

generalized velocities v € R? without violating the nonholonomic constraint (3.1).
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Chapter 4

Robust Adaptive Control Algorithm

with Actuator Dynamics

4.1 Controller Design

In this section a procedure for the controller design is outlined in two stages. Since
the tracking control at the kinematic level is mainly for the kinematic equation which
can be transferred to the so-called chained form [10], in the following development
we will still follow this assumption. Furthermore, we will only take into account the
case for two independent generalized velocities (p = 2) just for the sake of simplicity,
but these results can be extended to a general case. The main goal in this thesis
is to develop a motion tracking control strategy for the system subject to nonholo-
nomic constraints with consideration of the actuator dynamics in a simple setting
that reveals its essential features.

In order to design a controller it is assumed that there exist a coordinate transfor-
mation, y = ¥ (q), and a state feedback, v = Q4 (¢) u, so that the kinematic system
(3.7) with p = 2 could be locally and globally converted to the chained form [10],[1].

The corresponding chained form equations are given by
Y1 = U1
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Y = wmyYir,(2<j<n—1)

UYn = U (41)

Based on the transformation, y = ¥ (g), the equations (3.8) and (3.11) can be

modified as
Dy (y) Re (y) 4+ Cy (y,9) u+ Go (y) = By (y) KnI + J37 (y) A (4.2)
dl
L:ﬁ + RI+ K,Q (u, 1, 1) = v (4.3)
where

D: (y) = D (q) lg=v-1»)
Ry (y) = R(q) 1 (q) lg=w-1(y)
Cs (y,9) = [D () B (q) u (¢) + C1 (¢,d) 1 (@)] |gm-1)
G2 (y) =G (q) lg=v1»)
J2 (y) = J () lg=v-1(y)
By (y) = B(q) lg=v-1y)

Q= uQ (q) v |q=‘I’“1(y)

It should be noted that the complete nonholonomic mechanical system is described
by (4.1), (4.2) and (4.3). As will be clear in the later development, it is this cascade
structure that makes it possible to design the robust control algorithm.

In stage 1, a strategy is developed so that the subsystem (4.1) tracks yq with an
embedded control input z, and at the same time, the output of the dynamic subsys-
tem (4.2) is controlled to track this embedded control input by designing a virtual
control input I;. In stage 2 the actual control input v is designed in such a way that

I — I,. In turn, this allows ¢(¢) to track the desired trajectory gq4(t).
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4.1.1 Stage 1 (Controller Design for the Kinematic & Dy-

namic Subsystems)

Since the desired trajectory gq should satisfy the constraint (3.1), therefore, there

must exist a desired vy satisfying

(jd = R (qd) Vd (44)

Based on the fact that the kinematic system (3.1) can be converted into the chained
form (4.1), there must exist a transformation y; = ¥ (gy) and a state feedback,

va = 2 (qa) uq such that (4.4) can be transformed as
Ya1 = Ua1

Yaj = UarYgi+1, 2 < j<n—1)

Ydn = Uda- (4.5)

With the above transformations, the tracking problem considered in this thesis can
be restated as seeking a strategy for specifying a control input v for (4.1), (4.2) and
(4.3), subject to the condition that parameters of the mechanical systems are not
exactly known, such that {y, 9}—{ya, va}-

Before proceeding further we would like to put-forward two assumptions.
Assumption (A1): The trajectories yy and (d'yg /dt') (1 < i < n —1) are bounded
and lim,_,q, inf |ug;| > 0.

Remark: As a matter of fact, Assumption (Al) on the boundedness of y, can be
relaxed to: y4(2 < i < n) are bounded, y4 depending on DyRy, Cy, and Gy. If
Dy Ry, Cy, and G5 are bounded on ¥y, there is no boundedness requirement for yg;.
This is the case in the simulation example.

Assumption (A2): The matrix RI Ry is nonsingular for all y € R" and t € R
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Remarks: The matrix R is determined by the constraint matrix J(q) and is always
a full rank matrix. Such an assumption is generally satisfied.

‘ With the above assumptions, the following three properties can be obtained by
exploiting the structure (4.2).

Property 8: The generalized inertia matrix D3 = R2 D, (q) Ry is symmetric and
positive definite.

Property 4: If C is defined such that Property 2 is verified, (D3 — 2R§CZ) is a
skew-symmetric matrix.

Property 5: The dynamic structure (4.2) is linear, in terms of the same suitable

selected set of inertia parameters as used in Property 1, one can get

Dy (y) Ra () + Co (3, 9) u+ Ga (v) = @1 (3,9, u, %) B (4.6)

For the development of the embedded control z so that the subsystem (4.1) tracks
yg, we define the following terms e = [e1,ep,....,en]” = ¥ — Y4, § = e — o, and

o =[oy, 0, ..., an)" with

ap = 0
Qo = 0
20-1
Q3 = —‘kzeg’udl
0
1 Oas
_ 21 3 [i+1]
ag = — (€2 — ) — ks (e3 — aa) ug™ + — ] Yt
d13=g Oug
80[3
5 CGit+1
8ei
— 20-1
Cp = — (en—2 - an—Z) —kna (en——l - Ov’n-—l) Uy
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+_1_Z O, 1 [z+1 Z

" ol
4l audl —2

] ez—{—l (47)

where [ =n — 2, u[ﬁ, is the ¢-th derivative of ug4;, and k; are the positive constants.

Let z be of the form

Udr + 7]

. Udz — Sp—1Ud1 — knSn + Y g ) aaa?l] ZH] (4.8)

n—1
YT e
i i=2 A

n—1 n  j-1 Do

n = —kon — kis1 — 22: SilYi+1 + Z 8; Z a—e:yiﬂ (4.9)
i= j=3 =2

Considering the parameter vector 3, to be uncertain, a virtual control input I; has
to be designed in such a way that the dynamic system (4.2) tracks the z and the
controller design at the dynamic level is achieved. Defining @ = u — z the control

objective at the dynamic level is to synthesis Iy to make & — 0 so that u — z, which

is defined as
Ii = KNinoTma (4.10)

where

Twa = [BYBs] " [Ba]" [@1 (4,4, 2,2) ¢ — KoRa (u — 2)]
— (BB, (B [Rz (RIR,)™ A] (4.11)

with A and ¢ as follows

n—1
kisy 4+ iy SiYiv1 — ZJ =3 5j Ez 2 ae B Yit1

A= (4.12)
_ TRy (u— 2)
= PISTR, (u— )] (4.13)

where p is the upper bound of the unknown inertia parameter 8,, i.e., |G|l < p,

which is assumed to be known. In the design of the control law, Ky is considered
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as an unknown parameter and Kyr,, is an estimation of the parameter K ;,1 and is

given as below

IA{NInv = dzag I:KNInvly KNIan; nery IA{NImJ'r]
[A(Nlnvi = _fidei7 1= ]—7 27 T (414)

where @7 RI By = [f1, f2, -, fr]-

4.1.2 Stage2 (Controller Design at the Actuator Level)

Till now in this chapter we have designed a virtual controller I; and embedded
controller z for dynamic and kinematic systems respectively but v tends to z can
be guaranteed, if the actual input control signal of the dynamic system I be of the
form I; which can be realized from the actuator dynamics by the design of the actual
control input . On the basis of the above statements we can conclude that if v is
designed in such a way that I tends to I, then |le]] — 0 and [|@]| — 0 and ||a|| — 0.

Define I = e; + I; and substituting in (4.3) one gets

Lér+RI+K,Q=—LI;+v

Adding Ke; on both sides in the above equation, one gets
Lér+ RI+ K,Q + Krer = Krer — LI + v (4.15)

The actuator parameters L, R and K, are considered unknown and are estimated
online using the adaptation laws. The control input v is designed in form given
below

v=1LI,+RI - Kre; + K,Q+H (4.16)

where I = diag [IAll,[AQ, ...,f)r], R= diag [Rl,Rz, ...,}A?,r] and

K, = diag [Kal,KaQ, ...,Kar] are the estimates of the unknown parameters L, R
and K, respectively, satisfying
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IA/i = —’)/ﬁjdieu,i - 1, 2, oy T (417)

A

Ri = —’)/7[,56[1;,7; = 1, 2, ey T (418)
Ky = —vQier,i=1,2,...,7 (4.19)
H,; = —KNifi,’i = 1, 2, T (420)

where K ~ 1s an estimate of the unknown parameter Ky
Kdeiag [KNl,KNQ,...,KNi] ,i=1,2,...,7‘ (421)

Kyi = voerifii=1,2,..,1 (4.22)

where g, ¥7, s and <y;o are known constants, which determine rates of the adapta-

tions.

4.2 Stability Analysis for the Complete System

So far we have individually designed virtual controllers z and I; for kinematic and
dynamic systems, respectively. Then, an actual control input v is developed. In the
present section, a complete stability analysis for the whole system dynamics based
on the combination of the above stages is given.

Consider a positive definite function for the whole system is given by

V=Vi+Va+Vi+ Zvl o KR (4.23)

=1

where

Vi(t) = (z 2 + k152 + 1 ) (4.24)

=2
S =
Va (t) = 5" Dyii + 5; KniK2 (4.25)
Vs = & TLeI—l——Z ('y L2+ 47 'R2 4+ 45 1K2) (4.26)
2 g 6 7
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with KN = KN—KN, XNIn'v = KNIm; -K;,l, and i = .E—‘L, R = R—R, and

K, = K, — K, represent the parameter estimation errors.

4.2.1 Procedure for Obtaining the Time Derivative of V;:

Substituting the control laws (4.8) and (4.10) along with the adaptation controllers
(4.9), (4.14) and robust controller (4.13), the closed loop error equation for the
kinematic and dynamic systems are given as follows
S1=n+1u
8.2 = S3Uq1 — kgSszl -+ (7] + ’Uq) U3

. 8a3
§3 = SqUgy — SoUay — kasauZ + (n+ 1) { ya — 862

i—2 Bei
n—2
) - ~ ooy,
Sp = —ann — Sp_1Uq1 + U — (’17 + '11,1) . —a—ef-yi.}_l (427)
=2 t
n=—kon— A (4.28)

Dy (y) Ry (y) u+Ca (y,9) u+ G2 (y) = Bz (y) Knver+ Ba (y) Knla+ J3 (y) A (4.29)

The time derivative of V; (¢) along the solution of (4.27) - (4.28) is

n
Vi=Y_ sisi+kusisy+ i
=2

Z kistu?l — kns: — kon® + 47 A (4.30)
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4.2.2 Procedure for Obtaining the Time Derivative of V5:

Substituting the error % = u — z in (4.29), we have
Dng’l:I: + Czﬂ; + DQRgZ + C2Z + G2 = BQKNEI + BZKNId + JgA (431)
Using the property 5 given in the section 4.1.1, (4.31) can be rewritten as

Dy Ryt + Cyii + ®18, = ByK ey + ByKyly + JEA (4.32)

By rearranging the terms, one gets
Dy Ryti = —8,8, — Coii + BoKyer + ByKy Iy + JIA (4.33)
Introducing the control law (4.10) into the above equation
Dy Ryii = —®,8, — Coi + ByKner + BoaKnKnrawTma + BaTia + JEA

Dy Ryt = @y (¢ — B,) — KoRafi — Cyii + ByKnKnrmyTma — Ry (RTRy) T A
+BgKN€[ + JzT)\ (434)
Multiplying RZ on both sides to the above equation one gets
Dsiti = RI®, (¢ — f,) — RYK. Ryt — RY Coii + RE BoaKnK NinyTma — A

The time derivative of V5 () along the solution trajectory of (4.34) is
Vy = @' D3t + ‘;ﬂTDﬂ] + 5: KNiK N i K N 1
i=1
Vo = a"RI®, (¢ — B,) — 4T RY K. Ryti + 1" RY By Ky K N1y Tma — U7 A
+ar (%Dg — RgCg) i+ @' R} BoKner — zT: KniK N tnvi fiTmai (4.36)
i=1
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Since (%Dg - R%—'CQ) = 0 and ﬂTRgBQKNRN[nUde — Z KNiRNInvifidei =0 we
=1
have

Vo = 4T RY® (9 — B,) — 4" RYK Ryii — A + ' RY ByK ey (4.37)
The first term in (4.37) can be shown that

Tp ~
(@ Bait)" (¢ — B,) = (@7 Ryit) " (_@, _, SR )

[T Ry

(T Ra)" (¢ — B,) < || T Rot]| (|18, ]| — p) < 0 (4.38)

4.2.3 Procedure for Obtaining the Time Derivative of Vj:

Introducing the control law (4.16) into (4.15) one gets

Léy+ Kre;=RI+ LI, + K,Q+ H (4.39)

Then, by differentiating V3 along the dynamics (4.16) - (4.19), one gets
Vi=—elK;+eTRI+ eV LI+ fK,Q + eV H+
Z (’Yglf/ijli + 'Y;lRiéi + ’Ys_l—kaif(ai)

i=1

Va=—elKrer +etH (4.40)
4.2.4 Time Derivative of V:
With V4 in (4.30), V3 in (4.37), and V; in (4.40), V can be obtained as
. n—1
V== kistuf, — knsh — kon® + @ A+0TRE®, (p — B,) — @' R} K. Ry
=2
—ﬂTA -+ ﬂTRgBQKNe[ — 6?K[€[ + 61H -+ Z fYﬂ)lkNiKNi (441)

=1
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V< — Z kistuZ — ks — kon?+ar RE®; (o — B,) —a' RI K Ryii—eT Kre; (4.42)

By observmg (4.38), it can be concluded that the considered positive function V (t)
is thus non-increasing. This in turn implies that 7, s, u, KN nwis er, Kn; as well
as R, L, K, are bounded, and V(t) converges to limit value Vj;,,. By the definition
of s, it concludes that e is bounded. Using the assumption (Al) , it follows that
y is bounded. In view of (4.27)-(4.29), §, @, 7 are bounded. Thus, 7, s, and @ are
uniformly bounded. We should mention that if Dy Ry, C5, and G5 are bounded on
Y1, there is no boundedness requirement for y4. Next, we prove that s, §, and 7
tend to zero. Since V is bounded and V is uniformly continuous, it can be shown
that V tends to zero. Therefore, 1, s;uq1(2 < i <n-1), s,, and G tend to zero. By
the assumption that lim; ., inf|ug| > 0, one concludes that s;(2 < i < n) tends to
Z€ero.

Differentiating u);n yields

1 Ji—
d . -—
Eufﬂn = _klufﬂsl + lufﬂlufﬂﬂ - koufﬂﬂ - udl E Sili+1 — E E +1)
’L 2 : :2

where the first term is uniformly continuous and the other terms tend to zero. Thus
it can be conclude that < 4 (ukyn) converges to zero, which in turn implies that ul;s;
and s; tend to zero. Therefore, s and § tend to zero. To complete the proof and
establish asymptotic convergence of the tracking error, it is necessary to show that
{y,¥} = {yd4,¥a} as t = co. This is accomplished by the following arguments.

Based on the definition of « given in (4.7) and the relationship s = e—q, it is obvious
that s; = 0(i = 1,2) yields limy—,0o ¥; = ya; and lim; 00 ¥ = 94;(¢ = 1,2) because of
a1 = ap = 0. From the boundedness of ug4;, one obtains that a3 and &3 converge to
zero, which results in limy,o ¥3 = Y43 and lim; , o ¥s = Y43. The convergence of a3
and &3 lead to the conclusion that a4 and &4 converge to zero, thus, lim; oo ¥4 = Y44
and limy o, Y4 = Yg44. similarly, we can prove that lim; oo ¥; = ya; and limy,oo 9; =

%4i(5 < i < n). In summary, we have proved that {y,¥} — {ya4,ya} as t = 0.
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So it is proved that all the signals in the closed loop system remain bounded, and

lle]| — 0 and ||é]| — 0.

4.3 Simulation Results

To verify the validity of the control approach outlined in this chapter, we consider a
simplified model of a mobile wheeled robot [2] as shown in Fig. 1. This robot is of
the Type (2,0), constituted by a rigid trolley equipped with non-deformable wheels
and one motor for each rear wheel. The dynamic model of the mobile robot and

actuator given respectively

1
mx = Acos@ — F (KNlll + KNQIQ) sin 6

1
my = Asin@ + ﬁ (KN1I1 +KN212) cos @

. K
I()H - ’13 (KNIII - KNQIQ) (443)

L, 0 I R, 0 L
+

0 L2 j2 0 R2 I2
Ky 0 u, th, £ v
1 Q1 (u, 1, ) _|n (4.44)
0 Ko Qa2 (u, 1, 1) 2]
where
Qi (u, i, ) | | 5 (ur(zcosf+ysind) +us (1 + E))
Q2 (u, p, (1) # (ur (zcos + ysinb) +up (1 — E))

where z, y are the coordinates of the reference point O in the inertial frame, @ is the
orientation of the basis with respect to the inertial frame m is the mass of the robot,
and Iy is its inertia moment around the vertical axis at point O, P is the radius of

the wheels and 2F the length of the axis of the front wheels, and v; and v, are the

39



voltage provided to the motors which inturn provide 71 and 7 to the wheels.

The nonholonomic constraint is written as

cosf+ gsinh =0 (4.45)

Given the desired trajectory g4 = [2cost,2sinft, t]T, which is circular path on the
plane, the control objective is to determine a feedback control vy and vy so that the
trajectory ¢ = [z,,60]" follows gy.

The matrix J (g) is, therefore, defined as J (¢) = [cos#,sin6,0]. The matrix R (q)

defined in (3.6) is chosen as

—sinf 0
R=1 cosf O
0 1

Therefore the kinematic system (4.45) can be written as

T =—wv;siné
7 = v1 cos b
0 = vy (4.46)

Using a diffeomorphism transformation, y = ¥ (g), and a state feedback, v = Q (q) v,

which are defined as

yr =10
Yo = xcosf + ysind
ys = —zsinf + ycos b
Uy = Vg
uy = vy — (zcos @ + ysinb) ve (4.47)
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the above kinematic system can be converted into the chained form

U1 = Uy
Yo = Y3Uy
Ys = uz (4.48)

The corresponding robot dynamic model (4.43) can be converted into

—mysgsiny; —msiny; ) Cos U1
Uy
MYaCOSY;  MCOSY; S| | singy | A
Ug
I 0 0
—MY2Y1 COSY1 — MY SINYr —MY1 COS Yy
Uy
+ | —mysy1siny; + myycosy; —my;siny;
Ug
0 0
—siny; —siny; _
1 K N1 0 I 1
—p | 08U cosy (4.49)
0 Kno I
E -F -
with
—ygsiny; —siny;
Ry=| wyycosy; cosuy
1 0

For the given R(q), the desired trajectory ¢z = [2cost,2sint, t]Tsatisﬁes Ga =
R (qq) vqg with vy = 2 and vgo = 1. Using the above diffeomorphism transformation,

the desired kinematic system ¢z = R (gq) vg can be expressed as

Ygr = 1
Yaz = 2
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Yaz =0 (4.50)

with ug; = 1 and ug = 0.

T
Introducing the actual control input v = [ v ] of the form given below

Ly © In R 0 I H,
v= . . + . +
0 L2 Id2 0 R2 IQ H2
Ky 0O e Ky, 0
. Il ) Il + al ) Ql (451)
0 Kp er2 0 Kg Q2

where H1 = ——IA(lel and Hz = —IA{szQ
For the dynamic subsystems, the unknown parameters Bp are chosen as Bp =

[ m I ] and are estimated by ¢ in (4.13) where & is given by

—Y2218inY; — Z SN Y1 — Y2¥121 COS Y1 — Y21 SinYy — Y12z2cosy; 0

®, (y, U 2, Z') = Y221 COS Y1 + 22 COS Y1 — YoU121 SIN Yy + Yp21 COS Y1 — Y122 81N Y 0
0 %
(4.52)

Other unknown parameters K;,l, Ky, L, R and K, are estimated using the terms

Knine, K, L, R and K, with the following adaptive laws, respectively

KNt = = fiTmar (4.53)
KNimv2 = — foTmas (4.54)
where
- . - . sin
fi = = (—lyyasiny; — iy siny;) Py1
N ~ cosy; W FE
cos cos —
+ (th1ya cos y; + Uy cos yy) 2 P
- } - sin
fo=~— (—u1y2 S yp — Ug Slﬂyl) Pyl
- - cosy; WK
+ (@ys cos ys + fig cos y1) — 2
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f(Nl = Tenf1
ffm = Yio€r2fa
il = —’Ysjauen
fzz = —’)’dozen

Rl = —’)’7I 1€

Ry = —yrLyers
b _ (v, D uz
Ko = —vGien, Q1 = (R + R) up + R

f(az = —sQ2er2, Q2 = (y_}; - %) up + %
The physical values for the simulation are taken as m = 0.5,Ip =05, F =P =1
and Ly = Ly = 2.03,R; = Ry = 2,Ky; = Kyo = 1.5,K, = Ky = 1. The
design parameters have an influence on the rate at which the tracking errors tend to
zero. For this simulation the design parameters are set at v = y10 = 77 = v8 = 1,
K, =diag (5,5), ko =k1 =ko=kz =2, p=1 and 1 (0) = 0.
The simulation results are shown in figures 4.1 - 4.4. Figs. 4.1 shows the tracking
trajectory errors and Fig. 4.2 shows the geometric trajectory of x and y. As the
tracking errors and trajectory followed by the mobile robot proves the validity of
the proposed algorithm. In Fig. 4.3 and 4.4 shows the tracking error I — Id = e;

and 4 tends to zero as t — oo.
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Chapter 5

Adaptive Control Algorithm with

Actuator Dynamics

5.1 Controller Design

In this chapter a procedure for the controller design is outlined. Since the tracking
control at the kinematic level is mainly for the kinematic equation (3.7)which can be
transferred to the so-called chained form [10], in the following development we will
still follow this assumption. Furthermore, we will only take into account the case
for two independent generalized velocities (p = 2) just for the sake of simplicity, but
these results can be extended to a general case.

In order to design a controller it is assumed that there exist a coordinate transfor-
mation, y = ¥ (¢), and a state feedback, v = Q; (¢) u, so that the kinematic system
(3.7) with p = 2 could be locally and globally converted to the chained form [10][1].

The corresponding chained form equations are given by
Y1 = up

Y =wYir1, (2 <j<n—1)
yn = U2 (51)

46



Based on the transformation, y = W¥(q), the equations (3.8) and (3.11) can be

modified as
Dy (y) Ry (y) &+ Co (v, 9) u + Go (y) = Ba (y) KnI + J3 (y) A (5.2)
dl
La + RI + K,Q (u, p, ) = v (5.3)
where

D; (y) = D () lg=u-1)
Ry (4) = R (@) 4 () ly=v-0)
Ca (3, 9) = [D (q) R(g) Q (q) + C1 (¢,d) 1 (@)] |g=u-1)
G (y) = G(9) lg=v-1y)
T2 (y) = J (@) lg=u-1y)
By (y) = B(9) l=v-1y)
Q= ph (q) v |g=v-1(y)

It should be noted that the complete nonholonomic mechanical system is described
by (5.1), (5.2) and (5.3). As will be clear in the later development, it is this cascade
structure that makes it possible to design the adaptive control algorithm.

Since the desired trajectory g4 should satisfy the constraint (3.1), therefore, there

must exist a desired vy satisfying

da = R (ga) v (5.4)

Based on the fact that the kinematic system (3.7) can be converted into the chained
form (5.1), there must exist a transformation y; = ¥ (gg) and a state feedback,

vg = 2 (qq) ug such that (5.4) can be transformed as
Yd1 = Ud1
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Yo = Uar¥gi+1, (2 < j <n—1)
Ydn = Uda- (55)

With the above transformations, the tracking problem considered in this chapter
can be restated as seeking a strategy for specifying a control input v for (5.1), (5.2)
and (5.3), subject to the condition that parameters of the mechanical systems are
not exactly known, such that {y, 9}—{y4, ya}-

Before proceeding further we would like to put-forward two assumptions.
Assumption (A1): The trajectories yq and (d'yg /dt') (1 <i < n —1) are bounded
and limy_,o inf |ug | > 0.

Remark: As a matter of fact, Assumption (A1) on the boundedness of y; can be
relaxed to: yg(2 < 7 < n) are bounded, yq4 depending on DsRy, Co, and Go. If
D3Ry, Cy, and G5 are bounded on yy, there is no boundedness requirement for yg4;.
This is the case in the simulation example.

Assumption (A2): The matrix R} R, is nonsingular for all y € R" and t € R
Remarks: The matrix R, is determined by the constraint matrix J(q) and is always
a full rank matrix. Such an assumption is generally satisfied.

With the above assumptions, the following three properties can be obtained by
exploiting the structure (5.2).

Property 3: The generalized inertia matrix D3 = RI D, (q) Ry is symmetric and
positive definite.

Property 4: If C is defined such that Property 2 is verified, (D3 — 2R2TC’2) is a
skew-symmetric matrix.

Property 5: The dynamic structure (5.2) is linear, in terms of the same suitable

selected set of inertia parameters as used in Property 1, one can get

Dy (y) Ry () 4+ Co (y,9) u+ G2 (y) = O1 (y, 9, u, @) By (5.6)

In the following development, two design stages will be used for the controller design.
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In stage 1, a strategy is developed so that the subsystem (5.1) tracks yq with a virtual
control input z, and at the same time, the output of the dynamic subsystem (5.2)
is controlled to track this virtual control input by designing another virtual control
input I;. In stage 2 the actual control input v is designed in such a way that I — I,.

In turn, this allows ¢(t) to track the desired trajectory ¢q4(%).

5.1.1 Stage 1 (Controller Design for the Kinematic & Dy-
namic Subsystems)
For the development of the virtual control z so that the subsystem (5.1) tracks

y4, we define the following terms e = [61,62,...,€n]T =y —1yYq S = e — a, and

o = o, o9, ..., )" with

) = 0
Qg = 0
Q3 = k262U2l !

Ou
Oy = — (82 — 042) - k3 (63 — udl + —Z 3 [H_l]

v oul]
8&3
_..___.6. 1
20—1
ay = — (en—g — n—2) — kn— (en 1 — Q1) U

—4

Z 3anl 1 z—H] i Z aan' 1e,+1 (5‘7)

l
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where [ =n — 2, ugll, is the i-th derivative of ug41, and k; are the positive constants.

Let z be of the form

Ugy + 7
-3 Oay,  [i+1]
Ugy — Sp_11 —ks—I—E."_?’ 1
2 a2 n—1UWd1 non =0 aOl’U,dzl di (58)

n—1
n—-1 0oy,
+§ i Je; Cit+l
=2

n—1 n i—1
) Ow;
n = —kon — k151 — E SilYit1 + E 55 ) :a—(;yiﬂ (5.9)
2 j=3  i=2 ¢

i=

Considering the parameter vector 3, to be uncertain, a virtual control input I; has
to be designed in such a way that the dynamic system (5.2) tracks the z and the
controller design at the dynamic level is achieved. Defining & = v — z the control
objective at the dynamic level is to synthesis I; to make @& — 0 so that u — 2z, which
is defined as

Id = KNIszmd (510)

where
Tma = B B3] ™' [Bs]" [@1 (Y, 1, 2,2) By — K. Ry (u — z)]

1

— [BIB,] " By [R2 (RIRy)” A] (5.11)

with A and 3, (estimation of 8,) as follows

n—1 n j—1 Oy
kisi + Zizg SilYit+1 — Zj:.?. 8 Zi:2 5;;:‘%“

Sn

A= (5.12)

~

By = —TéT Ry(u — 2) (5.13)

where I' is a symmetric positive definite constant matrix. In the design of the control
law, K and 3, are considered as an unknown parameter and K NInw 1S an estimation

of the parameter K" and is given as below

Ky = diag [K NInvt, KNinv2, s K NInvr]
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kN[nvz = ~_,f1,7‘7'7’l,dl7 Z = 17 27 B r (5'14)

where 4T RY By = [f1, fa, -, fr)-

5.1.2 Stage2 (Controller Design at the Actuator Level)

Till now we have designed a virtual controllers z and I; for the kinematic and
dynamic systems respectively. u tends to z can be guaranteed, if the actual input
control signal of the dynamic system I be of the form I; which can be realized from
the actuator dynamics by the design of the actual control input v. On the basis of
the above statements we can conclude that if v is designed in such a way that I
tends to I then |le|| — 0 and ||@|| — 0 and ||1]” — 0.

Define I = e; + I; and substituting in (5.3) one gets
Lér+RI+K,Q=—LI;+v
Adding Krer on both sides in the above equation, one gets
Léy+ RI+ K,Q + Krer = Krey — LIy + v (5.15)

The actuator parameters L, R and K, are considered unknown and are estimated
online using the adaptation laws. The control input v is designed in form given

below

v=LI;+RI - Kre;+ K,Q+H (5.16)
where L = diag [f/l,f/Q, ...,IA,T], R= diag {Rl,Rg, ...,Rr] and

~

K, = diag [Kal, Koo, ...,R’ar] are the estimates of the unknown parameters L, R
and K, respectively, satisfying

A

Li = —yelgen,i=1,2,...,r (5.17)
Ri= —yilers,i=1,2,..,7 (5.18)
K = —nQien, i = 1,2,..,7 (5.19)
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H;=—Kyif;,i=1,2,..1 (5.20)

where K ~ 1s an estimate of the unknown parameter Ky
Ky = diag [f(m, Ky, KN] i=1,2, .7 (5.21)

Kyi = yoerifii=1,2,..,7 (5.22)

where g, 7, 78 and 1o are known constants, which determine rates of the adapta-

tions.

5.2 Stability Analysis for the Complete System

So far we have individually designed virtual controllers 2z and I; for kinematic and
dynamic systems, respectively. Then, an actual control input v is developed. In the
present section, a complete stability analysis for the whole system dynamics based

on the combination of the above stages is given.

Consider a positive definite function for the whole system is given by
1 -
V=WVi+Va+Va+:> 7K}y (5.23)
23

where

1 n
Vi(t) = 5 <Z 82 + k153 + 172) (5.24)
=2

Tom o 1o = 1 -
Va(t) =5 T Dyii + iﬁpT r 1ﬁ,,+§§ KNiK ¥ i (5.25)
i=1
1 T 1 . —172 —1 D2 —1r2
Vs = 561 Ler + 5 E (’Yﬁ L; +v; R; + Kai) (5-26)
1=1

where ,Bp = Bp - ﬂp, f{N = IA(N - KN, f{Nlnv = KNInv - K;rl, and fz = _E - L,

R=R- R, and f(a = Ka — K, represent the parameter estimation errors.
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5.2.1 Procedure for Obtaining the Time Derivative of V;:

Substituting the control laws (5.8) and (5.10) along with the adaptation controllers

(5.9), (5.14) and (5.13), the closed loop error equation for the kinematic and dynamic

systems are given as follows
si=n+1u
8'2 = S3U41 — kgSg’U/tZill + (77 -+ ﬁl) Y3

. . Jda
S3 = S4Ug1 — Spligr ~ kassuZ + (0 + 1dy) (y4 - ?36_3%)
2

. 21
Sp—1 = SplUd1 — Sp—2Udl — Kn_18n—1Ug

2 b
+(+a). | yn — —_n_lyiﬂ
; aei
=2
n—2
. - . O
S0 = —knSp — Sp—1Ua1 + e — (7 + 1) . 3 nyz‘+1
=2 ei
n=—kmn—A

Dy (y) Ry (y) i+ Ca (y,9) u + Go (v)
= By (y) Kyer + By (y) Knly+ J; (y) A

The time derivative of V; (¢) along the solution of (5.27) -(5.28) is

n
i= Z 88 + k15151 + 11

=2

n—1
Vi == kisjufi — kns), — kon® + @7 A
—

33
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5.2.2 Procedure for Obtaining the Time Derivative of Vj:

Substituting the error & = u — z in (5.29), we have
Dy Ryii + Cai + DyRyz + Coz + Gy
= ByKye; + BoKnIy+ JEA (5.31)
Using the property 5 given in the section 3, equation (5.31) can be rewritten as
Dy Ryii 4 Coii + 9,8, = ByKyer + BoKyIy+ JEA (5.32)
By rearranging the terms, one gets
DyRyii = —®, 8, — Coii + ByK ey + BoKyIy+ JIA (5.33)
Introducing the control law (5.10) into the above equation
Dy Ryii = ~®,8, — Coti + By Kner
+ByKNKNinyTma + BaTona + J3 A (5.34)
Dy Ry = @, ([-},, — ﬂ,,) — K Ryl — Coii + JTA
+By KN K N inoTmd — By (RTRy) ™ A+ BT K e, (5.35)
Multiplying RI on both sides to the above equation one gets
Dyis = B§ @ (B, - B,) — RYK.Ryii — R Cyi

+RgB2KNI~{NInude - A + RngKNBI (536)

The time derivative of V3 (¢) along the solution trajectory of equation (5.36) is
. . 1 . - z
Vo = 4'Dsi+ §aTD3a + 8T8,

T .
+ Z KniK thik NInvi

=1
— aTRTS, (B,, -~ 5p) — @ RY K, Ryii — 7" R} &, T
+i" RY By KN K NinoTma — G5 A + 0T RY By K ver

1 o )
+UT(§D3 —- R;Ch)a — Z KNiK N1 fiTmai (5.37)
i1
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Since (%Dg - Rgcg) =0 and ﬂTRngKNKN[nUde - Z KNiRNInvifidei =0 we
i=1
have

Vo = —aTRTK Ryt — 4T A + 4T RY By K ey (5.38)

5.2.3 Procedure for Obtaining the Time Derivative of Vs:

Introducing the control law (5.16) into (5.15) one gets
Lér+ Krey = RI+ LIy + K,Q+ H (5.39)
Then, by differentiating V3 along the dynamics (5.16) - (5.19), one gets

Va=—eFK; +efRI+ T LI+ T K,Q + eF H+

Z (’Ys—lf/ifzi + ’7;1Riéi + ’Y{lkai-f(ai>

i=1

Vi =—el Kre; +e/H (5.40)

5.2.4 Time Derivative of V:

With V4 in (5.30), V4 in (5.38), and V; in (5.40), V can be obtained as

V = - Z kistu + aTA — 4T RIK Ryt
—kns" — kon? — a"A + 4T RY ByK ey

'r -
—G?K[B[ -+ BIH -+ Z 71_()1KNiKNi

i=1

< - Z kistudy — knsh, — ko
£=2

—i" Ry K Ryl — e Kre; (5.41)

By observing the above, it can be concluded that the considered positive function
V(t) is thus non-increasing. This in turn implies that 7, s, @, KN inwi, €1, Kni as well

as R, L, K, are bounded, and V (t) converges to limit value Vj;,. By the definition
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of s, it concludes that e is bounded. Using the assumption (A1), it follows that y
is bounded. In view of (5.27)-(5.29), §, i1, i are bounded. Thus, 7, s, and @ are
uniformly bounded. We should mention that if DyR,, Cy, and G5 are bounded on
Y1, there is no boundedness requirement for y,;;. Next, we prove that s, §, and 5
tend to zero. Since V is bounded and V is uniformly continuous, it can be shown
that V tends to zero. Therefore, 7, s;ug (2 < @ < n—1), s,, and 1 tend to zero. By

the assumption that lim; o inf|ug | > 0, one concludes that s;(2 < i < n) tends to

Zero.

Differentiating u};n yields

%Ufﬂ’? = ‘klufilsl + lUfﬁlufﬂn - koufﬂn

~ug Zszyz—i-l ZSJZ e, yz+1

where the first term is uniformly continuous and the other terms tend to zero. Thus
it can be conclude that £(u};n) converges to zero, which in turn implies that u}; s;
and s; tend to zero. Therefore, s and § tend to zero. To complete the proof and
establish asymptotic convergence of the tracking error, it is necessary to show that
{y,¥} = {ya,¥a} as t = oo. This is accomplished by the following arguments.

Based on the definition of « given in (5.7) and the relationship s = e—q, it is obvious
that s; = 0(1 = 1,2) yields limg, o ¥; = ya; and im0 9; = 94;(1 = 1,2) because of
a1 = ag = 0. From the boundedness of u4;, one obtains that as and &3 converge to
zero, which results in lim; . ¥3 = Y43 and lim; o, ¥3 = ya3. The convergence of aj
and cj3 lead to the conclusion that a4 and ¢4 converge to zero, thus, lim; oo ¥4 = Yau
and limg o ¥4 = Yga. similarly, we can prove that limy_,o, ¥; = ¥4 and limg o0 ¥ =
94i(5 < i < n). In summary, we have proved that {y,¥} — {ya,ya} as t — oo.
So it is proved that all the signals in the closed loop system remain bounded, and

llell = 0 and [jé]| — 0.
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5.3 Simulation Results

The physical values for the simulation are taken as m = 0.5, =05, E =P =1
and [y = Ly = 2.03,R) = Ry = 2,KN; = Ky = 1.5,K,; = Ku = 1. The
design parameters have an influence on the rate at which the tracking errors tend to
zero. For this simulation the design parameters are set at v = v10 = 77 = 18 = 1,
K, =diag (5,5), ko =ky =ky = ks =2, 3(0) =0, =1, and 75 (0) = 0.

Simulation results are shown below. Fig. 5.1 shows the tracking trajectory errors
and Fig. 5.2 shows the geometric trajectory of x and y.In Figs. 5.3 and 5.4 shows
the output of the actuator system I tracks the virtual control input I; and u tends
to z. It can be seen from the simulation results that the tracking errors and path

followed by the robot proves the effectiveness of the designed controller.
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Trajectary of the Robot
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis two control algorithms have been proposed. Both of them are feedback
tracking controllers for a class of uncertain nonholonomic mechanical systems. The
uncertain nonholonomic mechanical system forms a cascade system consisting of
kinematic nonholonomic constraint, dynamics system and actuator dynamics. The
control objective was to determine a feedback control law designed at the actuator
level so that the trajectory ¢ follows g4. In order to achieve the control objective
an adaptive and a robust adaptive tracking control algorithms have been designed.
Both controllers have been designed to deal with the uncertainties in dynamics and
actuator dynamics.

Since the actual control input is voltage. The control input has been designed in such
a way that the output of the dynamic system v and actuator system I are forced to
track the desired input to kinematic system z and dynamic system [ respectively.
The stability analysis proves that the position tracking control has been achieved.
A simplified mobile robot of the type (2,0) was used in order to demonstrate the
design procedure. The simulation results showed effectiveness of the controllers and

it was observed that robust adaptive controller have faster rate of tracking than the
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adaptive controller.

6.2 Future Work

In this study, the design procedure and simulation results are provided. The con-
trollers designed need an acceleration measurements. The future work should val-
idate the controller designed through experiments and removing the need for the
acceleration signal. The current control scheme is restricted only to the first order
nonholonomic systems, extending it to the second order nonholonomic systems will
be more challenging. In most of the nonholonomic control schemes and in this thesis
also we consider only drift free nonholonomic systems. Designing a general control

scheme for the nonholonomic systems with drift can also be considered.
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Appendix

Chow’s Theorem
If the accessibility rank condition
dimA, (q) =n

holds, then the control system (2.3) is locally accessible form gq. If the accessibility
rank condition holds for all ¢ € R", the system is locally accessible. Conversely, if
system (2.3) is locally accessible, then dimA,(¢) = n holds in an open and dense

subset of ™. Where c is defined as accessibility algebra.

62



Bibliography

[1]

2]

(3]

(4]

[5]

[6]

I. Kolmanovsky and N. H. McClamroch, “Developments in nonholonomic con-

trol problems,” IEEE Control Syst. Mag., vol. 15, pp. 20-36, June 1995.

G. Campion, B. d’Andrea-Novel, and G. Bastin, “Controllability and state feed-
back stabilizability of nonholonomic mechanical systems,” in Advanced Robot

Control, C. Canudas de Wit, Ed. New York: Springer-Verlag, pp. 106-124, 1993.

Ju. I. Neimark nad N. A. Fufaev, Dynamics of Nonholonomic Systems. Provi-
dence, RI: Amer. Math. Soc., 1972, vol. 33, Translations of Mathematical Mono-
graphs.

M. C. Good, L. M. Sweet, and K. L. Strobel, "Dynamic Models for Control
System Design of Integrated Robot and Drive Systems," Journal of Dynamic
Systems Measurement, and Control, Vol. 107, (1985), pp.53-59.

J. H. Yang, “Adaptive Robust tracking control for compliant-joint mechanical
arms with motor dynamics,” Conf., Decision & Contr., pp. 3394-3399, Dec
1999.

M. Oya, C.-Y. Su, and R. Katoh, “Robust adaptive motion/force tracking con-
trol of uncertain nonholonomic mechanical systems,” IEEE Trans. on Robotics

and Automat., vol. 19, No. 1, Feb 2003.

63



[7]

18]

[9]

[10]

11)

[12]

[13]

[14]

C.-Y. Su and Y. Stepanenko, “Robot motion/force control of mechanical sys-
tems with classical nonholonomic constraints,” IEEE Trans. Automat. Conitr.,

vol. 39, pp. 609-614, Mar. 1994.

C.-Y. Su, Y. Stepanenko, and A. A. Goldenberg, “Reduced order model and
robust control architecture for mechanical systems with nonholonomic Pfaflian
constraints,” IEEE Trans. Syst., Man, Cybern. A, vol. 29, pp. 307-313, May.
1999.

S. Ostrovskaya and J. Angeles, “Nonholonomic systems revisited within the
frame work of analytical mechanics,” Appl. Mech. Rev., vol. 51, pp.415-433,
1998.

G. Walsh and L. G. Bushnell, “Stabilization of multiple input chained form
control system,” Syst. Control Lett., vol.25, pp. 227-234, 1995.

W. Dong, W. L. Xu, and W. Huo, “Irajectory tracking control of dynamic non-
holonomic systems with unknown dynamics ”, Int. J. Robust Nonlinear Conir.,

vol. 9, pp. 905-922, 1999.

J.-M. Yang, and J.-H. Kim, “Sliding-mode control for trajectory tracking of non-
holonomic wheeled mobile robots ”, IEEE Trans. on Robotics and Automation,

vol. 15, pp. 578-587, 1999.

D. M. Dawson, Z. Qu, and J. Carroll, "Tracking control of rigid-link electrically-
driven robot manipulators," Int. J. Control, Vol. 56-5, (1992), pp.991-1006.

R. Colbaugh, and K. Glass, "Adaptive regulation of rigid-link electrically-driven
manipulators," Proc. IEEE Int. Conf. on Robotics and Automation, (1995), pp.
293-299.

64



[15] C.-Y. Su, and Y. Stepanenko, "Hybrid adaptive/robust motion control of rigid-
link electrically-driven robot manipulators," IEEE Trans. on Robotics and Au-

tomation, vol. 11-3, (1995), pp.426-432.

[16] W. L. Chow. Ueber systeme von linearen partiellen differentailgleichungen er-

ster ordnung. Math. Ann. 117, pages 98-105, 1940.

[17] R. W. Brockett, “Asymptotic stability and feedback stabilization,” in Differ-
ential Geometric Control Theory, R. W. Brockett, R. S. Millman and H. J.
Sussmann, Eds. Boston, MA: Birkhauser, 1983, pp. 181-191.

[18] J. F. Canny. The complezity of robot motion planning. MIT Press, 1988.

[19] J. Barraquand and J. C. Latombe. On nonholonomic mobile robots and optimal

maneuvering. Revue d’Intelligence Artificelle, 3(2): 77-103, 1989.

[20] R. M. Murray, Zexiang Li, and S. S. Sastry. A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1993.

[21] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using

sinusoids,” IEEE Conf. Decis. Conitr., San Antonio, TX, Dec, 1993.

[22] L. Bushnell, D. Tilbury and S. S. Sastry, “Steering three input chained form
nonholonomic systems using sinusoids: The fire truck example,” Proceedings of

the FEuropean control conference, pp. 1432-1437, 1993.

[23] D. Tilbury, R. Murray and S. S. Sastry, "Trajectory generation for the n-trailer
problem using Goursat normal form," IEEE Trans. on Automatic Control, Vol.

40 (5), pp. 802-819, 1995.

[24] Monaco, S. and D. Normand-Cyrot: An introduction to motion planning un-
der multirate digital control, Proc. 31st IEEE Conf. on Decision and Control,
Tucson, 1992, pp. 1780-1785.

65



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

A. Bloch, M. Reyhanoglu and N. H. McClamroch, “Control and stabilization

of nonholonomic dynamic systems,” IEEE Transactions on Automatic Control,

pp. 2961-2963, 1994.

J.-B. Pomet, “explicit design of time-varying stabilizing control laws for a class
of controllable systems without drift,” Systems and Control Letters, vol. 18, pp.
147-158, 1992.

Canudas, C. and Sordalen, O. J., “Exponential stabilization of mobile robots
with nonholonomic constraints” IEEE Trans. Automatic Control, vol. 37, pp.

1791-1797, 1992.

M. Aicardi, G Casalino, A. Balestrino, and A. Bicchi, “ Closed loop smooth

steering of unicycle-like vehicles,” Proceedings of the 83rd IEEE Decision and
control Conference, pp. 2455-2458, 1994.

A. Astolfi, “On the stabilization of nonholonomic systems,” Proceedings of the

38rd Conference on Decision and Control, pp. 3481-3486, 1994.

A. Astolfi, “Exponential stabilization of nonholonomic systems via discontinu-
ous control,” Nonlinear Control System design Symposium (NOLCOS), IFAC
Preprints, Tahoe City, pp.741-746, 1995.

E. Badreddin and M. Mansour, “Fuzzy-tuned state-feedback control of nonholo-
nomic mobile robot,” Proceedings of the 12th World Congress of International

Federation of Automatic Control, Sydney, Australia, 1993.

A. Bloch and S. Drakunov, “Stabilization of a nonholonomic system via sliding
modes,” Proceedings of 33rd IEEE conference on Decision and Control, pp.

2961-2963, 1994.

66



[33] J. Guldner and V. I. Utkin, “Stabilization of nonholonomic mobile robots using
Lyapunov fuctions for navigation and sliding mode control,” Proceedings of the

33rd IEEE Conference on Decision and Control, pp. 2967-2972, 1994.

[34] C. Samson, “Velocity and torque feedback control of a nonholonomic cart,”
Proc. Int. Workshop in Adaptive and Nonlinear Control: Issues in Robotics,

Grenoble, 1990, France.

[35] J. M. Coron, “Global asymptotic stabilization for controllable systems with-
out drift,” Mathematics of Control, Signals and Systems. New York: Springer-
Verlag, 1992, no. 5, pp. 295-312.

[36] J. M. Coron, “Links between local controllability and local continuous stabi-

lization,” Proc. NOLCOS Conf., Bordeaux, June 1992, pp. 477-482.

[37] L. Gurvits and Z. X. Li, “Smooth time-periodic feedback solutions for non-

holonomic motion planning,” Progress in Nonholonomic Motion Planning, New

York: Kluwer Academic, 1992.

[38] C. Samson “Path following and time-varying feedback stabilization of wheeled

mobile Robot,” Proc. Int. Conf. ICARCV’92, Singapore, Sept. 1992.

[39] R. M. Murray, “Control of nonholonomic systems using chained form,” Fields

Institute Communications, vol. 1, pp. 219-245, 1993.

[40] A. Teel, R. M. Murray and G. C. Walsh, “Nonholonomic control systems: From
steering to stabilization with sinusoids,” Proceeding of the 31st IEEE Control
and Decision Conference, ppl1603-1609, 1992.

[41] G. C. Walsh, and L.G. Bushnell, “Stabilization of multiple input chained form
control systems,” Systems and control Letters, vol. 25, pp. 227-234, 1995.

67



[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

R. T. M’Closkey and R. M. Murray, “Exponential stabilization of driftless non-
linear control systems via time-varying, homogeneous feedback,” Proceedings of

33rd IEEE Conference on Decision and Control, pp. 1317-1322, 1994.

R. Fierro and F. L. Lewis, “Control of nonholonomic mobile robot: Backstep-
ping Kinematics into dyanmaics,” Proc. 34th IEEE Conf. Decision and Control,
New Orleans, LA, 1995, pp.3805-3810.

R. M. Murray, G. Walsh, and S. S. Sastry, “Stabilization and tracking for non-
holonomic centrol systems using time-varying state feedback,” IFAC Nonlinear

Control Systems DEsign, M. Fliess, Ed., Bordeaux, France, 1992, pp. 109-114.

G. Walsh, D. Tilbury, S. Sastry, R. Murray, and J. P. Laumond, “Stabilization of
trajectories for systems with nonholonomic constraints,” IEEE Trans. Automat.

Contr., vol. 39, pp. 216-222, Jan. 1994.

W. Oelen and J. van Amerongen, “Robust tracking control of two degree-of-

freedom mobile robots,” Contr. Eng. Practice, vol. 2, pp. 333-340, 1994.

C. Rui and N. H. McClamroch, “Stabilization and asymptotic path tracking of
a rolling disk,” Proc. 84th IEEE Conf. Dec. Contr., New Orleans, LA, 1995,
pp- 4294-4299.

M. Fliess, J. Levine, P. Martin, and P.Rouchon, “Design of trajectory stabilizing
feedback for driftless flat systems,” Proc. 8rd Furopean Control Conf., Rome,
Italy, 1995, pp. 1882-1887.

Z. P. Jiang and H. Nijmelijer, “Tracking control of mobile robots: A case study

in backstepping ,” Automatica, vol. 33, no. 7, pp. 1393-1399, 1997.

P. V. Kokotovic, “The joy of feedback: Nonlinear and adaptive,” IEEE Contr.
Syst. Mag., vol. 12, pp. 7-17, 1992.

68



[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Z. P. Jiang “Iterative design of time-varying stabilizers for multi-input systems

in chained form,” Syst. Contr. Lett., vol. 28, pp. 255-262, 1996.

Z. P. Jiang and J.-B. Pomet, “Global Stabilization of parametric chained form
systems by time-varying dynamic feedback,” Int. J. Adaptive Contr. Signal
Processing, vol. 10, pp. 47-59, 1996.

B. S. Chen, T. S. Lee, and W. S. Chang, “A robust H*®model reference tracking
design for nonholonomic mechanical control systems,” Int. J. Contr., vol. 63,

pp. 283-306, 1996.

W. Dong, W. Huo, and W. L. Xu, “Trajectory tracking control of dynamic non-
holonomic systems with unknown Dyanmics,” Int. J. Robust Nonlinear Contr.,

vol. 9, no. 13, pp. 905-922, 1999.

G. Walsh and L. G. Bushnell, “Stabilization of multiple input chained form
control systems,” Syst. Control Lett., vol. 25, pp. 227-234, 1995.

B. D’Andrea - Novel, G. Bastin and G. Campion, “Dynamic feedback lineariza-
tion of nonholonomic wheeled mobile robot,” Proc. IEEE Int. Conf. Robot.
Automat., pp. 2527-2532, 1992.

F. L. Lewis, C. T. Abdallah, and D. M. Dawson, “Control of robot manipula-
tions. New York: Macmillan, 1993.

H. Shim, J. -H. Kim, and K. Kon, “Variable structure control of nonholonomic
wheeled mobile robots,” Proc. IEEFE Int. Conf. Robot. Automat., pp. 1694-1699,
May 1995.

Good, M. C., L. M. Sweet, and K. L. Strobel, “Dynamic model for control
system design of integrated robot and drive systems,” Trans. of ASME, J.
Dyn. Syst., Meas. and Control. (107), pp. 5359, 1985.

69



[60] Reed, J. S, and P. A. Toannou., “Instability analysis and robust adaptive control
of robot manipulators” Proc. 27th IEEE CDC, 1607-1612.

[61] Tarn, T. -J, A. K. Bejezy, X. Yun and Z. Li, “Effect of Motor Dynamics on
nonlinear feedback robot arm control,” IEEE Trans. Robotic and Automation,

7(1), pp. 114-122. 1991.

[62] J - J. E. Slotine, and W. Li Applied Nonlinear Control Prentice Hall, 1991.

70



