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ABSTRACT

Seismic Behavior of Cracked Concrete Gravity Dams

Xueye Zhu, Ph. D.

Concordia University, 2004

Two models are proposed to analyze the seismic behavior of cracked concrete
gravity dams in order to assess the safety against sliding and overturning. A proposed
rigid model first designed for cracked concrete dams considers the geometry of the
cracked dam and includes all possible modes of motion with 3 degrees-of-freedom. The
other model proposed is a flexible finite element model, which represents a penalty
approach, based on the incremental displacement constraint equations between the nodes
on both sides of the crack.

All governing equations and corresponding conditions for every mode of motion
are derived for the rigid model. Verifications show that this simple rigid model is
effective in the prediction of the seismic response of cracked dams. Its applications to the
cracked Koyna Dam and a typical dam cracked at the base demonstrate its advantages of
simplicity, accuracy and ability to reveal the important features of seismic behavior of
cracked concrete dams.

The flexible model is verified with available solutions, showing its very good
applicability in estimation of the dynamic response of cracked concrete dams, owing to

its adequate treatment of contact conditions at the crack. Its applications to Koyna Dam
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and a typical dam prove its adequacy to the cases of cracks at both the base and at a
height.

Computations with both proposed models show that the cracked Koyna Dam and
the cracked typical dam are safe under the earthquakes considered provided the effective
coefficient of friction is sufficient large. However, both models suggest that the rocking
mode must be considered since it affects the sliding displacement even if the rocking
itself is very small. The partial dam above the crack might experience drifting if severe
impact occurs. Therefore even a large coefficient of friction cannot prevent sliding. The
residual sliding displacement along the crack for a specific cracked dam depends on
factors such as coefficient of friction, water level, peak acceleration of earthquake and its
details.

The consistency of two proposed models is noted when increasing the stiffness in
the flexible model. This suggests that the rigid model is applicable to the case when the
upper part of the cracked dam is very stiff, while the flexible model is capable of

revealing more details of the seismic behavior of cracked dams.
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CHAPTER 1

INTRODUCTION TO THIS THESIS

Concrete dams are very special and important structures in civil engineering.
Their safety concerns not only economy but also lives. Therefore designers and analysts
have been working for assuring their safety, especially in cases of severe earthquake
excitations.

The safety of concrete dams relies mainly on its stability against sliding and
overturning under hydraulic pressure and ground motion. The safety of concrete dams is
traditionally checked with static stability criterion, by computing factors of safety against
sliding and overturning using a friction model of the interface zone and equivalent static
loads that represent the dynamic effects of an earthquake on the dam. It has been
observed, however, that the static stability criterion is not appropriate for evaluating the
base sliding displacement of dam due to oscillatory and transient ground motions (Chopra
and Zhang, 1991). Nor in the case when overturning is concerned due to highly
oscillatory motions with varying peak acceleration values of ground motion during
earthquakes (Saini and Krishna, 1974).

Cracks existing in concrete dams reduce their safety against sliding and
overturning. These cracks may be at the lift joints in concrete dams during their
construction. In current design practice, these joints are considered as locations where
crack opening and closing, as well as sliding, are likely to occur. Aging effects in old
concrete dams are becoming more and more visible at lift joint locations (Fronteddu et
al., 1998). Although very few concrete gravity dams have actually failed because of the

weakness at lift joints (Daay and Adeghe, 1991), it is a common fact that there exist



cracks under normal practical conditions. These cracks formed during construction or
normal usage may become crucial because of leakage and aging, and may decrease the
stability of the dam, especially under severe earthquake excitation.

Severe earthquakes may also cause cracks in concrete dams. Many dams
experienced cracking although they did not fail during earthquakes. Some dams were
damaged so severely that the crack might penetrate the monolith at certain level of the
dam, as in the case of Koyna Dam in India during the 1967 earthquake (Saini and
Krishna, 1974). This damage not only causes severe leakage, but also decreases the
stability of the dam during aftershocks. Thus in dam safety analysis, for both existing
dams, with or without cracks, and ones under design, it is essential to evaluate the
stability under severe ground motions.

Much attention of previous work in this regard was given to base sliding response
of dams. It was suggested that sliding is the major concern and other motions of the
cracked dams can be neglected (Tinawi et al., 2000; Fronteddu et al., 1998; Chopra and
Zhang, 1991; Chavez and Fenves, 1995). This reduced the complexity of the problem and
many useful results were obtained. A few studies (Fronteddu, 1998; Danny and Adeghe,
1993; El-Aidi and Hall, 1989) dealt with cracked concrete dams with more complicated
models to consider closing and opening of the crack. Although the results obtained are
limited, it is clear that the seismic behavior is very complex and sensitive to many
factors, such as fundamental assumptions for modes of motion, stiffness of the structure,
coefficient of friction, aspect ratio of the dam, water uplift pattern and depth of the water.

Stability of a damaged concrete dam, especially in the case that the crack

penetrates the dam, is concerned mainly because people are worried about the dynamic



stability during strong earthquakes when the reservoir water level is relatively high.

Although the effective coefficient of friction at the crack may be as high as or larger than
1.0 (Fronteddu, Léger, and Tinawi, 1998), it is hard to say that sliding would be

prevented (Danay and Adeghe, 1993; Fronteddu, 1997), as the geometric shape, the uplift
and static and dynamic effects of the hydraulic pressure make the dynamic response of
the cracked concrete dam so complicated that engineers need more tools to predict its
seismic behavior, before they take or do not take measures to deal with the damaged
concrete dam.

For a general cracked concrete dam, the expected movements during earthquakes
could include sliding, rocking and impact. If the impact is strong enough, the material
near the impact points might be crushed. There exists also a possibility that the portion
above the crack drifts because of hydraulic pressure, uplift and vertical momentum.
Therefore the true seismic behavior of a cracked concrete dam is very difficult to predict.

However, if strict assumptions are introduced, the major seismic behavior might
be suppressed. To reveal as fully as possible the seismic behavior of cracked concrete
dams with reasonable efforts, this study developed two models, 3-DOF rigid and IDCE
finite element models.

This study focuses on the seismic behavior of concrete dams with existing crack
formed before to reveal the characteristics of sliding, rocking and other combined
motions under earthquakes, so as to assess the safety of cracked concrete dams against
sliding and overturning.

In this thesis, the objectives of this study are described in chapter 2. The literature

is reviewed in chapter 3, in which both rigid models and finite element models are



discussed. Based on the reviewed models, two models, one of which is 3-DOF rigid
model and another is IDCE finite element model, are proposed, which are explained in
detail in chapter 4, 5 and 6. After that, the seismic behavior of three cracked concrete
dams are studied in chapter 7, in which the effects of parameters, such as the coefficient
of friction, water level and type of earthquake, are studied. Based on the studies in
chapters 5, 6 and 7, the seismic behavior of cracked concrete dams is concluded in

chapter 8.



CHAPTER II

OBJECTIVES OF THIS STUDY

The seismic behavior of a cracked concrete dam is not clear, even if much
research on it has been carried out. From previous work, it is noted that this problem is so
complicated that many assumptions, not only on the properties of material but also on the
modes of motion of the cracked dam, were introduced to study this problem. But all these
assumptions, especially on the modes of motion of the cracked dam, were introduced by,
in some sense, conceptual judgment without proof because we do not yet have accurate
solutions or experiments as references.

Logically speaking, before we become aware of the seismic behavior of cracked
dams, any assumption on modes of its motion may be a restriction to the motion,
therefore perhaps making the behavior impossible to be revealed.

For a damaged concrete dam with a crack through its section, the motion of the
portion above the crack is quite similar to that of a block resting on a frictional surface.
Therefore the seismic behavior of cracked concrete dam is, from the point of view of
structural analysis, a non-linear dynamic problem, which mainly focuses on the overall
motion of the frictionally supported body above the crack that locates at the base of the
dam or at the height where the cross section changes abruptly. |

Hence, this study aims to develop methods for the non-linear dynamic problem,
from which to reveal the seismic behavior of a cracked concrete dam in order to estimate

its safety against sliding and overturning under aftershocks.



2.1 Develop models

Considering the physical situation of the cracked concrete dam, this study
proposes two models: rigid model and finite element model.

The rigid model treats the portion above the crack as a rigid body. The crack is
also regarded as a rigid and frictional surface of unlimited length. This model just focuses
on the global motion of the upper portion of the cracked dam, omitting the local
deformation. This will help estimate the movement of the upper portion for a given
excitation.

This model is strictly speaking not applicable to the case of a crack at a height,
when the upper portion of the cracked dam rests on a limited width surface, which
violates the basic assumption in the rigid model. The upper portion of the cracked dam
might rock with respect to a middle point other than its comers after large sliding, which
is not considered in the rigid model.

Therefore a finite element model is developed as well. This model treats the dam
as elastic with plane variable-node iso-parametric elements, focusing on the contact
conditions. With this finite element model, it is expected to predict more accurately the
seismic behavior of a cracked concrete dam, as the elastic deformation and change of
contact conditions at the interface zone between the two portions are taken into

consideration.

2.2 Study the seismic behavior of a cracked concrete dam to examine
its stability
Applying the proposed models, this research studies the seismic behavior of

cracked concrete dam by taking a triangular dam with assumed crack at the base, Koyna



Dam with a crack at the crest and a typical dam cracked at both the base and at a height
as examples. Based on the seismic behavior revealed from the studies, the safety against

sliding and overturning of cracked concrete dams are estimated under seismic conditions.



CHAPTER III

LITERATURE REVIEW

There are some studies on the seismié behavior of cracked concrete dams. They
can be classified, according to the models established to describe the concrete dam, into
two categories: rigid and flexible (finite element). In the rigid models, the portion above
the crack of the concrete dam was considered as a non-deformable block with 1 or 3
degrees-of-freedom with rigid support (Chopra and Zhang, 1991) or flexible foundation
(Saini and Krishna, 1974; Danny and Adeghe, 1993; Tinawi et al., 1999; Tomas et al.,
1999). For the flexible models, the concrete dam, foundation rock and /or reservoir water
were idealized by finite elements (Danay and Adeghe, 1993; Chavez and Fenves, 1995;
Fronteddu et al., 1998; Tinawi et al., 1999; Tomas et al., 1999; Tinawi et al., 2000).

Regarding the friction at the crack surface, studies show that Mohr-Coulomb law
cannot accurately represent the characteristics of the friction features of the concrete
surface due to the interlock of the aggregates and the damage on the surface during the
seismic process. Walraven (1981) proposed a two-phase model to describe the shear
transmitting behavior, in which the strength of mortar and its plastic properties are
critical. Tassios and Vintzeleou (1987) proposed formalistic models based on the
experimental results for several surface roughnesses to study the concrete-to-concrete
friction. Studies show that the concrete strength and load history affect shear friction
capacity of a concrete crack (Walraven et al., 1987; Mohamed and Richard, 1999).
Experiments on concrete joints show that the regularity of the asperities on the surface
affects the shear strength and corresponding ductility (Kpdikara and Johnston, 1994).

Walraven (1993) proposed a model to explain and predict the behavior of concrete cracks



under cyclic loading by use of matrix strength and the coefficient of friction between the
matrix and the aggregate particles. Jefferson (1998) suggested a plastic-damage model to
simulate the joints in mass concrete structures under earthquake loading. However, the
factors affecting the shear friction models are so complicated and hard to measure that
most of the researchers adopted Mohr-Coulomb law for concrete cracks (Aslam et al.,
1980; Chopra and Zhnag, 1991; Danay and Adeghe, 1993; Chavez and Feves, 1995;

Fronteddu, 1997; Tinawi et al., 2000).

3.1 Rigid models and some results

3.1.1 Rocking-only rigid mode

Saini and Krishna (1974) studied the seismic safety against overturning for the
cracked Koyna Dam. This dam experienced a severe earthquake (Richter magnitude 6.5)
that occurred on December 11, 1967 with the epicenter very close to it. The peak ground
accelerations are 0.372g and 0.480g (the gravity acceleration) in transverse and
longitudinal directions, respectively. This earthquake caused severe damage to Koyna
Dam in that the higher monoliths of the non-flow section suffered severe distress
endangering their stability during future earthquake shocks. Figure 3.1 shows the cross-
section of the highest non-flow monoliths of the dam with an assumed horizontal crack at
the level where downstream slope changes abruptly.

Due to the fact that the actual crack may have penetrated the cross-section, its
stability was problematic. Saini and Krishna (1974) adopted a rigid model to study its
overturning stability. In their study, the top profile was considered as rigid. It was

assumed that the crack surface is also rigid and it has sufficient friction to prevent the top



profile from sliding. Therefore the only degree of freedom is rotation. The excitation to
this rigid block at the crack was the response to the earthquake of the lower portion by
modeling it as an elastic beam with varied cross-section. For the beam the first three
modes of vibration with a damping of 10 per cent were used. Figure 3.2 is the top profile
and forces applied on it. Figure 3.3 shows the rigid model adopted by Saini and Krishna.
The only degree of freedom is the rotation 6.

Their study showed that the top profile of cracked Koyna Dam will not overturn
under severe aftershock with the peak acceleration at the crack level as high as 1.3g
caused by longitudinal component of Koyna earthquake, due to the high oscillation of
varying ground peak acceleration during the earthquake.

Rectangular rigid blocks were investigated by Yim ez al (1980) to deal with the
rocking response, assuming rocking is the only mode of motion. It was shown that the
response of the block is very sensitive to small changes in its size and slenderness ratio
H/B and to the details of ground motion. However, systematic trends of response were
observed when the problem is studied from a probabilistic point of view with the ground
motion modeled as a random process.

This study showed that the block will change its rocking direction after impact for
small values of slenderness H/B. But for relative large values of slenderness, the
coefficient of restitution e, which suggests the energy dissipation during impact, has very

little effect on the rocking response.
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3.1.2 Sliding-only rigid model

Chopra and Zhang (1991) studied earthquake-induced base sliding of concrete
gravity dams by considering the dams as rigid. In this model, as shown in Figure 3.4,
only sliding was included, because rocking was considered either not easy to occur or
having not notable effect in evaluating the sliding response. The interface between the
dam base and the foundation rock followed Mohr-Coulomb law. Some results from this
study can be concluded as follows:

e The dam tends to slide only in the downstream direction because much smaller
ground acceleration is required to initiate downstream sliding compared with
upstream sliding,

e The permanent sliding displacement would be expected to increase as the coeffi-
cient of friction decreases.

o If the slope of the downstream face becomes steeper, the water depth increases, or
the uplift force increases, sliding displacement will increase.

e The permanent sliding displacement depends on the amplitudes, time variation
and duration of the ground acceleration. However, the sliding of concrete gravity
dams is limited during most earthquakes.

e The sliding displacement usually increases because of vertical ground motion.
Danay and Adeghe (1993) used a “sliding block model” as shown in Figure 3.5 to

study seismic-induced slip at the base of concrete gravity dams. The dam was considered
rigid with two lumped masses, horizontal (including the virtual mass of reservoir water)
and vertical. The rigid dam was connected to a gap-friction element, which can transmit

only shear and compressive forces, which follow Coulomb friction law. The tangential
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stiffness, which is required when the shear force is below the friction limit, is equal to the
equivalent horizontal stiffness of the sliding block model, simulating both concrete and
rock deformation.

By using this model, Danay and Adeghe studied dozens of concrete dams, and
then proposed an empirical formula for predicting the seismic-induced slip of concrete
gravity dams at the rock interface. The results from their sliding block model were
compared with finite element analysis. Table 3.1 shows the comparison of two models
for a 20.9 m high bulkhead.

This table shows that sliding from both models decreases as the coefficient of
friction increases. The sliding depends on not only the coefficient of friction, the ratio of
critical acceleration of the model to the peak acceleration of ground motion, but also the
type of ground motion. This means that details of ground motion also play a very
important role in sliding of cracked concrete dams.

This table also shows that results from two models are much different in most
cases. However, they are consistent in the order of magnitude. Therefore rigid mode can
serve as a reference before doing complicated analysis.

Tinawi et al. (1999) also used sliding-only rigid model to simulate numerically
the sliding response and to compare with the results from finite element method and
experiments.

In the shake table tests of Tinawi et al. (2000), measures were taken to avoid
rocking during the process of experiments. The rigid model gave very close prediction of
sliding to the experimental results. However, numerical simulations indicated that the

calculated results were very sensitive and only with properly selected coefficient of

12



friction could they be consistent with the experiments. Figure 3.7 illustrates the numerical
solutions and experimental results of the same specimen with different excitation inputs
for the shake table.

Tomas et al. (1999) compared their shake table experimental results with
responses by rigid models of single degree of freedom. The comparison showed that the
rigid model could predict well the behavior for low frequencies. However, it was shown
that rigid model could not simulate satisfactorily the response of the physical model

caused by the excitation of high frequencies.

3.1.3 3-DOF rectangular rigid model

Many researchers studied rectangular rigid models with 3 degrees of freedom as
shown in Figure 3.6, including sliding, rocking and other modes of motion. In this
model, all degrees of freedom, which are transverse displacement, vertical displacement
and rotation, can be represented at the centre of the mass.

Ishiyama (1982) considered all possible modes of motion and studied the
overturning problem of rectangular rigid block on a rigid floor subject to earthquake
excitations. The obtained criteria for overturning the block take into account the
horizontal acceleration and the velocity of the floor. Shenton IIand Jones (1991) also
studied a rectangular rigid block including all modes of motion and systematically
discussed all the governing equations especially those for impact. Applying the
theoretical formula, they obtained an approximate closed-form solution for a single-
mode, steady-state slide-rocking response resulting from harmonic ground acceleration.

Shenton II(1995) studied criteria for initiating motions of slide, rock, and slide-rock for

13



the rectangular block, pointing out that slide-rock can also be initiated from rest. Pompei
and Sumbatyan (1996) mentioned that disregarding of the sliding could involve mistakes

in the study of the body rotation.

3.2 Finite element models and some results

It is more reasonable to consider the flexibility of both upper portion and lower
potion of the cracked concrete dam in the study of its seismic behavior. Although other
numerical methods, such as boundary element method (Lorenzana and Garrido, 1998;
Leahy and Becker, 1999), distinct element method (Zhang et al., 1997) and discontinuous
deformation analysis (MacLaughlin et al., 2001), can be employed to deal with this
dynamic contact problem, the finite element method has been widely adopted in the
research due to its many advantages.

In the studies of seismic behavior of cracked concrete dams by using finite
element method, the major attention has been paid to the treatment of the crack surface,
meaning how to set up a model to describe the features of the interface in sliding,
opening and closing (impact).

Among the models for the crack interface, sliding-only, gap-element and smeared
element were studied and implemented in the finite element method. And some

meaningful results were obtained from previous studies.

3.2.1 Sliding-only friction model

As shown in Figure 3.8, Chavez and Fenves (1995) took a numerical approach

based on the hybrid frequency-time domain procedure to evaluate the earthquake
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response of concrete gravity dams. The nonlinear sliding behavior at the interface with
foundation rock was included. Sliding of the dam at the foundation rock interface is the
only source of non-linearity in the system. The concrete dam was idealized with finite
elements. The dam base was modeled as a rigid supported by flexible foundation rock, as
the base deformation was considered having little effect on the dynamic response. The
compressible water impounded in the reservoir was idealized as two-dimensional domain
extending to infinite in the upstream direction.

The interface between the dam and the foundation rock is assumed to be a straight
surface governed by the Mohr-Coulomb law. Zero cohesion was used for the fact that
little cohesive resistance can be expected during earthquake-induced sliding of the dam.
The value of coefficient of the friction was assumed relatively high, between 0.8 and 1.2,
to consider the roughness of the surface after the formation of the crack at the sliding
interface. Partial uplift was not considered in the solution procedure. The system was
subject to horizontal and vertical components of free-field earthquake ground motion at
the base of the dam.

Because the rocking was considered insignificant compared with sliding, only
sliding probability is included in the system. As a case study, Pine Plat Dam was
analyzed numerically to show the influence of parameters such as type of ground motion,
coefficient of friction, foundation rock flexibility and amplitude of ground acceleration.

The very important assumption implied in this sliding-only finite element model
is that the contact interface at the base plane between the dam and the foundation rock
remains straight. Only in this way, could the dam slide smoothly without impact on the

foundation rock.

15



3.2.2 Gap-friction element model

The gap element, as shown in Figure 3.9, was frequently used in both rigid
models and finite element models to simulate cracks in concrete dams due to its
simplicity.

Léger and Katsouli (1989) studied the stability of concrete gravity dams using

finite element formulation for the dam, rock and foundation. In their study, the gap-
element was used to model the interface at the base. Computation showed that non-linear
behavior of the dam-foundation rock interface reduced the seismic response of the dam.

For developing the empirical formula to estimate the sliding displacement of
concrete gravity dams, Danay and Adeghe (1993) set up a finite element model, in which
the rock foundation was represented by horizontal, vertical and rotational springs which
are connected to the mid-base point of a rigid line located underneath the base, and this
rigid line connects the concrete dam by three gap-friction elements located at mid-base,
heel and toe of the dam, as shown in Figure 3.10.

To study static and dynamic behavior of concrete lift joint interfaces, Fronteddu
(1997) and Fronteddu et al. (1998) reported an experimental study for different type of
joints. They proposed a friction formula for the lift joints, which was used for a gap-
element model (Figure 3.11). Finite element analysis showed that their friction formula
and gap-element model can be used for sliding analysis at the base or multiple joints at

different levels in concrete dams.
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3.2.3 Smeared element model

El-Aidi and Hall (1989), Bhattacharjee and Léger (1993, 1994) studied the non-
linear earthquake response of the concrete gravity dams using a finite element procedure.
The non-linear behavior at the crack was treated by means of the smearing technique, as
shown in Figure 3.12. It considered tensile cracking with subsequent opening, closing
and sliding.

In the smearing technique, the nonlinear behavior of the crack is considered in the
constitutive law of the material of the element, 1.e. changing the constitutive matrix of the
element according to the strain-stress status. Iteration is required, if sliding, opening or
closing along the smeared cracks occurs, by changing the shear stiffness to conform to
the friction law.

Pine Flat Dam was analyzed numerically to study the effect of water cavitation
and cracking on the earthquake response of the dam-water-foundation system. A two-
dimensional idealization was adopted for the dam and water in order to simplify the
analysis and reduce the computational effort. The foundation of the dam was modeled as
a rigid rectangular massless plate attached to a three-dimensional visco-elastic- half-
space. It was shown that for some cases the crack might experience 3.4 ft sliding away
from the water when the dam is subject to 1.5 times of El Centro earthquake with full

reservoir.

3.2.4 Node-to-surface contact model

Bathe and Chaudhary (1985) proposed a model to describe the contact conditions

and implemented it in the general-purpose program ADINA (1999), a powerful
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commercial finite element analysis software widely used in engineering practice and
research.

Their model, as shown in Figure 3.13, is to define a pair of surfaces to potentially
come in contact with each other in the process of calculation. One surface of the pair is
called as a target surface. The other one is termed as a contactor surface defined by
contactor nodes. At every time step the contactor nodes will be checked in order to avoid
penetration into the target surface, which in general guarantees that no penetration occurs
on both surfaces. However, the sharp angle, if any, on the target surface as shown in
Figure 3.13 is likely to penetrate the contactor surface. Of course, this penetration can be
reduced by adding more contactor nodes adjacent to the sharp angle. The model can be
briefly stated as follows:

o [f the normal contact force between a contactor node and the target surface tends
to be tensile, this node will be treated as opened in the next time step and
corresponding normal and tangential contact forces will become zero.

e If the tangential force exceeds the friction limit given by the Mohr-Coulomb
friction law, this node will be treated as sliding in next time step, and the
tangential (friction) force will be obtained by iteration to conform to the friction
law.

e If an opened contactor node comes into contact with the target surface, its contact
condition will be determined by iteration.

e However, once a contact node penetrates the target surface, the normal contact
force needs to be increased to position this node onto the target surface so as to

prevent contactor node from overlapping the target surface.
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Mathematically, this model is a Lagrange algorithm to deal with the contact
conditions by introducing the contact forces as additional unknowns in the system. So it
can be called “Force Method” to deal with contact problems.

This model has many advantages. The most important one, compared with other
models, is its ability to properly deal with large sliding due to its feature of “node-to-
surface” contact description.

Also, it is convenient to obtain the contact forces directly from the system
equations due to its treatment of contact forces as independent unknowns. Of course, this
increases the number of unknowns in the system and makes the program code more
complicated.

Another disadvantage of this model is that the penetration of target nodes through
the contactor surface is not detected. Although this penetration can be lessened in many
cases if the mesh on the contactor surface is fine enough, it is almost impossible to avoid
this in a cracked concrete dam. For example, if the bottom surface of the upper portion of
a cracked dam is defined as the contactor surface, one of the upper corners of the lower
portion of the cracked dam, which is a target node that is free to penetrate the contactor
surface, must penetrate the contactor surface when relative rocking occurs after sliding.
In this case, the algorithm will not detect the true pivot, and the upper portion will rock
with respect to a fake pivot, which is the nearest contactor node on the inner side of that
corner.

Treating the interface of the crack at the base with the similar idea as ADINA, Mir
and Taylor (1996) modeled a typical low height gravity dam monolith with the finite

element method. The monolith was tested on a shaking table without uplift pressure and
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hydrodynamic force. The analytical results of the sliding response of the monolith were
compared with slip tests, which showed good consistency only for low frequency of

excitation.

3.2.5 Node-to-node contact model

SAP2000 (1999) is also well-known finite element analysis software widely used
for structural analysis and design. It provides the special element NLLink (Non Linear
Link element) to treat the discontinuity in structures, such as gap, hook, friction,
separation and contact. This element is very suitable to describe the frictional contact
feature of the crack in concrete dams if displacement is small.

When applied to cracked concrete dams with finite element method, NLLinks can
link node pairs on both surfaces of the crack. The NLLink can only resist compression
and the magnitude of the tangential force is determined by iteration to conform to the
friction law when it reaches the friction limit.

Mathematically, this is a penalty method in which relatively large values are
assigned to the NLLink stiffness to make sure the relative displacements between the
linked nodes along the desired direction are negligible.

The advantage of this method is that no extra unknowns need to be added to the
system. This makes it easier to program in the computer code than the Lagrange method.
However, how to choose a proper “large stiffness” for the NLLink relies on the analyzer’s
experience, sometimes requiring trials.

Actually, this NLLink is principally the same as the gap-element from the point of

view of numerical analysis.
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Compared with node-to-surface contact model in ADINA in which large sliding
can be properly included, this node-to-node/gap-element method can only be applied to
the situation that relative displacements of linked nodes do not affect the response.
Therefore, it is reasonable to use this model to deal with small amount of sliding in
cracked concrete dams. Remarkable errors can be expected if quite large sliding and

rocking occur for cracked concrete dams especially when cracked at a height.

3.2.6 Some results from finite element models

Chavez and Fenves (1995) employed the sliding-only friction model to analyze
earthquake response of concrete dams including base sliding. They studied effects on the
sliding of parameters such as type of ground motion, amplitude of ground acceleration,
coefficient of friction and foundation rock ﬂexibﬂity. Figure 3.14 shows only the sliding

displacement of Pine Flat Dam (122m high) with rigid foundation rock, x =1, for three

ground motions (Taft S69E, El Centro SOOE and Pacoima S16E) with the same peak
ground acceleration of 0.4g.
Their research shows:

e Base sliding displacement accumulates in the downstream direction because the
combination of hydrostatic forces and dynamic forces exceed the shear strength of
the interface zone.

e The maximum sliding displacement is influenced by the duration and
characteristics of the free-field ground motion. A ground motion with a large

number of acceleration peaks induced more sliding than a ground motion with a
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single large pulse. A strong acceleration produces considerable larger sliding than
moderate ground motion.

Dam-foundation rock interaction generally reduces the earthquake responses of
cracked concrete dams. The assumption of rigid foundation rock can significantly
overestimate the base sliding displacement compared with more realistic
estimations obtained from including dam-foundation rock interface, particularly
for tall dams.

The sliding displacement is sensitive to the value of coefficient of friction. Taller
dams are more affected by the coefficient of friction than shorter dams. But it is
less important for dams on flexible foundation rock.

Water compressibility is also an important factor in determining the base sliding
of dams particularly with stiff foundation rock.

El-Aidi and Hall (1989) used smeared elements to simulate the assumed initial

crack in Pine Flat Dam in three cases as shown in Figure 3.15. The dash lines represent

the assumed cracks.

Simultaneous horizontal and vertical components of the 1940 El Centro

earthquake ground motion scaled in amplitude by 1.5 provided the excitation. Calculation

showed that all of the sliding takes place in the downstream direction, and the permanent

slips are about 1.9 ft, 0.9 ft and 3.4 ft for horizontal crack, inclined crack up to upstream

face and inclined crack up to downstream face, respectively. This indicates that the

direction of crack considerably affects the sliding displacement.

The calculation also shows that the top portion pivots on a single element (for

courser mesh) or several elements (for finer mesh) at each end of the crack. This
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dependence on mesh fineness certainly affects the predicted stresses at the pivots, hence

the rocking and sliding motion.

3.3 Discussion about models

3.3.1 Discussion about rigid models

A rigid model has only one or a few degrees of freedom. It is easier to implement
the analysis, especially for models of one degree of freedom. For the case that the
concrete dam has small slenderness for which rocking will not occur, the rigid model of
one degree of freedom will give a good estimation for sliding. When rocking is likely to
happen, as is unavoidable in the case of a crack at a height, a 3-DOF rigid model taking
into consideration of sliding, rocking, impact and drifting is necessary to simulate the
movement of the cracked dam.

Impact will significantly affect the seismic behavior of the cracked dam, hence
affecting its residual sliding. The local deformation (elastic or plastic) within the impact
area could be significant. Therefore the rigid model can hardly predict the seismic
response of cracked concrete dams if the impact is severe.

It is obvious that the rigid model, even with 3-DOF, is mainly suitable for very
coarse estimation of the seismic response for cracked concrete dams when impact is not
likely to happen or the impact is slight and would not affect considerably the residual
sliding. However, rigid models are very useful to give quick estimation for the seismic
behavior of cracked concrete dams and could serve as a reference for more complicate
calculation. If quite remarkable rocking is predicted with 3-DOF rigid model, a more

accurate model is suggested.
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However, previous research on cracked dams by the rigid models is quite
insufficient. It is focused on either the base sliding or the rocking alone. There is no study

with a rigid model to reveal the whole seismic behavior of cracked concrete dams.

3.3.2 Discussion about finite element models

Finite element models can adequately represent the flexibility of concrete dams,
so it is always anticipated to be more accurate than rigid models to predict the seismic
behavior of cracked concrete dams. In this kind of model, the key point is to correctly
describe the contact conditions at the crack, and this will determine the accuracy and
efficiency of the calculation.

Finite element models have many advantages, such as capability of dealing with
flexibility of the dam and foundation and of handling multiple cracks. But application of
this kind of model to a practical problem needs much more data preparation effort and
much higher computation cost than rigid models.

Finite element analyses of cracked concrete dams yielded many results to help
understand cracked concrete dams under seismic conditions. Different models were used
to analyze the dynamic response of concrete dams cracked at the base or at a height.
Much attention was paid to base sliding response, whereas the rocking mode was either
intentionally omitted or less addressed. As for the case of the crack at a height, the
present models are either applicable to the situation of small sliding or with necessity of
very fine element mesh near the ends of the crack to avoid penetration. Nevertheless
more effort is still needed to reveal thoroughly the seismic behavior of cracked concrete

dams.
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Table 3.1 Comparison of finite element block with sliding block (Danay & Adeghe, 1993)

Ratio of critical Sliding (mm)
Ground acceleration of the
motion model to‘ the peak Coefticient Finite Sliding
acceleration of the of friction clement block model
motion R=a/A H model
0.3625 0.70 1.12 2.03
Ne6D45
0.6024 0.85 0.94 0.99
0.8181 1.00 0.46 0.84
M6.5R40
0.6000 0.70 21.30 31.76
0.5057 0.85 25.50 11.50
El-Centro
0.6868 1.00 6.90 7.60
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Figure 3.1 The monolith of Koyna Dam with assumed horizontal crack
at the crest (Saini and Krishna, 1974)
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Figure 3.2 Top profile of the dam with various forces
under full reservoir water (Saini and Krishna, 1974)
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Figure 3.3 Rocking-only rigid model for overturning analysis
of the top profile (Saini and Krishna, 1974)

——-

. (Ground Acceleration)
F', (Friction force)

F,, (Uplift force)

Figure 3.4 Sliding-only rigid model (Chopra and Zhang, 1991)
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Figure 3.8 Sliding-only finite element model (Chavez and Fenves, 1995)
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CHAPTER IV

3-DOF RIGID MODEL FOR DAMS: THEORY

4.1 Introduction

For the damaged concrete dam with a crack through its section, the movement of
the upper portion above the crack can be taken as a block resting on a flexible block with
finite width and fixed at the base. If the excitation at the base is not strong enough, the
upper portion will move integrally with the lower portion, behaving like an undamaged
dam. However, there exists in general a possibility that the upper portion slides along the
crack or loses contact partially while rocking or completely while drifting when the
excitation at the base is strong enough. Once the upper portion moves with respect to the
lower portion at the crack, i.e. the contact condition between the two parts changes
because of the overall movement of the upper portion, the upper portion behaves very
much like a rigid block, as the deformation of the upper portion is relatively negligible.
The movement of the lower portion fixed to the foundation also can be neglected if
compared with the overall movement of the upper portion. Therefore the behavior of the
upper portion of a cracked concrete dam can be modeled as a rigid block resting on a
frictional surface.

For the dam cracked at the base, it is quite suitable to take the crack as infinitely
wide. Contrarily, if the crack is at a height and considerable sliding is expected, it is not
reasonable to assume the surface infinitely wide, and the contact condition is obviously
different from that of the case when the crack locates at the base of the dam, once relative

movement tangent to the crack occurs.
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Therefore, it is reasonable, on the one hand, to model the upper portion above the
crack as a rigid block resting on an infinitely wide surface to study its overall dynamic
behavior; it is not suitable, on the other hand, to apply this model when the crack locates
at a height of the dam when the upper portion slides significantly.

The surface of the crack is obviously flexible no matter where the crack is. The
crack is moving in both horizontal and vertical directions and rotating if it is at a height
of the dam. So the upper portion, taken as a rigid block, rests on a moving flexible
frictional surface. However, it can be expected that the deformation of the moving
surface is negligible compared with the overall movement when the excitation from the
foundation is strong.

Having considered the dynamic features of the upper portion of cracked concrete
dam and its geometry as well as the advantages of the 3-DOF rigid model for rectangular
block (Shenton Il and Jones 1991), a modified 3-DOF rigid model for generalized
concrete dams is proposed. All theoretical formulas will be presented in this chapter. Its

verifications and applications will be discussed in chapter 5.

4.2  Description of proposed 3-DOF rigid model
4.2.1 Geometry of the model

Unlike the rectangular block studied by many researchers (Yim, Chopra and
Penzien, 1980; Ishiyama, 1982; Shenton I, 1996; Pomlei, Scalia and Sumbatyan, 1998),

concrete dams have complex geometry and loading. These make the geometry
unsymmetrical and unequal masses in horizontal and vertical directions when the virtual

mass of water is included (Chopra and Zhang, 1991). Therefore, the expressions and
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criteria for different modes of motion should be modified accordingly. Figure 4.1 shows
the generalized geometry and loading of the 3-DOF rigid model proposed for the seismic
analysis of a concrete dam cracked at the base. With H,=0 and ¥ . replaced by the
response of the acceleration at the crack surface of the lower portion, Figure 4.1
represents the upper portion of the cracked dam, as shown in Figure 3.1 for cracked

Koyna Dam.

4.2.2 Parameters in the model
In this model, the portion above the crack is a rigid block. It rests on a rigid

surface fixed to the foundation. As shown in Figure 4.1, the geometry of this model is

described by the following parameters: the width at the top B,, the width at the change of
the section B, , the width at the bottom B, , the height of the top portion H,, the height of
the lower portion H, and the water depth H .

Considering these parameters and the mass m, of the dam, as well as mass m,, in
horizontal direction comprised of m_ and the virtual mass to approximately represent the

dynamic effect of the incompressibility of water (Westergaard 1931), the center of the

mass, denoted by H and B, or B,, and the polar moment of inertia J, with respect to

the center of the mass can be determined.

N, andF, are the contact forces normal to and tangential to the surface,
respectively, at left lower corner. N, and F, are those at right lower corner. Y . 1s the

acceleration of the support surface. P,, P, and M, represent, respectively, the

z

hydrostatic pressure, uplift force and moment with respect to the center of mass O by all
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the static forces. The rigid body has three degrees-of-freedom assigned at the center of
mass, namely horizontal displacement y, vertical displacement z and rotation ? as shown

in Figure 4.1.

4.2.3 Basic assumptions in the model

Beside the rigid assumption for the dam and the crack surface, this model has a
few extra assumptions for calculation simplicity:

Contact forces concentrate at one or both lower corners of the block. With this
assumption, the distributed contact between the block and the crack is simplified as point
contact. This assumption will not raise any problem if the whole base is in contact with
the cracked surface or the rotation corner is within the width of the crack. However, once
considerable sliding occurs and part of the base loses contact, which is very likely to
happen, one cannot expect this assumption to correctly represent the contact forces. This
assumption implies the crack surface as infinitely wide.

The rocking of the block is small. This linearizes the equation of rocking and will
not introduce noticeable errors for small rocking. In fact, present studies show that
rotation of the cracked dam is quite limited in both cases of crack at the base and at a
height.

Only horizontal ground excitation is included in the analysis in this study. This
assumption helps simplify the solution. In reality, the vertical component of the
earthquake must affect the seismic response of cracked dams, which would be involved

in later study of this model.
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4.2.4 Modes of motion in the model

Disregarding the sliding can involve mistakes in the study of rotation for
rectangular blocks (Pomlei, Scalia and Sumbatyan, 1998). The block might drift after
severe impact if both lower corners acquire upward velocities (Shenton Il and Jones,
1991). In the case of a cracked concrete dam, with the effects of horizontal hydraulic
pressure and uplift pressure, it is natural to reckon that the cracked dam is more likely to
slide, rock and drift. Therefore the proposed 3-DOF model should include all possible
modes of motion, namely sliding, rocking, slide-rocking, impact and drifting, to fully

reveal the seismic behavior of cracked concrete dams.

4.2.5 Difference from rectangular rigid model

This model differs from the isolated rectangular block model in that: a) the mass
in the horizontal direction m , including the mass of the dam m_ and the virtual mass of
the water (Westergaard, 1931), is different from the mass m_ in vertical direction which

is only the mass of the dam; and b) the distances from the mass center to the left corner

(B,) and to the right comer ( B, ) are different because of the asymmetric shape. These

make the solutions very complicated for all modes as well as corresponding criteria.

4.3 Sliding mode
4.3.1 Governing equations

When the rigid block is in pure sliding without rotation and vertical displacement
(see Figure 4.2), the motion of sliding along the horizontal direction on the surface is

governed by following equation (Kane and Levinson, 1985):
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m,(Y,+3)-P,+F, =0 (4.3.1)
where

F,=F +F =mS, N (4.3.2)
Equation (4.3.2) represents the friction law, in which y, is the kinetic coefficient
of friction between the block and the support surface. S, is the sign function of relative
sliding velocity y, of the dam at the base with respect to the surface. j is the relative
horizontal acceleration of the block. The total normal contact force N in (4.3.2) is the net

weight N, of the block:
Ny=m,g—-P (4.3.3)
From (4.3.1), (4.3.2) and (4.3.3), the governing equation for the sliding mode

becomes
y=53,-Y (4.3.4)

where

(4.3.5)

4.3.2 Conditions to maintain pure sliding mode
The angular velocity must be zero otherwise the block will rock. This leads the
requirement for moment as
FH+NB —-NB -M,=0 (4.3.6)
Considering Equations (4.3.2) and (4.3.3), the normal contact forces at both

corners can be expressed as follows:
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N,=[M,-(u,S, H~-B,)N,}/B 4.3.7)
N, =[-M,+(u,S;, H+B)N,1/B (4.3.8)
Therefore, the conditions to maintain the pure sliding motion can be obtained from

(4.3.7) and (4.3.8) by considering that both normal contact forces N, and N, are

positive:
M,/N,-B M,/N,+B, .
;1;1—0———1 <u, S—f—[—{O— when y, >0 (4.3.9)
_M_ﬂ_]‘égiﬂgﬂks_M"/g”B' when 3, <0 (43.10)

4.3.3 Conditions to initiate pure sliding mode from rest
For a given coefficient of friction, the block starts to slide, if rocking mode will
not be initiated first, when the ground acceleration is large enough to overcome the

maximum friction force:
F, =—,usS7gN0 (4.3.11)
where 4 is the static coefficient of friction.
Therefore the minimum ground acceleration to initiate pure sliding can be

obtained from (4.3.1) and le’ > u N (byassuming >0 or y <0):

(. P N
Y, 2—5+p—+  (5<0, y=0)
m}’ my
X or “4.3.12)
. P .
Y, <——p,— (>0, y=0)
my y
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From (4.3.12) it is clear that less ground acceleration is needed to initiate sliding in
downstream direction than upstream direction because of the hydraulic pressure.

The condition expressed in (4.3.12) is not sufficient to initiate the pure sliding
mode, because the block may rock if the coefficient of friction is too big. To avoid

rocking, both normal forces N, and N, must be positive. Therefore the additional

requirement to maintain this mode, besides the (4.3.12), can be obtained as

B, . B
g ~& <Y, Sg0+gl;l’~ (4.3.13)
where
B PH-M, _ N,
8o = sy & T
myH m,

From (4.3.12) and (4.3.13), the requirement to avoid rocking in terms of the

coefficient of friction becomes

B .
3 or (4.3.14)
B, .
\ﬂsSHWO (y>0)
in which
M,
= 4.3.15
Hy N H ( )

If (4.3.14) is violated, meaning that the coefficient of friction is too big, the block will

rock instead of slide from rest, when the ground acceleration is strong enough.
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4.4 Rocking mode

4.4.1 Governing equation
When rocking without sliding, the horizontal and vertical displacements at the
center of the mass depend on the rotation & (see Figure 4.3). However, there are three

equilibrium equations in the horizontal direction, the vertical direction and rotation as

follows:
m,(Y,+3)—-P, +F, =0 4.3.1)
m,(+g)-P,-N=0 (4.4.1)
J,0-M,+F,H+S,NB, =0 (4.4.2)

in which
|F,| < u,N (4.4.3)
y=—HO (4.4.4)
%=8,0B, (4.4.5)

where S, and S, are the sign functions of the rotation and angular velocity, respectively.

B;in (4.4.2) and (4.4.5) is the horizontal distance from the center of mass to the corner

around which the dam rotates. The corner around which the dam rotates can be
determined by the rocking angle ?:

B,=B,, when&>0 (4.4.6)
or

B, =B, when0<0 (4.4.7)

r
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Substituting (4.3.1), (4.4.1) and (4.4.5) into (4.4.2), the governing equation for

pure rocking becomes

myH .
Y (4.4.8)

JI g

0=0,+

where

" (4.4.9)

Jo=Jy+m H* +m B} (4.4.10)

4.4.2 Condition to maintain rocking mode
To ensure that pure sliding will not occur, the coefficient of friction should be
large enough. This yields, from (4.3.1), (4.4.1) and (4.4.3), the requirement for the

coefficient of friction as

S‘g.[my(“Yg —-6H)-P,]
S,0B.;m, + N,

o, > (4.4.11)

If (4.4.11) is violated in the process of rocking, the block will enter the status of slide-
rocking mode.

To avoid drifting, the normal contact force should be positive. From the
goveming equations (4.3.1), (4.4.1) and (4.4.2) as well as the relations (4.4.4) and (4.4.5),

this requirement can be expressed as follows:

(. P -M,/H
Voz-tn 7 Ny , 0 > 0)
m, mymZB,H/J0
3 (4.4.12)
., P -M,/H
Y, s2—2 No , @ < 0)
| m, m,m,B.H/J,
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4.4.3 Conditions to initiate rocking mode from rest
Noting in equilibrium equation (4.4.2) that when the block initiates to rock from

rest

S,B,

H

=B, 6>0

S,B,=-B,, 6<0

H r

the requirement for ground acceleration to initiate the rocking mode from rest can be

derived from (4.4.8) as

S ~Mp+PH+N;B,

£ m,H
x or (4.4.13)
g Myt PH-NB,
& m, H

Of course, the static coefficient of friction should be big enough to prevent the
block from sliding. Referring to the discussion on sliding mode, it is clear that the

requirement on the static coefficient of friction is

-

B )
Hy 2 ;1’— — Hy (¥<0)
. or (4.4.14)
B ..
My 2 EI + 14, (J>0)
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4.5 Slide-rocking mode

4.5.1 Governing equations

It is possible that sliding is initiated while the block is rocking or that rock is
initiated while it is sliding (see Figure 4.4). It was also shown (Shenton III, 1996) that the

slide-rocking mode can also be initiated from rest. In this mode, the horizontal
displacement becomes independent, yet the vertical displacement remains dependent on
the rocking degree. So the governing equations for the slide-rocking mode can be derived
from equilibrium equations (4.3.1), (4.4.1) and (4.4.2) by considering the relation

between z and y asin (4.4.5) and the friction law in (4.3.2):

_M, No (4.5.1)
Jo  Jo/[SeB(1+ 1, 5,5, H/B))]
. M
p=—Y +[P, -y ———— p1, = P / m 452
Vet s ) T is,s, mB) (+3.2)
where
Jo=Jo+m B (1+ 1, 8,5, H/B,) (4.5.3)

4.5.2 Conditions to maintain slide-rocking mode
When the block is in the slide-rocking mode, the contact corner should have
horizontal velocity, and the normal contact force must be positive to avoid drifting.

Therefore conditions to maintain this mode are

y+HO#0 (4.5.4)
and
S, —L£>-— 7o (4.5.5)
NO szl
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4.5.3 Conditions to initiate slide-rocking mode

The slide-rocking mode can be initiated from the sliding mode or the rocking
mode. If (4.3.9) or (4.3.10) is violated when the block changes the sliding direction, it
will start to slide-rock. If the ground excitation reaches such an extent that (4.4.11) is
violated for the rocking mode, it will also start to slide-rock.

To initiate the slide-rocking mode from rest, both (4.3.12) and (4.4.13) should be
fulfilled. These two conditions put requests on the shape of the block, water depth, uplift,
coefficient of friction and magnitude of exciting acceleration. That is to say the block will
start to slide-rock from rest when all the parameters are such that both (4.3.12) and

(4.4.13) are satisfied.

4.6 Drifting mode

4.6.1 Governing equations

Theoretically, it is possible that the dam loses contact with the foundation surface
(see Figure 4.5) if impact happens during severe earthquakes. In this case the three
degrees-of-freedom are completely independent and the governing equations become

relatively simple

m,(Y,+5)—P,=0 (4.6.1)
m,(Z+g)—-P. =0 (4.6.2)
JO-M,=0 (4.6.3)
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4.6.2 Condition to maintain drifting mode
To maintain this mode, both corners should be above the surface. So the condition
to maintain drifting mode is
z-S,B02>0 (4.6.4)

Once (4.6.4) is violated the block will have impacted the surface.

4.6.3 Conditions to initiate drifting mode

Because only horizontal excitation is considered in the 3-DOF rigid model, the
drifting mode cannot be initiated from rest nor pure sliding mode. Howeyver, as discussed
in the rocking and the slide-rocking modes, there are requirements to avoid loss of
contact. This means that once the conditions expressed in (4.4.12) for rocking mode or
(4.5.5) in the slide-rocking mode, the drifting mode will be initiated.

Of course, it will be shown in the next section that impact from the rocking mode
and the slid-rocking mode may also initiate the drifting mode if vertical post-impact

velocities at both corners are positive.

4.7 Impact

4.7.1 Governing equations

Impact is always expected if the rocking or slide-rocking mode occurs. Because
the block is assumed rigid, impact will take no time when one or both corners of the
block come into contact with the surface from above. At that instant, the rigid block

changes its translation velocities and angular velocity at its position. The change can be
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determined by use of momentum principle (Ishiyama, 1982; Shenton I and Jones,

1991).
Denoting the impact corner of the dam base with i, the pre-impact velocities and

post-impact velocities with subscripts 1 and 2, respectively, the momentum principle can

be expressed in three directions as (Shenton III and Jones, 1991)

[F,dt=m, (3, -, (4.7.1)
[Ndt =m, (z, - 2,) (4.7.2)
~H[F,dt-B,[N,dt+B,[N,dt=1J,0,-6) (4.7.3)

At the instant of impact, at least one of the lower corners touches the surface with

a downward vertical velocity. Therefore conditions for this mode to happen are
z—S,BA=0 and 7-S,B0<0 (4.7.4)
Substituting (4.7.1) and (4.7.2) and noting that
N=N,+N,
the momentum equation (4.7.3) for impact becomes
—Hm,y, +S, Bym, 2, +Jo6, =—Hm 3, +S, Bym, 2, +J,6,+S, B[N dt  (47.5)
in which N_ is the normal contact force at the rotating corner, B, is the horizontal
distance from the center of mass to the impact corner.
Momentum equation (4.7.5) has four unknowns, y,, Z,, 6, and Icht.
Obviously three more equations are needed to determine the post-impact terms y,, z,

and 6, , which depend on the mode prior to impact.
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4.7.2 Impact from slide-rocking mode
Approximate momentum equation
If the block is in the slide-rocking mode, both corners will contact the surface

during impact and both N, and N, as well as N, exist. Nevertheless, it is reasonable to

assume that the vertical impulse at the rotating corner, where the vertical pre-impact

velocity is zero, is much smaller than that at the impact corner (Shenton IIl and Jones,
1990). In this case, therefore, chdt on the right side of (4.7.4) can be neglected. So the

momentum equation for the impact from slide-rocking mode becomes
—Hm,p, +S; B;m,z, +J,6, =—Hm 3, + S, Bym,z, +J 6, (4.7.6)
Now two more equations are required, which can be acquired from the concept of

restitution and the consideration of friction during impact.

Restitution equation
For the collision between two rigid balls a and b, the relative separating velocity
after impact can be expressed (Kane and Levinson, 1985) in terms of the coefficient of
restitution as
Vzb —Vf = -—e(Vlb ~V)
in which V" and ¥V} are, respectively, the post-impact velocities of @ and 5 normal to the

contact surface between them, and V;* and 7> are those of pre-impact velocities. The

constant e is the coefficient of restitution. When =0, the collision is said to be inelastic;
e=1 characterizes an idealized event termed as a perfectly elastic collision. Due to energy

dissipation, the coefficient of restitution is between 0 and 1:
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0<e<l 4.7.7)
Adopting this concept in the proposed rigid mode for the cracked concrete dam
and noting that the normal post-impact velocity of the surface is zero, the vertical post-

impact velocity at the impact corner z,, for the case of impact from slide-rocking mode
canybe expressed in terms of e and the vertical pre-impact velocity z, at the same corner
as follows:

z, =—ez, (4.7.8)
where the pre-impact and post-impact velocities z,, and Z,, can be expressed in terms of
corresponding velocities at the center of mass:

z, =—S,; BO, 4.7.9)
Similar to (4.7.9), the pre-impact vertical velocity at the mass center is
2, =S, B6, (4.7.10)

The post impact vertical velocity at the impact corner can be expressed also in
terms of the vertical velocity and angular velocity at the mass center:
£, =2,-5;B,0, (4.7.11)
Substituting (4.7.9) and (4.7.11) into (4.7.8), an additional equation relating the
vertical pre-impact velocity and post-impact velocity is obtained:
z, =eS,; BO, + S, B0, (4.7.12)
Substitute (4.7.10) and (4.7.12) into (4.7.6), the governing equation for impact from

slide-rocking mode now becomes:

—Hm,y, +(J, +Bm, )0, = —Hm y, +[J, + Bim, —(1+€)BB,m, 16, (4.7.13)
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Now this momentum equation has two unknown post-impact velocities y, and 6,.
Therefore one more additional equation is required.

Obviously the horizontal velocity p, is related to the horizontal impulse _[Fydt ,

in which F, is determined by the friction law. So the last additional equation can be

obtained from the friction condition as follows to determine the post-impact velocities.

With sufficient friction

If the coefficient of friction is big enough to prevent sliding during impact, the
horizontal post-impact velocity at the base y,, will be zero:
P =0 (4.7.14)
In this case the post-impact mode is rocking. Therefore the additional equation is similar
to (4.4.4):
y, =—H®, (4.7.15)
Substituting (4.7.15) into (4.7.13) yields the post-impact angular velocity
6, =~ 3, +a, 6, (4.7.16)
where

o, (4.7.17)
o. = ol
N J0+B12mz+H2my

_Jy+Bim, —(1+e)BB;m,
J,+Blm, +H2my

p (4.7.18)

6,

From (4.7.16) it is noted that if the friction coefficient is big enough the post-

impact angular velocity is linearly related to the pre-impact velocities 7, and 6, in the

51



slide-rocking mode. By examining (4.7.17) and (4.7.18), we noted that both the geometry
of the block and the coefficient of restitution affect the post-impact angular velocity.
Substituting (4.7.16) into (4.7.12) and (4.7.15), the other two post-impact

velocities are
2, =B, 7+ By 6, (4.7.19)
¥ =H(a, 3 —a, 6, (4.7.20)
In (4.7.19), the coefficients

B,=-a,S,B, (4.7.21)

6

B, =S, (eB+a,B,) (4.7.22)

® Requirement for coefficient of friction
Knowing that the above solutions to post-impact velocities in (4.7.17), (4.7.19)
and (4.7.20) are obtained by assuming the friction is sufficient, i.e., that the following

inequality must be valid during impact:
] | Fydt' <, | | th\ (4.7.23)
From (4.3.1), (4.3.2), (4.7.19) and (4.7.20), (4.7.23) becomes

](1 —a;, H), +a, HO, [

> My
By 31 +(B,, +S,B)0,|

=
mZ

u (4.7.24)

o Consideration of impulse at the pivot corner
The above solution to impact from the slide-rocking mode is made with the

assumption that the impulse at the pivot comer is negligible. This is correct if the vertical
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post-impact velocity z,, at the pivot corner is positive. However, Z,, could be negative

from (4.7.11) and (4.7.19), meaning that the pivot corner would have a downward

velocity after impact. This conflict arises because of the neglect of impulse at this corner.
To avoid this situation, one should ensure that Z , >0, which results from (4.7.16) and
(4.7.19):

8, [, +(@; +e)6,120 (4.7.25)
If (4.7.25) is violated, the impulse chdt in (4.7.5) cannot be neglected. In this

case, we assume this impulse has a magnitude such that the vertical post-impact velocity
at the pivot corner is zero, i.e., Z,, = 0. This gives

Z,+8;B,0, =0 (4.7.26)
From (4.7.12), (4.7.15) and (4.7.26), we get the impact solution for the case that the

impulse at the pivot corner cannot be neglected:

(5, = eHO,
12, =8, B0, (4.7.27)
0, = —ef,

The friction condition (4.7.24) now becomes:

mH | |

[, > (4.7.28)

Z e s
m,(eB,+B)| HO,|

If (4.7.24) or (4.7.28) is not satisfied, the rigid block must slide during impact.
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Without sufficient friction
If the block slides when the block impacts from the slide-rocking mode, the
friction law determines the friction force. Therefore the two impulses in horizontal and

vertical directions will have the following relation:

[Fdt=u,s,, [ var (4.7.29)
where S, is the sign of y,,, the post-impact sliding velocity at the base.

Substituting (4.7.1) and (4.7.2) into (4.7.29), the friction equation for impact will
become

m,y, + 1S, mz, =m,y + S, m z, (4.7.30)

If the vertical impulse at the pivot comer is negligible, the momentum equation

for impact will remain (4.7.6). Combined with the additional equations (4.7.8) and

(4.7.30), solution to impact is as follows:

P, =7 —(1+e)pb,

A

z, =[p+1+e)y16, (4.7.31)

6, =[1-(1+e)A)6,
where

_ B/B,
1+J, /[(14,S;,, Sy HB, + B} )m, ]

p=uS, S,(B—AB,Ym_ /m
) Fm T ! y (4.7.32)
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o Requirement for coefficient of friction
Solution (4.7.31) is valid provided the vertical post-impact velocity at the pivot

corner is not negative, i.e.,

Z,=%,+S;B6,20 (4.7.33)
This yields:
J B,
<S8, S, (== 4.7.34
'uk Y T 6 (HBI H mz) ( )

(4.7.34) indicates that the solution in (4.7.31) is valid when the kinetic coefficient
of friction is below a limit defined by the geometry of the block as well as its pre- and

post- velocities.

o Consideration of impulse at the pivot corner
Similar to the case with sufficient friction, if (4.7.34) is violated, meaning that the
vertical impulse at the pivot corner should be included, we again assumed that this
impulse has such a magnitude that the vertical post-impact velocity at the pivot corner is

zero. The corresponding solution to impact is:

(7, = 3, ~[(1+¢)- B,/ Blp'6,

12, =eS; BO, (4.7.35)
6, =—eb,
where
pl=wsS, S, Bm, /m, (4.7.36)
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4.7.3 Impact from rocking mode
The impact from pure rocking mode can be taken as a simpler case of that from
slide-rocking mode. The only difference is that not only the vertical pre-impact velocity

Z, but also the horizontal pre-impact velocity y, depend on the angular velocity 91.

Therefore the solution to impact from the rocking mode can be obtained from previous

section 4.7.2 simply by introducing the relationship

y, =—H6, 4.7.37)

4.7.4 Impact from drifting mode

If the block impacts the surface from the drifting mode, there will be two cases:
one-corner impact and two-corner impact. For one-corner impact, the vertical impulse
exists only at this corner, and two more equations are needed in addition to the three
momentum equations (4.7.1.), (4.7.2) and (4.7.3). For two-corner impact, both corners

have impulses. Therefore three additional equations should be provided.

One-corner impact
In this case, momentum equations (4.7.1) and (4.7.2) remain. Knowing that only

one corner has impulse, we can modify the angular momentum (4.7.3) as
J,0, +H[F,dt+S,B,[Ndt=J,6, (4.7.38)

The restitution equation remains as (4.7.8). Another additional equation comes

from the consideration of friction as in the case of impact from slide-rocking mode.
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o With sufficient friction

If there is no sliding during impact, the horizontal post-impact velocity will be

zero. Therefore the governing equations for one-corner impact from the drifting mode

with sufficient friction can be deduced by substituting (4.7.1) and (4.7.2) into (4.7.38)

and considering (4.7.8) and (4.7.14):

122 — SaBigz = —6(21 "SaBiél)

3, +HO, =0

The corresponding solution to (4.7.39) is

-

in which

(—m Hy, +S,Bm,z, +J 0, =—m Hp, +SyBm, 2 +J b,

. . H . )
Yy =0, Y, — 0, 34 —w; HO

3 .
V22 = S0y, 7 1+ (So@, — )%, + 5, B,(@, + )6,

w;, =m,H*/J;
o, =S,B'm_1J,

w, =(J,—eB'm)/J}

Jo=Jo+m,H* +m B}

(4.7.39)

(4.7.40)

(4.7.41)

(4.7.42)
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To make sure the solution (4.7.40) is valid, the friction condition (4.7.23) must be

satisfied. Otherwise, the block slides during impact of the surface with one corner.

o Without sufficient friction
In this case, the first two governing equations in (4.7.39) remain. The third
governing equation will be replaced by (4.7.30) which considers the friction law. The

corresponding solution is

[ m, (1+e)é ,. :
Yy =0+ 1S5, A+e) (2, —S,B:6))
m, o

. l-eo . (1+e)d
1z, = +8,B, 0 (4.7.43)
& 1+6 21T 2 1+8 !

. l+e . O8-e,

0,=35, 2+ 1

i (1+0)B, 1+6

where

o= Jo
(,ukSyz,, SoH + B,)B;m,

(4.7.44)

Obviously, solution (4.7.43) is valid when (4.7.23) is violated.

Two-corner impact

If @ =0 when the block impacts the surface from the drifting mode, both lower
corners will have impulses in both directions. Considering the restitution equations at
both corners as well as the friction condition, we have three equations to determine post-

impact velocities.
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o With sufficient friction
Applying (4.7.8) to both corners and noting (4.7.14), we have the governing

equations

s

Z, _B192 =—e(z, _B191)

12, + B0, = —e(z, + B,60)) (4.7.45)

y, +HO, =0

The corresponding solution for which is

7, = eHb,
\ 2, = —ez, (4.7.46)
0, =—eb,

This solution is valid provided that (4.7.23) is satisfied. Otherwise, the block will slide

during impact, which is the case without sufficient friction.

o Without sufficient friction
If (4.7.23) is violated, it means that friction is insufficient to prevent the block
from sliding during impact. In this case, the first two equations in (4.7.45) remain, and
the third equation will be replaced by (4.7.30) which relates the friction and normal
forces according to the friction law. The corresponding solution to the post-impact

velocities is
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. . m, .
Y2 =0 +/ukSy'zb —(+e)
my

< (4.7.47)

Z, =—€z;

6, = —eb,

4.8 Remarks

Owing to the basic assumptions in section 4.2.3, the proposed 3-DOF model can
be analytically solved for sliding, rocking, slide-rocking and drifting modes. Regarding
impact, the solution relies on the two additional assumptions: one is the restitution
equation, which is adopted from the collision between two rigid balls; another is either
assuming that the vertical impulse at the pivot corner is negligible, or this impulse is such
that the post-impact vertical velocity at this corner is zero.

This means we do not have enough equations to describe the post-impact status of
a rigid block, owing to the fundamental assumption of being rigid. Therefore the solution
for impact is an estimation based on the additional assumptions. This implies that more
proper approaches, which involve the deformation of the block, may handle the impact

issue better for a cracked concrete dam.
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Figure 4.2 3-DOF rigid model: pure sliding
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Figure 4.4 3-DOF rigid model: slide rocking
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Figure 4.5 3-DOF rigid model: drifting
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CHAPTER V

3-DOF RIGID MODEL: VERIFICATIONS AND APPLICATIONS

5.1 Introduction

The 3-DOF rigid model described in the last chapter is developed based on the
rectangular rigid model (Shenton III and Jones, 1991). Due to the generality of the
geometry shape of the dam as well as the change between modes such as rest, sliding,
rocking, slide-rocking, drifting and impact, the solution procedure becomes very
complex. To implement this model, a program S4D-R (Seismic Analysis of cracked
concrete Dam with Rigid model) was developed. This chapter will verify through some
examples the validity of this rigid model, and then apply it to analyze the seismic

behavior of cracked concrete dams.

5.2 Verification of sliding mode with a rectangular block

To verify the pure sliding mode, a 1x1 meter square block shown in Figure 5.1
was studied. This block rests on a rigid surface with coefficient of friction of 0.2.
Therefore the requirement of ground acceleration to initiate sliding from (4.3.12) is

¥, 202g

From (4.3.14), the requirement for coefficient of friction to avoid rocking

becomes

a, <1
Therefore this block will slide without rocking. Two cases of sliding were tested. One is

the sudden impulse movement of the surface shown in Figure 5.2, which causes sliding in
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one direction. The other one is the periodic excitation of a sine wave from the surface

illustrated in Figure 5.3, which causes the block to slide back and forth on the surface.

5.2.1 Subjected to a sudden impulse
Because the constant acceleration in Figure 5.2 is 0.8g, the block will start to slide
at the beginning of the impulse. Then the block will keep sliding until it stops without
rocking. Actually, the theoretical solution to this problem can be deduced from following
equation:
j+Y,+02S,g=0 .1
According to the initial conditions:

y(0)=0

»(0)=0
the solution can be obtained as below:

(y=-03gs?, 0<t<0.1s

1y =0.1gf> —0.08gt +0.004g, 0.1s<7<0.4s

\y=0, t=04s

Figure 5.4 illustrates the sliding of this block due to the sudden impulse. The

result by the 3-DOF is exactly the same as the above theoretical solution.

5.2.2 Subjected to a sinusoidal excitation
Differing from the case of impulse in only one direction as in Figure 5.2, Figure

5.3 shows a sinusoidal excitation;
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.. /4
Y, =0.5gsin(——¢
£ gsm(O'z )

Substitute this ground acceleration into (5.1), the solution for sliding and its velocity can
be derived as
1 b/ 4 /4
y =0.1g[—(cos—t —cos—1¢_)—2S, (t—t
y g[”( 02 02 p) =28, t—t,)]

(5.2)

__8
507*

. .7 1 V4
(sm63t—31n—t )—%(r—tp)[;cosEtP+Syb t-t)]+y,

Y 02'”

in which y and ¢,, are respectively, the sliding and corresponding time when sliding
velocity is zero. £ is the time following ¢, which can be determined as

0.026198s
0.261845s
0.454995s
0.657297s
0.856571s
1.056805s

1.256730s

[1.456755s

The sliding from the proposed 3-DOF model also is exactly the same as expressed

in (5.2) plotted in Figure 5.5.
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5.3 Verification of rocking mode with rectangular blocks

5.3.1 Rectangular block with large slenderness (H/B)

A rectangular block with slenderness of 3.0 and coefficient of friction of 1.0, as
shown in Figure 5.6 is studied. This block is subject to the same impulse shown in Figure
5.2. From the conditions in (4.4.13) and (4.4.14), both ground acceleration and static
coefficient of friction fulfill the requirements to initiate rocking without sliding.
Substituting all the parameters into (4.4.11) we know this block will maintain the mode
of rocking in the process.

To verify the rocking mode, the block was also studied with ADINA (1999). For

ADINA, the modulus E =20GPa, v =0, p=2650kg/m’, and the damping effect was

neglected. It was noted that time step of 0.0001 seconds gave almost the same results as
0.00005 seconds, but quite different from 0.0002 seconds. Therefore 0.00005 seconds
was chosen for the time step.

The rocking results of the block by the proposed 3-DOF rigid model and by
ADINA are plotted in Figure 5.7. Figure 5.8 illustrates the mode of motion during the
process. It is shown from Figure 5.7 that the 3-DOF rigid model with coefficient of
restitution of 0.5 can describe the rocking of the block with satisfactory accuracy
compared with complex finite element analysis. The effectiveness of the coefficient of
restitution will become considerable after several impacts happen. Figure 5.8 also
indicates that the block will drift for a period of time after each impact. It is worthy to
mention that the corresponding ADINA analysis is not only time consuming for

calculation and data preparation but also needs many trial and error attempts, as it is very
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hard to get the result to converge. On the contrary, the proposed 3-DOF rigid model just
spends a few seconds to carry out the computation.

From Figure 5.7, it is clear that the block with large aspect ratio keeps its
direction of rocking after impact, which means that the rotation corner alters but the
angular velocity remains. This coincides with the laboratory test of Aslam ez al. (1980).
The rocking response also shows that the coefficient of restitution affects the response
but not by much. The difference for ¢=0.5 and ¢=0.9 is not differentiable until several
impacts have occurred. This fact was also reported by Yim et al. (1980), i.e., the effect of

coefficient of restitution for a block with large aspect ratio can be neglected.

5.3.2 Rectangular block with small slenderness (H/B)

For a block with small slenderness as shown in Figure 5.9, it is likely to change its
direction of rocking after impact. Contrary to the case of large slenderness, the block
maintains its corner of rotation and rocks in the opposite direction after impact. To
initiate the block in Figure 5.9 to rock before sliding, an impulse similar to that in Figure
5.2 with the change of acceleration to 2.0g is applied. In the case of small slenderness, the
coefficient of restitution will be crucial to determine the post-impact velocities.

In the case of slender block the coefficient a, in (4.7.18) is positive, and the

angular velocity will maintain its direction. However, in the case of small slenderness, the
impact will change the direction of angular velocity of the block.

Figure 5.10 illustrates the rocking of the block in Figure 5.9 from SAD-R (with
e=0.5) as well as from ADINA (damping is neglected). Calculations show that the

coefficient of restitution determines the post impact behavior of the block. Only with
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properly selected coefficient of restitution can the rigid model adequately estimate the
rocking-impact behavior of the block. And the block will change its rocking direction,
regardless the value of coefficient of restitution, as assumed in the overturning study of
Saini and Krishna (1974).

Figure 5.11 indicates that the block also experiences drifting motion after impact
as in the case of large slenderness. The ADINA calculation also shows this phenomenon
of drifting, which is indicated as straight segments in the curve. The drifting period

becomes shorter and shorter, and then the block resumes at the end its status of rest.

5.4 Application to a triangular dam

As an application of the 3-DOF rigid model, an idealized triangular concrete dam
(Chopra and Zhang, 1991) with full reservoir of water is studied. Figure 5.12 shows the
dam, which is assumed to be cracked at the base. The height of the dam 4 is 100 meters.

The width at the base B is 80 meters. The density of the water p, is 1000 kg/m’. The
density of the dam p, is 2430 kg/m’. The coefficient of friction at crack is 1.0. The uplift

pattern is cut-off triangular. The sliding of the dam excited by Taft S69E ground motion
scaled to 0.5g of peak acceleration is illustrated in Figure 5.13, which is the same as the
results by Chopra and Zhang (1991).

Calculation shows that this cracked dam will not rock under the given conditions.
Therefore the coefficient of restitution has no effect on the response and only the sliding
mode is initiated. This may be the reason that many researchers suggested to neglect

rocking mode in estimation of the sliding in a dam cracked at the base.
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However, strong ground motion may cause the cracked dam to rock if the
aggregate interlock at the crack provides even higher effective coefficient of friction.
Figure 5.14 and 5.15 illustrate sliding and rocking responses, respectively, of the same

dam with g, =y, =14 and e=0.75due to the same Taft S69E earthquake scaled to

0.8g of peak value of ground motion.

Figure 5.14 shows that the cracked dam will rock but the magnitude is quite

small. The peak rotation is just 2.15x10™° radians, and the corresponding gap at the
upstream face is just 1.72 mm. However, this rocking affects the so-called sliding, which
is actually the accumulated horizontal displacement in the modes of sliding, slide-rocking
and drifting. The overall sliding and its components in the different modes are shown in
Figure 5.15.

From Figure 5.15 we can see that rocking and slide-rocking modes may happen
for a cracked dam in some circumstances. Ignoring the rocking and slide-rocking modes
may under estimate the overall sliding of cracked dam. In Figure 5.15, the components of
slide-rocking mode and drifting mode comprise 24.8% and 44.8%, respectively, of the
overall horizontal displacement.

Because of the effect of aggregate interlock at the crack, it is hard to believe that
the cracked dam will drift when the opening of the crack is as small as a few millimeters.
However, the interlock effectiveness at the crack must be lessened, as the drifting
intention of the block above the crack will cause horizontal impact, hence damaging the
interlock at the crack. Therefore the effectiveness of the coefficient of friction will be

lessened as a consequence and more sliding will be induced.
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5.5 Application to cracked Koyna Dam

5.5.1 Introduction to Koyna Dam and its overturning study

The Koyna Dam in India, as shown in Figure 3.1, cracked in its highest non-
overflow monolith at the level where there was an abrupt change in the downstream
slope. During the severe earthquake on December 11, 1967 its epicenter was very close to
the dam site. The stability of the top profile of this monolith of the dam above the crack
was of concern, because it may rock during aftershocks as a free body without any
restraint except aggregate effect at the crack surface. With the hydraulic pressure and
uplift pressure, there exists a possibility that the upper part rocks, impacts and even drifts
if the rock is substantial. |

Saimi and Krishna’s study (1974) showed that the upper part is safe against
overturning, This means that the upper part will rock but within limited angle and will not
overturn. These results were obtained based on following assumptions:

Rigid assumption. The top profile of the monolith was treated as a rigid body and
the mass was assumed to be concentrated at its center of gravity and treated as a point
mass. The crack surface was also assumed to be rigid.

No sliding. The friction at the crack level between the upper and lower parts of
the monolith is sufficient that no sliding of the top profile would take place. The
coefficient of friction at the cracked concrete surface was expected to be larger than 1.0
because of the aggregate interaction.

Just rocking. The only possible mode of motion was rocking. The possibility of

drifting due to impact was ignored. The virtual mass of water was assumed to be acting at
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the center of gravity of the rigid body, that is, at a point which is at a higher elevation
than the actual point of action to obtain rocking on the conservative side.

Impact assumption. For impact, the following assumption was used:

0 (after impact)=— e8 (before impact) (5.3)
This assumption is identical to the last equation in (4.7.27). This means it was assumed
that the pivot corner has such an impulse that its vertical post-velocity is always zero.
Therefore the upper portion will keep its corner of rotation once it starts to rock. The
crack will open and close at either upstream face or downstream face till rocking stops.
The corner of rotation may change only when the rocking stops and another rocking is
initiated with respect to other corner (as indicated in Figure 5.18).

Uniformed uplift pressure. The uplift pressure was 100 per cent water pressure
throughout the crack. Although this assumption is not practical, it was believed to yield a
conservative rocking.

Considering only horizontal vibration at the crack level. The crack level will
vibrate horizontally, vertically and rotationally under the excitation of transverse
component of the earthquake. However, only the horizontal component of motion at the
crack level was considered.

Records of both components of the earthquake are shown in Figures 5.16 and 5.17
were used to study the stability of the top profile of the highest monolith. The vibrations
transmitted at the crack level, which excited the top part, was obtained by considering the
lower part as a non-uniform cantilever beam fixed at the base and with a concentrated
mass attached at the crack to represent the effect of the top part. The damping ratio is 10

percent of the critical damping.
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The rocking response by Saini and Krishna is shown in Figure 5.18. The study
indicated that cracked monolith of Koyna Dam will not overturn under severe earthquake

ground motion and that Koyna Dam would be stable under similar aftershocks.

5.5.2 Approach to analyze the stability of Koyna Dam in present study

In the present study, a similar approach is adopted. The differences are in that:

Vibration at the crack level is obtained by finite element method. The vibration
at the crack level due to the ground motion is obtained by finite element method with
ADINA, which uniformly attaches along the crack the mass of the upper portion of the
cracked dam and distributes along the upstream face the virtual mass of the water.
Besides the transverse component of Koyna earthquake shown in Figure 5.16, the
longitudinal component of the earthquake shown in Figure 5.17 was also imposed
independently in the transverse direction in order to consider possible stronger ground
motion.

Horizontal responses of acceleration at the crack level due to both the components
applied in the transverse direction are respectively illustrated in Figure 5.19 and 5.20

Three values of coefficient of friction are tested. Three values 0.8, 1.0 and 1.2
for coefficient of friction at the crack are adopted to study the effectiveness of this
parameter on the response. 0.8 is used as the lower limit of the coefficient of friction at
the crack to check the upper limit of sliding. 1.2 is used as the upper limit of the
coefficient of friction to check the lower limit of sliding.

Two patterns of uplift pressure are adopted. Uniform uplift pressure is adopted

to compare with Saini and Krishna’s results. Considering the geometry of the upper part
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of the cracked monolith, it is noted that the resultant of a uniform uplift pressure will
provide a counter clockwise moment with respect to the center of the mass. This moment
will decrease the rocking in the downstream direction. Therefore, a triangular uplift
pressure, which is considered more practical, will result in a clockwise moment
increasing the downstream rocking. So the triangular uplift pressure is also employed for

the purpose of comparison.

5.5.3 Analysis of the responses of the upper part of the cracked monolith

Seismic behavior of the upper part of the cracked monolith is studied with the
proposed 3-DOF rigid model and summarized in Table 5.1 for two components of
earthquake, two patterns of uplift pressure and three coefficients of friction. From these
responses, we can analyze the behavior of the cracked dam and judge its stability for both
overturning and sliding.

The upper part is safe in overturning for all considered cases. Calculations
show that the upper part stops rocking after the excitation transmitted from the crack
vanishes for all considered cases. From Table 5.1, the largest downstream rocking is
0.0142 radians and occurs in the case of longitudinal earthquake component, uniform
uplift pressure and coefficient of friction 1.0. The largest upstream rocking 0.00586
radians happens in the same case. The corresponding openings of the crack are 289.5 mm
and 119.3 mm at upstream and downstream faces, respectively. As shown in Figure 5.21
for this case, these two peak rotations occur just once. The rocking declines very quickly

as the excitation at the crack level stops due to damping and impact.
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The upper part is likely to rock more in downstream direction than in upstream
direction. Because of the hydraulic pressure, the upper part is likely to rock more in the
downstream direction. For instance as shown in Figure 5.22, the peak rocking in the
downstream direction for the longitudinal component with triangle uplift pressure is
0.00264, 0.00294 and 0.00291 for coefficient of friction 0.8, 1.0 and 2.0, respectively.
And the corresponding peak rocking in upstream direction is 0.00134, 0.00119 and
0.00119 radians, respectively. The same phenomenon is noted for other cases except in
the case of transverse component of earthquake with unrealistic uniform uplift pressure.

The upper part changes its corner to rock after impact. Comparing the present
results shown in Figure 5. 21 and 5.22 with Figure 5.18, it is found that the proposed 3-
DOF rigid model predicts completely different pattern of rocking from Saini and Krishna
(1974) for the upper part of the cracked monolith.

All calculations show that the upper part rocks in a pattern that it changes its
comer of rocking after impact. The crack opens and closes at upstream face and
downstream face alternatively. This is due to the property of the 3-DOF rigid model that
is able to determine the post impact velocities for translations and rotation according to
the geometric shape of the dam and its pre-impact status, which is different from the
assumed relationship between the post and pre- impact velocities as expressed in (5.3).

Longitudinal component induces larger rocking. From Table 5.1, it is noted that
the longitudinal component induces larger rocking than transverse component for all
coefficients of friction. For instance, in the case of triangular uplift pressure and

coefficient of friction of 1.2, the downstream (clockwise) peak rocking for the transverse

component is 7.7x10*radians. The same term for the longitudinal component is
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29.1x10™ radians. The corresponding upstream (counter clockwise) peak rocking are

5.7x10*radians and 11.9x107*radians, respectively, for transverse and longitudinal
components.

Larger coefficient of friction generally induces larger rocking. According to
Table 5.1 and Figure 5.21, larger coefficient of friction induces larger rocking. The peak
rocking for coefficient of friction of 0.8 is less than that for 1.0 and 1.2 in both directions
except the upstream direction rocking in the case of triangular uplift pressure and
longitudinal component of earthquake. But for larger coefficients of friction, 1.0 and 1.2,
it is not consistent. In downstream direction the peak rocking for coefficient of friction
1.0 is larger than that for coefficient of friction 1.2 except in the case of triangular uplift
pressure and transverse component of earthquake. These indicate that rocking of the
upper part is not always consistent with the coefficient of friction because of the non-
linearity of the dynamic contact features.

Uniform uplift pressure doesn’t necessarily yield larger rocking. For coefficient
of friction 1.0 and 1.2, if the longitudinal record is applied, the uniform uplift pressure
really yields larger rocking in both directions than the triangular uplift pressure.
However, it is just the opposite for coefficient of friction 0.8. For the case that transverse
component is considered, uniform uplift pressure gives less rocking for coefficient of
friction 0.8 and 1.2.

The inconsistency arises from the non-linearity of the problem and the fact that
the uniform uplift pressure results in a counter clockwise moment but the triangular uplift
pressure results in a clockwise moment. Whether or not the chosen uplift pattern will

yield conservative rocking depends on in which direction that the upper part rocks.
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Large coefficient of friction cannot prevent the upper part from “sliding”.
Figure 5.23 shows the horizontal displacement for coefficient of friction 1.2. From Figure
5.23 as well as the summary in Table 5.1 for residual sliding, it is noted that the upper
part will slide to downstream for all cases due to hydraulic pressure. The residual sliding
of the upper part can be 342.4 mm even if the coefficient of friction is as large as 1.2 in
the case of longitudinal component of earthquake and uniform uplift pressure. In the
more realistic case of triangle uplift pressure, the corresponding residual sliding is still
164.5 mm. This means the upper part of the cracked monolith can move downstream
under strong excitation.

This phenomenon is due to the fact that although the aggregate interlock can
prevent the upper part from sliding, as indicated in Table 5.1 that there is no pure sliding
for coefficient of friction 1.2. Other modes of motion, like rocking, will reduce the
normal contact force so that the upper part may slide while it rocks back to impact the
surface. The more severe case is when both corners acquire upward velocities after
impact and the upper part enters into the mode of drifting under hydraulic pressure.

Longitudinal component induces larger residual sliding than transverse
component. Figure 5.23 shows clearly that longitudinal component induces much larger
residual sliding than the transverse component. This is consistent for all coefficient of
friction. For instance, in the case of coefficient of friction 1.0 with triangular uplift
pressure, the residual sliding are 195.7 mm and 39.1 mm, respectively, for longitudinal

and transverse components.
Larger coefficient of friction generally induces less residual sliding. Except in

the case of transverse component with triangular uplift pressure, it is quite obvious that
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larger coefficient of friction induces less residual sliding. In the case of longitudinal
component of earthquake with triangular uplift pressure, for example, Figure 5.24 and
Table 5.1 indicate that the residual sliding for coefficient of friction 0.8, 1.0 and 1.2 are
669.5 mm, 195.7 mm and 164.5 mm, respectively.

However, due to the non-linearity of the problem, impact may cause
inconsistency for residual sliding. For instance, in the case of transverse component with
triangular uplift pressure, the coefficient of friction 1.0 gives 39.1 mm residual sliding,
which is less than the corresponding value 41.5 mm for coefficient of friction 1.2.

Sliding component decreases and drifting component increases as coefficient of
friction increases. 1t is common sense to expect that the sliding displacement decrease as
the coefficient of friction increase. If the aggregate interlock is very effective, the
effective coefficient of friction can be larger than 1.0. Therefore it is quite natural to
suggest that the sliding mode could be neglected for the case that aggregate interlock at
the crack surface is high, as assumed in Saini and Krishna’s study (1974).

However, in the situations such as the cracked Koyna Dam when rocking is
unavoidable, residual sliding, which comprises horizontal displacements in sliding mode,
slide-rocking mode and drifting mode, will be occur even if an impractical high
coefficient of friction is adopted. The reasons are that rocking can lessen the normal
contact force to cause the upper part to slide and that impact may cause it to drift. Figure
5.25 illustrates the components of horizontal displacement from different modes for the
case that transverse component of the earthquake is used with triangle uplift pressure and

coefficient of friction 0.8.
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From Table 5.1, it is noted that the pure sliding mode never happens for
coefficient of friction 1.0 and 1.2. The component of slide-rocking mode decreases as the
coefficient of friction increases but does not vanish even if the coefficient of friction is as
high as 1.2. This means that rocking reduces the normal contact force and this causes the
upper part to slide while rocking.

The component of the drifting mode in the residual sliding increases consistently
as the coefficient of friction increases. For longitudinal component with triangular uplift,
the drifting mode contributes to the residual sliding 41.7%, 80.3% and 92.0% for

coefficient of friction 0.8, 1.0 and 1.0, respectively.

5.5.4 Conclusions about the stability of cracked Koyna Dam

According to the above discussion and taking the triangular uplift pressure as
realistic, we can conclude as follows:

The upper part of the cracked monolith will remain stable if the same earthquake
as the Koyna earthquake of 1967 occurs again. The longitudinal earthquake component
with larger peak acceleration than the transverse component will induce larger but limited
rocking, which causes about 60 mm and 24 mm openings at upstream and downstream
faces, respectively.

The aggregate effect at the crack surface cannot prevent the upper part from
moving in the downstream direction. The upper part may slide while rocking or drifting
after severe impact. The downstream residual sliding will be less than 200 mm if the

aggregate effect provides an effective coefficient of friction no less than 1.0.
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CHAPTER VI

FEM MODEL: IDCE FOR CONTACT SURFACE

6.1 Introduction

Finite element analysis of cracked concrete dams has been carried out to study the
seismic responses with the challenge of how to properly treat the crack. As the crack
separates the cracked dam into two parts, the whole system becomes anon-linear dynamic
system under seismic conditions. The top part is frictionally supported by the lower part
fixed at the base where excitation is imposed. If both parts are stuck together the whole
structure can be treated as an integrated body. However, for the cracked concrete dam, it
is unavoidable that the top part will slip or lose contact locally or even slide and rock as a
whole, especially under seismic loading conditions.

Once overall sliding or rocking starts, the upper part behaves like a block on a
flexible and vibrating base. This block has the possibility to slide and rock. If relative
rocking occurs, impact will follow. At the instant of impact, the local deformation and
local vibration will be considerable and their calculation accuracy will determine the
dynamic behavior afterwards. If not properly treated, the system will acquire artificial
energy and may be out of balance in the process of numerical calculation.

Existing finite element analyses of cracked concrete dams treat the crack as a
contact surface with the contact of node-to-node or node-to-surface. The node-to-node
model was adopted in static analysis (Okamoto and Nakazawa, 1979; Kikuchi, 1982;
Lee, 1994) as well as in dynamic analysis. Danay and Adeghe (1991), Fronteddu (1997)
and Fronteddu et al. (1998) analyzed the seismic response of cracked concrete dams with

Gap-friction models to describe the behavior of the crack. El-Aidi and Hall (1989) and
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Bhattacharjee and Léger (1993) employed the smeared element technique in the crack
propagation analysis as well as to predict sliding of the cracked concrete dam. Both fhe
Gap-friction model and the smeared element technique maintain the element connections
during the seismic procedure, which are suitable for the case of small displacement.
Therefore these kinds of node-to-node models will not introduce noticeable errors if the
relative sliding in the cracked concrete dam is insignificant during the seismic procedure.
However, considerable sliding in some cases may be expected, where the variable contact
conditions at the crack of the cracked concrete dam needs more accurate description.

As for the node-to-surface model as in ADINA (1999), Bathe and Chaudhary
(1985) and Mir and Taylor (1996) eliminated the disadvantage of the node-to-node
contact model; the contact conditions along the contact surface are updated from time to
time according to the current configurations of the structure at the moment. Therefore the
node-to-surface models are capable of dealing with the dynamic contact conditions in
cracked concrete dams for both small and large sliding along the crack.

Nevertheless the phenomenon of penetration into one contact surface by another
was noted in the node-to-surface model, as shown in Figure 3.13 and discussed in section
3.2.4. If this model is applied to a concrete dam cracked at a height where the contact
surfaces have sharp angles at the ends of the crack, the penetration is unavoidable when
the upper part slides and rocks. Of course, this penetration can be lightened with a very
fine mesh near both ends of the crack, which would increase tremendously the
computation cost.

From the numerical computation point of view, contact models can be classified

into two traditional approaches: the penalty approach and the Lagrangian multiplier

94



method. Penalty approach, considered as a “stiffness” method, has been widely used in
finite element analysis for contact problems (Kikuchi, 1982; Hallquist et al., 1985;
Bittencourt and Creus, 1998). It fulfills the compatibility equations at the crack by simply
introducing a penalty, a large stiffness, without adding any extra unknowns or needing
extra treatment in computation. The computation accuracy depends on the magnitude of
the penalty. The larger the penalty, the better will be the obtained accuracy of results.
Very large stiffness, however, will cause numerical difficulties in many cases due to ill-
conditioning of the matrix of the structure.

The potential functional of the whole system consists of the functional IT_(U) in

two elastic parts and that of the contact forces. Referring to the frictionless case studied
by Bittencourt and Creus (1998), the total potential functional IT(U) for the frictional

contact problem by the penalty method is
H(U):HE(U)+%5ng—TTu (6.1.1)

where U is the vector of nodal displacements of the system;& is a positive penalty

number; g is the vector of node gaps of which elements are all zeroes if opened; T is the

vector of friction forces which is unknown a priori and related to the penalty number;
and u is the vector of tangential slip. Equilibrium equations are obtained by minimizing
the potential with respect to the unknowns:

ane T 6g
+ —
v % U

F=0 (6.1.2)

where F' is the force vector resulting from the friction forces.
The first term of (6.1.2) includes the potential of internal strains and external

forces. Therefore

95



f)aHUe =MU+CU+KU-R (6.1.3)

where M is the consistent mass matrix; C is the damping matrix; K, is the elastic

stiffness matrix; and R is the vector of external load applied on the system other than the
contact forces.

The second term of (6.1.2) leads to the normal contact forces

r 0g
2L =KU 6.1.4
£g U K ( )

where K_ is the contact stiffness matrix. Therefore, the penalty method will have the
equilibrium equations
MU+CU+(K,+K)U=R+F (6.1.5)
Without the difficulty in choosing the big stiffness in penalty approach, the
Lagrangian method (Bathe, 1999; Bathe and Miailovich, 1988) is an alternative approach,
which can be viewed as “force method”. Bathe and Chaudhary (1985) developed a
solution algorithm for analysis of the general contact condition with classical Lagrangian
multiplier method for static planar and axisymmetric contact problems, in which contact
forces were treated as independent unknowns. These extra variables require more
computation effort and additional treatment is needed to handle the presence of zero
diagonal elements in the global stiffness matrix even if the crack remains closed. This
algorithm was extended to dynamic analysis of three-dimensional contact problems
(Chaudhar and Bathe, 1986).
Basically the potential functional of the system in the Lagrangian method can be

expressed in incremental form (Bathe and Chaudhary, 1985):
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(U, ) =7, (U)-D.W, (6.1.6)

where 7, is the usual incremental total potential leading to the incremental equilibrium

equations without contact conditions, and ZWk is the incremental potential of the
k

contact forces. Variation of (6.1.6) leads to governing finite element equations

t+AtK(i—l) O . [t+AtK (i—l)] AU(i) _ t+AtR_t+AtF(i—1)+t+AtR£i—1) (6 : 7)
0 0 c AL - 1+ A(é—l) st

where K “Vis the usual tangent stiffness at time ¢+ Az after iteration i—1; “*K ™

is the contact stiffness; **R is the vector of total applied external forces at time ¢+ Af;

& RUD s the vector of updated contact forces after iteration i —1; ““F %™ is the vector
of nodal point forces equivalent to element stresses after iteration i —1; “*A%™" is the

vector of overlaps; AU is the vector of incremental displacements in iteration i; and

AA? is the vector of increments in contact forces in iteration i, which are interpreted as
Lagrange multipliers.

Perturbed formulation was employed to consider the contact problem. By
introducing a penalty in the classical Lagrangian functional of the system, the functional
for perturbed Lagrangian approach in the frictionless case is (Simo et al., 1984; Wriggers

et al., 1985)
H(U,ﬂ)=He(U)+ng—El—/12 (6.1.8)
t4

where the last term regularizes the classical Lagrangian functional and leads to a stiffness
matrix with non-zero diagonal terms. One expects that the solution of (6.1.8) will

converge to that of the classical Lagrangian multiplier method when & — . From
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(6.1.8), the variation of the functional can lead to finite element formulation (Simo ef al.,
1984; Wriggers et al., 1985).

The augmented Lagrangian method is based on the modified Lagrangian
functional augmented by a penalty term associated with the constraint conditions (Simo

et al., 1984; Wriggers et al., 1985):

k
(Z (—A:g, +§g3 ), g < A
s £

II(U, A, &) =TI (U) +1 (6.1.9)

1 2 Ak
-—(%)’, > s
L; 2¢ &s &

where 1* is the average contact force on the contact segment s and has to be updated,
and g is the gap in segment 5.

It was noted that in both the penalty method and the perturbed Lagrangian method
an approximate solution to the original contact problem is obtained, which depends on
the arbitrarily chosen penalty parameter, and in practice this parameter can drastically
affect the results.

The augmented Lagrangian formulation considers both displacement field and the
Lagrangian multipliers in the functional so that its minimum corresponds to the solution
of the original contact problem (Eterovic and Bathe, 1991; Zavarise et al., 1995).

It is worthy to note that both the penalty approach and the Lagrangian method
enforce point-wise the contact-constraint condition, in the sense that penetration of the
bodies is checked on a nodal basis. This leads to problems of convergence when the
contact condition changes when the time step is not small enough and the mesh is not

very fine.
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Eterovic and Bathe (1991) presented a finite element formula for the analysis of
contact problems, in which the inequality constraints are enforced directly by means of
additional equations to the equilibrium ones.

In the present study, the penalty method is adopted to introduce the constraint
conditions between elastic bodies so as to study the seismic behavior of cracked concrete
dams. By properly choosing the contactor nodes and corresponding target surfaces, the
finite element model IDCE (incremental displacement constraint equations) based on the

penalty method can avoid the phenomenon of penetration without extra treatment.

6.2 IDCE (Incremental Displacement Constraint Equations) model

description
6.2.1 Description of contact conditions

In the finite element analysis of contact problem, if relative displacements occur
on the contact surface between the adjacent bodies, the configuration of elements besides
the contact surface can be illustrated as in Figure 6.1. In general, some nodes on both
sides of the surface are in contact and some others are free. Therefore there are two
different kinds of status of contact condition for every node on the surface: contact or
free.

For free nodes on the contact surface, there is no need of treatment. As for
contacting nodes, they are either stuck to the surface or are sliding along the tangent of
the surface. Figure 6.2 illustrates the two cases of node I contacting the surface at point
I' between nodes J and K of an element. In Figure 6.2, 7 is the tangent of the contact

surface; n is the outward normal, u and v are the displacements in 7 and =
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respectively; and ¥V and N are the corresponding friction force and normal force,
respectively.

In the case of stuck, node / has the same incremental displacements in both
directions as point I’ , which can be expressed in terms of incremental displacements of
nodes J and K via shape functions in the element once the natural coordinate of I’ on

the element side JK is obtained, i.e.

Au; =Auy = f,(Au,,Auy)
(6.2.1)
Av, =Av, = f (Av,,Avy)

where f, and f, are functions (Cook, 1989) of the incremental tangential displacements

Au,, Au, and the natural coordinate of I’ on side JK.

In the case of sliding, node I has the same incremental displacement in normal
direction n as point I', which has the same expression as the second formula in (6.2.1).
As for the tangential direction 7, the friction force ¥ depends on the normal contact

force N, which is unknown a priori. Then we have for the sliding node

V, ==V, = sign(u, —u, )}, N
(6.2.2)
Av, =Av, = f (Av,,Avy)

where 4, and #, are the tangential velocities of node / and node I'respectively; u, is

the kinematic coefficient of friction; and N should be compression.
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6.2.2 Contact stiffness: Penalty method
Referring to the local coordinates 7 and n shown in Figure 6.2, the incremental
displacements of point I’ can be expressed in terms of those at nodes J and K through

the shape function

( K

Au, = fAu,
i=J

J (6.2.3)
K

Av, = Z fiAv,
i=J

.

where the shape functions (Cook 1989) are

fr=0-¢)02
(6.2.4)

£, =0+¢)/2
In (6.2.4) the natural coordinate £, =—1 when point I’ is at node.J, whiled,, =1 when

point I’ is at node K . If the element is a higher order one, the shape functions will be
changed accordingly.

Denoting the tangential gap g, and normal gap g, for stuck case as below:

g, =Aup —Au,
(6.2.5)
g, =Av, — Ay,
the expressions for the gaps will be
g = ["1 I Jx IA“I Au, Auy ]T
(6.2.6)

g, =1 £, filav, av A J

For the stuck node, the relationships between the incremental contact forces and

the incremental displacements at node / can be obtained as
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AV, ki 0 ||Au
= 6.2.7)
AN,] |0 & ||av),

where the vector of incremental displacements for contacting node I are given by

Au
=[Au, Au, Ay Av, Av, Av [ (6.2.8)
Av

1

The local contact stiffness matrices k; and k; in tangent and normal directions,

respectively, can be derived by referring to (6.1.4):

1 -f =S ]

kil=c|-5 72 1k (6.2.9)
~fx fifx fi o |
1 -fr =S ]

krl=el-1, 72 £k (6.2.10)
—fx fife S

In (6.2.9) and (6.2.10), €, and ¢, are the penalties. Parametric analysis shows that in this
study it is proper for both £, and &, to be chosen as 1000 times the largest diagonal

element in the assembled stiffness matrix of the dam.
For the sliding node, the normal contact condition still holds. However, the
tangential connection between node I and the contact surface follows the friction law.

Therefore we have for sliding node
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V) =sign(i, -, )N,
(6.2.11)
AN, = [kln ]{AV}I

(6.2.7) and (6.2.11) show that the contact conditions are fulfilled by the penalty method

in the form of Incremental Displacement Constraint Equations (IDCE).

6.3 Modeling the crack with IDCE

On both sides of the crack, all nodes on the surfaces can be modeled with
proposed IDCE model to simulate the contact conditions. However, only the nodes on
one side of the crack, as “contactor surface” in ADINA (1999), are necessary to be
modeled. This way, the penetration of the other nodes on the opposite surface, which was
called “target surface”, will not be significant as the adjacent nodes on the contactor
surface are in action (Bathe and Chaudhary, 1985).

However, in the case of having sharp corner on the surface as at the end of the
crack in the cracked concrete dam, this treatment cannot avoid the penetration, which is
remarkable and cannot be neglected. Figure 6.3 and 6.4 show two cases when the upper
part of the crack rocks after sliding has happened. In both Figures, the solid dots are the
contactor nodes, while the open circles represent the nodes on the target surface.

If the upper part rocks in the direction as in Figure 6.3, no penetration occurs.
However, the oscillation movement of the cracked dam might rock in both directions.
Therefore the situation in Figure 6.4 is unavoidable. In this case, the pivot position
changes a lot and penetration is not detected due to the fact that only the contactor nodes

are modeled with IDCE. This will obviously result in unreliable responses.
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Actually, the penetration at the end of the crack can be avoided by adding only the
other two nodes at the ends of target surface to the list of contactor nodes, as shown in
Figure 6.5.

In Figure 6.5, the two end nodes on the target surface are also defined as the
contactor nodes. They will also be modeled with IDCE hence will not penetrate the
contactor surface as in Figure 6.4. Since only two more nodes on the target surface are
treated as the contactor nodes, little extra computation effort is needed to avoid
penetration in any situation.

Therefore, when applying the IDCE to the seismic analysis of cracked concrete
dams, all nodes on one side of the crack and the two end nodes on the other side of the
crack are treated as contactor nodes, and both sides of the crack are considered as target

surfaces.

6.4 Solution to the non-linear dynamic equilibrium equations

Having assembled the finite element matrices and the contribution of the IDCE,
the equilibrium equations at time ¢+ Az for a cracked concrete dam under ground motion
can be written as below:

MU + C*MU"™ + K U™ + KFYAUY = R— MA"™ + F! + AF (6.4.1)
where

M =the consistent mass matrix,

C"* =the damping matrix at time ¢+ At depending upon the contact situation
between the two parts,

K, =the constant elastic stiffness matrix of elements,
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K!** =the contact stiffness matrix representing IDCEs at time ¢ + At by,

U™ =the displacement vector at time ¢+ At of the system,
U™ =the velocity vector at time ¢+ Az of the system,
U"™* =the acceleration vector at time ¢+ At of the system,

AU™ =the incremental displacement vector from time ¢ to time ¢ + Af,

R = the vector of external constant load applied on the system,

A" =the vector of ground acceleration at time ¢ + Az,

F! =the contact force vector at the end of last time step ¢, which is accumulated

from normal contact forces and friction forces on both contactor nodes and

target nodes by (6.2.7) and (6.2.11),

AF™ =the incremental force vector from time ¢ to time ¢+ A¢ of friction forces

V, at sliding contact nodes and V. at the related nodes on the target surface,

as shown at nodes 7/, J and K in Figure 6.2.

Substituting the incremental displacement vector
AUAt — Ut+At _Ut
into equilibrium equations (6.4.1) yields
MUI+A[ + Ci+AtUt+At + KI+AIUI+AI — Rt+Al

where tangential stiffness of the system
Kt+At =K + K1+At
and the equivalent force vector at time ¢ + At step

Rt+At — R—MAHN +Fct +K:+AtUt +AF,AI

(6.4.2)

(6.4.3)

(6.4.4)

(6.4.5)
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(6.4.3) shows the governing equations for the dynamic contact problem. The
second last term of R™* in (6.4.5) depends on the contact status, whereas the last term
AF* depends on the normal contact forces, which is unknown a priori. This shows the

essence of non-linearity of the problem, and (6.4.3) has to be solved step by step and
iteratively.

Many methods can be employed to solve equations in (6.4.3) (Bathe, 1996). In
this study, the Newton-Raphson scheme is used to deal with the non-linearity and the
Newmark method is adopted to integrate the dynamic equations. In the Newmark
method, the unknown velocities and displacements at time ¢+ A¢ are expressed in terms
of unknown accelerations at time ¢ + At :

U™ =U" +[(1-8)U" + 50U At (6.4.6)
U™ U +U'At +[(_;__a)[7’ +alUt™ ]Atz (6.4.7)

From (6.4.7) the unknown U"“ can be expressed in terms of unknown
displacements at time ¢+ A¢:

1 (U1+At _Ut)__LU’ _(zi_l)(].‘ (6.4.8)
94

UHAI —
aAt? alt

Then the unknown velocities can also expressed in terms of unknown displacements at

time ¢+ At:
U1+At — i(UHN _ U’) + (1 — ..5._)U’ + (1 — i)AtUt (649)
alt a 2

Substituting (6.4.8) and (6.4.9) into (6.4.3), the non-linear equilibrium equations

at time ¢ + At become

I_(—I+AtUt+At — §1+N (6.4.10)
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where the generalized stiffness matrix K “** and load vector R are
E1+At — Kt+At + aOM + alCt+At
R™™ = R*Y + M(a,U' +a,U" +a,U")+C*™(@U" +a,U"' +a,U")

In (6.4.11) and (6.4.12), the constants

ay, = ! a "‘—5 a ——1

*an® T aA’ 7 alt

1 o o
a3=g—1, a4=—c—l-—1, a5=At(§;——l)

Considering the Rayleigh damping in the system:

Ct+At — ﬁKKHAt +ﬂMM

(6.4.11)

(6.4.12)

(6.4.13)

where p, and f,, are the damping coefficients of K “A and M respectively, the

generalized non-linear stiffness matrix X' in (6.4.11) and load R*** in (6.4.12) become

K*% =b K" +b,M
R"™M = R"™™ + K"™Y, + MY,,
where the constants
by =1+a,p,, by,=a,+ap,
Y, = By (@U' +a,U' +aU")
Y, =(ay+a,B,))U" +(a, +a,B,,)U" +(ay +a,, U’
Therefore, the generalized equilibrium equations will be
K" =K, +by K™
R™ =R+ K™Y, +AFY

where

(6.4.14)

(6.4.15)

(6.4.16)

(6.4.17)
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K,=bK,+b,M (6.4.18)
R =R-MA"™ +F! +K, Y, + MY, (6.4.19)
Y, =Y, +U’ (6.4.20)

Now the governing equilibrium equations in (6.4.1) become those in (6.4.10). To

solve them, the procedure is as follows:

1. Obtain the accumulated contact force vector F,, .

2. Check contact conditions for all contactor nodes®.

3. Compute contact stiffness for every stuck or sliding contactor node.

4, Assemble the generalized stiffness matrix K™ as in (6.4.16).

5. Assemble the generalized force vector R as in (6.4.17) excluding the

friction force increment AF/*
6. Assume AF/™ =0.

7. Add AF"™ toR™™.

8. Solve (6.4.10).

? For a free contactor node, if the distance between a contactor node to a target surface is
equal to or smaller than a given small value, 10" mm, and the node is moving toward the
surface, the contact condition changes to stuck. For a sliding node, if the value of its
velocity is below a certain value, 10™* mm/s, the contact condition changes to stuck. For a
stuck contact node, if the normal contact force becomes negative (tension), the contact
condition changes to free, while it will start to slide if the tangential contact force exceeds

the frictional limit determined by the friction law.
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6.5

10.

11.

Transform the displacements on the contact surfaces into their local
coordinate systems to calculate incremental contact force as in (6.2.7) for
stuck contactor node or in (6.2.11) for sliding contactor node. As for

friction forces, they are obtained from (6.2.11).

Calculate AF** and go to step 7 if no case from below occurs:
A stuck contactor node becomes free or starts to slide;

A sliding contactor node becomes stuck or free;

A free contactor node contacts the target surface;

Otherwise, modify the contact conditions and go to step 3.

If AF"¥is converged®, go to step 1 for next time step until all time steps

are gone through.

Verifications of IDCE model

The validity of the proposed IDCE model for seismic analysis of cracked dams

was verified with 3 examples for sliding, rocking-impact and penetration.

6.5.1 A block on a flexible foundation to verify IDCE for sliding

An artificial rectangular block 8 mx 16 m resting on a foundation subjected to a

triangle impulse was used to verify the IDCE model for sliding. To compare with the

theoretical solution based on the rigid assumption both the block and the foundation are

® Relative difference between the frictional force applied and that determined by the

friction law should not be larger than a given value, normally 10 in this study.
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intentionally assigned a very large modulus E =200 GPa and Poisson’s ratiov = 0. The
coefficient of friction between the block and the foundation is 0.2. The finite element
model and the impulse are illustrated in Figure 6.6, in which all elements are 4-node
plane strain elements. Damping effect is neglected.

The proposed sliding and theoretical solution derived with rigid assumption are
shown in Figure 6.7. It is shown that the proposed IDCE model can almost precisely
predict the sliding of the block on the foundation. The relative difference of the residual

sliding is 0.104%.

6.5.2 A block on a flexible foundation to verify IDCE for rocking and impact
Consider the same block on the foundation as in Figure 6.6, subject to the ground
acceleration in Figure 6.8. Assume the coefficient of friction is 1.2 to avoid pure sliding.
In this case the block will rock and impact. Figure 6.9 illustrates the rotation of the block
during the whole process, which includes rocking, impact and drifting. Also shown is the
response predicted by the proposed rigid 3-DOF model with coefficient of restitution of
0.9. Both responses are consistent in terms of peak rotation and trend of variation,
indicating the proposed IDCE model for dealing with rocking and impact problems is

satisfactory.

6.5.3 A block with a crack to verify IDCE for dealing with penetration
Figure 6.10 is the mesh of 8-node plane stress elements (Zienkiewicz 1971) for a
10mx20m block with a crack at its mid-height. Assume the coefficient of friction at the

crack is 1.0. The ground acceleration is shown in Figure 6.11. As the peak acceleration
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exceeds the limit of 1.0g to initiate sliding and rocking, the upper part of the cracked
block is expected to slide and rock as well as impact. Therefore, the penetration
phenomenon would occur if it were not properly dealt with as explained in section 6.3.
To verify the validity of proposed IDCE model, 5 types of treatment are
considered as below:
Type 1: Only nodes on the surface A are treated as contactor nodes (Figure
6.12.a).

Type 2: Only nodes on the surface B are treated as contactor nodes (Figure
6.12.b).

Type 3: Nodes on the surface A and two end nodes on surface B are treated as
contactor nodes (Figure 6.12.c).

Type 4: Nodes on the surface B and two end nodes on surface A are treated as
contactor nodes (Figure 6.12.d).

Type 5: All nodes on the surface A and B are treated as contactor nodes (Figure

6.12.¢e).

Under the ground excitation, the upper part will slide to the left and rock counter
clock-wise with respect to the lower part. Relative rotation and sliding of the upper part
of the cracked block are illustrated in Figures 6.13 and 6.14. For type 1, penetration is
expected at the left end node of surface B. This makes the upper part much easier to rock
than other types as shown in Figure 6.14. For type 2, there will not be penetration at the
left end node of surface B for it is a contactor node. However, the right end node of
surface A in type 2 may penetrate surface B. Therefore both type 1 and type 2 can not

predict correctly the response of the upper part of the crack block.
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Figures 6.13 and 6.14 show clearly that types 3, 4 and 5 give the same results for
both sliding and rotation of the upper part, indicating the IDCE model is effective to
avoid penetration by adding only two more contactor nodes as type 3 or type 4. This
means, in addition to contactor nodes on one surface, only two more nodes at the ends of

the other surface are needed to be treated as contactor nodes to avoid penetration.

112



Contact surfaces

Contact nodes

Figure 6.1 General configuration of elements on the contact surface

Rigid
connection

(a) Stuck

(b) Sliding

Figure 6.2 Contacting node
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Pivot Contactor surface

Target surface

Figure 6.3 Upper part rocks while pivot is a contactor node contacting the target surface

False pivot Penetration

Figure 6.4 Upper part rocks while pivot is a target node

True pivot

Figure 6.5 Upper part rocks without penetration by adding
two contactor nodes on target surface
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Figure 6.7 Sliding of the block on the flexible foundation
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CHAPATER VI

SEISMIC ANALYSIS OF CRACKED DAMS

7.1 Introduction

In this chapter, the triangular dam in Figure 5.12 is first studied with the proposed
IDCE finite element model to investigate the base sliding behavior. Through this
application, the proposed IDCE model demonstrates its consistency and superiority
compared with the 3-DOF model. Then the safety of the cracked Koyna Dam is studied
with the IDCE mode by analyzing the cracked monolith with the assumption that the
crack penetrates horizontally the crest. To further reveal the seismic behavior of cracked
concrete gravity dams, a cracked typical dam is further studied in two cracked cases. For
the case of the crack at a height, the IDCE finite element model is applied, whereas both
the 3-DOF rigid and the IDCE models are used for the case of the crack at the base. For
both cases the effects of coefficient of friction and water level are studied with the El

Centro 1940 NS and Taft 1952 S69E earthquakes, respectively.

7.2  The triangular dam

7.2.1 Introduction to the triangular dam

The triangular dam in Figure 5.12 (h=121.92 m) was also studied by Chopra and
Zhang (1991) with one-degree-of-freedom flexible model including the dynamic effect of
the fundamental mode of vibration. According to the geometry, uplift pattern, water level
and earthquake acceleration imposed for this artificial dam, only sliding motion occurs if

considering it as a one-degree-of-freedom system. Therefore, the overall rocking that
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may be initiated in the proposed IDCE model because of the flexibility of the dam should
be quite limited. The application of the proposed IDCE model to this dam is expected to
confirm existing research, as well as to reveal more reasonable seismic behavior of the
dam. The finite element mesh with variable-node isoparametric plane elements is shown
in Figure 7.1. The dynamic effect of the full reservoir water is represented by a
distributed virtual mass (Westergaard, 1931). The main responses of this dam to the S69E
component of Taft 1952 earthquake are summarized and compared with the results by
Chopra and Zhang (1991) in Table 7.1 and Figures 7.2 to 7.4. The seismic response to
larger coefficient of friction and more violent earthquake is also presented as in Table

7.3, Figure 7.5 and 7.6.

7.2.2 Sliding behavior of the triangular dam
Figure 7.2 shows that the present study is quite consistent with the result by the

one-degree-of-freedom flexible model (Chopra and Zhang, 1991) for the modulus of the

dam of 27.61 GPa (4 x10°psi), where the relative error for the residual sliding at the base
is about 5%. This confirms that the one-degree-of-freedom flexible model (Chopra and
Zhang, 1991) is applicable for estimating the base sliding of concrete gravity dams when
the rocking mode is not initiated.

It is worthy to note that the modulus of the dam affects the base sliding as
indicated in Table 7.1, in which the values of sliding displacements by the one-degree-of-
freedom flexible model are the approximate estimations according to Figure 6 of Chopra
and Zhang (1991). From Table 7.1 and Figure 7.3, it is clear that although the predicted

‘sliding displacements by the proposed IDCE model and the one-degree-of-freedom
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flexible model are quite close for modulus 27.61GPa (4 x10°psi), they are quite different
for other values of modulus, indicating that the modulus of the dam affects significantly

the response. In the one-degree-of-freedom flexible model, the sliding displacement
increases while the modulus of the dam increases from 3.45 GPa (0.5x10° psi) to 27.61
GPa (4 x10°psi), whereas the sliding displacement reduces while the modulus of the dam

increases from 27.61GPa (4x10°psi) to infinite large. In the proposed IDCE model,
however, the residual sliding displacement increases as the modulus either increases or
decreases from 27.61GPa. When the modulus becomes very small or very large, the
sliding displacement is also very small or converges to that of rigid model.

The difference of the responses between the two models is mainly due to the fact
that the one-degree-of-freedom flexible model neglects the effect of high order mode
vibration of the dam, which may be initiated and participate in the response. Table 7.2
illustrates the first three periods of vibration, from which it is found that bending and
vertical tension/compression periods are 43.0% and 38.5%, respectively, of the
fundamental one. It is natural that these modes of vibration will be initiated when impact
occurs, and their effect on the sliding displacement will become more and more evident
as the earthquake proceeds.

It is also noted that the response relates to the periods of the earthquake and the
dam. The average period of the component S69E of Taft 1952 earthquake is about 0.258
seconds in the first 20-second period. Referring to Table 7.2, the dam with modulus 27.61
GPa has the fundamental period 0.262 seconds, which is the closest to 0.258 second. The
corresponding residual sliding by the one-degree-of-freedom flexible model (Chopra and

Zhang 1991) is correspondingly the closest to that by the proposed IDCE model. As the
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modulus decreases, all periods of the dam increase so that the periods of higher order
vibration may become close to or larger than the average period of the earthquake. For
instance, if the modulus is 13.81GPa, the average period of the earthquake of 0.258
seconds is nearer to the second period 0.1593 seconds than to the fundamental one of
0.3705 seconds. Furthermore, it is shorter than the third period for modulus 3.45 GPa.
This means the second, the third, or even the higher modes of vibration of the dam, which
can be initiated by impact, will participate markedly in the seismic response of the dam.

However, the fundamental period of the dam becomes lower than the average
period of the earthquake, if the modulus of the dam is 41.42 GPa or higher. If the
modulus is relatively high, the fundamental period of the dam is relatively short
compared to the average period of the earthquake, causing the dam to behave like a rigid
body as indicated in Table 7.1 and Figure 7.3.

Contrary to the proposed IDCE model that is able to include high order modes of
vibration of the dam, the one-degree-of-freedom flexible model (Chopra and Zhang,
1991) considers only the fundamental mode, meaning that other modes that may
participate in the response are excluded. This may be the reason why the residual sliding
displacements by the one-degree-of-freedom flexible model are generally less than those
by IDCE finite element model, whereas the absolute error of residual sliding between

these two models becomes quite small for very rigid dam as indicated in Table 7.1.

7.2.3 Rocking behavior of the triangular dam

Although the triangular dam with coefficient of friction and full reservoir water

will not rock for the given earthquake of peak acceleration 0.5g according to the criterion
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established for rigid model, it does rock in the IDCE finite element model. Figure 7.4
shows the rocking for modulus 27.61 GPa (4x10%psi) with maximum rotation of

5.04x10*radians in the downstream direction. The corresponding opening at the
upstream face is 49.2 mm. The rocking is mainly in downstream direction due to the
hydraulic pressure. However, the triangular dam rocks in upstream direction a few times
during the most violent period of the earthquake between 3.8 and 8.5 seconds. It is
natural to reckon that the rocking and accompanying impact initiate bending,
tension/compression, and other higher modes of vibration besides the fundamental one,
which enhances the downstream sliding with the help of hydraulic pressure.

Because of rocking and impact, vertical modes of vibration are obviously initiated
such that the triangular dam experiences drifting movement as shown in Figure 7.5 with

accumulated upstream drifting of 7.8 mm.

7.2.4 The triangular dam with larger coefficient of friction and more violent
earthquake
With more violent ground motion and larger coefficient of friction as might be
expected in cracked concrete gravity dams, the triangular dam in Figure 7.1 will not only
slide, but also rock based on the criterion for rigid assumption. In this case, one-degree-
of-freedom model, either rigid or flexible, is inapplicable. Therefore, the proposed 3-
DOF and IDCE finite element models are adopted to study the seismic response. Table

7.3 summarizes the seismic response of the triangular dam with the full reservoir water,
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the coefficient of friction of 1.4 and the Taft 1952 S69E earthquake with peak
acceleration scaled to 0.9g.

Table 7.3 and Figure 7.6 show that the proposed IDCE model predicts 565.5 mm
downstream sliding, while 3-DOF rigid model with coefficient of restitution ¢=0.5
estimates the sliding displacement of 155.4 mm. Both models indicate that the triangular
dam will drift, and the accumulated amount may be 23.7 mm (3-DOF rigid model) or
27.2 mm (IDCE model). According to Figure 7.6, the time-histories of sliding estimated
by the two models are completely different, indicating that the flexibility of the dam
affects markedly its seismic response. Figure 7.7 demonstrates that the triangular dam
will rock in both directions as predicted by both models. In the 3-DOF rigid model, the
rocking angle is so small that the openings on both the upstream and downstream faces
are less than 4 mm. However, the IDCE model estimates that the openings may be 128.3
mm and 86.2 mm on the upstream and downstream faces, respectively, which indicates

the flexibility of the dam also affects markedly its rocking.

7.2.5 Summary of the seismic behavior of the triangular dam

With horizontal hydraulic pressure of full reservoir water and uplift pressure, the
triangular dam with the coefficient of friction at the base of 1.0 will slide if imposing the
component S69E of Taft 1952 earthquake scaled to 0.5g of peak acceleration. The
induced downstream base sliding is about 0.359 m for the modulus of the dam 27.62
GPa. This amount of sliding is consistent with the one-degree-of-freedom flexible model
that represents the effect of the fundamental mode of vibration. With other values of

modulus for the dam, between 13.81 GPa and 41.42 GPa, the downstream sliding
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displacement will be around 0.4 m. Although the dam would not rock in the rigid model,
it experiences sliding, rocking, impact and drifting movements in the IDCE model.

With coefficient of friction 1.4 and peak acceleration 0.9g for the same
earthquake component, the triangular dam will experience sliding, rocking, impact and
drifting modes of motion as predicted by the proposed 3-DOF and IDCE finite element
models. Under the effect of the full reservoir water, this dam will slide 565.5 mm in
downstream direction for modulus 27.61 GPa, of which 4.8% is from drifting, whereas
the 3-DOF rigid model predicts 155.4 mm downstream sliding.

In all cases studied, rocking angle is quite limited due to hydraulic pressure and
low position of the mass center of the dam. However, the limited rocking and
accompanying impact initiate other modes of vibration than the fundamental one such

that the residual downstream sliding displacement is enhanced.

7.3 Application of IDCE model to cracked Koyna Dam

The IDCE model was used to analyze the stability of cracked Koyna Dam shown
in Figure 3.1. Both longitudinal and transverse components of Koyna earthquake shown
in Figure 5.16 and Figure 5.17, respectively, were imposed on the cracked dam. The
same coefficients of 0.8, 1.0 and 1.2 as in Chapter 5 were used. As for the uplift pattern,
both uniform and triangular pressures were considered. Some responses of the upper part

of Koyna Dam for all these cases are summarized in Table 7.4.

7.3.1 Rocking behavior and overturning stability

Computations with the IDCE model show that in all the cases the upper part of

the cracked Koyna Dam rocks limitedly. The largest angle of rocking is just 4.49x107
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radians (0.257°), occurring in downstream direction caused by longitudinal earthquake
component for coefficient of friction of 1.2 with triangular uplift pressure assumption.
This indicates that the cracked Koyna Dam is quite safe in overturning if the 1967
earthquake is imposed again.

The upper part will rock towards the downstream, except when the longitudinal
earthquake component is imposed and the triangular uplift pressure is assumed. This is
due to the hydraulic pressure of high level of water in the reservoir. Only when the
longitudinal earthquake component with higher peak acceleration is applied, could the
upper part rock a few times towards the water.

The rocking magnitude is consistent for triangular uplift pressure, showing that
larger coefficient of friction yields larger rotation. This means larger coefficient of
friction makes the upper part harder to slide and more energy is put into rocking mode.
However, in the case of uniform uplift pressure, which was assumed by Saini and
Krishna (1974) for conservative reason, this consistency is not upheld. If the uniform
uplift pressure is assumed, the longitudinal component will cause rocking of 3.40x 10
radians for coefficient of friction 1.0. However, the corresponding rocking is 2.93x 10
radians for coefficient of friction 1.2.

Results in Table 7.4 also show that uniform uplift pressure assumption could not
help ensure conservative rotation. In the case of longitudinal earthquake component and
coefficient of friction 1.2, for instance, the peak rotation is 2.93x107 radians for
uniform uplift pressure. Nevertheless, the corresponding value is 4.49x107 radians for
triangle uplift pressure, as shown in Figure 7.8. This phenomenon occurs also in the case

of transverse earthquake component. Figure 7.9 illustrates rotations of the upper part for
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both types of uplift pressure with coefficient of friction 1.2 and transverse component of
the earthquake.

Acknowledging that uniform uplift pressure in cracked Koyna Dam provides a
moment helping the upper part to rock towards the water, it is realized that triangular
uplift pressure may in general yield larger rocking in downstream direction. It is just the

case when the transverse component is applied as shown in Table 7.4.

7.3.2 Sliding behavior and stability

The upper part of cracked Koyna Dam will slide along the crack in all cases.
However, sliding becomes stable when the earthquake diminishes after 9 seconds. The
residual sliding displacement is quite small; therefore the stability in sliding of the
cracked Koyna Dam under the same strength of earthquake as 1967 will be maintained.

The residual sliding displacement is consistent with coefficient of friction as
illustrated in Figure 7.10. However in the case of longitudinal component and uniform
uplift pressure as shown in Table 7.4, the coefficient of friction 1.0 yields residual sliding
340.0 mm which is larger than 175.6 mm for coefficient of friction 1.2.

In the case of triangular uplift pressure, the maximum sliding is 162.9 mm caused
by transverse component of earthquake with coefficient of friction 0.8. The minimum
residual sliding is 59.6 mm caused by longitudinal component with coefficient of friction
1.2. In the assumption of uniform uplift pressure, the maximum and minimum residual
sliding are 340.0 mm and 175.6 mm, respectively, caused by the longitudinal earthquake

component.
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It is noted form Table 7.4 that longitudinal component with larger peak
acceleration does not necessarily yield larger residual sliding displacement. It is even
inversely proportional for all coefficients of friction when triangular uplift pressure is
adopted: the residual sliding displacements caused by the transverse earthquake
component are 162.9 mm, 125.7 mm and 82.8 mm, respectively, for coefficient of
friction 0.8, 1.0 and 1.2, whereas the longitudinal earthquake component with larger peak
acceleration yields less sliding and the corresponding sliding displacements are 135.3
mm, 101.1 mm and 59.6 mm, respectively.

For the largest coefficient of friction 1.2, Figure 7.11 indicates the longitudinal
earthquake component with larger peak acceleration inversely yields less sliding,
indicating that the seismic behavior of cracked concrete dams depends on not only the
strength of the earthquakes but also their details.

Figure 7.11 also shows that the uniform uplift pressure yields larger sliding
displacement than triangular uplift pressure for both components of earthquake and all of
coefficient of friction. This indicates that uplift affects the sliding markedly.

Drifting is noted when the longitudinal component of earthquake is imposed with
triangular uplift pressure for all coefficients of friction. This drifting is consistent with the
coefficient of friction. The accumulated drifting displacements are 26.7 mm and 1.5 mm
for the coefficient of friction 0.8 and 1.2, respectively. Figure 7.12 shows the drifting
component and overall sliding displacement caused by the longitudinal component with

triangular uplift and coefficient of friction 1.0.
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7.3.3 Conclusions for the stability of cracked Koyna Dam

Based on the above discussion, the cracked Koyna Dam is safe in both
overturning and sliding, when the ground excitation similar to the 1967 Koyna
earthquake is imposed with the assumption that the coefficient of friction at the crack is
no less than 0.8.

The maximum rocking would be less than 4.49x107 radians in downstream
direction. The residual sliding displacement along the crack will be less than 162.9 mm if
triangular uplift pressure is assumed. Even if the unrealistic uniform uplift pressure is
adopted, the residual sliding displacement would not beyond 340 mm.

Drifting motion is noted in some cases. This means rocking and impact will cause
the upper part to drift under the hydraulic pressure. Therefore large coefficient of friction
cannot prevent the relative sliding. However, the jump movement at the instance of
impact, which is less then 10 mm in general, is quite small compared with the height of
asperities on the crack. This implies that the true sliding displacement would be less than

predicted.

7.4 The cracked typical dam

7.4.1 Introduction
The original typical concrete dam has the geometry in Figure 7.13. The modulus
of the concrete E =20GPa. Poisson’s ratio v =0.143. The density of the concrete

p, =2650kg/m>. The reservoir water depth is h,. The density of the water

p, =1000kg/m>.
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It is assumed that the typical dam is cracked either at the base as in Figure 7.14 or
at a height as in Figure 7.15, respectively. Three values of coefficient of friction 0.8, 1.0
and 1.2 are used to study the effect of this parameter on the seismic behavior. Triangular
uplift pattern is adopted for the cracks at both the base and the height.

Both the 3-DOF model and the IDCE model are applied for the analysis of the
case of a crack at the base. Regarding the crack at a height, only the IDCE model is
employed. Figure 7.16 and Figure 7.17 are the finite element meshes for the crack at the
base and at a height, respectively.

The two inputs are the El Centro 1940 NS and Taft 1952 S69E earthquakes as
shown in Figure 7.18 and Figure 7.19. Both are scaled to 0.4g of peak acceleration. In all
cases, the damping ratio is 5%.

It is known that the water level obviously affects the seismic behavior. For the
case of crack at the base with peak acceleration 0.4g, the lowest water levels to overcome
the static friction force and to initiate sliding in the downstream direction for the
coefficient of friction 0.8, 1.0 and 1.2 are 52.0 m, 71.1 m and 87.1 m, respectively,
according to equation (4.3.12). To initiate sliding and for comparison, therefore, water
levels 100 m, 95 m and 90 m are considered with 3-DOF rigid model for all values of
coefficient of friction. In the IDCEF finite element model, water level 100 m is considered
to compare with the 3-DOF rigid model; whereas 50 m and 0 m water levels are adopted
to study the influence of the flexibility of the dam on the seismic response when the water
level is lower than the critical level determined in the rigid model or the reservoir is

empty.
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For the case of crack at the height, only the IDCE model is applied with water
levels 100 m, 95 m and 90 m.

Due to the fact that the stiffness of the system keeps changing during the seismic
process because of the change of the contact condition at the crack, the mass proportional
and stiffness proportional damping coefficients in equation (6.4.13) also keep changing
for given damping ratio of 5%. To simplify the calculation, damping coefficients in
equation (6.4.13) are assumed to be of the original dam without crack, if both parts of the
cracked dam are stuck to each other. If the upper part is rocking, sliding as a whole or
drifting, damping coefficients are derived only from the lower part for the same damping
ratio of 5%, neglecting the damping in the upper part. The coefficients, derived from the
first and third natural frequencies, of Raleigh damping for all cases are illustrated in

Table 7.5.

7.4.2 Crack at the base

Sliding behavior by 3-DOF rigid model. The responses from the 3-DOF rigid
model are summarized in Table 7.6. It shows that the sliding of the typical dam cracked
at the base is stable for all water levels and all considered coefficients of friction under
both El Centro 1940 NS and Taft 1952 S69E earthquakes with peak acceleration of 0.4g.
The largest residual sliding displacement is 1.487 m with water level 100 m and
coefficient of friction 0.8 caused by Taft 1952 S69E earthquake component.

Table 7.6 shows that the residual sliding displacement is proportional to the water
level and inversely proportional to the coefficient of friction. Figure 7.20 illustrates the

sliding process for different water level of the typical dam with coefficient of friction 0.8
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subject to Taft 1952 S69E earthquake component. Figure 7.21 shows the influence of
coefficient of friction on the residual sliding displacement caused by the El Centro 1940
NS record.

It is worthy to note the case of coefficient of friction 0.8, with water level of 100
m, as shown in Figure 7.20. The critical acceleration to initiate sliding by equation
(4.3.12) is just 0.031g in this case, indicating the dam will slide with very small
excitation. Figure 7.20 shows that the typical dam slides almost all the time during the
process of earthquake, resulting in a quite large amount of residual sliding displacement
1487 mm. This indicates that coefficient of friction of 0.8 is relatively low when the
reservoir water is full. However, the residual sliding displacement will be 161mm if the
coefficient of friction is 1.0.

Sliding behavior by IDCE model. The typical dam cracked at the base is also
studied with the IDCE finite element model. The responses are summarized in Table 7.7.
Water levels 50 m and 0 m are considered to study the response when the water is under
the level that initiates static sliding for 3-DOF rigid model. Water level 100 m is to
compare the largest residual sliding displacements with those from the 3-DOF rigid
model.

From Table 7.7 and Figure 7.22, it is noted that the typical dam cracked at the
base will have negligible horizontal displacement when the reservoir is empty. The
negligible sliding is obviously due to the local deformation caused by the ground
excitation. However, the typical dam slides for the water level 50 m, which is below the
critical level that will overcome the static friction and initiate sliding as indicated in the

3-DOF rigid model. Under Taft S69E earthquake with water level 50 m, the typical dam
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will slide 9.8 mm, 7.1 mm and 6.3 mm corresponding to coefficients of friction 0.8, 1.0
and 1.2, respectively. These displacements are still very small, but indicate that the
sliding can be initiated with water below the critical level determined by the 3-DOF rigid
model. This phenomenon also suggests that IDCE finite element model may predict more
sliding displacement than 3-DOF rigid model when the water is above the critical level, It
is noted in Figure 7.22 that the accumulated sliding is reduced around 2.5 seconds. This is
due to a few peaks of downstream ground acceleration.

For water level of 100 m, the typical dam would fail if the coefficient of friction
were 0.8 since the cracked dam would keep sliding in downstream direction with
increased velocity and the displacement would be dozens of meters for both El Centro
1940 NS and Taft 1952 S69E records. If the coefficient of friction is increased, the
residual sliding displacement can be reduced very much and become stable. With El
Centro 1940 NS record, the residual displacements are 491.0 mm and 244.0 mm for
coefficients of friction 1.0 and 1.2, respectively. With Taft record, these two values
become 657.4 mm and 209.8 mm, respectively.

Comparison of IDCE finite element model with 3-DOF rigid model for sliding.
It is noted form Tables 7.6 and 7.7 that the IDCE finite element model predicts very
different residual displacements from the 3-DOF rigid model. However, it is reasonably
expected that the flexible IDCE finite element model converge to the rigid 3-DOF model
when increasing the modulus E to infinity. Therefore the typical dam cracked at the base
is taken as an example in this regard under the condition of coefficient of friction 1.2, full

reservoir water and Taft 1952 S69E earthquake component.
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Table 7.8 shows that the residual sliding displacements by the IDCE finite
element model converges to that of the 3-DOF rigid model as the modulus E of the
material is increased. The process of sliding shown in Figure 7.23 demonstrates clearly
that the stiffer the system is, the closer the results are by the two models. This verifies
again that the flexibility of the system affects the seismic behavior, and that the proposed
two models have their own advantages when applied to cracked concrete dams.

Rocking behavior. For all cases, the typical dam cracked at the base will not rock
according to the 3-DOF rigid model. In the IDCE finite element model, however, the toe
and heel of the dam base will open and close due to vibration of the dam. Neglecting the
local deformation at the base, the average rotation of the base can be approximately
determined according to the openness of the toe and the heel as shown in Table 7.9.

From Table 7.9, it is obvious that the typical dam cracked at the base is safe in

rocking except for the failure cases when coefficient of friction is 0.8 and water level is

100 m. The maximum rotation of the base among all other cases is 5.63 x10~*radians.
The corresponding openness at the toe of the crack is just 45.04 mm.

Discussions and conclusions. Based on the seismic behavior of the typical dam
cracked at the base as revealed with both 3-DOF rigid and IDCE finite element models,
the following is concluded:

The typical dam cracked at the base is unsafe if the coefficient of friction is 0.8
when the reservoir water is full under the earthquakes in Figure 7.18 and 7.19. In this
case the 3-DOF rigid model predicts that the cracked dam will slide more than 1 m before
becoming stable, whereas the IDCE finite element model estimates that the cracked dam

will fail. Larger residual sliding displacement by the finite element model is due to the
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fact that vibration of the cracked dam reduces the normal contact force and makes it
easier to slide with lateral hydro pressure.

If the coefficient of friction is 1.0, the typical dam cracked at the base with full
reservoir water will slide 491 mm and 657 mm and then become stable under the
excitation of El Centro 1940 NS and Taft 1952 S69E earthquakes, respectively. These
values are higher than the corresponding residual sliding displacements 191 mm and 161
mm obtained from the 3-DOF rigid model, also showing the considerable effect of
vibration of the cracked dam on the residual sliding displacement.

If the coefficient of friction is 1.2, the residual sliding displacement will be less
than 244 mm (El Centro) or 209.8 mm (Taft) according to the IDCE finite element
model. These values will be just 51.2 mm (El Centro) and 35.7 mm (Taft) according to
the 3-DOF rigid model. This means the typical dam cracked at the base is quite safe
against given earthquake records, if the crack has effective aggregate interlock that is the
equivalent of coefficient of friction of 1.2.

The rotation of the typical dam cracked at the base is so small in the IDCE finite
element model that the safety against overturning is certainly no problem. However, the
small rocking of the cracked dam helps increase sliding markedly. If impact in the IDCE
finite element model is neglected, which accompanies the opening and closing of the toe
and heel of the crack at the base, the residual sliding displacement will be underestimated
as shown in the rigid model that ignores the opening and closing of the crack due to local

deformation and vibration.
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7.4.3 Crack at a height

As the 3-DOF rigid model does not consider the contact condition that the upper
part of the cracked dam is supported at a point between the two lower corners, this model
may induce unexpected errors if the upper part slides significantly. Therefore only the
IDCE finite element model is employed to study the typical dam cracked at the height of
90 m. Responses caused by El Centro 1940 NS and Taft 1952 S69E earthquakes in
Figure 7.18 and Figure 7.19 for different coefficients of friction and different water levels
are summarized in Table 7.10 and Table 7.11.

Sliding behavior. The upper part of the typical dam cracked at the height of 90 m
will slide along the crack in all cases, mainly in the downstream direction. The sliding is
stable after the earthquake excitation stops. The maximum residual sliding displacement
of 649.2 mm is induced by Taft 1952 S69E earthquake with coefficient of friction 0.8
when the reservoir is full. Figure 7.24 shows the sliding of the upper part caused by Taft
1952 S69E earthquake component with coefficient of friction 0.8.

Table 7.10 shows clearly that the residual sliding displacement is consistently
proportional to the coefficient of friction for both types of earthquake and two water
levels 95 m and 100 m as shown in Figure 7.25 for the sliding of the upper part with
water level 95 m induced by El Centro 1940 NS earthquake component. With large
coefficient of friction of 1.2 the upper part will slide less, but coefficient of friction

cannot prevent the upper part from sliding. The residual sliding displacements induced by
El Centro 1940 NS and Taft 1952 S69E earthquakes with coefficient of friction 1.2 and

water level 100 m are 209.7 mm and 316.4 mm, respectively.
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The upper part still slides even if the water level is 90 m for which there is no
hydro pressure on the upper part. This is due to drifting of the upper part after impacts.
The maximum residual sliding displacements for water level 90 m is 90.8 mm induced by
El Centro 1940 NS earthquake while the coefficient of friction is1.0. If induced by Taft
1952 S69E earthquake, this maximum value is 85.2 mm.

Rocking behavior. The upper part of the typical dam cracked at the height of 90
m will rock with respect to the crack in all cases. But the largest rotation with respect to

the lower part is just 0.0149 radians (x# =1.2, -, =100 m) in downstream direction. The

corresponding opening of the crack at the upstream face is 119.2mm.

Compared with the case of water level 95m, rotations in both directions for full
water are considerably higher for each type of earthquake and every coefficient of
friction. Take the coefficient of friction of 1.2 with El Centro 1940 NS as an example.
The maximum rotations of the upper part for water level 95 m are 0.008441 radians and
0.004387 radians in downstream and upstream directions, respectively, whereas these
two values will be 0.0128 and 0.0135, respectively, if the reservoir is full.

Even if the water level is so low that there is no hydro pressure on the upper part,
it still has residual sliding displacement for each type of earthquake and every coefficient
of friction. Figure 7.26 demonstrates the overall sliding and its drifting component for the
case of El Centro NS earthquake component and coefficient of friction 1.0. From this
Figure, it is very interesting to note that the majority of the residual sliding of the upper
part is due to its drifting after impacts. This suggests that rocking and impact are
necessarily to be considered in estimating the sliding displacement of cracked concrete

dam.
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Discussions and conclusions. According to the behavior revealed by the above
finite element analysis, we have conclusions as below for the typical dam cracked at the
height of 90 m:

The upper part is safe in sliding if the coefficient of friction is 1.0 or greater. The
largest sliding displacement of 649.2mm is induced in the downstream direction by the
Taft 1952 S69E earthquake component for coefficient of friction 0.8 with full reservoir
water.

The residual sliding displacement is always in the downstream direction and
consistently proportional to water level due to the hydro pressure. However, even if the
water level is below the crack, the upper part still slides owning to its drift after impact.

The residual sliding displacement is nearly always inversely proportional to the
coefficient of friction. However, large coefficient of friction, such as 1.2, cannot prevent
the upper part from sliding along the crack. This is also due to the drifting motion of the
upper block after impact.

The upper part is safe also in overturning, as the rocking is very small in all cases.
The largest rotation with respect to the lower part is 0.0149 radians induced by Taft 1952
S59E earthquake component in downstream direction for coefficient of friction 1.2 with
full reservoir water. This amounts to a crack mouth opening of 119 mm at the upstream
face.

However, rocking affects sliding in all cases. While the crack is closing the
normal contact force is decreased, and hence this may lead to shear overcoming the static
friction. After impact, the upper part receives impulse and vibrates in vertical direction,

which may also decrease the normal contact forces and even result in drifting. Therefore,
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rocking, although it might be small, has to be considered for estimating the safety against

sliding of cracked concrete dams.

7.4.4 Summary of the seismic behavior of the cracked typical dam

According to the analysis of the typical dam cracked at both the base and at the
height of 90 m, respectively, under the excitation of El Centro 1940 NS and Taft 1952
S69E earthquake components, we can summarize as below:

If cracked at the base, the typical dam is stable in both sliding and overturning
when the coefficient of friction is 1.0 or higher even if the reservoir is full, as predicted
by both the 3-DOF rigid model and the IDCE finite element model. If the coefficient of
friction is 0.8, the 3-DOF rigid model shows the residual sliding displacements are as
large as 1120mm and 1487mm for El Centro 1940 NS and Taft 1952 S69E earthquakes,
respectively, whereas the typical dam in this case will fail according to the IDCE finite
element model.

For the case of the crack at the base of the dam, the 3-DOF rigid model
underestimates the residual sliding displacement compared to the IDCE finite element
model. This is due to the fact that the flexible model can reflect the vibration of the
cracked dam, which increases its instability.

If cracked at a height, the typical dam is stable in both sliding and overturning in
all considered cases, as shown by both models.

In both cases of cracks, the residual sliding displacements are in the downstream

direction for all cases. The amount of sliding is proportional to the water level, showing
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that the lateral hydro pressure is an important factor in the estimation of the safety in
sliding.

In both cracked cases, the residual sliding displacement will consistently decrease
as the coefficient of friction increases. However, the residual sliding displacement is still
244.0 mm (cracked at the base, El Centro 1940 NS earthquake) and 316.4 mm (cracked at
the height) for full reservoir water when coefficient of friction is as high as 1.2. This
indicates that large coefficient of friction cannot prevent completely the upper part of the
cracked typical dam from sliding along its crack.

In both cracked cases, rotation of the dam above the crack is quite limited. So
there is no safety problem against overturning. However, rocking is related to sliding, as
the rocking and accompanying impact of the cracked dam can reduce the normal contact

force, even causing drifting of the upper part in some cases.
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Table 7.1 Summary of seismic responses of the triangular dam

caused by Taft 1952 S69E earthquake (x =1.0)

Proposed IDCE model
Residual
Modulus sliding (m) Downstream rocking Upstream rocking
of the dam by Residual Opening ‘
(GPa) Chopra and sliding Maximum at the Maximum Opetrlllmg at
. . e
Zhang (1991) | (mm) e | MPameam | 0RIO% | downstream
( rad) ( rad) face (mnm)
(mm)
©* 0.063* 0.095 0.10 1.0 0.06 0.8
4142 0.271 0.432 2.03 19.8 0.82 8.0
27.61 0.378 0.359 5.04 492 1.06 10.3
13.81 0.232 0.424 6.15 60.0 1.40 13.6
6.90 0.171 0.495 7.30 71.2 1.57 153
3.45 0.030 0.311 432 42.1 0.03 0.3
Table 7.2 First three periods of the triangular dam with empty reservoir
Period (s)
Method | Mode ["E-3142] E=2761 | E=138] E-690] E=345| Mode shape
GPa GPa GPa GPa GPa
Chopra
Zalllnaig 0.2286 0.2800 0.3960 [ 0.5600 | 0.7920 Horizontal swaying
(1991)
0.2139 0.2620 0.3705 | 0.5240 | 0.7410 | Horizontal swaying
SAP2000 0.0920 0.1126 0.1593 | 0.2252 | 0.3186 Bending
0.0823 | 0.1008 | 0.1425 | 0.2016 | 0.2850 _ Vertical
tension/compression

* In the IDCE model, using modulus E=2000 GPa.

" Estimated from Figure 3 of Chopra and Zhang (1991).
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Table 7.3 Summary of the seismic response of the triangular dam subject to Taft 1952 S69E of 0.9g
peak acceleration (u =1.4, e=0.5 in the 3-DOF model)

Residual Downstream Upstream
down- A lated rocking rocking
ccumulate: : :
Model stream coumu’a Opening Opening
slidin drifting (mm) Max at up- Max at down-
g (107 rad) stream (10~ rad) stream
(mm) face (mm) face (mm)
3-DOF 155.4 23.7 0.13 13 0.39 3.8
FOT6L | sess 27.2 13.11 1283 8.84 86.2
IDCE E=2000
166.5 83.3 0.08 8.3 0.07 6.4
GPa
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Table 7.6 Residual downstream sliding (mm) of the typical dam
cracked at the base (3-DOF rigid model)

Earthquake El Centro 1940 NS Taft 1952 S69E

Water Level 90 95 100 90 95 100
(m)

g

£ 0.8 181.7 384.6 1120.2 148.8 439.2 1487.0

£

S

= 1.0 40.8 86.9 191.4 28.6 60.6 161.0

b=

:33 1.2 8.4 21.9 51.2 3.6 15.0 35.7

Table 7.7 Residual downstream sliding (inm) of the typical dam
cracked at the base (IDCE model)

Earthquake El Centro 1940 NS Taft 1952 S69E

Water Level 0 50 100 0 50 100
(m)

=

-g 0.8 -0.4 3.2 Failure -0.6 9.8 Failure

E

s

= 1.0 0.1 -1.0 491.0 0.2 7.1 657.4

bS]

5 1.2 0.1 1.1 244.0 0.1 6.3 209.8
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Table 7.8 IDCE finite element model converges to 3-DOF rigid model when increasing
the modulus of the material by studying the residual downstream sliding of the typical
dam cracked at the base (u=1.2, #,~100m, Taft 1952 S69E)

Model IDCE 3-DOF
Modulus (GPa) E=20 E=200 E=2000 E=20000 =00
Residual sliding (mm) 217.84 94.03 51.79 36.62 35.71
Relative error 83.61% 62.02% 31.05% 2.48% -—--

Table 7.9 Base rotation (10~ radians) of the typical dam

cracked at the base (/DCE model)

Earthquake El Centro 1940 NS Taft 1952 S69E
Water Level 0 50 100 0 50 100
(m)
downstream 0.03 0.30 Failure 0.04 0.26 Failure
0.8
g upstream 0.85 1.49 Failure 0.97 1.11 Failure
(]
‘=
:5 downstream 0.03 0.36 2.49 0.00 0.31 4,07
= 1.0
35 upstream 0.91 1.63 1.75 1.00 1.17 1.35
E
[+
8 downstream 0.00 0.37 5.51 0.04 0.34 5.63
1.2
upstream 0.09 1.71 1.70 0.99 1.19 0.73
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Table 7.10 Residual downstream sliding (mm) of the typical dam
cracked at a height (IDCE model)

Earthquake El Centro 1940 NS Taft 1952 S69E
Water Level 90 95 100 90 95 100
(m)

=

£ 0.8 66.1 200.1 414.8 117.9 328.6 649.2
:

s

= 1.0 90.8 159.7 285.2 85.2 209.1 381.9
5

=

E 12 66.1 101.7 209.7 81.0 157.3 316.4

Table 7.11 Relative rotation (10™ radians) of upper part of the typical dam
cracked at a height (I/DCE model)

Earthquake El Centro 1940 NS Taft 1952 S69E
Water Level 90 95 100 90 95 100
(m)
downstream 54.40 54.02 85.96 41.15 49.73 82.47
0.8
,E upstream 50.47 52.41 64.65 28.75 19.98 43.83
>
=
:5 downstream 37.91 59.77 137.64 4590 62.27 130.88
< 1.0
2 upstream 51.81 45.03 12728 | 3122 | 4173 | 59.10
1=
Cd
-+
8 downstream 44,72 84.41 128.41 46.49 84.19 149.02
1.2
upstream 51.15 43.87 135.19 31.60 55.53 67.70
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Figure 7.1 Finite element mesh of the triangular dam with
coefficient of friction 1.0 at the base
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Figure 7.2 Base sliding of the triangular dam induced by Taft 1952 S69E

earthquake with peak acceleration of 0.5g (1, =1.0)
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Figure 7.3 Comparison of sliding of one-degree-of-freedom flexible model

to that of IDCE model for the triangular dam (4 =1.0)
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Figure 7.4 Rocking of the triangular dam caused by Taft 1952 S69E earthquake
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Figure 7.5 Drifting of the triangular dam caused by Taft 1952 S69E earthquake
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Figure 7.6 Base sliding of the triangular dam (E=27.61 GPa) induced by the S69E component
with peak acceleration scaled to 0.9g of the Taft 1952 earthquake (4 =1.4)
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Figure 7.7 Base sliding of the triangular dam induced by the S69E component with

peak acceleration scaled to 0.9g of the Taft 1952 earthquake (1 =1.4)
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Figure 7.8 Rocking of the upper part of cracked Koyna Dam
caused by longitudinal component of Koyna earthquake (x =1.2)
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Figure 7.9 Rocking of the upper part of cracked Koyna Dam
caused by transverse component of Koyna earthquake (z=1.2)

Displacement (m)

0.04

0.02 -

0.00

'0.02 T T ¥ T T T T T T

Time (s)

Figure 7.10 Sliding of the upper part of cracked Koyna Dam with triangular
uplift caused by longitudinal component of Koyna earthquake

153



Transverse component

018 1----- uniform uplift N e Ao

I L e 1

T e -
T 012 - Longitudinal component ~L, , _, jo=—"" Transverse component
= 7] uniform uplift triangular uplift
[
& 040 f----- e p T B S
£
8 008+---- A
1]
& 008 f---o oo M R E—
Q 0044 - ‘ N e S v e

AR __ ~_ Longitudinal component
triangular uplift
5 6 7 8 9 10

Time (s)

Figure 7.11 Sliding of the upper part of Koyna Dam (x =1.2)

012 q—mmm o
040 £ -~ m - m e . -
Total horizontal
T 008 p---r-rmmmm e e displacement
R e Sy At
£
8
€ 004+ - WA
a
B
i I o Drifting component
000 t———————ar} #
-0.02 . ; . ; . . r . . —
0 1 2 3 4 5 6 7 8 9 10
Time (s)
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Figure 7.15 Typical concrete dam with crack at a height
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Figure 7.16 Finite element mesh of the typical dam cracked at the base
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Figure 7.17 Finite element mesh of the typical dam cracked at a height
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Figure 7.18 Scaled El Centro 1940 NS earthquake acceleration record
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Figure 7.19 Scaled Taft 1952 S69E earthquake acceleration record
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Figure 7.20 Sliding of the typical dam cracked at the base with coefficient of friction 0.8
caused by Taft 1952 S69E component (3-DOF rigid model)
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Figure 7.21 Sliding of the typical dam cracked at the base with water level 100 m

caused by El Centro 1940 NS (3-DOF rigid model)
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Figure 7.22 Sliding of the typical dam cracked at base with coefficient of friction 0.8 and

lower water level (IDCE model)
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Figure 7.24 Sliding of the upper part of the typical dam cracked at 90 m with
coefficient of friction 0.8 caused by Taft 1952 S69E (IDCE model)
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Figure 7.25 Sliding of the upper part of the typical dam cracked at 90 m
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8.1

CHAPTER VI

CONCLUSIONS AND RECOMMENDED FUTURE WORK

Conclusions

3-DOF rigid and IDCE finite element models are proposed and applied to study

the seismic behaviour of cracked concrete gravity dams. From the analyses and results

presented in this thesis, the following principal conclusions have been derived:

1.

The proposed 3-DOF rigid model is the first rigid model considering the general
geometry and all possible modes of motion in the seismic analysis of cracked
concrete dams. In this model, the block above the crack in a concrete dam is
considered as a rigid with 3 degrees-of-freedom. The motions of the block are
classified into sliding, rocking, slide-rocking and drifting.

The proposed IDCE finite element model describes the contact conditions at the crack
by use of incremental displacement constraint equations accompanied by the friction
law in the seismic procedure. The constraint equations are introduced into the finite
element model via a penalty method.

Owing to assumptions in the 3-DOF rigid model, it is very effective in the case that
the crack locates at the base of the dam and the dam is relatively rigid. Because of its
simplicity, the 3-DOF rigid model does not include the change of contact condition
after sliding in the case of crack at a height. However, this simple model is able to
give a fast and rough estimation of the seismic behaviour for cracked concrete dams.
The stiffer the dam is, the more accurate the estimation will be.

As there is no assumption introduced in the IDCE finite element model except the

elasticity of the material, it is more adaptable than the 3-DOF rigid model and can be
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applied to cases of cracks both at the dam base and at a height. If cracked at a height,
a very simple treatment can avoid the phenomenon of penetration that may induce
remarkable error in the responses.

. Computation results by the two proposed models are consistent and satisfactory
compared with each other as well as with available theoretical or numerical solutions.

. Seismic analysis of the triangular dam for base sliding with the proposed IDCE model
demonstrates its good agreement with one-degree-of-freedom flexible model if
rocking conditions are not satisfied and the fundamental period of the dam is close to
the average period of the earthquake. With full reservoir water and coefficient of
friction 1.0 at the base, the triangular dam will be safe if imposing S69E component
(peak acceleration scaled to 0.5g) of Taft 1952 earthquake, with residual downstream
sliding 565.5 mm or less.

. If the equivalent coefficient of friction at the crack is as high as 1.4 and the peak
acceleration is 0.9g, the triangular dam will experience sliding, rocking, impact and
drifting motion, where one-degree-of-freedom model is inapplicable. In this case, the

triangular dam is still safe in both sliding and rocking. The IDCE model estimates

that the dam will rock with maximum rotation of 13.11x10™ radians and 128.3 mm
of opening at the upstream face, which are much larger than those values predicted in
3-DOF rigid model. Regarding the sliding displacements, the two proposed models
yield completely different sliding processes, and the residual values are quite
difference, indicating that the flexibility of the dam affects the seismic behavior

considerably.
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8.

10.

11.

Application of both models to the cracked Koyna Dam shows the upper part of the
cracked monolith will be stable when either the transverse or longitudinal component
of the Koyna earthquake is imposed, even if the coefficient of friction at the crack is
as low as 0.8. The residual sliding displacement of the upper part of the cracked
monolith is proportional to the coefficient of friction. If the coefficient of friction is
1.0 or larger, the corresponding residual displacement can be reduced to 195.7 mm or
even less.

Computations for the cracked Koyna Dam also show that the rocking of the upper
part is relatively small. Therefore the safety of the cracked Koyna Dam against
overturning is guaranteed if a similar earthquake is applied. However, the rocking
mode has to be included for properly predicting the stability of the cracked dam
against sliding, due to these facts: rocking reduces the normal contact force and
impact may cause drifting.

To reveal the seismic behaviour of cracked concrete gravity dams in general, a typical
concrete gravity dam with cracks at the base and at a height, respectively, are studied
by use of the two proposed models with two types of earthquakes, three water levels
and three coefficients of friction.

Both models reveal consistently the seismic behaviour of the cracked typical dam.
The cracked typical dam will always slide in downstream direction. Its residual
sliding displacement is proportional to the water level and inversely proportional to
the coefficient of friction under the given earthquake. With peak acceleration of 0.4g,
both El Centro 1940 NS and Taft 1952 S69E earthquakes will cause the typical dam

cracked at the base to slide significantly, or even fail, if the coefficient of friction at
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the crack is 0.8 and the reservoir is full. The estimated maximum residual sliding
displacement, however, will still be 209.8 mm even if the coefficient of friction is 1.2.

12. The IDCE finite element model reveals that the typical dam cracked at the base
exhibits residual sliding displacement in the downstream direction even if the water is
below the critical level that statically initiates sliding of the cracked dam. The typical
dam cracked at a height will drift even if the water level is below the crack, revealing
that in the absence of hydro pressure the rocking and impact may cause the upper part
of the cracked dam to slide along the crack. The typical dam in each of the cracked
situations acquires quite different residual sliding displacement for different
earthquakes with the same magnitude of peak acceleration. This indicates that the
stability of the cracked dam relies severely on not only the peak acceleration of the
ground motion but also the details of the acceleration record.

13. This study suggests that the 3-DOF rigid model can be employed to first estimate the
safety of cracked concrete dams against sliding and overturning. If the concrete dam
is cracked at quite low position, such as at the base, the IDCFE finite element model,
which considers the flexibility of the dam, should be used to reveal more accurately

its seismic behaviour.

8.2 Recommended future work

Although the two proposed models are quite satisfactory for predicting the
seismic behaviour of cracked concrete gravity dams as demonstrated in the previous

chapters, the prediction can be more practical if efforts are made in following aspects:
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. In the current study of this research, only horizontal excitation of the ground is
considered. Actually, the vertical component of ground motion affects the seismic
response. To fully review the seismic behaviour of cracked concrete gravity dams,
modifications to include vertical excitation in the proposed models are necessary.

. Presently both programs for the proposed models are mainly for the purpose of the
research, and the data preparation and response analysis rely on the users. With user-
friendly pre- and post-programs, the efficiency of the analysis can be much enhanced.
Therefore it is needed to develop pre- and post-processing subroutines with easy-to-
use interfaces to help prepare the original data of the models and explain the seismic
behaviour of the cracked dams.

. The proposed 3-DOF rigid model needs very limited data preparation and is so
effective that the computation just costs a few seconds. However, it is suitable for
relatively rigid dams. By contrast, the IDCE finite element model is applicable to
ecither flexible or quite rigid dams with large amount of data preparation and

computation costs (for example, 2 hours of computation on a computer of 1000 MHz

for 1 second history of earthquake with time step of 2 x10~® seconds). Therefore, it is
in great need to classify the cracked concrete gravity dams cracked at the base into
two groups according to proper criteria such as fundamental frequency, height or
slenderness of the dam so that one can reasonably choose either the 3-DOF rigid
model or the IDCE flexible model to predict the seismic behaviour.

. In both models, the Mohr-Coulomb friction law is adopted and the aggregate effect is

represented by a high value of coefficient of friction. In fact, the mechanism of shear
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transfer is very complex which depends upon the history of contact. So more realistic
friction law needs to be introduced into this study.

. The present study shows that there exists a possibility that the cracked concrete
gravity dam may drift in some cases. This is achieved based on the implied
assumption that the crack is flat and the aggregate effect can be represented by a large
equivalent coefficient of friction. However, the crack in the dam is normally not
straight. If considering the reality of the crack, the coefficient of friction will not be
impractically as large as 1.0 or 1.2, and the asperities on the crack will prevent the
cracked dam from drifting if the opening is not large enough. Therefore, a practical
approach is needed to realistically consider the geometry of the crack in the proposed
IDCE finite element model.

. Asperities on the crack are very easy to be damaged in the seismic process. This
damage will change the profile of the crack and its mechanical properties. Therefore
the non-linear property of concrete is unavoidably encountered in future study,
making the seismic behaviour analysis of cracked concrete gravity dams to be a
dynamic contact problem with geometrically changeable contact surface and non-
linear material properties.

. In reality, cracks are likely to develop at the base and at a height where the section
changes abruptly. The proposed IDCE model needs to be applied to the cases of two
or more cracks in order to study the seismic behaviour of cracked concrete gravity

dams with both the base crack and the crack at a height.
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APPENDIX

NATURAL PERIODS OF THE DAMS AND

ACCELERATION SPECTRA OF THE EARTHQUAKES

The first 5 natural periods of vibration of intact Koyna Dam (E =3.1x10* MPa,
v =0.2) and the typical dam ( E = 2.0x10* MPa, v = 0.143) with empty reservoir are as

follows:

Table A.1 Natural periods of the dams

Mode 1 2 3 4 5
Period (s)
of Koyna dam

Period (s) 0.2842 | 0.1292 | 0.1052 | 0.0768 | 0.0521
of the typical dam

0.3254 | 0.1218 | 0.0925 | 0.0627 | 0.0413

Acceleration spectra (5% damping ratio) of the 4 earthquake records employed in

this study are as follows:
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Figure A.1 Acceleration spectrum of Taft 1952 earthquake S69E component with peak
acceleration scaled to 0.5g and damping ratio of 5%
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Figure A.2 Acceleration spectrum of El Centro 1940 earthquake NS component with peak
acceleration scaled to 0.5g and damping ratio of 5%
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Figure A.3 Acceleration spectrum of Koyna 1967 earthquake longitudinal component with
peak acceleration scaled to 0.5g and damping ratio of 5%
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Figure A.4 Acceleration spectrum of Koyna 1967 earthquake transverse component with
peak acceleration scaled to 0.5g and damping ratio of 5%
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