Validation and Refinement of Timed MSC Specifications

Tong Zheng

A Thesis

n

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

February 2004

© Tong Zheng, 2004

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-90407-5
Our file Notre référence
ISBN: 0-612-90407-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Tong Zheng

Entitled: Validation and Refinement of Timed MSC Specifications

and submitted in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:
—

et . , Chair
Dr. S. l‘l/Iudur .

External Examiner

Dr. S. Graf ’W

External to Program

Dr. G. Butler,” / e

Examiner

Dr. M. Mehmet-Ali

Dr. S. Tahar

Examiner

Thesis Supervisor

Dr. F.Kﬂen'dek 7
N_—7

Approved by

Dr. M. Mehné&%ﬂf@duate Program Director

APR 02 2004,

e s

Dr. N. Esmail, Dean
Faculty of Engineering & Computer Science

ABSTRACT

Validation and Refinement of Timed MSC Specifications

Tong Zheng, Ph.D.
Concordia University, 2004

This thesis addresses the validation and the refinement of MSC (Message Sequence
Charts) specifications at the requirement and the design phases in a software development
process. The validation is necessary to ensure that an MSC specification does not contain
semantic errors. The refinement provides a systematic approach to develop MSC specifica-
tions. The focus of this thesis is on timed MSC specifications, which may contain absolute

and relative time constraints for specifying quantified timing requirements.

To provide a foundation for analysis of MSC specifications, we develop a formal seman-
tics for timed MSCs based on labeled partially ordered sets (Iposets). We equip an lposet
with two timing functions for expressing absolute and relative time constraints. The seman-
tics of an MSC is represented by a set of Iposets. The set can be obtained compositionally

from the semantics of constructs contained in the MSC.

Time constraints in an MSC specification may lead to inconsistencies. In such a case,
the specification contains semantic errors. We study the time consistency of MSC specifi-
cations. We define the time consistency and develop sufficient and necessary conditions for
the consistency. According to these conditions, algorithms are designed for checking the
consistency. We also study the time consistency of high level MSCs and identify a subset

of high level MSCs such that their consistency can be checked efficiently.

We propose a refinement approach where we refine not only behaviors, but also time
constraints specified in an MSC specification. Refining time constraints makes constraints
on a system stronger, and assumptions on the environment weaker. We define refinement

relations and develop algorithms to check the satisfaction of these relations. To reduce the

iii

complexity in the case of high level MSCs, we constrain the refinement rules.

At last, as an outcome of our investigation of timed MSCs, we propose a new time

construct as an extension of timed MSC in order to specify more timing requirements.

Most of the algorithms presented in this thesis have been implemented and integrated

to our set of tools MSC2SDL.

iv

ACKNOWLEDGEMENTS

I wish to express my sincerest gratitude to my thesis supervisor, Dr. Ferhat Khendek, for
his guidance and assistance. He has supported me academically and financially through the
years. | am most impressed by his insight and ability to develop new ideas. I am especially
grateful for his patience and encouragement throughout this research. This thesis could not

be possible without the substantial time and effort he has devoted.

I would especially like to thank Dr. Susanne Graf from VERIMAG for agreeing to serve
as external examiner of my thesis. Many thanks go to Dr. Gregory Butler, Dr. Mustafa K.

Mehmet Ali and Dr. Sofiene Tahar for serving on my thesis committee.

I am grateful to all those persons who helped me in my studies. Dr. Loic Hélouét
from IRISA gave his comments promptly on the semantics of MSC. Dr. Ludovic Apvrille

proofread this thesis carefully and provided helpful suggestions to improve the thesis.

I would like to thank Lixin Wang, who has implemented several algorithms in this
thesis. I would also like to thank all of my friends and fellow graduate students in the
telesoft research group, Umer Wagqar, Stephan Bourduas, Xiaojun Zhang, Yang Liu, and
Cedric Besse visiting from France. I had a lot of fun with them during the years I have

spent at Concordia.

At last, my special thanks go to my wife Na. I owe a great deal to her for her endless
love and understanding under any situations. I am indebted to her for giving me comfort
and taking care of our baby so that I can continue my thesis. I dedicate this thesis to her

and our daughter Ashley.

Table of Contents

List of Figures xii
1 Introduction 1
1.1 Formal Methods for Developing Reactive Systems 1

1.2 Specification and Development Using MSC and SDL 3
1.3 Motivation 5
1.3.1 Validation of MSC Specifications 6

1.3.2 Refinement of MSC Specifications 6

1.4 Contributions of Thesis 7

1.5 Thesis Organization 8

2 MSC Language 11
2.1 Introduction e e 11
22 MSC-96 e e 12

vi

2.2.1 Basic Behavioral Constructs, 13

2.2.2 Other Behavioral Constructs 15
2.2.3 Compositional Constructs 19

2.3 New Constructs in MSC-2000 24
23.1 Data 24
232 Time. e 25
2.3.3 Guard Condition e 27
234 ControlFlow e 27
2.3.5 Object Orientation in MSC Documents 28

24 MSC Dialects 29
241 LSC . . e 29
242 PMSC . . . o e 31
243 YAMS . e 31
2.4.4 HyperMSC e 32
2.4.5 UML Sequence Diagram 33
2.4.6 Interworkings e 34

2.0 SUMMATY o e e e e e e e e e e e e e e e e e e 35
3 Semantics of MSC 37
3.1 Imtroduction. e 37

vii

3.2 A Partial Order Model for MSC, 39
3.21 Timedlposets. 41
3.2.2 Operationson Iposetso 0oL 44

3.3 Partial Order Semantics for Timed MSC 47
3.3.1 Orderable Events 48
3.3.2 MSCs Containing only Orderable Events 49
333 Coregion 50
334 MSCReferenceo 51
3.3.5 Inline Expressions and MSC Expressions 52
3.3.6 High Level MSC (HMSC) 53

3.4 Related Work 56

3.5 Conclusion L 58

Time Consistency of MSC Specifications 60

4.1 Introduction 60

4.2 Time Consistency of bMSCs o 63

4.3 Time Consistency of HMSCs 65

4.4 Algorithms for Checking Time Consistency in General 71

4.5 Algorithms for Checking Time Consistency in Specific Cases 75

46 Related work 84

4.7 Conclusion e e e 85

Refining MSC Specifications 87
5.1 Imtroduction. 87
5.2 Refining bMSCs 88

5.2.1 Refinement Approach 88

5.2.2 Refinement Relation of bMSCs 93

5.2.3 Checking Conformance between bMSCs 97
5.3 Refining HMSCs 99

5.3.1 Refinement Relation for HMSCs 99

5.3.2 Checking Conformance of HMSCs 101
5.4 Example: Refining a Basic Call Specification 104
5.5 Related Works 107
5.6 Conclusion e 108
An Extension to MSC 111
6.1 Introduction. 111
6.2 Instance Delay o oo i i 112
6.3 Semantics of Instance Delay 114
6.4 An Application e 116

ix

6.5 Related Works e e 119

6.6 Conclusion e 119

7 Conclusion 120
71 SUmmary e e e e 120
7.2 Future Work 122
7.2.1 Syntactic and Semantic Extensions to MSC 122

7.2.2 Implementability of MSC Specifications 123

7.2.3 Translation to SDL Specifications 123

7.2.4 Tool Support and Case Studies 123
Bibliography 125
A Simplified Textual Syntax of MSC 137
B Proofs 139
B.1 Proposition 3.1 e 139
B.1.1 Identity e 139

B.1.2 Commutative property 140

B.1.3 Associative property L 140

B.1.4 Distributive property e 142

B2 Theorem 4.1 o e 142

B.3

B4

B.5

B.6

B7

B.8

Theorem 4.2 o e e e e e e e e e e e e e e e e e e 144

Proposition 4.1 e 145
Theorem 4.3 o . o e e e e e e 146
Proposition 4.2 148
Proposition 5.1 L e 148
Theorem 5.1 o o o e 149

xi

List of Figures

1.1 An MSC-centered development process oo 5
2.1 A simple MSC describing a beverage machine 13
2.2 An MSCwithaction 15
23 MSCwith timers e 16
24 An MSC with condition 17
2.5 MSC with coregion and general ordering 17
2.6 Instances creation and termination (a), and Incomplete messages (b) 18
2.7 Alt inline expression(a), and Loop inline expression (b) 20
2.8 MSC references and gates L 21
29 AnHMSC 23
2.10 An MSC withdata e 25
2.11 An MSC with time constraint and measurement 26
2.12 An MSC with guard condition 27

xii

2.13 Asynchronous method call (a), and Synchronous method call (b) 28

2.14 MSC documents e 29
3.1 Graphical and textual notations of MSC 38
3.2 An MSCwith coregion 50
3.3 An MSCwithareference 51
3.4 An MSC with inline expressions o3
3.5 An HMSC and referred MSCs oo 54
3.6 Transforming an HMSC to an expression. 55
4.1 Time inconsistency in bMSCs oo Lo 61
4.2 Time inconsistency in an HMSC 61
4.3 A directed constraint graph and its distance graph 64
4.4 Tteration and absolute time constraints 0L 66
4.5 An inconsistent HMSC with a consistent simple path 68
4.6 Strong consistency of an HMSC Lo oL 70
4.7 bMSCs in an inconsistent path PMN 75
4.8 Weak and strong consistency for time-disjoint HMSCs 80
4.9 Relation between lower bounds o000 81
5.1 Refining a door controller 90

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.1

6.2

6.3

Refining a door controller further 92

Refining time constraints L0000 94
Comparing time constraints L 0oL 94
Event Order Tables. 99
An ATM specification before refinement 100
An ATM specification after refinement 100
Basic Call e 105
Refining bMSC dial o 106
Time constraints on events and MSC 113
Usage of instance delays o L 114
Specification of measurement process using instance delays 117

xiv

Chapter 1

Introduction

1.1 Formal Methods for Developing Reactive Systems

Methodologies for developing software systems depend on the nature of the systems un-
der consideration. Generally, a software system can be classified as a reactive system or a
transformational system [73]. A transformational system can be modeled as a function that
transforms inputs into desired outputs. Once the outputs are produced, the system stops.
Examples of transformational systems are compilers, and calculators. We are interested
in reactive systems. Unlike transformational systems, a reactive system maintains interac-
tions with its environment. It responds to inputs from the environment, which may arrive
continuously and in unexpected sequences. Examples of reactive systems include telephone

system, traffic-light controller, and air traffic control system.

In general, reactive systems have to satisfy certain timing requirements. For example, a
telephone system has to send a dial tone within a certain time delay after the handset is
picked up. So most reactive systems can be seen as real-time systems. Another characteristic
of reactive systems is concurrency. Different inputs may occur simultaneously and without

any fixed order. To handle these inputs, a reactive system often consists of several processes.

Moreover, these processes may be distributed over several processors and physical locations.

Because of these characteristics, developing a reactive system requires a lot of efforts,
and it is often hard to assure the correctness of the system. To reduce faults in the system,
formal methods can be used in the development process, such as in requirement gathering
and analysis, design, or testing. Formal methods are mathematically based techniques [107].
When a formal method is applied, the system is described at an abstract level using a formal
language first. The result is a formal specification. The specification is then analyzed to
discover contradictions or errors in requirements or design. It can also be used to generate

test cases for testing implementations.

As discussed in [91], usually two types of specifications are needed for reactive systems:
requirement specifications and system specifications. These specifications are artifacts from
different stages of a development process. In the requirement phase, the requirement spec-
ification is used to describe what are the required behaviors of the system, or what are
the properties the system should exhibit. In the design phase, the system specification is
used to describe an abstract implementation of the system. A system specification usually
consists of the high level architecture of the system, the interface between the components

of the system, and the behavior of each component.

Given these two specifications, we need to consider their correctness first. Each speci-
fication needs to be validated to ensure that there are not inconsistencies in requirements,
or errors (such as deadlocks, non-reachable states) in design. Next, we need to ensure that
the system specification conforms to the requirement specification. One way is to verify
the system specification against the requirement specification using verification techniques.
In many cases, these specifications are written in different formal languages. For example,
temporal logics can be used for requirement specifications, and automata or program-like
languages can be used for system specifications. To handle real-time requirements, real-
time temporal logics can be used, such as Metric Temporal Logic [58, 60, 74], Explicit

Clock Temporal Logic [37, 74, 89]. The automata can be timed automata [4]. Model

checking techniques are used for the verification [16].

On the other hand, both requirement and system specifications can be written in the
same language. A requirement specification can be transformed into a system specification
by a stepwise refinement, where the conformance can be assured by design. This refinement
is based on the equivalence relation between the specifications, or sometimes it can be
relaxed to the inclusion relation. For example, in [92], the temporal logic is used for both
requirement and system specifications. Equivalences between specifications can be proven

formally.

1.2 Specification and Development Using MSC and SDL

The Message Sequence Charts (MSC) [52] and the Specification and Description Language
(SDL) [49] are two specification languages developed, standardized and maintained by ITU-
T (International Telecommunication Union, Telecommunication Standardization Sector).
They have been used in telecommunication software engineering for years. MSC concen-
trates on interactions between components in a system, while the internal behaviors of the
components are not of concern. For example, a basic MSC contains only instances that
represent components, and messages that describe asynchronous communications between
these components. Timing requirements can be specified using timers, or time constraints as
introduced in MSC-2000 [52]. Moreover, compositional constructs, such as high-level MSC
(HMSC), are provided to combine several MSCs' as one specification. An introduction to

different constructs in MSC is given in Chapter 2.

On the other hand, SDL describes the architecture of a system and behaviors of each
component in the system. A system can be decomposed into a set of blocks. These blocks are
connected by channels to carry signals. A block consists of several processes. Contrarily to

MSC, SDL describes the internal behaviors of processes explicitly. Each process is modeled

'We use MSC to refer to the language, MSCs to refer to concrete charts.

as an extended finite state machine.

Since MSC and SDL supplement each other, they are often used together. In fact, MSC
can be used for requirement specification. Using MSCs, requirements are captured as use
cases or desired scenarios describing interactions between a system and its environment [3,
56]. On another hand, a system specification can be described using SDL and MSC. An
SDL specification describes the architecture of the system and the abstract implementation

of each process. An MSC specification describes the dynamic interface between processes.

If the SDL specification has been developed manually, it has to be verified against the
MSC requirement specification formally or informally. This is the approach in the SDL-
oriented Object Modeling Technique (SOMT) [21], for instance. An alternative approach is
to derive SDL specifications automatically from MSC specifications. In this approach, the
correctness of the SDL specifications is guaranteed by translation. Tools for the translation
have been developed, such as the MSC2SDL by the telesoft research group at Concordia [81,
97].

Since the SDL specification can be obtained automatically, MSC specifications become
the key model at the requirement and the design phases. In different phases, MSC speci-
fications may serve different purposes and exhibit different levels of details. To ensure the
conformance, we can, for instance, verify the MSC system specification against the MSC
requirement specification. Or, we can enrich the MSC requirement specification by adding
details to components in a system to form a system specification. Thus, a development
process could begin with an abstract MSC specification, which is refined step by step to-
wards a more detailed MSC specification. After that, given a target architecture, an SDL
specification can be generated from the detailed MSC specification. During the testing
phase, the MSC specification can also be used as test purposes for generating test cases
automatically. In fact, MSC specifications take a central role in the development process,

and their correctness is crucial.

Validation

SDL
Architecture

&
Refinement

MSC2SDL

Translation

Test cases

Generation

SDL
Specification

Figure 1.1: An MSC-centered development process

1.3 Motivation

Motivated by the usage of MSC specifications in a software development process, this thesis
addresses mainly two issues that are essential for MSC specifications. The first one is the
validation of MSC specifications. To be useful in a development process, MSC specifications
must not contain semantic errors. They have to be validated. The other issue is the
refinement of MSC specifications. The refinement provides an approach to develop MSC
specifications systematically. In the refinement, the properties of MSC specifications should
be preserved. Moreover, if an MSC specification is valid, then its refinement should remain
valid. Together with translation to SDL and generation of test cases, we can obtain an

MSC centered development methodology as shown in Figure 1.1.

1.3.1 Validation of MSC Specifications

Because of its graphical form, an MSC specification is intuitive and easy to understand.
However, the intuitive understanding may be different from the formal semantics of MSCs.
Furthermore, an MSC specification may contain semantic errors or logical inconsistencies.
So its correctness has to be checked. Several criteria for the correctness, such as the absence
of race conditions, process divergences, confluence and inferences [5, 7, 11, 41, 83], have been
established and techniques for checking these criteria have been developed. However, these

criteria are mainly for MSC specifications without timing requirements.

In this thesis, we investigate the validation of timed MSC specifications. The introduction
of time constraints in MSC-2000 raises the time consistency issue of the MSC specifications.
Only a few works have considered this issue partially [7, 10, 25]. Moreover, in the MSC-2000
standard, time concepts are introduced and time constraints are defined differently from
the existing work. One of our goals is to develop techniques and algorithms to validate the

time consistency of MSC-2000 specifications.

1.3.2 Refinement of MSC Specifications

The refinements of un-timed MSC and similar notations have been proposed in [56, 61,
75, 103]. However, the usage of timed MSC in the development of systems with real-time
requirements has not been explored yet. Another goal of this thesis is to develop a practical

and sound design approach to refine timed MSC specifications.

A refinement of specifications could be based on equivalence relation or inclusion relation.
Many proposals for refining real-time systems, such as [72, 80], use equivalence relations
between specifications. Time constraints are kept unchanged during the refinements. As
argued in [70], the equivalence refinement may not be very useful for real-time systems. In

our opinion, refinement in the design phase should give more flexibility to designers. We

develop an approach that refines both behaviors and time constraints based on inclusion

relations.

1.4 Contributions of Thesis

Since MSC is a formal language, it is essential that we define its formal semantics, which
provides a foundation for analyzing MSC specifications. Unlike existing proposals for the
semantics of MSC, we treat events in an MSC as basic units. This allows us to define the
semantics compositionally for both basic MSCs and MSCs with compositional constructs.
Moreover, we follow the time concepts as defined in MSC-2000. This semantics is applicable

to both timed MSC and un-timed MSC.

Based on this semantics, we validate timed MSC specifications. Specifically, we consider
the consistency of time constraints. We develop sufficient and necessary conditions for an
HMSC to be consistent. According to these conditions, we design algorithms to check the
consistency. These algorithms have been implemented [105]. A special class of HMSCs is

identified such that their consistencies can be checked more efficiently.

After its validation, an MSC can be developed further by adding more concrete informa-
tion. We propose a refinement approach where not only behaviors of the system, but also
timing requirements can be refined. Timing requirements are changed following rules that

take into account the relationship between the system and its environment.

In our refinement approach, an MSC specification is changed according to a few rules.
The rules do not assure the conformance automatically. We verify the conformance relation
between specifications. Our intention is to give designers more choices during the refinement.
However, the challenge is to check the conformance relation efficiently. To check the relation,
we need to compare MSCs, which is generally complex in computation, and in some cases it

is undecidable. For instance, the pattern matching problem is NP-complete as shown in [85].

The problem of deciding if two HMSCs specify the same event orders is undecidable [8, 84,
85]. We have to trade off between the restriction of refinement rules and the efficiency of

conformance checking.

During the study of timed MSC, we have found that some timing requirements cannot
be specified using the constructs in the current MSC standard. We propose an extension
to timed MSCs to enhance its expressiveness. This extension is being considered in the

standardization of the language.

The contributions of this thesis are summarized as follows.

e We develop a semantics for timed MSC based on partial orders.

e We define the consistency of time constraints in MSCs and develop algorithms to

check the consistency.

o We propose a refinement approach for timed MSCs, and develop algorithms to check

the conformance between MSC specifications.

e We propose an extension to timed MSC to enhance its expressiveness.

1.5 Thesis Organization

We introduce the MSC language in Chapter 2. We present MSC constructs in MSC-96,
such as messages, timers, coregions, inline expressions and HMSCs. Then new constructs in
MSC-2000 are introduced. These new constructs relate to timing, data and object-oriented
concepts. Among them, time constraints are our main concern. We also survey some

dialects of the standard MSC language.

After introducing the syntax of MSC in Chapter 2, we define its semantics in Chapter 3.

We develop a denotational semantics for timed MSC based on timed labeled partially ordered

sets (Iposets). A timed MSC is mapped to a set of Iposets. We define the semantics for
most of constructs in MSC-96. However, for the new constructs in MSC-2000, we focus on
time constraints. We can apply this semantics for un-timed MSCs also, which can be seen
as special cases of timed MSCs. The semantics forms a foundation for the validation and

refinement of MSCs in the following chapters. This chapter has been published in [111].

When writing an MSC specification, we need to validate it before it can be used further
in the process. We investigate under what conditions an MSC is consistent in Chapter 4.
We define the consistency of basic MSCs and apply the theory of temporal constraint
networks to check it. For HMSCs, we define two kinds of consistencies, namely strong
consistency and weak consistency. We determine the sufficient and necessary conditions
for these consistencies, and algorithms for checking the consistencies according to these
conditions. At last, we characterize specific HMSCs for which the strong consistency can

be checked efficiently. This chapter has been published in [109].

Given a valid MSC specification, we can refine it to a more concrete one, but always
conform to the original specification. In Chapter 5, we propose a refinement approach to
develop timed MSC specifications. We refine not only the behaviors expressed by MSCs,
but also the time constraints in MSCs. A refinement procedure consists of decomposing
processes, adding messages, and changing or adding time constraints. The resulting MSC
specification is required to keep the properties of the original specification, such as event
orders. Moreover, if the original specification is time consistent, the resulting MSC speci-
fication should remain time consistent also. We define refinement relations between MSCs
formally, and develop algorithms for the verification of these relations. This chapter has

been published in [110].

During our investigation of MSCs, we have came across the need to extend the language.
For example, when using MSC to specify a repeated scenario, we may need to specify the
periodicity, or the time interval between two repetitions. The current MSC standard has

limitations for expressing this. Therefore, in Chapter 6, we propose a new construct, called

instance delay, as an extension to timed MSC. Using this construct, we can specify the
periodicity of instances. We define formally the semantics of instance delay and illustrate
its need and usage in the specification of the Radio Resource Control (RRC) protocol [1].
This chapter has been published in [108].

In Chapter 7, we summarize the contributions in this thesis, and discuss future work.

10

Chapter 2

MSC Language

2.1 Introduction

The MSC language appeared initially as a complement of the Specification and Descrip-
tion Language (SDL) [49]. SDL describes the behaviors of a process in a system as an
extended finite state machine. However, the interactions between processes cannot be ob-
served explicitly in SDL. So sequence charts were used as auxiliary diagrams for describing
the interactions [32]. In 1990, the CCITT (the predecessor of ITU-T) decided to standardize
the sequence charts as a new language, called Message Sequence Charts. In 1993, the first

recommendation for MSC, recommendation Z.120 [50], was approved.

The first recommendation of MSC contained graphical and textual syntax definitions, but
a formal semantics was missing. A formal semantics is crucial for a specification language in
order to describe a system unambiguously. So in the second recommendation (MSC-96) [51],
a formal semantics based on process algebra theory was defined, which benefited from the
development of the Interworking language [76, 95]. Moreover, composition constructs were
introduced into MSC-96, which were also influenced greatly by the Interworking. These

constructs enhanced the expressiveness of MSC greatly, and made it possible to write a

11

complete specification for a large, complex system using MSC. Actually MSC-96 had become

a language used independently to SDL.

Since then, MSC has been used more and more widely for software development. Most
often it is used to describe scenarios and use cases of a system [3]. Properties of a system
can be specified using MSC instead of temporal logic [18, 61, 82, 85]. It can also be used
in verification [8, 20], simulation [39, 104], and testing [29, 30, 86]. CASE tools are also
available, such as Tau [101], uBet [7], Mesa [12] and MSC2SDL [81, 97].

Meanwhile, the MSC language continues to evolve and further extensions have been
proposed to handle data [24, 26], timing and performance [7, 10, 25, 69] in MSC. Data
and timing concepts were officially introduced in MSC-2000 [52], which made it possible to

address systems with quantified timing constraints.

In this chapter, we give an introduction to the MSC notations. In Section 2.2, we
introduce constructs in MSC-96. For each construct, we provide its syntax and explain
its semantics informally. Then in Section 2.3, we present new constructs in MSC-2000.
We focus on time constraints. In Section 2.4, we introduce several extensions and similar

notations to the standard MSC. We summarize the chapter in Section 2.5.

2.2 MSC-96

MSC provides a lot of constructs for specifying distributed systems. These constructs
can be classified as behavioral constructs for describing the behaviors of the system, or
compositional constructs for composing several MSCs as one complete specification. The
MSC standard defines both graphical and textual syntax for each construct. For the purpose
of better communications between developers and customers, the graphical syntax is often
used in the specification. However, CASE tools are often built on the textual syntax. We

focus on the graphical syntax for the purpose of presentation.

12

MSC buy_tea
user machine

L—— 1 1

coin

o

choice(icetea)

icetea

Figure 2.1: A simple MSC describing a beverage machine

The MSC-96 standard defines a formal semantics based on process algebra. We introduce

the semantics informally when each construct is presented.

2.2.1 Basic Behavioral Constructs

We first show a simple MSC buy_tea in Figure 2.1. The MSC describes the interactions
between a user and a beverage machine. The user inserts coins and selects the type of

beverages. Then the machine delivers the beverage to the customer.

The MSC in Figure 2.1 consists of three kinds of constructs: instance (the vertical lines),
message (the horizontal lines), and frame (the box around the MSC). These are the most
basic and often used constructs. An MSC containing only these constructs is called a basic

MSC (bMSC). We introduce these constructs below in turn.

Instance

An MSC contains a finite set of instances, each of which usually represents a component
in a system. An instance is described by a vertical axis with an instance head symbol and
an instance end symbol. The instance head and the instance end do not imply the creation
and termination of the instance. They only define a segment of progress for an instance. In

Figure 2.1, two instances are specified, which are user and machine.

13

Along an instance axis, events such as sending or receiving messages are ordered from
the top to the bottom. However, the delay between two consecutive events is not specified
by the instance axis. For example, in Figure 2.1, the user can make a choice any time after
inserting coins. Furthermore, each instance runs independently with each other. The user

can make a choice no matter whether the coin is received by the machine or not.

Message

The most essential behavior described by an MSC is the message exchange between in-
stances. A message is represented by an arrow which is directed from the sending instance
to the receiving instance. A message between instances is associated with two events: the
sending (the output of the message) and the receiving (the input of the message). The MSC

in Figure 2.1 contains three messages. The message choice carries a parameter icetea.

In MSC, message passing is asynchronous. The sending event has to precede the receiv-
ing event. They cannot occur at the same time. Moreover, the MSC standard does not
restrict the method of transmitting messages. Basically it is implied that every message is
transmitted in its own channel. So it is possible that the order of receiving messages and
the order of sending the messages are not the same. In [23], several other communication

models for transmitting messages are considered.

MSC Frame

The MSC frame represents the environment of the system specified in the MSC. Interactions
between the system and the environment are described by messages sent to the environment,
and messages received from the environment. Message events in the environment are not

ordered.

14

MSC buy_tea
user machine

N R A

coin

choice(icetea)

cooling
T

icetea

Figure 2.2: An MSC with action

2.2.2 Other Behavioral Constructs

We introduce briefly other behavioral constructs that are not contained in a bMSC in the

following.

Action

The internal behavior of an instance can be described in an action box. In semantics, an
action is considered as a local event in the instance. In Figure 2.2, the instance machine

performs an action cooling before offering the icetea.

Timer

MSC-96 uses timers to specify timing requirements. A timer is a clock that can be set for
a duration and started, be stopped before its expiration, or expire by itself. These actions
are associated with three timer events: set, reset and time-out. These events are considered
to occur in the instance to which a timer is attached. They are ordered with other events

in the same instance.

The usage of timers is shown in Figure 2.3. In the MSC return_coin, setting a timer
and the expiration of the timer are used together. The machine sets a timer after getting

the coin. If the user does not choose a beverage in the duration set by the timer, then the

15

MSC return_coin MSC choose

user machine user machine
coin coin
T T
) choice
coin L

Figure 2.3: MSC with timers

coin is returned to the user. On the other hand, in the MSC choose, setting a timer and
resetting the timer are used together. If the user chooses a beverage in the duration, the

timer is stopped.

Since MSC-96 does not support data languages, a duration associated with a timer set
event is just symbolic. It does not have a meaning in semantics. This is changed in MSC-
2000 because the data concept is introduced into it. Moreover, quantitative time constraints

can be specified in MSC-2000. We introduce them in Section 2.3.

Condition

Usually a condition is used to describe a certain status of one or more instances in an
MSC. A condition could be global, non-global, or local. A global condition covers all the
instances in an MSC; a non-global condition covers some of instances only; and a local
condition covers exactly one instance. The local conditions in Figure 2.4 show the status of

the machine before and after the user buys a beverage.

In the semantics of MSC-96, conditions are considered as comments. In practice, con-
ditions can be used as a glue to connect MSCs, or as guards to restrict the execution of
MSCs. MSC-2000 defines formally the usage of conditions as guards. We introduce guard

conditions in Section 2.3.

16

MSC buy_tea
user

L1

machine

coin

idle

choice(icetea)
icetea

Figure 2.4: An MSC with condition

MSC buy_tea MSC buy_tea
user machine user machine
1 ||} | | [F
coin 1 coin o
choice(icetea)ri choice(icetea)=:
icotea > p icetea : y ‘

(a) (b)

Figure 2.5: MSC with coregion and general ordering

Coregion

As mentioned before, all the events in an instance are ordered from the top to the bottom.
However, sometimes it is necessary to specify unordered events in an instance. The coregion
construct allows for specifying a region in an instance in which events are not ordered. A
coregion is represented by a dashed line. For example, in Figure 2.5(a), within the coregion
in machine, either receiving coin or receiving choice could occur first. This is possible if

these two (coin and choice) are transmitted separately in their own channels.

17

MSC instances MSC messages
insl insl
(152 I

(a) (b)

Figure 2.6: Instances creation and termination (a), and Incomplete messages (b)

General Ordering

Besides the ordering of events in an instance and the ordering of events by message ex-
changes, the general ordering provides another way to order events in the same instance
or in different instances. However, the general ordering is mainly used in a coregion. It
provides additional orders between some events in the coregion. A general ordering is rep-
resented by a solid line with an arrowhead in the middle. For example, in Figure 2.5(b), all
the events of the instance machine are within a coregion. Two general orderings are used
to specify that both receiving the coin and receiving the choice occur before offering the

iceteaq.

Instance Creation and Termination

The creation of an instance by another instance, and the termination of an instance are
denoted by a dashed arrow and a cross respectively. For example, in Figure 2.6(a), two
instances insl and ins2 exist in the MSC. The instance ins2 is created by ins!, and then

terminates itself.

18

Incomplete Message

MSC allows for incomplete messages, which are associated with only a sending instance, or
a receiving instance. A message is a lost message if there is no receiving instance. It is a
found message if there is no sending instance. In Figure 2.6(b), the message m1 is a lost

message. The message m?2 is a found message.

2.2.3 Compositional Constructs
Inline Expression

Inline expressions are used to compose MSCs, whose names are omitted, inside an MSC.
Usually these MSCs do not contain many constructs so that they can be described inline.

The operators used in inline expressions are alt, par, opt, exe, and loop.

¢ An qlt inline expression composes two or more MSCs alternatively. The choice between

these MSCs is not made until it is not avoidable. It is called delayed choice.

e A par inline expression composes two or more MSCs in parallel. It means that events

in different MSCs are interleaved.

e An opt inline expression contains one MSC that may or may not be executed. It can

be seen as an alt inline expression with one empty MSC.

e An ezc inline expression contains one MSC that describes an exception scenario. It
means either the MSC or the part following the expression is executed. It can also be

seen as a variant of the alt inline expression.

e A loop inline expression executes an MSC repeatedly. The number of times that the
MSC is executed is defined by the loop boundary. The loop boundary contains a lower

bound and an upper bound, which indicate the minimal and the maximal number of

19

MSC choose_or_return MSC insert_coins
T machin .
use achine user machine

[] L1 |]]
loop<3,3j coin

Y
=

Y

I P choice
choice

-
—

beverage

(a) (b)
Figure 2.7: Alt inline expression(a), and Loop inline expression (b)

times that the MSC is executed. The bounds have to be natural numbers, and the

upper bound could be infinite.

Inline expressions can be nested where the inner inline expression is contained in an MSC

that is contained in the outer inline expression.

An alt inline expression and a loop inline expression are shown in Figure 2.7. The MSC
in Figure 2.7(a) specifies an alternation between the two MSCs in Figure 2.3. Either a
choice is made before the timer expires, or the coin is returned to the user. The MSC in

Figure 2.7(b) specifies that the user inserts three coins to buy a beverage.

MSC Reference and Reference Expression

An MSC can refer to another MSCs as its component by means of MSC references. For
example, the MSC buy in Figure 2.8 refers to two other MSCs prepare and offer. By using

references, some parts of an MSC are hidden to make it more succinct and readable.

A reference can also refer to an MSC expression. An MSC expression consists of the

names of several MSCs as operands. The operators include all those used in inline expres-

20

MSC buy MSC prepare MSC offer

user machine machine user machine
L 1] I] [| |
oin .
c =g 2 coin
choice =h prepare h choice - beverage
. >

offer)

Figure 2.8: MSC references and gates

sions and a sequential composition operator seq. The seq operator composes two MSCs
sequentially. Specifically, two MSCs are connected instance by instance. Thus, the events
in the second MSC could occur before all the events in the first MSC have occurred. For
instance, if the second MSC contains an instance that is not contained in the first MSC,
then the events in the instance may occur before all the events in the first MSC. This kind

of sequential composition is called weak sequencing.

Gate

A gate is a part of the environment of an MSC. The MSC standard defines two kinds of gates,
message gates and order gates. A message gate represents an entry point in the environment
through which an instance sends or receives a message. An order gate represents a point
through which an event is ordered with another event. Gates can be used together with
MSC reference expressions, and inline expressions. For example, in Figure 2.8, message
gates g and & in the MSCs buy and prepare are used to connect the messages outside the
MSC prepare with the messages inside. The use of gates facilitates the decomposition of

large specifications.

21

High level MSC(HMSC)

An HMSC describes the composition of MSCs in a directed graph. It is a road map that
presents the execution flow of MSCs. An HMSC consists of nodes and directed edges. A

node can be of the following types.

e Start node. There is only one start node in an HMSC. It is the start of an HMSC.

Fach node has to be reachable from the start node.

e End node. An end node represents an exit point of an HMSC. An HMSC may not

contain any end nodes.

e MSC reference node. An MSC reference node refers to an MSC, an MSC reference
expression, or another HMSC. Tt is not allowed to refer the HMSC itself directly or

indirectly.

e Condition node. A condition node describes the status of instances before entering

an MSC reference node.

e Parallel frame. A parallel frame contains several HMSCs that are executed in parallel.

The HMSCs in a parallel frame cannot be the HMSC containing the parallel frame.

e Connection point. Connection points are used to make the layout of a large HMSC

more readable.

Except MSC reference nodes and parallel frames, other nodes in HMSCs are only syntax
symbols and do not have semantics defined in the MSC standard. The semantics of an MSC
reference node is the semantics of MSCs referred by the node. The semantics of an parallel

frame is the semantics of the parallel composition (par) of HMSCs in the frame.

Nodes in an HMSC are connected by directed edges. Along paths formed by directed

edges, MSCs referred by the MSC reference nodes are composed sequentially (corresponding

22

feturn_coin

/\

choose

Figure 2.9: An HMSC

to the seq operator). The branches among the paths represent the alternative composition
(corresponding to the alt operator). Cycles represent the repeated behaviors (corresponding

to the loop operator).

An HMSC is shown in Figure 2.9. The symbols 7, A and () in the figure represent a
start node, an end node and a connection point, respectively. The referred MSCs return_coin
and choose are shown at Figure 2.3 (page 16), and the MSC offer is shown at Figure 2.8.
The HMSC describes that the machine offers beverage if a choice is made, otherwise it

returns the coin.

Instance Decomposition

The instance decomposition is a mechanism for describing a system at different abstract
levels. By instance decomposition, an instance at a higher level of abstraction can be repre-
sented by an MSC containing a set of instances at a lower level of abstraction. The message
inputs and outputs at the decomposed instance have to be preserved in the MSC. Moreover,
orders between these inputs and outputs are also preserved. The instance decomposition

actually refines the instance.

23

2.3 New Constructs in MSC-2000

The latest version of MSC, MSC-2000 [52], adds new concepts to enhance the expressiveness
of MSC. These new concepts concern time, data, object orientation on MSC documents,

control flow, and guard conditions [38]. We discuss them in the following subsections.

2.3.1 Data

One enhancement in MSC-2000 is the support of data. Instead of defining a specific data
language for MSC, the actual data language is considered as a parameter [24, 26]. So the
user can choose which language is used, for example, C or ASN.1 [48]. All data are given

under the form of character strings in MSC.

Data can be used in different places, such as in action boxes, in loop boundaries, in time
constraints, or in messages as parameters. The MSC language assumes the existence of

data types in three places:

e Boolean valued expressions in guarding conditions,
e Natural number expressions in loop boundaries, and

e Time expressions in time constraints.

There are two kinds of data, static data or dynamic data. Static data appear as formal
parameters of an MSC and cannot be modified. Dynamic data refer to MSC variables
that can be assigned values multiple times. These variables are local variables attaching to

individual instances.

Assigning a value to a variable in MSC is realized by bindings. A data expression is
bound to a data pattern. A data pattern consists of either a variable, or a wildcard that

represents some anonymous variable. A wildcard is more useful in data expressions, in

24

MSC valid
user machine

1
value:=2

coin(value=:v)

choice("'tea™)

o

alid(v,"tea")

Figure 2.10: An MSC with data

Wk

which it represents any possible value. For instance, if a wildcard is bound to an

Wk

integer variable, then can be any integer number. Because of wildcards, bindings are

more general than assignments in programming languages.

An MSC with data is shown in Figure 2.10. In the action box in user, the number
(2) is bound to the variable value. By the passing of message coin(value=:v), the value of
the variable value is bound to the variable v belonging to the instance machine. Then the
variable v has the value 2. Notice that there are two kinds of bindings in MSC, left binding
(“:=") and right binding (“=:"). In a left binding, a data i)attern appears in the left side,

while in a right binding, it appears in the right side.

2.3.2 Time

To describe real-time systems with quantified timing requirements, MSC-2000 has intro-
duced time concepts. Time in MSC can be discrete or continuous. It is assumed that time
begins from an origin and progresses forever without stagnating. Thus the time domain
must be a total order with a least element. It must be closed under an addition operation.
The time progress is equal for all instances in an MSC. All events are instantaneous. They

do not consume time.

MSC defines two kinds of time constraints to describe timing requirements: absolute

25

MSC buy
user machine
1] L]
coin

-
choice _ "{ &T

LE

beverage v', [1, 3]

Figure 2.11: An MSC with time constraint and measurement

time constraints and relative time constraints. To distinguish absolute and relative time
constraints, a “@” sign is used before absolute time constraints. An absolute time constraint
specifies the occurrence time of an event, while a relative time constraint specifies the delay
between any two events. A relative time constraint can also be associated with MSC
references and inline expressions. In such a case, it constrains the first and the last events
in the reference and the inline expression. It is worth to note that the first and the last

events are determined dynamically.

A time constraint is an interval with minimal and maximal bounds in a time domain. The
delay between two events (in the case of relative time constraints) or the occurrence time
of an event (in the case of absolute time constraints) has to be one of the value within the
interval. The minimal and maximal bounds can be equal. In that case, the time constraint

becomes a time point instead of a time interval.

An example of using absolute time constraints is in the specification of the Wake up call
service, where one has to specify the time at which the call to the service subscriber has to
be made. This time could be an exact time or an interval. Relative time constraints can be
used, for instance, to specify the delay between the receiving of a request and the sending
of a response in a process. For example, in Figure 2.11, the delay between receiving choice
and offering beverage is constrained by a relative time constraint {1, 3], which means the

delay is at least 1 and at most 3. If the delay is exactly 3, we can specify it as [3].

A delay between two events or the occurrence time of an event can be observed using

26

MSC buy_tea
user machine

1
alue:=2

coin(value=:v)

choice("tea")

-

Figure 2.12: An MSC with guard condition

the measurement construct. For each measurement, a time variable has to be declared. To
distinguish a time constraint with a measurement, a “&” sign is used before a measurement.
In Figure 2.11, the delay between receiving coin and choice by machine is measured and

the value of the delay is stored in a variable T.

2.3.3 Guard Condition

Before MSC-2000, conditions in MSC are treated as labels only. It describes the current
state of one or several instances. With the data concept introduced in MSC, conditions can
be used as guards also. To distinguish guard conditions and normal conditions, a key word
when is used in guard conditions. Depending on its evaluation, a guard condition restricts
the behavior of an MSC by allowing the execution of events in the scope of the condition.
For example, in Figure 2.12, the machine offers tea only when the value of the coin is equal

to or more than 2 (which could be the price of the tea).

2.3.4 Control Flow

Besides message exchanges, MSC-2000 also uses method calls and method replies to describe
control flows. A method is a unit of behavior inside an instance. A method call may be

asynchronous or synchronous. After an asynchronous call, the calling instance may continue

27

MSC buy_tea MSC buy_tea)
user machine user machine

L |
all buy(coin,icetea)

Figure 2.13: Asynchronous method call (a), and Synchronous method call (b)

without waiting the reply. On the other hand, the calling instance have to suspend until
the reply after a synchronous call. In the suspension region, no events could occur for the

calling instance. Message calls and replies are similar to sequence diagrams in the UML.

The MSCs in Figure 2.13 show the scenario of buying tea using method calls and replies.
In Figure 2.13(a), the user can perform other actions before the method reply icetea, while

in Figure 2.13(a), the user has to wait for the reply.

2.3.5 Object Orientation in MSC Documents

An MSC document defines a system, which may contain several instances, and contains a
collection of MSCs describing the system. It consists of a defining part and a utility part.
The defining part actually defines MSCs while the utility part contains MSCs reused by the
MSCs in the defining part. The system or instances in an MSC document may be inherited

or overridden in another MSC document.

For example, we define a beverage machine system (BMSystem) in an MSC document
in Figure 2.14(a). The system contains two instances: user and machine. The MSCs buy,
choose and return_coin are defined in the defining part. The utility part contains MSCs

offer and prepare that are used by the MSC buy. In Figure 2.14(b), we define another

28

mscdocument BMSystem mscdocument mySystem
inst user; inst machine; inherits BMSystem;

(buy J[choose j

Figure 2.14: MSC documents

MSC document mySystem, which inherits the BMSystem. All the instances and MSCs in

BMSystem are inherited by mySystem. In addition, it defines an MSC buy-tea.

2.4 MSC Dialects

Since MSC-96 has been released, many extensions have been considered to enhance the
expressiveness of the MSC language. We discuss briefly some of them here, which are
Live Sequence Charts (LSC), Performance Message Sequence Charts (PMSC), YAMS, and
HyperMSC. While the LSC extends the MSC-96 to specify liveness, PMSC includes perfor-
mance aspects into the language. YAMS uses a syntax identical to the MSC-96, but defines
a different semantics. HyperMSC improves the presentation of HMSCs without affecting
the semantics. We also discuss Sequence diagrams in UML, which is often used in object

oriented analysis and design, and Interworkings.

2.4.1 LSC

Live Sequence Charts (LSC) [18] extends the standard MSC language to distinguish possible
and necessary behaviors. The reason of making this distinction is that the interpretation

of scenarios described by MSCs evolves in different stages of the software development

29

process. At the specification stage, MSCs are used to capture sample scenarios that can

happen, while at the implementation stage, the system must adhere to the scenarios.

The distinction between possible and necessary behaviors can be made at different con-

structs as follows.

e An entire chart. One LSC is either universal (represented by solid-line frame around
it) or existential (represented by dashed-line frame around it). The behavior in a
universal LSC must be exhibited by any system run. On the other hand, an existential

LSC is only required to be satisfied by at least one system run.

e Messages. For a message, a solid arrow describes mandatory behavior, that is, the
sent message must be received. A dashed arrow describes provisional behavior, which
means the receiving of the message is not guaranteed. Moreover, differently with the

standard MSC, a message passing could be asynchronous or synchronous.

e Conditions. A condition could be mandatory or provisional also. A mandatory con-
dition must be evaluated to true by a system run, otherwise the run halts and the
system is not implemented correctly. However, if a provisional condition is evaluated
to false, then the run skips the behaviors following the condition in the enclosing

chart. This is similar to the guard condition in MSC-2000.

e Locations, which refer to the progress over time in instances. A solid vertical line
segment indicates that the instance must run beyond it. In contrast, a dashed vertical

line segment indicates that instance need not move beyond.

LSC does not consider HMSCs. It uses sub-charts for composing scenarios. However,

constructs for branching and iteration are not detailed further in [18].

30

2.4.2 PMSC

Performance Message Sequence Charts (PMSC) [25] is an extension of MSC-96 to support
performance engineering. In the design and implementation of a system, the following

performance issues have to be considered:

e performance requirements, such as the response time of the system, the system through-

put;
e implementation alternatives;

e resource requirements, which specifies the amount of physical resources needed de-

pending on different implementation alternatives;

e available resources, such as the number of CPUs, channels, and the capacity of mem-

ory; and

¢ implementation decisions for selecting an implementation alternative.

PMSC uses the MSC-96 language for the functional specification, and describes the
performance requirements, resource requirements and available resources in the comments.
Compared to MSC-2000, PMSC addresses more performance issues. However, techniques

for performance evaluation and validation are not considered in [25].

2.4.3 YAMS

YAMS [61] (Yet Another MSC Semantics) uses a syntax almost identical to the MSC-96,
but with different semantics. First of all, a message in YAMS is not associated with a
sending and a receiving event as defined in MSC. Instead, it is associated with a time point
at which the message is sent through a channel. It is assumed that a global clock exists in

a system.

31

Secondly, in MSC-96, the weak sequential semantics is used for the composition of two
MSCs, where events in the second MSC can be executed before all the events in the first
MSC have been executed. The sequential composition in YAMS is strong sequencing and

does not allow for the interleaving of events in sequential MSCs.

YAMS also does not model delayed choice. In MSC-96, a choice between two alternative
MSCs (or MSC expressions) are made as late as the moment when two alternatives differ.

In YAMS, the choice is made from the beginning of an execution.

Moreover, YAMS defines more constructs than MSC-96. They are described in the

follows.

e Guarded condition. It is similar to the guard condition in MSC-2000.

e Unbounded finite repetition. It represents any finite number of repetition. In MSC-

2000, this can be described using a wildcard in the loop boundary [38].
e Join operator. It combines two MSCs as one where common messages are merged.

e Trigger composition operator. It associates two MSCs, where the execution of the

first MSC triggers the execution of the second MSC.

e Preemption. It allows a message to interrupt an MSC and switch to another MSC

immediately.

2.4.4 HyperMSC

HyperMSC [31] presents HMSCs in a hypertext-like manner. A HyperMSC allows an MSC
reference or a path consisting of several MSC references in an HMSC to be expanded in
detail within the HyperMSC, while the other MSC references remain hidden. In this way, an
HMSC can be presented in different views. It is assumed that tools are available to support

HyperMSCs for viewing different parts of an HMSC and switching between different views.

32

HyperMSC does not affect the semantics of HMSC, just changing the graphical layout of

an HMSC for a compact and transparent representation.

In [31], a new construct called MSC connector is also introduced for abstracting commu-
nications between MSC references or inline expressions. It generalizes the gate construct.
Using MSC connectors in HyperMSC provides a mechanism that allows for folding and
unfolding instances to MSC references. Meanwhile, messages associated with the instances
can be abstracted as one MSC connector. An MSC connector can be expanded as a group

of messages also. This facilitates the compositional specification of complex systems.

MSC connectors not only bundle messages, but also specify communication mechanisms
between MSC references. A few of MSC connector types are introduced in [31], such as
FIFO (first in first out) connectors, LIFO (last in first out) connectors, or unrestricted

connectors. However, formal semantics of the MSC connectors are not presented in [31].

2.4.5 UML Sequence Diagram

UML sequence diagram (SD) [88] can be seen as an object oriented variant of MSC-96. SD
and MSC are used for different applications. While MSCs describe distributed systems with
asynchronous communications, SDs describe the flow of control passing through different

objects in a program [35].

However, SD and MSC have many similar constructs. Actually, one predecessor of the
SD is the Object Message Sequence Chart notation, which is a modification of the MSC.
Meanwhile, some constructs in MSC-2000, such as method call and reply, come from SD.
There are proposals to combine MSC and SD as one language with rich constructs and a

formal semantics [98].

We introduce the constructs in SD in the follows.

e QObject or actor azes are life lines of objects or actors. They are same as instance axes

33

in MSC.
Object activations show the period during which the object is performing a procedure.
Object creation and destruction are same as instance creation and termination in MSC.

Messages describe method calls or replies between objects/actors. A message could be
asynchronous or synchronous. It can be recursive also. The repetition of a message
can be expressed by the iterative message. A message guarded by a condition is
called conditional message. Several conditional messages can originate from one single
point to represent branches. In MSC, this can be represented using alternative inline

expressions and guard conditions.
Conditional branchings describe alternatives between object activations.

Iteration bozes and loops with conditions to ezit enclose a part of SD indicating that

it can occur multiple times. This corresponds to the loop inline expression in MSC.

Time constraints specify the time of transmitting messages, or duration of a part of

object activations. They are similar to the relative time constraints in MSC-2000.

pseudo code supplements the graphical representation of SD.

SD does not provide composition constructs that are similar to inline expressions and
HMSCs in MSC. Moreover, there is no referencing mechanism in SD. So, it is limited to

describe small scenarios or specifications.

2.4.6 Interworkings

Interworkings are the predecessor of the MSC-96 language [51, 95]. It focuses completely
on communications between system components and omits their internal behaviors. In
syntax, it contains only axes for entities (corresponding to instances in MSC) and arrows

for messages. Moreover, message exchanges in Interworkings are synchronous.

34

Interworkings can be composed together vertically or horizontally using the sequencing
operator and the merge operator. However, there are no operators for alternative and loop

in Interworkings.

e The sequencing operation concatenates one Interworking below another one, by linking
common entities. If two Interworkings do not contain common entities, the sequencing

operation actually results in a parallel composition.

e The merge operation identifies common entities and their communications in two
Interworkings. The communication behaviors between common entities have to be
exactly same so that the two Interworking can be merged. If two Interworkings do not

contain common entities, the merge operation also results in a parallel composition.

A semantics based on process algebra is defined for Interworking in [75], which includes
a refinement relation. Informally, refining an Interworking is to replace one entity in the
Interworking with a set of entities. Then the internal behaviors of the entity are represented
by the collective behaviors of the set of entities. However, the external behaviors of the
entity have to be kept same. This refinement is similar to the decomposition of instances

in MSC.

2.5 Summary

In this chapter, we introduced the MSC language and its several variants. We classified
constructs in MSC-96 as behavioral constructs and compositional constructs. An MSC
other than HMSC is often called a plain MSC. Moreover, we call an MSC as a basic MSC

if it contains only instances, messages and MSC frame.

MSC-2000 includes all the constructs in MSC-96, and some new constructs concerning

data, time, object orientation, control flow and guard condition. It is worth to note that

35

timers can also be used to specify some timing requirements in an instance. However,
time constraints in MSC-2000 are more general because they can be used to specify timing
requirements involving events in different instances. Time constraints are more convenient
to use than timers. For instance, to specify a delay between two events, a timer has to be
set immediately after the first event, then a time-out event has to be observed immediately
before the second event. Using time constraints, the delay can be specified by a relative
time constraint between these two events. Actually, time constraints in an instance can be
seen as high level requirements, while timers can be seen as low level implementations of

the requirements.

While the new concepts in MSC-2000 enhance its expressiveness further, they also make
the language more complex. It is more difficult to define a formal semantics for the whole
language, based on which CASE tools could be built to support its usage. In this thesis,
we do not intend to address all the features of MSC-2000. We focus on its time aspect and

define its semantics in Chapter 3.

The MSC standard also defines instance decompositions as a refinement mechanism. To
make it more useful, we generalize it to both basic MSCs and HMSCs. We also consider

the refinement of time constraints. We will discuss the refinement issues in Chapter 5.

36

Chapter 3

Semantics of MSC

3.1 Introduction

A formal semantics is essential in several aspects during the usage of MSC. First, although
the MSC language provides graphical syntax that makes a specification easy to understand,
people may have different intuitive interpretations of an MSC. A formal semantics defines
the MSC language precisely and avoids potential ambiguities in the specification. It also
forms a foundation for analyzing MSC specifications and building simulation and verification
tools. Moreover, by developing a formal semantics, we can detect ambiguities, omissions

and contradictions in the definition of the language itself [59].

In the MSC-96 standard, a process algebra approach has been used to define the formal
semantics [95]. The MSC-2000 language contains more constructs as introduced in Chap-
ter 2. These constructs make it more complex to define a formal semantics. As pointed
out in [22], it is very difficult, if not impossible, to develop a semantics for the whole lan-
guage. A more feasible way is to define the semantics concentrating on one aspect of the
language. For example, the definition for the semantics of data in MSC-2000 has been

proposed [22, 24, 26].

37

msc T
1: instance .
label a out m1 to j time [@0};
label d in m2 from j;
_ label e out m3 to j time @[3,4], [3,4] a;
i: endinstance;
j: instance; .
label b in m1 from i time [1, 2) a;
label c out m2 toi;,
_label f in m3 from i time [2] c;
j: endinstance;
endmsc;

Figure 3.1: Graphical and textual notations of MSC

In this chapter, we define the semantics of MSC-2000 containing behavioral constructs,
compositional constructs and timing constraints, which are another major extension to
MSC-96. We consider both absolute and relative time constraints. Since we do not cover the
data aspect, there are no data variables involved in time constraints. The lower and upper
bounds of all the time constraints are concrete values in a time domain. The measurement

of time is not considered also because it has to be related to a variable.

Examples of time constraints used in this chapter are shown in Figure 3.1. Both graphical
syntax and textual syntax are shown. While the graphical form is easy to understand for
human, the textual form is easy to handle when defining the semantics. We label the events
in instances as a, b, ¢, ... in the figure. This MSC specifies the exchanges of messages
m1, m2 and m3 between instances ¢ and j. The relative time constraints between events
a and b, a and e, ¢ and f are specified. The absolute time constraints of ¢ and e are also

specified.

In the MSC-2000 standard, the timed semantics of an MSC is mentioned briefly as event
traces with special time events between normal events. For example, a trace for the MSC
in Figure 1 is {a, t1, b, to, ¢, t3, d, t4, €, ts5, f}, where ¢; represents time events. Actually
time events are delays between normal events. If there is no time event between two normal

events, it means they occur simultaneously. A trace always begins with a normal event.

This semantics is described informally in the standard and it is not mentioned how

38

an MSC corresponds to traces. Moreover, time events in traces can only express relative
time constraints, while the informations specified by absolute time constraints are lost. For
example, according to the relative time constraints in Figure 3.1, the following relations
have to be satisfied: 1 <t < 2,t3+#t4+1t5 =2,and 3 < t; + 19 +t3 +t4 < 4. However,
we cannot express that event a occurs at time 0, or event e occurs between 3 and 4 in the

tracel.

In this chapter, we develop a semantics for timed MSC based on partial orders. An MSC
defines partial orders between events. Time constraints quantify the orders. Specifically, we
define timed labelled partially ordered sets (lposets), which specify a set of traces of timed
events. The denotational semantics of MSC is developed in a compositional way. We first
define the semantics of events as timed lposets. Then the semantics of MSCs are obtained

using the operations defined on timed lposets.

The rest of this chapter is organized as follows. In Section 3.2 we introduce timed lposets
as a semantic model of timed MSC. In Section 3.3 we define the semantics of MSC in a
compositional manner. In Section 3.4, we discuss existing work on the semantics of MSC.

We conclude in Section 3.5.

3.2 A Partial Order Model for MSC

To define a formal semantics of MSC, we need an underlying model for describing the system
that is specified by MSC. As introduced in Chapter 1, we are interested in distributed,
concurrent systems. There are two kinds of models for concurrency, namely interleaving
models and non-interleaving models. In an interleaving model, behaviors of a system are
observed as totally ordered sequences of events that occur in different processes of the

system. The concurrency between events are viewed as non-determinism between different

'To express absolute time constraints, we have to change the definition of trace, for example, adding a
special event as the beginning of a trace.

39

interleavings of these events.

On the other hand, a non-interleaving model distinguishes between concurrency and
non-determinism of interleavings. We prefer non-interleaving models since they are more
truthful for modeling concurrent systems, especially real time ones. When we take time
into account, the concurrency and the interleavings have to be differentiated. Concurrent
events can occur at the same time, while interleaved events occur at different times. A
non-interleaving model captures this difference because sequences of events in the model
are only partially ordered. Therefore it is also referred to as a partial order model or a true

concurrency model.

Well known examples of partial order models are Petri nets [94], event structures [87],
Mazurkiewicz traces [78], pomsets (partial ordered multisets) [93], lposets (labelled partial
order sets) [96], and asynchronous transition systems [100]. There are also timed extensions
of partial order models, such as interval event structures [79], pomsets with delays [15],
real time extended bundle event structures [54]. However, these timed partial order models
cannot be used for timed MSC. In interval event structures, for instance, each event is
associated with a duration. In MSC, events are instantaneous. Delays in pomsets and real
time event structures are specified between two causally dependent actions. In MSC, time

delays (relative time constraints) can be specified between any pair of events.

Therefore, instead of using these models, we extend lposets to timed lposets to meet the
requirements of timed MSC. We choose Iposets because it is straightforward to represent
MSCs using lposets. An lposet defines causal orders between events. Events are labeled
to indicate their types. Since there are two kinds of time constraints in MSC, we equip an
lposet with two timing functions to describe these two types of constraints. In the following,

we define formally timed lposets.

40

3.2.1 Timed lposets

We use Time to represent a time domain, which may be a set of non negative real or integer

numbers. P(T'ime) is a set of time intervals. An interval could be open or closed.

Definition 3.1 A timed lposet is a T-tuple (I, A, E,<,l,D,T), where

I'is a set of processes (or instances).

A is a set of labels.

E is a set of events.

o <: C Ex FE is a partial order (which is a reflexive, anti-symmetric and transitive

relation) on E. It specifies causal orders between events.

I: B — A is a labeling function, which associates an event to a label. It can be a

partial function.

e D: E — P(Time) is a function that associates an event to a time interval. It defines

a range within which an event could occur.

T: Ex E — P(Time) is a function that associates a pair of events to a time interval.

It defines possible delays between two events.

The set of labels A defines the types of events. An event in MSC could be: message
output, message input, internal action, start timer, stop timer, or timeout. So a label is

defined as one of the followings.

e send(i, j, my): process 1 sends a message my to process j,

e receive(i, j, my): process i receives a message my from process j,

e action(i, a): process i does an internal action a,

41

e starttimer(i, T, n): process i sets a timer T with a time-out period 7,
e stoptimer(i, T): process i cancels the timer 7,

e timeout(i, T): the timer T in instance i expires.

In the MSC standard, a message output or message input event can be associated with
a message instance name to ensure that the textual notation corresponds to the graphical
notation. The message instance name makes messages contained in an MSC differentiated.
Thus we can associate every event in an MSC with a unique label. If a process i sends a
message twice to another process j, we label the associated events as send(i, j, m1), send(i,
4, ma), or receive(i, j, mq), receive(i, j, mz), where m is the message name, and the subscript
of m represents the message instance name. The message instance name can be omitted if

the messages can be differentiated from the message names.

The function [can be a partial function, which labels some events only. We allow this
because in the MSC-2000, an event could have a relative time constraint with another event
outside the current MSC. In such a case, we do not know the type of that event when

considering the current MSC.

We use E* to represent the set of events that occur at process i, such that |J; E' = E,
i € I. An event e is a minimal element in E according to < when there is no event ¢’ € E
such that ¢’ # e and ¢/ < e. An event e is a maximal element in F according to < when
there is no event ¢ € E such that ¢’ # e and e < ¢'. There may be several minimal or

maximal elements in F because of partial orders.

Using ¢ to represent the empty set, we define an empty timed lposet ¢ = (I, A4, E, <, [,
D, T) in which I, A, E, <, [, D and T are ¢.

Definition 3.2 A trace of a timed Iposet is defined as a (probably infinite) sequence of
timed events (e1,11), (€2,62) ... (en, tn) with J;_,{e;} = E, t; € Time such that for all i and

L 0<i<n, 0<j<n:

42

if e; < €j, then t; < tj,

ti S D(Ei),

|t — t;] € T'(ei, €5),

t; must grow over all bounds in an infinite sequence of timed events.

A trace can be considered as an execution of a timed lposet. Informally, ¢ and j represent
positions of events in a trace. The first constraint means that two events in a trace have
to satisfy their causal order, while the second and the third conditions enforce the time
constraints of each event. The last condition excludes zeno behaviors, which allow infinite

number of events to occur in a finite period of time.

In a trace, it is possible that ¢; > t; if 1 < j and (e;,e;) <. In such a case, the trace is
called ill-timed trace, otherwise it is called time-consistent trace [2, 54]. For each ill-timed

trace, we can swap those unordered timed events to obtain a time-consistent trace [54].

Definition 3.3 The set of traces Tr(lp) of a timed lposet lp is {w | w is a trace of Ip}.

We can use timed lposets to describe the behavior and the time constraints of a system.
For example, let us consider a process that performs two actions: collecting data and then
computing. Collecting data occurs between time 1 and 5, and computing has to occur
between time 3 and 6. Moreover, the delay between these two actions is at least 1 and
at most 2. To model this process, we can use a timed lposet that contains one process (I
= {i}), and two events (E = {a, b}) in the process. These two events are actions (A =
{action(s, collect), action (i, compute)}). Event a is an action of collecting data (l(a) =
action (i, collect)), and b is an action of computing (I(b) = action(i, compute)). The causal
order between event a and b can be represented using a < b. It means a occurs causally

before b. Their occurrence time can be represented as D(a) = [1, 5], D(b) = [3, 6], and the

43

delay between them can be represented as T(a, b) = [1, 2]. This timed lposet has many

traces: (e1, 1)(eq, 3), (e1, 2)(e9, 3), (e1, 3)(eq2, 4) and so on.

3.2.2 Operations on lposets

A timed Iposet describes a set of events or a part of an MSC. To define a compositional
semantics based on lposets, we define sequential, parallel, and alternative operations on

lposets.

For two Iposets p and ¢, events in the Iposets may be located at different sets of instances.

We define the following requirements that have to be satisfied by the sequential composition.

e The orders and the time constraints in p and ¢ are preserved.

e If one event corresponds to the sending of a message, and another event corresponds

to its receiving, add a new order between these two events,

¢ If one event corresponds to the starting of a timer with a time-out period, and another
event corresponds to its termination or expiration, add a relative time constraint

between them,

e If two events are located at the same instance, add a new order between these two

events.

Formally, let p = (Ip, Ap, Ep, <p,lp, Dp,Tp) and q = (I, Ag, By, <g,1lq, Dy, Tg) be two

timed lposets. For a relation S, we use ST to represent the transitive closure of §.

Definition 3.4 The sequential composition (-) of p and q (E, N Ey = ¢) is defined as
follows:
p-qg= (IpUIqupUAqupUEqa (Sp U Sq U Smsg U Sins)+7lp UlanpUDq,Tp UTqUTtim);

in which

44

o <pmsg = <HU<E, <b ={(e,€) € B, x By | Iy(€) = send(i, j, mg) A lg(€') = recetve(],

i, m)}, <§ = {(e,€') € Eg x Ep | l,(e) = send(i, j, my) A lg(e') = receive(j, i, mg)},

o <ins = Ui(E';,xEé), Ef, and Eé are the sets of events that occur at instance i, E;; C Ep,

E. C E,,

o Tiim =ThUTh ={((e,€),[n]) | e <ins €, Bf (fis a timer event and e <jps f <ins €'),
Ip(e) = starttimer(i, T, n), l(e') = timeout(i, T)} U {((e,€'),(0,n)) | € <ins €', Af (f
is a timer event and e <ins [<ins €'), Ip(€) = starttimer(i, T, n), l,(e') = stoptimer(i,

T))}-

In some cases, (<p U <q U <pngg U <ins)T may be not a partial order [55]. For example,
if in two timed lposets p and ¢, <, = {a < b}, I, = {(a, receive(i, j, m)), (b, send(i, j,
n))}, and <g = {c < d}, Iy = {(c, receive(y, i, n)), (d, send(j, i, m))}, then the sequential
composition of p and ¢ contains relations {a < b, ¢ < d, d < a, b < ¢}. We obtain a < d
and d < a, which violates the anti-symmetry property of the partial order. In MSC, this
problem is avoided by a static requirement in the syntax, which does not allow a message
output to depend causally on its message input via other messages or general orderings.
Drawing rules are defined in the standard for this static requirement. So the sequential

composition of two timed lposets is still a timed lposet in MSC.

Definition 3.5 The parallel composition (||) of p and q (EyNE, = ¢) is defined as a timed

Iposet:
plla=Up Ul ApU Ay, EyUE;, <,U <41, Uly, Dy U Dy, T, UTy).

In the sequential and parallel composition, we require that E, and E; are disjoint. Then
Ap and Ay are disjoint also since every event is associated with a unique label by [, and
l4. This ensures that in the Iposet obtained from the composition, every event is associated

with a unique label also.

45

Definition 3.6 The alternative composition (#) of two Iposets p and q is a set of lposets:
p#q = {p} U{q}.

While the result of a sequential or parallel composition is a timed lposet, the outcome of
an alternative composition between p and ¢ is a set of Iposets. The alternative composition
is different with the delay choice in the MSC standard. In a delayed choice (F), if p and ¢
contain some common events, the choice is delayed until the events are different. So those
common events appear only once in p F ¢. In the alternative composition, the choice is
made before the execution of any event in p or ¢. In p # ¢, the common events appear in

both alternations.

We generalize the definition of these operations on sets of Iposets.
Definition 3.7 For two sets of lposets P = {p1,p2,...pn} and Q = {q1,92,-- - Qk},

e P-Q={pi-qj|pi€Pq€Q,1<i<n 15k}
e P#Q=PUQ.

o P”Q:{pl “(JlezEP,q]EQ,lg’LS’I’L,lS]Sk}
The sequential, parallel and alternative compositions have the following properties.

Proposition 3.1 Let p, q and r be lposets, P, @ and R be sets of lposets, and ¢ be the

empty timed Iposet.

o Identity.
~¢e-p=p-e=p.
-ellp=ple=p.

46

o Commutative property.

-pllg=gqllp,and P||Q=Q| P.

— p#q = q#tp, and PH#Q = Q#P.

e Associative property.

-p(g-r)=(p-q-r,and P-(Q-R)=(P-Q)-R.
-pl@lr)=@lglr, end P|(QIR)=(P|Q)I R.

— {p}#t(a#r) = (p#)#{r}, and P#(Q#R) = (P#Q)#R.

o Distributive property.

— {p} - (a#r) = (p-Q#(p-7), and P - (Q#R) = (P - Q)#(P - R).
— {p} | (g#r) = (@ | #p || 7), and P || (Q#R) = (P || Q)#(P || R).

PROOF. This proposition is proven in Appendix B.1. 0O

3.3 Partial Order Semantics for Timed MSC

As mentioned in Chapter 2, MSCs can be classified as plain MSCs and HMSCs. A plain
MSC consists of orderable events and non-orderable events in the standard syntax. We use
a simplified syntax as described in Appendix A. In this syntax, orderable events include
message events, actions, and timer events. Non-orderable events include coregions, inline
expressions and MSC references. Inline expressions and MSC references are actually the

compositions of MSCs.

We define the semantics of an MSC as a set of lposets. We first define the semantics
of orderable events as lposets. By composing them together, we obtain the semantics of

a plain MSC containing only these events, which is a set including only one lposet. Then

47

we define the semantics of non-orderable events, and the semantics of MSCs containing
them by composing orderable and non-orderable events. At last we define the semantics of

HMSCs by composing MSCs.
The set of traces allowed by an MSC is defined as follows. We use M to represent a

semantic mapping that maps events or MSCs to lposets or sets of lposets.

Definition 3.8 For an MSC H represented by a set of lposets M[H], the set of traces of
His Tr(H) =, Tr(lp:), lp; € M[H].

3.3.1 Orderable Events

The semantics of an orderable event is a timed lposet. For example, the message output
event e in Figure 3.1 (page 38) is located in instance i. It has an absolute time constraint
and a relative time constraint that specifies the delay between event e and event a. It is

mapped to a timed lposet Mle] = (I, A, E, <, I, D, T), in which

. I={i},

o A= {send(i,j,m3)},

E = {e,a} (event a also appears because it is associated with e by the time constraint),

e <= {(6,6)7 (a,a)},

e l(e) = send(i,j,m3) (here [is a partial function),

D(e) = [3,4],

e T'(e,a) =[3,4].

In the same way, other orderable events can be represented using lposets too.

48

3.3.2 MSCs Containing only Orderable Events

The semantics of an MSC is a set of Ilposets. If the MSC contains only orderable events, then
the set contains only one timed lposet. The lposet is obtained by composing sequentially the
Iposets representing the events. Therefore, it contains all the events and specifies the orders
between them. The orders are determined by message exchanges and instance axes. Along
each instance axis, events are ordered from top to bottom. Between different instances,
a message output event must appear before the corresponding message input event. As
mentioned in Section 3.2.1, we need to label the events in a way such that every event is

unique.

For example, the MSC T in Figure 3.1 contains events a, b, ¢, d, e and f. Its semantics

is the sequential compositions of these events along the instances i and j. M[T] = {M]a] -

M[d]) M[e]) M[b] ’ M[C]) M[f]} = {(I7 A,E7§517D7T)}1 where:

o I {i, j},

A: {send(i, j, m1), receive(j, i, m1), send(j, i, m2), receive(i, j, m2), send(i, j, m3),

receive(j, 1, m3)}.

E:{a, b, ¢, d, e f}

<: {(a,b)(c,d)(e, f)(d,e)(b,c)}T. (For the sake of simplicity, we omit those reflexive

pairs such as (a, a), (b, b) ...).

o [: l(a) = send(i, j, m1), l(b) = receive(], i, m1), l(c) = send(j, i, m2), l(d) = receive(i,
3, m2), l(e) = send(i, j, m8), l(f) = receive(], i, m3).

e D: D(a) =0, D(e) = [3,4].

e T:T(a,b) =[1,2), T(a,e) = [3,4], T(c, f) = [2].

In the MSC T, not all the events are constrained by absolute or relative time constraints.
We assume the time constraints for these events to be the whole time domain. For example,

49

Figure 3.2: An MSC with coregion

if the time domain is the domain of non-negative real numbers, then the time constraints

are [0, 00).

The set of traces for the MSC in Figure 3.1 includes (a, 0)(b, 1)(c, 1.6)(d, 2)(e, 3.5)(f,
3.6), (a, 0)(b, 1.5)(c, 2)(d, 2.5)(e, 3)(f, 4), and many others that satisfy the definition of

trace.

3.3.3 Coregion

In an instance, a coregion contains a number of events that can be executed in any order.
The semantics of a coregion is an lposet obtained by composing in parallel all the lposets

representing the events in the coregion.

M(coregion] = Mlei] || Mlea] || ... || Mlen], e; € coregion.

For example, in Figure 3.2 (page 50), a coregion (the dash line) in instance j contains
event ¢ and d. It means either ¢ or d can occur first, although a (sending m1) occurs before
b (sending m2). The semantics of the coregion is M[coregion] = M|c] | M|d], in which

the causal order relation is {(¢, ¢), (d, d)}. There is no order between ¢ and d.

The semantics of MSC D is M[D] = {M]a] - M[b] - M|coregion]} = {(I, A, E, <, |, D,

7)}, in which < is {(a, b), (a, ¢), (b, d)} (reflexive pairs are omitted).

50

Figure 3.3: An MSC with a reference

3.3.4 MSC Reference

An MSC reference is used to refer to a single MSC, or an MSC expression. An MSC
reference itself can be constrained by a relative time constraint. In such a case, the relative
time constraint specifies the duration between the first and the last event in the MSC
reference. If there are several first or last events in an MSC, then all of them should be
constrained. Therefore, the semantics of an MSC reference is the semantics of the referred

MSC with the relative time constraint.

For example, in Figure 3.3, MSC R has a reference which refers to MSC § with a relative
time constraint (0, 1]. In MSC S, either e or f could be the first event. So the time
constraint of this MSC reference specifies the time between e and ¢’, and between f and ¢

also.

Assume the Iposet for MSC Sis (I, A, E,<,l,D,T). We map the reference S with the

relative time constraint to M[S]| = {(I, A, E,<,{,D,T")}, where

E: {e7el7f7f’7g7g,}

o <:{(e,g"), (e, 1), (f,9),(e,€),(f, f),(g9,9")}T, (reflexive orders are omitted.)

I: {l{e) = send(i,j,m2), I(e') = receive(j,i,m2), I(f) = send(k,j,m3), I(f) =

recetve(j, k,m3), l(g) = send(j,1,m4), l(g") = receive(i, j,m4)}

e T'(e,g") = (0,1}, T'(f,4') = (0,1].

51

Then the semantics of the MSC R in Figure 3.3 is M[R] = {M[e1]} - {M[e2]} - M[S].

A reference could refer to an MSC expression also. We consider MSC expressions in the

next section.

3.3.5 Inline Expressions and MSC Expressions

Several operators have been defined in the MSC standard to combine MSCs. We consider
the following operators: sequence (seq), alternation (alt), parallel (par), and iteration (loop).
As defined in the MSC standard, the sequence operation is weak sequencing. Two MSCs
are connected instance by instance only. It means that the next MSC may start before the

previous MSC finishes its behavior. Our sequential composition models this property.

We map these operations to the compositions of lposets. For two MSCs or inline operands

A and B, we have

M[A seq Bl = M[A] - M[B],

MIA alt B] = M[A] # M[B],

M[A par Bl = M[4] || M[B],

Mloop(i, j)A] = M[A}] # M[AH]) # ... # M[AT], where M[A¥] = M[A]- M[A*-1]
for k > 0, and M[A%] = .

When calculating M[A¥], we need to relabel message events in MSC A so that they are
unique in the iteration. If a loop is infinite, the set representing its semantics may contain

infinite number of Iposets.

Let us consider an alternative inline expression as shown in Figure 3.4. In the MSC,

instance ¢ sends m! or m2 first, then instance j returns mJ.

52

Figure 3.4: An MSC with inline expressions

For the alternative expression, the lposet of its first operand is A; = (I, A, E, <,l,D,T),
in which < is {(e, ')}, l(e) = send(i, j, ml), I(e') = receive(y, i, m1). We omit the reflexive
pairs and do not list elements in I, A, E, D and T for the sake of simplicity. Similarly, the
second operand corresponds to a lposet Az in which < is {(f, f))}, I(f) = send(i,j,m2),

I(f") = receive(j,1,m2). So the alternative expression can be represented by {41, A2}.
Then MSC S corresponds to a set of lposets P = {A41,A42} - {M[¢']} - {M]g]} =
{(IlaAlaEla glallaDlaTl)a (I2,A27E25 327l27D27T2)}7 in which
o <1={(e,€),(€,9),(9,9')}" (reflexive pairs are omitted.)

o <o={(f,f),(f",9)(9,9)}" (reflexive pairs are omitted.)

3.3.6 High Level MSC (HMSC)

An HMSC is a directed graph in which MSCs are represented by nodes, and lines connect

the nodes to indicate possible execution sequences among the nodes.

Definition 3.9 An HMSC is a directed graph (S, E, L), where S is a finite set of nodes,

E C S x 8 is the set of directed edges, L is a function that maps each node in S to an MSC.

An HMSC can be transformed to an MSC expression consisting of the seq, alt, par

and loop operators. This is similar to the transformation from a finite state machine to a

93

MSC success i MSC fail i j

[
Tl% TlX’r

Figure 3.5: An HMSC and referred MSCs

regular expression [47]. In [95], rewriting rules are defined for transforming an HMSC to an

expression. Here we only show the transformation through an example.

For instance, in Figure 3.5, the HMSC contains three MSCs: try, fail and success. After

MSC try, MSC fail or success can be executed. They are alternative.

This HMSC is transformed to an expression in the following steps.

e Pirst it is transformed to an automaton as shown in Figure 3.6(a). We take the
start node, end nodes and connection points as states (0, 1, 2), and MSC references
as transitions. We add an extra initial state (I) and an extra final state (F), which

connect to the states representing the start node and end nodes by e-transitions.

o We remove states other than the initial state and the final state one by one, and
replace transitions. In Figure 3.6(a), State 2 has one incoming edge labeled with
success from state 1 and one outgoing edge labeled with ¢ to state F. When state 2
is removed, we add an edge labeled with success -¢ = success from state 1 to state F.

The result is shown in Figure 3.6(b).

e In Figure 3.6(b), state 1 has one incoming edge from state 0 and two outgoing edges

fail and success to state F and state 0 respectively. When removing state 1, we add

o4

€
fail try
A 0 D
€

success try
9 15 try-fail @ @

£ success try-success (try-fail)*-try-success
& ® ®

(a) (b) (¢) (d)

Figure 3.6: Transforming an HMSC to an expression

an edge labeled with ¢ry - success from state 0 to state I, and an edge labeled with

try - fail from state 0 to state 0. The result is shown in Figure 3.6(c).

e In Figure 3.6(c), state 0 has one incoming edge from state I, one outgoing edge to
state F, and one self-loop. When state 0 is removed, we add an edge from state I to
state F labeled with ¢ - (try - fail)* - try - success = (try - fail)* - try - success. The

final result is shown in Figure 3.6(d).

After these steps, the transition from the initial state to the final state represents the
expression equivalent to the automaton. During the transformation, states can be removed
in any order. Different orders result in different look but equivalent expressions. Using

operators in MSC, the expression can be written as:

(loop{0, 00) (try seq fail)) seq try seq success

Given the expression, we first define the semantics for individual MSCs.

e Mltry] = {(I,A,E,<,1,D,T)} where E = {e,r,e'}, < = {(e, €’), (e, r)} (re-

55

flexive pairs are omitted), I(e) = send(i,7,m), l(e) = receive(],i,m), and I(r) =

starttimer(i, T1,5).

i M[Success] = {(I’ A’ E, §7l7 D7T)} Where E = {f787fl}7 S = {(-ﬁ f’)? (f’7 s)}
(reflexive pairs are omitted), I(f) = send(j,%,n), I(f') = receive(i,j,n), I(s) =

stoptimer(i, T1).

o M[faill] ={(I,A,E,<,I,D,T)} where E = {t}, < = {(¢, t)}, I(¢t) = timeout(i, T).

If we use TF to represent M[try seq fail], and use TS to represent Mtry seq success],

then

o TF = Mltry] - M(fail] = {(Arr, {e,€,rt}, {(e,€),(e,r), (r,)}F, {ile), I(e), U(r),
I(t)}, Drp, Trp)} in which Trp(r,t) = [5]. (reflexive pairs and concrete labels are

omitted for the sake of simplicity.)
o M(loop(0,00)(try seq fail)] = {e,TF,TF -TF,TF-TF -TF,...}.

e TS5 = M[try] ! M[SU,CC@SS] = {(ATSa {e,e’,f,f’,r,s}, {(6,6,), (6,7”), (faf,)a (f,as)a
(r, 11, (e, D)}, {Ue), (), I(f), I(f), I(r), I(5)}, Drs, Trs)} in which Tpp(r,s) =

(0,5). (reflexive pairs and concrete labels are omitted for the sake of simplicity.)

So this HMSC corresponds to a set of lposets: {T'S,TF-T'S,TF-TF-TS,TF-TF-TF-TS,

3.4 Related Work

The semantics in the MSC-96 standard is based on process algebra [76, 77]. First, an MSC is
transformed into a process expression. Compositions in MSC are represented by appropriate
process algebra operators. Then an operational semantics is defined by taking the process

expression as an initial state of the MSC, and applying inference rules on it. This semantics

56

is extended in [27] to handle conditions as compositional constructs. The approach in [95]
is slightly different, although it is also based on process algebra. In [95], a denotational
semantics is given by defining mappings that transform an MSC to a process expression. In
our semantics, we map an MSC to a set of lposets. The alternative composition defined in
this chapter is not the delayed choice used in [76, 77, 95]. In the alternative composition,
a choice is made at the beginning of an execution instead of the latest moment. This
alternative composition is more suitable for specifications at a higher level of abstraction,
while the delayed choice is more related to lower level specifications and implementations.

However, from the trace point of view, they are equivalent [95].

A partial order semantics for un-timed MSC has been proposed in [7, 45, 55]. The
authors of [7] only consider the semantics of MSCs containing message events. A more
complete semantics is defined in [55]. In this semantics, an MSC is mapped to a family
of pomsets. Various operations are defined on pomsets for composing MSCs. In [45], an
MSC is translated into terms in a process algebraic language. Then two semantics, an
interleaving one and a non-interleaving one are defined for the process algebraic language
based on families of Iposets. The semantics in this chapter extends these semantics to timed
MSCs. Our sequential composition can be seen as the combination of the joining and the

local concatenation in [55].

The semantics of MSC can be defined using other approaches also, such as Petri net [33],
automata [62, 63, 64]. In [33], the MSC-92 language is translated to labeled occurrence
nets. However, it may be difficult to translate the MSC-96 language because of its richer
constructs and the ability to specify infinite behaviors in MSC-96. In [62, 63, 64], an
MSC is translated into a graph with signal edges for communication and next-event edges
for ordering in an instance. Then the graph is translated into a global state transition
graph. Based on this graph, Biichi automata can be defined given acceptance criteria. This
semantics is suitable for a subset of MSC only, since the MSC language is not a regular

language [42, 43, 44]. For example, the non local choices in MSCs may require unbounded

57

history variables, which result in an infinite number of global states [11].

The semantics of MSC with timing constructs has been considered in [7, 10, 71]. In 7],
a timed MSC is interpreted as partial orders with timing functions that associate each pair
of events in the partial order to a time interval. In [10], timing delay intervals and timer
events are used to express timing constraints. An MSC is interpreted as traces that are
consistent with the partial order of events. A timing assignment is used to assign a time
stamp to each event in a trace. In [71], each event and communication in MSC is associated
with a duration. An MSC is translated to an order automaton. These semantics consider
the time in MSC differently than MSC-2000. They only allow the time constraints defined
between two ordered events. In MSC-2000, time constraints can be specified between any
two events. Moreover, absolute time constraints can be used to specify the occurrence time

of events. We define the semantics following the time concept in MSC-2000.

3.5 Conclusion

Time constraints are new in MSC-2000. To support the usage of time constraints in spec-
ification and validation of real-time systems, we define a denotational semantics for timed
MSC based on timed lposets. We first map orderable events, such as message events, ac-
tions, or timer events, to timed Iposets. An MSC containing only these orderable events
can be seen as their sequential composition. An MSC containing inline expressions or MSC
references is the (sequential, alternative, or parallel) composition of orderable events and
MSCs, while an HMSC is the composition of MSCs. Thus the semantics is built compo-
sitionally using lposets. The semantics is also applicable to un-timed MSCs where time

constraints can be seen as the whole time domain.

Given a (finite) set of lposets, we can define an operational semantics for MSCs also.
First, we consider the set as the initial state of the MSC. Then we remove one minimal

event with regard to the partial order to get a new set of Iposets, which represents a new

58

state. We can repeat this procedure until all the events are removed.

Some constructs in the MSC standard are not taken into account, such as general or-
derings, instance decompositions, gates and conditions. General orderings specify some
additional orders, which can be easily represented in our semantics. Instance decomposi-
tions and gates are considered as transformations in syntax and do not affect the dynamic
semantics of MSCs. Guard conditions can be associated with predicates that restrict the
traces of lposets. Moreover, the opt and ezc operators in the inline expressions and refer-
ence expressions are not considered also. These operators can be seen as special cases of

the alt operator.

The semantics in this chapter provides a foundation for analyzing MSC specifications
with time constraints. Time constraints add extra requirements on a system. However, these
requirements may be not consistent with the behaviors specified in MSC. For example, a
loop may specify that an event is executed infinitely while an absolute time constraint may
restrict it to be executed several times. In the next chapter, we consider the consistency

issue in detail.

59

Chapter 4

Time Consistency of MSC

Specifications

4.1 Introduction

An MSC specification has to be validated to ensure that it does not contain semantic errors
or logical inconsistencies, such as race conditions [7], process divergence [11] and infer-
ences [5]. These errors or inconsistencies make the MSC specification un-implementable, or
result in undesired implementations. In the case of timed MSC, time constraints may also
cause inconsistencies. One of our goals in this thesis is the validation of the time consistency

of an MSC specification.

Time inconsistencies are results of different causes. In an MSC, time constraints specify
temporal orders between events. These orders have to be consistent with the causal orders
of events. For example, in Figure 4.1(a), event a occurs before event b. However, the
absolute time constraint for event ¢ and b are @[5, 6] and @[2, 3] respectively. The order
defined by time constraints contradicts the causal order between event a and b. Moreover,

time constraints have to be consistent with each other. In Figure 4.1(b), the absolute time

60

MSC M3 i f

Figure 4.1: Time inconsistency in bMSCs

MSCN i f

(c)

Figure 4.2: Time inconsistency in an HMSC

constraint of event ¢ (@[2, 2]) and the relative time constraint between a and b ([2, 2])
determine that the event b should occur at 4. It contradicts with the specified absolute
time constraint (@[5, 6]). An example of inconsistency between relative time constraints is
shown in Figure 4.1(c). Events a, ¢ and d occur in that order. The delay between events
a and ¢ is 1, and the delay between ¢ and d is 2. This implicitly sets the delay between a

and d to 3, which is conflicting with the relative time constraint specified in the MSC.

In the case of an HMSC, the consistency of the component MSCs does not guarantee the
consistency of the HMSC. For instance, the HMSC in Figure 4.2(a) consists of a sequential
composition of MSC M and MSC N. Time constraints in M and N, respectively, are consis-
tent. However, when M and N are composed sequentially, time constraints of events a and

¢ contradict their causal order. Therefore, this HMSC is not time consistent.

In this chapter, we define the time consistency of MSCs and develop algorithms to

61

check the consistencies. Instead of considering the full MSC language, we focus on the
most important and used part. We consider bMSCs containing only processes and message
exchanges, and HMSCs that are composed of bMSCs only. We choose the time domain as [0,
00), which can be real numbers or integers. We take into account both relative and absolute

time constraints as defined the MSC-2000 standard, but with the following restrictions.

First, we restrict that relative time constraints appear only between causally ordered
events. An MSC containing relative time constraints between unrelated events cannot be
implemented in a distributed architecture, although it is reasonable to define such an MSC.
For instance, in Figure 4.1(c), either event b or ¢ could occur first. If we add a relative
time constraint [1, 2] between them, once one event occurs, the other one has to wait at
least 1 and at most 2. Actually process i does not know what happens in process j, and
vice versa. This time requirement is at a high level of abstraction and cannot be satisfied
without refining the MSC and adding other message exchanges between the processes to

relate these events. We do not take into account this kind of time constraints.

Furthermore, in an HMSC, we restrict that relative time constraints appear only between
events in the same bMSC. Apparently, relative time constraints between events in two
alternative bMSCs are not meaningful. For those between events in sequential bMSCs, we
consider they are (0, co)!. In Section 4.7, we discuss briefly how to extend the results in

this chapter to handle the situation where they are not (0, co).

The rest of this chapter is organized as follows. We first define time consistency for
bMSCs in Section 4.2. Then we investigate the consistency for HMSCs in Section 4.3. We
distinguish between strong and weak consistency for HMSCs. Sufficient and necessary con-
ditions are devised for both consistencies. We describe and discuss algorithms for checking
these consistencies for HMSCs in general in Section 4.4, and for some HMSCs with certain

specific properties in Section 4.5. We discuss related work in Section 4.6 and conclude in

!Since we allow for relative time constraints between causally ordered events only, the relative time
constraint cannot be 0.

62

Section 4.7.

4.2 Time Consistency of bMSCs

As introduced in Section 4.1, time inconsistencies can be caused by inconsistencies between
time constraints, or between the causal order and the temporal order specified by time
constraints. Intuitively, an MSC is time consistent if all its events can be executed with
the satisfaction of their (absolute and relative) time constraints and causal orders. This
is the case when the events in the MSC can form a trace. If a bMSC is time consistent,
then it should have at least one execution represented by a trace. Therefore, we define the

consistency of a bMSC in terms of traces as follows.

Definition 4.1 A timed bMSC is time consistent if and only if it has a trace.

Deciding if a bMSC has at least one trace is equivalent to solving the simple temporal
problem in directed constraint graph [19]. As defined in Chapter 3, the semantics of an
MSC is a set of timed Iposets. In the case of bMSCs, the set contains only one lposet. We
can model a timed lposet as a directed constraint graph, where nodes are events and there
exists an edge ¢; — e; if ¢; < e;. Edges are labeled by relative time constraints between
events. (As mentioned before, we limit that relative time constraints exist between causally
ordered events only.) We add a special event (node) ey in the graph; it occurs causally
before all the events in a bMSC and it occurs at time zero. So absolute time constraints

can be translated as relative time constraints between events and eg.

A directed constraint graph can be associated further with a distance graph, which has
the same node set. For an edge e; — e; in the directed constraint graph, there are two edges
in the distance graph, one is e; — e; labeled by the upper bound of the time constraint

between e; and ej, another one is e; — e; labeled by the negative of the lower bound of the

63

Figure 4.3: A directed constraint graph and its distance graph

time constraint. However, if the upper bound is infinity, the edge e; — ¢; is usually omitted
in the distance graph. A directed constraint graph and a distance graph corresponding to

the MSC in Figure 4.2(b) are shown in Figure 4.3(a) and Figure 4.3(b).

The simple temporal problem is to decide if each node in a directed constraint graph
can be assigned to a value, such that the constraints between nodes are all satisfied. If
such assignments exist, we can constitute a trace using the time values decided by these
assignments. Thus the bMSC associated with the graph is consistent. As studied in [19],
the consistency can be decided by using the Floyd-Warshall algorithm to compute all pairs
shortest paths in a corresponding distance graph. If there are no cycles with a negative cost

in the distance graph, then the bMSC is consistent.

If a bMSC is consistent, according to Corollary 3.4 and 3.5 in [19], we can obtain a
unique interval for each node e, in which each value can be an assignment to e such that

the graph is consistent. We define such an interval as a reduced absolute time constraint.

Definition 4.2 Given a consistent bMSC and its distance graph, o reduced absolute time
constraint of an event e is a maximal interval within its original absolute time constraint,
such that the upper bound is the shortest distance from the node ey to e, and the lower bound

is the negative of the shortest distance from e to the event ey.

For example, in Figure 4.3, the reduced absolute time constraints for events ¢ and b are

Q[5, 7] and @[6, 8] respectively.

64

Another solution for the simple temporal problem is to achieve directional path con-
sistency directly in the constraint graph. It can be done in time O(nw?) using the DPC
algorithm in [19], where n is the number of nodes in a constraint graph, and w is the number
of parents of a node. Usually w is much lower than n. So DPC is more efficient than the
Floyd-Warshall algorithm, which has the complexity O(n®). However, unlike the latter,
achieving directional path consistency does not result in reduced absolute time constraints.
To obtain reduced absolute time constraints, we can compute shortest paths between the
special event eg and any other event in the distance graph. This can be done in time O(nE),

where E is the number of edges in the graph [17].

4.3 Time Consistency of HMSCs

In this thesis, we view a timed HMSC as a set of timed bMSCs composed together. Time
constraints are still specified within bMSCs. An instance of inconsistent HMSC is shown
in Figure 4.2. Moreover, loops in an HMSC may cause more inconsistencies if events in a

loop are constrained by absolute time constraints.

An example of HMSC with a loop is given in Figure 4.4. When the loop is repeated,
the MSC P is composed sequentially with itself. According to the definition of sequential
composition, all the occurrences of events in P are constrained by their time constraints.
In other words, the absolute constraint of an event and the relative constraint between
two events are not changed in the iteration of the loop. When MSC P is repeated, all the
events of sending the message m1 should occur between 2 and 10, and all the receptions of
the message should occur between 3 and 11. Between each pair of sending and reception
events, there is a relative time constraint [1, 2]. If the time domain is dense, then P can
be repeated infinitely and time constraints are still satisfied. However, this results in zeno
behavior. If the time domain is discrete, then P cannot even be repeated infinitely without

violating the time constraints. We are more interested in discrete time domain, because it

65

@[4,16]

Figure 4.4: Iteration and absolute time constraints

is more practical and it is the cause of more inconsistencies. In the following, we choose
non-negative integers as time domain. A time constraint can be written in one of the two

formats, [a, b] or [a, 00). For example, (0, 00) can be written as [1, o) in our time domain.

The semantics of an HMSC is a set of Iposets. We could define the time consistency of
the HMSC in terms of the consistency of these lposets directly. However, to facilitate the
development of algorithms, we define it based on the consistency of paths in the HMSC. As
defined in Chapter 3, an HMSC is a directed graph (S, E, L). A path in an HMSC is a finite
or infinite sequence of nodes sgs1...8y, ..., in which s is the start node, (s;,si+1) € E,
1 > 0. Since an HMSC can be translated to an automaton as shown in Chapter 3, a path
represents a string (or a prefix of the string) accepted by the automaton. On the other
hand, we transform the automaton to a regular expression, and obtain the set of Iposets of
the HMSC by enumerating all the strings defined by the expression. Therefore, each path
corresponds to an lposet, which is the sequential composition of bMSCs referred by nodes

along the path. An lposet may correspond to more than one path.

Definition 4.3 A path is consistent if and only if the corresponding Iposet, obtained by

composing sequentially all the bMSCs in the path, has a trace.

We distinguish between two notions of time consistency for HMSCs, the strong consis-
tency and the weak consistency. An MSC specifies a set of scenarios (paths) to be imple-
mented in the design specification. Sometimes, all the scenarios are seen as mandatory and

have to be implemented in the design specification. Sometimes, the MSC specification is

66

seen as a set of possible behaviors to be implemented and implementing only one of them is
sufficient. In the first case, the design specification has to be equivalent to the MSC speci-
fication in terms of behaviors, while in the second case it only represents a subset of what
is allowed in the MSC. When all the paths specified in the MSC have to be implemented,
we have to make sure that all of them are consistent, and therefore the MSC is required to
be strongly consistent. In the second case, checking for weak consistency before design is

sufficient.

Definition 4.4 An HMSC H is strongly consistent if and only if every path in H is time

consistent.

Definition 4.5 An HMSC H is weakly consistent if and only if at least one path in H is

time consistent.

Of course, strong consistency implies weak consistency and not the other way around.
In the case of bMSCs, the concept of weak consistency coincides with strong consistency.

We say an HMSC is inconsistent if and only if it is not weakly consistent.

In an HMSC, a loop generates infinite number of paths. Absolute time constraints in the
loop affect the consistency of these paths. For example, in Figure 4.4, if MSC P does not
contain absolute time constraints, then process 7 can send message mi an infinite number
of times and the HMSC describes an infinite number of paths PM, PPM, PPPM, etc.
However, the absolute time constraint @[2, 10] restricts process i to send message mI only
9 times (because our time domain is fixed to non-negative integers). Then all the paths
P'M (i > 9) are not consistent. Moreover, the consistency of such a path may be affected
also by absolute time constraints outside the loop. For example, due to the absolute time
constraint in MSC M in Figure 4.4, if the message m?2 is sent, it must be sent within time
[3, 8]. Since sending message m! has to occur before sending m2, m1 can only be sent 6

times at most. So, all the paths P*M (i > 6) are not consistent. Thus, the HMSC is only

67

@[1,10]

Figure 4.5: An inconsistent HMSC with a consistent simple path
weakly consistent.

Since an HMSC may contain an infinite number of paths, it is impossible to check all
the paths one by one. We check the (strong, weak) consistency of an HMSC by checking
its simple paths. A simple path is a sequence of nodes that begins from the start node and
ends with an end node or a loop. It is actually a prefix of a path. There are no identical
nodes in a simple path. The definition of simple path is similar to the sequential component

defined in [10].

Definition 4.6 Let H = (S, E, L) be an HMSC, a simple path is a sequence of nodes sg,

... 8n, (n>0) in which

e 5o is the start node, s; # s; if i # j, and (s;,8,41) € E,

e cither s, is an end node (the simple path ending with an end node), or there is a node

s; such that (sp,s;) € E, sj € {s0,...8n} (the simple path ending with a loop).

In an HMSC, if all the simple paths are inconsistent, then the HMSC is inconsistent.
Otherwise, there is a consistent path whose prefix is an inconsistent simple path. However,
if an HMSC is inconsistent, we cannot conclude that there are no consistent simple paths in
the HMSC. For example, the HMSC in Figure 4.5 has only one path, which repeats MSC L
infinitely. This HMSC is inconsistent. After MSC M is executed 10 times, the absolute time

constraint of sending message m will be violated. However, the simple path M is consistent.

68

The following theorem states the necessary and sufficient conditions for an HMSC to be

weakly consistent.

Theorem 4.1 An HMSC is weakly consistent, if and only if

o there is ot least one consistent simple path ending with an end node, or

e there is at least one consistent simple path ending with o loop, in which the upper

bounds of absolute time constraints are infinite for all the events.

PROOF. This theorem is proven in Appendix B.2. O

Intuitively, if the upper bounds of all the absolute time constraints are infinite in a
consistent bMSC, then events in the bMSC can be repeated infinitely without violating
their absolute and relative time constraint. For example, the simple path in the HMSC in
Figure 4.5 is consistent but ends with a loop. In this loop, the upper bound of the sending
event is not infinite. The second condition of Theorem 4.1 is not satisfied. So the HMSC is

not weakly consistent.

For an HMSC to be strongly consistent, all the events in every loop must have infinite
upper bounds in their absolute time constraints, so that there always exist time points for
the events when the loop is repeated. Moreover, in a bMSC that appears after a loop, if an
event e occurs causally after an event fin the loop, then the occurrence time of e has to be
later than the occurrence time of f. So the upper bound of the absolute time constraint for e
has to be infinite also. Due to the propagation of time constraints, this requirement affects
the time constraints of other events. For example, there may exist another event e’ causally
ordered before e in the same bMSC (e’ does not have an order with f). If the absolute time
constraint of ¢’ and the relative time constraint between ¢’ and e do not have infinite upper

bounds, then we may not find an occurrence time of e’ for any occurrence time of e. Taking

69

Figure 4.6: Strong consistency of an HMSC

this into account, we have to require that the reduced absolute time constraint of e has an
infinite upper bound. This sets the requirement for other events implicitly. The following

proposition states the conditions for strong consistency.

Theorem 4.2 An HMSC is strongly consistent, if and only if

o qll the simple paths are consistent, and

e cvery event in a loop or causally ordered after an event in a loop has an infinite upper

bound in its reduced absolute time constraint.

PROOF. This theorem is proven in Appendix B.3. O

The second condition of Theorem 4.2 ensures that a loop can be repeated infinitely and
consistently. For example, in Figure 4.6, the HMSC has a loop LM, in which all the events
have an infinite upper bound in their absolute time constraints. In any pass of the loop LM,
for each event, we can always find an occurrence time within its absolute time constraint,
which is larger than its occurrence time in the previous passes. Therefore, the loop can be

repeated infinitely.

Moreover, the upper bounds of the reduced time constraints of events a, b, and d in MSC
N have to be infinite to keep the strong consistency of the HMSC. For instance, assume the

absolute time constraint of event a is [3, 5] instead of [3,00). In the path LMLMLN, when

70

the MSC L is executed the third time, sending message m1 occurs at time 6 at earliest, but
the event a has to occur before time 6. This causes the inconsistency of the path ZLMLMLN.
Furthermore, to keep the upper bound infinite for the reduced absolute time constraint of
event d, either the upper bound has to be infinite for the absolute time constraint of ¢, or

the relative time constraint between ¢ and d must have an infinite upper bound.

4.4 Algorithms for Checking Time Consistency in General

To check the consistency of an HMSC according to Theorem 4.1 and 4.2, we need to check
the consistency of simple paths, and upper bounds of absolute time constraints. This can

be achieved in the following two steps.

e Step 1. Traverse the HMSC to determine all the simple paths. For each simple path,
we compose all bMSCs in the simple path sequentially to obtain one bMSC (one
Iposet). Then, we check the consistency of the bMSC. If a simple path ends with a
loop, we check if all the reduced absolute time constraints in the loop have infinite
upper bounds. At the end of this step, we can decide if the HMSC is inconsistent or
weakly consistent. However, to decide if it is strongly consistent, we need to have all

the simple paths consistent and proceed with the next step.

e Step 2. Determine all the strongly connected components of the HMSC. We consider
only those components including more than one nodes, or one node with a self-loop.
Such a component forms a loop. Then for each component C that forms a loop, we
check all the nodes that can be reached from C according to the second condition of
Proposition 4.2 (Notice that, absolute time constraints inside a loop have already been

checked in step 1). If the condition is satisfied, then the HMSC is strongly consistent.

The detailed algorithm is as follows. In this algorithm, we use ubr to represent the upper

bound of the reduced absolute time constraint of an event.

71

Algorithm: CheckHMSC

result = checkHMSC _step1();
if result == weak_or_strong then
use depth-first-search to find all the strongly connected components;
for each component C that forms a loop do
if checkHMSC _step2((C) == False then
return(Weak _consistency);
end if
end for
return(Strong_consistency);
else

return(result);

end if

Algorithm: checkHMSC_stepl

curr_path = so; {so is the start node}
while curr_path is not empty do
s = the last node in curr_path;
if s does not have a new child node then
if s is an end node then
if curr_path is consistent then
cons_path = Exist;
else
incons_path = Exist;
end if
end if
delete s from curr_path;

else

72

s’ = a child node of s;
if s’ is not in curr_path then
append s’ to curr_path;
else if curr_path is consistent and there are no reduced absolute time constraints
with finite upper bounds in nodes from s’ to the last node in curr_path then
cons.path = Exist;
else
incons_path = Exist;
end if
end if
end while
if (incons_path == Exist) && (cons_path == Exist) then
return(Weak _consistency);
else if incons_path == Exist then
return(Inconsistent);
else
return(weak_or_strong);

end if

Algorithm: checkHMSC_step2(C)

for each node s’ such that s’ ¢ C and there is an edge s —» s’ (s € C) do
for each event e; in s’ such that e; is the first event in a process that also appears in
C do
if ubr; # oo then
return(False);
else
for each event e; such thé’c e; < e; do

if ubr; # oo then

73

return(False);
end if
end for
end if
end for
add s’ to C;
end for

return(True);

In the aforementioned algorithm, checkHMSC step2 checks the time constraints in each
node that can be reached from a strongly connected component. In each node, in the
worst case, every event has to be compared with other events to check if they are ordered.
Therefore, the complexity of this algorithm is O(nm?), where n is the number of bMSCs and
m is the number of events in a bMSC. Since the number of strongly connected components
is not larger than the number of nodes in an HMSC, checkHMSC_step? is repeated at most

n times.

In the algorithm checkHMSC_stepl1, we check the consistency of all the simple paths, and
absolute time constraints in each loop. However, in the worst case, the numbers of simple
paths and loops are exponential with respect to the number of nodes. Moreover, even if two
paths have some common bMSCs, the consistency of these bMSCs obtained from checking
the first path is not reusable in checking the consistency of the second path because of the
absolute time constraints. For example, if we already know that MN and PM are consistent,
we cannot conclude that PMN is consistent. This is the case for instance for the bMSCs P,
M and N given in Figure 4.7. The path PMN does not have a trace because of the absolute
time constraints of events a, b and ¢. So when we traverse an HMSC, simple paths have to
be checked one by one, and some nodes are visited several times if they appear in several

simple paths. This causes the exponential complexity of the algorithm.

74

Figure 4.7: bMSCs in an inconsistent path PMN

4.5 Algorithms for Checking Time Consistency in Specific

Cases

In this section, we investigate specific cases of HMSCs on which the consistency can be
determined with less complex algorithms. For that specific set of HMSCs, we require that
all bMSCs have the same set of processes, and there is at least one event in each process
in each bMSC. We refer to this kind of HMSCs as Fixed Set of Processes HMSCs, or
FSPHMSCs.

We identify subsets of FSPHMSCs by specifying relations between absolute time con-
straints in different bMSCs included in the FSPHMSCs. Absolute time constraints are time
intervals, which could be disjoint or overlapping with each other. We define time-disjoint
HMSCs, in which absolute time constraints in the same process but in different bMSCs along
a path are disjoint. However, this requirement is so strong that a large number of HMSCs

are excluded. By allowing overlapping, we define lower-bound-later and upper-bound-later

HMSCs to include more HMSCs.

To define these specific HMSCs formally and determine their consistency in an efficient
manner, we first establish in the following propositions the conditions under which the
sequential composition of two bMSCs M and N is consistent, and reduced absolute time

constraints in M are not affected by those in N and vice versa.

Proposition 4.1 For two bMSCs M and N, let [a;,b;] be the reduced absolute time con-

75

straint of the last event in a process p; in M, and [c;,d;] be the reduced absolute time
constraint of the first event in the same process p; in N. The sequential composition M - N

is consistent if and only if M and N are consistent, and a; < d;.

PROOF. This proposition is proven in Appendix B.4. O

Theorem 4.3 For two consistent bMSCs M and N, let [a;,b;] be the reduced absolute time
constraint of the last event in a process p; in M, and [c;,d;] be the reduced absolute time

constraint of the first event in the same process p; in N,

e M - N is consistent, and the lower bounds of reduced absolute time constraints in M

and N are not changed in M - N if and only if a; < ¢;.

o M - N is consistent, and the upper bounds of reduced absolute time constraints in M

and N are not changed in M - N if and only if b; < d;, or b; and d; are both infinity.

PROOF. The proof of this theorem is given in Appendix B.5. O

For example, the two bMSCs in Figure 4.2 are consistent. The reduced absolute time
constraints for events ¢ and b in MSC M are @[5, 7] and @[6, 8] respectively. The reduced
absolute time constraints for events ¢ and d in MSC N are @[2, 3] and @[4, 5] respectively.
According to Proposition 4.1, N - M is consistent, but not M - N. Moreover, the reduced
absolute time constraints satisfy the conditions in Theorem 4.3. So in N - M, the reduced

absolute time constraints of these events are still @[5, 7], Q[6, 8], Q[2, 3] and @Q[4, 5.

Now we define special subsets of FSPHMSCs in which bMSCs satisfy the conditions in
Theorem 4.3. For that, we first define the later-than relation between bMSCs and then

time-disjoint HMSCs.

76

Definition 4.7 A bMSC N is later than a bMSC M if in each common process p of M and
N, the lower bound of the absolute time constraint for the first event in N is larger than the

upper bound of the absolute time constraint for the last event in M.

In Figure 4.2, the bMSC M is later than the bMSC N. Actually given any consistent
bMSCs P and @, if @ is later than P, then reduced absolute time constraints in P and
() must satisfy the conditions in Theorem 4.3, since reduced absolute time constraints are
intervals within the original absolute time constraints. So P - () must be consistent, and
reduced absolute time constraints for events in P - () are the same as reduced absolute time

constraints in P and Q.

Definition 4.8 An FSPHMSC is time-disjoint if in each simple path sg... sy, Si+1 s later

than s;, 0 <1i < n.

In a simple path of a time-disjoint FSPHMSC, if sy and s; are consistent, then s¢ - s1
is consistent because sy is later than sg. Moreover, the reduced absolute time constraints
in s - 81 are same as those in sy and s;. Thus, if so is consistent, then (sg - s1) - s2 is
also consistent because s is later than s, and so forth. Therefore, we can decide about
the consistency of a simple path from the consistency of bMSCs in the simple path. The
consistency of all the simple paths can be decided from the consistency of each bMSC as

stated in the following proposition.

Proposition 4.2 All the simple paths in a time-disjoint FSPHMSC are consistent if and

only if all the bBMSCs contained in the FSPHMSC are consistent.

PROOPF. This proposition is proven in Appendix B.6. O

It is worth to note that in general, for consistent bMSCs P, @ and O such that @ is

77

later than P, requiring the later-than relation only between O and) cannot guarantee that
P - Q- O is consistent. The reason is that O and P may have some common processes that
are not contained by). We have to require O to be later than both P and . However,
in an FSPHMSC, all the bMSCs have the same set of processes. So we only need O to be
later than Q.

Based on Proposition 4.2, we can develop an algorithm to check if a time-disjoint

FSPHMSC is strongly consistent.

Algorithm: checkStrongConsistency

for each bMSC s; in a time-disjoint FSPHMSC do
if s; is not consistent then
return(Not_Strong_Consistency);
end if
end for
use depth-first-search to find all the strongly connected components;
for each component C that forms a loop do
if there is a reduced absolute time constraint with finite upper bound in C then
return(Not_Strong_Consistency);
if checkHMSC_step2((C) == False then
return(Not_Strong_Consistency);
end if
end if
end for

return(Strong_Consistency)

The first loop in the algorithm checkStrongConsistency checks the consistency for each
bMSCs, which can be done in polynomial time as discussed in Section 4.2. In the second

loop, we check the absolute time constraints of events in each strongly connected component

78

C that forms a loop, and those of events that are causally ordered after events in C. This
can be done in polynomial time also as discussed in Section 4.4. So the strong consistency

of a time-disjoint FSPHMSC can be checked in polynomial time.

In the algorithm checkStrongConsistency, due to the properties of the time-disjoint
FSPHMSC, we do not need to check the consistency of each simple path one by one. Unfor-
tunately, the properties do not help when checking the weak consistency. To check the weak
consistency, for each simple path ending with a loop, we have to check if all the absolute
time constraints in the loop have infinite upper bounds according to the second condition
of Theorem 4.1. It is not enough to check the maximal loops only. For example, the HMSC
in Figure 4.8(a) has two simple paths, OQ and OP(Q, which are also loops. Assume all the
absolute time constraints in 0 and @ have infinite upper bounds, and there is an absolute
time constraint in P which has a finite upper bound. Then 0@ could be repeated infinitely,
but not OP(Q. We have to check all the absolute time constraints in both OQ and OP(Q
although OQ is included in OP@Q. This requires us to go through each simple path so that

each loop can be checked.

The conditions of time-disjoint HMSC are strong conditions and exclude a large number
of HMSCs. In most cases, a time-disjoint HMSC will not be strongly consistent. For in-
stance, the HMSC in Figure 4.8(b), in which the bMSCs M and N are from Figure 4.2, is a
time-disjoint FSPHMSC. Since M has to be later than NV, absolute time constraints in N can-

not be infinite. Then the HMSC cannot be strongly consistent according to Proposition 4.2.

We observe that in a time-disjoint HMSC, two bMSCs in a simple path satisfy both
conditions in Theorem 4.3. Actually we can define a kind of HMSCs that only satisfy one of

the condition. We define the lower-bound-later relation and the upper-bound-later relation

between bMSCs first.

Definition 4.9 A bMSC N is lower-bound-later than a bMSC M if in each common process

79

iy Y
) Sh CJXL)

(a) (b)

Figure 4.8: Weak and strong consistency for time-disjoint HMSCs

p of M and N, the lower bound of the reduced absolute time constraint for the first event in
N is larger than the lower bound of the reduced absolute time constraint for the last event
in M.

A bMSC N is upper-bound-later than a bMSC M if in each common process p of M and
N, the upper bound of the reduced absolute time constraint for the first event in N s larger
than the upper bound of the reduced absolute time constraint for the last event in M, or both

upper bounds are infinity.

In contrast with the later-than relation, we have to define these two relations on reduced
absolute time constraints so that one of the conditions in Theorem 4.3 can be satisfied.
So the lower-bound-later and the upper-bound-later relation are meaningful for consistent
bMSCs only. The later-than relation between two consistent bMSCs is a lower-bound-later
and an upper-bound-later relation. If the lower bound of an absolute time constraint is
larger than the lower bound of another absolute time constraint, their reduced absolute
time constraints may not satisfy this relation. For example, in Figure 4.9, the lower bound
of the absolute time constraint for event ¢ is larger than the lower bound of the absolute time
constraints for event b. However, we cannot say N is lower-bound-later than M, because

the reduced absolute time constraint for event b is @[8, 10].

Definition 4.10 An FSPHMSC is lower-bound-later (upper-bound-later) if for each simple

80

(a) (b)
Figure 4.9: Relation between lower bounds

path, in its mazimal prefiz sg... s, such that all the bMSCs are consistent, s;11 is lower-

bound-later (upper-bound-later) than s; (0 <i<mn).

The HMSC in Figure 4.4 is a lower-bound-later FSPHMSC. The HMSC in Figure 4.6 is
an upper-bound-later FSPHMSC if the MSC N did not contain the process .

Similarly to a time-disjoint FSPHMSC, in a lower-bound-later (or upper-bound-later)
FSPHMSC, if a bMSC @ is lower-bound-later (or upper-bound-later) than a bMSC P,
and another bMSC O is lower-bound-later (or upper-bound-later) than), then P-Q - O
is consistent according to Theorem 4.3. The following proposition is valid and the algo-
rithm checkStrongConsistency can still be used on lower-bound-later and upper-bound-later

FSPHMSCs.

Proposition 4.3 All the simple paths in a lower-bound-later or upper-bound-later FSPHMSC

are consistent if and only if all the bMSCs contained in the FSPHMSC are consistent.

PROOF. Same as the proof of Proposition 4.2, except we replace the later-than relation

with the lower-bound-later and upper-bound-later relation. O

The last question is how to decide if an FSPHMSC is time-disjoint, lower-bound-later

or upper-bound-later. According to the definitions, we only need to check if two adjacent

81

bMSCs in simple paths satisfy these relations. The algorithm for checking if an FSPHMSC
is time-disjoint is given below. It performs a depth-first-search [17] on an FSPHMSC. An
array color is used to indicate the status of each node. A white node means that the node
has not been visited. A gray node means it is being visited. A black node means it has
been visited. If two adjacent bMSCs in a simple path do not satisfy the later-than relation,

we set the mark as NS.

Algorithm: decide TDHMSC

curr_path = sg;

mark = S;

for each node s; in the HMSC do
color[s;] = white;

end for

visitProc(sg, later-than);

if mark == NS then
return(no);

else

return(yes);

end if

Algorithm: wvisitProc(s, Relation)
color{s] = gray;
for each child node ¢ of s do
if color[tf] == white then
append ¢ to curr_path;
visitProc(t, Relation);
else if color[t] == black then
if s does not have the Relation with ¢ then

mark = NS;

82

end if
else
if s has more than one incoming edge and s does not have the Relation with ¢ then
mark = NS;
end if
end if
end for
color[s] = black;
delete s from curr_path;
r = the last node in curr_path;
if r does not have the Relation with s then
mark = NS;
end if

The algorithms for deciding if an HMSC is lower-bound-later or upper-bound-later are

similar to decide TDHMSC, except that only consistent bMSCs need to be checked.

Algorithm: decide BLHMSC

for each node s; in the HMSC do
if the bMSC referred by s; is inconsistent then
delete s;;
else
color(s;] = white;
end if
end for
if all the nodes are deleted then
mark = NS;
else

curr_path = sg;

83

mark = S;

visitProc(sq, lower-bound-later); {or visitProc(sg, upper-bound-later);}
end if
if mark == NS then

return(no);
else

return(yes);

end if

4.6 Related work

Time consistency of MSCs has been partially investigated in [7, 10, 68, 69]. In [7], the
authors use time constraints on pairs of events. Three types of design problems in timed
MSCs are defined. They are timing inconsistency, visual conflicts, and timing conflicts.
Timing inconsistency and timing conflicts correspond to the inconsistency between time
constraints in our case. Visual conflicts correspond to the inconsistency between the causal
order and the temporal order. These problems are checked by computing negative cost
cycles and shortest distances in weighted graphs translated from MSCs. The consistency of

HMSCs is not considered in [7].

In [10}], besides the timer events in MSC, timing delay intervals are also used to express
time constraints. To check the consistency of a bMSC, a temporal constraint graph is
constructed from the bMSC and then checked if it has negative cost cycles. For HMSCs,
timing consistency and partially timing consistency are defined. However, only sufficient
conditions for timing consistency are given. To check the consistency of an HMSC, all the

simple paths need to be found first, then checked one by one.

In [68, 69], one more construct, which is timing marks, is used for describing more general

time requirements. A timing mark is a boolean expression in the form a < Y, ¢;(t; —t;) < b,

84

where #; and ¢, are occurrence times of two events e; and €], a, b and ¢; are real numbers.
Linear programming techniques are used to check the consistency of bMSCs. In HMSCs,
the strong sequencing semantics is used to connect bMSCs, which means that all the events
in the second bMSC have to occur after all the events in the first bMSC. An algorithm is

developed to check the consistency of HMSCs by going through all the simple paths.

We apply the solution of the simple temporal problem to check the consistency of bMSCs.
The algorithm is also used in {7, 10]. In HMSCs. we use the weak sequencing semantics,
which makes the problem more challenging. We develop the sufficient and necessary condi-
tions for the consistency of HMSCs. We identify a subset of HMSCs in which consistency

can be checked efficiently.

4.7 Conclusion

As a specification language, MSC can be used to specify real-time systems with quanti-
fied time requirements. In this chapter, we considered an important aspect of MSC-2000
specifications, namely the time consistency. Both relative and absolute time constraints
introduced in MSC-2000 have been taken into account. Based on our semantics for timed
MSC, we defined the time consistency for bMSCs, and the strong and weak consistency
for HMSCs. We have also developed and discussed algorithms to check the consistency of

HMSCs in the general case as well as for a special set of HMSCs.

We have made some assumptions about time constraints. We excluded relative time
constraints between causally independent events. The considerations were the level of ab-
straction of such constraints and the implementability of such MSCs. Another important
consideration is the complexity of checking consistency of MSCs with such constraints. If
there is a relative time constraint between two causally independent events in a bMSC
for instance, checking its consistency becomes a general temporal constraint satisfaction

problem as defined in [19], which is NP-hard.

85

We assumed that in an HMSC, relative time constraints between events occurring in two
sequential bMSCs are (0, oo) by default. The results in this chapter can be extended to
handle the situation where these relative time constraints are not (0, 0o). Actually absolute
time constraints have the same nature as these relative time constraints. An absolute time
constraint of an event e can be considered as a relative time constraint between e and a
special event that occurs at the beginning of the HMSC. So we can handle these relative time
constraints similarly to the absolute time constraints. Specifically, for weak consistency, we
require further that in a simple path ending with a loop, all the relative time constraints
between events outside and inside a loop have infinite upper bounds. For strong consistency,
we require the all the relative time constraints between events outside a loop and events
inside the loop (or causally ordered after events inside the loop) have infinite upper bounds.

Of course these conditions need to be proved.

Another implicit assumption we have made is that the environment behaves correctly.
If a process expects to receive a message from the environment within a time interval, the
environment is assumed to send it and make the time constraint satisfied. If the environ-
ment is considered as uncontrollable, we can remove all the time constraints related to the

environment, replace them with (0, oo) and check the consistency in the same way.

86

Chapter 5

Refining MSC Specifications

5.1 Introduction

In traditional development processes, designers take as input a requirement specification and
develop in one big step a design specification. This design specification is then validated
against the requirement specification. When the design specification does not satisfy the
requirements, it is reworked out. The design and validation activities are repeated until the

design satisfies the requirements.

An alternative to this approach is stepwise refinement. Indeed, the requirement specifica-
tion can be taken as input and enriched step by step. The specification can be replaced by a
refined version such that the system described by the specification still fits its environment.
The refinement approach relates specifications in different levels of detail. The refinement
relation could be equivalences, such as bisimulation equivalences in [9, 72, 75, 80, 106], or
different preorders as in [56, 61, 70, 99]. In this approach, small design steps instead of a

complete design activity are validated.

In this chapter, we develop a refinement approach for timed MSC specifications. When

87

refining a timed MSC, we add more details about the behaviors as well as the architecture of
the system. Moreover, time constraints can also be refined. Most of existing refinements of
real time systems keep the time constraints unchanged [9, 70, 72, 80, 99, 106]. In our opinion,
a refinement approach should allow for strengthening time constraints on the system and
relaxing assumptions on the environment. In this way, the behavior of the system can still

be accepted by the environment, or even other environments with weaker assumptions.

During the refinement, the resulting MSCs should conform to the original MSCs. Specif-
ically, we require events and their causal orders to be preserved. Moreover, if the original
MSC specification is time consistent, the resulting specification should be consistent also.
We define this relation formally as a preorder between lposets. This relation generalizes the
one in [56]. In the chapter, we still focus on bMSCs, and HMSCs that contain bMSCs only.

However, the relation can be extended to more general MSCs.

The rest of this chapter is organized as follows. In Section 5.2 and Section 5.3, we intro-
duce approaches of refining bMSCs and HMSCs respectively. We also introduce refinement
relations between MSCs and algorithms for checking these relations. In Section 5.4, we give
an example to demonstrate the refinement of HMSCs. In Section 5.5, we discuss related

work prior to concluding in Section 5.6.

5.2 Refining bMSCs

5.2.1 Refinement Approach

A bMSC describes communications between processes. To refine it into a detailed level, we

can

e decompose one or several processes according to the architecture of the system,

e add new messages to refine the behaviors of processes, and

88

e add or change time constraints to refine the performance constraints.

These refinements can be performed alternatively many times, until the desired level of
details is reached. We refer to the first two refinements as vertical refinement and horizontal
refinement, respectively. They are introduced in [56]. We focus on the third refinement,

where we allow time constraints to be added first, and then refined.

Adding Time Constraints

In a certain phase of design, designers need to add performance requirements to the func-
tional description of a system. Examples of these requirements include the delay between
two events, or the time when a process must send a message. We can use absolute and

relative time constraints in MSC to specify these requirements.

For example, the bMSC in Figure 5.1(a) describes a use case of a door controller [38]. A
user inserts his card and enters a PIN, then the Door Controller (DC) opens the door and
returns the card. In a vertical refinement, DC is decomposed into an Access Point (AP)
and an Authorizer (auth) as shown in Figure 5.1(b). In a following horizontal refinement,
we specify the interactions between AP and auth. The AP sends the card ID and PIN to
auth for authorization. If they are valid, auth sends back approval. Notice that in the bMSC
access? we are only considering the partial behavior of authorization. After the horizontal
refinement, we add timing requirements, such as AP has to return the card within 10 time
units after the user enters a PIN, or auth has to response AP with a delay between 1 and 8

time units. They are represented by the relative time constraints shown in Figure 5.1(b).

In our refinement approach, we allow relative time constraints to be added between
causally ordered events only. As already explained in Chapter 4, relative time constraints
between un-ordered events cannot be guaranteed in a distributed system without further
enrichments of the specification. In Figure 5.1(b), if we add a relative time constraint [1,

2] between event o (returning card) in AP or event b (opening door) in door, then this

89

MSC accessl MSC access2
DC door AP auth door
cardl] | | | |
Czl‘rd . PIN | ID PIN
PIN -
> open (0,10) ! ppproval 5 (1,8)
card > card | -
- - Y ™ b
- - a open

(a) (b)

Figure 5.1: Refining a door controller

time requirement cannot be satisfied without adding other message exchanges between the
processes to relate these events. We can check the existence of this kind of time constraints
by checking if events related by the time constraints are causally ordered in the lposet
representing the MSC. If this kind of time constraints appears, we notify designers to

remove them or to make events causally ordered by adding messages.

Designers may not add time constraints for all the events in a bMSC in one refinement. So
some events may not be constrained by any time constraints. In the semantics, we consider
these events are associated with default time constraints that are the whole time domain
minus the least element. For example, if the time domain is nonnegative real numbers, then
the default time constraints are (0, 0o). We reserve the absolute time constraint @[0] for a
special event (the beginning of the world). A relative time constraint cannot be 0 because
we allow for relative time constraints to appear between causally ordered events only, and
these ordered events cannot occur at the same time. Semantically, adding time constraints

can be considered as changing these default time constraints to others.

Refining Time Constraints

When adding for the first time a time constraint, a designer may not know how tight the

constraint should be. He/She should be allowed to change this time constraint later omn.

90

For example, for the bMSC in Figure 5.1(b), the designer may find that the delay before
AP returns the card (the relative time constraint (0, 10)) is too long. The designer may

reduce this time constraint to (0, 8), for instance.

To define rules of changing time constraints, we first consider the effects of time con-
straints on a system and its environment. In our point of view, time constraints specify
requirements/constraints on a process in the system and assumptions on its environment.
The environment of a process consists of all the processes in communication with the process
within and outside the system under consideration. Adding an absolute time constraint on
a sending event, adds a time requirement /constraint to the process executing the event. For
instance, if the time constraint is @[3, 5], then the process has to send the corresponding
message at any time between time 3 and 5. If the event is a reception event, the time
constraint not only adds a requirement/constraint to the process, but also implies an as-
sumption on the environment. For example, if a time constraint is @[3, 5] for a reception
event, then the process has to consume a message from its channels at any time between 3

and 5. To ensure this, the environment has to send this message before time 5.

Similarly, relative time constraints also specify requirements and assumptions. We con-
sider that a relative time constraint between two ordered events is associated with the
second event. It constrains the occurrence of the second event, because it specifies how long
after the occurrence of the first event, the second event can occur. If the second event is a
sending event, the relative time constraint states a requirement for a delay on the process
executing the event. The process has to send a message within the delay specified by the
time constraint. If the second event is a reception event, the relative time constraint speci-
fies a delay that the process has to wait for a message. In another word, the environment
is expected to deliver the message within the time constraint. So relative time constraints

on reception events specify assumptions on the environment.

For the refinement of time constraints, we require that constraints on a process become

stronger, while assumptions on the environment become weaker. Specifically, we define the

91

MSC access3
AP auth door
car dL | 1 |
1A [5,6]

PIN wlV D PIN

©0.8) “approval $_(1,8)
Gy b
- a open

Figure 5.2: Refining a door controller further

following rules.

e If an event is a sending event, the range of the absolute or relative time constraint

associated to it can be reduced. The process executing the event is more constrained.

e If an event is a reception event, the range of the absolute or relative time constraint
associated with it can be increased. This makes the assumptions on its environment
weaker. (Note that the time constraint could be enlarged to (0, co), which means the

event is not constrained any more.)

With such rules, a refined process can still fit in the same environment. For example,
in Figure 5.1(b), the delay before AP returns the card is (0, 10). The user expects to get
his card within 10 time units after entering PIN. If we refine the time constraint to (0, 8)
as shown in Figure 5.2, the user may get the card sooner and his expectation is still met.
A time refinement adds more constraints to the system, and reduces its non-determinism.
On the other hand, assumptions on the environment can be relaxed by a refinement. For
example, in Figure 5.2, the relative time constraint [5, 6] specifies a delay between receiving
card and PIN in AP. The user has to enter PIN within the time constraint. We may change

it to [4, 7] in a refinement to relax the assumptions on the user.

Refining time constraints is to reduce or enlarge time constraints that are not (0, co). We
distinguish between adding and refining time constraints, because the former always adds

more constraints to a system and more assumptions to its environment, while the later may

92

relax the assumptions to the environment.

5.2.2 Refinement Relation of bMSCs

Given the refinement approach, we need to define formally what is the refinement of an
MSC. In other words, we need to define a relation between MSCs. If two MSCs satisfy
this relation, then we say one is a refinement of another, or one conforms to another. We
use refinement and conformance interchangeably. Although we have defined three kinds
of refinement notations (vertical refinement, horizontal refinement, and time constraint
refinement), they actually represent three aspects (architecture, behavior and performance)
of a complete refinement notation. So we define only one refinement relation including all

these aspects.

After an MSC is refined, the resulting MSC contains more processes and more events
than the previous MSC. Apparently, this relation can be represented using set inclusions.
However, we need to take additional considerations to time constraints. First, we refine
time consistent bMSCs only. Inconsistent bMSCs contain semantics errors. They cannot

be used for developing a system. We do not consider refining them further.

Furthermore, when adding or changing time constraints in a consistent bMSC according
to the rules in Section 5.2.1, the time consistency is not guaranteed automatically in the
resulting bMSC. The resulting bMSC may be inconsistent. For example, if we add a relative
time constraint [10, 20] between event a and b in the MSC in Figure 5.3(a), then the
MSC is inconsistent. Moreover, reducing time constraints associated with sending events
may cause conflicts with causal orders, or inconsistencies with implicit time constraints
determined by other time constraints. For the MSC in Figure 5.3(a), if we change the
absolute time constraints of sending events a (Q[1, 5]) and b (@[2, 10)) to @[4, 5] and
@[2, 3] respectively, then the time constraints conflict with the causal order between event

a and b. Changing relative time constraints may also cause inconsistency. The MSC in

93

MSCT i J MSCT i J

@[1,51 .12
@[2,10) |b

Y

=

(a) (b)

Figure 5.3: Refining time constraints

(2) (b)

Figure 5.4: Comparing time constraints

Figure 5.3(b) is consistent. However, if we change the relative time constraints [1, 4], [3, 8]

and [4, 12] to [2, 4], [3, 4] and [10, 12] respectively, then the resulting MSC is not consistent.

On another hand, after a refinement, we need to compare time constraints to check if
the rules defined in Section 5.2.1 are satisfied. We should compare reduced time constraints
because they represent actual occurrence time or delays. For example, in Figure 5.4(a),
although the absolute time constraint for event b is @[2, 10), event b cannot occur outside its
reduced absolute time constraint @[4, 9]. If we change the MSC to the one in Figure 5.4(b), it
seems all the time constraints in the two MSCs satisfy the relation discussed in Section 5.2.1.
However, in Figure 5.4(b), event b can only occur within @[4, 6]. So the time constraint
for event b is actually reduced. It does not satisfy the relation. We have to require reduced

time constraints to satisfy the relation.

However, when time constraints are not consistent in the resulting MSC, we cannot check

94

if rules in Section 5.2.1 are satisfied, because reduced time constraints of the resulting MSC

do not exist. Thus, we consider the time consistency as a condition of conformance between

MSCs.

We already defined reduced absolute time constraints in Chapter 4. Here we define

reduced relative time constraints similarly.

Definition 5.1 Given a consistent bMSC and its distance graph, a reduced relative time
constraint between events e and f (e < f) is a mazimal interval within the original relative
time constraint, such that the upper bound is the shortest distance from e to f, and the lower

bound is the negative of the shortest distance from f to e.

Within the reduced relative time constraints, each value is a delay between two events
when they occur within their reduced absolute time constraints. Since the Floyd-Warshall
algorithm calculates all pairs shortest paths, both reduced absolute and relative time con-

straints can be obtained by applying the algorithm.

In Figure 5.4(b), the relative time constraint between a and b has to be enlarged also to

make the reduced time constraints satisfy the relation.

Since a bMSC can be represented by one Iposet, we first define a refinement relation

between lposets.

Definition 5.2 Letp; = (I, Ay, Ey, <1, Iy, D1, T1) and py = (I, Az, E3, <2, I3, D, T2)
be two timed Iposets. If py is time consistent, then po is a refinement of p1 if and only if po
is time consistent, and there are two injective mappings me : E1 — Eo, and my : A1 — Az

such that the following conditions are satisfied:

e For eventse, f € By, ife <1 f, then me(e) <o me(f).
e For an event e € E1, mq(l1(e)) = la(me(e)).

95

o Let D} (i = 1, 2) be reduced absolute time constraints. For an event e € E) such
that Di(e) is not (0, 00), if e is a sending event, then Di(e) 2 Di(me(e)); if € is a

reception event, then Di(e) C Di(m(e)).

o Let T] (i = 1, 2) be reduced relative time constraints. For events e,f € FE; such
that e <1 [and T{(e, f) is not (0, o0), if f is a sending event, then T|(e,f) 2

T3(me(e),me(f)); if f is a reception event, then Ti(e,) C Ty(me(e), me(f))-

The first condition in Definition 5.2 means the causal order between two events has to
be preserved, and the second condition specifies the relation between m, and m,. The last
two conditions specify the relation between time constraints. If a time constraint is (0, oo),
it means the event associated to the constraint is not constrained in fact. Changing a time
constraint that is (0, oo) corresponds to adding a time constraint in an MSC specification.
However, once a time constraint is not (0, co), changing it has to obey to the rules specified

in Section 5.2.1.

The refinement relation between bMSCs is defined as follows. Notice that in Defini-
tion 5.2, the set of events in an lposet could be infinite, while in Definition 5.3, a bMSC

contains a finite number of events.

Definition 5.3 A bMSC M, is a refinement of (or conforms to) a consistent bMSC My if

and only if the Iposet representing Mo is a refinement of the lposet representing M.

Definition 5.3 is applicable to both timed and un-timed bMSCs, because an un-timed
bMSC can also be represented by a timed Iposet, in which all the time constraints are (0,

00). An un-timed bMSC is always time consistent.

For example, the timed bMSC access2 in Figure 5.1(b) conforms to the un-timed bMSC
access! in Figure 5.1(a) because events and orders in access! are preserved in access2 and

access? is time consistent. The bMSC access? is refined further into the bMSC accessd

96

in Figure 5.2. Events and orders are same in these two bMSCs and the time constraints
satisfy the relation in Definition 5.2. The bMSC access3 is also time consistent. So access3
conforms to access?. However, if we have changed the time constraint (0, 10) in Figure 5.1
to (0, 15), the constraint on AP for returning the card becomes weaker. With such a system,
the user may get his card back 13 units of time after entering PIN, which was not allowed

previously in access2. The resulting bMSC would not conform to access?.

Our refinement relation extends the matching (conformance) relations for un-timed
MSCs defined in [56, 75, 85]. The refinement relation is reflexive, but it is not transi-
tive in general. Let us assume an absolute time constraint @[2, 5] on a reception event.
Following the rules, we can enlarge it to @(0, co). It means that the constraint is relaxed
to the maximum. In other words, there is no constraint any more for this event. Later on,
a designer may see this event as an un-timed event and decide to add a constraint @[3, 4].
The time constraint @[3, 4] does not satisfy the relation with the original time constraint
@[2, 5] as stated in Definition 5.2, and we cannot obtain the refinement relation with the
original MSC. To ensure transitivity, we do not allow for a time constraint associated with

a reception event to be enlarged to (0, 00).

Proposition 5.1 The refinement relation of bMSCs is reflexive. The refinement relation
of bMSCs is transitive if time constraints associated with reception events are not enlarged

to (0, co) when they are not (0,).

PROOYF. This proposition is proven in Appendix B.7. O

5.2.3 Checking Conformance between bMSCs

To check if two bMSCs satisfy the refinement relation (or if one bMSC conforms to another),

we check the conditions in Definition 5.2. Let a bMSC M) be represented by (I, 41, Ej,

97

<1, l1, D1, Ty), and another bMSC M, be represented by (I3, A2, E2, <2, l2, Dy, T). The

algorithm of checking the conformance includes the following steps.

We first check the time consistency of M7 and M,. As discussed before, this can be done
using the Floyd-Warshall algorithm in time O(n?), where n is the number of events. At the

same time, we obtain reduced time constraints.

Then we need to decide the mapping m, between the label sets A; and Ay. To achieve
this, we have to know which process in I; is vertically refined into which processes in Io.
That is, we need to have a surjective function m,, : I — I;. Designers decide this mapping
according to the architecture of the system. Then it is used as an input of our algorithm.
For every label a1 = send(iy, j1,m) (or a; = receive(ii, j1,m)), a1 € Ai, if there is a
label ag = send(ig, j2,m) (or ag = receive(iz, j2,m)), ag € Az, such that ¢; = mp(dz) and
J1 = mp(j2), we say a; is mapped to ag. If we can not find a mapping for a label in Ay,
then two Iposets do not conform. Since we need to compare each label A; with a label in

Ag, the complexity of this step is O(n?).

According to mg, we can get m, between the event sets Ey and Ej through [: By — A
and Iy : B9 — Ay. Since every event is associated with a unique label, /; and [5 are bijective
functions. So we can always find m, accdrding to m,. For every event e; € Fy, we can find
an event ey € o, such that my(l1(e1)) = la(e2). Then we obtain the mapping m,. between

E1 and E5. This step can be done in the complexity of O(n).

After obtaining me, we check if the orders of events in <; are still preserved in <;. We
use Event Order Tables (EOT) [81] to represent orders <; and <,. If events e and f have
an order, then the cell (e, f) in the EOT is marked as True, otherwise it is marked as False.
We extend EOTs to include time constraints in cells. If two events e and f are constrained
by a relative time constraint, we write the reduced relative time constraint in the cell (e,).
We write the reduced absolute time constraint of an event e in the cell (e, e). For example,

the EOTs of two bMSCs in Figure 5.4 are shown in Figure 5.5.

98

events a b events a b
a [1, 5] | True, [3, 4] a [1, 2] | True, [3, 4]
b False [4, 9] b False 4, 6]
(a) EOT1 (b) EOT2

Figure 5.5: Event Order Tables

For every cell (e, f) in EOT1, if it is marked as True, we check if the cell (me(e), me(f))
in EOT?2 is still marked as True. For example, the cell (¢, b) in both EOTs in Figure 5.5
is marked as True. We also check if the time constraint associated with the cell (e, f) and
the time constraint associated with the cell (m.(e), me(f)) satisfy the relations defined in
Definition 5.2. In Figure 5.5, the time constraints in cells (b, b) of two EOTs do not satisfy
the relation since event b is a receiving event. Thus the MSC in Figure 5.4(b) is not a

refinement of the MSC in Figure 5.4(a).

Since there are n? cells in an EOT, the complexity of comparing two EOTs is O(n?).

Thus the complexity of the whole algorithm is O(n3).

5.3 Refining HMSCs

5.3.1 Refinement Relation for HMSCs

A bMSC specifies only one scenario of a system. A more complete specification of the
system is often given as an HMSC, in which different scenarios are combined. Similarly to
the refinement relation between bMSCs, we can also define the refinement relation between
HMSCs as a preorder. In the semantics, an HMSC is represented by a set of lposets. After
a refinement, each existing Iposet should be a refinement of the original one. Moreover, the
set could contain new lposets. This is the case when we refine each bMSC referred in the

HMSC, and add some new bMSCs.

99

MSC login MSC withdraw
ATM_sys ATM_sys
L1 L1
login card - amount
password > 'T‘
welcome money \1,(0’10)
@ithdrag} - - -

Figure 5.6: An ATM specification before refinement

MSC login MSC withdraw
ATM bank ATM bank
\V, L1 1 L1 [1
card . amount validate
passworg K amount=

0,81
| money |,

\
Aapproval y (1,5)

@ithdra@ Cdepos@ B clcome

Figure 5.7: An ATM specification after refinement

For an illustration purpose, let us consider an HMSC specification of an Automatic Teller
Machine (ATM) in Figure 5.6. The HMSC contains two bMSCs login and withdraw. We can
refine them as described in Section 5.2, and add a bMSC deposit to enrich the specification.
The resulting HMSC is shown in Figure 5.7. The process ATM_sys is decomposed into two
processes ATM and bank in every bMSC, and messages exchanged between them are added
as shown in Figure 5.7. Before refinement, a relative time constraint in bMSC withdraw
specifies the delay between obtaining the amount and delivering the money. It is reduced
after refinement to constrain more the ATM. Moreover, the response delay of bank is added

in both bMSCs in Figure 5.7.

Similar to the refinement of bMSCs, the consistency of an HMSC should also be preserved
when it is refined. In Chapter 4, we have defined the consistency of HMSCs based on the
consistency of paths. We define the refinement relation based on the conformance of paths

also.

Definition 5.4 A path ps in an HMSC conforms to a consistent path p1 in another HMSC

100

if and only if the lposet representing po is a refinement of the lposet representing p;.

Notice that a path could be infinite. In such a case, the lposet contains an infinite
number of events. From Definition 5.4, we define the refinement relation between HMSCs

as follows.

Definition 5.5 An HMSC H, is a refinement of another HMSC H; if and only if for every

consistent path p1 in Hy, there exists a path py in Ho such that py conforms to p1.

The definition of the refinement of an HMSC does not limit the HMSC to be strongly
consistent or weakly consistent. If the HMSC is strongly consistent, then its refinement has
to be strongly consistent also. If it is weakly consistent, then its refinement can be strongly

consistent or weakly consistent.

5.3.2 Checking Conformance of HMSCs

To check the refinement relation of HMSCs according to Definition 5.5, we need to check for
a consistent path p in Hp, whether a path exists in Ho such that it conforms to p. Similar

to the matching problem in un-timed MSC [85], this problem is NP-complete.

Proposition 5.2 The problem of finding a path in an HMSC Hs that conforms to a given

(finite) path in Hy is NP-complete.

PROOF. For a given finite path in Hy, we can guess a path in Hy which conforms to it.
So the problem is NP. The Proposition 3.5 in [85] shows that matching an un-timed bMSC
with an un-timed HMSC is NP-complete. We reduce the matching problem to our problem
since a finite path can be seen as a bMSC. We add absolute and relative time constraints

(0, 0c0) to events in an un-timed bMSC M and an un-timed HMSC H. Then they become a

101

timed bMSC M’ and a timed HMSC H’. M’ conforms to H’if and only if M conforms to H.

Then the problem is NP-complete. O

This result suggests it is very complex in computation to check the conformance between
HMSCs in general, if it is decidable. However, an efficient algorithm is required since the
conformance is checked after each refinement procedure. To solve this problem, we consider

a subset of HMSCs, and restrict the methods of changing the HMSCs.

First, we consider the refinement of upper-bound-later FSPHMSCs only, which are de-
fined in Section 4.5. We require that all the paths in an HMSC have to be implemented. So
the HMSC is strongly consistent. We do not consider the refinement of weakly consistent

HMSCs.

Furthermore, we have the following requirements when changing an HMSC.

The road map of the HMSC is kept unchanged.

In vertical refinement, all bMSCs are refined at the same time so that each bMSC has

the same set of processes.

In horizontal refinement, each bMSC is refined such that there is at least one event

in each process.

e Time constraints are added or changed within each bMSC.

The first three requirements ensure that the resulting HMSC is still an FSPHMSC. Since
the road map is not changed, the set of Iposets representing the resulting HMSC contains the
same number of lposets as the set prior to the refinement. Refinements occur in each lposet
only. The number of bMSCs referred in the HMSC has to be decided at the beginning, but

the bMSCs can be at a very abstract level.

102

The last requirement restricts the usage of relative time constraints within bMSCs. In
other words, we assume relative time constraints specified between events in different bMSCs
are (0, 0o). However, a delay between events in different bMSCs in the same path of an

HMSC can still be set implicitly by absolute time constraints on these events.

Given these restrictions, we investigate conditions under which an HMSC is a refinement

of another HMSC.

Theorem 5.1 An HMSC Hy is a refinement of a strongly consistent upper-bound-later
FSPHMSC Hq if the following conditions are satisfied,

o Hs is strongly consistent and upper-bound-later,
e each bMSC in Hy conforms to its corresponding bMSC in Hy,

e the lower bounds of reduced (absolute and relative) time constraints in each bMSC in

H;i are not changed in Ho, and

e in Hy, for each pair of bMSCs M{ and M}, such that M - M} in Ho, and for each
set of azes {A11, ..., Ain} in My and My resulting from the decomposition of Ay (in
My and Ms in H1), the order between the last event of Ay in My and the first event

of Ay in My is preserved.

PROOQOF. This theorem is proven in Appendix B.8. O

This theorem extends the Theorem 1 in [56] for timed MSC. Same as for Theorem 1
in [56], the conditions in Theorem 5.1 are sufficient conditions only. If they are not satisfied,
we cannot conclude that Hy does not conform to Hy. For example, it is not necessary to

keep the lower bounds of reduced time constraints unchanged. However, requiring this

103

condition ensures that the relation between time constraints in corresponding bMSCs is

preserved in Ho.

The HMSC in Figure 5.6 (page 100) is an upper-bound-later FSPHMSC, and it is strongly
consistent. If we keep its road map unchanged, and refine the bMSCs login and withdraw
as shown in Figure 5.7 (page 100), then the resulting HMSC is also upper-bound-later
FSPHMSC. Apparently the HMSC satisfies the conditions defined Theorem 5.1. Thus it is

a refinement of the HMSC in Figure 5.6.

When refining a strongly consistent upper-bound-later HMSC, we enforce those condi-
tions in Theorem 5.1 to be satisfied in the resulting HMSC to ensure the conformance.
These conditions can be checked efficiently. First, as discussed in Chapter 4, we can check
in polynomial time if an FSPHMSC is upper-bound-later, and if it is strongly consistent.
For the second condition, the conformance of bMSCs can be checked in time O(n?) as dis-
cussed in Section 5.2, and reduced time constraints are calculated at the same time. The
third condition can be checked in linear time by checking each reduced time constraint. For
the fourth condition, we need to check each pair of bMSCs and each process in a bMSC in
the worst case. This can be done in time O(m?p), where m is the number of bMSCs and
p is the number of processes. Therefore, checking all the conditions in Theorem 5.1 only

requires polynomial time.

5.4 Example: Refining a Basic Call Specification

In this section, we specify a basic call in a telephone system. Then we refine the specification

to demonstrate our refinement approach for HMSCs.

The MSCs in Figure 5.8 describe the basic call at a high level. The telephone system
is considered as a black box and represented by one instance. Users and their telephone

handsets are represented by the system environment. At the beginning, a user dials a

104

MSC dial MSC busy_resp

Tel_sys Tel_sys

= =)
off_hool(

- busy_tone
=d1a1_tone -
number on_hook
disconnect
MSC ring MSC no_answer MSC answer MSC disconnect
Tel_sys Tel_sys Tel_sys Tel_sys
] L]]
ringing off_hook
— - on_hook IR on_hook
. f ringing_off -
ring_tone| . -
- ring_tone_of’

Figure 5.8: Basic Call

number (bMSC dial). If the callee is busy, the caller gets a busy response (bMSC busy-resp).
Otherwise the caller gets a ring tone (bMSC ring). The caller may hang up the phone while
waiting the callee to answer the call (bMSC no_answer). The call is connected if the callee
picks up the phone (bMSC answer). The call is disconnected if caller or callee hangs up the
phone (bMSC disconnect).

The MSC specification in Figure 5.8 does not contain any timing requirements. To refine
it, we add two timing requirements. The first one is that the telephone system should send
out a dial tone within 500 milliseconds after receiving an off_hook signal. The other one is
that the system should receive a number within 10 seconds after sending out the dial tone.
We choose a discrete time domain and take 100 milliseconds as one time unit. These two
requirements can be specified using two relative time constraints in bMSC dial as shown in

Figure 5.9(a).

The HMSC in Figure 5.8 is an FSPHMSC, and does not contain any explicit time
constraints. It is upper-bound-later and strongly consistent because default time constraints

are (0, oo0). After those two time constraints are added, the resulting HMSC is still upper-

105

: MSC dial

MSC d'llscll sys . caller exchange callee

= I | |
I off_hook
™A

off_hoolé dial_tone v ©,3]
:dlal_tone \ll (0, 5] number 3(0, 120]

number _1,(0’ 100} dial_tone_off] connect connect

(a) (b)

Figure 5.9: Refining bMSC dial

bound-later and strongly consistent. Since added time constraints are (0, 5] and (0, 100,
the lower bounds of the default time constraints are not changed. We can check that the

conditions in Theorem 5.1 are satisfied.

We can refine the MSC specification further by performing vertical refinements and
horizontal refinements. We keep the road map of the HMSC unchanged and refine each
bMSC in Figure 5.8. A telephone system can be decomposed as an exchange and controllers
for the caller and the callee. In all the bMSCs in Figure 5.8, the instance Tel_sys needs to be
decomposed as caller, exchange and callee. Messages can be added between these instances.
For an illustration purpose, we show the refinement of bMSC dial only. In Figure 5.9(b),
we add three messages. After receiving the number, the caller sends the connect message to
the ezchange, which transfers the message to the callee. The caller also stops the dial tone
by sending the dial_tone_off message to the environment. The event orders in the original

bMSC dial in Figure 5.9(a) are preserved in Figure 5.9(b).

Moreover, we can refine time constraints as well. We decrease the delay between receiving
the off_hook and sending the dial_tone to (0, 3] as shown in Figure 5.9(b). It requires the
system to send out a dial tone within 300 milliseconds instead of 500 milliseconds. We
increase the delay between sending the dial_tone and receiving the number to (0, 120]. It

means the system can wait longer for the inputs from the user. We change the upper bounds

106

of these time constraints only and keep the lower bounds. We can check that the bMSC in
Figure 5.9(b) conforms to the bMSC in Figure 5.9(a).

Other bMSCs in Figure 5.8 can be refined similarly. The conformance can be ensured

between MSC specifications if the conditions in Theorem 5.1 are satisfied.

5.5 Related Works

The refinement in this chapter generalizes the approach for un-timed MSC specifications
in [56]. The refinement in [56] distinguishes between horizontal and vertical refinements.
They can be seen as structural and behavioral refinements. In a vertical refinement, a de-
signer decomposes a given instance into multiple instances according to the SDL [49] target
architecture. In a horizontal refinement, the MSC specification is enriched with messages.
A process alternating between vertical and horizontal refinement has been defined. In order
to ensure the preservation of the properties of the MSCs during the refinement, for instance
the orders between the events, a conformance relation is defined, which must hold between

MSC at stage i and MSC at stage i+1 of the refinement process.

Message refinements in un-timed MSC are also discussed in [22]. A message can be
replaced by an MSC, named protocol MSC. A protocol MSC can be unidirectional or bidi-
rectional, according to the message flow in the MSC. Whether or not a message refinement
can result in deadlocks in these two cases is investigated. In our refinement approach, we

preserve the original messages and add new messages.

In [61], four refinement notations are defined, which are binding of references, property
refinement, message refinement and structural refinement. The binding of references as-
sociates a reference node in an HMSC to an MSC. The property refinement restricts the
behavior of an MSC, such as removing alternatives, removing interleaving and strength-

ening guards. The message refinement replaces a message with an MSC. The structural

107

refinement replaces a process with a set of processes.

Refinement of interworkings is proposed in [75]. An interworking is similar to a bMSC,
but the communication between processes is synchronous. When an interworking is refined,
a process can be decomposed into constituents and internal messages can be added between
these constituents. Using an operational semantics, a refinement relation is defined based
on bisimulation. Our refinement relation can be seen as an inclusion of the refinement

relation in [75] and the matching relation in [85].

Refinements of real time specifications based on true concurrency have been proposed,
for instance, in [72, 80]. In [80], interval event structures are used as a model. An event
can be refined into an event structure. Various notions of equivalence of interval event
structures have been defined, which allow for a refinement operation. The authors of [72]
extend the refinement to timed bundle event structures. In [72, 80], an event has a duration,
which is different with the time concept in MSC. Moreover, these approaches do not allow

for refinement of time constraints.

Checking the refinement relation is similar to the matching problem, except it is consid-
ered for un-timed MSCs [28, 67, 82, 85]. An MSC graph M or-matches another MSC graph
N if a path in M matches a path in N. The graph M and-matches N if all the paths in M
matches one path in N. Our refinement relation requires each path in M matches a path
(not necessarily the same path) in N. If M and-matches N, then N is a refinement of M.

However, the reverse does not hold.

5.6 Conclusion

The specification of a system often begins with a description of functionalities at a high
level of abstraction. This specification can be refined step by step into a design specification

by adding details about the internal behavior, architecture, time constraints, etc. In this

108

chapter, we generalized the refinement approach in [56] to timed MSCs to take into account
the new time features in MSC. Our methodology allows for the refinement of an un-timed
MSC into a timed MSC. The later can be refined further through the refinement of time
constraints. Refinement relations have been defined, and algorithms for checking these

relations have been developed and discussed.

The refinement relation defined in this chapter satisfies the transitivity under some con-
ditions. This is due to the time constraints associated with receiving events. In an un-timed
MSC, we assume that a default time constraint (0, oo) is associated with a receiving event.
Adding an explicit time constraint and then refining it actually reduces the default time
constraint and then enlarges it. It may be enlarged to (0, oo) and reduced again by adding
another explicit time constraint. At this time the transitivity may be broken. A poten-
tial solution is to assume that the default absolute time constraint of a receiving event is
the time constraint of the corresponding sending event. The time constraint can only be
enlarged so that the transitivity is assured. This approach has to be explored further by

taking into account its effects to the semantics and the consistency of MSCs.

For the refinement of HMSCs, we restrict their modifications and determine sufficient
conditions for the refinement relation to hold. This way, we avoid a highly complex solution
for checking the refinement relation between HMSCs. The complexity for general HMSCs
comes from at least two sources. First, from the formal language point of view, the language
represented by HMSC is not a regular language, not even a context-free language [42, 43,
44, 90]. Thus many decision problems are not decidable for MSC, such as the intersection of
two HMSCs [85], model checking and verification of HMSCs [6, 8], detecting race conditions
and confluence in HMSCs [83], and deciding if an HMSC represents a regular language [42].
Some other problems are decidable but highly complex in computation. For example, the
matching problem is NP-complete [82, 85]. The race problem and confluence problem for a
subset of HMSCs is EXPSPACE-complete [83]. The model checking for bounded HMSCs
is EXPSPACE-complete [8].

109

Moreover, time constraints in an HMSC can affect each other. Changing the absolute
time constraint of an event or a relative time constraint may affect all the absolute time
constraints of events causally ordered after it. Even worse, these events may be contained
in different bMSCs. This makes the relation between time constraints much harder to check
during the refinement, and defeats in most cases the attempts of checking the refinement of

an HMSC by checking only individual bMSCs.

In our refinement, we restrict the usage of relative time constraints. A relative time
constraint can only be added between causally ordered events to ensure that the specification
can be implemented. Alternatively, we may allow for relative time constraints between un-
related events during design. However, this kind of time constraints is at a high level of
abstraction and in order to be implementable, the final specification should not contain
these relative time constraints. Moreover, we may allow a relative time constraint to be
split between different bMSCs in an HMSC specification. Allowing for these kinds of relative

time constraints adds more complexity to conformance checking.

110

Chapter 6

An Extension to MSC

6.1 Introduction

Since the first standardization of MSC, many features have been added to the language
to enhance its expressiveness. Compositional structures, such as inline expressions and
HMSCs, have been added in MSC-96. Time constraints and data have been added in MSC-
2000. With these new concepts, MSC can be used in more application domains. On the

other hand, during the usage of MSC, we may discover needs to extend the language further.

During the investigation of time constraints, we found that some timing requirements
on repeated behaviors cannot be specified with the time constraints in MSC-2000. For a
repeated scenario, we may need to specify how long the scenario takes and the interval
between the repetitions. The MSC standard defines relative time constraints between two
different events. To specify how long a scenario takes, we may specify the delay between
the first and the last event in the scenario using a relative time constraint. Or we may put a
relative time constraint on the MSC reference representing the scenario. However, relative
time constraints cannot specify the interval between the repetitions. To specify such an

interval, we have to specify the delay between the last event in the current repetition and

111

the first event of the next repetition. Using relative time constraints cannot distinguish

different repetitions.

Therefore we propose an extension of time constraints. We introduces a new construct
called instance delay. An instance delay specifies a duration such that the executions of all
the events in the same process have to be delayed. Using this construct, we can specify the
periodicity of processes. The periodicity of events in a process can be specified implicitly
with this construct. We define formally the semantics of instance delay and show its usage

in a specification of the Radio Resource Control (RRC) protocol [1].

This chapter is organized as follows. In Section 6.2, we discuss the need for the extension,
and introduce the syntax of instance delay. Then, in Section 6.3, we define formally its
semantics by extending the semantics in Chapter 3. An application of the extension is
given in Section 6.4 using the RRC protocol. In Section 6.5, we discuss related work, before

we conclude in Section 6.6.

6.2 Instance Delay

To introduce the concept of instance delay, we first look at an example in a client-server
system. A server in the system has to respond continuously to the requests from clients.
We require that the server has to respond between 1 and 2 seconds after receiving a request.
We also require that a client has to wait 2 seconds to send another request after receiving
the response for the previous request. In a bMSC, the first requirement can be specified as
a time constraint between two events, as shown in MSC Transaction in Figure 6.1. For the
second requirement, however, we cannot specify the delay between a response and the next

request after it in a bMSC.

The second requirement actually defines a delay between the executions of MSCs. If we

consider this at the HMSC level, only the whole execution time of an MSC can be specified,

112

MSC Transaction
\V4 Client Server
I | |
" a request b
! i Y
[1’2]1 Transaction o | response ‘.][1,2]
B c
A

Figure 6.1: Time constraints on events and MSC

such as the constraint on the MSC Transaction in Figure 6.1. We cannot specify the delay

between the first and the second execution of the MSC Transaction in the loop.

We considered the usage of the time offset as defined in the standard to specify the delay
between two MSCs indirectly. A time offset is an offset to all absolute time values within
an MSC. Since the scope of a time offset is the whole MSC, it cannot be used to specify
some more complex timing requirements. For example, if another client is required to wait
3 seconds instead of 2 seconds to send a new request after receiving a response, the time
offset cannot express the timing requirement for the two clients in an MSC, because the

clients need different offsets.

To solve this problem, we introduce a new concept called instance delay, which defines
the delay between two MSCs in the manner of weak sequence. By the weak sequencing
operation, two MSCs are connected instance by instance. An instance delay affects the

occurrence time of events only at one instance, instead of the whole MSC.

For example, in Figure 6.1, if we define the instance delay is 2 for the instance Client in
the MSC Transaction, and assume the Client receives the first response at time ¢, then it
can send the second request at time #; + 2. If it receives the second response at time ¢, it
can send the third request at time ¢; + 2, and so on. If the event of sending a request itself
is constrained by an absolute time constraint that is a range of time values, then all the

occurrences of sending the request should be within that range.

We define the syntax of instance delays as follows:

113

MSC Transaction
instance delay Client [2]

\V/ Client Server
| || |
a request | b
@a@ d |, response @[1,2]
A
Figure 6.2: Usage of instance delays
(instance delay list) ::= instance delay (instance delay)
(instance delay) ::= (instance name) (time range) [, (instance delay)]

The (time range) is a range in the time domain with lower and upper bounds. Similarly
to the time constraints, if an instance delay is between 1 and 2 time units, we write it as [1,
2). If it is exactly 2 time units, we write it as [2]. We state instance delays after the MSC
name in a bMSC. If the instance delay of an instance is not specified, it can be any time
value. Using an instance delay, the two requirements mentioned above can be specified as

shown in Figure 6.2.

Since instance delays define the delay between two MSCs, they affect the occurrence time
of events in the second and later execution of the MSC only. When the MSC Transaction
in Figure 6.2 is executed for the first time, events a and d are not affected by the instance
delay. Later on, their occurrences will be delayed. This is different from the time offset,

which changes the occurrence time of events even in the first execution of the MSC.

6.3 Semantics of Instance Delay

We extend the semantics in Chapter 3 to handle instance delays. We first extend the

definition of timed lposet as follows. We use P(T'ime) to represent a set of time intervals.

Definition 6.1 An extended timed lposet is a 8-tuple (I,A,E,<,l,0,D,T), where I, A,

114

E, <, I, D, and T are same as Definition 3.1, and o : I — P(Time) is a function that

associates a process to a time interval.

The sequential, alternative and parallel compositions of lposets also need to be extended
to take instance delays into account. Let p = (I, A, Ep, <p, Iy, 0p, Dp, Tp) and ¢ =
(Ip, Ag, Eq, <q,1q,0q, Dq, Tq) be two extended lposets. For two time intervals U = [z, y1]
and V = [zo,y2], U+ V = [z1 + z2,y1 + y2]. If Uor Vis left (right) open, then U + Vis

also left (right) open.

Definition 6.2 The sequential composition (-) of p and q is defined as:
pq=IpUl;, Ay U Ay EyUE, (<pU < U <msg U <ins) T, 1p Ulg,0p U, Dy U Dy, Ty, U

Tq U Tyim U Tins), in which

o <pmsg = <HUZE, <E ={(e,€) € E,x Ey | lp(e) = send(i, j, mg) A ly(€') = receive(],
i, mg)}, <§ = {(e,€) € E; x E, | l(e) = send(i, §, my) A l4(e') = receive(j, i, my)},

o <ips = Ui(EIi,xEé), E;, and Eé are the sets of events that occur at instance 1, E}, C E,,

E. C E,,

e oy : Iy = P(Time), where I} C I, It NI, = ¢, and oy(i) = 04(i).

o Tiim =T1UTy = {((e,€),[n]) | e <ins €, Af (fis a timer event and e <jns [<ins €'),
lp(e) = starttimer(i, T, n), l,(e') = timeout(i, T)} U {((e,€'),(0,n)) | e <ins €, Af (f

is a timer event and e <ins f <ins €'), lp(€) = staritimer(i, T, n), l4(e') = stoptimer(i,

T))}-

® Tins = {((e, 1), 04(i) + T(e, f)) | e € E} and it is the mazimal event in the instance

i, f € Eé and it is the minimal event in the instance i}.

The sequential composition p - ¢ in Definition 6.2 handles the instance delay as follows.

Instance delays in p are kept in p - ¢. Instance delays for processes in ¢ but not in p are also

115

preserved. The other instance delays in ¢ add delays to relative time constraints between

the maximal event in p and the minimal event in ¢ at the same instance.

The alternative composition and the parallel composition are similar to the definitions

in Chapter 3, except we use extended time lposets.

The semantics of a bMSC with instance delays is represented by an extended lposet.
The semantics of an HMSC is a set of extended Iposets. For example, the semantics of the
MSC Transaction in Figure 6.2 is given by an extended lposet p = (I, A, E, <, [, o, D, T),
where E = {a, b, ¢, d}, T(b, ¢) = [1, 2], and o(Client) = [2]. The semantics of the HMSC in
Figure 6.2 is {p, p%,p?,...}. In p?, for example, E = {ay,b1,¢1,d1,a2,b2,c2,da}, a1 (az) and
by (be) correspond to the sending and the reception of the first (second) request message, ¢
(co) and dy (d2) correspond to the sending and the reception of the first (second) response

message. T(by,c1) = [1, 2], T(b2,c2) = [1, 2], T(d1,a2) = [0, c0) + [2] = [2, oo].

6.4 An Application

To demonstrate the need and the usage of the extension, we consider the measurement
process in the Radio Resource Control (RRC) protocol [1]. In the WCDMA wireless com-
munication network, a User Equipment (UE) keeps measuring the power of radio signals
received from Base Stations (BS). On the request of a BS, the measurement results can be
sent back to the BS periodically. Specifically, a BS sends a Measurement Control message
to indicate how often the UE should report the results. Then the UE sends Measurement
Report messages periodically to the BS. Consider there are two kinds of UEs. One needs
to report the result every 12 seconds, and another needs to report every 24 seconds. Using
instance delays, we specify the measurement process of two ULs with different periods in
Figure 6.3. For the sake of simplicity, we only show the measurement control and report
messages. We also add absolute time constraints on the events of receiving the measurement

control (@[2]) and sending the measurement reports on UE1 and UE2 (@[2, 50] and @[2,

116

MSC Control MSC Report
BS UEL UE2 instance delay UE1 [12], UE2 [24]

Control |] 1 |]

control= X @[] ~_report X @[2,50]

»-|@[2] - @2,80]
@ “ control d b report g

[

Figure 6.3: Specification of measurement process using instance delays

80] respectively).

The MSC Control in Figure 6.3 can be represented by a timed lposet M) = (I, A1, E1,
<i, l1,01,D1,T1) in which
e I} = {BS, UE1, UE2},

e A; = {send(BS, UEL, control), receive(UE1, BS, control), send(BS, UE2, control),
receive(UE2, BS, control)},

o B = {CL, b7 ¢, d}7

e |1 = {(a, send(BS, UEL, control)), (b, receive(UE1, BS, control)),
(¢, send(BS, UE2, control)), (d, receive(UE2, BS, control))},

o <1={(a,b),(c,d),(a,c)}T, those reflexive pairs such as (a, a), (b, b) are omitted.

e 01 = {(BS, [0,00)), (UEL, [0, 00)), (UE2, [0,00))}, the instance delays are not specified

in the MSC, so we consider that they can be any time value.

e Di(b) = [2], Di(d) = [2], the absolute time constraint for event a and ¢ are not

specified in the MSC, we consider them as [0, c0).
e For the function 77, all the relative time constraints between events are not specified
in the MSC, we consider their default values as [0, 00).
Similarly, we can use a timed lposet My = (I2, As, Fa, <9,l2,09, D2, T5) to represent the
MSC Report in Figure 6.3, in which

117

o ls = {(e, send(UEL, BS, report)), (f, receive(BS, UE1, report)), (g, send(UE2, BS,

report)), (h, receive(BS, UE2, report))},

o <o={(e, f),(g,h),(f, h)}T, those reflexive pairs are omitted.

® 0y = {(BS’ [0’ OO))? (UE17 [12]), (UE27 [24])}7

e Da(e) = [2, 50], Dalg) = [2, 80].

The semantics of the HMSC in Figure 6.3 can be represented by a set of lposets:

{Ml-Mg,Ml~M2-M2,M1-M2-M2-M2,...}

In Mj, event b and d are the maximal elements in UE1 and UE2 respectively. They are
constrained by absolute time constraints (@[2]). When we calculate M7 - Mo, the occurrence
time of event e (sending a report at UE1) should satisfy its absolute time constraint @Q[2,
50] and the relative time constraint between e and b, which is [12, co) obtained by taking
the instance delay of UEL into account. So event e occurs at [14, 50] ([2, 50] N ([2] + [12,
00)) = [14, 50]). Similarly, the occurrence time of event g (sending a report at UE2) is [2,
80] N ([2] + [24, o0)) = [26, 80]. For M; - My, event e and g are the maximal elements in
UE1 and UE2 respectively. So when we calculate My - My - My, the occurrence time of the
event sending the second measurement report at UEL will be [2, 50] N ([14, 50] + [12, o))
= [26, 50], and the occurrence time of the event sending the second measurement report
at UE2 will be [2, 80] N ([26, 80] + [24, c0)) = [50, 80]. It is worth to note that when we
calculate My - My - My - My - My, the occurrence time of the event sending the fourth report
in UE2 will be [2, 80] N ([74, 80] + [24, o0)) = ¢. It means that My can only be executed

three times actually. So the HMSC is only weakly consistent.

118

6.5 Related Works

Some extensions to MSC have been introduced in Chapter 2, such as HyperMSC [31],
LSC [18], PMSC [25], and YAMS [61]. Moreover, the needs for broadcast messages and
timer tables are mentioned in [40]. In the Interval project [46, 102], the authors proposed
a new symbol to express periodic occurrence of repetitive events. The symbol is associated

with an individual event. However, it is considered as a syntax extension only.

6.6 Conclusion

To specify periodical behaviors more precisely, we introduced instance delay as an extension
to MSC-2000. Using this extension, we can specify the delay between two MSCs in an
HMSC, and the periodicity can be specified at the instance level. The concept of instance
delay is consistent with the weak sequence composition. To define the semantics of this
extension, we extended our partial order semantics of timed MSC. With the application to

the RRC protocol, we demonstrated the need and the usage of this extension.

This extension has triggered more considerations on time constraints in a loop. An
instance delay actually defines the delay between a maximal event and a minimal event in
two consecutive bMSCs. It is being considered in the MSC standard organization to define a
construct that can specify the delay between any two events in any two iterations of a loop,
for example, an event e in the second iteration and an event fin the fifth iteration. While
this potential extension enhances the expressiveness of MSC, it brings more difficulties to

the analysis of an MSC specification.

119

Chapter 7

Conclusion

7.1 Summary

As a specification language, MSC is widely used in telecommunication software engineering
for specifying behavioral scenarios. Recently, the time concept has been introduced into
MSC to handle specifications with real-time constraints. This thesis has addressed two
aspects of timed MSC specifications in a development process, validation and refinement.
An MSC specification can be used only if it has been validated. The refinement is necessary

for developing MSC specifications systematically.

To provide a foundation for the validation and the refinement of timed MSC specifica-
tions, we first define a formal semantics for timed MSC. We use timed lposets as a semantic
model. A timed Iposet includes two timing functions for expressing absolute and relative
time constraints respectively. Based on this model, we define all major constructs in MSC-
96 and time constraints in MSC-2000. An event in a timmed MSC is mapped to a timed
lposet. A timed MSC is mapped to a set of Iposets. The semantics is compositional. Using
the sequential, parallel and alternative operations on Iposets, we can obtain the semantics

of an MSC from the semantics of contained events, inline expressions or references.

120

In our semantics, we did not require an MSC to be time consistent. In other words,
whether it is consistent or not, an MSC is mapped to a set of lposets. The lposets may be
inconsistent. In such a case, the MSC contains errors. We have defined the consistency of an
Iposet based on the existence of its traces. To validate a bMSC, we have transformed it to a
directed constraint graph. Its consistency can be checked in polynomial time. For HMSCs,
we have defined strong consistency and weak consistency, and developed sufficient and
necessary conditions for these consistencies. However, checking these conditions is complex
in computation for HMSCs in general. We have identified a class of HMSCs (FSPHMSCs)

such that the strong consistency can be checked in polynomial time.

To develop MSC specifications, we have proposed a refinement approach. A major differ-
ence between our approach and other refinement approaches is that we allow for changing
time constraints. Time constraints specify constraints on a system and assumptions on
its environment. They can be changed during the refinement to make constraints on the
system stronger, and assumptions on the environment weaker. However, the consistency
between time constraints has to be preserved after the change. It means that if the original
MSC is valid, the resulting MSC should also remain valid. We have defined refinement
relations for bMSCs and HMSCs. Again, checking the relation between HMSCs is complex
in computation. To reduce the complexity, we have restricted the way of refining HMSCs,
and developed sufficient conditions for FSPHMSCs to satisfy the relation. These conditions
can be checked in polynomial time. During the refinement, they are enforced to ensure the

refinement relation.

During the investigation of the semantics and the use of timed MSC, we have found needs
to extend the standard language for specifying some time requirements. In the current
standard, a relative time constraint can specify the delay between two events. However, it
is not possible to specify the delay between two occurrences of the same event in a loop.
We have proposed a new construct called instance delay as an extension to enhance further

its expressiveness. We have extended our semantics to handle this new construct.

121

At last, we have implemented the algorithms for checking the consistency of bMSCs and
HMSCs.

7.2 Future Work

In the previous chapters, we have provided foundations for using timed MSCs in a develop-

ment process. We discuss future work about the usage of timed MSC in the following.

7.2.1 Syntactic and Semantic Extensions to MSC

We have proposed a new construct as an extension to timed MSC. More extensions for ex-
pressing time requirements in loops are needed and being discussed in the MSC community.
For example, a construct is needed to express a delay between two events (or two occur-
rences of the same event) in different iterations of a loop, or a delay between one occurrence
of an event inside a loop and an event outside the loop. A construct expressing a jitter of
one iteration inside a loop may be necessary also. The difficulty of making extensions is to

find an intuitive graphical syntax for the new constructs.

One future work on the semantics is to incorporate the data concept as defined in MSC-
2000. Such a semantics provides a foundation for analyzing an MSC specification containing
data variables and time constraints. We may also define a consistent semantics, where the
set of lposets representing an MSC contains only consistent lposets. For example, according
to the semantics in Chapter 3, a loop expression loop (2,3) M can be represented by {p - p,
p - p-p}, where p is the lposet representing the MSC M. If a time constraint in p causes
p - p - p inconsistent, then the consistent semantics of the loop expression is {p - p}. Under
this semantics, time constraints are allowed to change the functional specification. However,

this is a challenging task.

'Some topics are being investigated by the telesoft research group at Concordia.

122

7.2.2 Implementability of MSC Specifications

An MSC specification specifies requirements of a system. However, it does not contain infor-
mation about the architecture of the system. Not all MSC specifications can be implemented
under a given architecture. We have to decide if an MSC specification is implementable
or not. The implementability of un-timed MSCs has been considered in [23, 57]. Time
constraints raise new implementability issues. To be implementable, an MSC has to be
consistent. However, consistency does not assure the implementability of an MSC spec-
ification. For example, a relative time constraint between two un-ordered events cannot
be assured in a distributed architecture. We need to investigate if the other kinds of time

constraints can be guaranteed under a given architecture.

7.2.3 Translation to SDL Specifications

If a timed MSC specification is implementable, we can translate it to an SDL specification.
Time constraints in MSCs can be implemented using the now construct in SDL. However,
several new constructs for modeling non-functional aspects, such as communication delay,
execution time, scheduling and local time, have been proposed as extensions to SDL [34].
It is interesting to investigate the relations between these constructs and time constraints

in MSC.

7.2.4 Tool Support and Case Studies

Tools are needed to support the use of timed MSC. In this thesis, we have provided al-
gorithms for checking the consistency and the refinement relations. The algorithms for
checking the consistency have been implemented. It is not difficult to implement other
algorithms. These implementations will be integrated with a set of tools, such as tools

for translating to SDL and generating test cases, to support the use of MSC in the whole

123

development process.

To assess our refinement approach, we need more case studies of medium or large size.
Through these case studies, we can decide if the refinement rules for HMSCs need to be

relaxed, or made more restrictive to ease the checking of conformance relations.

124

Bibliography

[

3GPP: TS 25.331 Radio Resource Control (RRC) Protocol Specification. http://

wWwWw.3gpp.org.

L. Aceto and D. Murphy: On the Tll-Timed but Well-Caused. Proceeding of CON-
CUR’93, International Conference on Concurrency Theory, LNCS 715, Springer-
Verlag, 1993.

M. Andersson and J. Bergstrand: Formalizing Use Cases with Message Sequence

Charts, Master thesis, Lund Institute of Technology, 1997.

R. Alur and D. L. Dill: A theory of timed automata, Theoretical Computer Science
126 (1994) 183-235.

R. Alur, K. Etessami and M. Yannakakis: Inference of message sequence charts, 22nd

International Conference on Software Engineering, 2000 304-313.

R. Alur, K. Etessami and M. Yannakakis: Realizability and verification of MSC
graphs, 28th International Colloquium on Automata, Languages and Programming,

2001.

R. Alur, G. J. Holzmann and D. Peled: An analyzer for Message Sequence Charts,
in: Proceedings of 2nd International Workshop on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’96), LNCS 1055 (1996) 35-48.

125

(8]

[10]

(11]

12)

[13]

[14]

[15]

[16]

[17]

R. Alur and M. Yannakakis: Model Checking of Message Sequence Charts, in: the

10th International Conference on Concurrency Theory, LNCS 1664 (1999) 114-129.

J. C. M. Baeten and J. A. Bergstra: Real time process algebra, Journal of Formal
Aspects of Computing Science, 3(2):142-188, 1991.

H. Ben-Abdallah and S. Leue: Expressing and analyzing timing constraints in Message
Sequence Chart specifications, Technical Report 97-04, Department of Electrical and

Computer Engineering, University of Waterloo, 1997.

H. Ben-Abdallah and S. Leue: Syntactic Detection of Process Divergence and non-
Local Choice in Message Sequence Charts, in: E. Brinksma (ed.), Proceedings of
the Third International Workshop on Tools and Algorithms for the Construction and

Analysis of Systems TACAS’97, LNCS 1217 (1997) 259-274.

H. Ben-Abdallah and S. Leue: MESA: Support for Scenario-Based Design of Concur-
rent Systems, in: B. Steffen (ed.), Proceedings of the 4th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems TACAS’98,
LNCS 1384 (1998) 118-135.

H. Bowman, M. W. A. Steen, E. A. Boiten and J. Derrick: A formal framework for

viewpoint Consistency, Formal Methods in System Design, 21 (2002) 111-166.

M. Broy and I. Kruger: Interaction Interfaces - Towards a scientific foundation of a
methodological usage of Message Sequence Charts. In: J. Staples, M.G.Hinchey and
S. Liu (Eds.), Formal Engineering Methods (ICFEM’98), 1998, 2-15.

R. T. Casley: On the specification of concurrent systems, Ph.D Thesis, Stanford

University, 1991.
E. M. Clarke, O. Grumberg and D. A. Peled: Model Checking, the MIT Press, 2000.

T. H. Cormen, C. E. Leiserson and R. L. Rivest: Introduction to Algorithms, second
edition, MIT Press, 2001.

126

[18] W. Damm and D. Harel: LSCs: Breathing life into Message Sequence Charts, Formal
Methods in System Design, 19-1 (2001) 45-80.

[19] R. Dechter, I. Meiri and J. Pearl: Temporal constraint networks, Artificial Intelligence
49 (1991) 61-95.

[20] A. Ek: Verifying Message Sequence Charts with the SDT validator, in: O. Faerge-
mand, A. Sarma (Eds.), SDL’93 — Using Objects, Proceedings of the Sixth SDL
Forum, 1993, 237-249.

[21] A. Ek: The SOMT Method, technical ~ paper, Telelogic,

http://tau.telelogic.com/download/papers, 1995.

[22] A. G. Engels: Languages for Analysis and Testing of Event Sequences, Ph.D. thesis,

Eindhoven University of Technology, 2001.

[23] A. Engels, S. Mauw and M. A. Reniers: A hierarchy of communication models for
message sequence charts, in: T. Mizuno, N. Shiratori, T. Higashino, A. Togashi (Eds.),
Formal Description Techniques and Protocol Specification, Testing and Verification.

Proceedings of FORTE X and PSTV XVII'97, Chapman & Hall, 1997.

[24] A. G. Engels, L. M. G. Feijs and S. Mauw: MSC and data: dynamic variables, In R.
Dssouli, G. von Bochmann, and Y. Lahav, editors, SDL’99, Proceedings of the Ninth
SDL Forum, Elsevier Science Publishers, June 1999.

[25] N. Faltin, L. Lambert, A. Mitschele-Thiel and F. Slomka: An Annotational Extension
of Message Sequence Charts to Support Performance Engineering, SDL’97: Time for
Testing - SDL, MSC and Trends, Proc. Eighth SDL Forum, A. Cavalli, A. Sarma
(Ed.), Elsevier, 1997.

[26] L. M. G. Feijs and S. Mauw: MSC and data, In Y. Lahav, A. Wolisz, J. Fischer, and
E. Holz, editors, SAM98 - 1st Workshop on SDL and MSC, Proceedings of the SDL
Forum Society on SDL and MSC, number 104 in Informatikberichte, pages 85-96.

Humboldt-Universitat Berlin, 1998.

127

[27]

[28]

[29]

[30]

[31]

[33]

[34]

[35]

T. Gehrke, M. Huhn, A. Rensink and H. Wehrheim: An Algebraic Semantics for
Message Sequence Chart Documents, Proceedings of Formal Description Techniques

and Protocol Specification, Testing and Verification (FORTE/PSTV’98), 1998, 3-18.

B. Genest and A. Muscholl: Pattern matching and membership for hierarchical Mes-

sage Sequence Charts, in: Proceedings of LATIN’02, LNCS 2286, 2002.

J. Grabowski: Test case generation and test case specification with message sequence

charts, Ph.D thesis, Universitat Bern, 1994.

J. Grabowski, D. Hogrefe and R. Nahm: Test case generation with test purpose
specification by MSCs, in: O. Feergemand, A. Sarma (Eds.) SDL’93 - Using Objects,
Proceedings of the Sixth SDL Forum, North-Holland, 1993, 253-265.

J. Grabowski, P. Graubmann and E. Rudolph: HyperMSCs with Connectors for
Advanced Visual System Modelling and Testing. Proceedings of 10th International
SDL Forum, LNCS 2078 (2001) 129-147

J. Grabowski and E. Rudolph: Putting extended sequence charts to practice, in: O.
Faergemand, M.M.Marques, (Eds.), SDL’89: The Language at Work, Elsevier Science
Publisher, 1989, 3-10.

P. Graubmann, E. Rudolph and J. Grabowski: Towards a Petri Net Based Seman-
tics Definition for Message Sequence Charts, in: Proceedings of the 6th SDL Forum
(SDL’93), 1993.

S. Graf: Expression of time and duration constraints in SDL, in: Proceedings of 3rd

SDL and MSC Workshop(SAM’02), Aberystwyth, UK, June 2002.

P. Graubmann and E. Rudolph: HyperMSCs and Sequence Diagrams for Use Case
Modelling and Testing, UML2000 — The Unified Modeling Language, LNCS 1939
(2000) 32-47.

128

[36]

[37]

38)

[39]

[40]

[41]

D. Harel and H. Kugler: Synthesizing State-Based Object Systems from LSC Speci-
fications, in: S. Yu, A. Paun (Eds.), Implementation and Application of Automata,

CIAA 2000, LNCS 2088 2000.

E. Harel, O. Lichtenstein and A. Pnueli: Explicit clock temporal logic, 5th IEEE

Symposium on Logic in Computer Science, 1990 402-413.

(. Haugen: MSC-2000 Interaction Diagrams for the new Millennium, Computer Net-
works, bfseries 35 (2001) 721-732.

L. Hélouét: A simulation model for Message Sequence Charts, in: Proceedings of the

Ninth SDL Forum, Elsevier Science, 1999, 473-488.

L. Hélouét: Distributed System Modeling with Scenarios: The Example of the
RMTP2 Protocol. Concordia Prestigious Workshop on Communication Software En-

gineering. September 2001

L. Hélouét: Some Pathological Message Sequence Charts and How to Detect them,
in: R. Reed (Ed.), 10th SDL Forum, Meeting UML, LNCS 2078, 2001, 348-364.

J. G. Henriksen, M. Mukund, K. N. Kumar and P. S. Thiagarajan: Towards a theory
of regular MSC languages, BRICS Report RS-99-52, University of Aarhus, Denmark,
1999.

J. G. Henriksen, M. Mukund, K. N. Kumar and P. S. Thiagarajan: On message
sequence graphs and finitely generated regular MSC languages, ICALP’2000, LNCS
1853, Springer-Verlag, 2000.

J. G. Henriksen, M. Mukund, K. N. Kumar and P. S. Thiagarajan: Regular Collections
of Message Sequence Charts, in: Proceedings of the 25th International Symposium on
Mathematical Foundations of Computer Science (MFCS’2000), LNCS 1893, Springer-
Verlag, 2000.

129

[45] S. Heymer: A Non-Interleaving Semantics for MSC. The 1st Workshop of the SDL
Forum Society on SDL and MSC (SAM’98). 1998

[46] D. Hogrefe, B. Koch and H. Neukirchen: Some Implications of MSC, SDL and TTCN
Time Extensions for Computer-Aided Test Generation. Proceedings of 10th Interna-

tional SDL Forum. LNCS 2078 (2001) 168-181

[47] J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages, and
Computation, 2nd edition, Addison-Wesley, 2000.

[48] ITU-T: Abstract Syntax Notation One - ASN.1, ITU-T Recommendation X.680 -
X.693, July 2002.

[49] ITU-T: Specification and Description Language - SDL-2000. ITU-T Recommendation
Z.100. November 1999.

[50] ITU-T: Message Sequence Charts, ITU-T Recommendation Z.120, 1993.
[51] ITU-T: Message Sequence Charts, ITU-T Recommendation Z.120, 1996
[52] ITU-T: Message Sequence Charts - MSC-2000, ITU-T Recommendation Z.120, 1999

[53] B. Jonsson and G. Padilla: An Execution Semantics for MSC-2000. Proceedings of
10th International SDL Forum. LNCS 2078 (2001) 365-378

[54] J. P. Katoen: Quantitative and qualitative extensions of event structures, Ph.D The-

sis, University of Twente, 1996.

[65] J. P. Katoen and L. Lambert: Pomsets for Message Sequence Charts. The 1st Work-
shop of the SDL Forum Society on SDL and MSC (SAM’98). 1998

[56] F. Khendek, S. Bourduas and D. Vincent: Stepwise Design with Message Sequence
Charts, Proceedings of FORTE’2001, Cheju Island, Korea, August 2001.

[67] F. Khendek, G. Robert, G. Butler and P. Grogono: Implementability of Message

Sequence Charts, SAM’98, Berlin, Germany, June 1998.

130

[58]

[59]

60]

[61]

[62]

[65]

[66]

R. Koymans: Specifying real-time properties with metric temporal logic, Real-time

Systems, 2(4) (1990) 255-299.

R. Koymans: Specifying Message Passing and Time-Critical Systems with Temporal
Logic, LNCS 651, Springer-Verlag, 1992.

R. Koymans, J. Vytopyl and W.-P. de Roever: Real-time programming and asyn-
chronous message passing, 2nd ACM Symposium on Principles of Distributed Com-

puting, 1983, 187-197.

I. H. Kruger: Distributed System Design with Message Sequence Charts, Ph.D thesis,

Technische Universitat Miinchen, 2000.

P. B. Ladkin and S. Leue: What do Message Sequence Charts mean? in: R.L. Tenney,
P.D.Amer, M.U.Uyar, (Eds.), Formal Description Techniques VI, IFIP Transactions
C, Proceedings of the Sixth International Conference on Formal Description Tech-

niques, North-Holland, 1994, 301-316.

P. B. Ladkin and S. Leue: Four issues concerning the semantics of Message Flow
Graphs, in: D.Hogrefe, S.Leue, (Eds.), Formal Description Techniques VII, Proceed-
ings of the Seventh IFIP WG 6.1 International Conference on Formal Description
Techniques (FORTE’94), Chapman &Hall, 1995, 355-369.

P. B. Ladkin and S. Leue: Interpreting Message Flow Graphs. Formal Aspects of
Computing 7(5) (1995) 473-509.

S. Leue and P.B. Ladkin: Implementing and Verifying Scenario-Based Specifications
Using Promela/XSpin, Proceedings of the Second SPIN Workshop, 1996.

S. Leue, L. Mehrmann and M. Rezai: Synthesizing ROOM Models from Message
Sequence Chart Specifications, the 13th IEEE Conference on Automated Software

Engineering, 1998.

131

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

V. Levin and D. Peled: Verification of message sequence charts via template matching,
in: Theory and Practics of Software Development, TAPSOFT(FASE)’97, LNCS 1214
(1997) 652-666.

X. Li and J. Lilius: Timing analysis of UML sequence diagrams, in: Proceedings of
UML’99 - The Unified Modeling Language, Beyond the Standard, LNCS 1723 (1999)
430-445.

X. Li and J.Lilius: Timing analysis of Message Sequence Charts, TUCS Technical

Report 255, Turku Centre for Computer Science, 1999.

N. Lynch and F. Vaandrager: Action Transducers and Timed Automata, Formal

Aspects of Computing 8(5) (1996) 499-538.

P. L. Maigat and L. Helouét: A (MAX, +) Approach for Time in Message Sequence
Charts. 5th Workshop on Discrete Event Systems. August 2000

M. Majster-Cederbaum and J. Wu: Action Refinement for True Concurrent Real
Time, Seventh International Conference on Engineering of Complex Computer Sys-

tems, Sweden, 2001.

Z. Manna and A. Pnueli: The Temporal Logic of Reactive and Concurrent Systems:

Specification, Springer-Verlag, 1992.
Z. Manna and A. Pnueli: Models for Reactivity, Acta Informatica, 30 (1993) 609-678.

S. Mauw and M. A. Reniers: Refinement in Interworkings, Proceedings of CON-
CUR’96, LNCS 1119 (1996) 671-686.

S. Mauw and M. A. Reniers: High-level Message Sequence Charts. SDL’97: Time for
Testing - SDL, MSC and Trends. September 1997

S. Mauw and M. A. Reniers: Operational Semantics for MSC’96. Computer Networks
and ISDN Systems 31(17) (1999) 1785-1799

132

[78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

A. Magurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.P. de Roever,
G. Rozenberg, (Eds.) Linear Time, Branching Time and Partial Order in Logics and

Models for Concurrency, LNCS 354, Springer Verlag, 1989.

D. Murphy: Time, causality and concurrency, Ph.D Thesis, University of Surrey,
1990.

D. Murphy and D. Pitt: Real-timed Concurrent Refineable Behaviours, Proceedings
of the 2nd International Symposium on Formal Techniques in Real-Time and Fault-

Tolerant Systems, LNCS 571 (1992) 529-545.

M. M. Musa, F. Khendek and G. Butler: New results on deriving SDL specifica-
tion from MSCs, in: R.Dssouli, G.v.Bochmann, Y.Lahav (Eds.), Proceedings of SDL

Forum’99, Elsevier Science B.V., June 1999.

A. Muscholl: Matching specifications for message sequence charts, Proceedings of

FoSSaCs’99, LNCS 1578 (1999).

A. Muscholl and D. Peled: Message sequence graphs and decision problems on

Magzurkiewicz traces, in: Proceedings of MFCS’99, LNCS 1672 (1999) 81-91.

A. Muscholl and D. Peled: Analyzing Message Sequence Charts, in: Proceedings of
SAM’00, 2000.

A. Muscholl, D. Peled and Z. Su: Deciding Properties for Message Sequence Charts,
Proceedings of the 1st International Conference on Foundations of Software Science

and Computation Structures, LNCS 1378 (1998).

R. Nahm: Conformance Testing Based on Formal Description Techniques and Message

Sequence Charts, Ph.D thesis, Universitdt Bern, 1994.

M. Nielsen, G. D. Plotkin and G. Winskel: Petri nets, event structures and domains,

part 1, Theoretical Computer Science, 13(1), 85-108, 1981.

133

[88]

[90]

[92]

[93]

[94]

[95]

[96]

[97]

Object Management Group: OMG Unified Modeling Language Specification, Version

1.5, March 2003, http://www.omg.org.

J. S. Ostroff: Temporal Logic of Real-time Systems, Advanced Software Development
Seires, Research Studies Press (John Wiley & Sons), England, 1990.

D. Peled: Specification and verification using Message Sequence Charts, in:
B.Caillaud, A.Muscholl (Eds.), Validation and Implementation of Scenario-Based
Specifications (VISS’02), ENTCS 65:7 2002.

A. Pnueli: Specification and Development of Reactive Systems, in: H.-J. Kugler,

editor, Information Processing 86, IFIP, North-Holland, 1986, 845-858.

A. Pnueli: System Specification and Refinement in Temporal Logic, in: R.K. Shya-
masundar, editor, Foundations of Software Technology and Theoretical Computer

Science, LNCS 652 (1992) 1-38.

V. R. Pratt: Modeling concurrency with partial orders, International Journal of Par-

allel Programming, 15(1) 33-71, 1986

W. Reisig: Petri Nets, An Introduction, in: W.Brauer, G.Rozenberg, A.Salomaa

(Eds.), EAT'CS, Monographs on Theoretical Computer Science, Springer Verlag, 1985.

M. A. Reniers: Message Sequence Chart: Syntax and Semantics, Ph.D thesis, Eind-

hoven University of Technology, 1999.

A. Rensink: Models and methods for action refinement, Ph.D Thesis, University of

Twente, 1993.

G. Robert, F. Khendek, and P. Grogono: Deriving an SDL specification with a given
architecture from a set of MSCs, in: A.Cavalli, A.Sarma (Eds.), Proceedings of SDL
Forum’97, Elsevier Science B.V., September 1997.

134

[98] E. Rudolph, J. Grabowski and P.Graubmann: Towards a Harmonization of UML-
Sequence Diagrams and MSC, in: Y.Lahav, R.Dssouli (Eds.), SDL’99, The Next
Millennium, Proceedings of the 9th SDL Forum, North Holland, June 1999.

[99] D. J. Scholefield: A Refinement Calculus for Real-time Systems, Ph.D thesis, Univer-
sity of York, UK, 1992.

[100] M. W. Shields: Concurrent machines, The Computer Journal, 28(5) 449-465, 1985.
[101] Telelogic Tau, http://www.telelogic.com.
[102] The Interval Project, http://www-interval.imag.fr.

[103] The ESPRIT project: CREWS - Cooperative Requirements Engineering with Sce-

narios, http://sunsite.informatik.rwth-aachen.de/crews.

[104] D. Toggweiler, J. Grabowski and D. Hogrefe: Partial Order simulation of SDL spec-
ifications, in: R. Braek, A. Sarma (Eds.) SDL’95 - with MSC in CASE, Proceedings
of the Seventh SDIL Forum, 1995, 293-306.

[105] L. Wang: Implementation of Time Consistency of MSC-2000 Specifications, Internal

Report, Department of Electrical and Computer Engineering, Concordia, 2003.

[106] Y. Wang: Real-time behavior of asynchronous agents, in: J.C.M.Baeten and J.W.Klop
(Eds.), Proceedings of CONCUR 90, LNCS 458, 1990, 502-520.

[107] J. M. Wing: A specifier’s introduction to formal methods, IEEE Computer, 23(9):8-
24, 1990.

[108] T. Zheng and F. Khendek: An Extension for MSC-2000 and Its Application, in:
E.Sherratt (Ed.), Telecommunications and beyond: The Broader Applicability of SDL
and MSC, Third International Workshop, SAM 2002, LNCS 2599, 2002.

[109] T. Zheng and F. Khendek: Time Consistency of MSC-2000 Specifications, Computer
Networks, 42:3 (2003) 283-417.

135

[110] T. Zheng, F. Khendek and B. Parreaux: Refining Timed MSCs, in: R. Reed, J. Reed
(Eds.), SDL 2003: System Design, 11th SDL forum, LNCS 2708, 2003. [Best Paper
Award]

[111] T. Zheng, F. Khendek and L. Hélouét: A semantics for timed MSC, in: B.Caillaud,
A.Muscholl (Eds.), Validation and Implementation of Scenario-Based Specifications

(VISS'02), ENTCS 65:7 2002.

136

Appendix A

Simplified Textual Syntax of MSC

(msc) = (msc statement)*

(msc statement) ::= (instance name) : (instance event list)

(instance event list) ::= (instance event)™

(instance event) ::= (orderable event) | (non-orderable event)

(orderable event) ::= {(event name) (message event) |
(action) |

(timer statement)} [time (time dest list))

(message event) := out (message name) to {(instance name) | env} |

in (message name) from {(instance name) | env}

(action) = action (action name)

137

(timer statement) ::= starttimer (timer name) [(duration)] |
stoptimer (timer name) |

timeout (timer name)

(time dest list) ::= (time interval) [(event name)] [, (time dest list)]
(time interval) ::= (singular time) | (bounded time)
(singular time) ::= ‘[’(time point)‘]’

(time point) ::= [@](time value)

(bounded time) ::= [@]{*[| ‘(’}[(time point)], [(time point)] {*]" |)’}

{(non-orderable event) ::= (shared msc reference) | (shared inline expr) | (coregion)
(shared msc reference) ::= reference (msc reference name) [time (time interval)]
(shared inline expr) ::= {loop [(loop boundary)] begin (instance event list)

loop end [(time interval)] |
alt begin (instance event list)
{alt (instance event list)*}
alt end [(time interval)] |
par begin (instance event list)
{par (instance event list)*}

par end [(time interval)]}

(coregion) ::= concurrent (orderable event)* endconcurrent

138

Appendix B

Proofs

B.1 Proposition 3.1

PROOF.

B.1.1 Identity
I A E, <, I, D, and T in € are empty set ¢.

e According to Definition 3.4, ¢ - p = (¢ U I, ¢ U Ay, ¢ U Ep, (¢ U <p U <ppsg U Sins
)T, ¢ Uly, ¢ U Dp, ¢ UTyUThm), where <pg9, <ins and Tyim must be empty also. So
e-p= (Ip,Ap, Ep, <p,1p, Dp,Tp) = p. Similarly, p-e = (I[p U ¢,Ap U ¢, Ep U ¢, (<p
U U <pmsg U <ins)T,lp U, Dp U, T, UpUTirs) = (I U, Ap U, Ep U, (<p

qu U ¢ U ¢)+71PU¢7DPU¢7TPU¢U¢)ZP'

e According to Definition 3.5, € || p = (¢UI,, UAp, U ER, ¢ U <p, ¢Ulp, ¢UD,, pUT,) =

p.p || €= (IpU¢7ApU¢aEpU¢uSpU ¢alpu¢aDpU¢»TpU¢) =p.

139

B.1.2 Commutative property

o According to Definition 3.5, p || ¢ = ([, U, Ap UAg, Ep U Ey, <p U <g,l, Ulg, Dp U
Dy, Ty UTy) = (IqUlp, AqU Ap, B U Ep, <q U <p,1qUlp, Dg U Dy, T, UTy) = g || p.
According to Definition 3.7, P | @ = {pi || ¢j | pi € P,q; € Q,1 <1 <n,1 <5 <k}

Sincep; || gj=¢; || pi, P| Q@=Q | P.

e According to Definition 3.6, p#q = {p} U {q¢} = {¢} U {p} = g#p. According to
Definition 3.7, P4Q = PUQ = QU P = Q#P.

B.1.3 Associative property

e According to Definition 3.4, p-(¢-7) = ([, UI,U I, AyUAgU Ar, Ep UEgU Er, <y
ylp UlgUle, Dy U Dy U Dy, Tygry). On the other hand, (p-q)-r = ([,UL, U, Ay U
AqU A Epy U By U Ery <(pqyrs lp Ulg ULy, Dy U Dy U Dy, Tiygyr). We need to prove
Spar) =S(pg)r-

Spary= (Sp U <gr U <ET U <G UUi(Ezi) X Eér))Jra where <g,= (<4 U < U <7
U <FUU (B x B, and <(pgyr= (Spg U < U <5 U <PT U (B, X E;))T, where
<pe= (Sp U <q U <G U < UU(E, x BT For (e,€') such that (e,€') € <pgm),

there are the following cases:

— (e,€') € <p. We obtain (e,e') € <pg € <(pg)yr-

— (e,€) € g If (e,¢') € <y, then (e,€') € <pg € S(pgyr- If (e,€') € <;, then
(e,€') € <oy~ If (e,€') € <L, then (e,€) € <pp € <(pgyr If (e,€') € <J, then
(e,¢') € <P € <oy I (e,€') € U;(EL x EL), then (e,€¢') € U, (B, x Ei) €
S(pgyr-

— (e,e') € <F'. If e € E,, then (e, €) € <hq € S(pgyr- If € € Ey, then (e,¢') € <J
€ <pq € S(pg)r-
— (e,e) € <. If & € Ey, then (e,€') € <§ € <pg € S(pgy- If € € Er, then

(e,¢') € <0 € <(pgyr

140

~ (e,€') € U;(B} x Ei,). If ¢ € By, then (e,€¢') € Uy(Ej x E}) € <pg € <ppgyr- If
e € E,, then (e,¢') € U;(Es, X EL) € <)

So, if (e, €') €<p(qr), then (e,€’) €<(pg)ry- Similarly to the proof above, if (e, €') €< (pg)r

then (e, €') €<p(gr). Thus <pgr=<(pg)r-

We also need to prove Tpgr) = Tipg)r- Tp(qr) = Tp U T U nggr) where Ty, =T, UT, U

and Tipqy, = Tpg UT: UTP" where Tpq = T,UT,UTL]. For ((e,€),t) € Tpgr)

tim tim*

Tq

tim?

there are the following cases:

— ((e,€),t) € Tp. We obtain ((e,€'),t) € Tpq € Tipg)-

— ((e,€'),t) € Tgr. If ((e,€),t) € Ty, then ((e,€'),t) € Ty, € Tipgyr I ((e, e),t) €
T,, then ((e,€'),t) € Topgy- If (e, €),) € T, then ((e,¢'),t) € TLY" € Typg-

~ ((e,¢),t) € TR 1t ¢ € E,, then ((e,€),t) € TH € Ty If € € Ey, then

tim

((e,€),t) € T € Ty,

So if ((e,€'),t) € Ty(ry, then ((e,€'),t) € Tipgy- Similarly, if ((e, €'),t) € T(pq),, then

((e,e'),t) € Tyqry- Thus, Ty4ry = Tipg)r- We can conclude p - (g-r)=(p-q) .

According to Definition 3.7, P-(Q-R) = P-{q; 7 | i € Q,r; € R} = {px - (¢ - 1) |
Py € P,g; € Q,rm; € R}. Because p - (¢; - 7;) = (pe - @5) 75, P-(Q-R)=(P-Q) R

e According to Definition 3.5, p || (¢ || r) = p || U I, AqUA,E,UE,, <, U <,
,lgUl, DyUD,, T,UT,) = (I, Ul, UL, AyUA,UA, E,UE,UE,, <, U<, U<,
Jp Ul U, D,UDUD,, T,UT,UT,) = (p| q) || . According to Definition 3.7, P ||
QIR =Pl {allrjlaeQr;eR={p (allry)|px € Pai €Qr;€ R}
Because py || (¢ | m5) = (o | @) || m5, P (Q | B) = (P || Q) || R.

e According to Definition 3.6 and Definition 3.7, {p}#(q¢#r) = {p}#{q} U {r}) =
Py u{gt u{r)) = ({pru{g}) U{r} = (p#)#{r}. P#Q#R) = PU(QUR) =
(PUQ)UR) = (P#Q)#R.

141

B.1.4 Distributive property

o According to Definition 3.6 and Definition 3.7, {p} - (¢#r) = {p} - (g} U {r}) =
{p-q,p-r}. (p-q)#-r) ={p- ¢} U{p-r} ={p-q,p-r}. So{p}-(a#r) = (p- D#(p-7).
P-(Q#R) = P-(QUR) = {p;-q;,pi-x | pi € P,g; € Q,r¢ € R}. (P-Q)#(P-R) = {p:-
a5 | pi € Pgj € QYU{pi-ri | pi € Pyriw € R} = {pi-q;,pi-7x | pi € Pgj € Q¢ € R}
So P-(Q#R) = (P-Q)#(P - R).

e According to Definition 3.6 and Definition 3.7, {p} || (¢#7r) = {p} || {¢}U{r}) ={p ||
gpliry Glla#@ I ={{ldu{plirt={lleplr} So{p}l (¢#r)=(pl
Q)#p@ Il r). Pl (Q#R)=P| (QUR) = {p; || gj,pi || 7 | pi € P,q; € Q,7 € R}.
(Pl Q#P | B) =A{pill g | pi € P,g; € QU {pi || rx | pi € Pry € R} = {pi |
a,pi I 7 | pi € Pg; € Q, 1 € R}. So P || (Q#R) = (P || Q)#(P || R).

B.2 Theorem 4.1

PROOF. If part. For the first condition, since a simple path ending with an end node is

a path of the HMSC, if it is consistent, then the HMSC is weakly consistent.

For the second condition, we assume that a simple path sg...s;_1s;...s; is consistent
and s;...s; is a loop. Consider the path sg...si—1(s;...s;)*, in which the loop is repeated
infinitely. We use s, ; to represent the nth times that s; is repeated. In the follows we prove

by induction that this path is consistent.
Base. The simple path sg...s;_1s;...s; is consistent.

Induction. Assume Sg...5;-1(s;...s;)" is consistent. Then it has a trace Tr. We need

to find a trace for 81... si_l(si C Sj)n+1, equal to $1... Si—l(Si PR Sj)n X (Sn-}-l,i - 3n+1,j)'

142

Because events in the node s, has the same absolute and relative time constraints as
events in the node sy, and there exists a trace for s;...s; (otherwise sp...5,-15;...8;
can not be consistent), we can get a trace Tr’ for s,41;...5,41,. Since the absolute time
constraints for all the events in s,,41; ... 8p41,; have infinite upper bounds, we can increase
time values in Tr’ by n such that they are larger than all the time points in Tr, and still
keep the consistency. Then TrTr’ constitutes a trace for sy...s;-1(s;... sj)”+1. So it is also

consistent.
Then we can conclude that the path s1...s;_1(s;...s;)” is consistent.

Only if part. We only need to prove that if an HMSC is weakly consistent and the first
condition of the proposition is not satisfied, then the second condition must be satisfied.

We prove it by contradiction. There are two cases.

e Assume all the simple paths ending with a loop are not consistent. In such a case,
all the simple paths are not consistent because it is assumed that all the simple paths
ending with an end node are not consistent also. Then the HMSC is neither weakly

nor strongly consistent. Contradiction.

e Assume in each consistent simple path ending with a loop, there is an event contained
in the loop, whose absolute time constraint is [Ib, ub] where ub is not infinity. In such
a case, each loop can only repeat finite times consistently. So if there is a consistent
path p, then p is a finite path ending with an end node. Since p cannot be a simple
path, p contains some identical nodes caused by loops. Assume p goes through one
loop. Then p can be represented by s1...8,-1(8;...5;)"Sj41...5,. In a trace Tr of
p, if we remove all the timed events in (sg;...sk ;) 1 < k < n, the remaining part
is still a trace, which corresponds to the simple path s1...5;_15;...5j5j41...8p. So
81-..8{_18;...5j5j41... 5 is consistent. It contradicts with the assumption that all
the simple paths ending with an end node are not consistent. Same contradiction can

be obtained when p goes through more than one loop.

143

B.3 Theorem 4.2

PROOF. If part. Assume the HMSC is not strongly consistent. Then there is an inconsis-
tent path p. Since aH the simple paths are consistent, p can not be a simple path. Assume
piSsy...8Sit1 ..., in which nodes s; ... s; are not included in any loop and s;; is included
in a loop I So all the nodes after s;;; can be reached from the loop I In the follows, we

show that there is a trace for p.

Since all the nodes in s ...s;5;41 are not identical, s;...s;s;4+1 must be a prefix of a
simple path, which is consistent. So there is a trace Trl for s; ... s;8;41. For the node s;42,
since it must appear in some simple paths and all the simple paths are consistent, there
exists a trace for s; 9. Let it be Tr2 = (ey,t1) (ea,t2) ... (en,tn). According to Corollary
3.2 in [19], ¢; can be the upper bound of the reduced time constraint of e;. If e; is in the
loop or causally after events in the loop, the upper bound of e; is infinity. We can replace
it with a value that is larger than all the time values of events e; in Trl and Tr2 such that

e; < e;, and time constraints are still satisfied. So Tr1Tr2 is a trace for sy ...s;S;418i+2-

Inductively, we can build traces for s1...8;8;41...8k (k> i+2) until $1...8; X Siy1... 5k
is p. Then we get contradiction with the assumption that p is not consistent. So the HMSC

is strongly consistent.
Only if part. We prove that the two conditions hold as follows.

e A simple path is a prefix of a path in the HMSC. So if all the paths in the HMSC are

consistent, all the simple paths are consistent also.

144

e Assume the second condition of the proposition does not hold. Let e be an event that
occurs in a loop or is causally ordered after events in the loop. The reduced time
constraint of e does not have an infinite upper bound. Since the loop can be repeated
infinitely, there exists a path in which the occurrence time of e will be larger than
the upper bound of its reduced time constraint. However, if the occurrence time is
outside of the reduce time constraint, then there does not exist a trace including this
occurrence time according to the definition of reduced time constraints. So the path

is not consistent. It contradicts with the strong consistency.

B.4 Proposition 4.1

PROOF. If part. Since M and N are consistent, they have traces. According to Corollary
3.2 in [19], we can find a trace Trl for M, in which every ¢; is the lower bound of the
reduced time constraint of ¢;. We can also find a trace Tr2 for N, in which every ¢; is the
upper bound of the reduced time constraint of e;. If the upper bound of the reduced time
constraint of e; is infinity, we can replace it with a value that is larger than any ¢; such that
ej < e;. Because of the second condition of the proposition, for the last event e at process ¢
in M and the first event fat 4 in N, the occurrence of e in Trl is earlier than the occurrence

of fin Tr2. Then Tr17TY2 is a trace for M - N. So M - N is consistent.

Only if part. We prove that the two conditions hold as follows.
e In a trace of M - N, if we remove all the events in M(or N), the remaining part is a
trace for N(or M). So M and N are consistent.

e Assume the second condition in the proposition does not hold. Then for the last event

e at a process in M with reduced absolute time constraint [a, b], the earliest time it

145

can occur is at a. For the first event fat the same process in N with reduced absolute
time constraint [c, d], the latest time it can occur is at d. Since it is assumed that
d < a, fcan only occur before e. However, because M - N is consistent and e < f, e

should occur before fin any trace of M - N. Contradiction.

B.5 Theorem 4.3

PROOF. According to Proposition 4.1, we can get M - N is consistent immediately.

Given consistent bMSCs M and N and their distance graphs G; = (V1 U {ep}, E1) and
G = (Vo U{ep}, E2), we construct a graph G for M- N. G = (VLUVaU{ep}, F1 UEUE),
in which £ = {(g, h) | g is the first event in a process in N, and h is the last event in the
same process in M}. Since the relative time constraint between g and h is [1, co), there is
no edge from A to g, and the edge from g to h has the weight -1. For a node e in V) with
reduced absolute time constraint [a’, '], the shortest distance from eg to e is ¥/, and the
shortest distance from e to ey is —a’. Since in G there are only edges from nodes in V3 to
nodes in V7, there are no new paths from e to ey in G, which are not in F;. So the shortest
distance from e to eg is still —a’. The lower bound of the reduced absolute time constraint
for e is not changed. Similarly for a node fin V5, there are no new paths from ey to fin G,
which are not in F5. So the upper bound of the reduced absolute time constraint for fis

not changed.

In the following, we prove that the upper bound of the reduced absolute time constraint
for events in (G1 and the lower bound of the reduced absolute time constraint for events in

(2 are not changed if and only if the two conditions in the proposition are satisfied.

146

If part. Let a node e be in V; with reduced absolute time constraint [a’,']. For all the

paths from ey to e,

e if all the nodes in a path are in V7, then the length of the path is larger than b'.

e agsume a path includes nodes in V] and V5. Then there must be two events g € V5 and
h € V7 in the path, and g is the first event in a process in G4 with reduced absoclute
time constraint [¢, d] and h is the last event in the same process in Gy with reduced
time constraint [a, b]. The path can be written as ey ... g h ...e. Using D(e, f) to
represent the distance between e and f, the length of the path is p = D(eg, g) - 1 +

D(h, ¢). Since the length of the shortest path from ey to gis d, p > D(h, e) - 1 + d.

— If d is infinity, we can get D(eg, g) is infinity and p is also infinity immediately.
Then p > b'. The shortest distance from ey to e is still ¥'.

— If b and d are not infinity, since b < d according to the condition, we get d—1 > b
(our time domain is integer). So p > D(h, e) + b. Since b is the (shortest) distance
from eg to h, and h and e are both in Gy, D(h, ¢) + b > b'. So p > . Then the

shortest distance from eg to e is still ¥'.

So the reduced absolute time constraints of nodes in V; are not changed. If we reverse the
direction of all the edges in G, using the similar proof as above we can prove that for nodes
in V5, the condition a < ¢ can assure that their reduced absolute time constraints are not

changed.

Only if part. Assume h is the last event in the a process in G7 with reduced absolute
time constraint [a, b]. If the reduced absolute time constraint of A is not changed in G, then
the length of all the paths from ey to A is not less than b. Assume a path is ey g h, in which
g is the first event in the same process in G5 with reduced absolute time constraint [¢, d].
The length of the path is D(eq, g) - 1. Since b is not larger than any value of D(ey, g) - 1,
if b is infinity, then d has to be infinity also. If b is not infinity, and we choose D(eq, g) =

d, then b < d. Similarly, we can prove a <¢. O

147

B.6 Proposition 4.2

PROOF. if part. In each simple path sg...s, of a time-disjoint FSPHMSC, sy and s;
satisfy the conditions in Proposition 4.3 because s; is later than sg, and sg, s1 are consistent.
So sg - 81 is consistent. Since reduced absolute time constraints in s; are not changed in
80 - 81, and s is later than sq, so is later than sg - s; also. Then sq - 81 - s2 is consistent. By
induction, we can obtain that sg...s, is consistent. So all the simple paths are consistent

since all the bMSCs are consistent.

Only if part. For a consistent simple path sg...s,, there is a corresponding consistent
Iposet (sp-81 ... Sp—1)Sn. According to Proposition 4.3, sg-s1 ... sp—1 and s, are consistent.
By induction, every bMSC s; in the simple path is consistent. Since all the simple paths

cover all the bMSCs, all the bMSCs are consistent. O

B.7 Proposition 5.1

PROOF. For a bMSC represented by (I, 4, E, <, I, D, T), we can build two mappings
me: B — E, and m, : A — A such that Definition 5.3 is satisfied. So a bMSC conforms to

itself.

For transitivity, if My = (I3, Ag, Es, <g, lo, D3, T) conforms to My = (I, A1, E1, <4,
l1, Dy, T1), then there are two injective mappings mei2 : By — Es, and mg12 : A1 — A
such that Definition 5.3 is satisfied. Similarly, for My and M3, if M3 conforms to Mo, then
there exist meos : o — F3, and myg93 : As — Ag such that Definition 5.3 is satisfied. We
construct two functions, m. : By — F3 and m, : A1 — Az, which are the composition of
Meas and Me12, Meos and mgo respectively. That is, me = Mea3 - Me12, Ma = Mg23 * Ma12.

Then for two events e and fin M, we have:

148

e Ife <y f, since My conforms to My, we get me12(e) <o mei2(f). Furthermore, because

Mj conforms to My, we get meas(mei2(e)) <z mezz(mer2(f)). So me(e) <3 me(f).

o my(li(e)) = maa3(mai2(li(e))) = ma2s(l2(mer2(e))) = la(meas(merz(e))) = l3(me(e)).

e If ¢ is a sending event, and D;(e) is not (0, 00), we can get Di(e) D Da(mei2(e)).
Since me12(e) is still a sending event, we get Da(meia(€)) 2 Ds(mezs(meiz(e))) =

Ds3(me(e)). So Di(e) D Ds(me(e)).

e If e is a receiving event, and D;(e) is not (0, c0), we can get Di(e) C Da(meia(e)).
Since Do (me12(e)) is also not (0, co) according to the condition of the proposition, we
get Da(meiz(e)) € Ds(meas(merz(e))) = D3(mel(e)). So Di(e) C D3(me(e)).

e Similarly to absolute time constraints, we can get Ti(e, f) 2 Ta(me(e), me(f)) if fis

a sending event, and T\ (e, f) C Th(me(e), me(f)) if fis a receiving event.

So M3 conforms to M. O

B.8 Theorem 5.1

PROOF. Since we keep the road map unchanged, for each path p in Hy, there is a corre-

sponding path p’in Hy. We prove p’ conforms to p in the follows.

¢ Since Hy is strongly consistent, p’ is consistent.

e Due to the second and the third conditions of the proposition, according to Theorem 1

in [56], all the events and orders in p are preserved in p’.

e For a reduced absolute time constraint ¢ in a bMSC in p, since each bMSC in p’

conforms to its corresponding bMSC in p, the corresponding reduced absolute time

149

constraint ¢’ in the bMSC in p’ satisfies the relation in Definition 5.2 with ¢. Because
the HMSC is upper-bound-later, the upper bounds of ¢ and ¢’ are not changed in the
Iposets representing p and p’ according to Theorem 4.3 (page 76). Since we do not
change the lower bounds of reduced absolute and relative time constraints, the lower
bounds of ¢ and ¢’ are same in the Iposets representing p and p’. So reduced absolute

time constraints in p and p’ still satisfy the defined relation.

e For a reduced relative time constraint between events within a bMSC in p, since each
bMSC in p’ conforms to its corresponding bMSC in p, the corresponding reduced
relative time constraint ¢’in a bMSC in p’satisfies the defined relation with ¢. Because
the events are within one bMSC, the relation is still kept in the Iposets representing

pand p’.

e For a reduced relative time constraint ¢ between events in different bMSCs (t is ob-
tained implicitly from relative time constraints in the same bMSC and the delay
between two bMSCs), since the delay between two bMSCs is assumed as (0, co), the
upper bound of ¢ is always oo. Because we do not change the lower bound of reduced
relative time constraints when refining an HMSC, the lower bound of ¢ is not changed.

So t is not changed after refinement.

Thus p’ conforms to p. O

150

