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ABSTRACT

Wavelet-based Segmentation Techniques in the Detection of Microarousals

in the Sleep EEG

Alexei Glavinovitch

This thesis proposés an automatic detection procedure to detect the presence of undesir-
able frequency bursts, called microarousals (MA), within any of the various stages of
sleep. Sleep is examined through the acquisition pf the electroencephalogram (EEG). Tra-
ditionally, a sleep technologist manually inspects the EEG signal to correctly detect the
occurrence of MAs. The presence of these MAs causes a medical condition known as

excessive daytime sleepiness (EDS).

Since the EEG is a non-stationary signal, the proposed procedure analyzes it in three
stages. The first stage involves spectral decomposition using the discrete wavelet trans-
form (DWT). The DWT is efficient and possesses excellent time-frequency resolution that

makes it well suited to exploit the characteristics of a non-stationary signal.

The second stage of the proposed procedure partiﬁons the decomposed signal into station-
ary segments. Both parametric and nonparametric segmentation techniques are applied.

The nonparametric autocorrelation function (ACF) and the nonlinear energy operator
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(NLEO) methods as well as the parametric generalized likelihood ratio (GLR) method are

each applied to the component waveforms of the EEG signal produced by the DWT.

The third stage of the proposed procedure involves evaluating information about each sta-
tionary segment’s power and spectral content. Once this information ié determined, seg-
ments satisfying the definition of a MA are detected and scored.

To examine the effectiveness of the overall pfocedure, long-term EEG records containing
MAs that have been marked by a sleep technologist are compared against the proposed
procedure’s detected MAs. The successful results obtained demonstrate the effectiveness

. of the proposed procedure.
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1.1 General

The focus of this thesis is on the automatic detection of events emerging in the electroen-
cephalogram (EEG) of patients suffering from excessive daytime sleepiness (EDS). These
events, called microarousals (MA), are uncharacteristic frequency changes, satisfying spe-
cifically defined criteria. They occur in the different stages of sleep and their presence in
any of these stages deteriorates the overall quality and the necessary restitutive function of
sleep for the patient, thereby resulting in EDS. Traditionally, the detection of MAs is arole
relegated to sleep technologists who must go through the unenviable task of manually read-
ing an aggregate of different biomedical signals, recorded during a patient’s sleep. These
various signals, all together called polysomnograms, provide real-time data about the
patient’s heart rate, muscle tension, brain waves etc. Since a normal period of sleep spans
eight to ten hours, a sleep technologist must therefore accurately mark each occurance of
an MA, out of, quite literally, miles of data, to correctly establish a reliable account of all
relevant elements, in order to enable a credible diagnosis 10 be justified. Aside from the
enormous time demands required for this task, visually marking a microarousal suffers
from further problems, involving individual scorer consistency in rescoring the same

recording, as well as from unsatisfactory interscorer reliability [1]. Clearly, this repetitive



and exhausting task, requires a great deal of time and concentration and, in the end,
unavoidably leads to relatively poor or incomplete marking of microarousals; as a result,
this situation lends itself readily to some form of automation. The form of automation will
be implemented with an appropriately designed detection algorithm, using modern signal

processing techniques.

Before discussing the particular type of automatic detection, the nature of the signal under
study must be described. The procedure proposed in this thesis attempts to systematize the
detection of specific transient events in a biomedical signal. Generally, biomedical signals,
whether they be cardiac rhythms, blood flow rate, eye movements or varying brain potien-
tials, exhibit highly non-stationary characteristics, whose understanding is most keenly
sought but whose very nature, which is being soughﬁ, is most elusive. In fact, the varying
nature of biomedical signals, in general, effectively resists most attempts at codification.
Without precise guidelines, general automated procedures of information extraction cannot
be reliably built and if they are reliably built they cannot be applied generally. To overcome
these obstacles, approximations are made. Since our focus in this thesis involves the EEG,
a specific type of biomedical signal, we proceed, in the next section; to describe it in greater
detail. Following its description, we then describe its role in quantifying sleep. The quanti-
fication of sleep is achieved by dividing it into a number of recognizable stages. The rec-
ognition of each stage of sleep is made possible largely through the acceptance of certain
characteristics, such as specific ranges of EEG frequency and amplitude, as being uniquely
representative of a specific stage of sleep. These artificial boundaries, although largely
accepted, are clearly assumptions made to facilitate the desired systematization. Once the

objective description of sleep is understood, the rules used to define the marking of MAs



are introduced. The physiological motivation for such rules will not be elaborated upon,
since that would clearly exceed the scope of this thesis. However, the rules themselves,
along with visual examples illustrating their application in identifying the MAs, will be
given explicitly. Finally, after describing the overall physical nature of the problem that this
thesis addresses, we end this chapter with an outline of the thesis, giving a brief synopsis

of each of the following chapters.

1.2 EEG Signal

The EEG is a biomedical signal, which records the electrical activity of the outer layer of
the cerebral cortex [2]. Originating from the pioneering work of the German psychiatrist
Hans Berger in 1928, who measured the electrical activity of the human brain for the first
time, the invention of the EEG sparked a sudden and genuine scientific interest. The reason
for this enthusiasm lay in the new possibilty that the EEG offered the researchers. Through
the application of the EEG, sleep could now be, for the first time, continuously monitored
and quantitatively measured, withour waking or disturbing the sleeper {3]. The EEG opened
the door to a whole new world of objective sleep analysis. Although many improvements
were made in the years following its invention to reduce the time required to analyze an
EEG record, it was not until the fast Fourier transform (FFT) [4] first made its appearance

in the 1960s, that real time gains were made.



1.2.1 EEG Acquisition

The EEG is an electrical signal which records the electro-magnetic reactions produced by
the underlying mechanisms of the cerebral cortex or the outer layer of the human brain [S].
Since the brain is not a fixed point but an object that occupies space, a cluster of descriptive
EEGs are obtained by uniformly sampling the surface of the scalp, in order to acquire a rep-
resentative picture of the global electrical activity. Through the application of carefully
positioned electrodes, following a standard spatial distribution called a montage, a large
number of EEG signals, representing the designated areas of the brain, is produced. Of the
different montages adopted for EEG acquisition, the International 10-20 system [6] is com-

monly used and shown in Figure 1.1.
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Figure 1.1: International 10-20 montage



This system of electrode placement provides for a uniform spatial coverage of the entire
scalp. Therefore, the EEG signal charts the dynamic electrical behaviour of the brain as it
changes through both time and space. The distance, which separates one electrode from the
other, is determined by first measuring the total distance separating bony landmarks of the
head. For example, the distance between the nose and a bony mass at the back of the head
is one such distance. These measured distances generate a system of lines which run across
the head and intersect at intervals of 10 or 20% of their total length, at whose intersections
giectrodes are placed. The use of the 10-20 system assures symmetrical, reproducible elec-
trode placements and allows comparison of the EEGs from the same patient as well as from

different patients, recorded in the same or different laboratories [7].

1.2.2 Description of EEG signal

In order to analyze the content of an EEG signal, it is important that its characteristic com-
ponents be well understood. This pursuit motivates the description of a ‘normal’ EEG sig-
nal, which necessitates the identification of descriptors important for analysis. Three
important descriptors are: one, the naturally occurring waveform patterns, which regularly
appear within specific sleep stages and therefore must be noted in order to distinguish them
from the presence of abnormal patterns, such as MAs, which they may remotely resemble;
two, the value of the frequency content of the EEG signal as it evolves in time; and three,
the value of the amplitude of the EEG signal as it evolves in time. These descriptors, espe-
cially the last two, provide essential descriptive tools needed to distinctly characterize both

normal and abnormal phenomena appearing in the EEG signal. Although there are other



types of descriptors that could be considered, such as wave repetition, spatial distribution,

timing etc., these do not help in detecting MAs and therefore are ignored.

1.2.2.1 Normal EEG

Before a descriptive component break down of an EEG signal can be proposed, it must be
recognized that a wide variety of normal EEG patterns can be seen in different persons of
- the same age, and an even greater variety of normal patterns can occur in different age
groups. Therefore, the description of a normal EEG is not a trivial task; actually, an EEG
is often called normal not because it contains normal patterns but becausé it lacks abnormal
patterns [7]. By this approach, instead of listing all the possible forms of normal patterns
and their yariations, a non-practical task, the EEG is interpreted by the number of distinct
abnormal waveforms it contains. In contrast to the great variety of normal patterns, there
are only a few EEG components, such as spikes and sharp waves, certain slow wave and

amplitude changes, which are known to be definitely abnormal in each age group.

1.2.2.2 Characteristic EEG Waveforms

However, barring the presence of such abnormal patterns, there also exists various charac-
teristic waveforms that are present during normal sleep, which regularly accompany vari-
ous stages of sleep. They act as indicators, whose presence participates in defining specific

sleep stages. Such characteristic waveforms are shown in Figure 1.2.
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Figure 1.2: Characteristic EEG waveforms

The motivation for describing the normal EEG record arises naturally from the need to
identify the presence of an abnormal waveform pattern like the MA, from the rest of the
regularly occurring waveform patterns. The benefits offered by a reliable description con-
sequently assists in maximizing the correct detection, while, simultaneously, minimizing
false alarms. Again, this goal can only be achieved if the background waveforms can be

clearly distinguished from the MA.

1.2.2.3 EEG Frequencies

Throughout the analysis of EEG records, one of the most important criteria for assessing
abnormality, and assisting the diagnosis, is the study of the frequency. In the detection of
MA:s, it plays a major defining role. The total possible frequency range, encountered in
EEG records, spans from an ultra-low frequency value of 0.1 Hz, indicative of life threat-

ening coma state, to the ultra-high frequency value of 100 Hz. In normal circumstances,

7



these extreme values play no significant role in clinical EEG evaluation because it is often
unclear that frequencies, at these values, are actually of cerebral origin. [7]. Instead, focus
is placed on the clinically relevant frequency bands. By almost universal consent [8], the
EEG record is divided into four frequency bands: beia, alpha, theta and delta, which are
defined in Fig, 1.3. To provide a more intuitive time interpretation of these frequencies,

their corresponding wavelength is also included in Figure 1.3
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Figure 1.3: Frequency and wavelength of delta, theta, alpha and beta bands.

These frequency bands are somewhat arbitrary, since many EEGs contain waves of fre-
quencies that extend across their boundaries. Nevertheless, these bands help to distinguish
normal from abnormal waves in the EEG. The beta and alpha bands were ﬁntroduced first

by Berger [9], while the delta and theta waves were first recorded by Walter [10].

1.2.2.4 EEG Amplitudes
The voltage amplitudes, obtained from measurements taken at the surface of the cerebral
cortex (i.e. outer surface of the brain), generally fall in the range of 500 - 1500 uV. In com-

parison, these measurements are largely attenuated, when taken from the surface of the



scalp, the method most commonly encouraged in practice. The amplitudes recorded from
scalp EEG are nearly two orders of magnitude smaller, ranging from 10 - 100 uV or more
commonly from 10 - 50 pV, in most adults. This marked reduction is attributable directly
to the attenuation caused by the intervening medium, composed of leptomeninges, spinal

fluid, bone and scalp, separating the two measurements.

The importance of the waveform amplitudes lies squarely upon their consistent regularity
when following the changes in sleep stage. That is, high frequency waves, such as beta or
alpha waves, indicative of the drowsiness incurred during sleep onset, regularly have low
amplitudes. Likewise, as sleep progresses towards deeper sleep, the dominant waveform
frequency decreases to the theta and delta bands and, in the process, these dominant wave-
forms record a corresponding increase in amplitude. Therefore, the amplitude is inversely
related to the frequency of the dominant EEG waveform patterns. This relationship is
clearly seen in Figure 1.5 below. Moreover, this relationship contributes directly io the
detection of MAs, since the two parameters may now be monitored and used in the detec-
tion procedure. Table 1.1 gives a detailed breakdown of this frequency and amplitude rela-

tionship.

Table 1.1: Frequency and amplitude properties of the dominant EEG frequency bands.

Dominant Frequency Frequency Range Amplitude Range
Beta HIGH LOW
® > 13 Hz <20 v
Alpha HIGH LOW
{o) 8-13Hz <20 uV
Theta MEDIUM MEDIUM
8) 4-8Hz 20 - 50uV




Dominant Frequency Frequency Range Amplitade Range
High Delta LOW HIGH
{8y) 2-4Hz > 50 uv
Low Delta LOW HIGH
&y 05-2Hz > 50 uV

Having described the major relevant components of the EEG signal, we continue with a

description of the tools used to monitor sleep, known as polysomnograms.

1.2.3 Polysomnograms

The International 10-20 system uses 21 electrodes and one ground electrode to record the
overall electrical activity of the brain, as shown in Figure 1.1. These signals, generated
during the monitoring period, are then fed through wire cables to a computer where they
-are displayed on a monitor, recorded on magnetic or optical storage devices and preserved

for future analysis. These 21 signals constitute the EEG data used for studying sleep.

However, EEG signals alone are often not sufficient to clearly identify some events and
trends. In practice, a combination of both EEG and other types of biomedical signals is used

to define sleep stages and MAs.

It is the consistent correlation of events, that exists between different types of biomedical
signals, that reinforces the decision to score sleep as being in a specific state and scoring an
MA as being present. There are many polygraphic variables, which measure the time evolv-
ing functions of the body. Some measure the heart rate, such as the electrocardiogram
(EKG), others measure the upper airway exchange, some measure temperature while others

monitor chest or abdominal respiratory movement and so on. The numerous signals, which
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provide a holistic description of the body’s overall evolution, during sleep, are called poly-
somnograms. A sample of a polysomnographic record is shown in Figure 1.4. Of the sig-
nals that make up the polysomnogram, the following two signals, in conjunction with the

EEG, contribute directly to the detection of MAs:
+ Electrooculogram (EOG)

* Electrormyogram (EMG)
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Figure 1.4: Partial sample of a polysomnogram: shown here are five EEG signals taken from the 10-20
montage accompanied by non-EEG signals: Electrocardiagram (EKG), electrooculogram (EOG) and
electromyogram (EMG) (taken from {7]).

1.2.3.1 Electrooculogram (EOG)
Because the cornea is slightly positive with respect to the retina, there is a small electro-
potential or electric field that exists between the front of the eye and the back. By placing

electrodes on the side of the eye, variations in potential, resulting from eye movement, can
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be detected. The measurement of eye movement in relation to sleep is important for two
reasons. The first reason stems from the fact that one particular stage of sleep, called rapid
eye movement (REM) sleep or desynchronized sleep can only be detected with the EOG.
The second reason is similar. The EOG contributes significantly to the detection of stage 1

sleep [3]. Therefore, the EOG plays a fundamental role in sleep staging.

1.2.3.2 Electremyogram

The electromyogram (EMQG), like the EOG, is used as a criterion for staging the REM sleep.
The EMG is an electrical signal that records the changes of muscle tension. The muscle tra-
ditionally used to represent general muscle tension is the mylohoid, or chin muscle. The
reason for this choice is essentially the convenience of electrode placement, although most
other mﬁscles are equally suited for this task [8]. The real value of the EMG lies not only
in its contribution to staging but especially in its direct contribution to the detection of MAs.
As outlined in the rules set forth by Rechtschaffen and Kales (R&K) [11], described later
on in this chapter, recognizable concomitant changes in frequency and amplitude, shown
in the EMG, compared with similar EEG changes, act as indicators exposing the presence
of MAs. Since the EMG gauges the state of wakefulness, exhibited by muscle relaxation,
the EMG amplitude level gradually decreases as the transition progresses, from the highly
active wakeful state, through the subsequent sleep stages of the non-REM sleep (to be dis-
cussed later in this chapter) until it completely disappears during the REM sleep. According
to the R&K rules, a sudden frequency burst observed from an EEG channel is, by itself, not
exclusively a sufficient indicator necessary to mark such a disturbance as an MA. In certain

situations it must also be accompanied by a similar sudden muscle activation, occurring
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simultaneously on the EMG channel. Therefore, the EMG is a vital element in the process

of MA detection.

To summarize, the measurements needed for the detection of MAs are those provided from
the EEG, the EMG and the EOG. Furthermore, regarding the EEG signal itself, and the 10-
20 montage, clinical experience has determined that observation of the C; electrode alone,
shown in Figure 1.1, is sufficient for marking purposes. Because of the limited resources
available, in the past, the selection of C; for sleep staging became the rule, as established
by [11]. However, depending on the purpose of the recording, other selected electrodes,
like the Oy (also shown in Figure 1.1) can be used for analysis, to supply the necessary
degree of supporting redundancy in which decisions can be made. In this thesis, only the

C; electrode is considered.

1.3 The Classification of Sleep Stages

Interest in sleep and dreams has existed since the beginning of recorded history. It was not
until the 20th century that the study of sleep acquired the necessary tools to make it objec-
tively worthwhile [3]. As mentioned in Section 1.2, the development of the EEG by Berger
[9] opened the door to scientific research into the brain, with sleep as one of the many
branches of specific concentration. Through the application of the EEG, valuable insights
into the waveform patterns of the brain, during sleep, were revealed in the 1930s in seminal
papers [3]. These insights changed the notion that the brain was a passive blob, during
sleep, into an understanding that it was actually quite active and functional. A major devel-

opment in the understanding and objective description of sleep was made in 1951, by Kle-
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itman and Aserinsky [12], when they discovered the manifestation of rapid eye movement
{(REM), during sleep. This discovery, due to the distinctly different nature of the REM from
the traditionally recognized patterns, led them to classify REM as a separate stage of sleep

and thus, allowed them to ‘partition’ sleep.

Now, with universal consent, sleep is considered to be divided into two separate and dis-
tinct states. One state is called the 'non-rapid eye movement’ state (NREM) while the
second state is called the 'rapid eye movement' state (REM). The rggular cycle of sleep
begins first with wakefulness and then proceeds into the NREM state until it finally arrives
at the REM state of sleep before the cycle returns to the beginning of the NREM state and

then repeats itself for the normal eight to ten hour duration of a person's total sleep time.

1.3.1 NREM Sleep

When a person's sleep is monitored and displayed through an EEG, the NREM state of
sleep is, in 2 normal person, recognized as being synchronous, exhibiting regularities, dom-
inant frequencies and other recognizable wave features such as sleep spindles, K-com-
plexes and high voltage slow waves (see Figure 1.2). M@reéver, to facilitate the analysis
of a person's sleep cycle, the NREM is subdivided further into four distinct and generally
accepted sleep stages, based on the presence of characteristic waveforms which are used to
classify each stage. These subdivisions of the NREM sleep aid at recognizing the gradual
transition that a person goes through from wakefuiness to deep sleep. Typical waveforms

occurring during the four different stages of the NREM sleep are shown in Figure 1.5.
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Figure 1.5: The stages of NREM sleep taken from a 19-year-old female. The arrow in the stage 2 waveform

indicates a K~complex while the underlining indicates two sleep spindles {taken from [3]).

In the following sections, we briefly discuss each sleep stage as described in [3] and [8].

1.3.1.1 Stage 1: Drowsiness

The first stage of the NREM sleep is commonly referred to as the sleep onset, when a
person is still awake but is demonstrating the initial signs of ensuing sleep. Typical frequen-
cies associated with wakefulness are low amplitude high frequency waves. The transition

from wakefulness to Stage 1 of sleep is shown in Figure 1.6.
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Figure 1.6: This waveform shows the transition from wakefulness to stage 1 sleep. Notice the high

frequency portion of the wave followed by a decrease in frequency (taken from [8]).

In the EEG literature, the dominant frequencies and the characteristic waveforms that are
present, and serve, by their presence, to define the various sleep stages of the signal, are

generally accepted to occur simultaneously, in the defining patterns, shown in Table 1.2.

Table 1.2: Description of the dominant frequencies and waveforms encountered during the
different stages of sleep of an adult male.

Sleep Stages Sleep Type Dominant Frequencies &
Char. Waveforms
Stage 1 drowsiness o , disappearing o
sharp waves
Stage 2 light sleep mostly 9, some o
sharp waves, K-complexes
Stage 3 deep sleep mix 8 and §,
K-complexes, spindles
Stage 4 very deep sleep very slow 9,
some K-complexes
REM desynchronized o waves reappear but
: desynchronized

Therefore, in wakefulness, the presence of high frequency beta waves tends to dominate the

EEG waveform. When the onset of sleep begins, alpha waves become more prevalent until
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they themselves dominate the majority of the waveform. The amplitude, however, remains

relatively unchanged.

1.3.1.2 Stage 2: Light Sleep

As seen in Table 1.2, a typical waveform of Stage 2 activity is composed of mostly theta
waves with some residual alpha waves still present. Compared to Stage 1, which is entirely
dominated by energetic alpha waves, Stage 2 demonstrates the gradual deepening of sleep
by the increased presence of the lower frequency theta waves, replacing the alpha waves of
Stage 1. Moreover, in addition to the change in dominant frequencies, there are further dif-
ferences which distinguish these two sleep stages. In Stage 2, there is an ever increasing
presence of unique waveforms such as the K-complexes and sleep spindles (see Figure 1.2).
K-complexes are sharp sawtooth like biphasic components of high amplitude usually
greater than 100uV; sleep spindles are short frequency bursts of 11.5 - 15 Hz lasting longer
than half a second, with a typical amplitude greater than 254V [3]. Both of these particular

waveforms appear exclusively in large numbers during Stage 2.

1.3.1.3 Stage 3: Deep Sleep

The mixed presence of both the high amplitude low frequency theta waves and the higher
amplitude lower frequency delta waves as seen in Figure 1.5 typically serve as the repre-
sentative wave structure of Stage 3. Although both particular waves predominate during
this stage it is the changing dynamic of their presence that allows us to classify this stage

with a certain degree of confidence. The noticeable traits are the total absence of alpha
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waves and the gradual appearance of theta waves. Although in the previous section it was
suggested that sleep spindles occurred frequently in Stage 2, they are still present in this

stage but considerably less, in comparison.

1.3.1.4 Stage 4: Very Deep Sleep

The predominant waveforms in Stage 4 are a mixture of theta, high delta and low delta
waves. Sleep spindies are rarely present. This stage of sleep is commonly referred to as
deep sleep and often it is lumped together with Stage 3 because the boundary separating

these two stages is not so sharply defined in practice {3].

1.3.2 REM Sleep Stage

The second state of sleep, as mentioned in Section 1.3, is called the REM sleep. This stage
of sleep, in a normal person, follows Stage 4 of the NREM sleep and is the stage of sleep
when dreaming usually occurs. The waveform structure differs greatly from the NREM
sleep because, contrary to that state of sleep, REM sleep is usually asynchronous, where all
types of frequencies fast and slow tend to make their appearance in frequent bursts. In sleep
monitoring, the EEG is usually accompanied by reading from other physiological sources,
in order to help in detecting patterns. As described in Section 1.2.3, along with the EEG
readings, we also have EOG and EMG readings. A person is considered to be in REM sleep
when the EEG includes a confused assortment of varying frequencies and the EOG simul-

taneously shows rapid eye movement, as well as an almost total muscle relaxation indicated
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by an almost flat EMG reading. A sample polysomnogram, demonstrating a typical exam-

ple of REM stage sleep, is shown in Figure 1.7.
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Figure 1.7: Polysomnogram of REM sleep (taken from [3]).

The different stages and the overall sleep cycle that an adult follows during the night is

shown in the histogram in Figure 1.8.
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Figure 1.8: The sleep cycle of a young adult (taken from [3]).
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The staging of sleep provides us with a template with which to compare and consequently
detect microarousals. Within a certain stage of sleep, if a frequency, different from the
characteristic waveforms for that stage, suddenly appears and satisfies the Rechischaffen
and Kales (R&K) criteria, then we can score that frequency burst as an arousal [11]. An
EEG arousal is defined as a sudden uncharacteristic burst of EEG frequency. By uncharac-
teristic, it is meant that, compared with the dominant frequencies occurring during a spe-
cific stage of sleep, any sudden change in frequency, excluding stage specific waveforms,
such as the K-complexes or spindles, such a frequency may be scored as an arousal. These
arousals may include theta, alpha and/or frequencies greater than 12 Hz. More specifically
a stricter guideline in order to interpret arousals is provided by the R&K scoring rules [13],
which will be outlined below to provide a clearer understanding of the specific waveform

we aim to detect in this thesis.

1. A person must be within a certain sleep stage as defined in Section 1.3 for a minimum

of at least ten continuous seconds before an FEG arousal can be scored.

2. For a second arousal to be scored, another preceding period of ten continuous seconds
of stage specific sleep must have been observed, between the first arousal and the sec-

ond arousal, as well as any other future arousals.

3. An uncharacteristic burst of frequency must have a duration of at least 3 seconds or

greater to be scored as an arousal.

4. In NREM sleep, EEG frequency bursts of greater than 3 seconds can be scored without

an accompanying increase in amplitude in the EMG signal.
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5. In REM sleep, an EEG frequency burst MUST be accompanied by a concurrent

increase in EMG amplitude to be scored.

6. Arousals cannot be scored when the only change observed is an increase in only the

EMG amplitude.

7. Artifacts (i.e., waveform disturbances caused by extracerebral sources such as the
patient movement or operational errors etc.), K-complexes or delta waves are not
scored as arousals unless accompanied by an EEG frequency burst. If these specific
waveforms appear before the EEG burst, then that EEG burst is not scored. If they
occur during the EEG burst, then they are used to meet the 3 second duration criteria in

order 1o score that EEG burst as an arousal.

- 8. EEG and EMG bursts having an individual duration of less than 3 seconds, but when
observed contiguously have a duration greater than 3 seconds, are not scored as an

arousal.

9. A sudden alpha burst of at least 3 seconds, in NREM sleep, following a 10 second seg-

ment of alpha free sleep is scored as an arousal.

10.Transitions from one sleep stage to another by themselves cannot be scored as arousals

unless the above criteria are satisfied.

In the following, Figure 1.9 through to Figure 1.14, taken from [13], are presented in order
to clarify the above rules with examples that illustrate the polysomnographic environment,

which the detection algorithm will operate upon.
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The polysomnograms presented in Figure 1.9 to Figure 1.11 are all examples showing

scored MAs, based on the above R&K rules [11]
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Figure 1.9: This is greater than a 3-second EEG change with frequencies greater than 16 Hz and alpha
activity. This EEG arousal also has increased EMG amplitude. There are greater than 10 seconds of sleep

preceding this event, and it is scored as an arousal.
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Figure 1.18: Two arousals are scored on this epoch as there are 10 seconds of sleep between the arousals.
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Figare 1.11: The EEG frequency change in this epoch of NREM is scored as an arousal despite the absence

of an EMG amplitude increase.
1.4.2 Examples of False Microarousals

Based on the R&K scoring rules, the polysomnograms in Figure 1.12 to Figure 1.14 are pre-
sented to highlight the situations where a disturbance, possibly mistaken for a
microarousal, is not scored as one.
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Figure 1.12: The instance of EEG frequency change and EMG amplitude increase in this REM epoch is not

long enough in duration to be scored as an arousal.
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Figure 1.13: While the EMG amplitude is briefly elevated, there is no EEG frequency change and this

event is not scored as an arousal.
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Figure 1.14: The EEG frequency change on this epoch of REM sleep is not accompanied by an increase in

EMG amplitade and thus is not scored as an arousal.
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1. sis

The objective of this thesis is to correctly determine the presence and exact location of MAs
within an EEG record. This problem is in itself new and therefore, no reseach specifically
focussing on this particular iséue has been found. Based on research conducted on similar
topics revealed in the literature and the emergence of the relatively new wavelet transform
(WT), whose application is particularly well suited for this problem, a novel, multistage
detection algorithm including signal segmentation is proposed in this thesis. This thesis is
the first approach to automatic MA detection using the WT, It must be made clear that in
the literature, the analysis techniques applied to other EEG detection problems use either
the WT or some form of segmentation, but never the two together. Therefore, the proposed
procedure is novel in the fact that it uses a combination of these signal processing tech-
niques in contributing to the detection of MAs. It must also be emphasized that apart from
combining the WT with a segmentation scheme, the proposed procedure also includes a
novel method to identify and extract the MA segments. In other words, the proposed pro-
cedure is novel in two ways: first, in applying a combination of both the WT and a segmen-
tation scheme to the EEG signal and second, in its overall design, which uses this
combination in conjunction with a novel method of identifying and extracting the MAs
from the EEGVsignaE. Comparisons of the results of the proposed procedure with real clin-

ical results are made.

In Chapter 2, the spectral decomposition techniques adopted in practice to investigate neu-
rological signals are described. A comparison is drawn between these and the WT to justify

the adoption of the WT as an improved decomposition transform and a novel means of



extracting the MAs. The decomposition of the EEG signal is the first stage of the multistage

algorithm.

In Chapter 3, the theory and a detailed description of the different detection techniques
employed to isclate the MA is presented. The important statistical concept of stationarity
is formally described. The segmentation of the non-stationary EEG signal into its various
constituent stationary segments is an essential step in the overall procedure because the MA
itself is assumed to be a stationary segmenf. Separating all of the stationary segments within
the EEG allows further tests to be performed in order to uncover the content of each seg-
ment and finally leads to the identification of MAs. The application of these detection tech-
nigues to the WT of the EEG signal is a novel approach that constitutes the second stage of

our multistage algorithm.

In Chapter 4, the experimental results obtained after applying the proposed detection algo-
rithm to a series of artificial signals are presented and discussed in detail. The artificial sig-
nals used are designed to represent non-stationary characteristic waveform patterns,

resembling MAs, as encountered in an EEG signal.

In Chapter 5, the last stage of the algorithm, which involves feature extraction, is described
and the overall procedure is applied to an actual EEG signal. Results are then presented and
discussed where a comparison is made against the clinical ‘gold standard’ detection results

obtained from a sleep technologist.

Finally, Chapter 6 concludes the thesis by pointing out the contribution of the proposed
investigation and suggesting some related problems and potential avenues for future inves-

tigation.
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| General

In Chapter 1, we outlined the goal of this thesis, which is the reliable and automatic detec-
tion of microarousals. There, a detailed description of the biological background of the
problem was presented. The proposed method of automation is a multistage process. The
first stage involves the decompostion of the signal into a more compact form freed of extra-
neous signal features. To obtain this form, an effective spectral decomposition method or
transform operator needs to be selected. Amid the various transforms available, we chose
the wavelet transform (WT). However, we must first outline the reasons motivating its
selection. Therefore, this chapter proceeds, first, with a comparative analysis of the WT and
other transformations traditionally applied to non-stationary signals. This literature survey
highlights the WT’s superior performance and this result consequently serves as the neces-
sary support behind its selection and use. Secondly, having thus justified its use, the wave-

let transform is then described in detail.
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2.2 Motivation be

Before we begin to describe some of the techniques used to analyze EEG signals, it must
be noted that most of the research being done in this EEG-related field generally applies to
detecting evoked potentials, event related potentials, epileptic discharges [14],]15],[16] or
some other form of feature exiraction related to experiments performed on either humans
or animals. There, the specific cause and effect relationships sought are based on the result-

ing EEG patterns emerging from an applied controlled action.

In trying to justify the use of the WT as a superior spectral analysis technique of non-sta-
tionary signals, our search through the literature led us to biomedical experiments mostly
involving the EEG. Yet, since the EEG is a particular case of a broader band of similar non-
stationary biomedical signals, experiments dealing with other types of similar signals, such
as the muscular tremor signals [17] or blood flow sound signals [18],]19] were also
included. These, of course, are not EEG signals but they exhibit identical non-stationary
properties and since their spectral properties are analyzed with techniques that we are com-

paring the WT to, their inclusion is warranted.

In humans, research was focussed on the EEG response to specific stimuli in order to estab-
lish consistent correlations between the source of the stimulus and the corresponding pat-
tern of the EEG waveforms emerging as a result of this stimulus, the detection of specific
types of épﬂepﬁc spikes in the EEG or the detection of tremors arising from particular dis-
eases such as Parkinson's disease, multiple sclerosis etc. Although the specific area of
investigation is different from ours, there is clearly a common ground, which links their

research with ours, This commeon link is based on detecting and isolating specific patterns.
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Since we are also looking for specific patterns (i.e., frequency bursts that follow the R&K

criteria) involving frequency, then the spectral techniques used in the previous research

need only be selected based on those that most closely resemble our particular problem.

There exists many types of spectral estimation techniques. These are outlined in Figure 2.1.
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Figure 2.1: Partial break-down of the various spectral estimation techniques available (taken from [17]).

By the nature of the particular problem we are addressing, namely, the detection of unchar-

acteristic frequency bursts within a specific sleep stage, we are obliged to obtain the clear-

est possible spectral representation of the signal. Therefore, it seems necessary to look for

current spectral analysis techniques applied generally to biomedical signals and specifi-

cally to neurological signals, which will enable us to achieve this objective. The current

techniques used for spectral analysis are:
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1. Discrete Fourier Transform (DFT)
2. Short Time Fourier Transform (STFT)
3. Autoregressive Filtering (AR)

4. Wavelet Transform (WT)

2.2.1 Discrete Fourier Tmnsfwm

Spectral analysis is an operation whose purpose is to decompose a signal into its frequency
or sinusoidal components. In other words, spectral analysis transforms a time-domain
signal into the frequency domain. Among the available spectral analysis techniques, the
Fourier transform (FT) is considered to be a good transformation between time and fre-
quency domains because of it being time-shift invariant. Moreover, it possesses an inverse
which allows the original signal to be recovered from its transform. Its discrete representa-

tion, the discrete Fourier tranform (DFT), is expressed as [20]:

N-1
kn

)W 0<k<N-1

Transform: X(k) = n;()x( YWy Q.1
0 otherwise
N-1

LY X@W" 0<nsN-1

Inverse: x(n) = <N o 2.2)

0 otherwise
where, Wy = e3(2%/M) and N is equal to the length of the signal x(n).

The DFT is implemented, in practice, by the fast Fourier transform (FFT).
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2.2.1.1 Stationary Transform

In [21], the FFT and the WT are both applied to EEG signals and their performance, as
spectral ana}yéis tools, is compared. The results demonstrate that the FFT, although good
at averaging out the spectral content present in a signal, lacked the ability to detect the pres-
ence of small transient changes, which are characteristic of non-stationary signals like the
EEG and are essential for detecting MAs. Figure 2.2(a) shows a 30-second EEG segment
of Stage 2 sleep and Figure 2.2(b) shows its FT. The FFT shows the relative weight, in
terms of the spectral amplitude, of each frequency present in the transformed signal. Unfor-
tunately, the moment in time when each frequency component occurs in the signal cannot

be shown by the FFT and this is a severe limitation for the problem under consideration.
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Figure 2.2:‘ {a) 30-second EEG segmeni of Stage 2 sleep and (b) its FT.
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The WT by comparison, due to its ability to resolve frequency and time simultaneously, is
clearly more suited to non-stationary signals. It provides clear advantages at capturing tran-
sient events such as epileptic discharges, by its ability to represent subspectral components
of the EEG in both time and frequency, and as such it is conclusively much more efficient

than the FFT.

Therefore, the direct application of the FFT to biological signals, especially when the center
of focus is the transient nature of the signal, demonstrates limited analytical use [22].
Although the transient used is an eye saccade or a short-time evoked potential burst, this
article clearly demonstrates both the stationarity and time-resolving limitations that result
from the application of the FFT to such a waveform. In this paper, various Fourier analyses
were applied to a transient, similar to a biological transient, but with a known theoretical
FT. The results showed that applying FFT directly to the signal gave erroneous resuits. To
correct these results windowing had to be performed with a cosine window, which led to
better results. Therefore, a proposed palliative to this limitation would be to force the signal
to be quasi stationary by windowing the signal, a technique called the short time Fourier
transform (STFT). The problem one would then be faced with, in order to force the signal
to be quasi stationary, would be to decide upon an optimal size and type of window to be

used and this is not an obvious question to answer.

2.2.2 Short Time Fourier Transform

In the previous section, it was pointed out that despite providing good spectral quantifica-

tion of a signal in terms of spectral content present, the FT frequency domain representation
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loses all time information regarding the exact time when that content occurred. That is, the
spectral analysis based on the classic FT method assumes that the signal is stationary and
consequently, it ignores any time-varying spectral content that may appear in the signal

1231,

Again, as in [22], [24] describes the FT as being a classic example of a 'stationary trans-
form'. The concept of stationarity will be discussed formally in Chapter 3. As a result, the
FT provides a good means of analyzing a signal if that signal is composed of a few station-
ary components (e.g., sine waves). However, any abrupt change in time (such as an MA)
in a non-stationary signal x(t) is spread out over the entire frequency axis making the FT’s
usefulness in precisely identifying the frequency content acutely limited. The article [24]
goes on to suggest that the signal can be made 'quasi stationary’ by introducing time depen-
dency, through the use of a windowing function, concentrated at some local frequency. This

is the STFT and it is defined as:

STFTI(t, /) = J-x(t)g*(t —1)ed2n/gt @.3)
where g(t) is some window function.

It can be seen that (2.3) maps the signal into a two-dimensional function in the timé-fre-
quency plane (1.f). The parameter f in (2.3) is similar to the Fourier frequency. However,
the analysis here, unlike the FT, depends critically on the choice of the window function.
Figure 2.3 shows vertical stripes in the time-frequency plane, illustrating the "windowing
of the signal" in time perspective of the STFT. Given a version of the signal, windowed
around time #, this viewpoint computes “all frequencies” of the STFT. An alternative view

is based on a modulated filter bank interpretation of the same process. At a given frequency
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£, (2.3) amounts to filtering the signal "at all times" with a bandpass filter having as impulse
response the window function modulated to that frequency [24]. This is shown as the hor-

izontal stripes in Figure 2.3.
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Figure 2.3: Time-frequency plane of the STFT (taken from [247).

2.2.2.1 Time-Frequency Resolution

The problem with the STFT is the question of the resolution. Because of the Heisenberg
uncertainty principle (HUP), we cannot have arbitrarily good frequency (time) resolution
without losing time (frequency) resolution [24]. That is, the time-bandwidih product is

restricted to a very specific physical bound, imposed by the HUP

- (2.4)
T
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where Af'is defined as:

_repry

Af? @.5)
ng(}’N 2df

where the denominator is the energy of the window g(t).

The resolution in frequency of the STFT analysis is given by Afand indicates that two sinu-

soids will be distinguishable from one another only if they are more than Af apart.

Similarly, At is defined as:

_ g
l2()I2ds

Af? (2.6)

where the denominator is again the energy of the window g(t). Now, two pulses, in time,

will only be distinguishable from each other if they are at least At apart.

This is called the time resolution of the STFT analysis. It must be noted that Gaussian win-
dows are often used because they meet the time-frequency bound imposed by (2.4). A more
important consequence of windowing, in the STFT, is that, once a window is chosen, its
time and frequency resolutions (At and Af) are fixed over the entire time-frequency plane
(since the same window is used at all frequencies) [24], as shown in Figure 2.4, along with

the associated basis functions (i.e. windowed Fourier basis functions).
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Figure 2.4 a) STFTpartition of the time-frequency plane, b) Basis finctions of the STFT. (taken from [24])

Each tile represents the essential concentration in the time-frequency plane of a given basis
function. Since the STFT is constrained by a fixed window size, its basis functions have a
fixed and therefore a uniform concentration in the time-frequency plane. The direct result
of this fixed window size constraint is a uniform partitioning of the time-frequency plane
as shown in Figure 2.4(a). In other words, the STFT uses a ‘one-size-fits-all’ (i.c. one
window size) approach to capture all the time-varying signal content that occurs at different
regions of the plane. Clearly, this approach is suboptimal for signals exhibiting transients
because one size does not optimally fit all types of transients, but once a particular window
is chosen its size remains fixed throughout the analysis, which is a major limitation of the
STFT. This drawback can be seen in the basis functions, where each function maintains the

same length inspite of the changing frequency.
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On the other hand, the WT offers 2 more customized approach, with tiles changing their
concentration depending on their position within the time-frequency plane and as a result

presents a more effective partition to capture signal transients.

To further demonstrate the STFT s limitations in resolving both time and frequency prop-
erties in a signal, let us consider an example taken from [25], with the signal shown in

Figure 2.5.

005 a3 435 02
Tire (seconds)

Rigure 2.5: 'STFT analyzed signal containing two sinusoids and two closely spaced delta functions

Here we have a signal, which is composed of two small bursts, associated with two long

quasi-stationary components
f(t) = sin(2nf;t) + sin(2nf,t) + K[8(t —t,) + S(t—1,)] @7
with f; = 500 Hz, £, = 1000 Hz; t; = 192 ms and {, = 196 ms; K = 3;

When using the STFT, a choice needs to be made, whether the signal should be analyzed
with either good time resolution (short window width) or frequency resolution (large

window width). Because of its inherent resolution limitations the STFT cannot analyze a
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signal with both good time and good frequency resolution using the same window, as

shown in Figure 2.6.

1000 2 s

L i i .
4] 0.05 2.1 915 82
. Time (seconds)

Figure 2.6: The STFT of the signal in Figure 2.5 corresponding to different window widths (W): {a)
W=2ms, (b) W=4ms, {c) W=8ms, (d) W=16ms; vertical axis is frequency (Hz) (taken from [25])

Here, the limitations in resolving both time and frequency components present is made
quite apparent. Specifically, in Figure 2.6a we see that by using a small window length the
two time bursts are well resolved, but at the expense of totally obscuring the frequency con-

tent. In fact, the frequency resolution is so poor that we cannot even identify the number of
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distinct frequency components that are present, let alone their exact value. Conversely, in
Figure 2.6d the window is increased to a value which correctly reveals the two frequency
components. Now, the resolution relationship is reversed and the two time bursts are no
longer resolvable. To provide some workable compromise between both the time and fre-
quency domains, the window length must be adjusted to some value between the short
window used for Figure 2.6a and the long window used for Figure 2.6d. Unfortunately, this
compromise, as shown in Figure 2.6b and Figure 2.6c¢, provides rather poor results in both

domains simultaneously.

2.2.2.2 Constant Relative Bandwidth

In Section 2.2.2.1 we showed that the STFT partitioned the time-frequency plane uni-
formly. Referring back to F igure 2.3 we can consider the STFT as a filter bank. In particu-
lar, this filter bank is composed of identical filters of fixed bandwidth spread across the
entire frequency range, centered at equally spaced frequency intervals as seen in Figure
2.7a. The fixed time-frequency resolution of the STFT makes it unsuitable in circumstances
where analysis requires flexible resolution across the frequency range. To overcome the
problem of fixed time-frequency resolution in the STFT, the following constraint is

imposed:
é};f = constant (2.8)

where Af’is the filter bandwidth and f'is the filter’s central frequency.



Implementing constraint (2.8) creates an analysis filter bank which is composed of band-
pass filters with constant relafive bandwidth. Now, instead of having the frequency
responses of the analysis filter regularly spaced over the frequency axis, they are now

spread logarithmically over the axis, which is shown in F igure 2.7b.

&} Constan Bandwitth [STFY Case)

Constant Relative Bandwidth (WT Case)

/ ; 2 Fregusncy §

Figure 2.7: Division of the time frequency plane for (a) the STFT (uniform) and (b} the WT (logarithmic)
(taken from [247)

With the condition given by (2.8) satisfied, we can change the time and frequency resolu-

tion to suit our interests, a property which is explicitly exploited using wavelets.

It is clear that the resolution constraint of the HUP is still satisfied but now the time reso-
lution becomes arbitrarily good at high frequencies, while the frequency resolution

becomes arbitrarily good at low frequencies. For example, two very short bursts can always

40



be eventually separated in the analysis by going up to higher analysis frequencies in order
to increase time resolution, as seen in the time-frequency plane partition of Figure 2.9a in
Section 2.2.4. This kind of analysis works best if the signal is composed of high frequency
components of short duration plus low frequency components of long duration. The new
definition in (2.8) provides adjustable frequency and time resolution as opposed to the fixed
time and frequency resolution offered in the STFT. This new definition, however, applies
to the continous wavelet transform (CWT), which will be explained later. In fact, unlike the
STFT, the WT implementation is not frequency-independent, so higher frequencies are
studied with analysis filters with wider bandwidths [26] . Before we begin to discuss the
relative merits of the CWT, another standard and popular spectral estimation technique

called the autoregressive (AR) method is presented.

2.2.3 Autoregressive Method

Unlike the previous spectral analysis methods, the autoregressive (AR) method is paramet-
ric. A parametric model of spectral estimation is a mathematical one that approximates the
processes underlying the production of the signals using models of data generation gov-
erned by a small number of parameters [17]. It involves the selection of a suitable model
order (i.e., the total number of parameters involved) and then estimating these parameters

based on the available data.

A time series u(n), u(n~ 1), u(n—-2), ..., u(n—p) is said to represent a realization of an

AR process of order p if it satisfies
u(n) +au(n-1)+au(n-2)... + apu(n —-p) = v(n) 2.9
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where 2,,35,34,...,2, are constants representing the AR parameters or model coefficients

P
and v(n) is a white noise driving process with zero mean and variance o [27]. Written more

compactly, we have

P
u(n) = - Z a u(n—m)+v(n) 2.10)
m=1 ’

The process generating the model given by (2.10) contains p+2 parameters to be estimated

from the original time series. These parameters are the coefficients a,, the mean of the sam-

ples and the variance of the noise.

Further analysis, such as spectral estimation, can now be performed directly on the esti-

mated model parameters, a,,, instead of on the original signal.

2.2.3.1 Justifying AR over ARMA and MA
The AR modeling method is one of three fundamental mathematical modeling techniques,

the other two being the autoregressive moving average (ARMA) and the moving average

{(MA). The choice of the model is based on the knowledge about the likely shape of the

spectrum. The ARMA model is effective when the spectra to be estimated contain both
sharply defined peaks (dominant frequencies) and notches (absence of power at particular
frequencies), while the MA model is used when the spectra are well characterized by their
notches. The AR model is effective for spectra that are well characterised by their peaks
(resonances), making it the most appropriate method for the analysis of stationary time

series [17]. AR modeling is often chosen, even when the spectral characteristics are not

clearly 'peaky’ for the following reasons:
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1. Computing the MA and ARMA coefficients involves solving a complicated system of

nonlinear equations.

2. The computational load to calculate the AR model parameters tends to be less than

those for the MA and the ARMA models;

3. The MA and ARMA models can be represented by an AR model if its model order is

high enough [27].

Therefore, AR modelling is suitable for time series that exhibit sudden peaks without being

accompanied by any sudden deep hollows [18].

2.2.3.2 Comparing AR te FFT Methods
Investigating the sound signals produced by the blood flow in the aortic valves of patients,
suffering from heart disease, the authors in [18] and [19] attempt to determine the best spec-

tral analysis method that can resolve both the time and frequency components present in

the signal. They compare the FFT, AR and WT.

Applying AR modelling, they first calculate the parameters, a,,,, representing a p-ordered
AR process as in (2.10), following the Levinson algorithm. With these parameters in hand,

the power spectral density of the signal is obtained for a finite set of frequencies, using

2
GpAt

2
—j2nfmAt
1+ Z 8yme

m=0 i

P(k) = @2.11)
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where a,o = 1 the a,, are the parameters and o} is the driving variance.

The results achieved from the AR method demonstrates that although it produces good
spectral resolution of the sound signal, it does not yield good results observing the effects
of sudden fluctuations (i.e., poor time resolution). Moreover, it also produces misleading

frequency components.

By comparison, the paper concludes that the WT is the superior transform in the case of
spectral resolution and in the capturing of all frequency components. In addition, where the
case of sudden changes is concerned, the WT method gives a better performance for spec-

tral resolution than the FFT and AR methods.

Furthermore, in [17], three techniques are compared when analyzing non-stationary tremor

data produced from subjects suffering from multiple sclerosis. The three techniques are:
1. Spectral estimation by FFT-based methods

2. Blackman-Tukey (BT) method of spectral estimation (taking the FFT of the autocorre-

lation of the signal) Power Spectral Density (PSD) estimator.

3. Autoregressive model of spectral estimation (the PSD is obtained from AR model

parameters instead of directly from the original signal).

When the tremor data sequence was analyzed, using these techniques, the following spec-

tral estimates, shown in Figure 2.8, were produced.
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Figure 2.8: A comparison of FFT-based and AR spectral estimates. 60 points of postural fremor data from
a patient with multiple sclerosis which has been high-pass filtered, f;,,,,=120 Hz. (a) Periodogram (average
PSD obtained from FFT), (b) BT, {c) AR (order=3) (taken from [17]).

For this relatively short time series the AR method produces the clearest spectral estimate
with a sharp peak at the tremor frequency of 2.6 Hz. In contrast, the corresponding peaks
for the FFT-based estimates are both relatively wide indicating é lower resolution. The peri-
odogram estimate is clearly the most variable while the AR estimate is the smoothest, not-

withstanding the sharper peak.
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Further testing of AR modeling was performed using simulated signals incorporating dif-
ferent amounts of additive noise. The results produced showed that AR modeling maintains
both its smoothness and the sharp peak characterized in Figure 2.8c. However this smooth-
ness comes at the cost of increasing its order. An increase in the model order has the effect
of incorporating the additive noise into the AR model. For short data sequences, where the
FFT-based methods produce poor results, careful adjustment of the model order can pro-
duce reliable AR spectral estimates, although the dangers of setting the order too high
should be remembered. Therefore, [17] concludes that the inherent performance limitations
of FFT based spectral estimation when analyzing short data segments can ofien be elimi-

nated by the appropriate use of AR techniques.

The motivation for using AR modeling over the FFT based spectral estimation techniques

is further emphasized in [28]. In this paper a comparison is made among the following:
1. FFT method
2. Autoregressive modeling

3. Wavelet based time-frequency

The results in [28] describe the FFT based spectral estimation to be a useful technique when
used in analyzing stationary signals whereas the AR model improves the resolution of the
spectra in the case of short duration signals, compared to the FFT approach. However, the
paper goes on to describe how these two methods are inadequate in capturing the transients
appearing in non-stationary signals because of their underlying stationary nature. In con-

trast, through their experiments on neurological non-stationary signals they conclude that
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the WT provides the best means of describing the time-frequency distribution of the sig-
nal’s spectrum. In other words, it is most useful in capturing and representing the temporal

changes (particularly, the transients) in the spectrum of the EEG signal under investigation.

2.2.3.3 Shortcomings of AR

In closing, the major disadvantages of the AR method are:

1. Stationarity: The underlying assumption of the AR modeling process is that the signal
it is modeling must be assumed fo be stationary. This assumption makes the AR process
unsuitable in a non-stationary environment. The stationarity requirement is a very
restrictive limitation needed to obtain a statistically consistent spectral estimation [29].
With regard to biomedical signals, stationarity is not generally a biological condition,
since many physiological changes may take place in short time with a fast adaptation

[30].

2. Model order: The estimation of the model order poses a problem in a non-stationary
environment. Once the model order is fixed, it may be insufficient to reliably track the
changes in a non-stationary signal, where it could be too low sometimes or too high at

other times.

The shortcomings of the AR process, when faced with a non-stationary signal, may be over-
come using time-varying AR models [30], but this method will not be further discussed in

this thesis.
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In Section 2.2.2, we presented the STFT and defined the frequency and time resolution that
was achievable using that technique. It was explained, in that section, that the HUP pro-
vided a physical limitation to the amount of resolution one could expect to achieve in
resolving a signal in either the frequency or the time domain. In the STFT case, once a
window was selected the resolution in both frequency and time was fixed for the remainder
of the analysis. However, by scaling the filters logarithmically, we saw that a greater flex-
ibility could be achieved in terms of resolution. It is ﬁrecisely this adjustability in time/fre-
quency resolution that is used by the continuous wavelet transform. (CWT) and
consequently makes it a powerful tool in estimating the spectral content of a non-stationary

signal.

In general the CWT is defined as:

CWT(z,a) = ;_/%l Ix(t)h*(%i) dt | @.12)

where h*((t —t)/a) represents a scaled time shifted version of a particular filter, t repre-
sents the time shift variable and g represents the scale variable. Both variables o and 7 are

continuous in the CWT [24].
On the other hand, its inverse, which exists, recovers the original signal without loss and is

given as:

x(t) = %J Jewrg, a)h(%)djgﬁ ,  a>0 @13)

a a2
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where ¢ is a constant of integration dependent on h(t) while all the other variables are the
same as in {2.12). It must be mentioned that for reconstruction, as described in (2.13), to be
possible, h(t) must be band pass and have finite energy. With these conditions satisfied, the
time domain representation of h(t) resembles a ‘small wave’ from which comes the name

wavelet [24].

In particular, the filter h(t) as it is used in (2.12) possesses the property of constant relative
bandwidth described in Section 2.2.2.2. In other words, the CWT can be viewed as a filter
bank of constant relative bandwidth filters which partitions the frequency domain logarith-
mically, as shown in Figure 2.7b. Moreover, the CWT partitions the time-frequency plane

in a similar manner as shown in Figure 2.9a.

(a) (b)

Srequency’
2

o bimne

Figure 2.9: (a) CWT partition of the time-frequency plane, (b) CWT basis functions (taken from [24]).

Compared to the uniform time-frequency partition of the STFT of Figure 2.4a, Figure 2.9a
shows that the CWT partitions the time-frequency plane into variably-shaped tiles ideally
suited to capture the variable time and frequency content (transients) in a non-stationary

signal. For example, in Figure 2.9a we see that the tiles with long time and short frequency
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dimensions represent areas in the time-frequency plane where the CWT optimally captures
the low frequency content of long time duration. Similarly, the tiles with short time and
long frequency dimensions represent areas where the CWT optimally captures the high fre-
quency content of short time duration. Therefore, the CWT offers a substantial improve-
ment compared to the STFT because it is able to capture both the low frequency content
and the high frequency bursts of short duration opfimally and simultaneously. As a result,
the CWT can be used to unambiguously represent a signal and, contrary to the STFT, can
provide a clearer signal representation, which would allow more involved operations such
as parameter estimation and pattern recognition to be performed on the "transform side”

[24], as we shall see in the following sections.

Although function h(t), in the CWT, has been viewed as a filter it can also be viewed from
another perspective as a basis function, referred to as a wavelet. Three examples of the
CWT basis functions or wavelets, equivalent to scaled versions of h(t), are shown in Figure
2.9b. Viewed from this standpoint, the CWT is the result of taking the inner product
between the signal and all of the wavelets forming its basis. For example, one particuﬁar
wavelet of a given scale can be viewed as sliding over the entire signal producing continu-
ous values or CWT coefficients. These coefficients represent the degree of correlation
between the signal content and that particular wavelet. Repeating this action for all values
of scale will produce the entire CWT. It is therefore important that the type (shape) of the
wavelet used in the CWT resemble the type (shape) of the waveform content within the
signal that it is analyzing. It must be mentioned that there are an infinite number of possible

wavelets to choose from.
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In [31] we see various applications for wavelets in neuroelectric waveforms. Initial evi-
dence demonstrates that wavelet analysis offers real advantages in signal detection, com-
ponent sgparation and computation speed over the traditional time—frequency analysis
techniques like the STFT [32]. Moreover, wavelet analysis can provide improved methods
of extracting and displaying meaningful information contained within neuroelectric wave-
forms. Clearly, traditional mathematical wavelets like the Haar and Daubechies wavelets
shown in Figure 2.10 are not representative of typical biological wave shapes, however,
more representative wavelets such as the Coifman and symilet wavelets, also shown in

Figure 2.10, are better suited to represent neurological events such as microarousals{31].
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Figure 2.10: Sample of varicus wavelets.
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In general, properly chosen wavelets will closely model the temporal and spectral proper-
ties of certain components of neuroelectric waveforms, thereby providing optimum resolu-
tion of those specific neuroelectric events. Recent work on designing members of a class
of wavelets known as Meyer wavelets ([33] and [34]) to match specific signals now makes
it possible to design wavelets that are close matches to the shapes of many of the specific
waveforms whose analysis is desired. Wavelet representations provide precise measure-
ments of when and to what degreé transient and component events occur in a neuroelectric
waveform and of when and how the frequency content of a neuroelectric waveform
changes over time. In what follows we show the different ways that the WT transforms a

signal and some of the applications in which they are used.

2.24.1 €0ntémzou§ Time-Scale Decomposition (CWT)

The CWT provides a continuous decomposition of the signal in both time and scale. Its
ability to resolve a signal over the whole range of scale magnification is a powerful tool for
exploring the waveform structure of a non-stationary signal such as the EEG. The CWT is
a useful transform, especially for applications where the small scale structure is important.
An example of a CWT decomposiﬁdn of a non-stationary sample of an EEG signal com-

posed of many different small scale waveforms is shown in Figure 2.11.
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Figure 2,11: Time-scale plot of a sample of an EEG signal based on a CWT (taken from [31])

In Figure 2.11 we note that small scale events such as the spikes are captured compactly in
the small scale (high frequency) area of the time-scale plane, where short time bursis are
best resolved. Other larger events such as the large scale spindle and large scale component
are captured most efficiently in the large scale (low frequency) area of Ehetimé-scaﬁe plane,
where longer time events are best described. Some of the shapes of the waveforms in the
signal are similar. As a result, their CWT representations also resemble each other. For
example, waveforms c¢ and d are identical in every respect except in scale. Similarly, their
CWT representations are identical except that their position in the time-scale plane is dif-

ferent. This difference in position reveals their difference in scale, as well as in latency
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(translation in time). The fact that patterns are identical but only their position in the time-
scale plane is different can be exploited in pattern-recognition waveform analysis algo-
rithms that search the time-scale plane for energy patterns that correspond to specific com-
ponents, regardless of their specific width. Therefore, beyond its value as a visualization
aid, the time-scale plot provides a good means for developing pattern recognition algo-
rithms to identify meaningful neuroelectric events, especially in the presence of noise [31].
Although the CWT provides a good representation for pattern recognition algorithms, it is
highly redundant in describing the signal’s time-scale energy patterns. Theoretically, the
setof CWT coefﬁcienté representing any signal is infinitely large, corresponding to an infi-
nite range of scale and latency values. However, in practice the CWT is represented by a
large but finite number of coefficients whose number far exceeds the actual number of sam-
ples used in the original signal. Therefore, for applications where a more efficient and con-

cise representation is needed, the discrete wavelet transform (DWT) is used.

2.2.4.2 Discrete Time-Scale Decomposition (DWT)

The DWT removes the redundancy of the CWT by efficiently discretizing both the scale
and the time (latency) in the time-scale domain (a detailed description of the DWT is given
in Section 2.3). Contrary to the CWT which produces coefficients far in excess of the
number of samples in the signal, the DWT produces exactly the same number of coeffi-
cients as the number of signal samples. As mentioned in Section 2.2.4, the wavelet slides

across the signal at different scales producing the CWT coefficients at each latency with a
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value proportional to the degree of correlation it has with the signal. Schematically, the dis-

crete version of this procedure is shown in Figure 2.12.
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Figure 2.12: DWT coefficients mapping the time-scale contributions at discrete translations at each scale
(taken from [31]).

The resulting set of coefficients concisely represents information at each scale separately.
The scale in Figure 2.12 is a dyadic scale. We note that scale represents frequency and that
scale and frequency are inversely related. Precisely, the term dyadic indicates that the fre-
quency increases by a factor of 2 as you go down in scale to the next lower scale or con-
versely, that frequency decreases by a factor of 2 as you go up to the next higher scale. To

really appreciate the savings in the number of generated coefficients that the DWT makes
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compared to the CWT, we compare the black and white dots in Figure 2.12. In the grid of
dots, the black and white dots are both included in the CWT coefficients while only the
black dots represent the coefficients of the DWT. It is obvious from this small example that
the savings offered by the DW'T’s concise representation is enormous. Furthermore, in this
discrete form the signal can be processed by other signal processing tools to further extract
the desired signal features. One such application is de-noising a signal of interest. The moti-
vation for de-noising is clear: removing the noise enhances the presence of the signal
thereby allowing further reliable analysis to proceed. With WT coefficients, effective de-
noising can be achieved by zeroing the small coefficients [31]. Taking the inverse DWT

(see Section 2.3) of the remaining coefficients produces a cleaner, de-noised signal.

2.2.4.3 Component Waveforms

With the de-noising example, we saw that a straightforward manipulation of the WT coef-
ficients produces important results. Moreover, from Figure 2.12 we observe that the coef-
ficients can be grouped together by scale. Taking the inverse DWT of these separate scale-

grouped coefficients produces the component waveforms, shown in Figure 2.13.
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Figure 2.13: Three-level discrete wavelet transform (DWT) showing the component waveforms of the

original waveform for each of the classic frequency bands: B, o, 8 and 8 (taken from [31]).

Seen from a different perspective these component waveforms are similar to the output of
a bank of discrete relative frequency bandpass filters. What is especially useful for us is that
by separating the different scales from each other the DWT can be used to divide the neu-
rolectric signal into the traditional neurological frequency bands (e.g. delta, theta, alpha,
beta) that play a crucial role in sleep staging. Specifically, the component waveforms can
provide a moment by moment description of how the sleep activity in each of these fre-
quency bands changes as a function of time [31]. It must be added however, that the unnat-
ural choppiness seen in the component Wavefoms of Figure 2.13 can be overcome by using
a wavelet whose shape is better matched for the general shape of neurolectric signals [38],

like the discrete Meyer wavelet for example. With the component waveforms, we can iso-
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late the relevant frequency bands in order to efficiently analyze and identify transients of
particular interest (i.e., microarousals). Indeed, the component waveforms representing the
pertinent frequency bands will provide us with the preliminary foundation on which to con-

duct further analysis.

2.2.4.4 Examples of some WT applications

The identification of specific types of neurological waveforms such as MAs clearly falls in
the category of pattern recognition, a field in which artificial neural networks (ANN) play
a key role. Therefore, to further appreciate the representational power of the WT, we
’include examples of an application where the WT preprocesses the input signal to an ANN.
In [35] wavelet representations of the evoke related potentials (ERPs) were used as the
input to a neural network algorithm designed to monitor human signal detection perfor-
mance in a vigilance task. In their experiment a comparison was made with the results pro-
duced by using raw ERPs or the principal components (i.e., amplitude, interval) of the
ERPs as the inputs to the ANN. Through the WT preprocessed inputs, [35] was able to
show significant improvements in the detection of ERPs compared to the other inputs. In
another similar experiment [36] the WT was again used to preprocess the input signals to
an ANN. In particular, they sought to detect a specific EEG pattern waveform composed of
a spike followed by a slow wave (SSW) embedded in a noisy background, as shown in

Figure 2.14.
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Figure 2.14: Exampies of classified EEG events (taken from [36])

They proceeded to test and train the ANN with the WT processed input signal. Due to the
concise representation and the fast transformation that the WT offered, [36] shows that the
WT sharply decreases the input size of the ANN without much compromise in its perfor-

mance.

As another example [37] demonstrates that the WT improved the decomposition of ERPs
into functionally specific components. The WT offered them a precise means to control the
frequency selectivity of the decomposition resulting in precise component identification,

even when the components overlapped in time and frequency.

Moreover, due to the infinite variety of wavelet shapes available a great deal of control is

made possible in the selection of wavelet shapes to match the shapes of ERPs embedded in
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the waveform. Properly selected wavelets such as these are excellent templates to detect
and separate those components and events from the background waveform [38]. Once sep-
arated, wavelet coefficients provide a direct measure of the feature of those components,

including their amplitudes, latencies and duration.

As another example, [39] and [40] demonstrate that wavelet pattern recognition algorithms
can be especially useful when the component or event varies in scale from waveform to
waveform, as, for example, in the case of a specific (i.e., auditory brainstem) evoked

response in different individuals.

2.3 Wavelet Transform Theory

In the previous section, we looked at the results from the literamreg comparing the WT with
other standard analysis techniques used on various biomedical signals. This survey demon-
strated that the WT outperforms them in representing non-stationary signals due to its supe-
rior time-frequency resolution. Specifically, the WT, because of its flexible time-frequency
resolution, is particularly well suited in describing transients (like MAs) present in non-sta-
tionary signals. In this section we will present a brief description of the theory underlying
the WT. The classic references to this subject are [41],[42],[43] whereas the texts used to
elaborate some of the concepts detailed in these papers and assist in the following theoret-

ical description are [44],[251,[451,[46],[47].
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2.3.1 Function Description through Series Expansion

In many situations it is convenient to expand a function by a means of another set of func-

tions expressed as a linear combination
fx) = Yououx)  flx) e L(R) @.19)
k

where k is an integer index of the finite or the infinite sum, oy are real-valued expansion
coefficients and ¢, real-valued expansion functions. One condition that is imposed on f{(x),
which is a property present in most signals encountered in practice, is that it be of finite

energy or an element of the square summable function space denoted as LZ(R}.

The individual functions ¢ (x) are called basis functions and the expansion set, {@u(x)}

form a basis for all functions within the function space, V, expressed as:

V= Spkan{ Qi(x)} (2.1%)

That is, if f(x) belongs to V then it is capable of being expanded by the closed span {@,(x)}

and as a result can be expressed by (2.14).

2.3.2 Multiresolution Approximation of EJZ{R}

The interest is not to express the function through just one subspace of Lz(R) but to express
it completely throughout the L2(R) space. That is, we would like to express f(x) with the

infinite subspaces V; belonging to L2(R); we seek a multiresolution approximation.

{0}c...cV_ cVycV,c...cl?
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The function {{x) in one subspace has a piece in all higher subspaces. To put it another way,
if f(x) is in the whole space, then a piece of f(x) or £(x) is in each V;, where V; € L*. This

idea in and of itself is the goal but for it to be possible certain conditions must be imposed.

Definition: the multiresolution analysis: ...cV_;cV,cV, ..., with some function

(%), is an increasing sequence of subspaces of LA(R) satisfying the following four condi-

tions [45],146]:
la.  (density) U Vj- is dense in 12 ®)
jed
1b.  (separation) MV, = {0}
jeZ
2. (scale invariance) fx) e V& f(2x) e Vi

3. (shift invariance) fx)e Voo fAx-kye 'V,
4, (orthonormality) {o(x—k)} c 7 is an orthonormal basis for V

The special function @(x) is called the scaling function. It is a real and square-summable
function, and as will be seen, in conjunction with the above definitions, plays the central

role in MRA.

2.3.2.1 Scaling Function
It follows directly from the above definition that the set {@;(x)}forms an orthonormal

basis for Vj.

¢ (x) = 2/ 2(9(2jx—k} (2.16)
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where j, k € Z. and specifically k denotes translation, 2/ denotes scale and 2/?denotes the
height or amplitude of the scaling function for the related subspace. Therefore, for a given
value of j or scale, the scaling function and all of its integer translations form the necessary

basis for that scale.

By the definition of MRA, V, c V;, ; and from (2.16) it is clear that for higher values of j
or higher scales, the scaling function becomes narrower or more refined. In other words, as

you go up in scale the resolution increases, as does the size of the subspace.

Let us consider two specific subspaces and their scaling functions, where ¢, € V and
¢« € V{.By condition (4) in the definition, @, k Spans the subspace V; and ¢,  spans

the subspace V. However, since @,k (X) € VoV, we have
1
90,1(X) = ) _go(m)—9 ,(X) @17
0,k ; 0 7 i,n
where, substituting values from (2.16) into (2.17), we get
o) = 2.g(n)9(2x —n) @18)
n

This important recursive relationship is called the scaling equation or dilation equation and

the coefficients gy(n), are called the scaling function coefficients.

2.3.2.2 Wavelst Functions

Now, let us define a subspace W that possesses the following properties:
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Furthermore, let us also define W; as the difference between the dependent subspaces V;

and V;,q. Or said differently, using the Hilbertian sum operator of subspaces [46]
W@V, =V, (2.20)

The relationship of (2.20) completes the decomposition description initiated by the MRA.
From (2.20) we note that any function p(x) € V., ; can now be decomposed into any
number of different lower scales such that:

Vigi = W@V,

Wew eV, @21

i

i

Similar to the development describing the relationship between the scaling function ¢(x)
and subspace V;, the subspaces {W;} are spanned by a basis function, y(x) € Wj , called

wavelets

vy () = 272 y(@x -k @.22)

Furthermore, since y(x) = Y ((x) € W, and from the decomposition sum in (2.20), we
clearly have W, € V,, a wavelet in one subspace can be expanded by the scaling functions

of the next higher subspace vy, (x) = Z gz(n}—j—_—q}l o(x) leading to
¥ 2 2
1]

y(x) = > g (me(2x-n) 2.23)

which is identical to (2.18), except for constant coefficients, g;(n), called waveles function

coefficients. Similar to (2.18), (2.23) is called the wavelet equation.
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2.3.3 Signal Decomposition

Combining (2.18) and (2.23), a function f{(x) € L2(R) can be expressed for a given
o(x), w(x) € LA(R) as:

Ax) = Zao(k}@g,k(x) + Z Zdj(k)“’j, (%) @.29)
k j=0 k
where the ag(k)’s and the di(k)’s are the approximation (scaling) coefficients and detail

(wavelets) coefficients respectively. The signal decomposition in (2.24) is referred to as the

discrete wavelet transform (DWT). By taking the inner product W¢ get
ay(k) = (f(x), 9 1 (x)) = > f(x)g (%) 2.25)
X
and
di(k) = f(x), y; (¥ = D Ty (%) (2.26)
X

Practically, the calculation of the coefficients a;(k) and d;(k) used in the DWT of (2.24) is
not performed as descriptively presented in (2.25) and (2.26). Instead, a fast and efficient
algorithm using perfect reconstruction filter banks, known as the fast wavelet transform or

subband coding, is used.

234 Fmﬁ Wavelet Tranform: Subband Coding

Through an appropriate manipulation of the above material, we can describe a recursive

relationship on both the approximation and the detail coefficients.
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a;(x) = Zaﬁg(x}ho@k—m}\é
" ihkmeZ 227
d(x) = Ta, ;(0h;[2k-m]
m

where hglk] and h,[k] are appropriate sequences.

In terms of signal analysis this relationship represents a filtering operation followed by a
downsampling by 2 of both the detail and approximation coefficients. This operation is

shown schematically in Figure 2.15

B@ {2 — 4

¥
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¥
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¥

H(z)

% g@{zﬁ

h

Hy@®)

Figure 2.18:  Analysis filter bank used in the decomposition of the 2-level DWT.

Similarly, we can reverse the process and reconstruct the next higher level from the previ-

ous level, combining (2.18) and (2.23), to obtain the recursive synthesis relationship:

8 1m = . {8Im—-2k]a  +g,[m-2k]d; } 2.28)
E

Again, looking at (2.28) as a signal processing operation, we note that, compared to (2.27),
the operations involved in reconstructing the higher scale coefficients are reversed. Now,

interpolation of the lower scale approximation coefficients by a factor of 2 begins the syn-
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thesis followed by convolution with either the scaling filter gy[n] or the wavelet filter,

gIn]. This process is illustrated in Figure 2.16.

d; _W@ﬂ Gi(@) _*—'é

By
=)
I
v
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&

Gz

Gy(z)

Figure 2.16: Synthesis filter bank used in the reconstruction stage of the 2-level DWT.

2.3.5 Conditions Imposed to achieve Perfect Reconstruction

To obtain perfect reconstruction (PR)!, certain requirements must be imposed on the anal-
ysis filters hy[nl, h;[n] and the synthesis filters gg[n], g{[n]. These conditions are clearly

explained in [41],[441,[25],[47].

This concludes the description of the discrete implementation of the WT. In closing, it
should be added that putting aside the spectral advantages, from the MRA of the WT,! its
implementation through the FWT offers another desirable property. It is a fast transform.
In comparison with the FF'T, which executes about O(nlogn) computations, the FWT oper-
ates faster by executing roughly O(n) computations, where » is the length of the signal

being analyzed, which proves to be advantageous as the value of 7 increases.[44],[47]

1. PR assumes no intervening destructive process, such as lossy compression, is applied in the processing
block between the decomposition stage and the reconstruction stage
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In this chapter, we have described that the first stage or transform stage of the proposed
microarousal detection procedure involved the decomposition of the signal into a compact
and pertinent form. Since other spectral techniques have been applied to similar types of

problems the justification, behind choosing the wavelet transform has been explained.

A comparison between the wavelet transform and various spectral estimation techniques
such as the fast Fourier transform, the short time Fourier transform and the autoregressive
model, traditionally applied for biomedical signal analysis has been provided. From this lit-
erature survey, confident conclusions have been drawn pointing out the wavelet trans-
form’s clear advantages over these traditional spectral transforms. In Iarge part the wavelet
transform’s advantages are due to its excellent ability to resolve both time and frequency
simultaneously. Time-frequency resolution is essential in achieving accurate detection.
Furthermore, the WT has been shown to be particularly well suited, compared to the other
techniques, in the non-stationary environment of biomedical signals. Many different types
of biomedical signals, similar to the EEG, in their non-stationary characteristics, have been
chosen‘ to compare the wavelet transform against the traditional spectral transforms. The
results of the comparisons, based on these biomedical signals, have clearly shown that the
wavelet transform is the superior transform in describing and isolating desired small struc-

tured wave patterns.

After describing the relative merits of the wavelet transform over the other techniques, a
brief yet detailed description of the structure of the wavelet transform has been given. In

particular, its orthogonality as was as its ability to perform multiresolution analysis have
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been considered. Finally, a procedure outlining its implementation for discrete signals,

known as the fast wavelet transform has been given.
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3.1 General

When using the WT to decompose our signals, we are still left with the task of extracting
the relevant patterns from them, to aid us in our goal of establishing a reliable diagnostic
tool. The wavelets only provide a new window into the signal that will peel off enough
layers of redundancy to allow the analysis tools to more clearly dissect and accurately iden-
tify the presence of MAs. The wavelet decomposition is a first step towards detection and

identification.

Although the WT simplifies the representation of the EEG signal, by itself, it is not suffi-
cient to isolate the MA. To aid in its detection, the signal’s properties must be described in
such a way as to take advantage of the various subband frequency information provided by
the WT. An effective mathematical procedure which greatly improves the EEG signal’s
description is the application of statistical modelling. That is, by describing the pseudo
random nature of the signal as a stochastic process, the signal’s apparantly random nature
can be further characterized through its moments (i.e. mean, variance etc.), until the pres-

ence of the MAs can be detected by means of a suitable statistical test.

As was pointed out in the previous chapters, the EEG signal, as well as its WT, is a non-

stationary signal. That is its statistical properties change with time. In order to establish a

70



good test, the signal must be broken into piecewise stationary segments, whereupon each
segment’s statistical pﬁ@peﬁies are made quasi-independent of time. Segmenting the signal
into stationary segments allows a comparison to be made between segments. Although each
segment may possess different properties, the imposition of stationarity, provides a solid
base of characterization, where comparisons can be made to determine the presence of

MAs. A formal description of stationarity is needed.

3.2 Stationarity

A random process, X(¢), can be given a complete statistical description, for any # and any
instant of time (f,1y,...,t) if its joint probability density function (pdi),
Tx(X s Xgs s Xpity, 1, ., 1) always exists. In general, the properties of a random pro-
cess’é joint pdf depends on the specific origin of time. If the joint pdf of a random process
is independent of the choice of the time origin, that is, if it is invariant to a shift in time,
then that process is said to be a stationary process. There are different types of stationarity
assessments, characterizing random processes, two of which are of interest - strictly sta-

tionary processess and wide sense stationary processes [48].

Definition: A random (or stochastic) process, X(¢), is said to be strict-sense stationary
(SSS) if all of its statistical properties (i.e. all of its moments) are independent of any shift

in origin. In other words a SSS process must be such that it satisifies the following:

F(Ep X o Xpstp by, oy £} = flX, %o, oo X5t H e, e, Lt FC) 3.0

for any value of time displacement c.
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From this definition, it is clear that the joint pdf characterizing the process depends only on
the relative position of the time instants t, t,,...,t, and not on there specific values.
Unfortunately, this definition imposes toc severe a constraint to be met realistically in most
applications. A loosening of the constraint imposed by ‘strict’ stationarity is achieved by

considering wide sense stationarity (WSS).

Definition: A random process, X(f), is said to be wide-sense stationary if it satisfies the fol-

lowing condition:
i E[X(5)] = uy(t) = constant
il. BIX(DX(t +1)] = Ryp(v)

where |1y is the statistical mean and Ry is the autocorrelation function of the random pro-

Cess.

Specifically, condition (i) states that the mean of the WSS process is independent of time,
while condition (ii) states that given time instants t;, = t and t, = t+ 1 then, the value of
Ry depends only on the time difference © = t,—1t; and not on t; and t, individually.
Therefore, a WSS process is SSS to the second order and as a result is a subset or particular
case of a SSS process. In other words, WSS maintains the requirements of SSS upto the

second moment but does not guarantee the same for higher moments, since WSS < SSS.

Describing a random process in order to assess whether or not its statistical properties
evolve with time is not trivial. There are two statistical approaches which address this prob-
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lem. One of them is called the non-parametric approach and the other is the parametric

approach.

3.2.1 Non-Parametric Approach

The non-parametric method is one which makes no assumption with respect to the proba-
bility distribution of the random process under investigation. By looking directly at the data
representing the process, non-parametric methods try to determine, depending on what fea-

ture (i.e. amplitude, autocorrelation, variance etc.) is studied, the stationarity of the process.

3.2.2 Parametric Approach

Parametric methods, on the other hand, do make an assumption about the underlying prob-
ability distribution generating the random process. With such an assumption, a random pro-
cess can modelled. Assuming that the assumption is accurate, the model parameters,

characterizing the process, are used in determining the stationarity.

The methods used in this thesis to establish piecewise stationarity are as follows:
1.Autocorrelation Method (non-parametric)
2.Nonlinear Energy Operator Method (non-parametric)

3.Generalized Likelihood Ratio Method (parametric)

These methods are described in detail in the following sections.
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itocorrelatio

3.3.1 General Procedure

The autocorrelation function (ACF) method [49] functions by first observing the EEG
signal through a moving window. This moving window must have not only a window
length (WL) that is at least as small as the smallest waveform segment expected, but also
long enough to observe the slowest frequency component. A second window is fixed as a
reference at the beginning of the observation interval. A comparison is made between the
content of both the windows. If the difference between the EEG segments seen through
both of these windows is significant enough, then a decision is made to set a boundary line
indicating that two different stationary segments exist on either side of this boundary. To

set this boundary reliably two steps must be performed.
I.Detection of Non-stationarity

2.0ptimal Non-stationarity Positioning.

3.3.2 Detection of Non-stationarity

To establish the occurance of a non-stationarity, we must determine a difference measure
between the reference and the moving windows. This difference measure must possess cer-
tain properties that minimize ambiguity and further support the claim that a non-stationarity

has been observed. Therefore the difference measure must:

1.be zero when the EEG content of both the windows is the same,
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2.be indifferent to direction of the window sliding over the non-stationarity.
Whether the window slides from left-to-right or from right-to-left over the non-stationar-

ity, it should be detected equally,

3.ensure that the degree of change in an occuiring non-stationarity, like an
increase in amplitude/frequency should record the same magnitude difference measure as

a similar decrease in amplitude/frequency, and

4.allow that, if two or more parameters (the two parameters we use are fre-
quency and amplitude) are used to detect non-stationarities, their combined contribution
towards detection is relevently weighted to reflect each parameter's proportional contribu-

tion.

The ACF method proposed in [49] addresses the points above, as well as the critical factors
just mentioned. By incorporating the above points, the ACF method establishes stationarity
as a linear sum of relative amplitude change plus relative frequency change, referred to as
the energy distance and the spectral distance, respectively. Specifically, the combination
of the approximated ACFs, obtained from both the reference and sliding window, shown in
Figure 3.1, assists in computing the energy and spectral distance. Furthermore, with suit-
ably chosen thresholds, the spectral and energy distances are normalized and combined into

a final distance measure, which serves to detect non-stationarities in the signal.
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Figure 3.1: Difference measure obtained using a fixed reference window and a sliding test window.

3.3.2.1 Energy Distance

The energy distance, or percentage change in amplitude d, (1), is obtained directly from the
ACFs of the reference and the test windoWs. This percentage change in amplitude is given
by the absolute value of the difference between the standard deviations (i.e. the square root

of the power given in the ACFs) divided by their minimum. Precisely, let us assume that
R, =[r(0), r(1), ..., r(L-1)] is the ACF of the reference window and that

R=[r(0,6), (1,0, ..., r{(L-1,8)] is the ACF of the test window, where L denotes the window

length.

Now, the energy distance is calculated using signal's power or in terms of the ACF as the

ACF at zero lag:

| Jr0, 5~ [r(0)
min{ /0, ), /r,(0)}

() = G.2)
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The two superimposed ACFs are shown in Figure 3.2, as are the parameters used to deter-
mine d,(t), in (3.2), where the A is the difference between the two ACFs and P, and Py rep-

resent the ACF at zero lag for the reference and test window respectively.

TiME LAG

Figure 3.2: The superimposed reference and test ACFs used to estimate the energy distance (taken

from[49]).

3.3.2.2 Spectral Distance

Contrary to the energy distance, which relies directly on the ACFs obtained from both the
reference and the test windows, the spectral distance or percentage change in frequency is
obtained through the normalized ACFs of the two windows. These normalized ACFs are

shown in Figure 3.3.

Figure 3.3: The superimposed normalized reference and test ACFs used to estimate the spectral distance

(taken from[49}).
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As noted in [49], the overall speciral distance of a signal is always directly coupled to the
changes in the signal's normalized ACF. That is, the information about the spectral content
is obtained through a comparison of the normalized ACFs from both the reference and the
test windows. Specifically, the spectral distance is given by dividing the spectral difference
between the two windows, indicated by region B in Figure 3.3 by the spectral region
common to both windows, indicated by region C. In other words, considering Figure 3.3,
dft) = % . Furthermore, following the procedure outlined in [49] each ACF must be trun-
cated to its first positive section to obtain a reliable frequency measure so as to provide an
overall estimate of the frequency change between the two windows. Consequently, trunca-
tion of the normalized ACFs, R, and R,,;, reduces their overall length, L, to M, where M <
L. The new truncated ACFs are now denoted as R, and R, while the spectral distance is

given as [54]:

M
2% |k, -7 (B)
di(t) = k=l 33
1+2 Y min{#((k, ), #,(k))}

k=1

3.3.2.3 Detection Thresholds

Since the threshold is the critical measure used to identify non-stationarities, deciding its
value requires careful consideration. We denote these critical values for amplitude and fre-
quency changes as T, and 7 They can both be set independently from each other but they

are usually made equal for best results. For this reason, any change in the amplitude per-
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centage will be equivalent to the same percentage change in the frequency. Bearing this in

mind, the overall autocorrelation distance measure is given by:

() a0
d() = + (3.4)
I, I,

A threshold point is declared whenever the overall threshold d(¢) crosses the normalized
global threshold, Tg, of unity. When a threshold point is declared, then, a non-stationarity
is said to have been detected. However, the detection of the non-stationarity is only half of
the problem solved; we still do not know accurately where the non-stationarity is. There-
fore, the other half of the problem, requires optimizing the real position in time of the non-

stationarity.

3.3.3 Optimal Non-stationarity Positioning

In the previous section we determined, by the overall threshold, if the test window defected
the presence of a nonstationarity. Now, our goal is to determine where, in time, it occurred

within the signal. In other words, we must now esfimate its exact position.

The point in time (f), when detection is confirmed is only nominal. This point is not precise.
When the difference measure crosses the threshold, indicating the presence of a non—sté—
tionarity, this event can only guarantee that a non-stationarity has occurred somewhere
within the test window. The reason for this ambiguity lies in the varying nature of the
changes between the signal content in the test window compared to the content in the ref-
erence window. Because the difference in content takes the form of an abrupt change, the

distance offset, doﬁ(t}, between the detection time, ¢, and the actual position of the change,
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varies directly according to the size, type (frequency/amplitude) and direction (increase/
decrease) of the change and as such can vary accordingly from zero to the entire window

length. In Figure 3.4, a general description of the problem is illustrated.

Figure 3.4:  Estimating the optimal position of the non-stationarity (taken from{49]).

To estimate doﬁ(z‘) (i.e. shown as D(t) in Figure 3.4) we take advantage of the fact that the
test window’s non-normalized ACF is a sum of linear products. Keeping this in mind, we
note that after the point ¢, as the test window continues to slide past this threshold point, the
value of A, shown in Figure 3.2 continues to increase linearly until the full window length
is reached. Recording this maximum value of A, we determine the Vaiuer of d,4(1) by mul-
tiplying the ratio of the value of A at time # when detection was declared, and the maximum

value of A with the length of the window. The offset distance is then given by:

L-1
Z lrt(kﬁ {) - rr(k}s
dopelt) = L—b=0 —, t,e (g e+ L] 35
max Y |r(k, t,) (k)]
k=0

Once the exact non-stationary position is obtained, the reference window is moved to this

new location and the procedure repeated again throughout the entire signal.
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3.3.4 Parameter Adjustment

Although the procedure just outlined is quite straightforward, serious attention must be
focussed on the main parameters. Both the window length and the thresholds are working
parameters whose values fundamentally impact the operation of thé ACF method. Due to
the varying nature of the signal, which consistently defies systematization, selection of
their values must rely on empirical estimates determined ad hoc. Following the argument
that each person and as such each EEG is unique, we cannot propose a global value for
these parameters to optimize performance to work for every different EEG. However, for
a specific EEG (realization), we can estimate realization-specific parameters after prelimi-

nary testing of a small sample of the overall signal.

3.4 Nonlinear

3.4.1 Introduction

Another non-parametric method that we will use to partition the EEG signal into stationary
segments is the nonlinear energy operator (NLEO) method. Proposed as a means of auto-
matically analyzing EEG during long term monitoring [50], this method develops a four
step algorithm, which can reduce a 24h recording to a two page summary that contains an
efficient breakdown of the salient waveforms present in the signal. The obvious real-time
advantage, when such a concise summary is transmitted by fax or email to an experienced
physician from an hospital emergency room or an intensive care unit (ICU), requiring rapid

~ and accurate diagnosis, cannot be overstated.
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3.4.2

lethod

The overall algorithm involves four steps:
1.segmentation

2.feature extraction
3.classification

4.presentation

The focus of our attention will only concentrate on the first two steps. In this chapter, we
discuss segmentation and postpone the discussion of feature extraction to chapter 5. The
procedure used in the segmentation of the EEG signal into statiqnary segments and the fea-
ture extraction applied to each segment, will allow us to compare with the R&K rules and

decide whether a microarousal is scored.

3.4.3 Segmentation

Part of the problem in determining the presence of a non-stationary boundary is in devel-
oping a reliable measure of statistical properties and especially in quantifying the changes
that occur with these on both sides of this boundary. In the previous section, we dealt with
the ACF method and saw that in that case the adequate difference measure was established
by comparing the autocor‘rclation produced by signal content in the reference window with
~ the autocorrelation produced by the signal content in the test window and then deciding if

this difference exceeded a predetermined threshold. In the present case, we apply a proce-
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dure that operates on a similar principle but with different characteristics. As outlined

below, this segmentation procedure, contrary to the ACF method, applies:

1. the NLEO as the difference measure;

2. one window, instead of two windows to compare the

difference measure with the threshold;

3. an adaptive threshold, instead of a fixed threshold;

A further advantage offered by the NLEO method, which makes it more attractive for seg-
mentation is its reliance on minimal parameter adjustment. Remember that the ACF
method critically relied on the choices made on both the window length and the values for

the frequency and amplitude thresholds, which for convenience were made equal.

3.4.3.1 Nonlinear Energy Operator

The NLEO, as a measurement of a signal’s properties, possesses the advantage of simple
description. Proposed by Teager, while conducting research on nonlinear speech modeling,
his simple NLEQ was then expressed in discrete form by Kaiser [51], which is the form

used in this theses and is shown in (3.6).

Fareolx(m)] = x2(m) —x(n- 1)x(n-2) -6)

The particular relevance of the description provided by the NLEO, especially with regards

to EEG, is nicely emphasized by one of its key properties, illustrated in (3.7).
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YLeol4cos (w,n+6)] = %Az o? 37

Here, we see, in its effect on a pure sine wave, that it extracts both of that sine wave’s ampli-
tude and frequency components, which is important since they are the most important
parameters used for evaluating changes in the signal. The proportional relation given in

(3.7) has been termed frequency-weight energy.

Because of the square term in (3.6), this expression does not properly ignore the presence
of white noise. We first note that the expression proposed by [51] is a particular case of the

more generalized form of the NLEO presented by [52]

Yoenerallx(M)] = x(n=1)x(n-p) —x(n - g)x(n-s) rtp=gq+ts (38

This generalized form of the NLEOQ, offers a more flexible means of combating the pres-
ence of noise. For instance, if we set r# p and q # s it can be easily shown that Wyepepy is
more robust to the presence of white noise. Again, because of this condition, the presence
of the square term and consequently the white noise is no longer present. Furthermore, in
[50] a proposed set of values for ,p,q and s is presented, wherer = 1,p = 2,9 = 0 and

§ =73

By selecting these values, the presence of white noise is reduced and the properties of the
NLEOQ discussed above remain intact, thus allowing the detection of changes in the station-

arity of the signal to proceed.
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3.4.3.2 Single Window Difference Measure

In order to use the NLEO to detect changes in the signal’s stationarity, a comparison is
-made between different segments of the signal. The mechanism that performs this compar-
ison employs a sliding temporal window [53]. As illustrated in Figure 3.5, a single window
of size 2N samples slides over a signal, which demonstrates time varying ampitude and fre-

quency portions.

x{n}

‘ngéing Window (@)
R
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Cnleoi{n) VAN /\ \\ w |
(c)

Figure 3.5: General outline of NLEO method. (2) Synthetic signal. (b) NLEO output. (c) Resulting

boundaries used for segmentation (taken form[506}).
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The comparison is made between the two halves of the window. When the window is cen-
tered at some time instant 7 over the signal, the NLEG, or frequency-weighted energy, pro-
duced in the left half of the window, is subtracted from the NLEO produced in the right

half. Explicitly, this difference measure, G,j.,(#) is expressed as

n n+N
Gueom) = > ¥(m - > W¥(m) (3.9)
m=pn-N+1 m=n+1

This window comparison scheme produces results that are intuitively satisfying. As the
window slides across the signal, if it slides over a stationary portion, that is, if the entire
content within the window is stationary, then the energy produced from both halves of the
window must be equal and consequently the difference measure, G.(n) will be zero.
However, whenever the window slides over the boundary of two different stationary seg-
ments then the maximum difference will occur, unlgss one of the stationary segments is
smaller than half of the window, when the Window’s\cemer is positioned directly kover the
non-stationary' boundary (i.e., the point separating the two different stationary segments),
as shown in Figure 3.5. Therefore, once a maximum Gy.o(%) occurs, say at time instant »,
we can mark the beginning of a new stationary segment as the center of the window and

place the segment boundary at time instant .

3.4.3.3 Adaptive Thresholding

Unfortunately, the Gy.o(7) is plagued with its own inherent fluctuations that may produce

spurious redundant segment boundaries. This effect, however, can be considerably mini-
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mized by thresholding G..(#). Unlike the ACF method, where 2 fixed value is chosen

throughout the entire signal, the NLEO method adapis the threshold locally

N
: +
2 o

m&x[Gnm(n—m )] for n = ?2—;, (§ + ﬂ,
T(n) = < ' (3.10)

0 for n =0, 1,...,@1——1)

S 4

With this adaptive threshold, we now reformulate the difference measure as

Gnleo(n) Gnleo(n) > T(n)

@10
0 G 10 < T(n)

G(n) = {

Applying this adaptively thresholded version of Ge.(7), all of the necessary criteria are

established to allow the detection of non-stationarities to be made.

3.5 Generalized Likelihood Ratio Method

3.5.1 Introduction

In the previous sections we discussed at length the operation of the ACF method and the
NLEO method of segmenting the EEG signal into stationary parts. Both of these methods
are examples of non-parametric methods of segmentation; we now turn our attention to one

example of a parametric method: the generalized likelihood ratio (GLR) method [54].

As with the other two methods, the GLR applies an overall general procedure that is essen-

tially the same. The'procedural breakdown involves the use of:

1.ethe likelihood ratio (LR) as a difference measure,
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2.#two sliding windows to establish segmentation boundaries using the LR,

3.eoptimizing the boundary position.

It is clear that all the three methods share a common methodology ih segmenting the signal;
however, the real difference between the GLR and the other methods lies squarely on the
use of the parametric modelling of the signal in conjunction with the LR (a parametric mea-
sure of stationarity) as the central stationarity measure. Other differences include its use of
two growing windows as well as the distinct procedure it uses to optimize the boundary

postions.

3.5.2 Likelihood Estimation

The nucleus of the GLR method lies in its ability to distinguish two statistically varying
portions of the EEG signal from one another. To achieve this objective the algorithrﬁ makes
~ use of the LR. The ratio is obtained by comparing the likelihood estimate produced by the
two segments of the signal. To understand the way the likelihood estimate works, we
~ assume a stationary random time series x(f) of length N, which we model using the typical

autoregressive process model of order p [27]:

P
Z ax(t—i) = e(f) (3.12)
i=0

where a; are the constant AR parameters, with a,=1 and () is the white noise, innovation
process, that is composed of uncorrelated, independent and identically distributed Gaussian

samples with zero mean and variance o?=1.
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By considering N samples of the noise process, we obtain its likelihood function / [55]:

202

N-p) . ¥
[ = Q2no?) 2 exp[—m > 6(3)2] @3.13)
‘ t=p+i .
In (3.13) we see that / corresponds to the joint probability density function of the set

e={e(1), e(2), ..., e(N)}. We can also consider (3.13) in matrix form and rewrite it as:

H-p) i ,
| = (2no?) 2 exp [~—(N— p)aCaT] G149
202
where the seta'= {l,a I,az,...,ap}is the (p+1)-dimensional AR parameter vector of the time
series x(t) and C is the (p+1) x (p+1) covariance matrix, which is given by:

N
1

c(i,}) = —— Z x(t-1)x(t-}) i=12,...,p (3.15)
N-pt=p+l

To obtain the maximum likelihood estimate a, which we denote by &, we must solve the

following set of normal equations:

P -
Z c(i,j)a; = (i, 0) i=12,...,p (3.16)
j=1

Once the estimate of 2 has been determined, the estimate of the time series’ variance o,

denoted as & can now be obtained by:

62 = aCcaTl 317

Now that we have described the likelihood estimate, we will shift our attention tb the devel-

opment of the likelihood ratio.
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3.5.3 Likelihood Ratio

In order to obtain the likelihood ratio, let us consider two finite duration random time series,
xg(#), of length Ny which will be used to denote the reference sequence and xy(?) of length
Nr, which will represent the fest sequence. Furthermore, let us assume that these two series
can be modeled by a stationary, normally distributed AR process of order p. That is, both

series satisfy an AR equation:

p

> ap xp(t—1i) = ex(t) (3.18)
i=0

P

> ag xp{t—i) = ex(n) (3.19)
i=0 :

As defined above, the sets agp =[1,ap ;, 83 5, ..., ag pl and ap=[l,az;, a7, ..., ag ] are the (p+1)-
dimensional constant AR coefficient vectors, for the reference and the test sequences, respectively.

22 and o%; respectively.

Similarly, the white noise processes, ep(f) and e;{(¢), have variances ¢
Again, we define the covariance matrices, corresponding to both the reference and test

sequences, Cg and C, shown above for the general case, as [54]:

Ng
cRL) = 5= Y Xal=DxgU=)  4j=0L,.p (320
R t=p+1
and
1 o
ci, j) = e > xp(t=Dxt =) Lj=0,1,..,p (3.21)
Ta‘=p+1

where,N’R=NR-pandN’T=NT-p.
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Having thus established the covariance matrices for the two sequences, we are now in a
position to use them in conjunction with the likelihood estimate of (3.14) and to calculate
their joint likelihood, conditioned to the first p observations of each sequence [55]:
-N -\ N N
I = (o RJZ?;} R{GTJZI} “exp i:—m%az(f Ra R———w%a;iﬁ TaT} (322
203 205

With (3.22), a test can now be performed on the two sequences to determine statistical sim-
ilarity. This comparison is achieved by comparing the maximum likelihood, /;, given arbi-
trary settings, with the maximum likelihood, /y, under the null hypothesis. These two

choices are given as:

Hy : ag#ay

The absolute maximum likelihood, /;, under hypothesis H; can be determined by:
— -N R, Ny i
I, = (Gpa2m) "(GpZm)  exp [—i(N‘ et N’T)} 323
while the conditional maximum likelihood, under the null hypothesis, Hy, is given by:

e RN i
Iy = (GP;JEE) e exp[—%(]\/R-!—N‘T)] (3.24)

with,

=2 _ = o~ &7

p = apﬁp b (3.25)
Comparing (3.25) and (3.17), we can see that these equations are almost identical. However
there is a difference which exists between the two that arises directly from the manner in

which the a,or estimates of the constant AR coefficients a, are derived. The ajare esti-
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mated from a, by ‘pooling’ or combining the reference and test sequences together, under
the null hypothesis. The effect of this pooling results in the covariance matrix, Cp, used in
(3.25), which is given as:

Cc = NgCp+ N, Cy
i Np+ Ny

(3.26)

Having thus derived the necessary likelihood estimates, we can now formulate the desired

likelihood ratio:

l
}\’ = ﬁ = —;(NR+NT) 5%;255??7‘ (3“27)

" The range for this likelihood ratio is 0 < A < 1. Now that we have the likelihood ratio, we
can now define the distance measure, which will enable us to distinguish statistically dis-

similar segments.

3.5.4 Distance Measure

To convert the likelihood ratio to a suitable distance measure d, we apply the logarithm to
it and obtain the generalized likelihood ratio (GLR):

= -2Ink = (Wp+Np)InG2 - (VInG3 + N7InG3) (3.28)

The non-stationarity detection is achieved by comparing d to a reasonably chosen thresh-
old, used as means of detecting whether both the sequences are statistically similar or not.
In addition to its statistical meaning, the distance d can be shown to represent the informa-

tion loss caused by the assumption that the null hypothesis is true [54].
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3.5.5 Detection of Non-stationarity

In order to detect the presence of a non-stationarity, two windows are used. One window,
called the reference window, is p@siﬁuned at the start of the last detected segment boundary
and grows continuously, from an initial length of L, as new samples are made available.
The second window, called the test window, of fixed length L, slides contiguously with the

reference windows as shown in Figure 3.6

-eliding)

}— Growing Reference ——
i Window

o Shiding Test .

Figure 3.6: Detection of non-stationarity using a growing reference and sliding test window.

With the reference window positioned at the start of a new stationary segment, it begins
growing at time ! = fj, poyndary + L. The fixed sized test window is adjoined to the reference
window and slides along With the growing reference window in the manner shown in
Figure 3.6. The decision that a non-stationarity occurs is made by applying the GLR to both
of the sequences, within the two windows, xp and x Therefore, we have N'g=¢-1, N'p=
L and the pooled length of both sequences as: N, = N'p+N'p = t+L-1. Substituting these

values into (3.28), the GLR distance becomes:

d(t,t+L-1) = (t+L-1)Ind2 - [(t- 1)InG} + LIn}] (3.29)
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where G2 and 6,2 are the error variance computed respectively on the reference window
and on the test window, and Epz is the error variance calculated on the pooled window
formed by the concatenation of both the reference and test windows. A decision on a new
segment boundary is made whenever the GLR distance for a potential boundary position t,

denoted by d(t, t+L - 1), in (3.29), exceeds a predetermined threshold T:
dt,t+L-1)>T (3.30)

The moment in time, (t+L-1), when the threshold T is crossed, is recorded and labelled as

the detection time t;

3.5.6 Optimal Non-stationarity positioning

After a non-stationarity is detected, its precise location must then be found. It is assumed
that the optimal position lies somewhere in the range (¢4- L + 1, ..., 7;) or one window
length prior to the detection position ¢, The optimization procedure searches this optimal

position through a sequence of GLR tests, as shown in Figure 3.7.

Initialization

The first GLR test involves two windows: a fixed reference window of constant length, L
and a growing test window, which initially, before it starts growing is also of length L.
These windows are positioned as shown in Figure 3.7a. They are positioned with respect to
t,. Explicitly, the reference window is positioned 2L samples before 77 and the test window

is positioned L samples before 7. In other words, at the beginning #;,,;:;,; = t7- 2L + 1,
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t,=tz- L+ 1and¢=t,where for clarity ¢ + L - 1 =, The window distance measure for
Figure 3.7ais d(z,, £+ L - 1) and is used to compare with the window distance measure from

the second GLR test of Figure 3.7b.

In Figure 3.7b, initially the growing reference window is of length L and the fixed length
sliding test window is also of length L. Before the procedure begins, the growing reference
window is positioned 2L samples before ¢4, while the sliding test window is positioned L

samples before 74 Explicitly, the initial values of the variables are defined as

Unitial = td-2L+2,t=1y-L+2,and ¢+ L-1=1,+ 1.

We note that the value ¢ in Figure 3.7b is initially one sample greater than the value of 7, in
Figure 3.7a. That is, # = ¢, + 1. The window distance measure is d(¢, r + L - 1) for Figure

3.7b.

Iteration and Update

The procedure begins by incrementing the value of ¢ in both Figure 3.7a and Figure 3.7b by
one sample with the constraint that t;—L +2 <t <t,. For each value of , the distance

measures of Figure 3.7a and Figure 3.7b are compared to each other. If
d(t, t+L-1)>d(t,t+L-1) (3.31)

then the optimal postion is updated to the new value ¢, = ¢. This procedure is repeated for
each time increment, until ¢ = 7, Finally, the best possible position of the non-stationarity

corresponds to the last vatue of £,
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Figure 3.7: Optimization of the boundary position by comparing the distance measure produced by two
different window schemes (a ) Fixed Reference/ Growing Test scheme (b) Growing Reference/Sliding Test

scheme.

3.5.7 Parameter Adjustment

Now that we have described the inner workings of the GLR method for detecting a non-
stationarity, our attention focusses on the particular values and limits that the involved

parameters are permitted to take, in order to ensure that the method achieves its maximum
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performance. As described above, the three critical parameters that impact the performance

are:
1.The AR-model order p
2.The test window length, L

3. The detection threshold T

Although parameter adjustment requires some degree of experience to select the best com-
promise for a given signal, some objective rules can be applied to a wide range of practical

applications.

3.5.7.1 AR Model Order

For AR signals there exists two traditional methods commonly employed to determine the
suitable model order, given a specific signal. These classic methods are the Akaike’s infor-
mation-theoretic criterion (AIC) [56] or Rissanen’s minimum description length (MDL)
[57]. It must be pointed out however, that the AIC criterion often overestimates the model

- order, while the MDL provides a more consistent model order estimator [27].

3.5.7.2 Test Window Length
Deciding on the length of the test window, L, depends upon a compromise between choos-
ing a long window, which would ensure stable statistical results, and a short window, which

would guarantee that short stationary segments are also detected. In [54], given a signal
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segment of length N to be detected, a suitable tradeoff between these conflicting goals can

be achieved, if L is chosen such that:
2 ;
(g} <SL<OIN,;, (.32

where N,,;, is the shortest stationary segment that can be detected. Moreover, the lower
| bound (p/ 3}2 allows for obtaining small error rates, whereas the 70% threshold is chosen to
guarantee that the addition of the test window length L and the detection delay ¢, - 1, is

always smaller than N,,,;,,.

3.5.7.3 Detection Threshold

The adjustment of the detection threshold T depends on the appﬁication for which the sta-
tionarity test has been implemented. Based on information‘theory, some general results can
be derived [54]. The selection of an appropriate threshold can result in a very economical
partition of the segment into stationary segments. If N is the number of bits required to
encode a new set of AR parameters, then the optimum coding is obtained by minimizing
the sum of bits necessary to describe the pfediction error signal added to N, bits times the
number of stationary segments. Let us assume that the prediction error signal is‘epﬁmaﬂy
encoded. In this case, the number of bits required to describe it is provided by its informa-

tion content:
I = —log,/ (3.33)

where [/ is the likelihood of the prediction error signal. Since the latter is equal to the like-

lthood of the driginal time series, the maximum prediction error data reduction that can be
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obtained by meodifying the AR parameters at a boundary is given with respect to the GLR

distance d by

d_
2In2
where lg and I; represent the maximﬁm likelihoods with invariant and chaﬁging AR param-
eters, respectively. So the GLR distance providing an optimal description of the time series
is

T = (2In2)N, (3.35)

As [54] points out, this threshold value does not apply to all applications of the GLR and

therefore should be adjusted according to the requirements of the épplication under study.

3.6 Co:

nclusion

In this section, three window based methods were proposed to partition a non-stationary
signal into segment-wise stationary pieces in order to detect MAs. Two of these methods,
{he ACF and the NLEO, represented non-parametric means of assessing the stationarity of
the signal. The third method, the GLR, was the only parametric method used, which mod-

eled or parametrized the signal, as an AR process.

Each method uses its own particular window scheme to detect and estimate the location of
the non-stationary boundary. The ACF uses two constant-length windows with one

window fixed while the other was allowed to slide; the NLEO uses only one window split
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into two halves; the GLR used two windows with one constant length window immediately

adjoined by a second window, which is allowed to grow.

The content of the windows, used in each of the schemes, are measured against an estab-
lished threshold or difference measure, whose determination was specific to each method.
For the ACF method this threshold is used to compare against the combined contributions
given by both the normalized and non-normalized ACFs of each window; the NLEO
method compares the nonlinear energies of each half window against its difference mea-
sure; the GLR measures the differences in likelihood ratios in the fixed and growing win-
dows and compares against its threshold. Once the thresholds of the different methods are
exceeded, a sufficient difference is judged to exist between segments of the signal. The
position in the signal where this sufficient difference exists is marked as a non-stationary
boundary. Once a non-stationary boundary is marked, further refinement is required to
optimize the location of that position within the windows, where detection was first scored.
The NLEO method localizes the non-stationary occurance simultaneously with its detec-
tion, whereas both the ACF and the GLR methods employ a second test to optimize the

non-stationary position.
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In the previous chapters, we discussed the individual stages, whose combination will ulti-

mately lead to reliable automation in microarousal detection. These stages are

1. Wavelet Decomposition

2. Stationary Segmentation

The main components of the proposed procedure employed for the purpose of detection are

shown in Figure 4.1. In this chapter, we test these components with a variety of signals.

Through the application of relevant simulated signals, the performance of each component

as well as the performance of the overall combination of these components making up the

proposed procedure, will be examined.

‘Relevant
. o Fraquency
Taput Wavelet Bands

R s e e g B
Signal " Decomposition

%

Segmentation

Relavant
b Stationayy
Segmenis

Figure 4.1: General outline of the proposed procedure
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The chapter is broken up in the following manner. In Section 4.2, the wavelet decomposi-
tion is tested with various types of sinusoidal signals with and without the presence of noise
to determine its effectiveness in highﬁighting relevant signal properties. In Section 4.3, the
segmen‘iaﬁan algorithms, ACF, GLR and NLEO, are tested. First, they are tested with sinu-
soids exhibiting various amplitude and frequency non-stationarities, then with similar non-
stationarities but in the presence of noise, in order to uncover the statistical reliability of
each algorithm, and finally with a second order autoregressive signal, to gain further statis-
tical reliability insights. Section 4.4 demonstrates the effectiveness of combining the seg-
mentation with wavelet decomposition. The same test signals as those used in Section 4.3
are applied to allow comparisons to be made. Finally, in Section 4.5, we summarize the

results and observations made based on these experiments.

The first step in the detection procedure involves the decomposition of the EEG signal into
relevant frequency bands, using the WT. The main motivation behind this step lies in the
WT’s ability to unclutter the signal from the extraneous frequency content accompanying
the EEG. It reveals a clearer picture of the desired signal and thereby allows the segmenta-
tion algorithms, discussed in Chapter 3, to track significant frequency changes more effi-
ciently. As a result, the detection rate of MAs improves. Moreover, the WT possesses two
important characteristics that lend themselves vitally to this application. These two charac-
teristics are the WT’s ability to resolve the decomposed signal in both frequency and time.

Because the goal of the detection procedure is to detect uncharacteristic frequency changes
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constituting the MAs, as well as the precise location of their occurance within the overall
EEG signal, this criteria naturally leads to the involvement of the WT, as discussed in

Chapter 2.

4.2.1 Selection of Wavelet Used

The type of wavelet chosen for the decomposition is clearly important. For the reasons
. explained in Chapter 2, the wavelet chosen should, as closely as possible, represent the
signal that is being decomposed, which in this case is a biological signal. A good candidate,

shown in Figure 4.2, is the discrete Meyer wavelet (DMW) [31], which is an approximation

of the Meyer wavelet.
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Figure 4.2: Discrete Meyer wavelet; (2) Low pass decomposition filter of DMW in the time domain;
{b)High pass decomposition filter of DMW in the time domain; {c) Frequency domain version of (a); (d)

Frequency domain version of (b).
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Reasons motivating the use of the DMW is that it provides an orthogonal basis and there-
fore can represent a signal with a concise number of coefficients. Its structure allows it to
be used in the fast wavelet transform (FWT) described in Section 2.3.4. It is a finite impulse
response (FIR) digital filter and therefore assures us that it is a stable filter. Although there
are many other filters available which satisfy theses conditions, what is important for us
about the DMW, as [31] points out, is that it is eépeciaﬂy well suited to pursue and capture
frequently encountered neurolectric signals like sleep spindles for example. Finally, having
selected the DMW as the wavelet for the decomposition, it will remain the only wavelet

used throughout the following experiments.

4.2.2 Simulation Signals Used

The following deterministic signals have been chosen to illustrate the WT’s ability to

decompose a signal, and resolve it both in time and frequency.

1. Concatenated Sinusoids
2. Superimposed Sinusoids
3. Concatenated Sinusoids in the presence of AWGN

4. Superimposed Sinusoids in the presence of AWGN

Although simple in nature, these signals clearly demonstrate the WT’s desired properties.
Furthermore, the level of decomposition chosen throughout the remainder of this section is

selected as 5. That is, this decomposition will produce five detail functions (d1,d2,d3,d4
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and d5), and one approximation function (a$). The frequency content represented by each

function is shown in Table 4.1

Table 4.1: Level - 5 wavelet decomposition detail and approximation functions with their related frequency
bands

Approximation and Detail di d2 d3 d4 ds as
Functions . _
Related Frequency Bands [32-64] {16-321 [8-16] [4-8) [2-4] [()-2}
(Hz)

4.,2.3 Concatenated Sinusoids

With the application of the WT decomposition, we see that the frequency bands associated
with the different outputs of the filter bank provide a viewpoint into the frequency makeup
constituting the whole of the original signal. Thev concatenated sine wave signal, shown in
Figure 4.3a is composed of same length sine waves, of gradually increasing frequency,
which are adjoined to one another. The frequency of each distinct sinusoidal segment is
chosen specifically so that at least one falls into the different scales or frequency bands rep-
resented by the various detail functions Figure 4.3¢-4.3g and the approximation function

Figure 4.3b.
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Time {sec)

Figure 4.3: Concatenated sinusoidal signal (a) Complete signal constructed by adjoining same length sine
waves of gradually increasing frequency. each sine wave segment is 3 seconds long and their respective
frequencies, in order, from leﬁ torightare [1;3;35; 11;13;19; 23 ; 47] Hz. (b) Approximation function
a5 representing the frequency range [0-2] Hz. (c) Detail function d5 representing frequency range [2-4] Hz,
{d) Detail function d4 with range [4-8] He, (e) Detail function d3 with range [8-16] Hz. (f) Detail function d2
with range [16-32] Hz, and (g) Detail function d1 with range [32-64].

First, the presence of the component sine waves, whose frequencies occur within a specific
frequency band appear displayed in the detail or approximation function corresponding to
that frequency band. Second, the location and dumﬁon in time of a component sine wave,
displayed in its respective frequency band is seen to coincide exactly to its location and

duration in the original concatenated signal. Moreover, if only one component sine wave

106



has a frequency which falls into a particular frequency band then that sine wave should be

displayed in the detail or approximation function representing that frequency band.

In particular, the analyzed signal is constructed with sine waves of length N = 384 sam-
ples, or 3 seconds, (i.e. the sampling frequency is 128samples/second, conesp@ndihg to the
sampling frequency of the EEG signals to be seen later on). Therefore, according to the
above discussion, each sine wave should be present in the frequency band corresponding
to its frequency. In the [0 — 2] Hz. frequency band, in Figure 4.3b, we see that only the 1
Hz. signal is indeed shown and its duration is equal to its actual length in the original signal,
3 seconds, while the rest of the band is zero. Similarly, the frequency bands [2 — 4] Hz,
[4—8]Hz. and [32 —64] Hz. only display the sine wave segments that each should dis-
play, which are thé 3 Hz., the 5 Hz. and the 47 Hz. segments respectively, as seen in Figure
43¢, Figure 4.3d and Figure 4.3g. In the [8 — 16] Hz. frequency band, two sine wave seg-
ments, namely 11 Hz and 13 Hz. frequencies appear as indicated in Figure 4.3e. Due to the
compact form of the plots, we do not clearly distinguish the two distinct adjacent bursts.
Since they are adjacent to one another in the original they will also be adjaceni in the cor-
responding detail function. Now, toshow that those sine wave bursts present in each fre-
quency band, do indeed correspond to the frequencies of the sine waves, we take the
Fourier transform of the signal, the approximation function and the detail functions, shown

in Figure 4.4.
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Figure 4.4: Fourier iransform of the wavelet decomposition of the concatenated sinuscidal signal: (a)

Original signal; (b) Approximation function; (c)-(g) Detail functions

From Figure 4.4 we can see that the FT of the different dccomposiﬁoﬁ levels reveals the
presence of specific frequency content in the form of a frequency spike. The spikes corre-
spond exactly to the frequencies of the sine wave segménts which, as the previous discus-
sion suggests, are expected to occur in their respective detail function. For example, we
mentioned that the two sine wave segments of 11Hz and 13Hz, seen in Figure 43@, were
not clearly identified as such. Now, by observing the FT of Figure 4.3¢, which is displayed

in Figure 4.4¢, we see that the only two frequency spikes that are observed occur exactly at
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11 Hz and 13 Hz, which confirms the presence of the expected sine wave segments. Like-
wise, the other channels reveal the same information. Although Figure 4.4 reveals the fre-
quency content of each detail function, it does not reveal the location in time that the

particular frequency burst occurs, which the WT clearly does.

4&4 C«mcamnated Sinusoids in the Presence of AWGN

Before we proceed to the results of the WT decomposition of the concatenated sinusoid sig-
nal, we must first describe the signal-to-noise ratio (SNR). The SNR is a means of describ-
‘ing'the relationship between the noise and the signal. Specifically, it describes the degree
of the noise added to the signal. For sinusoidal signals in the presence of zero mean AWGN
the SNR in decibels is given by (4.1)

SNR = 10 log(—“i‘iJ 4.0

202

where A is the amplitude of the sine wave (note: A%/2 is the sinusoidal signal power) and

o is the variance of the noise or noise power.

1t is apparent from both Figure 4.3 and Figure 4.4 that the WT decomposition provides a
good breakdown of a ‘clean’ deteministic signal both in the time domain as well as the fre-
- quency domain. However, this signal is not representative of a realistic signal. In order to
make it more realistic and further highlight the W'T’s consistent reliability in extracting per-
tinent information from different types of signals, including realistically degraded ones, we

contaminate the concatenated sinusoidal signal with representative AWGN. The values
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chosen for the amplitude of the signal and the zero mean AWGN produced a SNR = -3 dB.

This new signal, along with its decomposition is shown in Figure 4.5
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Figure 4.5: Concatenated sinusoidal signal with AWGN, SNR = -3 dB; (a) Complete signal constructed by
adjoining same length sine waves of gradually increasing frequency. Each sine wave segment is 3 seconds
long and their respective frequencies, in order, from left to rightare [1;3;5;11;13;19;23;47] Hz. (o)
Approximation function a5 representing the frequency range [0-2] Hz. (¢} Detail function d5 representing
frequency range [2-4] Hz, (d) Detail Function d4 with range {4-8] Hz, (¢} Detail function d3 With range [&-
16] Hz. (f) Detail Function d2 with range [16-32] Hz, and (g) Detail function d1 with range [32-64].

Although somewhat distorted, compared to Figure 4.3, the WT decomposition shown in
Figure 4.5 clearly identifies the presence of the appropriate sine wave segments in the four
lowest frequency bands, Figure 4.5b to Figure 4.5¢. The heightened amplitude of the seg-

ments, set against the noisy background in each of the subbands, is unambiguously evident.
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Even in the higher frequency bands, Figure 4.5¢ and Figure 4.5g, there is a noticeable
increase in height although relatively not as large as the lower bands, where the segments
occur, which also sets them apart from their background. Nevertheless, any question
regarding the presence of the segments, is quickly answered ii"’ we look at the FT of the

noisy signal’s decomposition, shown in Figure 4.6.

Figure 4.6: Fourier transform of the concatenated sinusoidal signal in the presence of AWGN, SNR=-3dB;
{a) Original signal; (b) Approximation function; {c}-(g) Detail functions.

Here, we can see that the frequencies associated with all the sine wave segments are clearly
displayed. By comparing Figure 4.6 with Figure 4.4, we observe that the same spikes occur

at the same frequencies, as they should. Moreover, despite the presence of noise, the fre-
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quency spikes in Figure 4.6 easily stand out, against the noise, as the dominant peaks in

each of the subbands.

4.2.5 Superimposed Sinusoidal Signal

To look at the decompositional power of the WT from another perspective, we construct a
signal using sinusoids of varying frequencies and superimposing them togethei, To main-
tain consistency with the previous sections, the sinusoids, which are superimposed have the
same frequencies as those used for the concatenated signal. Each component sinusoid in
this case, instead of being 3 seconds long, is equal to the length of the whole concatenated
signal, that is, 24 seconds long (see Figure 4.3). The resulting superimposed signal is zot
normalized, so that the component sinusoids could maintain the same amplitude as the

amplitude of the sine components used in the concatenated case.

As in the concatenated case, we expect to find each frequency band indicating the presence
of the sine wave, whose frequency falls within the range of its corresponding band to be
displayed for the duration of its presence within the superimposed signal. In this case, sihce
each sine wave has the same length as the superimposed signal, as does the length of each
detail function (i.e. frequency band), we expect fo see the presence of each of these sine
waves appearing throughout the entire length of the detail function. The WT decomposition

of the superimpeosed sinusoidal signal is shown in Figure 4.7.
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Figure 4.7: Wavelet decomposition of superimposed sinusoidal signal: (a) Complete signal constructed by
superimposing sine waves of gradually increasing frequency. Each sine wave segment is 24 seconds long
and their respective frequencies are [1 ;3 ;5; 11 13; 19 ;23 ; 47] Hz. (b) Approximation function a$
representing the frequency range [0-2] Hz. {c} Detail function d5 representing frequency range {2-4] Hz, (d)
Detail function d4 with range [4-8] Hz, (¢) Detail function d3 with range [8-16] Hz. {f) Detail function d2
with range [16-32] Hz, and (g) detail function di with range [32-64]. |

As expected, we can see that the component sine waves are each displayed within the fre-
quency band which corresponds to their frequency. For example, Eooking atthe [4-8]Hz
frequency band corresponding to detail function d4 in Figure 4.7d, we see that only one sine
wave appears, which should be true, since only one component sine wave falls within this

range, namely the 5 Hz frequency sine wave. Furthermore, the 11Hz and 13Hz sine waves
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should appear together in the [8 — 16] Hz frequency band or detail function d3, shown in
Figure 4.7e. The “beats” that we see in this band certainly indicate the presence of two sim-
ilar (i.e. close in frequency but not equal) frequency sine waves. Howe'{fer, the time domain
decomposition offered by d4 does not reveal the exact frequencies of the sine waves
present. Therefore, to further clarify the picture, the FT of each level of the decomposition

in Figure 4.7 is shown in Figure 4.8.
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Figure 4.8: Fourier ransform of the wavelst decomposition of the superimposed sinusoidal signal: (a)

QOriginal signal; (b) Approximation function; (¢)-{g) Detail functions

The dominant peaks present in each frequency band correspond exactly to the frequencies

of the sine waves displayed in each of the detail funtions. In the case of the sine wave dis-
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plaved in the [4 — 8] Hz frequency band (or detail function d4) of Figure 4.8d, we sec a
peak present exactly at SHz. Similarly, the earlier confusion relating to the exact frequency
sinusoids present in the detail function of Figure 4.7¢ is resolved with the two sharp peaks
centered exactly at 11Hz and EBHZ, within the spectrum of the [8 — 16] Hz band of Figure

4 .8e.

Comparing the peaks displayed in the spectrum for the superimposed sinusoids of Figure
4.8 with those displayed in the spectrum for the concatenated sinusoids of Figure 4.4, we
must make one observation. The proportion of the component sine waves present in the
overall superimposed signal is equal to the length of the overall signal as opposed to the
fractional presence of each component sine wave in the concateﬁated case. For this reason
and due to the nature of the FT, the frequency peaks in Figure 4.8 are much sharper than
the ‘fatter’ peaks of Figure 4.4. The sharpness of the peaks, therefore has nothing to do with

the WT but is a direct result of the FT itself.

4.2.6 Superimpeosed Sinusoidal Signal in the Presence of AWGN

We now perform the same decomposition to the superimposed signal but this time, to make
the signal more realistic, we add AWGN. A SNR = -3dB is used, as was the case with the

concatenated sinusoidal signal. The noisy superimposed signal along with corresponding
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approximation and details functions resulting from the wavelet decomposition are shown

in Figure 4.9.
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Figure 4.9: Wavelet decomposition of noisy superimposed sinusoidal signal in AWGN, SNR=-3dB; (a)
Complete signal constructed by superimposing sine waves of gradually increasing frequency. Each sine
wave segment is 24 seconds long and their respective frequenciesare [1;3;5;11;13;19;23,;47] Hz. (b)
- Approximation function a5 representing the frequency range [0-2] Hz. (c) Detail function d5 representing
frequency range [2-4] Hz, (d) Detail function d4 with range [4-8] Hz, (¢) Detail function d3 with range [8-
16] Hz. (f) Detail ﬁmctioﬁ d2 with range [16-32] Hz, and (g) Detail function 41 with range [32-64].

By comparing Figure 4.9 with Figure 4.7, we can see that the noisy signal’s component
waveforms are visually degraded to a varying degree. In the lower frequency bands, this
degradation is apparently not that severe, but as we go up in frequency the detail functions

tend to lose their original shape. For example, the “beat” like pattern, indicating the pres-
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ence of two sine waves of different but close frequencies, seen in detail function d3, Figure
4.9e, is not at all apparent compared to the same detail function in Figure 4.7¢. The same
thing can be said for detail function d2 (cf. Figure 4.91 and Figure 4.7f). However, to clear
up any ambiguity, concerning which waveform is actually present in each frequency band,

we take the FT of these approximation and detail functions, shown in Figure 4.10.

bt
Frequency (Hz)

Figure 4.10: Fourier transform of the wavelet decomposition of superimposed sinusoidal signal, in AWGN

with SNR=-3dB; (a) Original signal; (b) Approximation function; (¢}-(g) Detail functions

The spectrum shown in Figure 4.10 reassures us, by the presence of peaks at the appropriate
frequencies, that the wavelet decomposition of the signal, despite the presence of signifi-

cant AWGN, still manages to retain the presence of the original component sine waves.
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Thus, by these examples, it is apparent that the WT possesses a good ability to resolve a
signal into its time and frequency components, with or without noise present. The confi-
dence that we inherit from these results justifies our selection of the WT as a suitable means
of decomposing a sinusoidal signal in general (with the EEG signal as a particular case) in

order to reduce it to a form that will facilitate the task of segmentation.

Yarious Types of

4.3.1 Introduction

In the previous section we demonstrated the usefulness of the WT for decomposing a sinu-
soidal signal with or without noise and revealing the underlying sinusoidal components that
are present. We observed that, in the concatenated signal case, the various frequency sinu-
soidal segments fell within their respective frequency band as revealed in the detail func-
tion of the decomposition. In the detail functions, noticeable amplitude differences between
the sinusoidal segment and the surrounding noisy background are observed. Since each
detail function represents a range of frequencies, the identification of different frequency
segments within a particular detail function requires the introduction of a segmentation pro-
cedure. The sudden appearance of a stationary segment (i.e. the 3 second 5Hz sinusoid in
Figure 4.5d) within another different kstationary segment (i.e. the {4 — 8] Hz background
noise of Figure 4.5d) makes the combination of the two (i.e. the entire detail function d4 or

all of Figure 4.5d) non-stationary. Therefore, to identify the presence of sinusoidal seg-
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ments within a signal, which may suddenly appear, showing either heightened amplitude
or heightened frequency in a specific detail function, a segmentation function needs to be
introduced. This section analyzes the performance of the segmentation algorithms pre-
sented in Chapter 3, namely the autocorrelation function (ACF), the generalized likelihood
ratio (GLR) and the non-linear energy operator (NLEO) algorithms. To study the perfor-

mance of each algorithm three categories of test signals have been considered:
1. Sinusoidal non-stationarities without AWGN noise
2. Sinusoidal non-stationarities with AWGN noise

3. Second order autoregressive non-stationarity.

- At the end of each signal category a comparison is drawn between the algorithms.

4.3.2 Sinusoidal Non-stationarities WITHOUT Noise

In this section, the signals used contain no noise and therefore segmentation of these sig-
nals, based on the same operational parameters, will either occur or not. Therefore the
parameters, which govern the performance of each algorithm, are adjusted so as to ensure
the segmentation of the non-staﬁonary signal. In other words, in this section, all non-sta-
tionary boundaries, separating different stationary sections, present in the signal will be
detected. The motivation behind this process is to illustrate the functioning of the segmen-
tation, whereby each algorithm’s distinct difference measure, used to detect the presence of

boundaries between non-stationary segments, will be illustrated. Along with the difference
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measure function, detected boundaries as well as the final boundary position resuliing from
the optimization procedure are shown. In particular, the signals used in this experiment are
chosen to test the segmentations’ performance in the face of varying kinds of possible non-

stationarities that may be encountered in the EEG. These are:

1. Increasing and decreasing amplitude sinusoids with constant frequency

2. Increasing and decreasing frequency sinusoids with constant amplitude

3. Amplitude and frequency increasing and decreasing together

4. Aﬁpiitudc and frequency increasing and decreasing opposite to one another
5. Randomly positioned segments of amplitude and frequency changing together

6. Randomly positioned segments of amplitude and frequency changing opposite to each

other.

These signals, shown in Figure 4.11, are designed to maintain a certain degree of consis-
tency. That is, all the values of amplitude and frequency used in the signals of Figure 4.11
belong to the same amplitude and frequency set. Specifically, the‘overall set of amplitude
| values used are {10, 20, 40, 80, 160} while the overall set of frequency values used are {2,
4, 8, 16, 32}. Therefore, the amplitude and frequency values available are the same for all
signals. It is the difference in the distribution of these values which produce the various test
signals of Figure 4.11. Likewise, the length of each segment and consequently the overall
signal length are also equal across the board. Specifically, there are »=10 individual station-
ary signals concatenated together to make up the overall signal. Each of the n segments is
N=128 or =1 second long and accordingly, ‘Ehe overall signal is 10 seconds iongv. Although

these signal parameters may be chosen arbitrarily, their values are selected to correspond
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to those of the actual EEG signal sampling frequency, which is fs=128. These measures are

established in order to maintain the greatest degree of comparison between the results.

-Seconds.

Figure 4.11: Various noise free non-stationary signals (a)Varying amplitude (A=] 10 20 40 80 160 ]) with
constant frequency { £ = 8Hz ); (b) Varying frequency { £ 2 4 8 16 32 1 ) with constant amplitude (A=30};
(c) Amplitude and frequency { £=[2 4 6 § 10] ) changing together (i.e. high amplitude with high frequency or
low amplitude with low frequency) (d) Amplitude and frequency changing in opposite directions (i.e. high
amplitude with low frequency or low amplitude with high frequency); (¢) Randomly distributed segments of
part {c); (f) Randomly distributed segments of part (d).
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4.3.2.1 ACF
Following the procedure described in Chapter 3, in this subsection, the autocorrelation
function segmentation algorithm is applied to the signals mentioned in the previous section.

The operational parameters that critically affect the performance of the ACF, namely the

s window length
« thresholds (amplitude, frequency and global)

are chosen, to illustrate the ability of the ACF to detect boundaries between two different
but stationary segments. It must be mentioned that, from now on, the use of the word
- “‘boundary’ will refer exclusively to the nonnstationary boundary, separating two different
stationary segments. Due to the simple, but illustrative, nature of these noise free signals,
these operational parameters can be chosen in a straight forward manner based on the
values provided in [49]. Nominally, these values are chosen as:

e T, =T;=1

e T, =1
o WL > 64 samples

where Ty, Tp, and T, are the amplitude, frequency and global thresholds, respectively, and

WL is the window length.

The reason for equating T, to T¢stems from the desire to make a change in amplitude equal
to a change in frequency when deciding if their combined presence is sufficient to record a
detected non-stationarity. Furthermore, the WL must be at least as long as the smallest sta-
tionary segment sought after. Because we are dealing with sine wave segments that are 128

samples long (i.e 1 second), some having a frequency of 2 Hz., the minimum WL allowing
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for one full cycle of the smallest frequency sine would have to be half of the sine segment
size, or 64 sémpﬁes (i.e. 1/2 second) long; we chose WL = 70 samples. The results of the
ACF on the forementioned signals are shown in Figure 4.12 to Figure 4.17. The various val-
ues, for both the amplitude and frequency, are chosen to represent the realistic range of
values present in an EEG signal, to see if the segmentation operates correctly in the appro-

priate ranges.
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Figure 4.12: ACF segmentation for sinusoidal signal with varying amplitude and constant frequency. (a)
Signal: A =10 20 40 80 160 160 80 40 20 10}, and f = 8Hz; (b} Difference measure with WL =70, T,=T¢#1
and Tg=1; {c) Non-stationary boundary detection; (d) Optimized positioning of detected boundaries.
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Figure 4.13:  ACF segmentation for sinusoidal signal with varying frequency and constant amplitude. (a)
Signal: A=30,and f={2 4 8 16 32 32 16 8 4 2] Hz; (b) Difference measure with WL = 70, T,=T#0.45 and
Tg =1, and ; () Non-stationary boundary detection; (d) Optimized positioning of detecied boundaries.

124



7 H T ¥ T T

&1
b

VAR AA A~ A AT

b
i

: T
it 48
]
1 :
3 H
H Hd
SR
§
i .

3 T T T T T T

205 “
gL i X 1 i i 3 1
R % 2 3 4 & 8 7 8 g 10
1y : T ¥

o8} |
gt ! i .
0 14 2 3 4 5 & 7 8 8 10

Seconds

Figure 4.14; ACF segmentation for sinusoidal signal with amplitude and frequency changing together in
the same direction. (a) Signal: A =160 804020 1010204080 160]and f=[1086422468 10] Hz; (b)
Difference measure with WL =70, T, = T¢=1and T, = 1; (¢) Non-stationary boundary detection; (d)
Optimized positioning of detected boundaries.
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Figure 4.15: ACF segmentation for sinusoidal signal with amplitude and frequency changing in opposite
directions to one another. (a) Signal: A =[1020 40 80 160 160804020 10jand f=[10864224 68 i0]
Hz and ; (b) Difference measure with WL =70, T, = T¢= | and T = [; (c) Non-stationary boundary

detection; {d) Optimized positioning of detected boundaries.
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Figure 4.16: ACF segmentation for sinusoidal signal with randomly distributed segments of Figure 4.14
where amplitude and frequency change together in the same direction. (a) Signal; (b) Difference measure
with WL =70, T, = T¢= 1 and T, = ; (c) Non-stationary boundary detection; {d) Optimized positioning of
detected boundaries.

127



200, T A ¥ T T t T T
"1 ;
= o ANA HX' ‘}\ f f\ ARA
& ofif\/\/lpanad § [ ptAmansal f\[‘ A &%Mﬁf\ﬁf\a MAA
vy f Rj VY Tas s;\ i
<F00 i i M \S\ji H H i H 5 i
0 i 2 3 4 g & ¥ 8 e 10
3 T T T T T T T T T
Zr 4
g
4L E N
0 1 & 7 i 2 10
4 T T ] ™I T i
To5k .
Fe] I 1 1 i i X s .
4 1 2 3 4 5 £ 7 & 8 30
1 , '
gost .
) ) }
B 1 2 2 4 8 & 7 8 8 10

Secéﬁds

Figure 4.17: ACF segmentation for sinusoidal signal with randomly distributed segments of Figure 4.15
where, amplitude and frequency change in opposite directions. {a) Signal; (b) Difference measure with WL
=70, T,=T¢= 1 and T, = 1; (¢) Non-stationary boundary detection; (d) Optimized positioning of detected

boundaries.

The results shown in Figure 4.12 to Figure 4.17, segment the signals as expected. Each dis-
tinct segment of the signal, whether it is distinguished by amplitude, frequency or some
combination of the two, in order or randomly distributed are all extracted appropriately.
The same thresholds are applied to each, which does not affect the performance. This out-
come is not surprising, considering that no noise is present. However, there are two notable

exceptions that require some adjustment, so as to properly segment the signal. These excep-
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tions involved the varying amplitude constant frequency (VACF) and the varying fre-
quency constant amplitude (VFCA) signals, seen in Figure 4.12 and Figure 4.13,
respectively. In the first case, involving the VACF the thresholds T, and T are reduced to
0.8, while T, and T; are reduced to 0.45 for the VFCA signal. These values are used fo
ensure detection and optimization. The reason for their lower value appears to stem from
the combined role both the frequency and the amplitude play in the ACF algorithm.
Although artificial in nature, these signals provide insight into the working of the algo-
rithm. Because the changes in both the amplitude and the frequency are doubled at each
higher value, their relative change is the same, a power of two. Therefore, the difference in
thresholds ensuring detection indicates that the algorithm is more sensitive to the amplitude
change than to the frequency change. Moreover, Figure 4.13d shows that determining the
precise position for the signal where only the frequency changes, is more difficult to opti-
mize accurately, as the difference between the position of the optimized boundary and the
position of the actual non-stationary boundary shows. Despite these observations, the ACF
algorithm works effectively for the cases where both the amplitude and the frequency
change, Figure 4.14d to Figure 4.17d, which is the case encountered in practice, since the
EEG signals register changes in the amplitude when changes in the frequency occur, as

mentioned in Chapter 1.

4322 GLR
In this section, we apply the GLR to the same signals as those used in the previous section,
shown in Figure 4.11. As discussed in Chapter 3, its performance in segmentation is con-

trolled by a similar set of parameters, which are:
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« Window length (WL)
o Threshold (T)
e Order (p)

It is similar to the ACF because it relies on the window length as well as the threshold, but
different because it uses autogregressive modelling and therefare needs a model order.
These parameters are set nominally as WL = 70 samples or approximately 0.5 seconds to
be consistent with the ACF; T = 2In(2)N,,, where N, represents the least number of bits
necessary to encode the signal information, as expla?med in Chapter 3. N is chosen as 32
‘bits, which corresponds to a threshold of T = 44, The order is chosen as p = 2. With
these values, the GLR is applied to the forementioned signals and the results, displayed in
Figure 4.18 to Figure 4.23, show clearly that the non-stationary segments are partitioned

correctly
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Figure 4.18: GLR segmentation for sinusoidal signal with varying amplitude and constant frequency. (a)
Signal: A =10 20 40 80 160 160 80 40 20 10}, and f= 8Hz; (b) Difference measure with WL = 70 and
T=44; (c¢) Non-stationary boundary detection; (d) Optimized positioning of detected boundaries.
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Figure 4.19: GLR segmentation for sinusoidal signal with varying frequency and constant amplitude. (a)
Signal: A=30,and f=[24 8 16 32 32 16 8 4 2] Hz; (b} Difference measure with WL =70 and T = 44; (c)
Non-stationary boundary detection; {d) Optimized positioning of detected boundaries.
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Figure 4.20: GLR segmentation for sinusoidal signal with amplitude and frequency changing together in
the same direction. (a) Signal: A=[160804020 1010204080 160]andf={1086422468 10] Hz; (b}
Difference measure with WL = 70 and T = 44;; (c) Non-stationary boundary detection; (d) Optimized

positioning of detected boundaries.
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Figure 4.21: GLR segmentation for sinusoidal signal with amplitude and frequency changing in opposite
directions to one another. (a) Signal: A =[102040 80 160 160804020 10]and f=[10864224 68 10}
'Hz; (b) Difference measure with WL = 70 and T = 44; (c¢) Non-stationary boundary detection; (d) Optimized
positioning of detected boundaries.
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Figure 4.22: GLR segmentation for sinusoidal signal with randomly distributed segments of Figure 4.20
where amplitude and frequency change together in the same direction. (a) Signal; (b) Difference measure
with WL = 70 and T = 44;; (c) Non-stationary boundary detection; (d) Optimized positioning of detected

boundaries.
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Figure 4.23:  GLR segmentation for sinusoidal signal with randomly distributed segments of Figure 4.21
where, amplitude and frequency change in opposite directions. {a) Signal; (b) Difference measure with
WL=70 and T=44; {c) Non-stationary boundary detection; (d) Optimized positioning of detected

boundaries.

These results show, by the optimized position boundaries, that the GLR can successfully
segment a noise-free nenwsmtionaw signal. However, it must be noted that, by virtue of the
likelihood ratio, which depends on the calculation of the different variances (Chapter 3),
we were obliged to add a very small amount of noise to the signal. Because the matrices
involved in calculating the variances were close to being singular, they contributed directly

to erroneous detections. To remedy this problem, a standard deviation (¢) of ¢ = 0.001,
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was added to the signal. Adding such a negligable amount of noise to the signal leaves the
signal, for our purposes virtually noise-free. Comparing these results with those of the
ACF, we can see that despite a small but significant displacement seen in the detection
stage of the procedure, the optimization stage effectively compensates for it and places the
boundary exactly where it bclongs. Compare the results for the VFCA signal in Figure 4.13,

for the ACF with those produced by the GLR, in Figure 4.19, for example.

4.3.2.3 NLEO
Here, we apply the NLEQ to the signals shown in Figure 4.11. Like the other two methods

it depends on the window length and threshold values.

However, the threshold, in this case, uhlike the other two methods is nof fixed but adaptive.
Its value is readjusted constantly, based on the current local values of the signal present,
within the winddw. In other words it is set and reset ‘on the fly’ as the window slides
through the entire signal, based on the scheme dﬁséussed in Chapter 3. To conform with the
parameter values set in the other algorithms, WL is set to 70. The segmentation results are

shown in Figure 4.24 to Figure 4.29.
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Figure 4.24: NLEO segmentation for sinusoidal signal with varying amplitude and constant frequency. (a)
Signal: A =10 20 40 80 160 160 80 40 20 10] and £ = 8Hz; (b) Result of energy operator, ¥y o, to the
signal; (c) Difference measure, Gy go, using WL = 70; (d) Final position of detected boundaries.
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Figure 4.25: NLEO segmentation for sinusoidal signal with varying frequency and constant amplitude. (a)
Signal: A =30,and f=[2 4 8 16 32 32 16 8 4 2] Hz; (b) Result of energy operator, ¥y po. to the signal; (c)

Difference measure, G o, using WL = 70; (d) Final position of detected boundaries.
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Figure 4.26: NLEO segmentation for sinusoidal signal with amplitude and frequency changing together in
the same direction. {(2) Signal: A=[160804020 1010204080 160]andf=[10864224 68 10] Hz; (b)
Result of energy operator, ¥y go, to the signal; (c) Difference measure, Guy g0, using WL = 70; (d) Final

position of detected boundaries.
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Figure 4.27: NLEO segmentation for sinusoidal signal with amplitude and frequency changing in opposite
directions to one another. (a) Signal: A=[10204080 160 16080402010] andf=[108642248 10]
Hz; (b) Result of energy operator, Wy o, to the signal; (¢) Difference measure, Gy go, using WL = 70; (&)

Final position of detected boundaries.
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Figure 4.28: NLEO segmentation for sinusoidal signal with randomly distributed segments of Figure 4.26
where amplitude and frequency change together in the same direction. {a) Signal; (b) Result of energy
operator, ¥ go, to the signal; (c) Difference Measure, Gy go, using WL = 70, (d) Final position of

detected boundaries.
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Figure 4.29: NLEO segmentation for sinusoidal signal with randomly distributed segments of Figure 4.27
where, amplitude and frequency change in opposite directions. (a) Sigaal; (b) Result of energy operator
WaLEo to the signal; (c) Difference measure, Gy po, using WL = 70; (d) Final position of detected

boundaries.

In view of the resﬂts of Figure 4.24 to Figure 4.29, we see that the NLEO algorithm cor-
rectly segments the various signals, but also precisely identifies their position. Again, with
no noise present, this result is to be expected. By its very nature, there is no optimization
scheme used by the NLEO method to determine the optimal boundary position, as is the
case for both the ACF and GLR methods. Instead, the peaks produced in the Gy g differ-

ence measure are taken directly to be the boundary’s final position. The relative heights of
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the Wy go plateaus show the proportional energy relationship betweén the ¥y po and the
signal’s amplitude and frequency. For example, the plateaus increase in height as the ampli-
tude increases, as shown in Figure 4.24, as is the case for the frequency increase in Figure
4.25. In Figure 4.25, the zero plateau produced for the highest frequency (i.e., 32 Hz)
although inconsistent with the present argument, is simply a result of accidental values
chosen for this experiment. With a sampling frequency of fs - 128 and the given fre-
quency of 32 Hz, this combination produces a function f(n) = Asin(% n) , where n is the
sample number. The application of Wy go to this funcﬁbn, in particular, results in a zero
plateau. However, the peaks occurring at the borders of the 32Hz section, outline the true
position where that section’s plateau should be. The other signals, otherwise, reveal the

energy proportionality clearly.

4.3.2.4 Comparison between the three Segmentation Schemes
Comparing the performance of the three algorithms on the noise-free signals, we can make

the following observations.

The ACF réquires that the thresholds T, and T¢ be lowered in or&er to detect the non-sta-
tionary boundaries for the two cases, where only the amplitude changes in one case and
only frequency changes in the other. The GLR does not need to change its threshold for any
of the signals, but on the other hand it does need to insert a negligible amount of noise into
the signal. It inserts noise to overcome the inherent computational instability, which pro-
duces erratic false detections. Comparing the detected boundaries, the GLR optimizes the

final position of the boundaries visibly better than the ACF.
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Since the NLEO does not have any adjustable parameters, apart from the window length,
which remains constant, it does not need any adjustment to detect the boundaries. Also its
detected boundaries are visibly better positioned than those produced by the ACF while, at

the same time, comparable to the those of the GLR.

I Noise

4.3.3 Sinusoidal Non-stationarities W

In the previous section it was shown that with very little adjustment all three algorithms
segment the signal properly without any undue degree of parameter adjustment. The nota-
ble exception was, without question, the signal involving only frequency change. Now, the
emphasis is placed on evaluating the sggmentation capabilities of the ACF, GLR énd
NLEO with signals exhibiting the same various forms of non-stationary events adopted
before, but this time with noise added. The addition of noise further complicates the seg-
mentation and demands a systematic evaluation of a key parameter shared by all schemes;

that is, the window length (WL).

In the previous section, it was also possible to adjust by inspection, quickly and effectively,
the most efficient WL suitable to detect all non-stationarities for all three schemes, which
was WL = 70 samples. On the other hand, with noisy signals, this situation no longer
applies. Although this paramete% does not singlehandedly define the algorithms, it does
critically impact their performance. With the introduction of noise into the signal, a uniform
range of WLs is applied for each algorithm, to each different non-stationary signal. The
goal behind this uniform WL sweep is to uncover the reliable operational WL values that

work in detecting non-stationarities over a general span of real possibilities.
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4.3.3.1 Description of the Signals Used
One typical realization of the non-stationary signals used to evaluate the performance of the

segmentation schemes is shown in Figure 4.30.

o Y E 15 2 0 05 i 15 2

Figure 4.30: Various non-stationary segments (a) Decreasing amplitude with constant frequency (b)
Decreasing frequency with constant amplitude (¢) Amplitude decreasing with frequency (d) Amplitude

decreasing while frequency increasing

At this point, a description of these signals must be given so as to allow a suitable discus-
sion of their relevance with regard to the overall objective, involving the EEG. To begin
with, all of the signals in Figure 4.30 consist of a combination of two values for the ampli-

tude and two values for the frequency. These values are:
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¢ Low amplitude = 20

o High amplitude = 40
e Low frequency = 6 Hz
e High frequency = 10 Hz

Following the tables presented in Chapter 1, the underlying assumption in the selection of
these values ié thﬁt by choosing closely spaced yet representative values, the segmentation
performance can be readily identified in a more difficult environment rather than in one
where largely-spaced values are used. In such a purposely hostile but realistic scenario,
each algorithm’s effective capacity to properly segment the signals is studied, in order to
observe its performance, while recognizing that ample room for adjustment is still avail-
able, since these signals are but a narrow slice of the overall range of possible EEG vari-

ability encountered in practice.

In addition to the non-stationarities illustrated in Figure 4.30, there exists ‘reciprocal’ sig-
nals. For example, Figure 4.30a shows a decreasing amplitude constant frequency signal.
Its reciprocal would be an increasing amplitude constant frequency signal. Similarly, the
other three signals also possess a reciprocal. Although there is somer difference between the
same algorithm’s response to these reciprocal signals, this difference sheds no more mean-

ingful light on the algorithms’ performance and therefore are not considered any further.

4.3.3.2 Description of the Noise Added to the Signals

The noise used in the signal is based on the SNR. A reasonably strong presence of noise is

represented by AWGN with standard deviation of ¢ = 20, which corresponds to a
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SNR = 3 dB for the half of the signal with the amplitude of 40, while at the same time it

corresponds to a SNR = -3 dB for the half of the signal with the amplitude of 20.

4.3.3.3 Performance Mmsﬂrﬁmg Pamméters
To obtain exploitable statistical results, we generate 100 realizations of the noisy signals
shown in Figure 4.30. To measure the performance of each algorithm, as the WL changes,

we need to define three parameters. These pa'ranieters are:
1. Probability of a correct detection ( P )
2. Probability of multiple false detections ( Pg)

3. Standard deviation of correct detection from actual position ( o, )

Probability of Correct Detection

Because all of the signals are designed to possess only bnc non-stationary boundary, which
occurs, in all of the signals in Figure 4.30, at sample position n = 128, then only one
detection can be made. However, the detection of only one boundary is not sufficient to
score that detection as a correct one. To score for a correct detection, the boundary detected
must be within a certain proXimity of the actual non-stationarity. We define the necessary
proximity that a detection needs to fall into, in order to be counted as a successful detection,
arbitrarily as distance equal to 5 % of the total signal length or 13 samples on either side of
the actual boundary. Since the total length of the signal is 256 samples, then a detection is
considered correct if it falls anywhere within the range [115 - 141] samples. Therefore, the

criteria used in establishing whether a correct detection is made is:
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e only one detection is made,

¢ detection made occurs within 5% range of actual Boundary.

If these two criteria are satisfied, then the realization, where they occur, is counted towards
correct detection. In other words, P, is defined as the number of realizations with correct

detections divided by the overall number of realizations.

Probability of Multiple False Detections

This key parameter is crucial in revealing an algorithm’s propensity to produce misleading
results. Whenever more than one detection is made, regardless of whether one of them is
correct, the realizétion in which this situation emerges is judged as a false detection. There-
fore, Py is defined as the number of realizations where a false detection occurs divided by

the overall number of realizations.

Standard Deviation of Correct Detection from Actual Position

During any realization, if a correct detection is made, then its position, in samples, away
from the true position where the actual non—statiqnary boundary lies, is counted. Conse-
quently, the final value for o is calculated as the average value of all of the standard devi-
ations produced in the realizations, where correct detections are made. It is clear that o will

never be greater than the imposed range limit, which in this case is equal to 13 samples.
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4.3.3.4 A(I?

In the previous section we set the operational values of the ACF’s parameters. In this sec-
tion, we test the ACF with these values. Since our objective here is to discover the dynamic
reaction the ACF has with regards to a changing WL, we select the values for the various
thresholds in a straightforward manner so as not obfuscate the resu}ts.rFirst of all, we
émp@se‘the condition that T, = T, to ensure that relative changes in the amplitude and the
frequency are balanced. Secondly, following the cues provided for, by the results of the
ACF whenb applied to noise-free signals, the threshold values are chosen as:
T,=Te=T, =1 for every signal except the case where only the frequency changes, in
which case the thresholds are chosen as: T, = T, = 0.45, while the global threshold is

maintained as: Tg = 1,

4.3.3.5 GLR

In the application of the GLR to the noisy sine sigﬁals of Figure 4.30, we select the follow-
ing fixed values for two of the operational parameters: the model order number p = 2 and
the number of bits used in threshold N, = 2 . The model order number is chosen as 2
since higher values result in completely missed detections, which is directly attributable to

the large degree of noise added to the signal.

4.3.3.6 NLEO

In this section we follow the same procedure as that used in the noise-free section, with one

exception. Due to the presence of noise, we will impose, following the procedure proposed
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in [50], a constraint limiting the minimum distance between any subsequent detections.
Without this restriction, in the presence of noise, the NLEO tends to produce significantly
higher false detection rates. Although tﬁe value chosen in [50] corresponds to another sit-
uation, we choose the minimum distaﬁce to be 35% of the overall signal size, that is
MD = 90 samples = 0.7 seconds. The twé segments, making up the overall signal, are
each 128 samples or 1 second long. The value chosen for MD is selected to reduce the

number of false detections.

4.3.3.7 Comparisons between the Results Generated by the ACF, GLR and NLEO

To begin this section, we present the results that each of the segmentation algorithms, as
defined in the three previous sections, produced when applied to the signals of Figure 4.30.
These results are superimposed upon each other, in graphic form, in Figure 4.31 through to
Figure 4.34 to emphasize the differences between the methods. Here, we mention that
throughout each of the following graphs the solid curve corresponds to the ACF results, the
déshéd curve to the GLR results and the dotted curve to the NLEO results, as explicitly

depicted in subsection (b) of each graph.
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Figure 4.31: ACF (solid line), GLR {(dashed line) and NLEO (dotted line) segmentation of noisy signal
with amplitude decreasing and constant frequency () Signal; (b) Pg (¢) P.; (d) Average o,

152



(e}
G
T
P
e
cmm?
&
: P
.l
=
e
=
-
o
-
E

40§ -
wL
g e T R R :
26 30 40 5 60 70 80

Window Lengths
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with frequency decreasing and constant amplitude (a) Signal; (b} Pg; (¢) P; (d) Average o,

153



100

T H i T 1§ EH Tt T
j I T T SRR , !' 4 .
LM A an G [A L O S P W Ay
g op i VPR L T W e NG A e
y y\‘ﬁﬂ \2‘ j \A{ f iﬂk j k\;\f } & VJ i;\.f \}yr\? 2’ ‘g“;; gﬁ\ﬂd {\«,f 4 fi{”f’\&,!# %AH "\ﬁf
_,.300; i 1 E’s i 3 ' £ i 3 i
‘o 92 04 06 08 1 12 14 16 18 2

8
“ 5l -
gl ;.,;u«-7*"‘*"“7""“"”'”'”"*7*:::::%’-’57?", i j '.A i i L
20 30 40 50 60 70 B0 80 100 110
Window Lengths
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with amplitude decreé.sing and frequency increasing (a) Signal; (b) Py (¢} B; (d) Average o,

General Observations

Comparing the graphs, it is clear that the size of the WL, in all segmentation schemes, crit-
ically impacts the correct detection of the non-stationarities in a signal. We see that for
smaller WLs, that is, for WLs smaller than 30 samples long, every method demonstrates
near zero correct detection and conversely near total multiple false detection. The GLR and
NLEQ are especially n@tgwoﬁhy in this regard. The reason for such poor performance at

these values of the WL lies possibly due to the fact that the sinusoidal signals all have one
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half of their content possessing a frequency of 6 Hz.. Being a relatively low frequency, it is
consequently longer in time. Since one second is 128 samples and dividing this by 6, we
see that one entire cycle is represented concisely by 22 samples. Therefore, values of WL
close t<; this value, although containing all of one cycle, do not reveal enough distinct infor-
mation about the signal, due to the heavy presence of noise. This is why there is so much
false detection.As the WL grows and more signal content is captured, better means of dis-

tinguishing the signal content is achieved.

For all of the realizations, the value of the standard deviation in the detected position from
the actual position, o, is well within the 5% range imposed, for all of the aigorithnis. In
addition, because of its unvarying nature, the resulting o, appears to be ihdependent of WL,

apart from the WLs where no correct detection is possible.

All of the segmentation schemes appear to produce a relatively constant P; in the range
starting from WL = 65 samples all the way to the end of the range. The reason why
noticeable stability is reached at WL = 65 samples is because this value is exactly one
quarter of the overall signal length and consequently when two windows are positioned
concurrently, as is the case for the ACF and GLR methods, their overall length reaches the
midpoint of the signal, where the non-stationarity occurs. As a result, right from the start,
potential false detections are avoided because the first non-stationarity detected, happens
to be the actual non-stationariy. However, that is not to say that this circumstance will nec-
essarily produce correct detection, as is evidenced in the imperfect P, values, shown in

Table 4.2 but it does assist somewhat in avoiding some false detections.
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ACF

The ACF outperformed all of the other schemes in terms of producing the lowest Pg. This
result is due to its reliance on a combination of both the amplitude and frequency measures.
Having two independent measures of the signal gives a better means of distinguishing sig-
nificant changes. Whereas only the amplitude changes in Figure 4.31 and only the fre-
quency changes in Figure 4.32, the values for P_ is 0.28 and 0.21 for these two cases. These
values are averages of the respective probability over the entire WL range and are taken
from Table 4.2 in Section 4.4.2, where the algorithms’ performance is compared when WT
is applied. One possible reason for this result is because not enough significant change is

present.

By significant change, we imply significant change in either the amplitude or the frequency |
of the signal or both. Remember that the ACF method reveals the combined difference for
both the ampﬁitude and the frequency. Since Figure 4.31 shows only the amplitude chang-
ing while the value of the frequency remains constant, only one of the two parameters
(amplitude and frequency), which the ACF uses in measm‘ixﬁg signiﬁcant difference in the
signal, actually contributes to making a difference. Therefore, since only one parameter is
changing, the significance of the change present is only haif as strong as it would be if both
parameters were changing (i.e. which is mmiaﬂy the case). Moreover, the considerable
amount of noise present further diminishes the significance of the actual change in the
amplitude from a value of 40 to a value of 20. Both of these factors taken to together con-
tribute in expiainihg the low value of P, for Figure 4.31. A similar argument holds for the

results of Figure 4.32.
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To further understand the importance of having both the amplitude and the frequency
changing for the ACF, we consider Figure 4.33 where we have the amplitude decreasing
from 40 to 20 and at the same time the frequency decreasing from 10 Hz to 6 Hz. Here, the
amplitude and the frequency change together, that is, they are both decreasing. The P, value
produced is 0.36 which is modestly higher than Figure 4.31 and significantly higher than
that of Figure 4.32. The P, value resulting from Figure 4.34 where both the amplitude and
the frequency change in opposition to each other (i.e., amplitude decreases while frequency
increases) is 0.61. This value is cléaﬂy superior to the P, values of either Figure 4.31 or

Figure 4.32.

Another reason for the low P, values may come from the definition of the P, parameter
itself. A detection is considered to be correct only if it falls within a 5% range on either side
of the actual position of the non-stationary boundary. Perhaps this value is too strict. In Sec-
tion 4.3.4 we will define the probability of a detection falling outside of this range.
Although a 2nd order AR signal is used in that section, we will see that a considerable
number of detéctions do indeed fall outside of the range. Furthermore, we will see that
detections are in fact made but that they fall ouside of our arbitrarily defined range. Assur-
edly the same situation applies in this case with the sinusoidal signals. Therefore, we can
improve the low P, values by simply increasing the 5% range, which may possibly be too
strict a value, but this gain nevertheless comes at the cost of reducing the precision of detec-
tion. However, such a compromise may be worthwhile if it means higher detections are

made.
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GLR

The GLR performed well, having the intermediate value for P; while maintaining a rela-
tively high value of P.. We note that the GLR P, value reaches 100% correct detection at
WL = 120 samples, for every signal, which is a misleading result. This value of WL is
equivalent to the entire signal length when two such windows are posiﬁoned side by side.
Thus, the two distinct signal halves each fall squarely, one, into the reference window and,
the other, into the test window. This accounts for the gradual P increase, seen at the larger
WLs. However, this result shows, when compared with that of the ACF, which also uses
two windows, that GLR has a much better ability, at least as far as these test signals are con-
cerned, to detect and isolate the correct boundary position. The ACF, on the other hand,
despite having two windows positioned exactly above the two distinct portions of the sig-
nal, does make a correct detection but is not a'&ﬁle to resolve the correct location of the

boundary as precisely as the GLR within the larger window length.

NLEO

The NLEO achieves géod P, for all signals except for the signal in Figure 4.34. Since most
detections could very likely be falling outside of the imposed range, this result, as discussed
in the general observations section, does not considerably detract from the overall effec-
tiveness of this method. However, the most prevalent feature that strikes one’s attention is
its poor ability to avoid false detections. For all signals it is the NLEO method which per-
forms the poorest in this regard, with high values of Py, extending over a large range of
WLs. The main reason for this result stems directly from its adaptive threshold or, said dif-

ferently, from its lack of a fixed threshold. Due to the sporadic effects caused by the added
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noise, false detections are inevitable. Nevertheless, Prdoes show an improved performance
as the WL increases. Unlike the previous methods, only one window is used. Therefore, for
WLs approaching half the signal length, the NLEO demonstrates that stable P, can be main-
tained as well as reducing the Py, so long as the WL is close to the size of the segment being

sought and that a minimum distance between consecutive detections is imposed.

4.3.4 Second Order AR Non-stationarity

We now turn our attention to non-stationary signals generated by a second order AR model.
The signal used in this section is generated by concatenating two stationary, but dissimilar
- second order AR signals. Adjoining two such signals together produces the desired non-
stationary signal. The two component signals used are defined by the following AR rela-

tionships:
x(t) ==x(t-1)-02 - x(t-2) +e(t) t=1,2,...,128 4.2)
x(1) =x(t-1)-04-x(t-2) +e(t) t = 129,130, ...,256 4.3
where x(7) is the signal and (¢) is white Gaussian noise with zero mean and unit variance.

 We chose the length of each signal, as in the previous section, to be 128 samples (or 1 sec-
ond) long. The overall signal created by combining these two signals is shown in Figure

4.35.
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, Figuu'e 4.35: One realization of the non-stationary signal generated by 2nd order AR process used as the

test signal.

In this section, we apply the three algorithms to this second order autoregressive non-sta-
tionary signal to study their performance under a different light. The performance measures
used throughout Section 4.3, namely, P_, Prand o, are again used here. Similarly, 100 real-
izations of the AR non-stationary signal are generated to obtain reliable results. Moreover,

two additional measures are included and these are:

o Probability of a missed detection (P,,)
o Probability of out of range detection (P,)

These new measures are included to reveal a clearer picture of the segmentations’ perfor-

mance, some of which remained hidden, when only P, Prand o, were used.
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Probability of a Missed Detection

Simply put, P, counts the number of realizations where no detection is made. Remember
that the signal under study possesses only one non-stationary boundary ﬁnd therefore only
one detection should be made. To calculate P, all the realizations where no detection is
made are counted and divided by the total number of realizations used. This performance
' measure is important in determining the situations where the segmentation scheme is

unable to make a detection.

Probability of Out of Range Detection

Recall that the non-stationary boundary of the test signal occurs in the middle of the signal
- or 128 samples (i.e. 1 second). Moreover, in determining o, we had to decide upon an
acceptable range, away from this boundary, which we chose reasonably to be 5% of the
overall signal length. Realizations where only one detection appeared and that detection
| occurred within this range, were counted towards calculating P.. Now, the number of real-
izations, where only one detection occurs but falls outside the given range, is counted
towards calculating P,. This measure sheds light on the precision of a segmentation method

in localizing a detection.

4.3.4.1 Varying WL
As in the previous sections, we vary the WL, for all three methods using the same WL
range. The same values for the threshold used before for the ACF and the GLR are again

applied. In addition, the same imposed minimum distance is applied again to the NLEO to
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mimimze the overall number of false detections. The results are shown in Figure 4.36 and

they include the two additional performance measures.

&

10¢
GPMF%%WWM WW}‘”W"\?&W‘@FM%’&J w’“ u\j A f %"v/ AL \f‘w i

400, :
40 0.2 04 0.6 % 2 1 1 2 1_4 1,_3 m 5
N =i »Z.. M " T T x ;
05+ o~ o MMLEO ’ |
it ’GLR . B 5 "i“,.»’ ST
g \U“ : : ;w A ottt gl ] |
£2 30 40 58 80 70 80 20 ma 110 120
e ) o ki N S Nt
OB e o i
0 ’ A A MR N L
e 100 110 120
¥ 3

o it b s

ﬁo 120
10 120

Figure 4.36: ACF (solid line), GLR (dash-dot line) and NLEO (dashed line) segmentation of 2nd order AR
modelied non-stationary signal for various windows, with T, = Tp= T, = 1, for the ACF, Ny, = 32, for the
GLR. (a) Non-stationary signal; (b) Ps; (€) P ; (&) Py ; () Py s (B 5, .

ACF

Comparing the P¢ values of Figure 4.36 with those produced for the sinusoidal signals, we
observe that the ACF has more difficulty in suppressing false detections, as evidenced by

the longer WLs needed to bring this value to zero. In addition, it produces P_ values that
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are quite low, similar to those emerging from the segmentation of the only-frequency

changing signal, in Figure 4.32.

Yet, by looking only at the P values produced by the ACF, we get a somewhat discourag-
ing picture. However, this is only part of the picture. Taking P, into consideration, we see
that the larger part of the other detections made by the ACF fall outside of the 5% range.
This result is encouraging because it reveals that the ACF does make detections over-
whehnmgly, but most fall out of an artiﬁciaﬁy imposed range. So the question, concerning
its performance involves precision in location rather than ability of detection, although its
ability to detect is slightly affected, since it is the only segmentation scheme that produces

non-zero value of P, for this signal.

LR

The most noticeable feature of Figure 4.36 is, without question, the near perfect P, values
produced by the GLR over the entire WL span. This result demonstrates the GLR’s excep-
tional ability to both detect and optimize the position of the non-stationary boundaries.
However, it must be noted that due to the nature of the signal, a second order AR process,
such a result is to be expected because the GLR is also an AR process. Moreover, since the
GLR is also second order, it is therefore optimally suited for this kind of signal. This event
is no fortuitous accident, but on the contrary was deliberately chosen to demonstrate the
excellent capabilities of the GLR segmentation scheme, when its order corresponds pre-
cisely to the signal under study. Hnwgver, the seiectionlof the order, a critical parameter in
its performance, is no trivial issue, and its solution can be approached by either of the model

order estimation methods discussed in Section 3.5.7.1.
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NLEO

The NLEO shows the same high P; as was witnessed with the noisy sinusoidal signals,
although it appears to be slightly better in comparison. It does produce a higher P, than in
the other signals. Its average P, taken from Table 4.3 of Section 4.4 below, is 0.50 and is
higher than the P_ produced by the previous signals. Furthermore, it is clear from the prob-
ability breakdown in Figure 4.36 that it either correctly detects a boundary or it makes mul-
tiple false detection. It makes some detections out of range but unlike the ACF it never

misses a boundary.

4.3.4.2 Varying Thresholds
In this section, we attempt to ascertain the optimal threshold value for the ACF and the
GLR, by applying a relevant threshold sweep to each, exactly as we did when sweeping

through the WLs.

ACF

Along with testing the effect of changing the WL on the ACF’s performance, a test wherein
both the amplitude and the frequency thresholds T, and Ty are varied, is also applied. This
second test is used to determine as to which threshold produces the best detection. How-

gver, two constraints are applied. They are:
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where, T, Tyand T, are the amplitude, frequency and global thresholds respectively, as
before. The first constraint is chosen to conform with the values of Section 4.3, while the
second constraint enforces a relative change of amplitude to have the same weight as a rel-
ative change in frequency. The variable test range applied for the threshold is [0.2 - 2.0].
While the threshold is varied, the WL is fixed at WL = 70 samples . We choose this value
because throughout most of the results generated in the previous section, where WL is var-
ied, it is observed that P¢falls to zero at around WL = 65 samples for the GLR, while for
the ACF it does in most cases well before this value and in others a little after. Therefore,
the present choice is made to enable a good and consistent comparison to be made between

the two methods. The results of varying threshold are shown in Figure 4.37
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Figure 4.37: ACF segmentation of 2nd order AR modelled non-stationary signal for various thresholds,
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We observe from these results a number of important features. Firstly, low threshold values
produce high P values which gradually taper off as the threshold increases. These low
threshold values tend to overemphasize the changes in frequency and amplitude, which
consequently lead to greater false detections, as shown in Figure 4.37b. Secondly, as the
threshold increases, we notice that the number of missed detections, as seen in Figure
4.37d, begins to steadily increase. Here, instead of overestimating the combined weight of
frequency and amplitude signal content, the increasing threshold values tend fo underesti-
mate their presence, thereﬁy leading the ACF to miss them althogether. Fortunately, our
third point reveals when considering Figure 4.37c, that between these two worlds of over-
estimation and underestimation their does exist an optimal threshold range. We can see that
for values of the threshold in the range of [ 0.7 - 1.2 ], the values of P reach their peak val-
ues. In particular, the optimum th_reshold value is unity, because at this value P is highest
and both Py and P, are very low. However, the one drawback to this value is that it also
corresponds to a near peak value in P,. Nevertheless, as was discussed in the varying WL
section, the imprecision in the P value does not critically damage the overall effectiveness
of the ACF algorithm. This higher P value, to a certain degree, can be tolerated, so long as

false detections are minimized and missed detections are avoided.

GLR

The application of the GLR to the signal in Figure 4.43 necessitates further investigation of
its performance, and more specifically its optimal performance with regards to threshold.
In particular, in this section, the number of bits used in determining the GLR’s detection

threshold is varied. The number of bits varies from a value of 2 to a value of 32, in steps of
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2 to conform with the values used in the previous sections. The model order is maintained,
for consistency with Section 4.3.3.5, at p = 2. The results of varying threshold and WL

are shown in Figure 4.38.
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Figure 4.38: GLR segmentation of Znd order AR modeiled non-stationary signal for various thresholds,
with WL = 70. (a) Non-stationary signal; (b} P¢; ()P ; (D P &) Py s D o, -

The results of Figure 4.38 show a much simpler situation than that for the ACF. We see that
there is a sharp transition threshold, which occurs at Ny;.. = 6, whereby P; falls to zero,
in Figure 4.38b and maintains this value for every higher threshold value, while the P, rises
to nearly 100% detection, in Figure 4.38c. Apart from the slight increase in P, starting at

16, the GLR demonstrates superior overall performance compared to the ACF.

168



In this section, we demonstrate the validity and effectiveness of the combined procedure
shown in Figure 4.1, involving both the segmentation algorithms and the wavelet decomp-
sition. Applying the same signals that were used in Section 4.3 to this section, we now dem-
onstrate the improvement that such a combination yields over the results produced in those
sections, where no wavelet decomposition was used. The comparison drawn between the
two sets of algorithms (i.e., those with WT and those without) is, again, accomplished by
means of varying WLs, as was done in the previous sections, for the simple reason that WL
is common to all the three algorithms and therefore provides a good basis for judging quan-

titatively the similarities and dissimilarities amongst the three.

4.4.1 Comparison of Segmentation with Wavelet Decomposition

- The results presented in this section are broken into two parts. One part shows the compar-
ative resuits, both graphical and in tablular form, of the various sinusoidal signals used pre-
viously and described completely in Figure 4.30. The comparative results produced from

the second order AR signal are presented in the second part.

The wavelet decomposition used to generate all of the subsequent results involves a 4-level
discrete Meyer decomposition, where the sum of the detail functions, d; represemmg the
[4 - 8] Hz. frequency band and d, representing [8 -16] Hz. frequency band, is substituted
for the original signal to perform the segmentation. Apart from this substituion, the param-
eters for the ACF, GLR and NLEO are left exactly the same as in Section 4.3.
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This time, only P, and Py are displayed graphically, while all of the probabilities are given
in the tables.. The values shown in Table 4.2 and Table 4.3 are those that are obtained by
taking the average value of a specific probability over the entire WL sweep range. The
values produced in this way provide a means of assessing the overall improvement, pro-

vided by all the methods and their performance measures in a consistent manner.

4.4.2 Results of Varying Sinuseids
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Figure 4.39: P, for ACF segmentation of various sinusoidal signals without WT (dashed line) and with
WT (solid line) over WL range. The sinusoidal signals are (2) Only amplitude changing; (b) Only frequency
changing; (c) Amplitude and frequency changing together; (d) Amplitude and frequency changing opposite

toc one another.
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Figure 4.43: Ppfor GLR segmentation of various sinusoidal signals without WT (dashed line) and with
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Table 4.2: Comparison of P, Prand Py, for the three segmentation schemes applied to varying sinusoidal
signals without the WT and with the WT. Note: Amp refers to only amplitude changing signal; Frq refers to
only frequency changing signal; Tog refers to amplitude and frequency changing together in the same
direction; Opp refers to amplitude and frequency changing in opposite directions.

P, P P
ACF | GLR | NLEO || ACF | GLR | NLEO | | ACF | GLR | NLEO
A |NoWT | | 0.2800 | 0.4438 | 0.3895 | | 0.0629 | 0.3324 | 04424 | | 0.4543 | 0 0
g‘ WT 03171 | 0.2562 | 0.4771 | | 0.0343 | 0.4257 | 0.4333 | | 0.4648 | 0.0067 | ©
%Chg| | 133 | -423 | 225 456 | 28.1 | 20 2.3 0 0

F |NoWT | | 0.2114 | 0.3076 | 0.3581 0.2476 | 0.2895 | 0.4457 0.0419 | 0.0248
WT 0.2681 | 0.5543 | 0.4610 0.1967 | 0.4229 | 0.4400 0.0090 0 6
% Chg 268 80.2 28.7 <20.6 46.1 -1.3 -78.4 0 g

]

T |NoWT | | 0.3581 | 0.4133 0.4667 | | 0.1648 | 0.3467 | 0.4476 0.2762 Y

g WT 0.5829 | 0.5133 | 0.4948 0.0481 | 0.4219 | 0.4438 | | 0.1429 0 0
% Chg 62.8 24.2 6.0 ~70.8 217 -0.85 -483 | 0 0

O |NoWT | | 0.6076 | 0.4143 | 0.2019 0.0829 | 0.3276 | 0.4952 0.0171 0 0
i‘;’ WT 0.6919% 0.3648 0.2381 0.0448 | 0.4248 | 0.4671 0.0600 0 0
% Chg 138 -i1.9 17.9 -46.0 29.6 -5.7 250.0 ¢ 0
Note: Comparing the results of WT to non-WT segmentation, we mention that:

* a positive % change, in P, indicates improvement.

° anegative % change, in P;and P, indicates an improvement.

General Observations

The results in Table 4.2 show that the segmentation involving the WT of sinusoidal signals
provides a definite overall improvement for the ACF and the NLEO, compared to the seg-

mentation of the same signals without the WT. The GLR presents mixed results where on
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the one hand there are some improvements in P but on the other hand, there is a general

decrease in the value of Py when the WT is added.

ACF

The ACF shows improvement in correct detection in all of the four cases, when the WT is
included. In addition, it also shows an irﬁprovement in the reduction of false detections for
all the four signals. This improvement is shown by the negative percent chahge indicating
lower P values obtained with the WT. The number of missed detections is also lowered,
with the exception of the sinusoid where the amplitude and frequency change in opposite
directions. Although the percent change, in this case, is 250 %, this value is .misleading

because it represents a change in small values.

GLR

With the inclusion of the WT, the GLR.performs better in terms of P, for signals, where
either the amplitude and frequency change together or where only the frequency changes.
However, its performance deteﬁorates for signals, where only the amplitude changes or
where the amplitude and frequency change in opposité directions. The biggest improve-
ment occurs for the case of a signal where only the frequency chgnges, This signal’s P,
value improves by 80%. The presence of the WT deteriorates the value of P significantly

for signals, where only the amplitude changes. Its value drops by 42%.

The number of false detections, on an average, increased with the WT for all the signals,

- while the missed detections, which was essentially zero, stayed the same with or without
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the WT present. By looking at Figure 4.43, we see that the P¢values with the WT are poorer
than those Wifhout the WT only at values of the WL smaller than 65 samples. Therefore,
with an adequately chosen WL, the values for Py can be lowered to zero, with the WT
present. Furthermore, since the Ordef number is maintained at two throughout all of these
experiments to provide consistency, this value may very well be inadequate (i.e., too small)
in capturing some of the types of changes represented by the sinusoids involved. That is, a
higher order number may be more suitable for some signals, for example, like those which
only the amplitude changes, compared to others for which only the frequency changes. The
exact value for this order would have to be obtained by the traditional methods used for this

| purpose, mentioned in Section 3.5.7.1.

NLEO

With the WT, the NLEO segmentation shows an all round improvement. For all the signals,
it shows an increased correct detection, a reduction of false detection and no missed detec-
tions. Its degree of improvement is at par with the ACF, except for the signal where ampli-
tude and frequency change together, in which case the ACF (62.9% of P, improvement)
considerabiy outstrips it (6% of P, improvement). Although it shows a reduction in Py, this
improvement is quite modest with the highest savings of 6% in the case of amplitude and
frequency changing in opposite directions and the lowest savings of 1% coming from the
case where amplitude and frequency change in the same direction. Since the NLEO does
not miss any detections with or without the WT present, there is no real improvement by
including the WT, but by the same token there is no deterioration eithsr by its presence. So,

in terms of P, the WT does not affect the NLEO’s performance.
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4.4.3 Second

The results produced by the segmentation procedures applied directly to the AR signal and

to the wavelet-decomposed AR signal are shown in Figure 4.45 and presented in Table 4.3.
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Figure 4.45; ACF, GLR and NLEO segmentation of second order AR signal with WT (solid line) and
without WT (dashed line). ACF: (a) P,; (b) Pg GLR: () P; (d) Pg NLEO: (&) P; () P

Table 4.3: Comparison of P, Prand P, for the three segmentation schemes applied to a 2nd Order AR
signal without the WT and with the WT

P Pg P
ACF GLR | NLEO ACF GLR | NLEO ACF GLR | NLEO
Ne WT 0.2562 | 0.9590 § 0.5033 0.299G & 0.3643 0.0438 0 0
WT 0.5762 | 0.6343 | 0.3419 0.2216 | 0.1371 | 0.3433 0 Y 0
% Chn 1249 | -339 | -32.1 -26.1 0 -5.7 v 0 0
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ACF

As in the previous section, involving the varying sinusoids, we see that with the second
order AR signal, the ACF outperforms all of the other segmentation algorithms in terms of

improved P, reduced Py and reduced P, with the WT included.

GLR

Not surprisingly, the GLR in conjunction with the WT produces worse P, results. This
- result seems inevitable considering that the GLR is an AR based algorithm with order
number matching that of the signal and as such is optimally suited for correct detection on
just such a signal. Consequently, any modification of the signal, as that produced with the
application of the WT, would necessarily detract from the GLR’s performance. Moreover,
its Py values' also diminish with the WT, demonstrating that at least with respect to the sig-

nals used the GLR does not improve with the WT being present.

NLEO

The NLEO shows a deterioration in the correct boundary detection for the AR signal with
the WT present. However, it does show a mild improvement in terms of reduced false

detections.
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In this chapter, we have studied both the wavelet transform and three different segmenta-
tion schemes, the ACF, the GLR and the NLEO. Together, these two functional operations

form the core blocks of the proposed detection scheme, to be considered in Chapter 5.

We first established the validity of the WT as a pertinent tool in decomposing a signal in
frequency while simultaneously preserving its time domain featurés. Using both concate-
nated and superimposed sine waves, with and without the presence of AWGN, we have
shown that the WT does indeed partition the frequency bands correctly, while preserving
the frequency content as well as the time domain content of the signal within each parti-
tioned ﬁgquency band. This result, therefore, establishes the WT as a reliable means of iso-
lating’relevant frequency bands from the rest of the signal, without a loss in the time domain
content (i.e., siﬁe segment positioning remains unchanged after the WT is applied) thereby

allowing the selected bands to be used for further processing.

Next, we tested the ability of the segmentation algorithms to correctly segment concate-
nated sinusoidal signals exhibiting various types of changes in either amplitude or fre-
quency or some combination of the two. No noise was added to these test signals. Apart
from some some minor adjustments to éome working parameters, each algorithm is seen to

correctly detect all non-stationary boundaries present, as well as correctly position them.

To examine the performance of each algorithm in a more realistic setfing, significant
AWGN was added to four different types of sinusoidal signals, each representing a differ-
ent type of non-stationary boundary. They involved signals where only the amplitude was

changing, signal, or only the frequency was changing, or both the amplitude and frequency
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were changing together (i.e. both increasing or decreasing simultaneously) or the amplitude
and frequency changing in opposite directions. Since all of the segmentation schemes crit-
ically rely on some form of windowing, performance was determined by sweeping through
various WLs and evaluating the probabilities of correct and false detections. None of the
schemgs achieved 100% correct detection for a,ﬁy of the signals; however, each did show
high correct detection for at least one of the signals, although no scheme did so for all of

the signals. Apart from the NLEO, the ACF and GLR could, upon choosing an appropri-

ately sized window length, reduce the probability of false detections to near zero values.

As far as the second order AR signal, which was the fifth test signal used to reveal the per-
formance ability, the GLR was clearly superior all round to the other schemes. By sweeping
through various possible thresholds for both the ACF and the GLR, it was shown that an
optimal threshold exists for the ACF and that a minimum threshold needed to be satisfied

in order to maximize correct detections, while keeping false detections to a minimum.

The underlying assumption behind the use of the wavelet-transformed signal is that it pro-
vides an improved, better suited version of the signal, with which to apply the segmentation
schemes. This assumption is partially validated in Section 4.4. In that section, it was seen
that the ACF mapted, in terms of performance, most positively to the inclusion of the WT.
Improvements for the ACF appeared in higher probabilities of correct detections and lower
probabilities of false detections. Simﬁlaﬂy, the NLEO also showed an overall improvement
with the signals preprocessed with the WT compared to those that were not. The only nota-
ble exception for the NLEO was in its reduced correct detection with regard to the second

order AR signal. The biggest surprise came from the GLR, which showed improvement in
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only two of the five test signals, while showing reduced performance for all of the signals

in terms of false detections, when the WT was included compared to when it was not.

Now, an important point must be made. Of the three segmentation schemes the ACF gen-~
erally provided the best results in terms of P, and P;. The NLEO, on the other hand, pro-
vided generally good P, results, but of all the schemes had the worst performance in terms
of the P;. As mentioned in Section 3.4.3.3, since the NLEO applies an adaptive threshold,
it is plagued by inherent fluctuations which generate false boundaries and in turn, large
values of Py However, to correct this problem, contrary to the development proposed in
[50], an outside fixed threshold can be applied. Although deciding on the exact value for
this threshold adds more complexity to the NLEO scheme, such an adjustment is certainly
warranted when comparing with the improved results produced by the ACF wﬁich uses a

fixed threshold.

At this point, Et’must be added that the NLEO was the fastest of the three schemes. In fact,
the NLEQ was roughly two times faster than the ACF which in turn was approximately two
times faster than the GLR in analyzing the signal. In view of the sizeable speed advantage
of the NLEQ, it is clearly the most attractive candidate of the three schemes to use inareal |

time EEG processing environment.

~ Before continuing to the next chapter, it must be noted that the test signals used througout
this chapter, represent only a narrow slice of the potential variability, in terms of changing

amplitude and ﬁ“eqliency, that the procedure is likely to encounter in an actual EEG signal.
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The schematic, of the overall procedure, proposed in this thesis was shown in the previous
chapter. Now, in order to adjust to the practical EEG application that model is expanded

and amended. A clearer breakdown of the process is shown in Figure 5.1.
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ddLevd : INFORMATION >HA
. seLaven. GLR o CONTENT '
EMG._..—._—_@ i g e . KL Eﬁ e

Figure 5.1: General Detection Procedure

Here, by comparing with Figure 4.1 it is seen that another block, decifering the Information

Content of the individual segments produced after segmentation, is inserted. This block is
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used to determine the amplitude and frequency content of the assumed stationary segment
that it represents. After this step is accomplished, a reasonable thresholding criteria is
applied in order to establish whether or not the content within any of the segments is suffi-
cient to score that segment, as being a microarousal. In addition, constraints imposed by the
R&K criteria, namely, minimum segment lengths, minimum distance lengths between
scored segments and minimum time delays between newﬁy entered sleep stages (see Sec-

tion 1.4), are applied, as is shown in Figure 5.1.

In the block diagram of Figure 5.1, we see that the application of the detection procedure
is not only applied to one channel exclusively. In order to score with greater reliability,
more than one channel is used. The reasoning behind this added complexity is simple: since
the presence of an MA simultaneously appears, in various degrees, across several channels
of the polysomnogram, better decisions about its presence can be made if contributing
information, available from these other channels is taken into account. For the case of
microarousals, occurring during the REM stage of sleep, this requirement is mandatory,
since the accompanying increases in the EMG signal amplitude, along with a concurrent
increase in the central electrode EEG frequency, define the presence of a microarousal for
that stage. The overall breakdown of the steps involved in the MA detection algorithm are

as follows:

1. Wavelet decomposition

2. Segmentation

3. Assessment of dominant frequency and power present in each segment.
4. Frequency and power thresholding of segments

5. Intersecting surviving segments with similar segments derived from other channels
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6. Imposing minimum segment length (3sec)

7. Imposing minimum inter-segment length (10sec)

The application of this procedure includes two variations. In one case, the procedure,
excluding the intersection step, is applied to only one channel; in the second case, the pro-
cedure, including the intersection step, is applied to two channels. The only two channels
involved in the experiment, are the central EEG electrode (CE) and the EMG electrode
(ME) channels. However, it must be noted that any of the other channels available from the
montage, such as the occipital, temporal electrodes, for instance, could just as easily have

been included.

We describe in section 5.2 the application of the above procedure and the specifics regard-
ing each segmentation algorithm. The results produced by the application of these steps,

follow in Section 5.3, where they are presented and discussed in detail. Finally, in Section

5.4, a summary of the overall results obtained are given.

In this section, we present all of the details involved in the application of the proposed
detection scheme. Although the first two steps, wavelet decomposition and segmentation,
have been extensively discussed in Chapter 4, the particular details governing their specific

adaptation to the EEG signal will be addressed here.
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5.2.1 Wavelet Decomposition

The first step in the proposed procedure is applying the WT to the EEG channel. As in
Chapter 4, we chose the discrete meyer wavelet (DMW), for the reasons discussed there.
Furthermore, a level-4 signal decomposition is selected, which produced the detail and

approximation function with corresponding frequency bands shown in Table 5.1.

Table 5.1: Level - 4 wavelet decomposition detail and approximation functions with their related
frequency bands

Approximation and Detail dl d2 d3 d4 a4
Functions ‘ v

Related Frequency Bands [32-64} [16-32] {8-16] [4-8] [0-4]
(Hz)

Only detail functions d3 and d4 are selected and preserved for further analysis. These func-
tions represent the principal frequency bands involved in the detection of MAs. Combining
the two functions provides us with a template signal, which offers a more fruitful signal rep-
resentation to proceed with segmentation. However, it must be pointed out that no wavelet
decomposition is applied to the ME signal, since only its amplitude or ﬁ)ower characteristics

contribute in MA detection.

The wavelet decomposition of the CE signal, as described in the previous section, serves as
the input to all three of the segmentation schemes, without any additional alteration, with
respect to either scheme. In the following, we describe the values selected for the key

parameters governing the performance of each segmentation algorithm.
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5.2.2.1 ACF
Based on the results observed in Chapter 4 the values for the ACF algorithm’s operating

parameters are chosen as follows:
Thresholds: T,=T;=1andT, =1
Window Length: WL = 3. (128 samples) = 3 seconds

The motivation behind the selection of these values stems directly from the results obtained
from the AWGN-corrupted sine signals in Section 4.3. The choice of the WL is made
because we seek MAs, which are at the least 3 seconds long. The advantage of a long WL
ié that detection is more reliable, since more signal content lies within the window to allow
a better gauging of the frequency and amplitude differences and less false detections are
made, which is the case for smaller windows. Howéver, the drawback with this choice, as
mentioned in Chapter 4, is the reduced precision in exact boundary position, which results
with the use of a longer WL. Nevertheless, the tradeoff, which is reasonable, waﬁants such

‘a selection.

5.2.2.2 GLR

Similarly, following the results of Section 4.3 and Section 4.4, we chose the parameters as

follows.
Order: p=3
Threshold: N = 8 bits

Window Length: WL = 3.(128 samples) = 3 seconds
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We choose a higher order than the one we used in the simulations of Chapter 4 to allow the
algorithm to contend with greater possible variability. Considering the threshold values
produced in Section 4.4, we take a middle ground approach to the final value of the thresh-
old. The same reasoning, as the one used for selecting the window length in the ACF algo-

rithm, also applies here.

5.2.2.3 NLEO
The only parameter that requires adjusting for the NLEO algorithm is the window length

and its value is chosen as:
Window Length: WL = 6- (128 samples) = 6 seconds

Since this algorithm only uses one Window; where both the halves are compared to each
other, to judge if aquundary is present, each half is designed to meet the minimum length
of the signal to be detected, namely 3 seconds. Although a smaller window could have been
selected, the larger window size is selected so that false detections may be minimized.
Because of the larger window size, smaller non-stationary segments are neutralised or aver-

aged out, leaving only non-stationary segments larger than 3 seconds.

5.2.3 Dominant Frequency and Power in Segments

In this section, we seek to identify the dominant frequency and power, present in the seg-
ments produced by the segmentation algorithms. We must first mention that all frequency

thresholding is applied to the central electrode signal (CE) of the EEG, while all power
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thresholding is performed on the EMG electrode signal (ME) because the frequency of the
one and power of the other together assist in the detection of MAs as per the discussion of

Chapter 1. We now begin with the description of the dominant frequency determination.

5.2.3.1 Dominant Frequency of each Segment of the Central Electrode Signal
In trying to determine the most representative or dominant freqﬁency, we make two

assumptions.

Assumption 1: The first assumption, which is the underlying assumption governing each
of the segmentation algorithms is that once a signal has been segmented, the information
content present in each segment is stationary. This assumption is the underpinning of the
entire procedure and although expressed explicitly here as an assumption, it is, in fact, a
tacitly held measure of each segmentation algorithms’ ability to successfully partition the
non-stationary signal into stationary segments. Holding this condition to be true, however,
we may proceed With traditional stationary techniques, in assessing the frequency content

and amplitude content available within each segment.

In Chapter 2, we mentioned that the FFT was not suitable to treat non-stationary segments
because it is a stationary algorithm, which is effective only when applied to stationary sig-
nals. With the segmented stationary segments provided by the segmentation algorithms, we
are now justified in using the FFT to find the frequency content present within each seg-
ment. Although more sophisticated means, like AR modelling for instance, of determining

the spectral properties present in a given signal are available, these usually add to the com-
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plexity of the whole algorithm. Moreover, the FFT, in a stationary environment, does pro-
vide a robust and reliable breakdown of frequency content quickly and simply, without any

additional parameters, like model order selection, to contend with.

Assumption 2: A further assum?tion, imposed on each stationary segment, is that the fre-
quency content, which provoked the segmentation, from one segment to the next, is repre-
sented by the dominant frequency present in each segment. In other words, from segment
to segment, only amplitude or frequency will cause a sufficient change to occur, so as to
cause a boundary to be detected. Our assumption is that a change in frequency is repre-
sented by the largest peak produced in the FFT of that segment. Although noise is present
throughout the signal, its power is weaker than the decomposed signals present in the lower
[4-16]Hz frequency bands of the WT decomposition. Consequently, any change in fre-
quency between segments is caused by the change in the dominant frequency between
those segments. Therefore, the highest peak produced by the FFT in each segment is
assumed to be the most prevalent frequency present in that segment. As a result it is
selected to represent that segment when thresholding of frequency content is performed, in
order to decide whether the frequency change is sufficient to score 2 segment as a MA. As
an example, a 60 second sample of a WT central EEG signal, along with dominant frequen-
cies associated with each segment are shown in Figure 5.2a and Figure 5.2¢, where the

NLEO segmentation procedure was used.
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Figure 5.2: (a) 60 second sample of the WT Central EEG Signal; (b) 60 secqnd sample of the EMG
corresponding to the same time interval as in the preceding; (¢) Dominant frequency in each segment of the

signal in (a); (d) The average power of each segment of the signal in (b).

5.2.3.2 EMG Segment Power

In the previous section, we discussed the acquistion of the dominant frequency of each par-
titioned segment of the CE signal. Now, we turn our attention to the power of the ME signal
segments. Segmenting the ME signal produces stationary segments, as discussed in the last
section. The pdwer of each segment is chosen as the average variance of the entire segment

(i.e., each segment is assumed to be zero mean). Since each segment is assumed to be sta-
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tionary, then all of its attributes, including the amplitude, are also stationary and conse-
quently the average variance produces an acceptable measure of the power for each
segment. A 20 second sample of EMG along with the power associated with each segment

are shown in Figure 5.2, with NLEO being again used for segmentation.

5.2.4 Thresholding Dominant Frequency and Power

The thresholding of the dominant frequency segments does not pose the usual problem that
the selection of a threshold usually does. Since we are looking for the sudden appearance
of a—waves or waves greater than 8 Hz, as defined in Chapter 1, this value provides a solid
choice for the selection of a threshold. However, since 8 Hz. is a boundary separating ‘dis-

tinct” wave bands the threshold, namely,
Frequency Threshold: FT = 9Hz

is chosen to ensure that indeed the frequency over this value clearly belongs to the a—wave
category. Although this choice will necessarily lead to a certain degree of missed detection,

the benefits achieved by greater certainty is considered to outweigh such a disadvantage.

The power, on the other hand, does not provide such a clear choice for a threshold value.
In order to decide upon a generous but useful value for it, we examined the power produced

over several representative stretches. A global value was quickly decided upon:

Power Threshold: PT = 2000
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Although threshold adaptability could have been introduced with regards to each individual
sleep stage since the start and stop times for every stage as they appear throughout the entire

record are available, yet, to avoid additional complexity, it is not considered.

5,2.5 Intersectin fferent Channels

As mentioned in the introduction of this chapter, the motivation for intersecting two differ-
ent EEG channels arises from the added certainty that such an action creates. Although
optional for sleep stages 1 to 4, it is mandatory to combine the CE and ME when treating

the REM sleep stage.

Following the thresholding of the CE and the ME channels, we are now in a position to
compare their resulting segments. The intersection of channels is done by determining
whether a segment from one channel occurs at the same time as any other segment from the

other channel. By segment we mean one that has survived the thresholding process.

Let us define this process more clearly.

Definition: Assume that a segment, say s, taken from the CE channel is bounded in time
by [t.1,te2] and another segment, say s,,,, from the ME channel, itself bounded in time by

[tn1,tma ], both occur within the same ‘vicinity” of time.
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Then, the intersection of segments s; and s, exists if they satisfy the 3 possible cases

shown, in Figure 5.3.
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Figure 5.3: Three possible cases of Intersection of thresholded segments originating from two different

channels.

In addition, the final intersecting segment, say s;, is chosen as the largest possible combined
segment resulting from s, and s, . In other words, s; is bounded in time bsf [min(t;,tm1)s
max(tyy,ty2)]. Although it is quite clear that another choice for the final time bounds des-
ignating s; can be chosen, the present choice is based on maximizing the total potential MA
that may be present. That is, since both s, and s;;, may individually represent only a partial
portion of a detected MA due to inaccurate segmentation, it ié assumed that by selecting the

largest possible range of each segment, more of the actual MA will be captured.

The obvious disadvantage of such a choice lies in the larger detected MA sizes that result.
However, this shortcoming is manageable, especially in view of higher degree of correct

detection that it provides.
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As a final note, since the intersection of two channels provides a greater certainty of detect-
ing an MA, the rather strict frequency threshold adopted for only one channel is lowered to

allow more segments that survive the thresholding process to be compared.
This new threshold is
Intersection Frequency Threshold: IFT = 7 Hz

To repeat, two forms of thresholding are performed. Both apply to the CE channel. How-
ever, the result of the stricter FT, produces segments that are considered by themselves as
MAs due to the strict nature of the applied threshold, whereas the result for the less strict
threshold, IFT, produces more segments but with the further aim of intersecting these with

the segments produced from the ME thresholded signal.

5.2.6 Minimum Segment Length

Following the R&K criteria for scoring MAs, a minimum length of any frequency length
disturbance must be imposed. R&K establishes this constraint to be 3 seconds. Having

thresholded the segments, we now apply this minimum length constraint to filter out the

viable segments.

tween Consecutive Segments

Again referring to the R&K criteria, for a MA to be scored, it must occur no less than 10

seconds after another M A has been marked. Therefore, after scanning all the segments that
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have survived the previous step, a further elimination is carried out. All segments that

remain after this final stage of the procedure are then considered to be MAs.

A point must be ma&e concerning the order of the last two steps. It is important to impose
the minimum length constraint before the minimum distance. Although the order of these
operations seem interchangeable, they are not. If minimum distance is applied first, then
viable 3-second segments may be lost, leaving instead smaller segments which will inevi-

tably be eliminated in the minimum length step.

5.2.8 Performance Measures

Before proceeding to the results, we define the performance measures used to gauge the
effectiveness of the procedure. In calculating the performance of the algorithms, the follow-

ing probability measures are used.

5.2.8.1 Probability of Cerrect Detection

We define the probability of correct detection as:

_ Number of correct detections
¢ Total number of actual MAs

6.0

The ‘number of correct detections’ correspond to the number of detections outputted from
the algorithm that agree with the actual MAs present in the record. By agreement, we mean
that in the sense of intersection as described above, a potential MA segment is scored as a
real MA segment and thus counted if it intersects with any portion of the actually scored

MAs.
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The ‘total number of actual MAs’ refers to all of the MAs scored manually by the sleep

technologist and therefore assumed to be the benchmark of comparison.

The parameter P, corresponds, therefore, to the successful detection of the marked MAs.
However, for reasons discussed later in the comparison section, this evaluation parameter

leaves some room for interpretation.

5.2.8.2 Probability of False Detection

We define the probability of false detection as:

p. = Number of false detections
£ Total number of detections

(52)

The ‘number of false detections’ are all the remaining output detections which do not inter-
sect with the marked MAs. The *total number of detections’ correspond to all of the output
detections produced by the algorithm. The parameter Pg reveals the percentage of all the
detections that do not intersect with any of the marked MAs and consequently are false.

This value serves to demonstrate the weakness of the algorithm.

5.2.8.3 Probability of a Missed Detection
Another parameter used to measure the algorithm’s weakness is P, the probability of
missing an MA. It measures the number of MAs present in the record which were not

marked by the algorithm because it was not able to detect it. We define it as:

p =1-P 5.3)
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where P, is the probability of correct detection.

With these measures we are now in position to present our results.

In this section, we present the results of our proposed algorithm for the three cases involv-
ing the ACF, GLR and NLEO segmentatién algorithms. The record that we are working
with contained MAs only in Stage 1, Stage 2 and the REM stage of sleep. Consequently,
these are the only sleep stages for which we can give results. The other stageé, although
they contain no MAs are implicitly treated when considering the results produced by apply-
ing the detection pmpedure to the overall signal, which includes all the sleep stages. The
number of actual MAs that exist in the sleep record, which were marked by the sleep tech-
nologist, and that are ‘assumed to be the gold standard to which our detection procedure

aspires to reach or duplicate are presented in Table 5.2.

Table 5.2: Distribution of the gold standard MA throughout the sleep stages of the sleep record

Sleep Stages Entire Record Stage 1 Stage 2 REM
1 No. of MAs 136 65 60 i1
% of Total No. of MAs 100 % 48 % 44 % g%

This table shows how many actual MAs are present in each sleep stage. Explicitly, the
times of occurance in the EEG record, for each of these gold standard MAs, are presented
in the Appendix, along with the detected MAs generated by the detection procedure, for

each of the three segmentation schemes.
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5.3.1

The results generated by the proposed procedure when applied to either the Central EEG
alone or applied to the combination of the Central EEG and EMG channels, for the entire

EEG record, are presented next.

Results of Solo Channel
Table 5.3: Probability results of the MA detection procedure applied to the central electrode channel
Segmentation | Without Wavelet Transform | With Wavelet Transform % Change
Algorithm =" P, | P, | P, P; | P, | P, P, | P,
ACF 0.2132 | 0.8129 | 0.7868 | 0.3824 | 0.8102 | 06176 | 794 -0.3 <216
GLR 0.1765 | 0.7526 | 0.8235 | 0.3971 | 0.7866 | 0.6029 | 125.0 45 -26.8
NLEO 0.2574 | 0.7348 | 0.7426 | 0.4412 | 0.7952 | 0.5588 | 71.4 8.2 -24.8

In general, from Table 5.3, we notice ﬁ:hat for every segmentation scheme the probability of
correct detection P, improves significantly when the WT is applied, while the probability
of false detection P¢ deteriorates slightly or stays the same. Because the probability of a
missed detection is directly dependent on P, the value for P, naturally improves as P,
improves, and deteriorates as P, deteriorates; for this reason, P, will be discussed no fur-

ther. It is included in the tables only for the sake of completeness.

In particular, the NLEO produces the highest rate of correct detection, with or without the
WT present. The presence of the WT produces the largest relative improvement in the

GLR.
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Table 5.4: Average start times (8.7.) and length differences between detected MAs and actual MAs. All
values are in seconds. :

Segmentation Without Wavelet Transform With Wavelet Transform
Algorithms Absolute Absolute Absolute Absolute
S.T. Diff. | S.T. Diff. | Len. Diff | Len. Diff | S.T. Biff. | S.T. Diff. | Len. Diff | Len. Diff
ACF +3.3922 | 3.7885 | -6.1401 | 6.3406 | +1.0832 | 27290 | -3.2759 | 3.8573
GLR +1.5006 | 3.5244 | 24909 | 4.1653 | +1.1092 | 33419 | -2.3690 | 3.3131
NLEO +0.9882 | 29065 | -4.0975 | 42775 | +1.9497 | 34932 | -3.6930 | 4.2471

Actual MA S.T. is defined as starting at time = 0.
Detected MA S.T. occurring before is defined as negative value.
Detected MA S.T. occurring afler is defined as positive value.

Negative Len. Diff indicates Det. MA is smaller than the corresponding Actual MA.

AN I

Positive Len. Diff indicates Det. MA is larger than the corresponding Actual MA.,

Table 5.4 shows the start time (ST) difference and the absolute start time difference
between the detected MAs and the actual MAs. The ST difference gives the average differ-
ence between the two MA sets, while the absolute ST difference gives vthe average of the
absolute value of the ST difference, for each detected MA. The positive sign of the ST dif-
ference indicates that, on average, MAs are detected later than the actual MAs occur. The
reason for the difference in magnitude between the ST difference and the absolute ST dif-
ference arises from the inclusion of negative and positive values of difference in the calcu-
lation, where cancellation necessarily occurs, thereby reducing the overall value, when it
does. A value approaching zero for the ST difference shows either nearly identical MA ST
values or a balanced distribution of ST detections occurring before and after the actual MA
ST. The absolute ST difference gives the average ST difference, in magnitude, regardless
of whether the detected MA’s position occurs before or after the actual MA’s ST position.
Similarly, length differénce (LD) gives the average difference between the detected MA’s

length with that of the actual MA’s length. A negative value for LD means that the detected
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MA’s length is shorter than the actual MA’s length. The absolute LD provides a measure
of the overall magnitude difference in length between the two MA sets, regardless of

whether the detected MA is shorter or longer than the actual MA.

The results in Table 5.4 show that without the WT, the ACF procedure detects MAs, on
average, 3.79 seconds away from the ST of the actual MAs. Moreover, its ST difference
value, +3.39 seconds, reveals that most of the detections are made Jafer than the actual MA,
as indicated by the positive sign. The ACF’s absolute LD difference shows that, on average,
the difference in length between the detected MAs and the actual MAs is 6.34 seconds long

and that the majority of these are shorter than the actual MA, as the negative sign reveals.

With the inclusio;n of the WT, the ACF shows a definite improvement with the absolute ST
difference diminishing ﬁom 3.79 seconds to 2.72 seconds; the absolute LD also improves
with a reduction from 6.34 seconds to 3.85 seconds. Although the ACF shows improve-
ment, the NLEO shows increases in both the absolute ST (from 2.91 seconds to 3.49 sec-
onds) and the absolute LD (from 4.28 seconds to 4.25 seconds) with the involvement of the
WT. However, this slight deterioration is reasonably offset by the near doubling of its P,

value.

Combined Channels

The results of combining the central EEG channel with the EMG channel are presented in

Table 5.5 and Table 5.6.
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Table 5.5: Probability results of the MA detection procedure applied to both the central elecirode and the
EMG electrode channels

Segmentation | Without Wavelet Transform | With Wavelet Transform % Change
Algorithm
P, Py P P, Ps P P, P P
ACF 0.2039 | 0.3778 | 0.7941 | 0.6651 | 0.3592 | 0.3309 | 225.0 -4.9 :58.3

GLR 0.0882 | 0.4286 | 06.5118 | 0.5588 | 0.3559 | 0.4412 | 5336 -17.6 -31.6
NLEGC 0.1324 | 04375 | 0.8676 | 0.6250 | 0.3885 | 0.3750 | 372.1 -11.2 -56.8

In Table 5.5, we see that there is improvement for all probability values and for all segmen-
tation schemes by comparing the results of those which include the WT with those that do
not. The increase in P, values reveals the greatest degree of improvement. For example, the
ACF value for P increased by 225% with the WT. On the other hand, the values of false

detections, although improved for all schemes, are only modest in comparison.

Of the three schemes, the ACF pmduced the highest P, value, followed closely by the
-NLEO and finally by the GLR. This order of segmentation algorithm performance is nearly
a reversal of the sequence which emerged when the solo channel was used. The reason for

this change may be due to the included segmentation of the EMG channel.

What is noteworthy about the improvements shown in these P, values is that the MAs,
which were detected using the procedure described above, but without the WT, could only
correctly detect roughly between 1 out of 10 MAs in the worst case (GLR) and [ out of 5
- MAs in the best case (ACF). With the inclusion of the WT, everything else remaining the
same, the proposed procedure could detect more than I out of 2 MAs in the worst case

(GLR) and 2 out 3 MAs in the best case (ACF). Therefore, we can see, by comparing the
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results for the solo channel and the combined channels, that the proposed procedure involv-
ing the WT performs significantly better than the same procedure using only the segmen-

tation algorithms, a result which validates the proposed procedure in a practical setting.

When comparing the P, values produced for the solo channel and the combined channels,
we notice that the overall values Wi‘éh@u,f the WT were lower for the combined channels.
One reason for the lower value of P in the combined channel may come from the likely
possibility that thresholded ME segments did not always overlap with their thresholded CE
segment counterparts. In other words, if a CE segment survived the frequency thresholding
imposed and, at the same time, a segment of EMG survived the power thresholding but, due
to imprecisions in correct positioning, these segments did not overlap, then the same MA,

which they were separately recognizing, would be missed.

Consequently, the combined channels, without WT present, produces values of P, lower
than when only the solo channel is considered. The fact that the frequency threshold for the
solo channel is higher than that used for the combined channels confirms this result, since
the solo channel P, value would most certainﬁf/ have been even higher if a lower frequency

threshold had been applied, but so too would the number of false detections.

We have already noted that with the introduction of the WT there is an improvement in P,
values compared to the case when it is absent. In addition, we have also noticed that it
improves the performance of P, values in both the solo channel case and the combined
channel case. Now, in light of what we have just discussed regarding the procedure’s per-
formance without the WT, in the cases of the solo and the combined channels, we see that

the WT provides an efficiently processed signal more suitable for segmentation. In turn,
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this better-suited signal reduces the imprecision in segment positioning, which leads to a

reduction in missed segment intersections, and consequently higher P, values.

Table 5.6: Average start times (5.T.) and length differences between detected MAs and actual MAs. All
values are in seconds. ' :

Segmentation Without Wavelet Transform With Wavelet Transform
Algorithms - Absolute Absoiute Absolute Absolute
S.T. Diff. | S.T. Diff. | Len. Diff | Len. Diff | S.T, Diff. | $.7. Diff. | Len. Diff | Len. Diff
ACF +2.3800 | 2.6953 | -0.8800 | 7.7478 | -0.2621 | 2.0051 | -0.9648 | 4.1322
GLR 24225 | 4.0801 | -0.1875 | 4.9909 | -1.1306 | 3.0981 | 0.5829 | 3.9175
NLEO | +1.2144 | 3.3750 | -3.1675 | 5.2813 | -0.8932 | 3.4684 | -0.5674 | 43072
1. Actual MA S.T. is defined as starting at time = 0.
2. Detected MA S.T. occurring before is defined as negative value.
3. Detected MA S.T. occurring after is defined as positive value.
4. Negative Len. Diff indicates Det. MA is smaller than the corresponding Actual MA.
5. Positive Len. Diff indicates Det. MA ié larger than the corresponding Actual MA.

Similarly, when considering the start times and lengths of the detected MAs compared to
those of the actual MAs, we observe improvements in both, for all the schemes, when the
WT was included. Moreover, we notice that the absolute lengths produced by combining
the channels are indeed slightly bigger than that in the case of the solo channel. This result
was expectéd, as mentioned above in the section describing the combination of channels;
however, what was not expected was that this increase would be so small, which is an

encouraging outcome.

In the following sections, we only show the performance probabilities of each of the sleep

stages present in the EEG record.
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5.3.2 Sleep Stage 1

The results obtained using the proposed procedure to detect MAs in Stage 1 of the sleep are

presented in Table 5.7 and Table 5.8.

Solo Channel

Table 5.7: Probability results of the MA detection procedure applied to the central electrode channel

Segmentation | Without Wavelet Transform |  With Wavelst Transform % Change
Algortthm Py Pe P P Py P | P Pg L
-ACF 0.2576 | 0.7385 | 0.7424 | 04091 | 0.6966 | 0.5909 | 58.8 5.7 -20.4

GLR 0.2273 | 0.6512 | 0.7727 | 0.4394 | 0.6506 | 0.5606 | 93.3 -0.1 -274
NLEO 0.2879 | 0.6724 | 0.7121 | 0.5303 | 0.6196 | 0.4697 | 84.2 1.9 -34.0

Combined Channels

Table 5.8: Probability results of the MA detection procedure applied to both the central electrode and the
EMG electrode channels

Segmentation | Without Wavelet Transform | With Wavelet Transform % Change
Algorithm ,
P, Pe P P, Pe P P, P P
ACF 0.1818 | 0.5200 | 0.8182 | 0.6570 | 0.4390 | 0.3030 | 2834 | -156 | -63.0
GLR 0.0758 | 0.5000 | 0.9242 | 0.5455 | 0.4545 | 0.4545 | 619.7 -8.1 -50.8
NLEG 0.1364 | 0.4000 | 0.8636 | 0.5909 | 0.5125 | 0.4091 | 3332 | 28.1 -52.6

Comparing the results produced for the solo and the combined channels, we see that the
inclusion of the WT in the detection procedure improves the performance in both the cases.

The only exception is in the significant increase in Pyinvolving the NLEO.
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5.3.3 Sleep Stage 2

Results using the proposed procedure with regard to the detection of the MAs in Stage 2 of

the sleep are presented in Table 5.9 and Table 5.10.

Solo Channel
Table 5.9: Probability results of the MA detection procedure applied to the central elecirode channel
Segmentation | Without Wavelet Transform | With Wavelet Transform % Change
Algorithm ™5 P, | P, | P, P | P, | P, P, | P,

ACF 0.1500 | 0.8916 | 0.8500 | 0.3000 | 0.8953 | 0.7000 | 100.0 04 -17.6
GLR 0.1167 | 0.8478 | 0.8833 | 0.3000 | 0.8831 ) 0.7000 | 1571 42 -20.8
NLEO 0.2000 | 0.8209 | 0.8000 | 0.3167 | 0.8939 | 0.6833 | 586 8.9 -14.6

Combined Channels

Table 5.10: Probability results of the MA detection procedure applied to both the central electrode and the

EMG electrode channels
Segmentation | Without Wavelet Transform | With Wavelet Transform % Change
Algorithm
P, Pe P P, Py Pm P, P |
ACF 02333 | 0.4400 | 0.7667 | 0.6500 | 0.4265 | 0.3500 | 178.6 -20.5 -54.3
GLR 0.1060 | 0.5385 | 0.9000 | 0.5833 | 04167 | 04167 | 4833 22.6 -53.7
NLEO 0.1333 | 0.5789 | 0.8667 | 0.6500 | 0.4348 | 0.3500 | 387.6 -24.9 -59.6
5.3.4 Sleep Stage REM

Results using the proposed procedure with regard to the detection of the MAs in REM

Stage of the sleep are presented in Table 5.11 and Table 5.12.
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Solo Channel

Table 5.11: Probability resulits of the MA detection procedure applied to the central electrode channel

Segmentation | Without Wavelet Transform | With Wavelet Transform % Change
Algorithm =, T T T B, | Pr | Pm | P Pe | P
ACF 0.1818 | 0.8182 | 0.8182 | 0.5455 | 0.7273 | 0.4545 | 200.1 -11.1 -44.5
GLR 0 I 1 0.6364 | 0.7200 | 0.3636 0 -28.0 | -63.6
NLEO 0.2727 | 0.7857 | 0.7273 | 04545 | 0.8214 | 0.5455 | 66.7 4.5 -25.0
Combined Channels

Table 5.12: Probability results of the MA detection procedure applied to both the central electrode and the
EMG electrode channels

Segmentation | Without Wavelet Transform | With Wavelet Transform % Change
Algorithm v
P, Ps P P, Ps P P, Pr Pm
ACF 0.1818 0 0.8182 | 0.5455 | 0.1429 | 0.4545 | 200.1 0 -44.5
GLR 0.0969 0 0.9091 | 0.4545 | 0.1667 | 0.5455 | 400.0 ¢ -36.4 .
NLEOC 0.0909 | 0.5000 | 0.9091 | 0.5455 | 0.1429 | 0.4545 | 500.1 | -714 | -45.5

5.3.5 Some Reasons for Low Probabilities

Often frequency bursts appear to occur consecutively along sizeable stretches of EEG.
Since the R&K criteria impose a 10 second minimum distance between these bursts, some
bursts along this series of bursts are scored as MAs, while other bursts, lying in betweeﬁ
these marked MAs and which in all other respects satisfy the defining characteristics of an
MA, are ignored. To clarify the problem, which may diminish the apparent success of the

detection procedure, let us give an example.

Let us assume that # MA potential bursts occur, with each consecutive burst occurring

exactly 5 seconds apart from its neighbouring bursts. The sleep technologist, by recogniz-
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ing the first burst, would then score bursts 1, 3, 5,... until the end, while ignoring the bursts
2, 4, 6,... for no reason other than the 10 second minimum distance constraint. However, if
the detection procedure were to, for some reason, miss the first burst but recognize all the
rest, then it would mark bursts 2, 4, 6,... while ignoring bursts 3, 5, 7,...The immediate con-
sequence for this example would be that the detection algorithm, would score 100 % missed
detection and 100 % false detections! Although this example is extreme, often such situa-

tions appear, which inevitably leads to slightly poorer results.

Although it is assumed that the actual MAs detected by the sleep technologist are the ‘gold
standard’ for the experiment and therefore unquestionable, it is possible, however, that due
to possible errors in these values, the results produced by the detection procedure may be
slightly better than they appear. The motivation behind this assertion rests primarily. on the
fact that the sleep technologist marks arousals based on pattern recognition. Consequently,
the underlying content of the visual pattern may not, in reality, match the perceived content
displayed. For this reason, differences between the sleep technologist’s detections and
those of the automated detection procedure may appear in the results of this chapter. For
example, the sleep t:chnoiogist may have incorrectly marked one of the MAs, which actu-
ally does not have the necessary frequency to satisfy the definition of an MA. Conse-
quently, if the detection procedufe correctly rejects this false MA then this correct decision
will nevertheless still lead to an increase in the probability of missed detections. Con-
versely, segments of EEG, which actually contained adequate frequency changes to mark
as MAs but did not visually appear as such, could be ignored by the sleep technologist and
correctly captured by the program, which would, nevertheless, based on the nature of this

experiment, lead to increased false detections.
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5.4 C

sion

In this chapter, we have presented a novel approach to detect microarousals in the EEG sig-
- nal. This approach involved the combined use of the wavelet transform with some form of
stationarity segmentation, as its core functional blocks. In addition to these blocks, a further
block was included to complete the overall detection procedure. This new block processed
the power and spcctml content of the resulting stationary segments, produced by the two
previous blocks. By using the Fourier transform and selecting a reasonable frequency value
that is based on the R&K criteria, the individual segments were thresholded in frequency,

so as to extract frequency-significant segments.

The most positive result in combining both the wavelet transform and the segmentation
blocks is that the rate of correct detection increased significantly everywhere the procedure
was applied. That is, whether the procedure was applied to just the central EEG channel or
to a combination of the central EEG and EMG channels, or whether the entire record was
analyzed or separate sleep stages were analyzed, the result remained the same. The pres-
ence of the wavelet transform resulted in a significantly higher correct detection, generally
lower false detection and deﬁz‘aﬁteﬂy lower missed detections, when combined with any of
the segmentation schemes than when these detection schemes were applied without the

wavelet transform.

The universal improvement achieved with the application of the wavelet transform to the
EEG signal compared to the results produced by applying the wavelet transform to the sim-
ulated signals in Section 4.4 may be attributable to two factors. First, as mentioned in the

conclusion of Chapter 4, the signals used there represent an insightful bus narrow range of
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possible variability present in an actual EEG, which, given the constraints of allowable
space, could not be ﬂﬂlerwiée. Therefore, the proposed combination of wavelet transform
and segmentation operates generally well on a larger signal set, which could not be exhaus-
tively represented by the signals used in Chapter 4. Secondly, the severity of the additive
white Gaussian noise added to the signals in the previous chapter, may have negatively
impacted and perhaps overly distorted the underiyiﬂg signal present, compared to the noise
present in the EEG itself. In other words, the noise applied to the signals in Chapter 4 may
~have overemphaéized the actual noise of the EEG it was intended to mimick, but as men-
tioned earlier, the goal of that section was to test the segmentation procedures in a harsh
environment in order to judge their .effeétiveness, since a noise free environment had
already been examined. Nevertheless, this degree of noise difference may possibly reflect

as to why such a notable improvement appeared in the results of this chapter.

Compared to the segmentation algorithms alone, the proposed procedure demonstréted sig-
nificant improvements in higher correct detections and in modest reductions in false detec-
tions when applied to only one channel. However, because the overall value of these results
is not high enough, the potential application of the procedure to a single channel is limited.
On the other hand, the Vefy reai gains made when combining only two channels, does
indeed make practical implementation possible. Nevertheless, at this preliminary stage,
however encouraging these results may seem, the procedure would have to be further
refined if it were to be profitably applied to the computerized long-term monitoring system

it was intended to be incorporated into.
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6.1 Contributions and (

The goal of this thesis has been to detect and clearly identify the presence of microarousals
in the sleep electroencephalogram of a patient suspected of suffering from excessive day-
time sleepiness. The monitoring of sleep is effectively accomplished by obtaining a poly-
somnogram, a’collection of relevant biometric signals quantifying sleep state of which the
electroencephalogram is one such signal. The different stages of sleep are characterized in
the electroencephalogram by a variety of recognizable freqﬁency and vamplitude features.
However, the electroencephalogram signal far from being one which demonstrates endur-
ing regularity, is on the contrary one which exhibits highly non-stationary behaviour over
the entire length of its duration. Moreover, interspersed amidst these constantly changing
features, the microarousals appear. This problem is not one explicitly encountered in the
literature and so no specific algorithm exists for its solution. Nevertheless, being a problem
that involves the identification of sudden frequency bursts in time, a specific non-stationary
phenomena, the literature involved in similarly-related pursuits led us to adopt techniques
specialized in the partitioning of non-stationary signals into contiguous stationary seg-

ments.
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Moreover, because the detection of microarousals requires an accurate resolution of the
signal content of the electroencephalogram in both time and frequency, a necessary form
of signal preprocessing is needed to enhance the capabilities of segmentation. The wavelet
transform, which possesses the capacity to decompose a signal in both frequency and time,

as well as being a fast transform, lends itself readily to the task at hand.

Therefore, to address the detection of microarousals we have proposed combining both the
wavelet transform and staﬁonary segmentation to form the basis for extracting microarous-
als from the electroencephalogram signal. To complete the detection procedure we have
proposed a simple method of identifying whether or not the resulting stationary segments
satisfy the conditions imposed by Rechtschaffen and Kales, defining the microarousals.
This method uses the Fourier transform, in conjunction with thresholding. Furthermore,
since the presénce of a microarousal extends through much of the polysomnagram, to fur-
ther refine the capabilities of the proposed procedure in isolating the microarousals, we
have combined two relavant channels, namely, the central electroencephalogram and the

electromyogram.

The validity of the two components comprising the proposed procedure has been tested
with simulations, which have shown that individually each of the components achieves the
expected results. That is, the wavelet transform correctly decomposes both the concate-
nated sinusoids and the superimposed sinusoids, with and without noise, while revealing

both the frequency content and the time occurance of such frequency changes.

Similarly, the segméntation procedures correctly segments noise-free sinusoids of varying
amplitude and frequency, precisely identifying the position in time of the non-stationary
boundaries separating two different segments of the signal. Also, the segmentation algo-
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rithm was tested further to determine the optimal values of the operating parameters used
in the autocorrelation function method (ACF), the generalized likelihood method (GLR)
and the nonlinear energy operator method (NLEO). Various sinusoidal non-stationarities,
such as varying only the amplitude, varying only the frequency, increasing the amplitude
while decreasing the frequency, and decreasing the amplitude while increasing the fre-
quency, as well as a time varying second order AR signal, have been used for the purpose
of testing these methods. Each of the sinusoidal signals was subjected to heavy additive
white gaussian noise. The overall results have shown that some segmentation algorithms
produced superior segmentation for certain test signals, while others produced superior
results with other test signals. Therefore, segmentation was achieved with varying degrees
of success depending on the signal and on the algorithm used. Finally, the wavelet trans-
form and the segmentation components were combined and their results compared to the
case without the wavelet transform, the formef showing mixed but generally improved seg-

mentation results compared to the latter,

Applying the proposed procedure to the electroencephalogram signal, we have demon-
strated that the proposed microarousal detection algdrithm involving the combination of the
wavelet decomposition and stationarity segmentation algorithms provides an impr@ilemcm
on the detection capabilities over those of the stationarity segmentation algorithms aicme.
Referring to tested and proven techniques %9],{5@};{54] concerned with the segmentation
of non-stationary signals into stationary segments, we have demonstrated that the combi-
nation of these techniques with wavelet decomposition achieves a much higher degree of
reliable stationarity segmentation than using the former works alone without the wavelet

decomposition. This result applies to non-parametric techniques (ACF, NLEO) and para-
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metric techniques (GLR) alike, which further demonstrates the general applicability and

benefit of the proposed method.

In closing, we would like to mention that the best results of the three segmentation proce-
dures were those produced by the ACF procedure, where the probability of correct detec-
tion was 67% and the probability of false detections was 36%. Although these values do
not reflect the degree of certainty that is required in a clinical setting, they are, however,
high enough to still play a important role. Specifically, because the proposed procedure is
fast, it can be used in real time in conjunction with a sleep technologist. When a detection
is made by the procedure, which is still 2 out 3 times correct (in the bcase involving the
ACF), the sleep technologist can then quickly, in vivo, verify whether such a detection is
valid. The important indication, provided by the procedure, can consequently alert the sleep
technologist to periods when microarousals are actually taking place, which satisfies two
important goals. Firstly, it liberates the sleep technologist from the need for absolute con-
centration in the exhaustive error-prone task of marking the microarousals thereby improv-
ing their ability to correctly and efficiently identify the presence of microarousals.
Secondly, it alerts the sleep technologist, in real time, to the likely occurance of
microarousals, which can provide a trigger for the application of further clinical proce-
dures. Moreover, when considering the operation of the proposed scheme in a real time -
operating environment we must mention the NLEO. In the conclusion of Chapter 4 it was

mentioned that, of the three segmentation échemes, the NLEO was the f&stest. Furthermore,
the results in Chapter 5, when the two channels were combined showed that the NLEO pro-

duced P_ and Py values comparable to the ACF. Therefore, taking these points into consid-

eration it is a very reasonable compromise to replace the ACF with the NLEO scheme
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whenever speed is an important factor, eventhough there might be a slight degradation in

terms of P, and Py

6.2 F

Although the résuhs produced in this work demonstrate some potential applicability to the
intended task of microarousal detection, there is still a considerable amount of room for
improvement. Referring more generally to non-stationary signals as a whole, improve-
ments in the detection and extraction of well-defined features, within this context, necessi-

tates further investigation into the following fields.

6.2.1 Segmentation

Our research through the literature revealed that the topic of stationarity segmentation is
one that lacks clear and workable implementation on a broad scale. Apart from segmenta-
tion procedures similar to the ones used in this thesis that largely depend upon the estab-
lishing 65 ad hoc thresholds and are acutely application dependent, none of the available
research provides a reliable means of partitioning non-stationary signals. In other words,
there is no universal segmentation procedure or global theory available that can be modi-
fied in order to apply to particular cases. Although the problem of segmentation is not triv--
ial, it is surprising that there is not much research into it, especially When non—stétionary
signal segmentation is such an important topic with potential applications in so many dif-

ferent fields. Considering the techniques used in this paper, it seems more work needs to be

216



done in establishing new difference measures, which will enable a higher degree of reliable

segmentation.

thods

With the expansion of available wavelet-based techniques, more refined applications exist
that may serve to improve signal decomposition and consequently, lead to better diagnostic
tools in detecting specifically-defined non-stationary phenomena. One such technique of
interest involves matching pursuit, whereby a dictionary of possible signals is constructed
and used as reference to compare against the various waveform patterns encountered

throughout the signal.

6.2.3 Adaptive Algorithms

The constantly changing nature of the features of a non-stationary signal, whether in fre-
quency or in time, requires the presence of a procedure that has the ability to effectively
adapt to these changes. Many time-varying filters such as Kalman filters, recursive least
square filters or least mean square filters exist. A further studj/ as to which filter can be most

effectively applied to the present context would be an important one to be undertaken.
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6.2.4 Neural Networks

Since the sleep technologist relies primarily on visual pattern recognition to detect the
occurance of microarousals, a natural attempt at autamaﬁng the capturing of these desired
signal features could involve the application of other pattern recognition methods, such as

neural networks.

Since each of these techniques offers a specific perspective on analyzing a non-stationary
signal, it is important to determine and then use some optimal combination of the above,
with the explicit goal of establishing a more precise means of stationarity segmentation
with the further goal of clearly identifying desirable signal content reliably. Therefore, all
future investigations should be pursued for a non-stationary signal in the géneral sense,
while maintaining, in particular, the focus on potential applications to electroencephalo-

gram monitoring.
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List of the Detected Micrearcusals obtained from the Different Methods used inm the -

Thesis and the Actual Microarousals scered by the Sleep Technologis

MA Scored by Sleep ACF Detected GLR Detected NLEQC Detected
Technologist MA MA MA

Start Stop Start Stop Start | Stop Start Stop

Time Time Time Time Time Time Time Time
I. 00:41:04 | 00:41:15 00:41:05 | 00:41:12
2. 00:43:56 | 00:44:04 ||00:43:47 |00:43:58 ||00:43:47 |00:43:58 ||00:43:52 |00:44:02
3. 00:44:28 | 00:44:32 | | 00:44:21 | 00:44:31 | 00:44:23 | 0:44:47
4. 00:45:12 | 00:45:18 00:45:07 | 00:45:15 | 00:45:07 | 00:45:16
5. 00:45:48 | 00:45:53 || 00:45:47 | 00:45:50 00:45:50 | 00:45:57
6. 00:46:53 | 00:46:57
7. 00:47:36 | 00:47:43 || 00:47:36 | 00:47:44
8. 01:36:16 |01:36:22
9. 01:36:48 | 01:36:52 | 01:36:47 |01:36:53 |]01:36:47 | 01:36:52 || 01:36:47 | 01:36:56
10. 01:37:02 | 01:37:07 || 01:37:03 |01:37:40
1%. £1:37:54 | 01:37:59 | |01:37:47 [01:38:22 || 01:3747 |01:37:55
12. 01:38:28 | 01:38:37 01:38:17 | 01:38:31
13. 01:41:45 |01:41:50 || 01:41:47 |01:41:5]
14. 01:45:50 101:45:55 101:45:52 |01:45:57
15. 01:46:22 | 01:46:31 | 01:46:25 |01:46:31 |101:46:21 | 01:46:33 || 01:46:22 | 01:46:31
16. 01:46:48 | 01:46:55 ||01:46:47 |01:46:50 |101:46:50 | 01:46:55 || 01:46:47 |01:46:54
i7. 0L:47:10 | 01:47:15 | 01:47:10 [01:47:14 01:47:11 | 01:47:24
18. 01:47:44 | 01:47:51 || 01:47:41 | 01:47:47 | 01:47:39 | 01:47:47 || 01:47:42 [01:47:47
i9. 01:57:42 | 01:57:50 || 01:57:41 | Q1:57:51 |1 01:537:39 | 01:57:47 ||01:57:43 |01:57:50
20. 01:58:43 101:58:50 ) 01:58:42 |01:58:52 | {01:58:37 |01:58:47 ||01:58:41 |01:58:53
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MA Scored by Sleep ACF Detected GLR Detected NLEO Detected
Technologist MA MA MA

Start StQp Start Stop Start Stop Start Stop

Time Time Time Time Time Time Time Time
21. 01:59:08 1 01:59:14 1] 01:59:07 | 01:55:11 || 01:59:05 |01:59:15 101:59:10 |01:59:16
22. | |01:59:57 |02:00:02 |]01:59:58 |02:00:03 01:59:52 | 02:00:04
23. 02:02:09 {02:02:16 || 02:02:08 |02:02:11 ||02:02:07 |02:02:15 ||02:02:09 |02:02:15
24, 02:02:35 | 02:02:43 |]02:02:34 102:02:39 |102:02:31 |02:02:39 |102:02:27 |02:02:39
25. 02:04:4C | 02:04:46 || 02:04:37 102:04:43 |]02:04:39 |02:04:47 | |02:04:40 |02:04:47
26. 02:05:10 |02:05:17 ||02:05:05 [02:05:17 ||02:05:06 |02:05:13 |} 02:04:58 |02:05:13
27. 02:05:49 |02:05:54 || 02:05:47 |02:05:53 ||02:05:50 |02:05:55 |02:05:47 |02:06:00
28. 02:06:52 | 02:06:59 ||02:06:50 |02:06:57 ||02:06:50 |02:06:55 ||02:06:47 ) 02:06:57
26, 02:12:43 | 02:12:50 |{02:12:43 02:12:47 ||02:12:39 (02:12:47 ||02:12:34 | 02:12:43
30. 02:14:15 | 02:14:21 {102:14:18 |02:14:22
3L 02:14:54 | 02:15:01 02:14:50 | 02:14:59
32. 02:15:32 | 02:15:39 02:15:31 | 02:15:37
33. 02:19:31 {02:19:39 02:19:30 1 02:19:41 |102:19:31 102:19:36
34. |102:20:08 | 02:20:18 |02:20:07 |02:20:17 |}02:20:10 |02:20:25 || 02:20:08 |02:20:12
35. 02:20:39 102:20:42 1102:20:37 | 02:20:41
36. 02:51:21 | 02:51:38 || 02:51:21 102:51:34 || 02:51:22 |02:51:33 || 02:51:27 | 02:51:33
37. 02:52:07 |02:52:18 ||02:51:59 |02:52:11 || 02:52:11 |02:52:17 |[02:52:06 | 02:52:12
38. 02:52:49 |02:52:52 || 02:52:48 |02:32:52 02:52:47 {92:52:51
39. 02:55:05 | 02:55:13 02:55:04 02:55:15 || 02:55:08 |02:55:15 {{02:55:05 |02:55:13
40. 02:57:24 |02:57:35 02:57:25 |02:57:37 ||02:57:15 | 02:57:28
41. 02:57:55 {02:58:02 |]02:57:53 {02:57:59 ||02:57:52 | 02:57:59 ||02:57:54 |02:57:58
42, 02:58:18 | 02:58:37 || 02:58:18 |02:58:26 || 02:58:17 | 02:58:27 ||02:58:09 | 02:58:22
43, 03:03:27 | 03:03:37 03:03:21 | 03:03:31 |103:0321 | 03:03:28
44. 03:05:25 | 03:05:36 | 03:05:26 |03:05:30 | 03:085:21 | 03:05:31 ||03:05:08 |{03:05:34
45. 03:09:40 | 03:09:54 || 03:09:40 | 03:09:50 ||03:09:39 | 03:09:47 || 03:09:42 | 03:09:50
46. 03:11:20 | 03:11:35 | 03:11:20 |03:11:31 | 03:11:15 | 03:11:27 | 03:11:21 103:11:26
47. 03:13:0F 103:13:15 |03:13:00 |03:13:12 ][03:13:04 |03:13:15 | |03:13:04 |03:13:11
48. 03:13:39 103:13:53 | 03:13:37 103:13:51 |{03:13:39 [03:13:47 |]03:13:41 03:13:50
49. 03:14:59 103:15:13 |103:14:539 ;03:15:06 ||03:14:56 |03:15:01 ||03:14:57 |03:15:09
50. 03:15:41 {03:15:49
51 03:16:26 |03:16:39 | 03:16:27 |03:16:36 || 03:16:23 1 03:16:31 | |03:16:18 | 03:16:35
52. 03:17:03 | 03:17:09
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MA Scored by Sleep ACF Detected GLR Detected MNLEO Detected
Technologist MA MA MA

Start Stop Start Stop Start Stop Start Stop

Time Time Time Time Time Time Time Time
53. 03:17:35 [ 03:17:41 | 103:17:34 03:17:47 ;1 03:17:31 |03:17:43
54, 03:18:23 103:18:2% ©103:18:23 103:18:29 || 03:18:22 {03:18:31 03:18:17 |03:18:27
55. 04:11:30 | 04:11:40 | 104:11:29 (04:11:43 | ] 04:11:28 [04:11:35 |104:11:21 [04:11:38
56. 04:13:05 | 04:13:11 04:13:10 | 04:13:23
57. 04:14:05 | 04:14:11
58. 04:14:23 1 04:14:35 04:14:17 | 04:14:27 1104:14:12 | 04:14:28
59. 04:16:17 | 04:16:32 04:16:11 | 04:16:21 |104:16:16 |04:16:22
60. 04:16:59 | 04:17:06 04:17:01 | 04:17:07
61. 04:52:20 | 04:52:26 04:52:21 104:52:37 {104:52:21 |04:52:31
62. ||04:52:32 |04:52:35 '
63. 04:52:45 | 04:52:52 || 04:52:47 {04:53:09 ||04:52:47 [04:52:55 ||04:52:43 |04:53:00
64. 04:53:14 | 04:53:20 04:53:06 |04:53:19
65. 04:54:07 {04:54:13 || 04:54:07 104:54:16 || 04:53:58 |04:54:07 || 04:54:01 |04:54:13
66. 04:56:11 | 04:56:19 |]04:56:09 | 04:56:15 |]04:56:09 ]04:56:19 ||04:56:01 |04:56:18
67. 04:57:02 |04:57:08 | 04:56:47 |04:57:06 ||04:57.07 |04:57:31 04:57:05 | 04:57:10
68. 05:00:39 | 05:00:56 || 05:00:42 |05:00:47 ||05:00:43 |05:00:47 ||05:00:43 |05:00:47
69. 05:02:58 105:03:12 || 05:03:01 | 05:03:11 05:02:58 |05:03:09 |}05:03:02 |05:03:11
70. 05:05:12° | 05:05:17 || 05:05:12 |05:05:17 || 05:05:09 |05:05:23 ||05:05:12 | 05:05:16
71 05:05:27 |05:05:36
72. 05:08:18 |05:08:23 | 05:08:17 | 05:08:21 05:08:17 | 05:08:21
73. 05:12:28 105:12:39 | |05:12:31 | 05:12:36 105:12:31 {05:12:39 || 05:12:27 |05:12:35
74. 05:13:30 105:13:36
75. 05:14:46 05:14:52
76. 05:19:53 | 05:20:60
77. 1105:20:33 [05:20:41 | 05:20:33 | 05:20:37 05:20:33 }05:20:40
78. 05:22:15 105:22:29
79. 05:25:08 |05:25:15 |{05:25:06 |05:25:14 | | 05:25:10 | 05:25:19 |]05:25:11 |05:25:16
80. 05:25:44 | 05:25:50
81. 05:27:11 | 05:27:17 | 05:27:10 | 05:27:16 ||05:27:07 | 05:27:15
82. 05:29:07 05:29:12 05:29:09 {05:29:19
83. 05:29:55 [05:30:02 | 035:29:55 |05:29:59 ||05:29:56 |05:30:03 |05:29:54 |05:29:59
84, 05:43:05 | 05:43:11
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MAFScored by Sleep ACF Detected GLR Detected NLEO Detected
Technologist MA MA MA
Start Stop Start Stop Start Stop Start Stop
Time Time Time Time Time Time Time Time

85. 05:44:08 | 05:44:17 1}05:44:00 |05:44:09 || 05:44:03 [05:44:13 1) 05:44:02 | 05:44:0¢
&6. 05:44:37 105:44:44

87, 05:46:30 | 05:46:41 |05:46:31 |05:46:36

88. 05:46:51 | 05:47:02 || 05:46:52 |05:47:00 || 05:46:50 |05:46:57 ||05:46:47 | 05:47:00
89. 05:48:28 |05:48:35 |]05:48:29 |05:48:33 | 105:48:27 105:48:33 |05:48:30 | 05:48:38
90. 05:48:47 105:48:58 ||05:48:48 |05:48:57 |;05:48:50 | 05:48:55 ||05:48:50 |05:48:56
o1. 05:49:47 | 05:49:57 |]05:49:49 |05:49:54 |]05:49:50 | 05:49:55 ||05:49:47 |05:49:54
92. 05:51:53 | 05:52:00

93. 05:52:18 | 05:52:24 | 05:52:18 105:52:26 ||05:52:15 |05:52:21 ||05:52:21 |05:52:26
94. 05:53:04 |05:53:13 || 05:52:59 [05:53:04 ||05:53:00 |05:53:07 ||05:52:54 |05:53:10
95. 05:54:01 | 05:54:13 || 05:54:01 105:54:07 || 05:54:03 |05:54:09 | 05:54:04 |05:54:10
96. 05:55:11 }05:55:20

97. 05:55:54 | 05:55:59 05:55:51 |05:55:58
98. 05:57:52 | 05:58:02 ||05:57:52 | 05:57:58 ||05:57:50 | 05:57:57 ||05:57:50 |05:58:04
99. 05:58:17 |05:58:21 |105:58:16 |05:58:21 05:58:16 | 05:58:21
100. | | 05:58:43 | 05:58:49

101. || 05:59:02 | 05:59:09

102. | | 05:59:21 [ 05:59:26 1]05:59:19 |05:59:25

103. | | 05:59:54 | 05:59:59

104. | 06:00:11 | 06:00:16

105. { ] 06:00:27 106:00:33 |106:00:26 |06:00:36 06:00:28 | 06:00:35
106. | | 06:02:12 | 06:02:16 || 06:02:09 | 06:02:13 06:02:13 " | 06:02:31
107. | | 06:02:36 | 06:02:39

108. | ]06:02:59 | 06:03:06 ||06:02:57 |06:03:05 | 06:03:06 |06:03:13 ||06:02:56 | 06:03:03
109. | 1 06:04:01 | 06:04:11 | {06:04:01 |06:04:15 |06:04:01 |06:04:15 || 06:04:02 | 06:04:07
110. | | 06:05:06 106:05:17 ||06:05:06 |06:05:16 06:04:58 | 06:05:15
111, {106:05:27 ;06:05:32

112. |1 06:07:39 | 06:07:51 |]06:07:37 |06:07:40

113. 1 06:10:39 | 06:10:45 | 06:10:39 | 06:10:43

114, 11 06:12:01 [06:12:07 |[06:12:00 |06:12:06

115. {1 06:13:00 |06:13:05 |]06:12:57 [06:13:04 ||06:12:58 |06:13:07 || 06:12:39 | 06:13:04
116. | {06:13:14 1 06:13:22 || 06:13:14 |06:13:21
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MA Scored by Sleep ACF Detected GLR Detected NLEO Detected
Technologist MA MA MA
Start Stop Start Stop Start Stop Start Stop
Time Time Time Time Time | Time Time Time
117. 11 06:13:38 |06:13:44
118. | | 06:15:15 |06:15:24 06:15:15 | 06:15:23
119, | 1 06:17:00 | 06:17:07 |}06:16:54 | 06:17:00 06:16:59 | 06:17:05
120. {106:22:59 [06:23:04 |]06:22:59 |06:23:05 | |06:22:56 |06:23:03 || 06:22:59 | 06:23:04
121. |1 06:24:48 | 06:24:55 || 06:24:47 | 06:24:52 |106:24:47 |06:24:54 | 06:24:47 | 06:24:55
122. 1106:29:14 {06:29:19 |]06:29:13 [06:29:17 || 06:29:09 |06:29:19
123. 1] 06:30:07 | 06:30:11 06:33:00 | 06:33:07
124. | 1 06:30:57 |06:31:06 ||06:30:59 |06:31:06
125. | 1 06:33:03 | 06:33:13 | 1 06:33:02 | 06:33:06 06:32:57 | 06:33:12
126. | | 06:34:24 | 06:34:29
127. 11 06:35:37 | 06:35:45
128. | | 06:36:05 | 06:36:10
129. | | 06:36:5% |06:37:17 || 06:36:57 [06:37:61 ||06:36:56 |06:37:01 ||06:37:02 |06:37:05
130. | | 06:37:30 | 06:37:37
131. | | 06:42:55 1 06:43:04 ||06:42:54 | 06:42:58 ||06:42:58 | 06:43:13 || 06:42:59 {06:43:06
132. | | 06:44:36 | 06:44:41
133. || 06:46:22 | 06:46:30 |
134. | | 06:49:23 | 06:49:31 |]06:49:23 |06:49:26 }]06:49:23 | 06:49:35 06:49:23 06:49:27
135. 1106:51:31 | 06:51:37
136. | 107:02:59 [ 07:03:14 |]07:03:05 ]07:03:08 ||07:03:04 | C7:03:11 07:03:07 |07:03:14
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