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Abstract

Universal R—matrices for generalized Jordanian r—matrices.
Maxim Samsonov
Quantization of classical integrable models by the Quantum Inverse Scattering Method
requires transition from classical r—matrices to the quantum ones. The twists are
the special elements in the algebra of observables, which help to build new classical
and quantum r—matrices. In this thesis we develop an approach to explicit deriva-
tion of quasiclassical twists for higher dimensional analogs of Jordanian r—matrices.
The twists are obtained as limits of more general quantum twists which allow a sim-
ple description. The considered class of r—matrices includes the skew-symmetric
Cremmer-Gervais r—matrices as well as the extended Jordanian ones. The quantum

analogs for both twists are obtained.
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Introduction

The motivation for study of classical r—matrices comes from the theory of classical
integrable systems [10, 24]. The integrable systems admit a complete involutive set

of integrals of motion Z, :

{Inazm} =0.

The classical Inverse Scattering Method (ISM) allows to build an infinite family of
pairwise commuting integrals of motion for partial differential equations in one spacial

and one time variable representable in the form of zero curvature condition

ou oV
[vwavt] - E - % + [Ua V])

where

8 0
Ve=g--Ul@t ), Vei=z -Vizt).

U and V are m x m—matrix valued functions; A is a spectral parameter. The zero cur-
vature condition is a necessary and sufficient condition for solvability of the associated
linear system of differential equations
V. F=0
(1)
VtF = 0,
where F' stands for the matrix of fundamental solutions. The central object of classical
ISM is the monodromy matrix. It shows how F changes over the whole segment

[—L, L] for a fixed time moment ¢t = ¢, where U and V are assumed to be periodic



with respect to the first argument
U(x+Lat0) :U(xat0)7 V(x+LatO) :V(xvtO)

The monodromy matrix is given by the following expression
L

T (X to) = F(L,to, ) F(=L,t0, \) ™! = Pexp(/ U(z, to, A)dz).
-
The ordered exponent P exp comes from solving the following equation
dF
—&; = U(w,to, /\)F,

and the ordering is taken from —L to L. The fundamental Poisson brackets of the
model can typically be expressed in terms of monodromy matrix using a classical
r—matrix

{TNRT (W)} = [r(A — ), T(N) @ T(w)],
where

{TNST () Pigm = {TN)ax, T ()3
The classical r—matrix r(A) acts in the tensor product of two copies of C™ and

satisfies certain additional conditions implied by the Jacobi identity. A set of integrals

of motion in involution is generated by trT*()) :
{trT*(\), trT ()} = 0.

As a corollary of Jacobi identity, the r—matrix satisfies the famous classical Yang-

Baxter equation

[r12(A = 1), ris(N)] + [ri2(A — w), ras(w)] + [r13(A), ras(w)] = 0, (2)
where the following notations are used: if 7(A) = > 7} ® r{(\), then
2\ —p) = SinA-wer'fh-pel,
rBu) = ,1@r(u) @ r!(w),
BO) = S @ 1o ().

)



A typical example of an integrable model is the Heisenberg magnetic:

3§ 82§ = e~ 3 5 O
_Y» . .5 =1
i 2 XS, S(.T,t) e R y S-S )
1 08 1 1 =
V=S taed Umgn¥ =<8

L1

50a, 6 = 1,2,3, are Pauli matrices. The Poisson brackets and the Hamiltonian of

the model are
{Sa(2), So(y)} = €abeSc(y)d(z — ),

1 [t /68 88
H=- / —, — ) dux,
2 /_;\0x' Ox
where €4, are the structure constants of suy. The r—matrix is given by

r(\) = II/2),

where II is the permutation operator in C? @ C2.

The quantization of an integrable system requires also the quantization of a clas-
sical r—matrix, this quantization we denote by R(\), which defines the quantum
commutation relations between the entries of the quantum monodromy matrix T(A)

(Faddeev-Reshetikhin-Takhtajan relations):
R(A — p)(T(X) @ T(p)) = (T(A) @ T(w))R(A — ).

The quantum R—matrix satisfies the quantum Yang-Baxter equation which provides

associativity of the commutation relations:
(I ® R(A = p))(R(N) @ I)(I ® R(p)) = (R(p) @ )1 @ R(N))(R(A — p) @ I).

In this thesis we shall consider a simpler case of the systems for which an r—matrix
is an element of g ® g, where g is a simple Lie algebra. Then the classical r—matrix

r =y, 1 ®r; is subject to condition

yh(r) = [r12, 7] + [, 7] + 113,12 € (A 'g)%, (3)



and (A%g)? denotes the ad—invariant part of A®g. Usually one resticts oneself to
considering a simple Lie algebra g, which has the advantage that dim(A®g)? = 1,

and it is sufficient to consider solutions to (3) of two types:
e unitary or skew-symmetric: 71 = —r9;, yb(r) =0

e non-unitary: ria +rey = t, where ¢ is a canonical element in g corresponding to

the Killing form, and yb(r) =0

Other solutions to (3) are obtained from the solutions of the Classical Yang-Baxter

Equation (CYBE)
yb(r) — [r12’ Tls] + [,’,.12’ 7”23] 4 [7‘13,’/‘23] — 0,

in view of the following correspondence: if r is a solution of the second type, then
—t/2 + r satisfies (3) and is skew-symmetric. Non-skew-symmetric solutions to (3)
are not of interest to this thesis, because only the skew-symmetric part of r—matrix
influences the Poisson bracket. We notice that the spectral parameter A which was
essential for the construction of an infinite family of commuting quantum integrals of
motion can be easily taken into account. Namely, If r is a skew-symmetric solution
to the CYBE without spectral parameter, then ¢t/ + r satisfies (2). While the clas-
sification of non-unitary solutions to CYBE is a well-established fact due to Belavin
and Drinfeld [2, 3], whose fundamental classification theorem we review in Chapter 1,
the combinatorial approach to the classification of the solutions from the first family
has not yet been reached, and the study is largely based on the direct search. We
can, however, consider some solutions from the family of skew-symmetric r—matrices
as coming from the degeneration of the r—matrices from the non-skew-symmetric
family. For example, the Jordanian r—matrix H A E appears in this way.

The main motivation for the investigation undertaken in this thesis was to en-
lighten the quasiclassical limits of g—deformations, especially in view of the fact that
the quantum problems can give insight into the classical ones and are sometimes eas-

ier to study because of their unbroken symmetry. In what follows, we will provide

7



a step-by-step introduction to the notions we need from the Quantum group theory.
Most of the material from the introductory chapters can be found in textbooks such
as [4]. In Chapter 1, we review Poisson Lie groups and their relation to the classical
r—matrices. We finish by exposing the Belavin-Drinfeld classification of non-skew-
symmetric r—matrices and give some examples that are relevant to this thesis. We
did some long calculations that are usually omitted from text books in order to show
the richness of the information encoded into the Yang-Baxter equation. In Chapter
2, we deal with quantum analogs of the objects from Chapter 1. We show that Hopf
algebra is a natural framework for working with quantization. The central notion
of Chapter 2 is that of a twist as an element that allows the quantum R-—matrix to
be built. The problem of quantization of an arbitrary Lie bialgebra was solved in a
series of works [7, 8]. Although explicit formulas of twists allowing the calculation
of the deformed Hopf algebra structure were not given, it is possible to calculate the
deformation with the desired accuracy; however, we cannot think of the deformed
algebra in a global way. In particular, the theory of elliptic quantum groups, which
is currently under investigation, makes use of interplay between different realizations
of such algebras. Therefore, we hope that the investigation of explicit twists will help
to elucidate the interrelations between the different realizations of more complicated
objects, such as elliptic quantum groups. Chapter 3 and Chapter 4 introduce the
main objects of further consideration. Starting from the second part of Chapter 3
we describe the results obtained in [23, 27]. The central result of this thesis is the
elementary parabolic twist and its quantum version, as well as the expression of the
quantum analogs of extended jordanian twists in infinite families of simple Lie alge-
bras and the calculation of asymptotics where we make use of quantum dilogarithm

[9], thus simplifying many calculations.



Chapter 1

What is an r—matrix?

In this chapter we introduce an r—matrix from a more natural point of view as an
element defining the co-Poisson bracket on a Lie algebra g. We give this statement
precise meaning and show how the Classical Yang-Baxter equation arises in this
framework. What is an r—matrix? The notion of r—matrix originates from the
problem of the quantization of Poisson brackets on a Lie group G. To set up the
mathematical environment for the problems considered in this thesis, we recall the

basic definitions and facts about Poisson manifolds and Poisson-Lie groups.

Definition 1.1. A smooth manifold M is called Poisson if there is a bilinear skew-

symmetric mapping on the algebra Fun(M) of the functions on M
{,} : Fun(M) ® Fun(M) — Fun(M),
satisfying the following Jacobi identity
{{s, v} + {v.xd ¢ + {{x, ¢}, 4} =0,
and being itself a differentiation with respect to each argument:

{0, vx} = {0, ¥}x +v{d, x}-

The map {,} is called Poisson bracket, while A = Fun(M) is called Poisson

algebra. It is not necessary to include M in the definition of Poisson algebra; therefore,

9



omitting it from the definition, we speak of Poisson algebra as a pair (A4, {, }) and of
Poisson manifold as a pair (M, {, }»r). This elimination of M from the definition of
Poisson algebra is natural from the point of view of noncommutative geometry where
noncommutative analog of M is not supplied. The map g — {g, f} is a derivation of
Fun(M) and it means that there is a vector field Xy on M such that X;(g) = {g, f}.In
particular, {g, f} depends only on df. There is a well-defined map By : T*M — T'M,
such that Bp(df) = Xy. Thus there is a skew-symmetric 2-tensor wy, € TM ®2 called

the Poisson bivector, such that

In terms of bivector wys, we obtain a nice geometric interpretation of the skew-

symmetric solutions to CYBE.

Proposition 1. Let wys be a bivector defining a Poisson structure by (1.1), then wy

solves CYBE.

Proof. For the proof, see [4]. O

If M and N are Poisson manifolds, their product M x N is a Poisson manifold
in a natural way: for fi, fo € Fun(M x N), and z € M,y € N, the product Poisson

structure is given by

{f, fatusn(@,y) ={A0,9), 20,0} (@) +{filz, ), falw, PDnly).  (1.2)

From this point, we restrict ourselves to M = G, where G is a Lie algebra and we
assume that the base field is C, so that we do not go into discussions of the problems

related to complexification.

Definition 1.2. A Poisson manifold (G, {, }) is called a Poisson-Lie group if multi-

plication map

p: GxG — G
(9,9) — gg".

is a morphism of Poisson manifolds.

10



If we introduce translation operators Ly, Ry:

(foLg)g) = flgd), foRy(g)=flgg),

then (1.2) can be written as

{f1, f2}(99') = {f1 0 Ly, fa 0 Lo}(¢') + {f1 0 Ry, f20 Ry }(9),

or in terms of bivector field wg

< Wy, (df1) gy ® (df1)gg >=
< wg’ad(fl o Lg)g’ ® d(fQ o Lg)g’ >+ < wg'?d(fl o Rg’)g’ ® d(f? o Rg’)g >,

which in turn is equivalent to
Weg' = ((Lg);' ® (Lg);')(wg’) + ((Rg’); ® (Rg’)lg)(wg)- (1-3)
Thus we have proved the following:

Proposition 2. A Poisson structure on a Lie group G is a Poisson-Lie group struc-
ture if and only if, for all g, ¢’ € G, the value of its Poisson bivector at gg' is the sum

of the left translate by g of its value at ¢’ and the right translate by g’ of its value at
g.

Taking g and ¢’ as equal to the identity element e of &, we deduce

Corollary 1.1. The rank of the Poisson structure, which equals the rank of wy, is
zero at the identity element of the group. In particular, the Poisson structure of a

Poisson-Lie group is never symplectic (i.e. wy is not of mazimal rank everywhere).

The structure of a Poisson-Lie group on G defines an additional structure map

on its Lie algebra g. There is a canonical Lie algebra structure on g* : if &;,&; € g%,

choose f1, fo € Fun(G) with (df;). = & and set
[51,52];;* = (d{fla f2})e-

11



The defined bracket is obviously skew-symmetric and satisfies the Jacobi identity
because the Poisson bracket does. The independence of choices fi, f» follows from an
alternative description of the introduced Lie algebra structure on g*, which we give
below. Take the right translate w® of the Poisson bivector w of G to the identity,
and define § : g — g ® g to be the tangent linear map of w? at e. Then we have

[€1, &l = 07 (&1 ® &2).

By the definition of the right translate of the Poisson bivector field w, we have

{1, 2}g) =< w(g), (Ry). ® (Ry).)"((df1)g ® (dfa)g) >

Now, if we differentiate this equation at g = e in the direction X € g and use the fact

w?(e) = 0 following from Corollary 1.1, we get

< Xad{flaf2} >=< 6(X)7§1 ®€2 >

Let us, then, rewrite (1.2) in terms of w®. First we have

Thus, (1.3) can be written as
((Rgg)e ® (Ryg)e)w Rgg') =
((Le)y © (Lg)y) © (Ry)e ® (Ry))w™(g') + ((Ry )y ® (Byr)g) © ((Rg)e ® (Rg)Jw(g)

We have the following properties of (L,)" and (R,)’ stemming from similar properties

of L, and R, operators:

(Ryg)o = (R, 0 (Ry)sr (Ry)y 0 (Ly) = (Ly)y o (Ry):.
(Ry), 0 (Ry). = 1, (Ry-1 0 Ly), = Ad,.

Last formula means that G acts on vector fields X € T.G by

(AdyX) () = 5 F(ge g™ B)lco,

12



for any f € Fun(G). Therefore, (1.3) becomes
w(gg') = (Ady ® Ady)(w"(g)) + w(9).

This means that w? is a 1-cocycle of G, with values in g ® g (on which G acts by the
adjoint representation in each factor). Its derivative d at e is a I-cocycle of g with

values in g ® g,
§[X,Y] = (adx ® L + 1 ®adx)d(Y) — (ady @ 1+ 1 @ ady)d(X).
We can now give the definition of bialgebra.

Definition 1.3. Let g be a Lie algebra. A Lie bialgebra structure on g is a skew-

symmetric linear map d; : g — g ® g, called the cocommutator, such that
e 0; is skew-symmetric
e §;:9g"®g" — g" is a Lie bracket on g*
e 4, is a 1-cocycle of g with valuesin g® g

Among the 1-cocycles of g with their value in g ® g, the coboundaries are those
for which we have

§(X)=(adx @1 +1®adx)(r) = X7, (1.4)

for somer € g® g and all X € g.

Proposition 3. Let g be a Lie bialgebra and let r € g ® g. The map &4 defined by
(1.10) is the cocommutator of a Lie bialgebra structure on g if and only if the following

conditions are satisfied:
® 719+ 191 05 a g—invariant element of g@ g
o yb(r) = [r1a,713] + [r12, 23] + [r13,723] 45 a g—invariant element of g ® g @ g.

(The action of g is the adjoint representation in each factor.)

13



Remark 1.1. Tt follows from Proposition 3 that any coboundary bialgebra structure
can be obtained from a skew-symmetric r—matrix, a fact that we mentioned in the

Introduction.

Proof. The first property of r—matrix follows from
502)(X) = X.’I"21 = -—6(X) = —X.’/'lQ,

where § is skew-symmetric. To prove the second property, we first introduce some

notations

Jacs(X) =Y (8 @id)5(X),
c.p.
where c.p. means the summation over cyclic permutations of tensor factors. If we

define a Lie bracket on g* by

€, nlg- = 6"(€ @),
then, since
[[5) 77]9*’ dg* = 6* (5* ® 1d> (g ® n @ C)a

it becomes clear that [, ], satisfies the Jacobi identity if and only if Jacs is the zero

map. To complete the proof, we need
Lemma 1.1. Let g be a Lie algebra and let r € g ® g have a g—invariant symmetric
part. Define § g — g® g as a I-coboundary. Then

Jacs(X) + X.yb(r) =0 (1.5)
for all X € g.

Proof. We can write (1.5) as

(X, ai), a;] @ b; @ b; + [[X, ail, b] ® b @ a; + [X, [a5, 0;]] @ b; @ by
+[X, 0] ® [as, a5] ® b; + [X, a] ® [bs, a;] ® b,
+HX, 0] ® a; ® a5, b;] + [ X, a;) @ a; @ [by, b]
+lai, b] @ [X, 6] ® a; + [ai, 0] ® [X, ] ®@ by
+as,a;] ® b; @ [X, bi] + [as, 0] © b; ® [ X, by]

14



+a; @ [[X, i, b;] ® by + a; ® [a;, b;] @ [X, b;] + a; @ [ X, [bs, a;]] ® b;
+a; ® [b, 0] @ [X, b;] + a; @ [X, a;] ® [bs, ] + a; ® a; @ [X, [bs, by]]
+b; ® b ® [[X, ai], a;] + b; @ [ X, b] ® [ay, a]
+bi ® [[X, ai], a;] @ bj + b ® a; @ [[X, ail, by,
where we used notation r = a; ® b; and assumed the summation over the repeated
indices. To simplify, we first note that
X, ail, a;] @ by @ by + [[X, @], b] @ b ® aj + [X, [ai, a5]] @ b; @ b;
+b; @ b @ [[X, al], a5] = —a; ® b @ [[X, ai], by,
where we used the invariance of 719 + 91 and the Jacobi identity after interchanging
indices ¢ <> j in the first summand. Next, because of the invariance of the symmetric
part of r, we have
(X, 6] ® a; @ bj + b; ® [X, 0] @ b; (16)
+[(X, 0] @b; ®b; +a; @ [X, 5] ®b;,1 ®a; ® 1] =0,
which leads to
(X, ;] @ [a;,a;] @ b; + b; ® [[X, ai], a;] @ b;
+X, ;] ® [bs,a;] ® b + a; @ [[X, ], 0] ® b; = 0.
The Jacobi identity allows additional simplifications:
a; ® [[X, ai], 0] ® bi + a; ® [X, [bs, 05]] ® by = a; ® [ X, bi], 0] ® b;.
Now (1.5) simplifies after applying the indicated relations and canceling similar terms:
—a; @ b; ® [[X, ai], by] + [X, b] ® a5 & [as, bj] + [X, 0] ® a; @ [bi, b]
+lai, b] © [X, 0] @ a; + [as, a5] @ [X, bi] @ b
+a; ® [X, a;] ® [bi, b] + ai © a; @ [X,, [b;, by]]
+b; ® [X, bi] ® [ai, 0] + b @ a; ® [[X, ai], by].
Like to (1.6), we have
[X, 6] ® a; @ [as, bs] + b ® a; @ [[X, aql, bj]
+[X, 0] ® a; © [bi, b] + a; ® a; @ [[ X, bi], ;] = 0

15



which brings us to

—a; ® b; ® [ X, a), bj] + [as, bs] ® [X, bi] ® a; + [a;, ;] ® [ X, b:] ® b;
+a; ® [X, a;] @ {bi, bj] + a; @ a; @ [b, [ X, b5]] + b; @ [X, bi] @ [a, ag];

exploiting the idea of (1.6), we have

a; ® b ® [ X, a;), bj] + a; ® [X, b] @ [as, by)

+a; @ a; ® [ X, b], b;] + a; @ [X, a;] @ [bs, bs] = 0, (-7
and after applying (1.7), (1.5) is
a; ® [ X, bi] ® [ai, b;] + [ai, b;] ® [X, b] @ a;
+{ai, a;] @ [X,b:] ® b; +b; ® [X, bi] ® [ay, a5] = 0,
by the invariance of 712 + 791. O
O

The Introduction mentioned two cases: the Classical Yang-Baxter Equation (CYBE),
when yb(r) = 0; and the Modified Yang-Baxter Equation (MYBE), when yb(r) = —w

and w is the canonical g element of /\3 g corresponding to the 3-linear form
(XY, Z) — ([X,Y], 2)

where (,) is the Killing form. Note that yb(r) € A®g because of the invariance of
r12 + 721. Indeed, by applying any transposition of tensor factors, for example (23),
to

yb(r) = [a;, a;] ® b; ® b; + a; ® [bi, ;] ® b; + a; ® a; ® [bi, by,

we get,
(23) o yb(r) = [ai, 0] @ b; ® b 4 a; ® b; ® [by, a5] + a; @ [bs, b;] @ ay,

and if we change 7 < j in the first term and use the invariance of 15475 in the second
and third terms, we see that (23) o yb(r) = —yb(r). This works for any transposition;
therefore, yb(r) € A®g.

16



Ezample 1.1. There are two non-trivial Lie bialgebra structures on g = s{(2). Choos-
ing a basis in a Borel subalgebra b, C g {H, E'}, such that [H, E] = E, the structures
are given by

S(Hy=HANE, §§E)=0
and

§(H)=0, 6E)=HANE.
The first structure is skew-symmetric with r = H A E, while the second one is not

skew-symmetric.

In general, for any simple Lie algebra g non-skew-symmetric solutions to CYBE
yb(r) =0, riz+ra =t (1.8)

where t is the Casimir element of g® g corresponding to the Killing form, as classified
by Belavin and Drinfeld. To parametrize the set of equivalent solutions to (1.8) (the
equivalence here is up to an automorphism ' = (o ® g) or, for o € Aut(g)) the
quadruple (IT;, Iy, 7, 7°) where Il are arbitrary subsets of the set of all the simple

roots of g was introduced.

Definition 1.4. A quadruple (IIy, Iy, 7,7°%), where II;, Il C II, 7 is a bijection

I1; — I, and r° € h R, is said to be admissible if it satisfies the following conditions:

o (7(a),7(8)) = (o, B) for all @, § € II; by (,) we denote the inner product on h*

induced by the Killing form on g)

e for every a € II; there exists m € N, such that a,7(a),...,7 *(a) € II; but

Tm(Oé) Q H1
o 79, + 19 = t° where the upper script ° denotes the component in h ® b
o (T()@1)(r") +(1®a)(r®) =0 for all a € II;

To formulate the Theorem of Belavin and Drinfeld, we introduce the partial order

on II. Namely, we say « < 3 if there is a positive integer m, such that § = 7™(«).

17



Theorem 1 (Belavin and Drinfeld). If (Ily, Iy, 7,7°) is an admissible quadruple,
then, with the above notation,
r=r"+Y E,®E.+ Y, E..AEp
acll o,B€ll,a<f
is a solution to (1.8) (here, E_4s NEg =E_o, ® Eg — Eg® E_,). Conversely every

solution of (1.8) is equivalent to a solution of this type.
Proof. See [2, 3] O

Let us see how the solutions of interest to us appear in this classification.

Example 1.2. If g = sl(2), then the set of simple roots encoded into the Dynkin
diagram consists of a single root IT = {a}. There are two possible choices for the sets
HO and H] .

Mo=0, I; =0, Ip=I, I=IL (1.9)
Note that IT,UII; need not be equal II. The second choice in (1.9) does not satisfy the

second condition from the definition of admissible triple. Thus, if we fix the invariant

product on g to be
(X,Y) = trace(XY),

then
T:iH®H+X‘®X+ (1.10)
in the notations
01 00 1 0
Xt = , X = , H=
00 10 0 -1

The r—matrix (1.10) corresponds to the second bialgebra structure on s{(2) with
r being non-skew-symmetric.
Our next example is the so-called Cremmer-Gervais r—matrix, which has its origin

in the integrable models of 2-dimensional gravity.
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FErxample 1.3. Take g = sl(3). The positive roots here are o, 3, and « + 3, which

correspond to the following generators of the root subspaces
Ey=FEy, E_o=E, Eg = Eo3, E_pg = E3s,
Eorp=F13, E_o g=FE3, Hy=FEn— Exn, Hg=E»— Es;.
Then,

2 1 1 2
ty="H,® Hy+ ~H, ® Hy+ =Hy @ H, + =Hs @ Hp.

3 3 3 3
(a) Take ITy = IT; = @. Then, the most general solution is

1
r0 = 5150 + AHy A Hp,
for any A € C. The resulting r—matrix is

1
o= Eto + AH, A Hﬁ +E ,@Ey,+E 3@ Eg+ E_a_g ®Ea+ﬂ.

(b) In the case of the Cremmer-Gervais r—matrix, take Iy = {a}, II; = {#}. Then

the conditions
0 0 __
T12 + T21 — t(),

(@@ 1))+ (1®p)(r%) =0
have the unique solution

1 1 1
Tonga®Ha+§Hﬂ®Ha+§Hﬁ®Hﬂ,

in view of the commutation relation:
[Hy, Es] = 6(H,)Es, for any «,0 € IL.
Thus, the resulting r—matrix is

r=3H,®Hy+3Hs @ Hy+ Hs @ Hs+ E_o ® Eo + E_3 ® Ep
+E_ 0 p® Eoyg+E_g A E,.

(c) Iy = {B}, II; = {a}. In this case, the r—matrix is obtained by interchanging

a and (8 in the previouse case.
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In contrast with the constructive classification of non-skew-symmetric solutions to
the Classical Yang-Baxter Equation by means of Belavin-Drinfeld triples (Lo, I1y, 7),
the description of the skew-symmetric solutions appeals to finding all quasi-Frobenius
(Frobenius) Lie subalgebras. By the definition, a quasi-IFrobenius Lie algebra f is a

Lie algebra possessing a nondegenerate skew-symmetric 2-cocycle B :
B([z,y],2) + B(ly, 2|, z) + B([2, z], ) = 0.

A quasi-Frobenius Lie algebra (f, B) is called Frobenius if B is exact, namely that
there exists | € f*, such that B(z,y) = I([z,y]) . An r—matrix corresponding to B
is obtained by inverting r in some f—basis. Conversely, f is fixed by the requirement
of being the largest subalgebra of g with the property that r is non-degenerate on f.
In [28] Stolin gave the complete list of such subalgebras for sl(n), n < 3. The special
families of Frobenius subalgebras were described later for other series of simple Lie
algebras as well [1, 11, 21]. Another source of quasi-Frobenius Lie algebras comes
from the study of so-called filliform algebras [30, 31], the nilpotent Lie algebras of the

descending central sequence, which are quasi-Frobenius in some cases.

Example 1.4. The discussed r matrix H A F, defined on the Borel subalgebra by =
{H,E|[H, E] = E}, corresponds to a pair (b, E* o [,]). This example generalizes for
any Borel subalgebra b, in si(n), making b, a Frobenius Lie algebra (b4, Ao [,}),
with A € sl(n)*. If we take A = —E7, then the corresponding solution to CYBE is of
the form

n—1

r=(LBu — Enn) A Ern +2 Z Eni N Eg,.

=2
Fzxample 1.5 ([6]). Elashvili describes a whole class of Frobenius Lie subalgebras in

g = gl(n). If a, is a subalgebra of gl(n) consisting of matrices with vanishing last &
rows, then a,  is a Frobenius Lie subalgebra if and only if k¥ divides n. The function

[ such that [ o [,] is non degenerate on a,; can be chosen so that

n—k
i(a) = Z Qi itk
i=1
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The r—matrix is given by

"= Z Z Z Eitkaj+is N Ejtkeithd, (1.11)

i=1 j=1 (a,b,c,d)€S

where m = n/k and

S= {(ab,c,d)]a,b,c,d€Z, b+d—a—c=1,
0<b<a<m-1, b<c<m~—1, 0<d<m}

To obtain the r—matrix for sI(n) we need to apply the map (f ® f) to (1.11):

fla) =a-— —T;tr(a)E.

Ezample 1.6 (Gerstenhaber-Giaquinto). A family of Frobenius Lie algebras ap-
pears in connection with maximal parabolic subalgebras in sl(n). To every ¢, where
1 < i < n—1, we can associate a maximal parabolic subalgebra p;, namely, that
generated by Cartan subalgebra and all simple root vectors but F;.;. In particular,

if n = 3 the maximal parabolic subalgebra p; is spanned by the matrices of the form

where the entries other than those marked by * must be equal zero. The corresponding
non-degenerate Frobenius form is given by —(E7,+ F33)o[,]. Its inverse, which defines

an r—matrix, is given by

2 1 1 1 1 2
(gEu - §E22 - §E33> A Eg + <§E11 + §E22 — §E33> A Eag + Ey3 A Esy.

In general, the Frobenius form turns out to be replaced by —(Ef,+E3s+---+E5_; )0
[,] on the maximal parabolic subalgebra in sl(n). The inversion of this form defines

the r—matrix as

j—i—1

n-1
bCG = Z dp A Ep’p_}_] + Z Z Ei,j—m+1 A Ej,i-f-ma (1]‘2)
p=1

i<j m=1
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where

n—
dp = n p(Ell + Ep+- -+ Epyp) — g(EpH,pH + Eprapra+ o+ En).

The class of r—matrices (1.12) is called the Boundary solutions of CYBE [11].
Such solutions can be obtained from non-skew-symmetric solutions to CYBE with a
procedure we call contraction, which we describe below. The skew-symmetric part of
the solutions to CYBE satisfies the so-called Modifed Yang-Baxter Equation (MYBE)
(3). In accordance with the Belavin-Drinfeld classification of non-skew-symmetric

solutions to CYBE, we are supposed to choose a quadruple (II;, Iy, 7, 7%). We take

1—Il :{alaa%-'-;an—l}a HOZ{OZQ,OQ,"',O%},

and

(o) =y for 1 <i<m—1.

The skew-symmetric part of the generalized Cremmer-Gervais solution to CYBE is
given by

j—i-1

rcg = Z Eij N Ej; + % Z(n +2(i - 7)) Eu AN Ej; + 22 Z Eijom N Ejjitm:

<g 1< i<j m=l1

Following [11], let us act by an automorphism
(exp(—tz) ® exp(—tx))(ree) = reg — thee,

where

1
xr = 5[(TL — 1)E12 -+ (n — 2)E23 'i‘ R En—l,n]a

and t is arbitrary. If one tends ¢ to infinity, then in fact
boe = (ad,; ® id +id ® ady) (rog)

satisfies CYBE and skew-symmetric.
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Chapter 2

Quantization of bialgebra

structures

This chapter provides a brief introduction to the problem of quantization of bialgebra
structures. The deformation itself is performed in the category of co-Poisson Hopf
algebras, the definition of which is the main goal of this chapter. Our basic example
for is the universal enveloping algebra U(g).

The existence of group structure on a Poisson manifold GG defines an additional

algebraic structure on Fun(G) :

e First, we have an operation A = p* called coproduct that acts as

(Af)(gl;g2) = f(9192)-

Remark 2.1. There is an obvious embeding
Fun(G) ® Fun(G) — Fun(G x G), (2.1)

but in general it fails to be an isomorphism. Therefore, one needs to extend the
definition of the tensor product by performing completion, namely allowing the

elements of Fun(G) ® Fun(G) to be infinite sums convergent in appropriately
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chosen topology. In particular, if G is an algebraic group we do not need to
complete the tensor product in view of the result that the direct product of
algebraic groups is an algebraic group with a polynomial ring of regular func-

tions. In this case the embedding (2.1) is in fact an isomorphism.

e Second, we have an operation S = ¢* called antipode:
S(f)(g) = foulg) = flg™)
e Third, the existence of unity e € G defines the augmentation e = n* :

e(f)(g) = fonlg) = f(e).

To axiomatize the listed properties, we present them as commutative diagrams. The

group associativity (g192)g9s = 91(9293), or
po(pxid) = po (id x ), (2.2)

leads to the coassociativity of A after applying dualization * to (2.2):

H -2, H®H

Al id®Al (2.3)
HeoH 2% HeH®H.

The axiome-g=g¢g-e=g or
po(pxid)=po(id xn)=1id

after dualization leads to

A A

H®H H H®H
e®idl “ id®el (2.4)
k@ H —=> H = H®E,

where k denotes the base field; in our case, it is always C. The last line in the

commutative diagram indicates an equivalence up to an isomorphism.
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Definition 2.1. A vector space H over a field & is called coalgebra (H, p,n, A, €) if
there are maps:

AH—HQ®H, ande: H—k,

making commutative the diagrams (2.3), and (2.4).

If, in additition, the following diagram commutes

A A

H®H H H®H
S®Ml El M®Sl
H®H k HeH (2.5)
o)
H,

then we say that H is a Hopf algebra (H, u,n, A€, S).

Ezample 2.1. If we take k[Mat(n)] to be an algebra of functions on a semi-group of

matrices that is isomorphic to a commutative polynomial ring

klzli, 5 =1,---n],
then we define A on generators as

. n .
A(R) =) Z o4,
k=1

and extend it as a homomorphism

Alzy) = A{z)Ay), (2.6)

to the whole algebra k[Mat(n)]. In this setting, the coassociativity of A follows from
the associativity of matrix multiplication. It is easy to see that, if one takes €(2}) = 4}

and extends
e(zy) = e(z)e(y)

to the whole algebra, then (2.4) holds.
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While it was not difficult to define the structure of a bialgebra on a given algebra
H, a Hopf algebra structure requres attaching the invertable elements, the determi-
nants, see Example 2.2 and [5, 25]. It is similar to what happens in semi-groups,

where the inverse is not always defined.

Ezample 2.2. An algebra of functions on GL(n) is obtained from k[Mat(n)] by at-

taching a formal element D=1, which is the formal inverse of the determinant
D = Z sgn(o)zdW ... z2™,
Now, by definition, GL(n) = k[Mat(n)][D™']. It is a direct check to show that
A(D)=D® D;
therefore, by
ADN=D1'®D™, D) =1,
we obtain a bialgebra structure on GL(n) requiring A, and € to be homomorphisms

from GL(n) to GL(n) ® GL(n). The antipode S is given by an explicit formula

S<Z;) =D Z Sgn(a)z;’(l) . sz .. zg(n)’

oESn
o(i)=j

solving the linear system according to Cramer’s rule

>S4 =4,
k=1
which is equivalent to (2.5).

The next example of a Hopf algebra is more important for our approach to the

quantization of r—matrices.

Example 2.8. If g is a Lie algebra, then one defines its universal enveloping algebra
as

Ug=Tg/(z@y—y®z—[z,Y]),
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where

Tg = k@g‘g’k.

k>1

Making no difference between g and its image in Ug, we define the Hopf algebra
structure by letting A(z) = 2 ® 1 + 1 ® z and extending it to the whole Ug as a
homomorphism. The latter is possible due to the Poincaré-Birkhoff-Witt theorem,
which states that Ug is generated by g as an associative algebra. The counit and the

antipode are fixed by
e(z) =0, S(z) = —z, for any z € g.

Definition 2.2. A Poisson-Hopf algebra is a Poisson algebra (A, {, }4), which is also
a Hopf algebra (A4, u, n, A, €, S), the two structures being compatible in the sense that
for all a;,as € A,
{A(a1), Aaz) Y apa = A({a1, as}a).
The Poisson bracket {, } aga is defined by
{a1 ® a}, a2 ® dy} aga = {01, a2} 4 ® afay + ar1a2 ® {a7, a5} 4.

A dual notion to Poisson-Hopf algebra is co-Poisson Hopf algebra.

Definition 2.3. A co-Poisson algebra is a cocommutative coalgebra (C, A €) equipped
with a skew-symmetric linear map § : C' — C ® C; the Poisson co-bracket, satisfying

the following conditions

e co-Jacobi identity

Jacs(c) = Z (6 ®id)é(c) =0, for any ce C

cyclic perm.

e co-Leibniz identity
(A®id)od=(1d®d) o A+ 03(d ®id) o A
holds.
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A co-Poisson-Hopf algebra is a co-Poisson algebra (C, A, €, d), which is also a Hopf
algebra (C, u,n, A, €, S). The two structures are compatible in the sense that for all
ay,as € C,

§(araz) = 6(a1)A(az) + A(ar)d(az). (2.7)

Proposition 4. Let g be a Lie algebra. If its universal enveloping algebra U(g) has a
co-Poisson structure 6, making it a co-Poisson-Hopf algebra, then 6(g) C g®g and 6|4
is a Lie bialgebra structure on g. Conversely, any Lie bialgebra structure 6 : g — g®g
extends uniquely to a Poisson co-bracket on U(g), which turns U(g) into a co-Poisson

Hopf algebra.

Proof. Let § : U(g) — U(g) ® U(g) be a Poisson co-bracket on U(g). To show that
5(g) € g® g, let z € g and take §(z) = ), a; ® a}, where a;,a; € U(g). We may

assume that the a; are linearly independent. By the co-Leibniz rule, we can write
> Ala) ®af =18 5(x) +a® (1) + 033(8(x) ® 1+ §(1) ® ).
Taking a; = ap = 1 in (2.7), we get 0(1) = 0; therefore,

ZA(aJ@aQ=Z(ai®1—|—1®ai)®a;.

It follows that the a; are primitive elements of U(g). Hence, d(g) C gU/(g), according
to the theorem that the set of primitive elements in U(g) is equal to g over a field of

zero characteristic. Since § is skew-symmetric,

() C(a@U(9)N(U(g) ®9) =8 ®8.
Next, we need to prove that §| is a 1 — cocycle. Thus, let z1,22 € g, and compute

5([$1, IL‘Q]) = 5(.’1?11]2 - 1172561)
= [A(21),6(z2)] — [A(w2),6(=2)]
= 3?1.(5(1'2) — 1‘2.(5(.%1),
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where the dot denotes the adjoint representation in g ® g :
z.0(y) = (ad, ® id + id ® ad,)(y).

Finally, by definition of co-Poisson algebra, the Jacobi identity holds. To prove the
converse, we extend the bialgebra structure § on g to Ug by (2.7). The co-Jacobi

identity also extends because it is equivalent to saying that 6 is a bracket on g [

Definition 2.4. Let (g,4) be a Lie bialgebra. We say that a quantized universal
enveloping algebra A is a quantization of (g,d), or that (g,d) is the quasiclassical

limit of A, if
(i) A/hA is isomorphic to U(g) as a Hopf algebra
(ii) For any xo € g and any = € A equal to zo mod h, one has
B Y A(z) — AP(x)) = §(zg) mod h,
where A is the opposite comultiplication (A% = TA).

First, we consider so-called quasiclassical deformations of bialgebras associated with
skew-symmetric 7—matrices. If we are given a Hopf algebra (H,u,n, A, €, S), then
one can introduce a twisting element F, or twist, which is by definition an invertible

element of H ® H which satisfies the properties

(A ®id)(F) = Fas(id ® A)(F), (2.8)
(eid)(F)=1d®e)(F) =1, (2.9)

where the standard notations
F12=F®l, F23=1®F

are used.
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Proposition 5. Let F' be a twist; then (H, u,n, A, €, Sr) is a Hopf algebra,
where

Ap(r)=FoA(x)o F™!, Sp(z)=voS(z)ov™, z€ H
and
v=ypo(id®S)(F).
Proof. Let us prove that Ap is coassociative:

(Ar®id) o Ap(z) = (id ® Ap) 0 Ap(a).

Indeed,
Fio(A @ id)(F)(A @ id)A(z)(A ®id)(F~ ) F! =
Fas(id ® A)(F)(id @ A)A(z)(id ® A)(F~1) Fyl;

therefore, by the definition of the twist F, the coassociativity holds. Counit axiom
(e®id) o Ap(z) = (i[d®€)o Ap =noe

also holds by the same definition of F. To prove that Sr is an antipode we need to
check that

po(Sp®id)oAp(z) = po (id® Sp) o Ap(z) =noe (2.10)
Before proving (2.10), we demonstrate that an antipode is an anti-homomorphism of

an arbitrary Hopf algebra (H, u,7n, A€, S) :
S(zy) = S(y)S(x) for any z,y € H. (2.11)

The main tool for proving facts about antipode is the convolution product, which is

defined as
frg=peo(f®g)oA
on the set of maps End(H, H). Now the defining properties of the antipode S are

encoded in

Sxid=id*S=mnoe.
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It becomes obvious that the antipode is unique. Indeed, if S and S’ are antipodes,
then
S=S8x(ne)=Sx(id*S") =(Sid) xS = (ne) x &' = 5"

Let us prove (2.11). We define maps v, p in End(H ® H, H) by

v(z®y) =S(y)S(z) and pz®@y)=S(zy).

Note that H ® H is a Hopf algebra with the following structure maps:

H=p@p, %2 =n@mn,
A®2 = (1d®T®ld)(A®A), 6®2 = E®€,
S%? =S ® S,

where 7 denotes the flip of the second and the third tensor factor. To prove (2.11)

we need to show that p = v. It is enough to prove that

Pprp =[xV ="T0E¢.
First we have

(xm)Eey) = Y yMu(zey)?)
Zm p(z (1)®y(1)) (z (2)®y(2))
S Sy D)y
= noe(zy),
where the notations
Az @y) = Y(zoyezoy)”,
Az) = a:(l)@m@)
Aly) = Y9 @yl

are used as well as the definition of A®? and

o) = S © f? = 808 = Tolf) 057

k
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On the other hand, we have

(wx)zoy) = Yu(@ey)Mvzey)?)
= Y., eyPSs )5 ()
= (noe(@)(noely)).

Now we can return to the proof of (2.10). We prove only the first identity in (2.10),
the second one is done by same reasoning. Assume summation over repeated indices

in F=a;,®b; and F~' = ¢; @ d;. We have

p(Sr®id)Ar(z) = US(cj)S(:c,(cl))S(ai)v_lbix,(f)dj.

O
We are finished if we have proven that
vl = u(S @id)(F) = S(¢)d;. (2.12)
The definition of twist F’ reads
a;(aM), ® b0l ® b = a; ® ai (b)), ® bi(BSD ). (2.13)
If we apply (uo (S ®id)) ®id to both parts of (2.13), then we get
v® 1= a;8((0"))S(a;) @ bi(b%)s. (2.14)

If we multiply (2.14) by 1® S(¢;)d; from the right and apply 4, then we are left with
v(S(er)di) = agS((5”)x)S (@) (S(cr)dr)bi(b5” )i
Now, by the identity
qa; dib; =11,

which leads to
S(ai)S(cl)dlbi = 1,

(2.12) follows.
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Ezxample 2.4. Let us consider the universal enveloping algebra of the Borel subalgera
b, = {H,E|[H,E] = E} as a Hopf algebra. It has the following structure maps

defined on generators:
AH)=H®1+1®H, AFE)=E®1+1QF.
e(H) =0, e(F) =0,
S(H)=—H, S(E)=-E.
They extend uniquely to Ub,. if we require A to be a homomorphism (2.6) and S to

be an anti-homomorphism (2.11). Let

F:1®1+ZH(H_1)“,€',(H_IH1)®E’°.

To define this element correctly, we should take the following two steps:

e Complete Ub, to a topological algebra Ub, by choosing the appropriate topol-

ogy

e Complete Ub, @ Ub, up to Ub,&®Ub,, where & stands for a completed tensor
product in some topology in Ub, @ Ub,.

The first step is done by fixing a gradation
degH =0, degk =1
and the filtration by a system of ideals in Ub_ given by
Ub,=K°>K'D>---D2K"D -+,

where

K" = {Z ClekElu 2 n}

k,1>0
The element F is convergent if we complete the tensor product & with respect to a

system of ideals:
Ub,®@0Ub, =I°> ... DIF DI ...,
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where

IT* =< HQE - EQ®H >*,

which means that

F,—FE,cI" form > n.

The element F' can now be written as

1
F=1®1+ZEH’“®UIC=exp(H®ln(1—|—E)),

k>1
where
k1 B
o=In(1+E) =) (-1) -
E>1
and
ok
Hf @ of = H* @ E¥— € T*.

E*
Let us check that F is a twist. It is obviously satisfies the property

(e®id)(F) = (id®€)(F) = 1,
and we need to prove that
Fio(A @ id)(F) = Fos(id ® A)(F).

Clearly,
(A ® ld)(F) = F13F23.

Once we have

FioFi3 = F23(id ® A)(F)Fz_a1 = (id @ AF)(F)v

the proof is finished, and the latter follows from a direct calculation:

(2.15)

(2.16)

FAE)Fl=exp(HQWn(l+ E))(E®1+1® E)exp(—H @ In(1 + F)) =

exp(adpgs )(F®14+1Q@E)=EQ(1+E)+ E®]1,

where

oc=In(1+F), Ap(E)=h[(l+E)@(1+E))=001+1Q0.
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Chapter 3

Twists for classical universal

enveloping algebra

The role of twists is to deform the coalgebraic structure of a Hopf algebra. Such
deformations of bialgebras (g, d) in the category of co-Poisson Hopf algebras, see

Proposition 4, can be considered as quantizations of bialgebraic structures and the
corresponding skew-symmetric 7—matrices. The case of r—matrices described by the
Belavin-Drinfeld classification cannot be quantized this way; quantization requires
the passage to Quantum Universal Enveloping algebra (QUE), which we deal with in
the next chapter. The quantization of an r—matrix is a quantum R—matriz, which
intertwines A with its opposite A and is subject to additional relations, which we

state below.

Definition 3.1. A Hopf algebra (4, u,n, A, €,S) is said to be almost cocommutative
if there exists an invertible element R € A ® A, such that

A?(a) = RA(a)R™ (3.1)
for all a € A.

In particular, an R—matrix is a twist that relates (A, u, 7, A, €, S) with (A4, p, 7, A%, €, 571)
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if
Rip(A ®id)(R) = Res(id ® A)(R),

(3.2)
(e®id)(R) = (id®e€)(R) = 1.
Definition 3.2. A cocommutative Hopf algebra (A, R) is said to be
e coboundary if R satisfies (3.2), Roy = R™! and (e ®¢€)(R) =1
e quasitriangular if
(A ®id)(R) = Ri3Ra3 (3.3)
(id ® A)(R) = Ri3R2 (3.4)

e triangular if it is quasitriangular, and, in adition Ry = R™!

If A is quasitriangular, the element R is called the universal R—matrix of (A, R).
The R—matrix satisfies the quantum analogue of the Classical Yang-Baxter equation

as it follows from

Proposition 6. Let (A, R) be a quasitriangular Hopf algebra. Then,

RisR13Rg3 = RosRisRu, (3.5)
(e®id)(R) =1 = (id ® €)(R), (3.6)
(S®id)(R) =R = (id® S~Y)(R), (3.7)
(S® S)(R) = R. (3.8)

Proof. By (3.2) we have
R12R13R23 = ng(A ® ld)(R) - (AOp ® ld)(R)ng,
where we used (3.1). R is quasitriangular; thus

(AOP & 1d)(R) = R23R13,

36



which proves (3.5). Next, if we apply (e ® id ® id) and (id ® id ® ¢€) to both parts of

(3.3) and (3.4), then we get (3.6). To prove the remaining two identities, we argue

R(S®id)(R) = (p®id)(id® S @ id)(Ry3Rss)

(ﬂ@&A@ﬂxm
e®id)(R) =

(
(
(1
(

p®id)(id® S ®id)(A ®id)(R)

where we used the property of antipode. The second equality in (3.7) follows by the

same reasoning applied to (A%, Ry ). Finally, (3.8) follows from (3.7). O

The equation

R12R13R23 = R23R13R12

(3.9)

is called the Quantum Yang-Baxter Equation (QYBE). Its meaning is that if R is

presented in the form

R=1®1+h-1+- -,

where b is a formal deformation parameter, then after equating terms in (3.9) modulo

h2, we are just left with CYBE for r.

Example 3.1. Let A be a cocommutative Hopf algebra (ie A =

twist; then A is a triangular Hopf algebra with an R-matrix
R = F21 F_l.

First, we see that

AP(a) = FuAP(a)Fy' = Fn F' Ap(a) FFyt

Let us check that
(AF & 1d)(R) = R13R23.

The left hand side of (3.11)
Fio(A ®id)(Fn )(A @ id) (F 1) Frg!
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can be transformed as follows:

Consider the following identity
F31(A13 ®id)(F) = F12(A®id)(F21), (3.13)

following from (2.8) after applying permutation (23)(12) to both parts (A3 denotes
A taken in the first and third tensor factor of A ® A ® A) and using A = (12)A.
Similarly, we obtain the identity

(A@id)(F ) Fy' = (id® Ap)(F ) Iy, (3.14)
after applying transposition (12) to
(A®id)(F)(F') = (d® A)(F ) Fy'.

Next, we need an identity relating (A;3 ® id)(F') and (id ® As3)(F'). The following
identities are obtained from (2.8) after applying the (12) or (23) transposition to both

parts of (2.8):
F21(A®1d)(F) = F13(1d®A13)(F),

Thus, using (2.8) one more time, we get the desired relation
F23F3—21F13(A13 & ld)(F) = F12F2—11F13<id & Alg)(F) (315)

Finally, by combining (3.13), (3.14), and (3.15), we prove (3.11).

Example 8.2. Consider a Hopf algebra (H,p,n,A€,S) and let w € Aut(H), the
change of basis by w amounts to the twisting of H by the trivial twist

(w@w)oAow™
In particular, if w € Inn(H) (i.e. of the form w(z) =u -z -u™'), then

(u @ u)A(u™t)
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satisfies (2.8) which can be checked directly. If (H, R) is a quasi-triangular Hopf

algebra, then the twisted R matrix is of the form
(w®w)o R.

If A = Ug, then (3.10) allows to build quantizations of skew-symmetric r—matrices.

In fact, any skew-symmetric r—matrix can be quantized this way.

Theorem 2 (Drinfeld). Let g be a finite-dimensional Lie algebra, and let T € g® g

be a skew-symmetric solution of the classical Yang-Bazter equation
[r12,713] + [r12, 23] + [r13,723] = 0.

Then there exists a deformation Uy(g) of U(g) whose classical limit is g with the Lie
bialgebra structure defined by r. Moreover, Uy(g) is a triangular Hopf algebra and is

isomorphic to U(g)[[h]] ® U(g)[[R]].

The element

F = exp(H ® 0),

discussed in Example 2.4, defines the following Jordanian R—matrix:
R=FyF!=exp(c ® H)exp(—H ® o).
If we introduce the deformation parameter h by E ++ —hFE, then
R,=1®14+hHANE+---,

thus quantizing the first bialgebraic structure from Ezample 1.1. Moreover, this ele-

ment allows the calculation of the Hopf structure maps of Ux(b..) explicitly.
AH)=H®(1-hE)'+1®H, A(E)=E®1+1®E-hE®E,

S(H) = —H(1 - hE), S(E)=—E(1-hE)~,
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The higher dimensional analogs of the Jordanian twist in one direction lead to the

quantization of the extended Jordanian r—matrix

Hin A B+ By A Eg, (3.16)

i>2
while another direction is the quantization of Gerstenhaber-Giaquainto boundary
r—matrices (1.12). There is an explicit formula for the twist corresponding to (3.16).

Fix canonical gl(n)-basis {E;;| i,j=1...n}
[Eijy Exi] = 6u By — 0By
and take an element H from the sl(n)—Cartan subalgebra
bsin) = span{Ey; — Ej;|1 < 4,7 <n}.

Proposition 7 ({20]). An element

n—1

Feg = exp(—h Z E;; ® EjpePi7-r)exp(H @ 0_4) (3.17)

=2

where
B =1, [H, Em] = BB, 0_p = ln(l - hE)

18 a twist.

Fry is called extended Jordanian twist; it is defined in a similar completion as the
Jordanian one. The proof follows from the general discussion of quantum twists we
give later, though it is not difficult to give a direct proof, as we did for the Jordanian
twist, where an explicit form of the deformed costructure was used. On the con-
trary, we do not have an explicit quantization of (1.12) and a corresponding universal

twisting element. Below, we quantize the first non-trivial boundary r—matrix

2 1 1 1 1 2
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via introduction of the elementary parabolic twist. Let us introduce notations

1 1 2
HY = ZEy, +=Ep~=E
12 3 11+3E22 5 L3,
2 1 1
v = —Ey— -Fyp—-F
H23 3 11 3 22 3 33

The upper script L denotes that the functionals Hjs* and Has* are orthogonal to the
roots Ajz and Ag3 respectively. Consider the subalgebra p; generated by the Borel
subalgebra b in s/(3) and the element Es,, i.e. by the parabolic subalgebra of s[(3):

P1 :V—a2 +b+ = V—az +h+ﬂ+.

We need the adjoint action of the Cartan subalgebra on the space V_,, + ny in its

explicit form:

[Hi, Bis] = Eis, (Has, Exs] = Ens,
[Hi5, E12]) = 0, [Hss, Er2) = Ens,
[Hi3,En] = —Es, [Hf Exs) = 0,
[Hi, Ea2s] = Fos, [Hs;, Es2] = 0.
Note that
Hy; A Era + Ei3 A Eg,
is quantized by the extended Jordanian twist
® = exp(—Es; ® Eize ) exp(Hyps @ 012). (3.19)

@ : U(p1) — Us(p1).

This twist has the 4-dimensional carrier subalgebra £ C p; generated by the set
{H33, E13, B3z, F1a} . It differs from (3.17) by an automorphism.
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The twisted algebra Ug(p1) has the following coproducts
Ap(H) = Hi; ®1+1® Hi,
ACI)(E13) = EIB &® e712 + ef12 ® ElB;
Ae(E13) = E1n0e’? +1Q Ey,
(3.20)
Ag(FE3p) = E3®e 7?24+ 1® Es,
Ag(Hs) = Hiz @14 1® Hay + E3 @ Eyze 2,

A@(Ez;;) = Fpy®1+1Q Ea3 + 2H1‘]§ ® FEi13e™ 712

with three primitive generators: Hi;, 012, and Fize™'2.
We shall now demonstrate that Us(p;) can be additionally twisted by the factor
F, defined on
Agp = {(Hi3)* Egs(Erse™2)" |k, 1,m > 0},

which is a Hopf subalgebra in Ug(p;). As a result, the composition of 2 factors,
F,=F-0
will form the parabolic twist, yielding the quantization of (3.18).
Proposition 8. The algebra Us(p1) admits a twist
F=(1Q1+1® Ey+ H ® Ejze12)Hi8D),
Proof. Consider the generalized Verma identity [9]

et 1n(1+ta)e(a:+y) ln(1+sb)ey In(1+ta) _ ey ln(1+sb)e(1:+y) ln(1+ta)e:c ln(1+sb).

Here, the generators a,b € n, C sl(3) are subject to the relations
[a,[a,b]] =0

and



x,y,s,t are some central elements. Now, let a = Ej9,b = Ep3, x =y = z = 1. The

generalized Verma identity leads to
fo12glonglonr — (T12g02012)E (3.21)
where £ = x + y. Thus,
F = exp(Hi5 ® 012) exp(His ® 023) exp(His ® 012) exp(—2His ® 012).
Using (3.21), we transform F' to

(exp(1 ® 012) exp(1 ® 0a3) exp(l ® 012)) F128) exp(—2H @ 01) =
exp(His ® In(e712e722¢712)) exp(—2Hi5 ® 012).

It is easy to verify that
AF(€01260236012) — 712723012 ) 12023012

With the primitivity of Hi5 in Us(p1), see (3.20), we prove that F' satisfies (2.8) as

we did for the Jordanian twist in Example 2.4. (W

Applying F to the algebra Ug(p;), we get the final costructure of the twisted
parabolic algebra U,(p1):
F
Us(p1) — Up(pa)-

The coproducts for the generators of p; are the following,
Ag(Hf3) = 1@ His+ (Hiz 1)1 @1+C)7,

Ap(Hz)

|

1 ® HZJ‘?’ -+ H1J‘2 ® e 12 + (E32 ® E136—012+
+((Hs; — Hiz) @ 1)(1 ® 14 C))(1 ® e712¢723) ™1,
Ay(Bri3) = Ei3®e™e”? +e™? Q@ Ei3 + Hi3F13 ® Ens,

A (Bra) = (72 @e2e2)(1@1+0) 1 -1®1,
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Ag(Ez) = (B ®e™ 2+ Hiy ® (2Hi3 — Haz)—
—(H)*®@e 2 + H; 1) (1914 C) 14+
+(HE(H; -1 D)(1®1+C)2+1® Fs,

Ap(Ea3) = F®e™ +1Q Eyz+
+(Eq3 + 2e°2 H5) @ Eze7712+

+(E'23 + 6023H1J-2)H1L2 ® (E13)2(ea1260236012)—1’
where

C =1® Eys + Hj; ® F1z3e7".

The Hopf algebra U,(p;1) can be considered as a result of the integral twist defor-

mation

F,
U(p1) —= Up(p1),
where the element F, can be written in the form
Fo = F- @
= exp(His ® (2012 + 093)) exp(—FE3y ® E13e7?) exp(—Haz ® 012).

For the shorter notation, we used the formula that followed from (3.21):
ln(ealzeamemz) — 20-12 + 093.

From the beginning, we did not introduce the deformation parameters to the twist F|,,
although such parameters are easily taken into account by rescaling the generators of
P1:

1
By — §EBn, Egp — (B, iy — (B, Bz — ZE32.

The parametrization of the parabolic twist is given by

(3.22)
exp(His ® (2012(€) + 023())) exp(—E€ Es @ E13e7128)) exp(—Has ® 012(€))
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By twisting the universal enveloping algebra U(p;) with the element (3.22), we
obtain the 2-dimensional smooth variety of Hopf algebras U, (p1; €, (). The parameters
are independent. In the limit points, the (undeformed) main factors of the parabolic

twist are reproduced:
¢—0

Fo(€,¢) — ®(8),

Fol&,6) 53 J(0).
The first limit is the parametrized extended Jordanian twist; the second is the
Jordanian twist for the Borel subalgebra generated by {Hf"z,Ezg} with the twist-
ing element J(¢) = ef12®723(Q),

The universal R—matrix for U, (p1; &, ¢) is defined by the standard formula (3.10):

By(€,€) = (Fol€, Oy (Fpl€, Q) =
exp((2012(€) + 093(¢)) ® HE) exp(—€Er3¢72©) ® Egp) exp(—012(€) ® Hog) %

x exp(Haz ® 015(€)) exp(€Esy ® Ei372®)) exp(—Hi @ (2012(€) + 023(())).
(3.23)

If we choose the parameters to be proportional (¢ = 7€), the expression (3.23) can be
considered to be a quantization of the classical r-matrix (3.18). In the fundamental
representation d(sly), the R-matrix has the following form:

Ry = d®2(Rp(fa O)=1®1+

+(Erz2 A (%Ell - %Ezz — 1 E33) + Esp A Eng)é+
+2(B2 @ E1)&%+

+(Fa3 A (3E11 + 3 B2y — 2 Es3))(+
+2(Eg3 ® Eg3)C*+
+3(E13® (3E1 + 5Exn — 2Es3) + (3En + 3En - %Ess) ® B3+
+3(F12 ® Eas + B2 @ E1z))(E—
— 2 (B3 ® E13)(%E% + £ (B3 A Ep3)€CP+

+3-(E13 A E12)E%C.
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Any maximal parabolic subalgebra p; with a missing negative simple root a; can be
considered as a semidirect product of the maximal simple subalgebra in p; and of the
ideal generated by the basic elements Ey, whose positive roots A; contain the simple
component a;. This means that the corresponding Hopf algebras U, (p;) are examples
of the algebras of motion g quantized by the twists whose carriers coincide with g.
In the considered case, U(p;) is the universal enveloping of the semidirect product
p1 = s1(2) F ¢(2), the algebra of two-dimensional motions. The elementary parabolic
twist (3.22) can be applied to any Lie algebra that contains p;. The algebras A, and
®, are the only ones among the simple Lie algebras with the rank(g) = 2. Any simple
algebra whose rank is greater than 2 contains p; and can consequently be twisted by

F,.
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Chapter 4

From the quantum twists to the

quasiclassical ones

As it was pointed out, the quantization of non-skew-symmetric solutions to CYBE
requires passage to Quantum Universal Enveloping algebra (QUE). In this chapter,
we show how to build the quantum analogs of the twists we considered in the previous
one. It turns out that the extended Jordanian twist has a quantum analog that is
trivial, but that reduces to nontrivial expression when the quantization parameter
approaches zero. The elementary parabolic twist turns out to be equivalent to the
so-called Cremmer-Gervais twist [22] on the quantum level. Its reduction to the
quasiclassical case is of particular interest because of its relations with Yangians. In
the Yangian limit of the quantum affine algebra, we obtain the parabolic twist. Such
limit degenerations were being considered in a number of works, where the g—Yangian
was of interest for the developing theory [26, 29]. The relation established between the
elementary parabolic twist and the twisting of Y(sl(2)) allows a simple calculation
tool for the twisted costructure in Y(sl(2)). The quantum analog of the extended
Jordanian twist depends on some element X € U,(g). The full chain of extensions
appears as we specialize X to be the highest root generator in an infinite series

of simple Lie algebras. To realize the program we stated, we introduce the basic
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definitions from the theory of Quantum Enveloping Algebras U,g, where g stands for
a simple Lie algebra.
A Hopf algebra U,(g) for a Lie algebra g with a Cartan matrix (A);; = a;; and a

set of simple roots {a;} is defined by the relations

[HiaHj] =0, [H’HX]:E] = i(aiaaj)X]:'ta (41)
A
XX, — X7 X[ = by—, (4.2)
q9—4q
1—a;; 1—a.
Z (—1)* { ) I (XEXGH(XGE) TR = 0 for i # 7, (4.3)
k=0 da
where ¢; = q(_alz_azl and
m} __ (@m
LN lq (Q)n(q m—n,
with the costructure given by
LA A
AH)=H®1+10H, AX)=q¢7oX +X[©q¢?, (44)
S(H)) = —H;, S(XF)=—¢FXF, (4.5)
e(H) =0, X =0. (4.6)
One usually introduces another set of generators
H A
Ei:X;.q—2a EZXi_qzv (47)

that are more convenient for working with a g-Weyl group. The costructure reads

AE)=E®1+qf oL, AFR)=18F+F®qd%", (4.8)
S(E)=—q"E;, S(F)=-Fq™, (4.9)
e(B;) =0, &(F)=0. (4.10)

To proceed further, we need some facts on the ¢g-Weyl group, for which we refer

to [15, 16, 18, 19]. One introduces a linear order on the set of positive roots Ay by
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taking the longest element of the Weyl group wo = 8;, 84, - - - Sy along with its reduced

decomposition. The reduced decomposition fixes a linear order from left to right as
A+ = {ain Si1WXigy * " "5 84y Sig = ° siN—laiN}'

Definition 4.1. A linear order L on the set A, of the positive roots of g is called
convez or normal if, for any positive roots a and 3 such that o+ € Ay and o <, 3,

we have a <p a+ 0 < 5.

It can be proven that any convex order on A, comes from some reduced decom-

position of wy. The g-Weyl group allows for the definition of composite roots.

Definition 4.2. Suppose that o = s;,5;, - 8;, %, (p=1,2,---,N). The root vec-
tors are defined by

Eo=T,T; T

ip—1

(E )’ Eai = E’ia

Faznlﬂz"'ﬂp_l(ﬂp)) Fai :Fi)
where T;(-) are the generators of the g-Weyl group (for explicit action see [19], page
138).
Let
R =eg2((1—q %)’ Eq"™" @ ¢ F);

then, for any a € A, such that a = s;; - -- 5;,_, @, define the elements

~

R, = T,Ty T, (1)

R'</3 = Ha%ﬁ RO"
These elements allow for the formulation of one more general fact about Uy(g) from

[19]:

Theorem 3 ([19]). Consider the canonical isomorphism b ~ b* defined by the bi-
linear form ( , ) onh. Let Hg € h be the image of a root B € h* with respect to this
isomorphism. Then the following identity holds:

A(Eg) = (R<p) M(Es® 1 +q ™ ® Eg)Rp.
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Proof. For the proof see [19], Proposition 3.2.1. O
Proposition 9. Let X € U,(g) be such that

(X DNAX)-X01)=¢(AX)-X®1)(X®1), (4.11)
then the element

F=cp(—1®X) ei2(—¢ HAX) - X ®1)), (4.12)
satisfies the Drinfeld equation
Fio(A @id)(F) = Fas(id ® A)(F),
and has the well-defined limit when g — 1.
Proof. The constructed element F'is a trivial twist:
F = (e (= X) ® ep(~X))Aeg-a(=q X)),

if one uses (4.11) along with the g-multiplication property of the g-exponential func-
tion

€42 (b)eqz (a) = €42 (a + b), (4.13)
where ab = ¢%ba. Non-singularity of F follows from the representation

1 (10X)"—(AX)-XeL)"

F=exp -n" ,
O e = )
where the element (8X)"=(AX=XOV® o o)l defined in the limit qg— 1. d

1-q

Choosing a different X in Proposition 9, we obtain generalizations of the known quasi-
classical twists to the quantum area g # 1. The general formula of the full quantum
extended Jordanian twist emerges if we choose X to be an element corresponding to

the longest root vector in the infinite series of simple Lie algebras.
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Proposition 10. Let g be a simple Lie algebra of infinite series An, Bn,Cn, Dn.
Then, for the element associated with the longest root A, the property holds

(Ex®1)(A(E)) — Ex®1) = ¢*(A(E)) — B, ® 1)(E\ @ 1). (4.14)
Proof. The proof is based on the following expansion from [19]

EoBy—q“YE\Ea= Y  ayER---EY, (4.15)

a<y1 <y <A

where ¢;., € k[[h]]. Non-zero terms in the sum are subject to condition
a+ A= ll')/l —|—l2’)’2+ —|—l]"yj (416)

We aim to show that (4.14) holds in all infinite series of simple Lie algebras.

In Ay, we choose a convex order as
roots without a;

a1>-O£1+062>—"'>-O£1+O£2+"'+OJN>-6£2>-"'>-OZN_1+OZN>-O£1\?.

and A = a3 +---an. If A = a > ay, we can only satisfy (4.15) with zero coeflicients,

without contradicting (4.16); therefore,
BBy = ¢V E,\E,, (4.17)

which means that

(R)H(Er® 1) = (B @ 1)(R) ™ (4.18)
and (4.14) holds. In the remaining series of simple Lie algebras, we check (4.18) for
an appropriately defined convex order.

In By, we have
roots without oy

Oé]>—C¥1+O¢2>-"'>-041+2012+"'+201N_1+2ﬂ>-r012>~O¢2+OZ3>-"'>-B,

and A\ = oy + 205 + - - + 2an_1 + 26. As with Ay, we come to the relation (4.17).
In Cy, we fix the following convex order:

roots without g
641<a1+oz2<~--<a1+---+aN_1‘<2(a1+---+0z1v_1)+[3<

a+tay g+ B <<+ 2t tano) B < <o << G,

o1



and A = 2(a1 + - - + ay-1) + 0. This order eliminates all nonzero terms on the r.h.s
of (4.15).
In Dy, we have quite a similar situation:

oy -y tag =0+t oy o+ t+ay+ 8>

a1t o+ +2ay2taya+ == ot 2+ 2av2 Han-1 + 8-

roots without oy

@>-02+OZ3>"‘>B,

and A = a1 +2a9 + -+ 2an_g + an_1 + 0. O

Notice that we have a problem with extension of the proof to all series of simple Lie

algebras. For example, in G; we have the following sequence of roots
a=3a+f>2a+0>3a+20>a+ 30,

so there could be the contribution E3, ;5 or E3, .5 on the r.h.s of (4.15) if one chooses

such an ordering where 3a + 28 > § or 3a + 20 > «, respectively.

Ezample 4.1. In the case of sl(n + 1), we use the following formula [13]:

n—1

A(Eqnty)) = q_Hl*”“®E(1,n+1)+E(1,n+1)®1+(1—q2) Z E(l,i+1)q_Hi+1’"+1®E(i+1,n+1);

=1

therefore the full quantum extended Jordanian twist is
Fgy =
eq-2((1 —¢7%) S B g B+ @ By nayeq(— B ns1)) (€2 (—Eamin)) )-
e@(—1® Eqniy) - eg-2(—q 2 ¢ @ Euntny),

where we used (4.13) and g¢-Serre relations in sl{n + 1). The elements E(; are the

quantum counterparts of E;; in the defining relations of s{(n + 1).
This twist deforms

FqEJ . Uq(sl(n + 1)) e qEJ(E[(’I'L+ 1))
A FqEJOAOFq}}J,
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and reduces to

n—1

1 1
Fg; = eXD(Z Eiiv1 ® Eiy1 417270 - eXp(EHl,n—f-l ® T1n41)
i—1

in the limit ¢ — 1, here

045 = 111(1 + Eij) = -(T) Ek

i
k>1
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Chapter 5

From quantum Affine algebras to

Yangians

Quantum affine algebras are the deformations of affine Kac-Moody algebras. In this

chapter we deal with affine s:[(2). This algebra corresponds to the following Cartan

2 =2
-2 2

If the set of all positive simple roots is {«,d — a}, where § is the minimal imaginary

matrix

root, then U,(s((2)) is defined by the following relations

R —h _ E2 -h R ~h — =2
g Ctaqd " =G €xaq ", G C-0d =G "Ci-ay

qh _ q—h

€5—a€-a = €—afi—a; [eau e—a] = 1
q9—4q

[[[Ca, eé—a]q, eé—a]qa eé—a]q =0

and the Hopf algebra structure maps are defined as follows
Ales—a) = €-a®l+¢"®esq, Alea) = ¢"®eat+ea®1,

Aley) = 6a®¢"+1®e_q, Ald) = "o

54



Sles—a) = —q €50, Slea) = —qeq,

S(e—a) = _e—aq‘ha S(qh) = q_h ® q—h-
The Yangian Y (s(2)) is a special subalgebra, which can be seen as the limiting case

when ¢ — 1 of its quantum analog Y,(sl(2)), sitting inside of U,(s((2)), [29].

Definition 5.1. A ¢—Yangian Y,(sl(2)) is the minimal Hopf subalgebra in U,sl(2)

containing

Up(st(2) fes-a + 0 "e-al:

The elementary parabolic twist gives the quantization of s{(3)-boundary r-matrix
[11],
2§Hélé A FEig — 7’](E13 A Eap + HiLQ A E23),

and can be written as,
exp(His ® (2075 + 035)) - exp(nEsz ® E13e”") - exp(Haz ® 077). (5.1)

It is interesting to investigate the connection of this element to the twisting of
U,(s!(2)) built in [14]

_1,
Fe(1®l-@pa-1®esatb-gt@gre ), (5.2)

where

(- =1y e 0 TR Do — e ey ),

and (k), = -1

g—1
Definition 5.2. We say that ®; ~ ®, if
0, = (Q®Q)21A(Q™), for some Q € Uy(g).
Proposition 11.

F e~ epp(—(2aab- g es0 © e a).
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Proof. The element F' admits the representation
F = ep(c-1®e5s_o+d- TP q e q)

€q—2 (q_z ' (C ' qh & e5—a + d-1® q_he—a))’

where we have introduced the new coefficients ¢, d to simplify notations. If we apply

(4.13), then the twist F' can be written as:
ep(c-1®es_o) e2(q2d 1@ q " e o) ep(d ¢ "®q e_y) ep2(q7%c ¢" @es-a).

Let us denote

VIV = el cs-a) - eq-2(q~d - g o)
then, we have
F=(VWRVW)epa(—cd-qg "es_0®q "e_o) A(VIW) ™),
where we used the Five term relation [9]:
ep(2)ep(y) = ep(y)ep(—yrlep(z),  zy = ¢Pyz.

The element

® =ep(—cd- es_ag " ® q_he_a)
is a twist that can be checked directly by using the costructure
Alg ™ esa) =g esa @ "+ 1® g Pes_a,
Alg"e o) =q e @14+ ¢ @ g e,
Al =g"®q™",
thus giving an independent proof that (5.2) is a twist. O

To calculate the quasi-classical limit for ¢ — 1 of (5.2), one needs to perform the

change of variables [14]:

q_he—ou fO = q—he—a‘

Ui
flzeé—a+q_2_1
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The Hopf algebra structure is now

b, Al =—2f1, [hJol==2f, fifo—aq 2 fofr =-nf3,

Alfo)=fo®1+q"® fo, A(H)=H@1+¢"® fi + 19" (h)g-2 ® fo.
Using this basis, (5.2) can be rewritten as
(-3h@1)

(1®1—(2)2€(1® f1+n(h/2)¢=2 @ fo)), :

The contracted twist

A

» h N 5
1®1+2%016 fi+15 ® fo)) 3! (5.3)
is defined on the Hopf algebra (which we denote as being Y'(n,)) generated by h, fo, f1.

Proposition 12. There exists such a twist ® in U(sl(3)) and an isomorphism ¢ so
that
[ Y(n+) = Aq;,

and

Ag = {(Hi)* (Erse™ ") (Eas)™ |k, 1,m > O} e
is a Hopf algebra with a costructure deformed by ®.
Proof. First, following [23] we rewrite the elementary parabolic twist
Fﬁ = exp(adHiy ® 075) (exp(His ® 053))exp(nEsz ® Eise™12 Yexp(Hs @ 073')
in the form
(1@1+2¢-1® By — 26nHis ® Eyze % \H5® exp(nEsy ® Eige™? )exp(Hys @ 07).
The twisting factor

(1®1+ 26 1® By — 2nHis ® Fyze o1z )Hi2®!

o7



is defined on Ag with
& = exp(nEs; ® Erze™ "% Jexp(Hys ® 073).
The costructure of Ag is given by
A(Hf) = H © 1+ 1 ® Hi,
Ag(Eyge 1) = Eize712 @1+ 1® Eze™ iz,

Ap(Ey) = F3 @1+ 1® Ey3 — 2nHi5 ® Eyze™o12

We define a Hopf algebra isomorphism ¢ on the generators as the follows:
[’(il‘) = _ZHiJ:?a
Wfo) = Eue™,

Wf1) = Eas.
O

Now, we find an expression giving the quantum analogue of the elementary parabolic

twist. The quantum analogue of ® is given by
D, = (e2(nEq12)) ® e2(nE12))¥A(eg-2(¢*nEq2)),
where ¥ is a twist that is chosen so that
Ay(Eag) = g Eaz) + Eugy @1+ (1— q_z)q—QHll?'E(m) ® Eqzq~ 7.
It is straightforward to check that
U = g™ e (g — ¢7)* Ezz) ® Egay)-
Applying ®,, we calculate

Ag,(E@syg ™) = e @ E(23¢7 ™ + Eagyq 2 @ 1+

1 €
~2H{y _ 201y

q 1 —Has
1_q2 ® 1—7]E(12) E(13)q 3
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and

Aq>q(1_—;E(15E(13)q'H23) = q_ZHle®1—j77l%E(13)q_H23+1_—_;1%E(13)q_H“®1.
It is easy to check that
tg(h) = —2H3s,
tq(fo) : Eqayg~ ™, tg(f1) = E@ya™™, (5.4)

1 nEq2)

where 7, is an isomorphism between the g-analogues of Y'(n,) and Ag, which can be

seen as a quantum version of ¢, () is the conjugation
i=q"

Finally, we formulate the result:

Proposition 13. The twist

F’g = (Lq ® Lq) ((1 ®1-— (2)q2§(1 [0 fl + n(h/2)q_z ® fD));;§h®1)>(I)q,
giwes (5.1) in the limit ¢ — 1.

Proof. The first factor in F} goes to (5.3) at ¢ — 1 due to (5.4), and the second one

goes to ® according to Frample 4.1. a
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Conclusion

The problem of reconstruction of quantum twists from quasiclassical ones is far from
its completion. The further investigation could go to higher dimensions and relate
skew-symmetric Cremmer-Gervais r—matrices to degeneration of appropriately de-
fined affine twists. In this thesis we made the first step in this direction when we
related the elementary parabolic twist with the twist built by Khoroshkin, Stolin and
Tolstoy. Although it was proven by Etingof and Kazhdan [7], that any bialgebra can
be quantized by some twist, the proof that any quasiclassical twist comes from de-
generation of the appropriately defined quantum one is yet to be given. In particular
we need to classify all singular twists leading to such degenerations. The singularity
cancellation conditions guarantee that the limiting twists are nonsingular. We had an
example of a singularity cancellation condition when we were investigating extended
Jordanian twists. In general, the singularity cancellation conditions could be much

more complicated than

(X@D(AX) - X®1) = AX) - X®1)(X ®1).
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