NOTE TO USERS

This reproduction is the best copy available.

®

UMI






Study of Elliptically Symmetrical Two-dimensional
Digital Filters Possessing Separable Denominator
Transfer Functions

Keerthi Chandra Lavu

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

June 2004

© Keerthi Chandra Lavu, 2004



Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94704-1
Our file  Notre référence
ISBN: 0-612-94704-1

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[ b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.






ABSTRACT

Study of Elliptically Symmetrical Two-dimensional Digital
Filters Possessing Separable Denominator Transfer Functions

Keerthi Chandra Lavu

Two-dimensional digital filters are being widely used in modern image processing
software for various types of analysis. The main objective of this thesis has been to
implement two-dimensional filter functions using simple design procedures such that the
presence of elliptical symmetry in such designed filters are obtained by parameter
modifications. In keeping with the simple design criteria, the two-dimensional filters
studied in this thesis have been designed starting from a product of two one dimensional
filters. Only IIR Filters have been considered for this purpose due to their flexibility in
terms of altering filter parameters to obtain new filters. The filters have been checked for
stability before analysis. The design has made use of the fact that varying the feedback
factor ‘4’ in an IIR filter produces a near-elliptical symmetric response for certain values
of “k,” and ‘ £, ’ having specific magnitude ranges.

Algorithms have been obtained to check the extent of elliptical symmetry under

specific magnitude ranges and to correct the feedback factors ‘k,” and ‘%, ’ in order to

obtain the maximum proximity to elliptical symmetry. The lowpass filter has been
primarily chosen to illustrate the objective of the thesis. The stability conditions for
different order filters have been analyzed. Both Butterworth and Chebyshev filters have
been studied. This study has also focused on the effect of changing the pole- parameters
(polar angles) in two-dimensional lowpass filter functions and its contribution to elliptical
symmetry.

The common filter types namely lowpass, bandpass, bandstop and highpass, as
well as their combinations of lower order (fourth) in two dimensions have been studied

and analyzed for elliptical symmetry.
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Considerable success has been achieved in obtained near-elliptical symmetry
especially among the two-dimensional lowpass filters and also in other types of filters. It
has also been found that there exists numerous possibilities to achieve near elliptical

symmetry based on parameter modifications (values of %, and £, ) and magnitude range

of the filter under study.
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Chapter 1

Introduction

The topic of Multidimensional system (MDS) analysis and design has attracted
considerable attention during recent years and is still receiving increased attention
by theorists and practitioners. Multi-dimensional signal processing has many ap-
plications in modern-day devices, softwares and many practical systems, because
of which, this subject is still being investigated in important areas such as facsim-
ile, television, sonar, bio-medicine, remote sensing, underwater acoustics, moving-
objects recognition, robotics and so on. Problems of different aspects have been
thoroughly studied and these include modeling, stability, structure analysis and re-
alizations, digital filter design, multi-dimensional signal processing, reconstruction
and so on. Many important results have been obtained [1].

Specifically, interest has been directed by researchers into the area of two-
dimensional(2-D) digital systems due to several reasons: high efficiency due to
high-speed computations, permitting high quality image processing and analysis,
great application flexibility and adaptivity, decreasing cost of software or hardware
implementations due to the large expansion and evolution of standard computers,
microcomputers, microprocessors, and high-integration digital circuits. In this re-
spect, digital systems have taken over in implementation [1]. Two-dimensional signal

processing and analysis has evoked a lot of interest among researchers due to their



numerous advantages in areas such as image processing.

The two-dimensional digital systems perform important operations which in-
clude: 2-D digital filtering, 2-D digital transformations, local space processing, data
compression, and pattern recognition. Digital filtering, digital transformations, and
local space operators play important roles in preprocessing of images, performing
smoothing, enhancement, noise reduction, extracting boundaries and edges before
pattern recognition, data compression operations permitting the reduction of large
number of data representing the images in digital form and solving or minimiz-
ing transmission and storage problems. Pattern recognition operations permit the
extraction of significant information and configurations from the images for final
interpretation and utilization [1], [2].

Over the past decade, researchers have shown particular interest in two-dimensional
(2-D) filters, both recursive and non-recursive, These 2-D filters find increasing ap-
plications in many fields, such as image processing and seismic signal processing. In
many of these applications, the signal does not have any preferred spatial direction,
and so the required filter functions, possessing circular, elliptical and other sym-
metric frequency response characteristics are finding great importance. Also 2-D
filters find increasing applications in image restoration and enhancement [1]. As
an example, two dimensional highpass filtering removes the unwanted background
noise from an image so that the details contained in the higher spatial frequencies

are easier to perceive.

1.1  Two-Dimensional Digital filters

In general, similar to one-dimensional (herewith referred to as 1-D) digital filters,
2-D filters can be classified into two main groups. The first group comprises a finite
sequence traﬁsfer function and so the filters in this group are called Finite Impulse
Response(FIR) filters. The second group comprises infinite sequence transfer func-

tion and so the filters in this group comprises an infinite sequence transfer function



and so the filters in this group are called Infinite Impulse Response(IIR) filters.

1.1.1 Finite Impulse Response Filters(FIR Filters)

The transfer function of 2-D FIR filters can be described by using 2-D z-transform

as follows [1]:

M N
H(z, z3) = Z Z Aningzy 2y (1.1)

n1=0 na=0

Eqn.(1.1) implies that some of the 1-D design methods can be directly extended
to two (2-D) or more dimensions (m-D) by appropriate modifications in the design
procedures. It should also be noted that a straight extension of 1-D technique to
2-D design may not always be possible. In the 2-D FIR filters, problems of stability
do not occur since the impulse response is bounded and exists only for finite time

duration or the stability of A(21, 22) is guaranteed. Therefore

> D Ih(z, )| < oo (12)

Tl1=0 Tl'z‘—‘o

for all finite values of M and N.

1.1.2 Infinite Impulse Response Filters(IIR Filters)

The transfer function of 2-D IIR filters can be described by using 2-D z-transform

[1] and can be expressed as a ratio of two variable polynomials as follows:

; J o
N(z1, 2z2) - =0 ijo aij2] 2y
D(z, 2) Z;Ic{zo ZIL:O bruzi 25"

H(z, z3) = (1.3)

where bgo = 1, a;; and by, are real coeflicients.

For any input signal X (21, z2) , the output Y'(z;, 22) of the filter is given by,

Y (21, 22) = H(z1, 22) - X (21, 20) (1.4)



In the 2-D IIR filters, one important problem to be dealt with is stability.
According to the stability theorem (2], [3], the 2-D IIR filter is guaranteed to be
stable in the bounded-input bounded-output(BIBO) sense, if there exists no value

of z; and 2z, for which
D(z1, z2) =0 forboth |z] > 1and |z| > 1 (1.5)

exists [1]. This means it is highly preferable that the given analog transfer function
must have Very Strictly Hurwitz Polynomial(VSHP) denominator [3], [4]. In the
Laplace domain, the polynomial D(sy, s2) is said to be VSHP if (1/D(s;, s2)) does
not possess any singularities in the region (s, s2) with Re(sy) > 0 and Re(s,) > 0.
Therefore , the design of a 2-D IIR filter requires obtaining the coefficients a;; and
by in Eqn.(1.3) so that H(e/“1!t, e/¥2%2) approximates a given response G(jwi, jws)
where w; and we are horizontal and vertical spatial frequencies respectively, which
also ensures the stability of the filter. If we obtain a transfer function whose de-
nominator is a VSHP and then obtain a corresponding digital transfer function by

using the double bilinear transformation given by

i—1
AT =12 (1.6)

S — ;
z;i +1

then we can guarantee stability in the digital domain also.

1.2 Symmetry Types associated with 2-D Transfer Functions

Two and higher dimensional systems may possess different types of symmetries.
These symmetries have been used to reduce the complexity of the design and im-
plementation of systems [5].

To understand how symmetry concept is extended to mathematical functions,
consider a real function f(z, s) of two independent variables z; and z. The
function f(z;, z2) assigns a unique value to each pair of values of z; and z, and

so may be represented by a three dimensional object having the (z;, z2) plane as
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the base and the value of the function at each point in the plane as the height. We
may say that a function possesses a symmetry, if a pair of operations. performed
simultaneously, one on the base of the function object (i.e.,(z1, ) plane), and the
other on the height of the object(function value) leaves the function undisturbed.

In other words, existence of symmetry in a function implies that the value of
the function at (217, Zor) meets a certain requirement or condition, where (z17, Zor)
is obtained by some operation on (z1, Z2) and this condition being satisfied for all
points in the region.

Most of the applications require that a 2-D digital filter shall have a certain
symmetry in its magnitude response. This symmetry property can be used in the
reduction of the number of multiplications in the implementation of these filters and
also in the reduction of the number of variables in the optimization procedure. The

following gives a brief review of the different symmetry constraints [5].

1.2.1 Displacement(Identity) Symmetry

If a function possesses displacement identity symmetry with a displacement of d,

the symmetry conditions on the function can be expressed as

flz+d)=f(z) vz e X (1.7)

1.2.2 Rotational Symmetry

Choosing the rotational center as the origin ant the rotation angle as #/2 radians,

we get the four-fold rotational symmetry condition as

f(@1, 32) = f(=22, 71) /2 € X (1.8)

following which we have

f(z1, 22) = f(=%2, 1) = f(—2z1, —22) = f(22, —11) (1.9)



1.2.3 Centro-Symmetry

In the two-variable case, twofold rotational symmetry(rotation by 7 radians) is called

centro-symmetry. The required condition for centro-symmetry is

f(—.’El, —.’1'2) = f(ZE1, 5132) \/a: e X (110)

1.2.4 Centro-Anti Symmetry

In the two-variable case, the required condition for centro-anti symmetry is

fl=zy, —72) = —f(z1, 72) \[z€X (1.11)

1.2.5 Centro-Conjugate Symmetry

In the two-variable case, the required condition for centro-conjugate symmetry is

f(=z1, —32) = [f(21, 72)] \/x € X (1.12)

1.2.6 Centro-Conjugate Anti Symmetry
In the two-variable case, the required condition for centro-conjugate anti symmetry
is

f(=z1, —22) = [-f(z1, 22)] \/:E eX (1.13)

1.2.7 Reflection Symmetry

Reflections about the z; axis, the z; axis, and the diagonals z; = 2z, and z; =
—x4 line, respectively, result in reflection symmetries which could be anyone of the

following:

xy azis reflection — f(zy, —z2) = f(z1, 22) (1.14)



To azis reflection — f(—z1, 22) = f(z1, T2) (1.15)

T = Zq line intersection — f(z2, z1) = f(z1, 22) (1.16)

T = —x2 line intersection — f(—xa, —11) = f(z1, T2) (1.17)
180° rotation about the origin — f(—zy, —x2) = f(z1, T2) (1.18)
90° rotation about the origin — f(z2, —z1) = f(z1, z2) (1.19)

1.2.8 Quadrantal Symmetry

The condition on the function to possess quadrantal identity symmetry is

f(z1, 32) = f(=21, 32) = f(~21, —72) = f(21, ~T2) (1.20)

It is easy to verify that the four quadrants of the X-plane correspond to the

four symmetry regions. Hence this symmetry is called quadrantal symmetry.

1.2.9 Diagonal Fourfold reflection Symmetry

Similar to the quadrantal case, if the function possesses reflection symmetry with
respect to the £, = z, line and the z; = —z, line simultaneously, it is supposed to

possess diagonal fourfold reflection symmetry

f(@1, 22) = f(z2, 1) = f(~22, —11) = f(~71, —72) (1.21)

As in quadrantal symmetry, the function possesses two-fold rotational symme-

try when it possesses diagonal fourfold reflection symmetry.



1.2.10 Octagonal Symmetry

In this case the function possesses quadrantal symmetry and diagonal symmetry
simultaneously. The conditions for a function to posses octagonal symmetry are

given by

f(iEl, 332) = f(iﬁl, —mz) = f(—xh 332) = f($2, 371)
= f(=2z2, —21) = f(=21, —22) = f(x2, —71) = f(—12, 71) (1.22)

1.2.11 Circular Symmetry

Mathematically, circular symmetry in 2-D filter responses can be defined as the filter

response being able to satisfy the general equation of a circle, according to which,
witwi=M (1.23)

where w; and w; are the frequencies in the two dimensions, and M is the magnitude

response which needs to be a constant in order to satisfy the circular symmetry

property.

The function relation for circular symmetric response in w plane is given by[6]
H (W) Hy(w?) = Hy(w? +w?) (1.24)

where H(w?) and H(w2) are the transfer functions of both the dimensions.

1.2.12 Elliptical Symmetry

Similar to the circular case, elliptical symmetry in 2-D filter responses can be defined

as the filter response being able to satisfy the general equation of an ellipse, according

to which,
2 2
Wy | Wy
— = =M 1.25
a? + a3 ( )



where w; and ws are the frequencies in the two dimensions, and M is the magnitude
response which needs to be a constant in order to satisfy the elliptical symmetry
property. The Magnitude "M’ takes both the axes(major and minor) into account
when a constant value for it is chosen and a; & a3 corresponding to a magnitude M.

By replacing w; by aw; and wy by Bw. in Eqn.(1.24), we obtain the function
relation for eliiptic symmetric separable functions.

Thus an ideal elliptical symmetric 2-D magnitude squared function is given by

6]
H(w?, w3) = Aexp(aw? + fus) (2

In order to approximate elliptical symmetry, a product separable function

given by,

H{(sy1, s2) = hi(s1)h2(s2) (1.27)

is considered.

From the above, the following can be deduced:

(1)Any separable function H(sy, s) = hy(s1) X ha(s2) is quadrantally sym-
metric.

(2)When hy(.) = hao(.), H(s1, s2) is also octagonally symmetric, where h;(.) is
a single variable function.

(3)For the magnitude of elliptical symmetry being the main criterion, |k (jw;)|?
should approximate A\e®“i for suitable values of A and a.

(4) When stable, all-pole 2-D transfer functions are constrained to possess
quadrantal symmetry, they turn out to be separable.

(5) H(s1, s2) is said to possess elliptical(rectangular) symmetry if its magni-
tude is invariant on a set of specified elliptical(rectangular) paths around the origin

in the w plane.



1.3 Realization of the 2-D Filter Functions

The realization of the filter networks from the transfer function can be accomplished

using the following important methods:

1.3.1 Direct Method

All 2-D transfer functions can be realized using this method. This realization follows
from the algorithm given by Shank [7].

It can be shown that Eqn.(1.3) can be written as

I J K L
Y(z1, 22) = (ZZaUzl zy *X (21, 22 ) (ZZ() kiZ] 22 %Y (z, z2)>

i=0 j=0 k=1 I=1

(1.28)

The above equation can be directly realized using different approaches [8].
However, one main limitation of direct realization is that it results in high round-off

€ITOorS.

1.3.2 Parallel Realization

In this case the given 2-D transfer function is to be expanded, where possible, into
partial fractions. Each of such function is realized suitably and they are connected

in parallel.

1.3.3 Cascade Realization

Here, it is required that the given 2-D transfer function is expressed as a product of
several lower order 2-D transfer functions which may not always be possible since a
2-variable polynomial, in general, is not factorizable. It is noted here that when the
2-D function may be expressed as a product of realizable low-order functions, then

a cascade type of realization can be used.
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1.3.4 Wave Realization

This realization starts from a given analog network which is transformed into digital
domain by a double bilinear transformation. As is evident, exact realizations of the

product separable transfer functions are not possible [9].

1.4 Scope of the Thesis

Finite impulse frequency response (FIR) filter functions possessing nearly elliptical
symmetric responses can be generated from 1-D FIR functions [10]. This procedure
cannot, however, be used to generate 2-D infinite impulse response (IIR) functions
approximating elliptical symmetry, as the application of such a transformation to a
1-D IIR function results in a 2-D IIR function which is not, in general, factorizable
into a set of quarter-plane or half-plane stable functions without further effort [11].

It has been recently proved that if a quarter plane filter possesses quadrantal
symmetry in its magnitude response, then its denominator can be expressed as a
product of two 1-D polynomials [6], [12]. It can be readily verified that the presence
of elliptical symmetry implies the presence of octagonal, and hence, quadrantal
symmetries. Therefore it is reasonable to constrain the desired function to possess
octagonal symmetry in its magnitude response and to choose the filter function
with a product separable denominator. The main scope of this thesis is to choose
and study such filter functions. A choice of such type eliminates the necessity for
checking the stability of the filter during the approximation stage of the design.
The denominator product separable constraint restricts the domain of functions
for filters which do not possess quadrantal symmetry in their frequency responses
over which approximation is carried out and results in suboptimal solutions. Since
there is no constraint on the numerator polynomials, the types of responses one can
approximate using separable denominator filter functions seems to be practically

unlimited. Also, in order to obtain good elliptical symmetry and frequency selective

11



characteristics, one may opt for non-separable functions.

In this thesis, the common types of filter responses namely lowpass, highpass,
bandpass and bandstop have been considered in detail with respect to the above
mentioned theory are used. In all the above cases, separable denominator transfer
functions are being considered. So, the 2-D filters will be studied as an extension
to the 1-D counterpart. All the 2-D filter designs considered in this thesis work
will therefore be derivations from two 1-D filters. This is also the simplest of all
conventional 2-D filter designs in effect and therefore gives a lot of scope for future
work.

In Chapter-2, lowpass filters obtained from Butterworth, Chebyshev and pole
parameter transformations have been utilized in-order to design 2-D filters of ap-
proximate elliptical symmetry. First the stability conditions for all the orders of with
different shifts in the poles of Butterworth filters are tabulated using the “Very Strict
Hurwitz Polynomial(VSHP)” concept [3]. Also the elliptical symmetry conditions
which fall under the stability regions are obtained for the corresponding filters. The
lowpass filter will be chosen as the basis of comparison for the distinctly different
types of filters, studied in this chapter. The effect of pole-parameter transformation
and its effect on performance of the filter will then be studied. In this respect, first
we point out that the pole vectors of the Butterworth filters(of order n = 2*%) can
be subjected to “prescribed symmetrical swinging”[13], such that certain symmetry
properties present in the original pole-pattern can be maintained invariant. Here
we discuss the family of filters called “2-D Complementary Pole-Pair Filters(2-D
CPPF’s)”, generated by exploiting the symmetry invariant property as mentioned
above. The performance of the new filters obtained are studied. The effect of this
symmetrical swinging affecting the elliptical symmetry of these types of filters will

also be studied.
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In Chapter-3, transformations of the highpass, bandpass and bandstop But-
terworth filters will be implemented and their approximation to near elliptical sym-
metry for each case will be studied. The Chebyshev filter design for these types of
filters and their comparison to the Butterworth counterpart will be left as a scope
for future study.

In Chapter-4, we will investigate the possibilities of combining different 2-D
Butterworth filters to form unique transfer functions and therefore unique filter re-
sponses. The possibility of elliptical symmetry after the combination of two transfer
functions will be studied. It is possible to obtain user specific responses by such
combination filters. In this chapter, three different designs of combination filters
will be considered and studied.

The basic goal, underlying in all of the above study, is to emphasize on the
possibility of near elliptical symmetry starting with filters possessing separable de-
nominators and their combinations. Elliptical symmetry will also be one of the most
important aspect of commonly used filters, in emerging fields. The main goal of this
thesis is obtain the nearest approximation of such filters with the simplest design
methods possible.

Chapter-5 gives the summary, conclusions and some directions for future in-

vestigations.
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Chapter 2

(Generation of Stable Lowpass IIR
2-D Transfer Functions Possessing

Near-elliptical Symmetry

2.1 Introduction

In order to design a filter having required specifications, one can suitably choose a
transfer functicn with no common factors between the numerator and the denomi-

nator. Specifically in 1-D systems in the s-domain(analog domain), let
N.(s)
Dy(s)

be transfer function with N,(s) and D,(s) being relatively prime. For the above

Hy(s) = (2.1)

function to be stable, we must have D, (s) to be a Strictly Hurwitz Polynomial(SHP).
A strictly Hurwitz polynomial is one which contains its zeros strictly in the left-half

of s-plane. In a similar manner, if

_ Ny(z)
Dy(z)

is a transfer function in the discrete domain with Ny(z) and D,(z) being relatively

Hqy(z)

(2.2)

prime, then Dy(z) should be a Schur polynomial in order that Hy(z) shall be stable
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[3]. A Schur polynomial contains its zeros strictly within the unit circle.
A simple method to generate a 2-D transfer function is to combine two 1-
D transfer functions as a product. In other words, the eventual 2-D sequence is

separable as two 1-D sequences that can be expressed as

h(z1, 32) = f(z1)9(72) (2.3)

where f(z;) and g(z9) are 1-D functions of independent variables z; and z re-
spectively. Such sequences are a special class of 2-D sequences. The 2-D sequence
h(z1, z2) of this type has (N, — 1)(N, — 1) degrees of freedom where

the region of support of f(z;) : 0 <z, < Ny — 1 and

the region of support of g(z1) : 0 <z < Ny —1

In the 2-D analog case in the s-domain, the transfer function may be expressed
as

Na(s1, $2) _ Ma(s1, 52) + nn(51, 52)
Dq(s1, s2)  mq(s1, 52) + n4(s1, s2)

Ha(Sl, 32) = (24)

where m,, = even part of Ny(s1, s2),

n, = odd part of N,(s1, s2),

mg = even part of Dy(sy, $2) and

ng = odd part of D,(sq, s2),

The numerator N,(sy, s2) and the denominator D,(s;, s2) are polynomials
in s; and sy with both even and odd terms. It may be possible that both the
even and’the odd parts of the polynomial become zero at specified sets of points,
but not in their neighborhood. If this occurs in the denominator of the transfer
function, it is called a non-essential singularity of the first kind(NSFK). If in the
2-D transfer functions both the numerator and denominator polynomials become
zero simultaneously at a given set of points, it is known as non-essential singularity
of the second kind(NSSK) [3].

The above two cases may be expressed as follows:
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(a)Dy{s1, s2) = 0 and N,(sy, $2) # 0 coustitute non-essential singularity of
the first kind at (51, s2).

(b)D,(s1, s2) = 0 and N,(s1, s2) = 0 constitute non-essential singularity of
the second kind at (sq, s3).

In the case of 2-D discrete or digital systems, a similar situation exists.

A well known method of designing digital filters is to start from the analog

filter transfer function and then apply bilinear transformations s; — z;}, t=1, 2,
to obtain the corresponding digital filter transfer function [14]. In 1-D systems, such
a transformation does not pose any problems. However in 2-D systems, this could
pose problems concerning stability. In such cases, the denominator polynomial may
cause problems because of non-essential singularities of first or the second kind. The
occurrence of non-essential singularity of the first kind always results in an unstable
filter [4]. The occurrence of non-essential singularity of the second kind could result
in instability. However, it is not possible to determine, by inspection, if such a
transfer function is stable or not [4], [15]. The next section discusses on the stability

issue of filters.

2.2  Stability

As mentioned above, 2-D filters can be classified into two main categories namely
the Finite Impulse Response Filters(FIR) and the Infinite Impulse Response Fil-
ters(IIR).

The Finite Impulse Response Filters have transfer functions resulting from a
finite sequence and the Infinite Impulse Response Filters have transfer functions
resulting from an infinite sequence.

One important issue concerning both the above types of Filters is the stability
of the filter. Now it is known that Finite Impulse Response Filters are inherently

stable. Infinite Impulse Response Filters may or may not be stable depending upon
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the transfer function.

The most commonly used definition for stability is based on the bounded-input
bounded-output(BIBO) criterion. This criterion states that a filter is stable if its
response to a bounded input is also bounded. Mathematically, it is possible to show
that for a causal linear shift-invariant systems, this corresponds to the condition

that

[> eI o}

ST h(ny, nal < o0 (2.5)

n1=0 n2=0
where h{n, ny) is the impulse response of the filter.

The above definition points out an important observation that the stability
criterion is always verified if the number of terms of the impulse response is finite
which is the case with FIR Filters. However, the above condition does not prove
feasible to the test of stability of 1IR filters. In the 1-D case, it is possible to relate
the BIBO stability condition to the positions of the z-domain transfer function poles
which have to be within the unit circle and it is possible to test the stability by
determining the zeros of the denominator polynomial. Similarly, in the 2-D case, a
theorem establishing the relationship between the stability of the filter and the zeros
of the denominator polynomial, can be formulated. This theorem states that |7}, for
causal quadrant filters, if B(z;, 29) is a polynomial in z; and z, the expansion of

1/B(z1, z2) in the negative powers of z; and z» converges absolutely if and only if
B(z1, 22) #0 for {|z1] 2 1, |22} 2 1} (2.6)

The above theorem has the same form as in the 1-D case, i.e., it relates the
stability of the filter to the singularities of the z-transform. However, in the 2-D
case such a formulation for stability condition does not produce an efficient method
for stability test, as in 1-D, due to the lack of appropriate factorization theorem of
algebra. Therefore, it is necessary in principle, to use an infinite number of steps

to test the stability. Also, even if it is possible to find methods to test conditions
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equivalent to Eqn.(2.6) in a finite number of steps [16], computationally it is not
easy to incorporate them in a design method and there is a problem of stabilizing
the filters which may become unstable.

From the point of view of stability tests, there can be two different approaches
that can be considered, in designing an IIR filter. One method is to carry out
the stability test in every stage of the filter design so that eventually the filter is
stable. In the second method, stability is not considered as a part of the design
and a magnitude squared transfer function is first designed. Then a stable filter
is obtained, by choosing the poles in the stability region. Such an approach is
convenient, because squared magnitude functions can be in a simple form ant it is
easy to find the poles of the filter.

However, in the 2-D case, poles in the stability cannot be substituted for
poles in the instability regions. This is because, unlike in the 1-D case, it is not
possible to substitute the 2-D pole-pair combination by taking the inverse pole-
pair transformation. Therefore different methods have to be used in arriving at a
solution.

One possible solution can be obtained by considering this as a deconvolution
problem. In the quadrant filter case, a filter H(z;, z,) can be divided as a product of
four filters " H(zy, 23), ¥ H (2, 22), " H(z1, 22), “TH(z1, 22), each of which cor-
respondingly represents their transfer function in the first, second, third and fourth
quadrant, respectively, and each of which is stable, if computed through suitable se-
quence of computation. In view of the property that multiplication in the z-domain
corresponds to a convolution in the space domain, the problem corresponds to the
reconstruction of the four sequences. Similar procedures may be applied for two
unsymmetrical half plane sequences. Thus it is possible to decompose the sequence
into two half plane filters. However in both the above cases there are problems which
can arise, as the cepstrum obtained using the above procedure are not finite in ex-

tent and some amount of truncation is necessary. This again modifies the transfer
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function and also the minimum phase property cannot be guaranteed after trunca-
tion. It is possible to observe that half-plane filters, each being stable if a suitable
sequence of computation is chosen, can give a direct method of obtaining linear
phase filtering with IIR implementation. This is especially important when visual
images have to be processed, because the shape of the object is related primarily to
the phase information.

In addition to ensuring stability, it may be required to add some Symmetry
constraints as well. We discuss one type of symmetry, namely Elliptical symmetry

below.

2.3 Elliptical Symmetry: Importance and Signifi-

cance

Of the various types of symmetry that we have discussed in Chapter-1, the Symime-
try that is of interest to us in this thesis is the elliptical symmetry of 2-D filters.
In many of the applications such as image processing and seismic signal processing,
the signal does not possess any preferred spatial direction. Therefore it is desirable
to process images with filters whose frequency response is approximately elliptically
symmetric. As mentioned earlier, FIR filter functions possessing nearly elliptically
symmetric frequency response can be generated using 1-D FIR functions (10]. But
the same is not possible in the case of TIR functions, since the 2-D IIR function is not
in general, factorable into a set of quarter-pane or half-plane functions. Moreover,
the incorporation of the stability constraints in the approximation procedure, is yet
another difficulty experienced in the design of IIR Filters. As a solution to this prob-
lem, it has been proved that if a quarter-plane filter possesses quadrantal symmetry
in its magnitude response, then its denominator can be expressed as a product of
2-D polynomials [6], [12]. It can be readily verified that the specification of elliptical

Symmetry, implies the presence of the lower order symmetries namely, octagonal
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and hence, quadrantal symmetries. Therefore it may be reasonable to constrain the
desired transfer function of the filter to posses octagonal symmetry(say) and choose
the filter function with a product separable denominator. In cases where the filter
function is not even quadrantally symmetric, the separable denominator constraint
restricts the domain of functions over which approximation is carried out and results
in sub-optimal solutions. But since the elliptical symmetry condition must also in-
clude quadrantal symmetry, the separable denominator condition does not prevent
us from attaining optimal solutions. One another important aspect is that there is
no constraint over the numerator polynomials in any of the above designs. Hence the
types of responses that can be obtained using separable denominator filter function
is practically endless. FIR Filters can be designed by various methods as given by
[10], {17], (18], {19], [20], [21]. The following sections gives a brief overview of the
general design method of IIR Filters following which the design method adopted in

obtaining elliptical symmetry of lowpass filters is described in detail.

2.4 Design Methods for 2-D IIR Digital Filters

IIR Filters have transfer functions resulting from an infinite sequence. In general,
it is more difficult to design a 2-D IIR filter than a 1-D IIR filter. 1-D techniques
normally depend on the factor-ability of one-variable polynomials, resulting in simple
algorithms for the stability test and stabilization of unstable filters. Such techniques,
unfortunately are not directly generalizable to the 2-D case.

From the 2-D IIR filter function in Eqn.(1.3), it can be seen that the coeflicients
ax; and by; have to be chosen to approximate the desired frequency response with a
stable recursive implementation. Different design methods have been proposed, of
which two design methods are the most common.

The first method involves spectral transformation from one-dimension to two-

dimensions. The second method is based on parameter optimization, using classes of
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filter structures, as for example the cascade connection of second order filter sections,
wherein stability of the filter is introduced using approximation algorithms.

The first method, as proposed in [7], involves a mapping operation from 1-D to
2-D, with a rotation operation. Given a 1-D continuous filter in the factored form,

its transfer function can be seen as one of a 2-D filter varying in one direction only:

H(s1, s2) = Hy(s2) = Ho [%%J (2.7)

where ¢; and p; are the zeros and poles of the filter.
As was mentioned before, a rotation operation, needs to be performed with
the transformation operation. A rotation of the (s, s») axes by an angle 8 may be

performed by means of the transformation.
$1 = sjcos S+ shsin B $2 = —sysinfB + sycos B (2.8)

Thus we obtain a filter whose frequency response is a function of s; and s, and
corresponds to a rotation by an angle —5 of Eqn.(2.8). From this a digital filter can
be obtained by applying bilinear z-transforms to both the continuous variables. This
method has been used to obtain simple rotated blocks which can be combined to
obtain the design of elliptically symmetric recursive filters [22]. Here the conditions
of stability have also been proved.

Another method in the similar sense, involves transformation of the squared
magnitude function of a 1-D filter to the 2-D domain, followed by a suitable decom-
position of the resulting filter.

Given a causal filter(first quadrant filter), it is possible to define the corre-
sponding second, third and fourth quadrant filters, according to the relations given

by
ha(k, 1) = ha(k, 1) = ha(—k, =) = ha(=k, ) (2.9)
with the following transfer functions given by

Hy(z1, z) = Halz, 237) = Hy(z7", 27") = Ha(27, 2) (2.10)
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If the above four filters are cascaded, we obtain a zero-phase digital filter
whose frequency response is defined by the coefficients p(%, /) and ¢(%, !) determined
through the convolution of the coefficients of the four filters and is of the following

form

Glexp™, expir) = oz Sizo Pk, ) cos(hu) cos(lu)
Y ko 2oieo 4(k, 1) cos(kwy) cos(lws)
If we take a squared magnitude function of a 1-D TIR filter, and apply the

(2.11)

following transformation
cos(w) = Acoswy + B coswy + C coswy coswy + D (2.12)

to its numerator and denominator, then the above equation can be obtained. The
squared magnitude function obtained has to be factorized to obtain stable recursive
filters.

Based on the review given so far, in what follows, we consider the generation
of 2-D filters havihg elliptical symmetry. Although it has been clearly proved in (6],
[23] that it is not possible to obtain exact elliptically symmetric filters, we consider
the extent to which such filters can be designed by using separable 1-D transfer
functions. In this Chapter we only consider the design of elliptically symmetric
lowpass filters. The design of other filters namely highpass, bandpass and bandstop
filters will be dealt’ with in the subsequent chapters.

2.5 Generation of Stable 2-D IIR Product Separa-
ble Denominator Transfer Functions and Test
for Elliptical Symmetry

In order to obtain a required symmetry, the magnitude response of the filter has to
be varied. One way to do it is to vary the coefficients of the filter. This necessarily

perturbs the pole-zero locations of the filter in each dimension and thus varies the
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filter characteristics. But there is possibility that the filter may become unstable as
a result. If FIR filters are used, then we do not have to worry about stability, as it
is known fact that FIR filters are inherently stable. However FIR may require high
order filters to satisfy the change in magnitude characteristics and thus implementa-
tion could be difficult. If however, we use an IIR filter, by using one or more feedback
paths in the design, we may achieve the above purpose. But we need to take care of
the stability of the filter. In the case of 2-D systems, the complexity of testing the
stability of the system is quite high. Therefore it is necessary to obtain the bounds
of one or more coeflicients, in order to ensure that the designed filter is stable. In
this section, we design a filter transfer function possessing variable characteristics
in their frequency response depending upon certain assigned variables.

The basic structure that will be used to explain this, is shown by a signal flow
graph in the Fig.(2.1)

From Fig(2.1), the overall transfer function can be deduced as

V; TabTbc
Toe = = == —202be 2.1
Va 1- Tbcch ( 3)

From Eqn.(2.13)(Mason’s formula), it can be seen that any change in 7T, will
result in a scale change in the magnitude response of the filter. Also, it has to be
ensured that the eventual transfer function 7, is stable. Now in order to change the
magnitude characteristics of the transfer function, one of the transmittance should
be changed. This is always possible by using T;; as a variable quantity. This results

in a Variable Characteristic Transfer Function(VCTF) [3].
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Figure 2.1: Basic structure for the 2-D transfer function expressed as a signal flow
graph

2.6 Generation of Transfer Function when no poles

in a Butterworth filter are shifted

One of the simplest ways to generate a 2-D IIR VCTF is to obtain it as a product
of two stable 1-D Strictly Hurwitz Polynomials(SHP), one in the s; domain and the
other in the so domain, and from this we can obtain the denominator polynomial.
The numerator polynomial can either be product separable or non-product separa-
ble. Then the application of bilinear transformation results in a transfer function
which is stable in the discrete domain.

Here the transfer function obtained has none of the poles shifted in the But-
terworth filter.

For our case, let us consider a 2-D transfer function T'(s;, s») given as a product
of two 1-D functions T1(s;) and T»(s;) each having the form as shown in Eqn.(2.13)

Therefore,

T3(31, SQ) = T1 (81)T2(52) (214)

Let Ty (sy) = W}m—(?l—) where g;(s;) is a third order Butterworth polynomial
given by
gi(s1) = 83 +2s2 +2s; + 1 and fi(s1) = k1.
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Similarly for g2(s2) and f2(s2) in the second dimension, the expressions to
obtain

Th(s2) = m are given by

g2(82) = 83 + 255 + 259 + 1 and fa(s2) = ko.

A third order polynomial is considered for purposes of illustration. The trans-
fer function can be of any order.

Let ky =ky =k

In order to determine the range of k& over which the filter is stable, we apply
the stability condition [24]. According to this condition if Q,(s) = m(s) + n(s)
where m(s) is an even polynomial and n(s) is an odd polynomial and if m;(s) is an
even polynomial, then Q,(s)+m;(s) is a strictly Hurwitz polynomial if and only if,

in the partial fraction expansion,
ms) +mi(s) _ = koos + Z (2.15)
n(s) i ﬂ"’
with 82 < 82,.,(8's being real), we have the conditions
(2) koo > 0, (i2) k; > 0 for all values of i and (434) kg > 0.
From the above condition we have, in our present case, letting m = 2s% +
1, m =kand n=s+2s,

i 2 1ek St
n(s) 3%+ 2s s 5242

(2.16)

Evaluating the above conditions from Eqn.(2.16), we have k =3 or k = —1.

Therefore the range of £ is —1 < £ < 3.

A program in “Matlab” is written for the above procedure followed to determine
the stability conditions and the range of k for different orders of the Butterworth
Filter.

The Matlab Program A1l is shown in Appendix.

The results tabulated for “stability conditions of £” for different orders are

shown in Table {2.1}.
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| Order of Filter | Stability Conditions of k |

Third ~1l<k<3
Fourth -1 <k <1.4142
Fifth -1 < k < 1.0900
Sixth -1 <k <1.0319
Seventh -1 < k<1014
Eighth -1 < k£ < 1.0001

Table 2.1: Stability Conditions of “£” when no poles are shifted
2.7 Elliptical Symmetry Observation

The basic structure of a 2-D Transfer function as a product of two 1-D functions

with &, & ko is shown in Fig.(2.2). From Eqn.(2.14) we have

1 1
Ty(s1, 52) = 2.17
(51, 52) <s§+23§+2sl+1+k1) <sg+25§+252+1+k2> (2.17)

Substituting s; = jw; and s; = jw, in the above equation and simplifying the
transfer function by eliminating all the higher powers of w; and ws and retaining
only the second degree powers, we have in two dimensions, the relationship to be

satisfied as {25]
{2&1?(/{:2 + 1) -+ 2w§(k1 + 1) = 4(4.1%6‘13 — dwwy + ky + ko + kiky — 6} (218)

where ¢ = response of the transfer function.

Simplifying the above Eqn.(2.18) further, we obtain the relationship as

4k2wf 4k1w§ _
\Grap arep =1 (219)

Plotting a direct response for Eqn.(2.19) for values of £, = 0.35 and k2 = 0.70,

we have the magnitude and contour plots as shown in Fig.(2.3).

As we notice from Fig.(2.3), it is an elliptical symmetric response correspond-
ing to the Eqn.(2.19) which, in general terms, is the equation of an ellipse. The
contour plots of T3(sy, s2) are drawn after bilinear transformation for £, = —0.45

and ky = —0.20 , &y = —0.75 and k; = —0.50 , &, = —0.58 and k» = —0.35,
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Figure 2.2: Basic structure of a 2-D transfer function

ky = —0.30 and k; = —0.12 . We obtain the results as shown in Figs.(2.4), (2.5) and
(2.6). It can be seen that elliptically symmetric response is possible only in a limited

frequency range, since the contribution due to higher frequencies is not considered.

From Figs.(2.4), (2.5) and (2.6), it can be deduced that for a certain range of
k, and k,, in and around k; = ~—0.45 and ky = —0.20, the filter exhibits close to
elliptical symmetry.

It should be noted that when k; = kx(for some value), we get the response

close to circular symmetry [21].
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a) Magnitude plot of Eqn.(2.19) for k1=0.35 and k2=0.70

Magnitude Response

wi

(b) Contour plot of Eqn.(2.19) for k1=0.35 and k2=0.70
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Figure 2.3: Plot of Eqn.(2.19) for k1=0.35 and k2=0.70 (a) Magnitude Plot (b)
Contour Plot.

28



2-D HR 3rd Order Butterworth LPF for k1=-0.45 & k2=-0.20
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Figure 2.4: Plots for 2-D IIR Butterworth LPF (a) Magnitude Plot (b) Contour
plot (c) Magnitude values for contours 9g



2-D IIR Butterworth LPF for k1=-0.75 & k2=-0.50

T T

Figure 2.5: Contour plots for 2-D IIR Butterworth LPF for (a) k1=-0.75 and k2=-
0.50 (b) k1=-0.58 and k2=-0.35
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2-D IR 3rd Order Butterworth LPF for k1=-0.30 & k2=-0.12
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2-D IIR 3rd Order Butterworth LPF for k1=0 & k2=0

Figure 2.6: Contour plots for 2-D IIR Butterworth LPF for (a) k1=-0.30 and k2=-
0.12 (b) k1=0 and k2=0
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The program to determine the transfer function of the filter for a given k;
and &, for Figs.(2.4), (2.5) and (2.6)(Program A2) is as follows. This program also

outputs the contours with magnitudes of the corresponding ellipses.

Program A2

%%Function to determine the transfer function of the filter for
%%a given k1,k2(kerthproga2.m)-for Figs.(2.4),(2.5),(2.6)
k1=-0.45;

Bl=[1};

Al=[1221];

B2=B1;

[R,Cl=size(Al);
Al(C)=A1(C)+k1;
A2=[1221);
[R,C]=size(A2);

k2=-0.20;
A2(C)=A2(C)+k2;
%%Bilinear transformation of transfer function
[N1,D1]=bilinear(B1,A1,1);
[N2,D2]=bilinear(B2,42,1);
%%To determine the 2-D transfer function of the IIR Filter
for m=1:1:size(N1,2)

for n=1:1:size(N2,2)
N(m,n)}=N1(m)*N2(n);
end

end

for m=1:1:size(D1,2)

for n=1:1:size(D2,2)
D(m,n)=D1(m)*D2(n);
end

end

lim=pi;

interval=pi/50;

c1=0;

for wi=-lim:interval:lim
c2=0;

cl=cl+1;

for w2=-lim:interval:im

c2=c2+1;
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for col=1:1:size(N2,2)
NRow(1,col)=(cos(w2)+j*sin(w2)) " (size(N2,2)-col);
end

for row=1:1:size(N2,2)
NCol(row,1)=(cos(wl)+j*sin{wl))" (size(N1,2)-row);
end

NR=NRow*N’*NCol;

a=real(NR);

b=imag(NR);

for col=1:1:size(D2,2)
DRow(1,col)=(cos(w2)+j*sin(w2)) "~ (size(D2,2)-col);
end

for row=1:1:size(D2,2)
DCol(row,1)=(cos(w1)+j*sin{wl)) " (size(D1,2)-row);
end

DR=DRow*D’*DCol;

c=real(DR);

d=imag(DR);
MOD(cl,c2)=(sqrt({a*c+b*d) " 2+(b*c-a*d)~2))/(c"2+d"2);
end

end

%%To plot the frequency response plots
wl=-lim:interval:lim;

w2=-lim:interval:lim;
[wwl,ww2]=meshgrid(wl,w2);

%%Normalizing the max value of magnitude to 1
2z=MOD/(max{max(MOD)));

%%Mesh plot

mesh{w1,w2,2z);

axis(’image’);

xlabel('wl’);

ylabel("w2’);

zlabel(’Magnitude Response’);

title(’2-D IIR 3rd Order Butterworth LPF for k1=:-0.45 & k2=-0.20’,’Fontsize’,16);
grid on;

figure;

%%Contour plot

contour(w1l,w2,22)

axis(’image’);

xlabel(*wl');

ylabel(’w2’);

zlabel("Magnitude Response’);

grid on;
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figure;

%to plot the magnitude values of contours
[C,h] = contour(w1,w2,z2);

clabel(C,h)

colormap cool

xlabel(’w1’);

ylabel{’w2’);

zlabel("Magnitude Response’);

grid on;

%%End of Program
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2.8 Algorithm to Check the Extent of Elliptical Sym-
metry for a Given Magnitude Range

From the above study, it is seen that, for given values of k; and ks, it becomes
necessary to determine whether at a certain value of magnitude range, the filter
exhibits elliptical symmetry. An iterative algorithm has been written in MATLAB,
to check the extent of elliptical symmetry under a given magnitude range and if
required, alter the value of the variable quantity(in this case k, and k) so as to
obtain the elliptical symmetric condition.

As a particular case, for the third order Butterworth IIR Filter, the initial
value of k, and k, have been taken as k; = —0.80 and k; = —0.60. The magnitude
range under check is the value what we choose to give at the input(in this case it is
0.49<Mag<0.51.

A program in Matlab is written to determine the magnitude range upto which
elliptic response is possible with an error of a% when k, and k, are selected.

The algorithm has been written as follows

(1) Program A3 is the main program showing the inputs to be given for Ellip-
tical symmetry test. The filter is first designed given the transfer function in terms
of numerator and denominator polynomials.

(2) The transfer function of the 2-D filter is determined using a separate sub-
routine(same as program A2) which is called from the main program. This subrou-
tine returns the 2-D transfer function of the filter.

(3)The subroutine for determining the Magnitude range upto which Elliptical
symmetry is possible is then called(Program A3-b).

(4)The basic idea underlying Program A3-b is explained as follows. The mag-
nitude range for the Elliptical symmetry check for the derived frequency response
is given at the input or defined. In this case this value is between (0.49, 0.51). The

magnitude value can be of any value chosen between 0 and 1.
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(5)The magnitude values falling under this range is isolated into a separate
matrix and their frequency positions with respect to both the dimensions are noted.
(6)To check if these isolated values of magnitude fall under an ellipse, their
individual magnitude values are noted and a percentage error of 5% is used to include
the points into a ellipse. If desired, any other percentage value can also be chosen.

(7)If all the values fall under this limit then the given magnitude range is
considered to be fairly elliptically symmetric and if this is not the case, the values
of k; and ko are increased by a value of 0.05 and the whole process is carried out
from the beginning.

Thus this algorithm is highly useful in determining the extent of elliptical
symmetry in 2-D Filters. It is noted that this procedure can be used for testing the
elliptical symmetry of any filter by looking at the shape of the ellipse what we get
at the output, given the transfer function. In cases where elliptical symmetry is not
very obvious, the value of the percentage error inside the program can be varied in
order that the best match for elliptical symmetry can be obtained.

For this particular case, the algorithm gave an elliptical symmetry result for
the order n = 3, values of k; = —0.45 and k; = —0.20.The program for the above
procedure(Program A3,A3-b) has been written in the MATLAB and is shown as

follows:

Program A3

%%Program to design a filter and check the extent of elliptical symmetry
%%for a specific filter transfer function that is input by the user.
%%(kerthproga3.m)for Figs.(2.7),(2.8),(2.9)
%%This program calls two subroutines.
%%Define the numerator(B1) and denominator(Al) polynomials of the transfer function
%%for which elliptical symmetry is to be tested
Bl=[1};Al={122 1];
%% Increment the value of k1 & k2 and output the result for each k1 & k2.
for k1=-0.8:0.05:0
for k2=-0.6:0.05:0
%%This defines the range of k1 & k2 that is to be tested.
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%%Calls the sub-routine to design the filter for a specific k1 & k2(same as Program A2)
Mag=kerthproga2(B1,A1,K1);

%%Calls the subroutine to test extent of elliptical symmetry(Program A3-b)
[output]=garg_rama_ellip(Mag)

end

%%End of program

Sub-routine A3-b

%%Program to check the extent of elliptical symmetry for a designed filter.
%%given the Magnitude transfer function
function [output]=gar_rama_ellip(Mag);
j1=0;Mag=1zz;
m=input(’Input the value for magnitude=")
for i=1:size(Mag,1)
for j=1:size(Mag,2)
if Mag(i,j)>(m-m*3/100) & Mag(i,j)<(m+m*5/100)
j3=j1+1;points(1,j1)=Mag(i,j);
else
Mag(i,j)=0;
end
end
end
lim=pi;
interval=pi/50;
wl=-lim:interval:lim;
w2=-lim:interval:lim;
fwwl,ww2]j=meshgrid(w1,w2);
figure;
contour(wwl,ww2,Mag);
axis(’image’);xlabel(*w1’);ylabel(’w2’);zlabel("Magnitude Response’);grid on;
title(['Test for elliptic symmetry for 5% change in magnitude, Mag="',num2str(n)],’Fontsize’,14);
%%To get the wl, w2 values for the non-zero elements of Mag
count=0;
for i=1:size(Mag,1}
for j=1:size(Mag,2)
if Mag(i,j)~=0
count=count+1;
x(count)=wwl(i,j);y(count)=ww2(i,j);
end
end

end
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%%Check for radius

count1=0;clear Radius;

for i=1:size(x,2)

xl=x(i);yl=y(i);
a=max(x(i));b=max(y(i));z1=sqrt((x1~2/a~2)+(y1~2/b"2}));
count==count+1;Radius(countl)=z1,

end

max_ Radius=max(Radius);min_Radius=min({Radius);
Radius_ vector=(max_ Radius-min__Radius)/max_Radius;
%%Output the result of test for elliptical symmetry

if Radius_ vector<0.05

output=char(’elliptically Symmetric’);

else

output=char(’Not elliptically symmetric’);

end

%%End of program

The results are plotted as shown in Figs.(2.7), (2.8) and (2.9) for different
values of k) and k,. The magnitude range under study is varied between the lowest
to the highest value within ranges of 10% of the magnitude. From this, the region
of interest (where the filter is approximately elliptically symmetric) is found and
further simulations are carried on with a 2% magnitude range within the reduced
region of interest and eventually, after repeated simulations of Program A3, results
show that for a value of k; = —0.45 & ky = —0.20 for this specific transfer function,
optimum elliptical symmetry is achieved. Going beyond these values of &; and %,
has resulted in degradation of elliptical symmetry. Figs.(2.7), (2.8) and (2.9) show
the final plots of the filter for different values of &k, and k,. The magnitude values
under study in these figures are in the range 0.49 < Mag < 0.51.

Fig.(2.7) shows the plots for k; = —0.75, k2 = —0.50 and k; = —0.58, ky =
—0.32 . Here we see that with higher value of £; and k,, the plot tends to an ellipse.

Fig.(2.8) shows a plot for k; = —0.45 and k; = —0.20 for which, it is clear
that we have elliptical symmetry existing between the magnitudes under study.

Fig.(2.9) shows that as the value of k; and ks increase beyond k; = —0.45 and

ko = —0.20 elliptical symmetry ceases to exist, under the given magnitude range
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(a)Test for elliptic symmetry for k1=-0.75 & k2=-0.50
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Figure 2.7: 2-D IIR Butterworth LPF response and test for elliptical symmetry
under magnitude range 0.49<Mag<0.51 for (a) k1=-0.75 and k2=-0.50 (b) kl=-
0.58 and k2=-0.32
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Test for eiliptic symmetry for k1=~0.45 & k2=-0.20
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Figure 2.8: 2-D IIR Butterworth LPF response and test for elliptical symmetry
under magnitude range 0.49<Mag<0.51 for k1=-0.45 and k2=-0.20

under study.
We have considered, by and far, filters of third order. In a similar manner,
simulations can be extended to higher order filters. However with higher order

filters, the computations become more complex.
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(a)Test for elliptic symmetry for k1=-0.30 & k2=-0.12
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(b)Test for elliptic symmetry for k1=0 & k2=0
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Figure 2.9: 2-D IIR Butterworth LPF response and test for elliptical symmetry
under magnitude range 0.49<Mag<0.51 for (a) k1=-0.30 and k2=-0.12 (b) k1=0
and k2=0
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2.9 Design of 2-D IIR Chebyshev Lowpass filter

‘We have discussed, so far, in detail about the implementation of 2-D Lowpass But-
terworth filter design and specifically, its contribution to elliptical symmetry. In
this section, we will discuss about the 2-D lowpass Chebyshev filter design and its
approximation to elliptical symmetry.

The Chebyshev lowpass filter makes use of the Chebyshev polynomial [26].
It is well known that Chebyshev characteristics has an equi-ripple variation in the
passband and a fast monotonic decrease in gain, outside the pass-band. In order
to design a 2-D Chebyshev lowpass filter from the 1-D design, as before in the

Butterworth design, we will consider it as a product of two 1-D transfer functions.

2.9.1 The Chebyshev Lowpass Characteristics

For the lowpass characteristics, we chose the value of the transfer function within
the range, such that w < 1.

We know that |C,(w)| < 1 for w < 1. Therefore we chose a small number
such that

F(w?) = €C3(w).

Therefore we will have

H(jwl? = 1—;-%—@ (2.20)

Eqn.(2.20) will have its values that fall between 1 and (7 in the range
I<w<l.
For w > 1, and from Eqn.(2.20)

1

€292(n=1),2n

|H (jw)[* ~ (2.21)
Therefore the gain a(w) can be calculated as

a(w) & ~101og(e222m V) = —20loge — 20(n — 1) log2 — 20nlogw  (2.22)
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2.9.2 2-D Chebyshev Lowpass Characteristics and Test for

Elliptical Symmetry

As it has been discussed before in the 2-D IIR Butterworth filter function derivation,
the simplest way to obtain a 2-D filter function for Chebyshev filter is to cascade
the transfer function of two 1-D filter functions.

As we have discussed in Section 2.6, let us consider a 2-D transfer function

given as a product of two 1-D functions.
03(51, 52) = C]_(S‘l) 02(52) (223)

Let Ci(s1) = m where g1(s;) is a third order Chebyshev polynomial
given by [26].

g1(s1) = s3 + 1.9388s2 + 2.6294s, + 1.6380 and f,(s1) = k1.

Similarly for go(s2) and f(s2) the expressions to obtain T5(s;) are given by

g2(89) = 53 + 1.938852 + 2.62945, + 1.6380 and fa(sy) = ky.

These functions have a ripple width ¢=0.1526.

According to the stability condition of Eqn.(2.15) we determine the range of
k for which the 1-D transfer function is stable.

From Eqn.(2.15) it is found that this range of is —1.6380 < k < 4.0978.

Plotting the response for the above range of k gives nearly elliptical symmetric
response between the ranges —0.85 < k; < —0.75 and —0.50 < ky < —0.40. The
plots corresponding to the above range are shown in the Figs.(2.10), (2.11), and
(2.12) and these correspond to a ripple width of ¢ = 0.1526. These have been
plotted using the same program A2 but with different input values.

The figures also show a plot for k; = —0.45 and k, = —0.20. Using Pro-
gram A3 the values of k; and k; mentioned in the figures, are tested for elliptical
symmetry within the magnitude range 0.49 < Mag < 0.51. This magnitude range
essentially depends upon the necessity of the specific user and it may be chosen

based on the magnitude study of interest. The same study can also be carried out
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for other magnitude ranges. In this specific case of the magnitude range, it is found
that,elliptical symmetry is obtained for a value of k&, = —0.80 and ky = —0.45.
This result has been achieved after extensive simulations of Program A3. The plots
shown in Figs.(2.13) and (2.14) show the results of applying Program A3 to the
transfer function achieved for the above case of Chebyshev filter.

Fig(2.12) also shows the plot for k£, = 0.45 & k> = 0.20. This plot shows that,
a Chebyshev type response analogous to its 1-D counterpart, can be achieved for
values of k; and k; beyond 0.45 and 0.20 respectively and within stability limits.

As an example, another value of ripple width €=0.3493 has been considered.
In this case the equations for g;(s;) and go(sy) are given by

g1(s1) = s? +1.2529s% + 1.5349s; + 0.7157

ga(s2) = 83 + 1.2529s3 + 1.5349s, + 0.7157

The rest of the expression being the same, it has been found that for the above
equation, the stability range of &k is given by—0.7157 < k£ < 0.9230. Contour plots
are obtained for the above range and the plots for which near elliptical symmetry
is obtained, are shown as in Figs.(2.15) and (2.16). These have been plotted using
Program A2 with appropriate input values.

Applying Program A3 to this case of transfer function, the extent of elliptical
symmetry is calculated between the range 0.49 < k£ < 0.51. The plots in Figs.(2.17)
and (2.18) show these results.

Comparing the above two cases where the plots have shown for two different
cases, it can be seen that , the values of &k; and &, change for near elliptical sym-
metry(in the second case being k; = —0.30 and ko = —0.10). It is noted that this
is the closest one can approach to elliptical symmetry for test under the specified
magnitude range. It is possible that for another range better symmetry can be
obtained.

Table{2.2} suminarizes the above two cases. From Table{2.2} it can be noted

that, depending on the value of € and therefore the transfer function, the value of &
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(2)2-D lIR Chebyshev L.P.F for k1=-1.0 & k2=-0.80

5L :
~1.5 -1 -0.5 0
wi

(p)2-D IR Chebyshev L.P.F for k1=-0.90 & k2=-0.60

—

Figure 2.10: 2-D Chebyshev LPF characteristics for (a) k1=-1.0 and k2=-0.80 (b)
k1=-0.90 and k2=-0.60
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2-D IR Chebyshev L.P.F for k1=-0.80 & k2=-0.45

—

Figure 2.11: 2-D Chebyshev LPF characteristics for k1=-0.80 and k2=-0.45

| Ripple Width(e) | Stability range of £ | Value of k;, k, for near elliptical symmetry

0.1526 —1.6380 < k < 4.0978 k1 = —0.80, k; = —-0.45

0.3493 —0.7157 < k < 0.9230 k1 = —0.30, ky = —-0.10

Table 2.2: Analysis results for the extent of elliptical symmetry in 2-D Chebyshev
lowpass transfer functions for two different values of ripple width. The magnitude
range under study for both the above cases is 0.49<Mag<0.51.

changes for elliptical symmetry for a chosen value of magnitude range and the same
can be obtained by Program A3. The 2-D Chebyshev lowpass filter characteristics
have thus been analyzed and its approximation to elliptical symmetry has been

studied and shown in this section.
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(2)2-D IR Chebyshev L.P.F for k1=-0.45 & k2=-0.20
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{b)2-D 1IR Chebyshev L.P.F for k1=0.45 & k2=0.20

Figure 2.12: 2-D Chebyshev LPF characteristics for (a) k1=-0.45 and k2=-0.20 (b)
k1=0.45 and k2=0.20
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Figure 2.13: Plots showing the extent of elliptical symmetry for the case where
€=0.1526, for (a) k1=-1.0 and k2=-0.80 (b) k1=-0.90 and k2=-0.60 (c) k1=-0.80

(a)Test for elliptic symmetry for k1=-1.0 & k2=-0.80
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({b)Test for eiliptic symmetry for k1=~0.90 & k2=-0.60
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(c)Test for elliptic symmetry for k1=-~0.80 & k2=~0.45
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and k2=-0.45 in the magnitude range 0.49 < Mag <0.51
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(d)Test for elliptic symm
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(e)Test for elliptic symmetry for k1=0.45 & k2=0.20
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Figure 2.14: Plots showing the extent of elliptical symmetry for the case where
€=0.1526, for (a) k1=-0.45 and k2=-0.20 (b) k1=0.45 and k2=0.20 in the magnitude

range 0.49 < Mag <0.51
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(a)2-D IR Chebyshev L.P.F for k1=-0.60 & k2=-0.30

1

L L L L
-1 05 0 05 1
wi

(b)2-D IR Chebyshev L.P.F for k1=~0.45 & k2=-0.20

Figure 2.15: 2-D Chebyshev LPF characteristics for the second case considered for
ripple width €=0.3493 for (a) k1=-0.60 and k2=-0.30 (b) k1=-0.45 and k2=-0.20 (c)
k1=-0.30 and k2=-0.10
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(d)2-D IIR Chebyshev L.P.F for k1=-0.25 & k2=~0.05

™
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wi

(e)2-D lIR Chebyshev L.P.F for k1=-0.10 & k2=0

Figure 2.16: 2-D Chebyshev LPF characteristics for the second case considered for
ripple width €=0.3493 for (a) k1=-0.25 and k2=-0.05 (b) k1=-0.10 and k2=0.
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(a)Test for eltiptic symmetry for k1=-0.60 & k2=-0.30
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(b)Test for elliptic symmetry for k1=-0.45 & k2=-0.20
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Figure 2.17: Plots showing the extent of elliptical symmetry for the case where
€=0.3493, for (a) k1=-0.60 and k2=-0.30 (b) k1=-0.45 and k2=-0.20 (c) k1=-0.30
and k2=-0.10 in the magnitude range 0.49 < Mag <0.51
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(d)Test for elliptic symmetry for k1=-0.25 & k2=~0.05
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{e)Test for elliptic symmetry for k1=-0.10 & k2=0
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Figure 2.18: Plots showing the extent of elliptical symmetry for the case where
€=0.3493, for (a) k1=-0.25 and k2=-0.05 (b) k1=-0.10 and k2=0 in the magnitude
range 0.49 < Mag <0.51
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2.10 Analysis of Lowpass Complementary Pole Pair
Filters Obtained from Butterworth Filters

2.10.1 Introduction

Having discussed in detail the implementation of filters possessing separable denom-
inator 2-D filter transfer functions for the Butterworth and Chebyshev filters, we
now proceed to study another interesting aspect of filter design namely the pole-
parameter transformation [13] and their analysis. In this respect, we will discuss
this topic with respect to the lowpass Butterworth filter design in particular. A brief
review of this topic is as follows [13].

The Butterworth filter approximation is based on the fact that all the poles
of the filter are uniformly placed on the unit circle in the s-plane.This section deals
with a new family of transitional filters, whose design is based on the judicious
positioning of the poles in the s-plane. The transitional feature of the new family,
dealt with here, is between two Butterworth filters of specific even orders. The poles
of these filters constitute a specific reference pole pattern. They lie along the arc
of a circle between the reference poles of two specific Butterworth filters. The pole-
phasors of each member of the family are of equal magnitude w,, not necessarily of
unit radius. If the order of the Butterworth filter is a binary power(i.e.n = 2% k
being an integer), then the pole locations of the filter exhibit interesting symmetry
properties. The pole locations are such that they are symmetric about the horizontal
axis reference such that a single quadrant pole-parameter synthesis is representative
of all the poles of the filter.A new family of transitional Butterworth filters can
now be formed by what is called “prescribed symmetrical swinging” of the poles of
the filter by specific angles such that the symmetry constraint of the original pole-
pattern is not altered. Also, various performance characteristics such as selectivity

of magnitude response, sensitivity or critical Q factor, can be smoothly varied by
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changing the polar angles appropriately.
The transitional family of filters following this method have the same band-
width and hence comparison among the various members of the family is more

realistic [13].

2.10.2 Pole-parameter Representation

It is well known that the poles of a Butterworth filter of a specific order, are located
uniformly on the unit circle in the s-plane. The line joining any pole with the origin
of the coordinates is called the pole-phasor having a magnitude w, or the “pole
frequency” and angle 8, or the polar-angle as shown in Fig.(2.19).

The pole parameters shown in Fig.(2.19) correspond to the negative real pole
(s;) and a complex-conjugate pole-pair (s, s*). There is a high degree of geometrical
symmetry exhibited by the pole-phasors of a Butterworth filter of even order which

is being exploited in the synthesis of a filter family by pole-parameter variation

2.10.3 Complementary Symmetry

For a Butterworth filter of specified order, the poles located on the left-half of s-
plane, on the second and third quadrant, are symmetrical about the horizontal axis
and hence exhibit a mirror image symmetry. Therefore all the poles on the left-half
of the s-plane can be represented just by the poles on the second quadrant only, i.e.,
the second quadrant poles are representative of all the poles on the left-half of the
s-plane.

Let us consider a n®* order Butterworth filter. The pole parameters corre-

sponding to the second quadrant poles are given by

k=1,2,.... 5, forneven
W =1 (2.24)
k=0,1,.... , 554 fornodd
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Figure 2.19: Pole parameter representation

and
GEDr =12, ... 2 forneven
epk — 2" b 7 7 72 f (2.25)
’;—;‘, k=10,1,... ,"T"l fornodd

For example, if the order of the filter is 8, i.e., n = 8, then there will be be 4
pole phasors of magnitude unity and angles 7 /16, 3w/16, 57/16, Tn/16.

Let us consider the general case, in which all pole-phasors have a magnitude
equal to wy(not necessarily unity), and the polar angles retained at values as given
by Eqn.(2.25). Normalizing the d.c value of the transfer function A(w) to unity
such that A(w) at w = 0 is independent of w,, we can write the squared magnitude
expression of the transfer function as follows:

2 - w,’,‘
A ((.U) = W (226)

From the above expression, the pole locations can be written as

J(2k = )m

n .
o } , fork=1,2, .., 5 \/ neven (2.27)

Sk = WpeTp [
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and
jkm n-—1 ‘
Sk = WpeTP — 1 fork=0,12, .., 5 \/ n odd (2.28)

In general, for any Butterworth filter of a given odd or even order, the Butter-
worth poles exhibit very interesting symmetry properties with respect to both real
as well as the imaginary axis. In addition, if the Butterworth filter is of even order,
then the filter displays varying degrees of symmetry. These additional symmetry
properties are exploited in designing the new family of transitional filters.

Here, we consider only those filters whose order is a binary power, i.e., n = 2F,
k being integers greater than 2 only. This is because, filters of such order possess
the highest degree of symmetry and therefore it is easy to deal with such a case
although it is possible to extend the same case to filters of various orders. For such
class of filters, whose order is a binary power, in addition to half-plane symmetry
along the real or imaginary axis, which is common to all Butterworth filters, it is
also symmetric with respect to the 7/4 axis, in each quadrant of the s-plane.

To discuss our case, let us consider the order of the filter to be 16, i.e., n=16.
Therefore we have 16 poles on the left half of the s-plane, symmetric about the real
axis. Now in general, a Butterworth filter with n = 2% will have n/2 poles in the
second quadrant given by

(k- 1)x _ n
O = 5 VE=12., 5 (2.29)

This is illustrated in the Fig.(2.20) for n=16.

Fig.(2.20) shows eight poles on the second quadrant. Since the pole positions
are symmetric about the real axis, the eight poles on the second quadrant are repre-
sentative of all the poles of the filter. The eight poles designated as s, s2, $3, ---., Sg
make angles 6,0, ...05 respectively to the real axis. Within the second quadrant,

it is evident that the poles are symmetric about the 7/4 axis and the symmetrical
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Figure 2.20: Pole plot for a 1-D filter of order n=16

pole pairs are given as follows.

{92 _ 3 6. — 1{3_73}

D) 32
S5n 117

["3 =3 %= *:»;z*]
T I

(2.30)

Also, it is clear that the polar angles of each of the above four symmetrical

pole-pairs add up to 7/2. In general we may write this as follows

m

(B +63) = (6, +07) = (65 +06) = (04 + 05) = 5

(2.31)

Such pole-pairs, whose 6, values add upto 7/2 can thus be designated as “

Complementary Pole Pairs(CPP’s)”. It can be seen that each pair of poles with 6,
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and 6(n/2)~1+1, located symmetrically on either side of the 7/4 axis, exhibit the CPP

property since

e n
6, + 9(n/2)—l+1) = 5,1 =1,2, .., 1 (2.32)

2.10.4 Symmetrical Swinging

We shall now consider a modification in the Butterworth filter pole-pattern, which
will still preserve the CPP property. Before we consider the modification, it is inter-
esting to note that the adjacent Butterworth poles in the second quadrant possess
another symmetry, this time, the adjacent pole-pairs (s1, s2), (3, S4), (S5, S¢) and
(s7, ss) being symmetrical about the lines OA, OB, OC and OD which make an
angle of m/16, 37 /16, 57/16 and 77 /16 respectively.

By varying the value of 6y, a family of transitional filters can be obtained.
Therefore, in general, for a Butterworth filter of order n = 2*¥ the modified polar

angles can be given by the following general expression.

v (2k = U)m

n
O = 2n 2

+ (=10, \Jk=1,2,.., (2.33)

[\

It can also be seen that the modified pole-pattern as given by the Eqn.(2.33)
still possesses the CPP property as we get

=1

(91 + 9(n/2)—l+1) =5 Vi = 11 27 ---- 3

. (2.34)

from Eqn.(2.32). Thus it is seen that, the symmetrical swinging of the pole-phasors,
equally on both sides conserves the net angle contributed by the adjacent pole-
phasors, the net angle being 7/2. This symmetrical swinging of adjacent pole-
phasors can be both in the positive or negative direction, being towards or away
from the respective axes of symmetry, such that 8y > 0or 6y <0 and |6yl,,,., = 5- -

These family of filters obtained by modifications in the pole-pattern may be referred

to as the CPP Filters.
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The squared magnitude function of an n*® order CPPF can now be obtained
as a product of the component squared magnitudes of each CPPF. The second order
transfer function corresponding to the complex conjugate pole-pair given by the pole
parameters wy, and +6,; can be written as follows:

2

w
Ti(s) = — 2.
(s) 52 + 2wpk c08(Opk) s + Wiy (2.35)

From Eqn.(2.35) the squared magnitude function is thus written as

4

w
A2 _7 To(e _ pk 2.36
k(W) = Ti(5) Tk () w* + 2wl cos(205k)w? + Wiy .

From Eqn.(2.36), the squared magnitude function of each CPPF can be ob-
tained individually and the final squared function can be obtained by taking the
product of all the individual magnitude expressions.

For our case say n=16, we know that all the CPP’s have the same polar
magnitude wyr = w,. Also from the CPP property, within the 2nd quadrant the

adjacent pole-pairs are symmetrical. Therefore
’ / ’ ; mw
Another symmetry property is that
(6 +6) = (2.38)

Using Eqn.(2.36) the squared magnitude function for the poles (s, s3), (53, s7), (53, 55)
and (s, 3'5) can be written individually and using the above symmetry properties,

they can be eventually combined as follows
A(w) = [ 4().AL5(w)] . [A35(w)-A24(w)] (2.39)

32
U)pk

w32 — 2wl cos (166, Jw it + w32
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From Eqn.(2.39), it is possible to deduce the final expression for the magnitude
function for a general order n = 2* as
2n

Pk
; 2.40
W — 2wl cos(nf) Jwm + w2n (2.40)

W

A*w) =

The value 8, is a free parameter, offering another additional degree of freedom.
It affects all the 9;’5 and hence the Q;’s including the critical one of the new family
of filters we have designated as the Complementary Pole Pair Filters(CPPF’s).

Low-Q filters (LQF) [13] are CPPF’s corresponding to #; > =. This swings
the CPP’s of the Butterworth filters towards the 7/4 axis in the second quadrant.
All the coefficients of A%*(w) as in Eqn.(2.40) will be positive, since cos(n#}) < 0.
Therefore the denominator expression increases monotonically with respect to w
and therefore A?(w) becomes monotonically decreasing, although not maximally
flat. The analysis is more clear if we compare it with a Butterworth filter of the
same order.

High-Q filters (HQF) [13] are CPPF’s corresponding to #; < Z. This swings
the CPP’s of the Butterworth pole-phasors away from the 7/4 axis in the second
quadrant. Due to the above condition, cos(né;) > 0 and the denominator expression

of Eqn.(2.40) exhibits maxima and minima at certain values of w.

2.10.5 Butterworth Filters preserving CPP Property

Here we can apply the technique developed in Section 2.5 to obtain some more
properties for these type of filters. The complementary pole pairs for different or-
ders(even) of Butterworth filters are obtained from the transfer functions depending
on whether the order of the filter is even or odd. The transfer function can also
be determined even when the poles corresponding to filter order 'n’ are shifted to a
certain angle, provided the filter is stable. We can thus determine the range of 'k’.

If either of the poles when shifted in a Butterworth filter cross over their

neighboring poles, then the filter is unstable [13]. Also if the poles are not present
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in the Second Quadrant, then the filter is unstable.

A program in “Matlab”(Program Al) is written for the above procedure fol-
lowed to determine the stability conditions of(range of) 'k’ for different orders of
Butterworth filters.

When the order of the Butterworth filter 'n’(from 3 to 8) and the shift in
corresponding angles of the poles (t1, ta......t(n~1)/2 for 'n’ odd and 2y, t,......8, for
'n' even) are given at the input, then the program outputs the stability condition of
(range of) 'k’ where the corresponding filter exists.

The Matlab Program Al is shown in Appendix. The analysis for different

orders of Butterworth Filter is as follows:

(a) Third order Complementary Pole Pair Filter

For a third order Butterworth filter the transfer function obtained is given by

1
(s +1)(s? +2cos(§ + ¢)s + 1)

Ty(s) = (2.41)

The above transfer function in Eqn.(2.41) for order n= 3(odd) has its poles
having an angle 6; = (¥7) = (Z1) =T

The poles s; and s, are mirror image with each other(complex conjugate pair)
and are located at angles 7/3 and—m/3 respectively as shown in the Fig.(2.21)

The pole sq¢ is located at the zero axis and is a negative real pole which is
similar to s,(—0o, , 0) as shown before in Fig.(2.19).

The poles s; and s, can be shifted by any angle ¢ either way, provided which
the filter should be stable in all means. i.e the pole s; should lie with in the second
quadrant in the range between 0 and 7/2. Also the pole sy remains stable on the
negative real axis.

The simplified transfer function of the above Eqn.(2.41) is as given below

1
S 4252425+ 1

Ty(s) (2.42)
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Figure 2.21: Third order Butterworth Filter

Modifying further the above transfer function [24] gives

1
Ty (s) = ST T (2.43)

where g(s) = s® + 25% + 25 + 1 is a third order Butterworth polynomial and
f(s) = k (a constant).

For our case when no poles s; and s'1 are shifted, ¢ = 0 we have the range of &
tobe -1 <k <3.

Like wise the stability conditions for any shift in ¢ can be determined by the
Program A1 till the shift where the filter is stable.

The results tabulated below in Table{2.3} show the stability conditions (range
of) k for a shift of 5° each [25].
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| Shiftinangle ¢ | Stability Condition ]

—65° UNSTABLE
~60° 1<k<8
~55° 1<k < 7.9544
~50° “T< k< 7.8186
—45° —1<k< 75958
—40° —1< k < 7.2909
—35° “1<k<69108
—30° 1<k < 64641
—25° “1<k < 59606
—200 1<k <54115
—15° “1<k < 48284
~10° 1<k <4239
—5° “1< k < 3.6100
0° “1<k<3
5° “1< k < 2.4049
10° “1<k < 1.8360
15° “1<k < 13032
20° ~1< k <0.8152
959 “1< %k <0.3790
30° UNSTABLE

Table 2.3: Stability conditions for third order Butterworth LPF when the pole s; is
shifted by an angle ¢

(b) Fourth order Complementary Pole Pair Filter

For a fourth order Butterworth filter, the transfer function obtained is given by

1
(s® +2cos(§ + ¢1)s + 1)(s® + 2cos(3E — ¢a)s + 1)

Ty(s) = (2.44)

The above transfer function for order n= 4(even) has its poles having at angles
6, = ((2’“-2713”) = ((2X;;}1>X") = £(225°) and , = (22227 = = (67.5°).

2x4

The pole pairs s; and s, are Complementary Pole Pairs(CPP’s) as their cor-

responding angles §;and 6, add upto 7/2 when there is no shift in ¢; and ¢,.
ie. By + 0y = /8 + 31/ = n/2. (2.45)
Here the poles s; and s;are mirror image with each other and are located at
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Figure 2.22: Fourth order Butterworth(CPP) Filter

angles 7/8 and —7/8 respectively and the poles s, and s, are located at angles 37/8
and —3w/8 respectively as shown in the Fig.(2.22).

The poles s; and s'1 can be shifted by any angle ¢; and similarly the poles s,
and s, can also be shifted by an angle ¢, provided which the filter should be stable
in all means. i.e the pole s; should lie with in the second quadrant in the range
between 0 and s,, while s5 should lie with in second quadrant in the range between
sy and 7/2.

The simplified transfer function of the above Eqn.(2.24) when ¢; = ¢, = 0(no
shift in angles) is as given below.

1
To(s) = 2.46
) = T o138 ¢ 34140 7 26135 1 1 (2:46)
Modifying further the above transfer function [24] gives

1
g(s) + f(s)
where g(s) = s* + 2.613s + 3.4145% + 2.613s + 1 is a fourth order Butterworth

T4(S)

polynomial and f(s) = k (a constant).

65



[ Shiftinangle ¢, l Shiftinangle ¢ [ Stability Condition }

0° 0° -1 <k <1.4142
0° 2° -1 <k <1.7064
0° -15° -1 <k <1.9856
0° 45° -1 <k <3.4142
0° —5° -1 <k <1.1113
39° 5° UNSTABLE
35° ~15° -1 <k <0.3796
35° -15° -1 <k <0.1102
35° 20° UNSTABLE
~15° 0° ~1 <k £1.2445
-15° 20° -1 <k <1.9710
—15° 40° ~1 <k <2.4521
—15° 50° -1 <k <£2.6095
~15° -5° -1 <k <1.0025
-15° ~-15° -1 <k <0.3271
-25° 0° -1 <k <1.3041
-25° 15° -1 <k <1.8928
—25° 35° -1 <k <24418

Table 2.4: Stability conditions for fourth order Butterworth LPF when the poles s,
and sy are shifted by angles ¢; & ¢»

For our case when none of the poles sy, s}, soand s, are shifted, i.e when
¢1 = ¢o = 0, we have the range of £ to be —1 < k£ < 1.414.

Like wise the stability conditions for any shift in ¢; and ¢, can be determined
by the Program A1l till the shift where the filter is stable.

The results tabulated below in Table{2.4} show the stability conditions (range
of) k for different shifts in angles ¢, and ¢,(in degrees).

(c) Fifth order Complementary Pole Pair Filter

For a fifth order Butterworth filter, the transfer function obtained is given by

1
(s +1)(s® +2cos(Z + ¢1)s + 1)(s% + 2cos(Z — ¢o)s + 1)

Ts(s) = (2.47)

The above transfer function for order n= 4(even) has its poles having an angle

by = (B2) = (%5) = 1(36°) and 6, = (3T) = Z(72°)

n 5
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Figure 2.23: Fifth order Complementary Pole Pair Filter

Here the poles s; and s, are mirror image(complex conjugate pair) with each
other and are located at angles 7/5 and —u /5 respectively where as the poles s, and
s are located at angles 27/5 and ~27/5 respectively as shown in the Fig.(2.23).

The pole sq is located at the zero axis and is a negative real pole.

The poles s; and s; can be shifted by any angle ¢; and similarly the poles s,
and s, can also be shifted by an angle ¢, provided which the filter should be stable
in all means. i.e the pole s; should lie with in the 2"¢ quadrant in the range between
0 and s3, while 55 should lie with in second quadrant in the range between s; and
7/2. Also the pole sy remains stable on the negative real axis.

The simplified transfer function of the above Eqn.(2.47). when ¢ = ¢2 =

0(when no poles are shifted) is given as below

1

T. =
5(5) 5 + 3.2365% + 5.235s3 + 5.23552 + 3.2365 + 1

(2.48)
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Modifying further the above transfer function [24] gives

1

e EEye

where g(s) = s° + 3.236s* + 5.2355% + 5.235s% + 3.2365 + 1 is a fifth order
Butterworth polynomial and f(s) = k& (a constant). |

For our case when there none of the poles sy, s’l,. s and 5'2 are shifted, i.e when
@1 = ¢ = 0, we have the range of k to be —1 < £ < 1.0900.

Like wise the stability conditions for any shift in ¢, and ¢, can be determined
by the Program Al till the shift where the filter is stable.

The results tabulated below in Table{2.5} show the stability conditions (iange

of) k for different shifts in angles ¢; and ¢, (in degrees).
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| Shiftinangle ¢, | Shiftinangle ¢, | Stability Condition |
0° 0° -1 <k <1.0900
5° o° -1 <k <1.2061
5° 10° -1 <k <1.7313
10° -5° —1 <k <0.7539
10° -10° ~1 <k <0.5287
15° 20° ~1 <k <1.4471
15° 25° UNSTABLE
20° —10° -1 <k <0.4255
20° ~15° -1 <k <0.1930
25° 10° -1 <k <0.9535
30° 10° -1 <k <0.3100
35° —5° -1 <k <0.3760
35° —10° -1 <k <0.2491
—5° 40° -1 <k <2.3056
—5° 45° UNSTABLE
—-10° —10° -1 <k <0.6850
~10° ~15° -1 <k <0.3156
—15° 15° -1 <k <1.8156
—15° 20° -1 <k<1.9710
-20° 50° ~1 <k <26637
-30° 60° -1 <k <28309
—-35° 45° -1 <k <26656

Table 2.5: Stability conditions for fifth order Butterworth LPF when the poles s;
and s, are shifted by angles ¢; & ¢

(d) Sixth order Complementary Pole Pair Filter

For a sixth order Butterworth filter, the transfer function obtained is given by

1
(52 +2cos(% + ¢1)s + 1)(s2 + 2co8(3Z — ¢o)s + 1) (s> + 2 cos(3E + ¢3)s + 1)
(2.49)

Te(s) =

The above transfer function for order n=6(even) has its poles having an angle
91 — ((2k—1)xr) — (ngl—l)xw) — ;_72_(150)7 92 _ <§2><2—1)><1r) — %(450) and 93 —

2n 2x6 - 2X6

2x3—1)xmw o
(___._< x3-1)x ) = 51(75%).
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Figure 2.24: Sixth order Butterworth(CPP’s) Filter

The pole pairs s; and s3 are Complementary Pole Pairs(CPP’s) as their cor-

responding angles 6;and 3 add upto 7/2 when there is no shift in ¢; and ¢3.

ie by +0;3=n/12+57/12 =7/2. (2.50)

Here the poles s; and s} are mirror image with each other(complex conjugate
pair) and are located at angles /12 and —n/12. Similarly the poles s, and s, are
mirror image with each other and are located at angles 37/12 and —37/12 and also
the poles s3 ands; are mirror images with each other and are located at angles 57/12
and —57 /12 from the origin as shown in the Fig.(2.24).

The poles s; and s, can be shifted by any angle ¢, , similarly the poles s, s,
and s3, 3'3 can also be shifted by an angle ¢» and @3 respectively, provided which
the filter should remain stable in all means, i.e the pole s; should lie with in the

second quadrant in the range between 0 and s, while the pole so should lie with in
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the second quadrant in the range between s, and s3 and the pole s3 should lie in
the range between s, and 7/2 in the second quadrant.
The simplified transfer function of the above Eqn.(2.49). when ¢, = ¢, =

@3 = 0 is given as below

1

Ts(s) = .
5(5) $8 + 3.8636s° + 7.4637s* + 9.1410s3 + 7.4637s2 + 3.8636s + 1

(2.51)
Modifying further the above transfer function [24] gives
1
B = S+ 7

where g(s) = s® + 3.8636s° + 7.4637s* + 9.1410s® + 7.4637s* + 3.8636s + 1 is a sixth
order Butterworth polynomial and f(s) = & (a constant).

For our case when there none of the poles sy, 5’1, S, 3'2, sz and 3'3 are shifted,
i.e when ¢ = ¢ = ¢3 = 0, we have the range of k¥ to be —1 < £ < 1.014.

Like wise the stability conditions for any shift in ¢,, ¢, and ¢3 can be deter-
mined by the Program Al till the shift where the filter is stable.

The results tabulated below in Table{2.6} show the stability conditions (range

of) k for different shifts in angles ¢, ¢2 and @3 (in degrees).
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| Shiftinangle ¢, | Shiftin angle ¢y

[ Shiftinangle o3 [ Stability Condition ]

0° 0° 0° -1 <k <1.0319
0° 0° -30° -1 <k <1.6181
0° 10° —40° —1 <k <1.8943
0° -5° —25° -1 <k <1.4570
0° —20° -10° -1 <k <0.8927
0° ~30° 5° -1 <k <0.3596
5° 5° 5° -1 <k <0.9113
0° 15° 0° -1 <k <1.7939
5° 20° -55° UNSTABLE

5° 25° —40° -1 <k <2.0090
5° -10° 10° -1 <k <0.5272
9° -20° -10° -1 <k<0.8712
5° —25° 0° -1 <k <0.5581
5° —20° 15° UNSTABLE

Table 2.6: Stability conditions for sixth order Butterworth LPF when the poles sy,
$7 and s; are shifted by angles ¢1, ¢2 & b3

(e) Seventh order Complementary Pole Pair Filter

For a seventh order Butterworth filter, the transfer function obtained is given by
1
(s +1)(s2 +2cos(Z + ¢1)s + 1)(s% + 2cos( 3 — @a)s + 1)(s? + 2 cos(3 + ¢3)s + 1)
(2.52)

Tr(s) =

The above transfer function for order n= 4(even) has its poles having an
angle 6 = (E%) = (1) = 2(25.714°), 6, = (&%) = %£(51.428°) and 6; =

13

(2952} = 32(77.142%)

Here the poles s; and s’1 are mirror image with each and are located at angles
7/7 and —n /7 respectively. Similarly the poles s, and s, mirror image with each
other and are located at angles 27/7 and —27/7 respectively. Also the poles s3
ands, are mirror image with each other and are located at angles 37/7 and—3m/7
respectively from the origin as shown in Fig.(2.25)

The pole sq is located at the zero axis and is a negative real pole.

The poles s; and s; can be shifted by any angle ¢, , similarly poles s,, s, and
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Figure 2.25: Seventh order Butterworth Filter

3, 5'3 can also be shifted by an angle ¢, and ¢3 respectively, provided which the
filter should remain stable in all means, i.e the pole s; should lie with in the second
quadrant in the range between 0 and s,, while the pole s, should lie with in the
second quadrant in the range between s; and s; and the pole s3 should lie in the
range between s, and 7/2 in the second quadrant. Also the pole sy remains stable
on the negative real axis.

The simplified transfer function of the above Eqn.(2.52). when ¢; = ¢y =

@3 = 0 is given as below

1
57 + 4.493956 + 10.0977s5 + 14.59165* + 14.59165° + 10.097752 + 4.4939s + 1
(2.53)

T7(s) =

Modifying further the above transfer function [24] gives

1
T) = 7
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where g(s) = s"+4.4939554-10.0977s%+14.59165%+14.591753+10.0977 5% +4.4939s+1
is a seventh order Butterworth polynomial and f(s) = k (a constant).

For our case when none of the poles s, s'l, S9, 3'2, sgand 3'3 are shifted, i.e when
&1 = ¢2 = ¢p3 = 0, we have the range of £ to be —1 > k < 1.0014.

Like wise the stability conditions for any shift in ¢, ¢» and @3 can be deter-
mined by the Program Al till the shift where the filter is stable.

The results tabulated below in Table{2.7} show the stability conditions (range)
of k for different shifts in angles ¢, @2, and ¢3 (in degrees).
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| Shiftinangle ¢, | Shiftin angle ¢, | Shiftinangle ¢3 | Stability Condition |

0° 0° 0° -1<k<1.0014
0° 0° 10° -1 <k<0.9194
0° 5° -30° -1 <k <14715
0° 10° 5° -1 <k<1.0624
0° 25° —25° -1 <k <1.5981
0° -5° -15° -1 <k <1.1562
5° 5° 0° -1 < k£ <0.9642
5° 5° 5° -1 <k <0.9551
5° 10° -10° -1 <k <1.2385
5° 10° —40° UNSTABLE
5° 15° —-35° -1 <k <1.5878

—25° —-10° S —15° -1 <k <1.1701

-10° 30° —45° -1 <k <1.8684
20° 9° -20° —-1<k<1.2013

Table 2.7: Stability conditions for seventh order Butterworth LPF when the poles
s1, 82 and sz are shifted by angles @1, ¢2 & ¢3

(f) Eighth order Complementary Pole Pair Filter

For an eighth order Butterworth filter, the transfer function obtained is given by

Ty(s) = 1
sl3) = {(32+2cos(% + ¢1)s + 1)(s? + 2 cos(3% -—¢2)8+1)} *

{ ! } 254
(s2 4+ 2cos(3E + ¢3)s + 1)(s% + 2 cos(3E — ¢a)s + 1) (2:54)

The above transfer function for order n=4(even) has its poles having angles

o = (P5ir) = (o) = s195), 6, = (BED) = 2337

2n 2x8 2x8
5 = (B ) = 22(56.25°) and 6, = (242077 = T2(7.75°).

The pole pairs (s1, s4) and (s9, s3) are Complementary Pole Pairs(CPP’s) as
their corresponding angles (6, 8;) and (f2, 63) add upto 7/2 when there is no shift
in ¢1, ¢2, ¢3 and 4.

ie. 01+ 0, =7/16 +Tn/12 = 1/2. (2.55)
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Figure 2.26: Eighth order Butterworth(CPP’s) Filter
and
B, + 05 = 31/16 + 57/16 = 7/12. (2.56)

Here the poles s; and s'1 are mirror image(complex conjugate pairs) with each
other and are located at angles /16 and —7 /16 respectively, likewise the poles s,
and s, are mirror image and are located at angles 37/16 and —7/16 respectively.
Also the poles s3 ands; are mirror image with each other which are located at angles
57/16 and —57/16 respectively, and the poles s, and s, are mirror image and are
located at an angle 77/16 and —77/16 respectively from the origin as shown in the
Fig.(2.26).

The poles s; and s, can be shifted by any angle ¢, , similarly poles s, s, , s3,
55, 84 and s, can also be shifted by an angle ¢, , ¢3 and ¢, respectively, provided
which the filter should remain stable in all means.

i.e.the pole s; should lie with in the second quadrant in the range between
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| Shiftinangle ¢, | Shiftinangle g, | Shiftinangle ¢; | Shiftinangle ¢4 | Stability Condition

0° 0° 0° 0° -1 <k <1.0001
0° 0° —20° 5° —1< k< 1.2542
0° 0° -15° 15° -1< k <1.2940
0° 0° -20° 40° -1<%<1.5303
0° 0° 5° 0° ~1< &k <0.9333
0° 5° ~15° —10° -1< k< 1.1709
0° 5° —5° -5° ~1<k < 1.0633
0° 5° 0° 25° UNSTABLE
0° 5° 10° 10° -1<k<1.0177
-5° -5° -5° —5° -1< k < 0.9886
5° 5° 5° 5° -1<k < 1.0076
10° 5° 10° 5° —1<k<0.9217

-10° 15° —~10° 15° © —1< k<1.3504

Table 2.8: Stability conditions for eighth order Butterworth LPF when the poles sy,
S, 83 and s4 are shifted by angles ¢y, ¢ ,d3 & ¢4

0 and s, while the pole s, should lie with in the second quadrant in the range
between s; and s; and the pole s3 should lie in the range between s, and s4 in the
2" quadrant, the pole s, should lie in the range between s3 and 7/2 in the second
quadrant.

The simplified transfer function of the above Eqn.(2.54) when ¢; = ¢ = ¢3 =
¢4 = 0 is as given below

1
(s® +5.125687 + 13.1360s5 + 21.8440s° + 25.6857s* + 21.8440s3
+

13.1360s? + 5.12565 + 1)

Tx(s) =

(2.57)

Modifying further the above transfer function [24] gives

1
g(s) + £(s)
where g(s) = s + 5.1256s7 + 13.13605% + 21.8440s% + 25.6857s* + 21.8440s® +
13.1360s% + 5.1256s + 1 is an eighth order Butterworth polynomial and f(s) = k& (a

Tx(s)

constant).
’ 2 ’ ’ .
For our case when none of the poles sy, s;, 2, S5, 83, S, sS4 and s, are shifted,

i.e when ¢ = @3 = ¢3 = @4 = 0, we have the range of £ to be —1 > k£ < 1.0001.
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Like wise the stability conditions for any shift in ¢y, ¢2, ¢3 and @, can be
determined by the Program A1l till the shift where the filter is stable.

The results tabulated in Table{2.8} show the stability conditions(range of) ‘&’
for different shifts in angles @1, ¢2, ¢3 and @4(in degrees).

2.10.6 Two -dimensional CPPF

With the above results in 1-D, we shall extend the same to the construction of
complementary pole-pair filters to the 2-D case also. In this case, the 2-D CPPF is
simply obtained as a product of two cascaded 1-D filters as an independent product.
This means that variation of pole parameters in each dimension is independent too.

The concept of 2-D CPPF has been studied using the same transfer function
that was used earlier in this chapter. The transfer function used in this case and
the roots are determined as follows.

Let

1

Tils) = g1(s1) + fi(s1)

where g1(s;) = s3 +2s? + 25, + 1 is a third order Butterworth polynomial and
fi(51) = k; (a constant).

Similarly for g2(se) and fa(sz) in the second dimension, we have

1
ga(s2) + fa(s2)

where go(s2) = 53 + 253 + 252 + 1 and fo(s2) = ka-

Tz(sz) =

The above transfer function gives two complex poles on the 2nd and 3rd quad-
rants respectively forming angles of +60° and —~60° respectively with the X-axis in
the negative direction. The values of k; and k; are chosen as the optimum values
for elliptical symmetry as was derived from Program A3. The values are chosen to
be k; = —0.45 and ky = —0.20 and the poles(S; and S},) are determined based on

the transfer function.
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Figure 2.27: Shift of poles by angle of £59 for two independent transfer functions.

The poles are then shifted by an angle £5° as shown in Fig.(2.27), giving rise
to two different pole-pairs (Sy;, S7;) and (Sy2, S},) making angles of £65° and £55°
respectively with the negative real axis.

The poles for these angles are then calculated and the transfer function is
determined. The optimum range of k for stability, for these transfer functions is
found to be

(a) For positive shift in pole of 5°(away from each other) : —1 < k < 2.4049

(b) For negative shift in pole of 5°(towards from each other) : —1 < k < 3.61

When the poles are shifted by 5° , then the filter exhibits elliptical symmetry
at the values of k; = —0.47 & ko = —0.23. And, when the poles are shifted by -5° ,
the filter exhibits elliptical symmetry at the values of k; = —0.42 & k, = —0.18 .

The Program for the 2-D case follows the same pattern as the 1-D case and
therefore has not been shown. Figs.(2.28(a) and (b)) show the 2-D filter response

before any pole parameter transformation has been applied to it.
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Mesh plot(no shift in pole) for k1=-0.45 & k2=-0.20
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Magnitude Response

w
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Contour plot(no shift in pole) for k1=-0.45 & k2=-0.20
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T

Figure 2.28: 2-D CPPF showing near elliptical symmetry at k1=-0.45 and k2=-0.20.
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Figs.((2.29) and (2.30)) show the 2-D filter response after a pole shift of +5°
has been applied to it. Applying Program A3 to these responses(Figs.(2.31) and
(2.32)), it has been found that at k1 = —0.47 & ky = —0.23, it exhibits near
elliptical symmetry for the magnitude range 0.49 < Mag < 0.51. This has been
shown only for this case (as in Fig(2.31(c)), as an illustration. The same procedure
has however been used in determining the value of k; and k&, for all the cases of pole
shifts discussed in this section.

Figs.(2.33) and (2.34) show the 2-D filter response after a pole of -5° has been
applied to it. From Figs.(2.35) and (2.36), it is seen that near elliptical symmetry
has been obtained at a value of k; = —0.42 & k; = —0.18 .

For both positive negative pole-parameter shifting, it has been found that
elliptical symmetry can still be achieved within the optimum stability range of &,
and ky. The same can be achieved for different values of g, i.e.. for different values
in the angle and therefore different values of &£, and %k, . The plots that follow show

the above simulation for values of 6, = £10°, £25°.

Figs.(2.37) and (2.38) show the 2-D filter response after a pole shift of +10° has
been applied to it. Here it is seen that near elliptical symmetry has been obtained
at values k; = —0.53 & ky = —0.33.

Figs.(2.39) and (2.40) show the 2-D filter response after a pole shift of —10° has
been applied to it. Here it is seen that near elliptical symmetry has been obtained
at values k; = —0.40 & k2 = —0.15.

Figs.(2.41) and (2.42) show the 2-D filter response after a pole shift of +25° has
been applied to it. Here it is seen that near elliptical symmetry has been obtained
at values k; = —0.82 & ky = —0.69.

Figs.(2.43) and (2.44) show the 2-D filter response after a pole shift of —~25° has
been applied to it. Here it is seen that near elliptical symmetry has been obtained
at values k; = —~0.36 & k; = —-0.08.

Table{2.9} summarizes the results for the six cases that has been discussed.
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| Angular Shift(in degrees) | Stability range of & | Values of & & #k; for elliptical symmetry |

o = —25 -1 <k <5.9606 ky = —0.36 & ko = —0.08
By = —10 -1 <k <4.239 ki =—-0.40 & k, = —0.15
By = =5 -1 <k <361 ki =042 & ky = —0.18
Bp =+5 -1 <k <2.4049 ki =—047 & ky = —0.23
6y = +10 -1 <k<1.836 ki =—0.53 & ky = —0.33
0 = +25 -1 <k <0.3790 ky =-0.82 & ky = -—-0.69

Table 2.9: Summary of the results achieved due to different values of angular shift in
the complex poles and their corresponding values of k; & k- for elliptical symmetry.
The range of magnitude chosen for all the above cases is 0.49<Mag<0.51.

As it can be seen, for different values of angular shift in the complex poles in
each of the cases, the values of k; & k» also shift correspondingly for near elliptical
symmetry. However with greater increase in the value of positive angular shift, it
can be seen that the filter does not precisely holds the elliptic symmetry principle
within the stable region of k. Comparing the elliptical symmetric characteristic for
By = £5°, +£10° and £ 25° | it can be easily deduced that for +25° the elliptical

symmetric property reduces considerably.
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(c)plot after pole shift of +5 deg and k1=-0.80 & k2=-0.55
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(c)plot after pole shift of +5 deg and k1=-0.60 & k2=~0.35
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Figure 2.29: 2-D CPPF after pole parameter transformation of #, = +5%& for
(a) k1=-0.80 and k2=-0.55 (b) k1=-0.60 and k2=-0.35 (c) k1=-0.47 and k2=-0.23
(showing near elliptical symmetry).
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(d)plot after pole shift of +5 deg and k1=-0.40 & k2=-0.18

0 0.5

Figure 2.30: 2-D CPPF after pole parameter transformation of 8, = +5° for (a)
k1==-0.40 and k2=-0.18 (b) k1=-0.20 and k2=-0.05.
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(c)plot showing extent of etlip.symmetry at k1=~0.80 & k2=~0.55
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(c)plof showing extent of ellip.symmetry at k1=~0.60 & k2=-0.35
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(c)plot showing extent of ellip.symmetry at k1=-0.47 & k2=-0.23
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Figure 2.31: Plots to illustrate the extent of elliptical symmetry obtained after
shifting the poles of the original transfer functions by +5° for Figs.(2.29(a), (b) &

(c))-
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(d)plot showing extent of ellip.symmetry at k1=-0.40 & k2=-0.18
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(e)plot showing extent of ellip.symmetry at k1=-0.20 & k2=-0.05
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Figure 2.32: Plots to illustrate the extent of elliptical symmetry obtained after
shifting the poles of the original transfer functions by +5° for Figs.(2.30(a) & (b)).
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(a)plot after pole shift of -5 deg and k1=-0.85 & k2=~0.57
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(b)piat after pole shift of ~5 deg and k1=-0.61 & k2=-0.38
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(c)plot after pole shift of -5 deg and k1=-0.42 & k2=~0.18
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Figure 2.33: 2-D CPPF after pole parameter transformation of §y = —5° for (a) k1=-

0.85 and k2=-0.57 (b) k1=-0.61 and k2=-0.38 (c) k1=-0.42 and k2~=-0.18(showing
near elliptical symmetry)
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{d)plot after pole shift of -5 deg and k1=~0.34 & k2=-0.15

15k 1 ) L
~1. -1 -0.5 [
wi

(e)plot after pole shift of -5 deg and k1=-0.18 & k2=0
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Figure 2.34: 2-D CPPF after pole parameter transformation of 8, = —5° for (a)
k1=-0.34 and k2=-0.15 (b) k1=-0.18 and k2=0
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(a)plot showing extent of ellip.symmetry at k1=-0.85 & k2=-0.57
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(b)plot showmg extent of elllp symmetry at k1 "-0 61 & k2=-0.38
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( )plot showing extent of ellip. symme(ry atki= O 42& k2--0 18
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Figure 2.35: Plots to illustrate the extent of elliptical symmetry obtained after
shifting the poles of the original transfer functions by —5° for Figs.(2.33(a), (b) &
()
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(d)plot showing extent of ellip. symmetry at k1=-0.34 & k2=-0.15
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(e)plot showing extent of ellip.symmetry at k1=-0.18 & k2=0
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Figure 2.36: Plots to illustrate the extent of elliptical symmetry obtained after
shifting the poles of the original transfer functions by —5° for Figs.(2.34(a) & (b)).
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(a)plot after poie shift of +10 deg and k1=-0.85 & k2=~-0.55
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(b)plot after pole shift of +10 deg and k1=—-0.67 & k2=-0.42
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Figure 2.37: 2-D CPPF after pole parameter transformation of §; = +10° for
(a) k1=-0.85 and k2=-0.55 (b) k1=-0.67 and k2=-0.42 (c) k1=-0.53 and k2=-
0.33(showing near elliptical symmetry).
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(d)plot after pole shift of +10 deg and k1=~0.40 & k2=-0.15

—

Figure 2.38: 2-D CPPF after pole parameter transformation of §y = +10° for (a)
k1=-0.40 and k2=-0.15 (b) k1=-0.20 and k2=0.
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(b)plot after pole shift of -10 deg and k1=~0.95 & k2=~0.68
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(b)plot after pole shift of -10 deg and k1=-0.70 & k2=-0.45
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(c)plot after pole shift of —10 deg and k1=-0.40 & k2=-0.15

Figure 2.39: 2-D CPPF after pole parameter transformation of §, = —10° for
(a) k1=-0.95 and k2=-0.68 (b) k1=-0.70 and k2=-0.45 (c¢) k1=-0.40 and k2=-
0.15(showing near elliptical symmetry).
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(d)plot after pole shift of —10 deg and k1=-0.15 & k2=0.85
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(e)plot after pole shift of —10 deg and k1=0.65 & k2=0.40

Figure 2.40: 2-D CPPF after pole parameter transformation of 8, = —10° for (a)
k1=-0.15 and k2=0.85 (b) k1=0.65 and k2=0.40.
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(a)plot after pole shift of +25 deg and k1=-0.95 & k2=-0.80
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(b)plot after pole shift of +25 deg and k1=-0.88 & k2=-0.75
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(c)plot after pole shift of +25 deg and k1=-0.82 & k2=-0.69
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Figure 2.41: 2-D CPPF after pole parameter transformation of 8, = +25° for
(a) k1=-0.95 and k2=-0.80 (b) k1=-0.88 and k2=-0.75 (c¢) k1=-0.82 and k2=-
0.69(showing near elliptical symmetry).
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(d)plot after pole shift of +25 deg and k1=-0.55 & k2=-0.30
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(e)plot after pole shift of +25 deg and k1=-0.25 & k2=-0.05
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Figure 2.42: 2-D CPPF after pole parameter transformation of fy = +25° for (a)
k1=-0.55 and k2=-0.30 and (b) k1=-0.25 and k2=:-0.05.
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(a)plot after pole shift of ~25 deg and k1=-0.92 & k2=-0.78
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(b)piot after pole shift of -25 deg and k1=~0.65 & k2=-0.38
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{c)plot after pole shift of -25 deg and k1=~0.36 & k2=-0.08
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Figure 2.43: 2-D CPPF after pole parameter transformation of #y, = —25° for
(a) k1=-0.92 and k2=-0.78 (b) k1=-0.65 and k2=-0.38 (c¢) k1=-0.36 and k2=-
0.08(showing near elliptical symmetry)
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(d)plot after pole shift of 25 deg and k1=0.95 & k2=0.65

Figure 2.44: 2-D CPPF after pole parameter transformation of §, = ~25° for (a)
k1=0.95 and k2=0.65 (b) k1=2.50 and k2=2.0.
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2.10.7 Summary and Discussion

In summary, this chapter has shown in detail the approximation to elliptical sym-
metry that can be achieved in stable, 2-D lowpass transfer functions, starting from,
two 1-D transfer functions. The study has been done using both Butterworth and
Chebyshev transfer functions. Another interesting aspect of filter design namely the
effect of pole parameter transformation on elliptical symmetry has been studied in
the 2-D case and the results have been shown.

In the study of Butterworth filters, extensive simulations have been done for
the third order filter and results have been plotted. An algorithm to determine the
extent of elliptical symmetry in specific magnitude ranges has been written and this
has been used in all the above cases, as a tool to determine the range and value of
the feedback factors k; & ko for elliptical symmetry for each of the above cases. It
has been found from the results obtained, elliptical symmetry varies with the values
of ky & ko with in the stability limits of k. Specific magnitude ranges has been
chosen for all the cases, so as to be consistent with the comparative study.

In the Chebyshev study, it has been proved that the values of k; & k, for
elliptical symmetry, varies as a function of ripple width €. For the same order and
different value of ripple width, results have been plotted and tabulated.

The effect of pole-parameter transformation on elliptical symmetry has been
studied with six different cases of pole-parameter transformation and the results
have been tabulated. It has been proved from the results that, the greater the
deviation form the original poles of the transfer functions, the smaller the value of
k for stability and thus elliptical symmetry.

Thus, in this Thesis, this chapter is an important work towards the study of

2-D near elliptical symmetric filters possessing denominator transfer functions.
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Chapter 3

(Generation of Stable 2-D Bandpass,
Bandstop and Highpass Filters and
their Approximation to Elliptical
Symmetry

The previous chapter dealt with the implementation of 2-D lowpass Filter design
only. In this chapter, the implementation of other types of filters namely highpass
filter, bandpass filter and bandstop filter and their approximation to Elliptical sym-
metry will be discussed. We will restrict our discussion, in this chapter, to the

Butterworth filter design only.

3.1 Bandpass Filter

Bandpass filters have a specific band or range of frequencies above and below which
they attenuate signals. Thus, very low and very high frequency components are
attenuated and the signals within the specified pass-band range possess a high gain.

The design of 2-D IIR Butterworth bandpass filter is carried out in the same
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manner as the lowpass design, in principle, by first designing the 1-D Butterworth
filter and then combining two similar 1-D transfer functions as a product. The code
has been written in MATLAB(Program B1) using the different built-in subroutines
to achieve the filter specifications. The following procedure has been adopted to
design the filter.

(1) The required specifications namely the order of the filter(N) and the upper
and lower pass-band edges(W,,), as a 1 X 2 matrix, are first defined. The filter chosen
in this case has an analog cut-off frequency of [0.4, 1] and is of the fourth order.

(2) The numerator and denominator polynomials of the analog transfer func-
tion are determined using the MATLAB function “butter” for the Bandpass filter
design.

In this case, the fourth order Bandpass transfer function(1D) is given by

0.1296s*

H = ' .
5p(s) (s® + 1.5679s7 + 2.8201° + 2.445955 + (2.0405 + 0.1296k) s* (3:-1)

0.97845% + 0.4527s% + 0.1003s + 0.0256)
Now in order for Eqn.(3.1) to be stable, the range of 'k’ needs to be determined.

Following the same method suggested in Chapter-2 and from Eqn.(2.14) we have

m(s) +mq(s) _ s®+2.8291s° + (2.0405 + 0.1296k)s" + 0.4527s* + 0.0256
n(s) - 1.5679s7 + 2.4459s5 + 0.97845% + 0.1003s

(3.2)

Now Eqn.(3.2) can be split into partial fractions as follows:

0 s% +2.82915% + (2.0405 + 0.1296k)s* + 0.4527s2 + 0.0256
Foos + Z s? + 52 s 1.5679s(s% + 0.9999)(s? + 0.4003)(s? + 0.1598)
(3.3)
where 8, = 0.9999, 8 = 0.4003, 83 = 0.1598 are the roots of the denominator
of Eqn.(3.2).

For Eqn.(3.3). to be a strictly Hurwitz polynomial, k; > 0.
Therefore, we find the values of k; such that &; > 0, and from the equations

obtained, we find the range of & for stability.
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Solving Eqn.(3.3), we have the following ranges of k, for which Eqn.(3.1) is
stable.

k < 1.6632, k > —0.7487, k < 1.6509 (3.4)
Thus, the resultant range of k£ for which Eqn.(3.1). is stable is given by
—0.7487 < k < 1.6509 (3.5)

(3) Bilinear transformation is then applied to determine the digital counter
part. This is done using the MATLAB function “bilinear”. Refer to Program B2.

(4) Now we have the digital transfer function of the 1-D filter. The same
procedure as above, is extended to the second dimension and the transfer function
for the second dimension is obtained independently.

(5) The product of the two 1-D polynomials is then determined.

(6) A general subroutine suitable for any order of the filter has been written
to determine the frequency response of the 2-D filter. Refer Program B2. The
corresponding contour plots are plotted using the MATLAB function “contour”.

The MATLAB program namely, Program Bl and B2 have been written for

the Bandpass filter specifications given by

Wo,l=W,2 | N1=N2

0.4 1] 4

All frequencies are in radians. The scripts 1 and 2 refer to the first and second

dimensions, respectively.

Program B1

%%2D BAND PASS BUTTERWORTH IIR FILTER
clear all
close all;
Ni=4;
Wn1=[0.4,1};
N2=N1;
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Wn2=Wnl;
{B1,Al]=butter(N1,Wnl,'s);
[B2,A2}=butter(N2,Wn2,’s’);

for k1=-1.0:0.1:1.65

for k2=-1.0:0.1:1.65

zz==ker _progb2 _mag(B1,Al1kl);
lim=pi;

interval=pi/50;
wl=0:interval:lim;
w2=0:interval:lim;
{wwl,ww2]=meshgrid(w1,w2);
figure;

contour(wwl,ww2,zz);
axis(’image’);

xlabel('w1’);

ylabel("w2’);

zlabel("Magnitude Response’);
title(’2-D Butterworth BPF’’FontSize’,16);
grid on;

end

end

Program B2

%% Function to determine the transfer function of the filter for a given k1,k2
function(zz]=ker_progh2_mag(B1,A1k1);
B2=Bl;
[R Cl=size(Al);
A1((C+1)/2)=A1((C+1)/2)+k1*B1((C+1)/2);
A2((C+1)/2)=A2((C+1)/2)+k2*B2((C+1)/2);
%%%Bilinear transformation of the transfer function
[N1,D1]=bilinear(B1,A1,1);
[N2,D2]=bilinear(B2,A2,1);
%%to determine the 2-D transfer function
for m=1:1:size(N1,2)
for n=1:1:size(N2,2)
N(m,n)=N1(m)*N2(n);
end
end
for m=1:1:size(D1,2)
for n=1:1:size(D2,2)
D(m,n)=D1(m)*D2(n);
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end
end
lim=pi;
interval=pi/50;
cl=0;
for wi=0:interval:lim
c2=0;
cl=cl+1;
for w2=0:interval:lim
c2=c2+1;
for col=1:1:size(N2,2)
NRow(1,col)=(cos(w2)+j*sin(w2)) "~ (size(N2,2)-col);
end
for row=1:1:size(N2,2})
NCol(row,1}={cos{wl)+j*sin(wl))" (size(N1,2)-row);
end
NR=NRow*N"*NCol;
a=real(NR);
b=imag(NR);
for col=1:1:size(D2,2)
DRow(1,col)=(cos(w2)-+j*sin(w2)) " (s1ze(D2,2)-col);
end
for row=1:1:size(D2,2)
DCol(row,1)=(cos{w1)+j*sin(wi)) " (size(D1,2)-row);
end
DR=DRow*D"*DCol;
c=real(DR);

=imag(DR});
MOD(cl,c2)=(sqrt((a*c+b*d)~2+(b*c-a*d)~2))/(c~2+d"2);
end
end
fwwl,ww2]=meshgrid(w1,w2);
2z=MOD/{max(max(MOD)));
%%End of Program

The results of the algorithm namely the contour plots for the first quadrant are
as shown in Figs.(3.1) and (3.2). A large number of plots for all possible values of k
within the stability ranges were plotted. Only the plots of interest have been shown.
As it can be seen from the Figs.(3.1) and(3.2), there is a certain range of k for which

elliptical symmetry is exhibited in the frequency response for specific magnitude
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ranges. From Section 2.8 using Program A3, the extent of elliptical symmetry is
determined for the above responses and the optimum values of k; and &, for which
we have the closest proximity to elliptical symmetry is determined.

The plots in Figs.(3.3) and (3.4) show the extent of elliptical symmetry for
the responses shown in Figs.(3.1) and (3.2). The plof for k; = k; = 1.65 is not
shown since there are no points within this magnitude range which approximate to
elliptical symmetry.

It is evident from the above plots that at &y = —0.25 and k; = —0.08, the
response exhibits near elliptical symmetry and for other values of k; and %y apart

from these, elliptical symmetry ceases to exist.
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(a)2-D 1IR BPF for k1=-0.7 and k2=-0.45
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(b)2-D IR BPF for k1=-0.45 and k2=-0.20
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(c)2-D liR BPF for k1=-0.25 and k2=-0.08
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Figure 3.1: Contour plots of Fourth order 2-D IIR Butterworth Bandpass filter (a)
k1=-0.75 and k2=-0.45 (b) k1=-0.45 and k2=-0.20 (c) k1=-0.25 and k2=-0.08
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(a)2-D lIR BPF for k1=-0.10 and k2=0.05
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(b)2-D IR BPF for k1=1.65 and k2=1.65
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Figure 3.2: Contour plots of 2-D IIR Butterworth Bandpass filter (a) k1=-0.10 and
k2=0.05 (b) k1=1.65 and k2=1.65
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(a)Extent of elliptical symmetry for k1=-0.7 and k2=-0.45

(b)Extent of elliptical symmetry for k1=-0.45 and k2=-0.20
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Figure 3.3: Plots showing the extent of elliptical symmetry for (a) k1=-0.75 and
k2=-0.45 (b) k1=-0.45 and k2=-0.20. The magnitude range under consideration is
0.8<Mag<1.
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(a)Extent of elliptical symmetry for k1=-0.25 and k2=-0.08
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(b)Extent of elliptical symmetry for k1=-0.10 and k2=0.05
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Figure 3.4: Plots showing the extent of elliptical symmetry for (a) k1=-0.25 and
k2=-0.08 (b) k1=-0.10 & k2=0.05. The magnitude range under consideration is
0.8<Mag<1.
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3.2 Bandstop Filter

Bandstop filters have a specific band or range of frequencies within which they
attenuate signals. Thus, Ve‘ry low and very high frequency components of signals
have a high gain and the signals within the specified attenuation range have very
low gain.

The design of 2-D IIR Butterworth Bandstop filter is carried out in the same
manner as the bandpass design, in principle, by first designing the 1-D Butterworth
filter and then combining two similar 1-D transfer functions as a product. The
code has been written using MATALAB(Program B3) using the different built-in
subroutines to achieve the filter specifications. The following procedure has been
adopted to design the filter:

(1)In this case, the required specifications namely the order of the filter(N)
and the upper and lower pass-band edges(W,), as a 1 x 2 matrix, are first defined.
The filter chosen in this case has an analog cut-off frequency of [0.4, 1] and is of the
fourth order.

(2)The numerator and denominator polynomials of the analog transfer function
are determined using the MATLAB function “butter” for the Bandstop filter design.

In this case, the fourth order Bandstop transfer function(1D) is given by

s® +1.65% + 0.96s* + 0.2565% + 0.0256

H =
5s(8) = (T 71567957 £ 2.82915% 5 244595 + 2.04055° ;

(3.6)

0.9784s% + 0.4527s% + 0.1003s + 0.0256)
Having determined the numerator and denominator polynomials for the ana-
log transfer function, the filter transfer function(1D) is then determined, as from

Eqn.(2.13). This is given by
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s® +1.65% + 0.965* + 0.25652 + 0.0256

H =
BSo(3) (8 + 1.567957 + 2.820156 + 2.44595° + 2.0405s* + 0.97845° .

(3.7)

0.9784s% + 0.4527s% + 0.1003s + 0.0256
k(s® + 1.655 + 0.965% + 0.2565* + 0.0256)
Now for Eqn.(3.7) to be stable, the range of k needs to be determined. Fol-
lowing the same suggested in Chapter-2 and from Eqn.(2.14) we have
(s® +2.82915% + 2.0405s* + 0.4527s% + 0.0256 .

m(s) +my(s)  k(s®+1.6s° + 0.965* + 0.2565* + 0.0256))
n(s) T 1.5679s7 + 2.4459s5 + 0.978453 + 0.1003s

(3-8)

Now Eqn.(3.8) can be split into partial fractions as follows:

(s® +2.8291s5 + 2.0405s* + 0.4527s% + 0.0256

- Z k(s + 1.65% + 0.965* + 0.2565* + 0.0256))
oo s? + 52 s 1.5679s(s? + 0.9999)(s2 + 0.4003)(s2 + 0.1598)

(3.9)

where 57 = 0.9999, 8, = 0.4003, 3 = 0.1598 are the roots of the denominator
of Eqn.(3.8).

For Eqn.(3.9) to be a strictly Hurwitz polynomial, k; > 0.

Therefore, we find the values of k; such that &; > 0 and from the equations
obtained, we find the range of £ for stability.

Solving Eqn.(3.9), we have the following ranges of &k respectively, for which
Eqn.(3.7) is stable.

-1 < k < o0, norange, k < 1.6628, k < 1.6456 (3.10)
Thus, the resultant range of k for which Eqn.(3.7) is stable is given by
-1 <k <1.6456 (3.11)

(3)Bilinear transformation is then performed to determine the digital counter

part. This is done using the MATLAB function “bilinear”. Refer to Program B4.
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(4)Now we have the digital transfer function of the 1-D filter. The same
procedure as above, is extended to the second dimension and the transfer function
for the second dimension is obtained independently.

(5)The product of the two 1-D polynomials is then determined.

(6)A general subroutine suitable for any order of the filter has been Written
to determine the frequency response of the 2-D filter. Refer Program B4. The
corresponding contour plots are plotted using the MATLAB function “contour”.

The MATLAB program namely, Program B3 and B4 have been written for
the Bandstop filter specifications given by

Wpl=W,2 | N1=N2

0.4 1] 4

All frequencies are in radians. The scripts 1 and 2 refer to the first and second

dimensions, respectively.

Program B3

%%2D-BAND-STOP BUTTERWORTH FILTER
clear all;
close all;
N1=4;
Wnl=[0.4 1J;
N2=NT1;
Wn2=Wnl;
[B1,Al]=butter(N1,Wnl,’stop’,’s");
[B2,A2]=butter(N2,Wn2,’stop’,’s’);
for k1=-1.0:0.1:1.65
for k2=-1.0:0.1:1.65
zz=ker _progb4 mag(B1,A1kl);
lim=pij;
interval=pi/50;
wl=0:interval:lim;
w2=0:interval:lim;
[ww1l,ww2]=meshgrid(w1,w2);
figure;

contour(wwl,ww2,zz);
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axis('image');

xlabel(’w1’);

ylabel('w2’};

zlabel(’Magnitude Response’);

title('2-D IIR Butterworth BSF’,’FontSize’,16);
grid on;

end

end

Program B4

%%Function to determine the transfer function of the filter for a given k1,k2
function [zz]=ker _progb4 _mag(B1,A1,k1);
B2=B1;

[R C]=size(Al);

for t=0:2:C-1
AL(C-t)=A1(C-t)+k1*B1(C-t);
A2(C-t)=A2(C-t)+k2*B2(C-t);
end

%%%Bilinear transformation of the transfer function
{N1,D1]=bilinear(B1,A1,1);
[N2,D2]=bilinear(B2,A2,1);
%%to determine the 2-D transfer function
for m=1:1:size(N1,2)

for n=1:1:size(N2,2)
N{m,n)=N1{m)*N2(n);

end

end

for m=1:1:size(D1,2)

for n=1:1:size(D2,2)
D{m,n)=D1(m)*D2(n);

end

end

lim=npi;

interval=pi/50;

c1=0;

for wl=0:interval:lim

c2=0;

cl=cl+1;

for w2=0:interval:lim
c2=c2+1;

for col=1:1:size(N2,2)
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NRow(1,col)=(cos{w2)+j*sin(w2))~ (size(N2,2)-col);
end

for row=1:1:size(N2,2)
NCol(row,1)=(cos(wl)+j*sin(wl)) " (size(N1,2)-row);
end

NR=NRow*N’*NCol;

a=real{NR);

b=imag(NR};

for col=1:1:size(D2,2)
DRow(1,col)={cos(w2)+j*sin(w2})) " (size(D2,2)-col);
end

for row=1:1:size(D2,2)
DCol(row,1}=(cos{w1)+j*sin(w1))~ (size(D1,2)-row});
end

DR=DRow*D"*DCol;

c=real(DR);

d=imag(DR);
MOD(cl,c2)=(sqrt((a*c+b*d)~2+(b*c-a*d)~2))/(c"2+d"2);
end

end

wl=0:interval:lim;

w2=0:interval:lim;

[wwl,ww2]=meshgrid(wl,w2);
22=MOD/(max{max(MOD))};

%%End of Program

The results of the algorithm namely the contour plots for the first quadrant
are as shown in Figs.(3.5) and (3.6). A large number of plots for all possible values
of k within the stability ranges were plotted. Only the plots of interest have been
shown. As it can be seen from the Figs.(3.5) and (3.6), there is a certain range of
k for which elliptical symmetry is exhibited in the frequency response for specific
magnitude ranges. From Section 2.8 using Program A3, the extent of elliptical
symmetry is determined for the above responses and the optimum value of & for
which we have the closest proximity to elliptical symmetry is determined.

The plots in Figs.(3.7) and (3.8) show the extent of elliptical symmetry for
the responses shown in Figs.(3.5) and (3.6). The plot for k; = k» = 1.64 is not

shown since there are no points within this magnitude range which approximate to
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elliptical symmetry.

It is evident from the above plots that at k& = —0.55 and k, = —0.30, the
response exhibits near elliptical symmetry and for other values of %; and ko, the
elliptical symmetry gradually'ceases to exist. For the above study of Bandstop
filter, near elliptcial-symmetry has been considered for both the lower and upper

pass-band in order to evaluate the optimum value of k; and k,.
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(a)2-D lIR BSF for k1=~0.95 & k2=-0.70
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Figure 3.5: Contour plots of Fourth order 2-D IIR Butterworth Bandpass filter (a)
k1=-0.95 and k2=-0.70 (b) k1=-0.65 and k2=-0.40 (c) k1=-0.55 and k2=-0.30.
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(a)2-D IR BSF for k1=-0.30 & k2=-0.05
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Figure 3.6: Contour plots of Fourth order 2-D IIR Butterworth Bandpass filter (a)
k1=-0.30 and k2=-0.05 (b) k1=1.65 and k2=1.65.
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(a)Extent of elliptical symmetry for k1=-0.95 and k2=-0.70
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Figure 3.7: Plots showing the extent of elliptical symmetry for (a) k1=-0.95 and
k2=-0.70 (b) k1=-0.65 and k2=-0.40. The magnitude range under consideration is
0.45<Mag<0.55.
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(a)Extent of elliptical symmetry for k1=-0.55 and k2=-0.30
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(b)Extent of elliptical symmetry for k1=-0.30 and k2=-0.05
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Figure 3.8: Plots showing the extent of elliptical symmetry for (a) k1=-0.55 and

k2=-0.30 (b) k1=-0.30 and k2=-0.05. The magnitude range under consideration is
0.45<Mag<0.55.
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3.3 Highpass Filter

Highpass filters have a specific value of frequency above which they allow signals.
Thus, low frequency components of signal are attenuated and the signals above the
specified range have a high gain.

The design of 2-D IIR Butterworth highpass filter is carried out in the same
manner as the lowpass design, in principle, by first designing the 1-D Butterworth
filter and then combining two similar 1-D transfer functions as a product. The
code has been written using MATALAB(Program B5) using the various built-in
subroutines, to achieve the filter specifications. The following procedure has been
adopted to design the filter:

(1)In this case, the required specifications namely the pass-band edge (W)
and the order of the filter (N) are first defined. The filter chosen in this case has an
analog cut-off frequency of [0.4] and it has been chosen to be of the fourth order.

(2)The numerator and denominator polynomials of the analog transfer function
are determined using the MATLAB function “butter” for the highpass filter design.

In this case, the fourth order Highpass transfer function(1D) is given by

st

st +1.0453s® + 0.5463s2 + 0.167s2 + 0.0256

HHP = (312)

Having determined the numerator and denominator polynomials for the ana-
log transfer function, the filter transfer function(1D) is then determined, as from
Eqn.(2.13). This is given by

84

s*(1 + k) + 1.04533% + 0.546352 + 0.16752 + 0.0256

Hyp, = (3.13)

Now for Eqn.(3.13) to be stable, the range of k¥ needs to be determined. Fol-
lowing the same method suggested in Chapter-2 and from Eqn.(2.14) we have

m(s) +ma(s) _ s*(1+ k) +0.5463s% + 0.0256
n(s) B 1.0453s% + 0.167s2

(3.14)
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Now Eqn.(3.14) can be split into partial fractions as follows:

- Z ko _ s*(1+ k) +0.5463s% + 0.0256
Feo 32 + ﬂ2 - 1.0453s(s2 + 0.16)

(3.15)

where 8, = 0.16, is the root of the denominator polynomial of Eqn.(3.i4).

For Eqn.(3.15) to be a strictly Hurwitz polynomial, k; > 0.

Therefore, we find the values of k; such that k; > Oand from the equations
obtained, we find the range of k£ for stability.

Solving Eqn.(3.15), we have the following ranges of & respectively, for which
Eqn.(3.13) is stable.

-1 <k <oo, k<1.4140 (3.16)
Thus, the resultant range of & for which Eqn.(3.13) is stable is given by
~1 <k < 1.4140 (3.17)

(3) Bilinear transformation is then performed to determine the digital counter
part. This is done using the MATLAB function “bilinear”. Refer to Program B6.

(4) Now we have the digital transfer function of the 1-D filter. The same
procedure as above, is extended to the second dimension and the transfer function
for the second dimension is obtained independently.

(5) The product of the two 1-D polynomials is then determined.

(6) A general subroutine suitable for any order of the filter has been written
to determine the frequency response of the 2-D filter. Refer Program B6. The
corresponding contour plots are plotted using the MATLAB function “contour”.

The MATLAB program namely, Program B5 and B6 have been written for
the Highpass filter specifications given by

W,l=W,2| N1 = N2

[0.4] 4

All frequencies are in radians. The scripts 1 and 2 refer to the first and second

dimensions, respectively.
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Program B5

%2D-HIGHPASS BUTTERWORTH IIR FILTER
clear all;
close all;
N1=4;
Wn1=[0.4];
N2=N1;
Wn2=Wnl;
[B1,Al]=butter(N1,Wn1,high’,’s’);
[B2,A2]=butter(N2,Wn2,'high’,’s’});
for k1=-1.0:0.1:14
for k2=-1.0:0.1:1.4
2z=ker__progb6 _mag(B1,Al,k1);
lim=pi;
interval=pi/50;
wl=0:interval:lim;
w2=0:interval:lim;
[ww1l,ww2]=meshgrid{wl,w2);
figure;
contour(wwl,ww2,2z);
axis(‘image’);
xlabel("wl’);
ylabel('w2’);
zlabel(’Magnitude Response’);
title(’2-D IIR Butterworth HPF’,'FontSize’,16);
grid on;
end

end

Program B6

%%Function to determine the transfer function of the filter for a given k1,k2
function [zz]=ker_progh6_mag(B1,A1k1);
B2=B1;
[R C]=size(Al);
Al(1)=A1(1)+k1*B1(1);
A2(1)=A2(1)+k2*B2(1);
%%%Bilinear transformation of the transfer function
[N1,D1]=bilinear(B1,A1,1);
[N2,D2)=bilinear(B2,A2,1);
%%To determine the 2-D transfer function of the IIR filter
for m=1:1:size(N1,2)
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for n=1:1:size(N2,2)

N(m,n)=N1(m)*N2(n);

end

end

for m=1:1:size(D1,2)

for n=1:1:size(D2,2)

D(m,n)=D1(m)*D2(n);

end

end

lim=npi;

interval=pi/50;

cl=0;

for wi=0:interval:lim

¢2=0;

cl=cl+1;

for w2=0:interval:lim

c2=c2+1;

for col=1:1:size(N2,2)
NRow(1,col)=(cos(w2)+j*sin{w2)) " (size(N2,2)-col});
end

for row=1:1:size(N2,2)
NCol(row,1)=(cos(w1)+j*sin{wl))" (size(N1,2)-row);
end

NR=NRow*N’*NCol;

a=real(NR);

b=imag(NR);

for col=1:1:size(D2,2)
DRow(1,col)=(cos(w2)+j*sin{w2)) "~ (size(D2,2)-col);
end

for row=1:1:size(D2,2)
DCol(row,1)=(cos(w1)+j*sin(wl))" (size(D1,2)-row);
end

DR=DRow*D’*DCol;

c=real(DR);

d=imag(DR);
MOD(cl,c2)=(sqrt{(a*c+b*d)~2+(b*c-a*d)~2))/(c~2+d " 2);
end

end

wl=0:interval:lim;

w2=0:interval:lim;

[wwl,ww2]=meshgrid(wl,w2);
2z==MOD/(max(max(MOD)})});

%%End of Program
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The results of the algorithm namely the contour plots for the first quadrant
are as shown in Figs.(3.9) and (3.10). A large number of plots for all possible values
of k within the stability ranges were plotted. Only the plots of interest have been
shown. As it can be seen from the plots, there is a certain range of k for which
elliptical symmetry is exhibited in the frequency response for specific magnitude
ranges. From Section 2.7 using Program A3, the extent of elliptical symmetry is
determined for the above responses and the optimum value of £ for which we have
the closest proximity to elliptical symmetry is determined.

The plots in Figs.(3.11) and (3.12) show the extent of elliptical symmetry for
the responses shown in Figs.(3.9) and (3.10). The plot for k; = k; = 1.4 is not
shown since there are no points within this magnitude range which approximate to

elliptical symmetry.
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(a)2-D IR HPF for k1=-0.99 and k2=-0.70
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(b)2-D iR HPF for k1=-0.90 and k2=-0.60
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(c)2-D IR HPF for k1=-0.80 and k2=-0.50
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Figure 3.9: Contour plots of Fourth order 2-D IR Butterworth highpass filter (a)
k1—=-0.99 and k2=-0.70 (b) k1=-0.90 and k2=-0.60 (c) k1=-0.8 and k2=-0.50.

125



(a)2-D IR HPF for k1=-0.60 and k2=-~0.30
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(b)2-D IR HPF for k1=1.40 and k2=1.40
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Figure 3.10: Contour plots of Fourth order 2-D IIR Butterworth Bandpass filter (a)
k1=-0.60 and k2=-0.30 (b) k1=1.40 and k2=1.40.
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(a)Extent of elliptical symmetry for k1=-0.99 and k2=-0.70
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(b)Extent of elliptical symmetry for k1=-0.90 and k2=-0.60

Figure 3.11: Plots showing the extent of elliptical symmetry for (a) k1=-0.99 and
k2=-0.70 (b) k1=-0.90 and k2=-0.60. The magnitude range under consideration is
0.45<Mag<0.55.

It is evident from the plots that at k; = —0.80 & k; = —0.50, the response
exhibits near elliptical symmetry and for other values of k, & ki, the elliptical
symmetry gradually ceases to exist. However, it is noted that, specifically for a
Highpass filter, since the pass-band range extends to infinity, it is really not possible
to define a elliptical symmetric response all over the pass-band. In this section,

strictly, near-elliptical symmetry has been demonstrated in the transition band.
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Figure 3.12: Plots showing the extent of elliptical symmetry for (a) k1=-0.80 and
k2=-0.50 (b) k1=-0.60 and k2=-0.30. The magnitude range under consideration is
0.45<Mag<0.55.

128



3.4 Summary and Discussion

This chapter has dealt with the design of 2-D bandpass, bandstop and highpass IIR
Butterworth filters and their approximation to elliptical symmetry within stability
limits.

For the bandpass filter, near elliptical symmetry has been obtained corre-
sponding to a single quadrant for the filter response. This is because the bandpass
response is obviously a closed response within a quadrant, and elliptical symmetry
in one quadrant means corresponding symmetry in all the four quadrants.

For the bandstop filter, near elliptical symmetry can be seen in the two transi-
tion regions(lower and upper) and depending on the requirement, the study can be
extended to a more specific region. Here also, the example shown takes into account
the elliptical symmetry for both these regions of interest. In the lower transition
region and below, elliptical symmetry study can be extended due to the response
from all the four quadrants. The upper transition band and higher, however extend
to infinity and therefore, this study can only be restricted to the lower part of the
upper transition region.

For the highpass filter, however, as has been mentioned before, the elliptical
symmetry study can only be studied in the lower transition region due to the infinite
bound of the pass-band region. .

In general, from the results obtained above, it can be seen that near elliptical
symmetry has been obtained in certain frequency ranges for a particular value of a
magnitude range. Depending on the required application, it is possible to change
the specification in such a manner that elliptical symmetry for a different magnitude

range can be studied and analyzed.
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Chapter 4

Combination Filters

Certain applications require specific types of symmetric response which may be
uniquely obtained by combination of two or more filters of the same kind or of
different kinds. This has been carried out before in different ways in 1-D analysis.
This chapter deals with such types of combination filters, extended to the second
dimension. In this chapter, it will be shown that transfer functions of one or more
filters can be arithmetically added and/or subtracted to achieve a specific type of
response. It is also intended here to study the extent of elliptical symmetry that
can be achieved by such types of combination filters in each dimension.

In this chapter we will deal with three different types of combination filters,
namely:

1. lowpass and bandpass combination

2. bandpass filter obtained as a result of the subtraction of two lowpass filters.

3. bandstop filter obtained as a result of adding a lowpass and a highpass
filter.

The above filters are obtained by combining the transfer functions of the two

different types of filters.

130



4.1 Lowpass and Bandpass Combination Filter

First we will consider one of the most elementary types of combination namely, the
combination of a lowpass and a bandpass filter to form a specific type of response,
in which the pass-band of the eventual combination filter will have variable gain
depending upon how the transition regions of the lowpass and the bandpass filter add
up. Fig.(4.1) shows the one-dimensional interpretation of the lowpass and bandpass
combination filter. The design procedure is simple.

Firstly the individual filters, namely the lowpass and the bandpass filter have
been designed separately based on the design parameters shown in Table {4.1}. The
individual filters are designed and analyzed separately for their respective responses.

Another important aspect of this study, has been to analyze the extent of el-
liptical symmetry of the combination filter when the individual filters are themselves
approximated to elliptical symmetry.

In this case, the lowpass and bandpass filters have been separately analyzed
for elliptical symmetry following the same procedure in Chapter-3. Following that

analysis, we have the results as follows.

Lowpass Transfer function in the first dimension= 55 +o.s§é%§§io.3zessl T

Range of k£ for stability=—1 < £ < 1.4143

Values of k; and k5, for near elliptical symmetry= -0.42 & -0.22.

The plots in Fig.(4.2) show the response for the lowpass filter corrected for
near elliptical symmetry.

The bandpass filter considered here in the second dimension(sz), has the same
response as the one shown in Section 3.1. (Refer Section 3.1 for transfer function
and figures).

The effective response of the combination filter which is obtained as a result

of adding the lowpass and the bandpass transfer functions is shown in Fig.(4.3(a)).
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1-D LOWPASS FILTER 1-D BANDPASS FILTER 1-D LOWPASS COMBINATION FILTER

Y

3-dB cut-off

¢ 0.5000 X o

Figure 4.1: A one-dimensional interpretation of the Lowpass + Bandpass combina-
tion

| Lowpass Filter | Bandpass Filter }
Order 4 4
Cut-off(rad) 0.5 [0.4 1]

Table 4.1: Combination filter parameters: Lowpass+Bandpass Filter.

The response of the combination filter as shown in Fig.(4.3(a)), has then been
studied to test its closeness to elliptical symmetry using Program A3(Chapter-2).
This study reveals the plot of Fig(4.3(b)).

From Fig.(4.3(b)), it is evident that, near elliptical symmetry cannot be ob-
tained in the transition region, although the individual filters are near-elliptical
symmetric in their respective transition regions. Elliptical symmetry is however,
found to be possible in the pass-band regions of the combination filter within which
the individual lowpass and bandpass pass-band regions are not effected by the mag-
nitude response of each other. It is seen that the bandpass region of the combination
filter exhibits near elliptical symmetry to an extent.

The Program to obtain these results has been written in MATLAB and is

shown below in Program C1.
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Program C1

%%2D LOW PASS + BAND PASS COMBINATION BUTTERWORTH IIR FILTER
clear all; close all;
%%2-D LOW PASS BUTTERWORTH FILTER
Lk1=-0.42; LN1=4; LWn1=0.5; LN2=LN1; LWn2=LWnl;
Lk2=-0.22
[LB1, LAl]=butter(LN1,LWn1,low’,’s');
{LB2, LA2}=butter(LN2,LWn2,low’, ’s’);
LPTF=kerthproga2(LB1,LA1,Lkl);
%%2-D BAND PASS BUTTERWORTH FILTER
Bk1=-0.25;BN1=4; BWn1=[0.4 1}; BN2==BN1; BWn2=BWnl;
Bk2=-0.08;
[BB1, BAlj=butter(BN1,BWnl,’s’);
[BB2, BA2]=butter(BN2,BWn2,’s’);
LPTF=ker_progb2_mag(BB1,BA1,Bkl);
TTF=LPTF+BPTF;
TTF=TTF/(max{max(TTF)));
lim=pi; interval=pi/50;
wl=0:interval:lim; w2=~0:interval:lim;
[wwl,ww2]=meshgrid(w1,w2);
figure;
contour{wwl,ww2,TTF);
axis(’image’); xlabel('w1’); ylabel(’w2’); zlabel("Magnitude Response');
title(’(a) 2-D Lowpass + Bandpass Combination Filter’,’FontSize’,16);

grid on;
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(a) 2-D Lowpass Filter for k1 =-0.42 & k2=-0.22

0.2 04 0.8

(b) Extent of elliptic symmetry for Lowpass Filter
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Figure 4.2: Plots showing (a) the response of the Lowpass filter (b) approximation
to elliptical symmetry between magnitude range [0.8 1] (normalized) derived from
Program A3.
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(a) 2-D Lowpass + Bandpass Combination Filter

=

0 L L 3
0 0.2 04 0.6 0.8 1

(b) Plot showing extent of elliptic symmetry
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Figure 4.3: Plots showing (a) the response of the combination filter (b) the ex-
tent of elliptical symmetry in the combination of a Lowpass and a Bandpass filter.
Magnitude range under study=[0.8 1](normalized) derived from Program A3.
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4.2 Lowpass and Lowpass Combination Filter

Here we consider an interesting combination namely, the combination of two lowpass
filters to form an eventual bandpass response. Fig.(4.4) shows the one-dimensional
interpretation of the two lowpass combination filter. It shows that when two lowpass
filters of different cut-off frequencies (the first one higher than the second one) are
subtracted from each other, we get an eventual bandpass response.

The design procedure is simple. First, the individual lowpass filters are de-
signed separately based on the design parameters shown in Table {4.2}. The im-
portant aspect of this study has been to analyze the extent of elliptical symmetry
of the combination filter when the individual filters are themselves approximated to
elliptical symmetry.

In our case, both the lowpass filters have been separately analyzed for elliptical
symmetry following the same procedure as in Chapter-3. Note that the first lowpass
filter has been considered here for illustration follows the same design as the one
that was chosen in Section 4.1.

The analysis of the Lowpass filters are as follows:

Lowpass Transfer function(1) 0.06%5

= $3F1.306657+0.853657 0.32665, +0.0625
Range of & for stability=—1 < k < 1.4143

Values of k; and k, for near elliptical symmetry for Filter 1= -0.42 & -0.22.

Lowpass Transfer function(2)= 3§+0.52263§+0.lgé%2§i0.020932+0.0016
Range of k for stability=—1 < k& < 1.4360
Values of k£ and k; for near elliptical symmetry for Filter 2= -0.35 & -0.16.
The plots in Figs.(4.5) and (4.6) show the response for the Lowpass filters
corrected for near elliptical symmetry for a specific magnitude range. It is seen that

the individual filters exhibit near elliptical symmetry within the specific magnitude

range.
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1-D LOWPASS FILTF.R 1-D LOWPASS FILTER 1-D BANDPASS COMBINATION FILTER
- Y Y
Y

0.500 X of 0.200 X 0

Figure 4.4: A one-dimensional interpretation of the Lowpass filter combination.

[ | Lowpass Filterl | Lowpass Filter2 |
Order 4 4
Cut-off(rad) 0.5 0.2

Table 4.2: Combination filter parameters: Lowpass-Lowpass filter.

The effective response of the combination filter which is obtained as a result
of subtracting the lowpass filter(2) and from lowpass Filter(1) is shown in Fig.(4.7).
This figure shows both the magnitude and contour plots of the combination filter
which approximates to a Bandpass response. The extent of elliptical symmetry has
been tested for this combination filter and it has been seen that the combination filter
exhibits near elliptical symmetry in the outer range of subtraction. Theoretically,
the subtraction of two lowpass filters should result in a bandpass filter. From the
combination filter plots, it is seen that a bandpass filter with a short pass-band
region has been obtained. Near elliptical symmetry is possible in the outer boundary
of this pass-band region. Elliptical symmetry exists for certain magnitudes in the
pass-band regions of the individual filters which are not affected by the magnitude

response of each other.
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The program to obtain these results has been written in MATLAB and is

shown below in Program C2.

Program C2

%%2D LOWPASS - LOWPASS COMBINATION BUTTERWORTH IIR FILTER
clear all; close all;
%%2-D LOW PASS BUTTERWORTH FILTER-1
Lk1=-0.42; LN1=4; LWn1=0.5; LN2=LN1; LWn2=LWnl;
Lk2=-0.22
[LB1, LAl]=butter(LN1,LWnl,'low’,’s');
[LB2, LA2]=butter(LN2,LWn2,'low’, ’s’);
LPTF=kerthproga2(LB1,LA1,Lkl);
LPTF=LPTF/max(max(LPTF});
%%2-D LOW PASS BUTTERWORTH FILTER-2
1k1=-0.35; IN1=4; 1Wn1=0.2; IN2=IN1; IWn2=1Wnl;
1k2=-0.16;
{IB1, 1A1}=butter(IN1,1Wn1,’s’);
[1B2, 1A2])=butter(IN2,1Wn2,’s’);
IPTF=kerthproga2(1B1,lA1,lk1);
IPTF=IPTF /max({max(IPTF));
TTF=LPTF-IPTF;
TTF=TTF/(max(max(TTF)));
Hm=pi; interval=pi/50;
wl=-lim:interval:lim; w2=-lim:interval:lim;
[wwl,ww2]=meshgrid(wl,w2);
mesh(wwl,ww2,TTF);
figure;
contour(wwl,ww2,TTF);
axis(’image’); xlabel(*w1’); ylabel(’w2’); zlabel("Magnitude Response’);
title(’ 2-D Butterworth Lowpass - Lowpass Combination Filter’,’FontSize’,16);

grid on;
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(a) 2-D Lowpass Filter(1) for k1=-0.42 & k2=-0.22
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(c) 2-D Lowpass Filter(2) for k1=-0.35 & k2=-0.16
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Figure 4.5: Contour Plots showing the response of the Lowpass filters (a) Filter (1)
for k1=-0.42 and k2=-0.22 and (b) Filter (2) for k1=-0.35 and k2=-0.16
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(d) Extent of elliptic symmetry for Lowpass Fiiter(2)
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Figure 4.6: Plots (a) and (b) showing their approximation for Figs.(4.5(a) and (b))
respectively to elliptical symmetry for specific magnitude range {0.2, 0.4] (normal-
ized) derived from Program A3.
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(b} 2-D Lowpass+Lowpass Combination Filter
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Figure 4.7: Plots (a) and (b) showing the response of the combination fil-
ter(magnitude and contour plots respectively) and plot (c) showing the extent of
elliptical symmetry in this response between the magnitude range {0.2, 0.4] (nor-
malized) derived from Program A3.
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4.3 Lowpass and Highpass combination Filter

We will now consider another type of combination filter which effectively yields a
bandstop filter by combining arithmetically, the responses of a lowpass and highpass
filters. We will consider the lowpass and highpass filters with near elliptical symmet-
ric responses on their outer limits so that the bandstop filter can also be studied for
its extent of elliptical symmetry by the combination of the above filters. Fig.(4.8)
shows the one-dimensional interpretation of the lowpass and highpass combination
filter. The design procedure, here again, is very simple in its sense. Firstly the
individual filters, namely the Lowpass and the Highpass filter have been designed
separately based on the design parameters shown in Table {4.3}. The individual
filters are designed and analyzed separately for their respective responses.

Another important aspect of this study has been to analyze the extent of ellip-
tical symmetry of the combination filter when the individual filters are themselves
approximated to elliptical symmetry.

In our case, the lowpass and the highpass filters have been separately analyzed
for elliptical symmetry following the same procedure as in Chapter-3. Following that

analysis, we have the following results:

0.0625
+O.85363f +0.3266s1+0.0625

Range of k for stability=—1 < k < 1.4143

Lowpass Transfer function= STT1306653

Values of k; and k5 for near elliptical symmetry= -0.42 & -0.22.

Note that the lowpass filter considered here, follows the same design as that
considered in Section(4.1).

The plots in Fig.(4.9) show the response for the lowpass filter corrected for
near elliptical symmetry.

The highpass filter considered here, has a cutoff frequency of [0.7] leaving a
stop-band range for the combination filter between [0.5, 0.7]. The highpass filter
is first studied independently, for elliptical symmetry following the same method as

suggested in Section 3.3. Following that analysis we have the following results:
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1-D LOWPASS FILTER

3 dB cut-off

0 0.500

1-D HIGHPASS FILTER

0.700

1-D BANDSTOP COMBINATION FILTER

Figure 4.8: A one-dimensional interpretation of the Lowpass+Highpass combination.

|

| Lowpass Filter | Highpass Filter |

Order

4

4

Cut-off(rad)

0.5

0.7

Table 4.3: Combination filter parameters: Lowpass+Highpass filter

Highpass Transfer func‘mon:s‘é 1520353

3

4

+1.673052+0.896352+0.2401
Range of k for stability=—1 < k < 1.4167

Values of &, and k, for near elliptical symmetry = -0.85 & -0.55.

The response of the highpass filter after its test for stability due to variation

in parameters k; and k, is as shown in Fig.(4.10). The response of the combination

filter is as shown in Figs.(4.11(a), (b) & (c)) has then been tested for its extent of

elliptical symmetry using Program A3(Chapter-2).

This study reveals the following plots. The reason why the magnitude range

of {0.2, 0.4] is chosen for study of elliptical symmetry is that, the transition regions

of the individual filters lie around this value of magnitude range.

It is evident from Fig.(4.11(c)) that near elliptical symmetry can still be ob-

tained in the transition region of the combination filter. Elliptical symmetry is also

not affected by the responses of the filters in their respective pass-bands due to the

effect of their combined magnitudes.
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The Program to obtain these results were written in MATLAB and is shown

below in Program C3

Program C3

%%2D LOWPASS + HIGHPASS COMBINATION BUTTERWORTH IIR FILTER
clear all; close all;
%%2-D LOW PASS BUTTERWORTH FILTER
Lk1=-0.42; LN1=4; LWnl1=0.5; LN2=LN1; LWn2=LWnl,;
Lk2=-0.22
[LB1, LAl]=butter(LN1,LWnl,’low’,’s’);
[LB2, LA2]=butter(LN2,LWn2,'low’, 's’);
LPTF=kerthproga2(LB1,LA1,Lk1};
%%2-D HIGH PASS BUTTERWORTH FILTER
Hk1=-0.85; HN1=4; HWnl1=0.7 ; HN2=HN1; HWn2=HWnl;
Hk2=-0.55;
[HB1, HAl]=butter(HN1,HWn1,'high’,’s");
[HB2, HA2]=butter(HN2,HWn2, high’ 's’);
HPTF=kerthproga2(HB1,HA1,Hk1);
TTF=LPTF+HPTF;
TTF=TTF/{max(max(TTF)});
lim=pi; interval=pi/50;
wl=0:interval:lim; w2=0:interval:lim;
[wwl,ww2|=meshgrid{wl,w2});
figure;
mesh(wwi,ww2,TTF);
axis('image’); xlabel("wl’); ylabel(’w2’); zlabel("Magnitude Response’);
title(’ 2-D Butterworth Lowpass + Highpass Combination Filter’,’FontSize’,16);
grid on;
figure;
contour{(wwl,ww2,TTF);
axis(’image’); xlabel("'wl’); ylabel('w2’); zlabel("Magnitude Response’);
title(’ 2-D Butterworth Lowpass + Highpass Combination Filter’,'FontSize’,16);

grid on;

144



(a) 2—-D Lowpass Filter(1) for k1=-0.42 & k2=-0.22

-

Figure 4.9: Plot (a) showing the response of the Lowpass filter and plot (b) showing
its approximation to elliptical symmetry between magnitude range [0.2, 0.4](nor-
malized) derived from Program A3.
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(a) 2-D Highpass Filter for k1=-0.85 & k2=-0.55
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(b) Extent of elliptic symmetry for the Highpass Filter

Figure 4.10: Plot (a) showing the response of the Highpass filter and plot (b) showing
its extent of elliptical symmetry for k1= -0.85 and k2=-0.55 in the magnitude range

(0.2, 0.4](normalized) derived from Program A3.
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(b) 2-D LPF+HPF Combination Filter
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Figure 4.11: Plots (a) and (b) showing the response of the combination fil-
ter(magnitude and contour plots respectively) and plot (¢) showing the extent of
elliptical symmetry in this response between the magnitude range [0.2, 0.4] (nor-
malized) derived from Program A3.
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4.4 Summary and Discussion

In this Chapter, we have dealt with three different types of combination filters.
The purpose of this chapter has been to study the effect of combining individual
filters which have near elliptical symmetry in their transition regions. The effective
combination filter has been studied and analyzed to see if the elliptical symmetry
still exists in its response.

The first combination filter in each dimension to be studied is the effect of a
lowpass and a bandpass filter to form a lowpass filter of larger pass-band. This study
reveals that near elliptical symmetry in the combination filter can only be obtained
in the individual pass-band regions of the two filters and the transition region does
not exhibit elliptical symmetry.

The second combination filter in each dimension to be studied is the effect
of combining (subtracting) two lowpass filters of different pass-widths, to obtain a
bandpass filter. Here it has been shown that elliptical symmetry exists to an extent
in the transition regions of the bandpass combination filter. Elliptical symmetry
also exists in the individual filter’s pass-band regions where-in the responses of the
individual filter do not effect each other.

The third combination in each dimension to be studied is the effect of com-
bining a lowpass and a highpass filter to form a bandstop combination filter. Here
again, it has been proved that elliptical symmetry exists in the transition region of
the bandstop combination filter response.

This chapter is just the first step towards the study of combining filter re-
sponses to obtain unique and user specific responses. Modern image processing soft-

wares use this feature to obtain specific responses towards enhancing image quality.
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Chapter 5

Conclusions

Multi-dimensional system and analysis is a topic that is developing in great pace and
specifically 2-D systems are used widely in modern image processing software and
analysis. 2-D filters are one of the main uses that 2-D system finds itself in. Modern
image processing softwares [27] require sufficient amount of pre-processing steps
of the raw image data that is being used for analysis. These pre-processing stage
largely uses Butterworth filters of a given order to correct the image and mould it for
efficient image analysis. Image processing itself, in its true sense, uses different kinds
of filters for various image manipulation purposes such as sharpening, smoothening,
edge detection and other arithmetic operations. In all these cases we deal with image
data which is truly two-dimensional in its sense. Thus it becomes necessary that
we deal with 2-D filters which do not have any preferential orientation towards data
manipulation because the image signal itself, does not have any preferential spatial
direction. This fact has been the main motivation behind this thesis work. This
study, in all its chapters, focuses mainly on the extent of elliptical symmetry of 2-D
filters obtained as a result of simplistic design procedures. Other interesting aspects
such as Complementary pole pair filters and their effect on elliptical symmetry and
the effect of combining different types of 2-D filter functions have also been studied

and analyzed.
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5.1 Elliptical Symmetry of 2-D Filters

A simple method for designing 2-D IIR filters, namely using the product of two 1-D
IIR transfer function has been implemented. The important factor to be considered
for filter design is the stability of the filters. It is necessary to test stability for any
filter design, in order that the filter does not become unstable for a bounded input
frequency. However there is more flexibility with IIR filters in terms of parameter
modifications to obtain a required set of filters. The main problem, however, af-
fecting the design of IIR filters is the stability of the filters. Bringing the filter into
second dimension also increases the complexity to test stability. This again is one
of the main reasons why 2-D filters obtained as the product of two, 1-D filters have
been used in this thesis. Methods have already been proposed [24] to perform a
stability check on such types of separable denominator transfer functions in two di-
mensions. In this thesis, these have been used, to test the designed filter for stability,
before further analysis is carried out. This ensures that the filter is stable and can
withstand the various parameter modifications that it undergoes for approximation
to elliptical symmetry. It has also been shown in [24], that it is possible to have
variable magnitude characteristics for 2-D filters by changing feedback factor & (in
our case k; and ks in both dimensions) in the IIR filter transfer function, within
stability limits, and obtain responses close to different kinds of (in our case elliptical)
symmetries. This is the important factor used in this thesis to study the different
possibilities of elliptical symmetry. The elliptical symmetry study in this thesis can
be divided into four different groups based on the nature and type of filters that have
been used, namely lowpass filter study, study of filters due to complementary pole-
pair effects, study of the other common types of filters namely highpass, bandpass
and bandstop filters and the study of combination of these common types of filters.
All the filter transfer function considered in the above study have an infinite impulse
response. Following is a summary of the various conclusions we have obtained as a

result of this study.
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5.1.1 Study of Elliptical Symmetry in Lowpass Filters

In Chapter-2, we have concentrated on the two most commonly used filter transfer
functions, namely, the Butterworth and the Chebyshev transfer functions. These

are used to approximate 2-D elliptical symmetry.

Butterworth Filters

The transfer function that has been used in this thesis for this type of filter is of
third order. The point here is to adhere to the lowest order possible that an easily
illustrate the effect of elliptical symmetry. Higher order filters can be used for the
same kind of analysis but will involve more complexity in terms of design, computer
programming and time of execution. Thus, it is sufficient to consider a third order
transfer function to illustrate the approximation to elliptical symmetry.

2-D filters have been plotted first, simply as a product of two 1-D filters in it
and with out any further effort, elliptical symmetry is not possible. The feedback
factor k is then tested for stability limits(—1 < k < 3) and for this specific third
order transfer function (Eqn.(2.13)) various filters are plotted between these limits
and the transfer function is analyzed. A program has been written in MATLAB to
find the stability conditions of & of a Butterworth filter for different orders of 'n’(from
3 to 8) when none of the poles in that particular filter are shifted. Table{2.1} shows
the stability conditions of & for different order of n. It has been found that elliptical
symmetry exists(Fig.(2.4)) at a value of k; = —0.45 and ko = —0.20. A separate
program has been written using MATLAB to study the magnitude characteristic of
each of these filters obtained as a function of &, and k, and elliptical symmetry has
been studied between the normalized magnitude range of 0.49 < Mag < 0.51. It is
from this program that the accurate values of k; and k,(Fig.(2.8) are determined for
closest proximity to elliptical symmetry. It is possible to study a different magnitude
range of interest and for each of these range, there will exist different values of k;

and k, for near elliptical symmetry.
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Chebyshev Filters

There are two transfer functions that have been used to study the case of Chebyshev
filters. These two transfer functions are different from each other based on the single
most important factor of distinction between filters of this type namely, the ripple
width. The transfer function of the filters that have been used to study these cases
is of third order. The ripple widths that have been considered are ¢ = 0.1526 and
e = 0.3493.

For the first case, where the ripple width is € = 0.1526, it has been found that
elliptical symmetry exists for values of k; = —0.80 and &k, = —0.45, if the magnitude
range under study is 0.49 < Mag < 0.51.

For the second case, where the ripple width is ¢ = 0.3493, it has been found
that elliptical symmetry exists for values of k1 = —0.30 and &k, = —0.10, if the
magnitude range under study is 0.49 < Mag < 0.51.

In effect, for the parameters chosen in their respective cases, the first case
(Fig.(2.13)) exhibits better elliptical symmetry than the second case (Fig.(2.17c)).
Hence, for a given ripple width and order of a Chebyshev filter, it is possible to
determine the values of k; and ko(within stability limits) and the range of magnitude

response over which elliptical symmetry is possible.

5.1.2 Study of Elliptical symmetry in Complementary Pole-
Pair Filter

Complementary pole-pair filters are a unique set of filters obtained as a result of
change in the pole-parameters. In this case the pole-parameter that has been chosen
for study of different kinds of filters is the polar angle of the poles of these filters.
The stability conditions of k for different orders(from3 to 8) of the Butterworth filter
when the poles are shifted are found and tabulated in Tables {2.3}, {2.4}, {2.5},
{2.6}, {2.7} and {2.8} respectively. This study has been illustrated in one dimension
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to explain the nature of these types of filters [13] and it has then been extended to
the second dimension for the purpose of meeting the objective of this thesis.
Elliptical symmetry study here has been carried out for different cases based
on the change in the polar angles of +5°, +10° and +25°. It is seen from Fig.(2.29¢),
Fig.(2.33¢c), Fig.(2.37¢), Fig(2.39¢), Fig(2.41c) and Fig(2.43c) that the best possible
elliptical symmetries can be obtained within the magnitude range 0.49 < Mag <
0.51, are for the respective values of k; and k&, as shown in each plot. It can also be
observed that elliptical symmetry ceases to exist, as the angle of the pole parameter
variation increases. The same can also be proved for a different magnitude range
under study. In this case we will have different values of k; and %y for elliptical
symmetry for each of the angle variation but the effective disintegration in elliptical

symmetry will still be experienced for greater increase in the polar angle.

5.1.3 Study of Elliptical Symmetry in 2-D Highpass, Band-

pass and Bandstop Filters

Common types of filters that are used in practice, apart from the lowpass filters, are
the highpass, bandpass and bandstop filters. In Chapter-3, the extent of elliptical

symmetry on 2-D filters of the above types have been studied.

Bandpass Filters

The bandpass filter that has been studied in this case has an analog cut-off frequency
between [0.4, 1.0] and has been chosen to be fourth order. The IIR transfer function
of such a filter is then determined(Eqn.(3.1)) and the values of k¥ for which the
filter is stable is found to be in the range —0.7487 < k£ < 1.6509. Within these
limits, it has been found that the filter exhibits near elliptical symmetry only in
high magnitude ranges 0.8 < Mag < 1.0 and for the values of k; = —0.25 and &y =
—0.08(Fig.(3.1c)), near elliptical symmetry has been obtained within the specified
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magnitude range. Here, it is noted that the study of elliptical symmetry for bandpass
filter has been shown only for one quadrant. This is due to the fact that, 2-D filters
with separable denominator polynomials exhibit symmetry about the X and Y axis
and elliptical symmetry is a possibility within only one of the quadrants. It is also
seen that for higher values of k; and ko, elliptical symmetry completely ceases to

exist.

Bandstop Filters

The bandstop filter that has been studied in this case has an analog cut-off frequency
between [0.4, 1.0] and has been chosen to be fourth order. The IIR transfer function
of such a filter is then determined(Eqn.(3.6)) and the values of k¥ for which the filter
is stable is found to be in the range —1 < k < 1.6456. Within these limits, it has
been found that the filter exhibits near elliptical symmetry only in magnitude ranges
0.45 < Mag < 0.55 and for the values of k; = —0.55 and k; = —0.30(Fig.(3.5¢)),
near elliptical symmetry has been obtained within the specified magnitude range.
Here too, the study of elliptical symmetry has been shown only for one quadrant.
Although it is possible that for frequencies lower than the lower cut-off frequencies,
elliptical symmetry can exist covering all four quadrants. It is noted that near ellip-
tical symmetry can only be seen within the lower cut-off region in both dimensions,
since for the higher cut-off region, there cannot be a closed response covering all
four quadrants, as the response extends to infinity. For higher values of k; and &,

even this extent of elliptical symmetry ceases to exist.

Highpass Filters

The highpass filter that has been used in this case is a fourth order filter with a cut-
off beyond [0.4]. For a highpass filter, since the pass-band region exists from a certain
cut-off frequency to infinity, it is entirely not possible to define elliptical symmetry

in the passband. It can only be defined for a single quadrant(half a semi-ellipse)
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and it has to be assumed that the symmetry exists upto infinity. Having defined
the transfer function from the known parameters mentioned above(Eqn.(3.12)), the
range of k for stability of the filter is given by —1 < k < 1.4140. It has been found
that there exists a symmetry that can be approximated to an ellipse, at infinity for
values of k; = —0.80 and ky = —0.50. Beyond this value this symmetry ceases to
exist. Although elliptical symmetry cannot be clearly visualized for a highpass filter
with separable denominator transfer function, it has been proved that there exists
a symmetry that approximates an ellipse at infinity in the transition region of the

filter.

5.1.4 Study of Elliptical Symmetry in 2-D Combination Fil-

ters

Another interesting aspect that has been considered in Chapter-4 of this work is
to combine some common filters that have already been approximated for elliptical
symmetry and study the extent of elliptical symmetry on the combination filters.

There are three such combinations which have been considered.

Lowpass and Bandpass Combination Filter

In this case a lowpass and a bandpass filter which have been already considered in
Chapters 2 and 3 respectively, have been used to form a combination response which
resembles a lowpass response with non-uniform gain in its pass-band region. This
has been obtained by adding the individual responses of the filters. It is seen here
that elliptical symmetry does not exist in the combination filter in the transition
region but still exists in certain parts of the response which are not an effect of the

combination(Fig.(4.3)).
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Lowpass and Lowpass Combination Filter

In this case, two lowpass filters of different cut-off frequencies, [0.5] and [0.2] respec-
tively, have been used to form a combination response which resembles a bandpass
response. This has been obtained by subtracting the two responses. It is seen here
that elliptical symmetry is a distinct possibility in the region shown in Fig.(4.7).
This study can also be extended to different magnitude regions to see how the sub-

traction of two near elliptical symmetric filters affect the symmetry.

Lowpass and Highpass Combination Filter

In this case a lowpass and a highpass filter which have analog cut-off frequencies of
[0.5] and [0.7] respectively, have been used to form a combination response which
resembles a Bandstop response. This has been obtained by adding the individual
responses of the filters. It is seen here too that elliptical symmetry only exists in
certain regions of the filters which are not entirely affected by the individual re-
sponse of each other(Fig.(4.11)). In this case the lowpass response and the highpass
response show their individual closeness to elliptical symmetry and we do not see
the same in the transition band.

Thus, the overall purpose of this thesis has been to study the effect of ellip-
tical symmetry on separable denominator 2-D transfer functions. Four of the most
common types of filters have been chosen and studied. It has been seen largely that
elliptical symmetry is possible in the lowpass and the bandpass responses and is not
a distinct possibility in the highpass and bandstop responses due to the unlimited
response range. The different filters and cases considered have been obtained after
number of simulations. However it is possible to vary the values of k; and &y or
the magnitude range under study to obtain innumerable instances of near elliptical
symmetry in these cases. There is a lot of scope for future work in this respect.

From the foregoing, it is clear that it is possible to obtain 2-D elliptical sym-

metric filters, starting from 1-D filters. These could be lowpass, highpass, bandpass
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or bandstop filters, obtained either directly or by a combination of other filters.
Apart from the configuration considered, it appears possible that there may ex-
ist other configurations exhibiting elliptical symmetry and this is a suggestion for
further work.

An interesting investigation would be to start from two all-pass filters which
give rise to complementary filters. A method can be developed so as to analyze the
stability for higher order(n > 8) filters. It is possible that optimization tehnique can
be used for the design of the type of filters discussed. A method can be developed so
as to predict the magnitude range when the error is fixed regarding elliptical sym-
metry. Also a method can be developed to observe whether the elliptical symmetry
is inclined or not when the numerator of the starting function is changed. These are

some suggestions for future work.
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Chapter 6

Appendix

6.1 Program-Al

%Matlab program to determine the range of k given the order n and the deviation of one or more angles
%program code for orders of 3,4,5,6,7,&8 butterworth filters
%t1,t2,t3,t4 are the shift in angles
%value of k is determined onty when the filter is stable
Ts=1;
n=input(’Input the order of the filter,n=")

%% % %0 %0707 %o %6 70 %070 % To3rd ORDER %% %% % % %% %% %% % % %
if n==3

tl=input{'Input the shift in t1=")

T1=pi/3+t1;

if T1<0

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T1>=pi/2

fprintf(’Unstability condition,the range of K cannot be determined’)
break

end

a=cos(0);

b=cos{T1);

H1=tf(1,{1 a |, Ts);

H2=tf(1,[1 2*b 1],Ts);

H3=H1*HZ;

Hd=1/H3;
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[num den|=tfdata(H4,'v");
L=[numl;

=length(L);

=4

for i=1:1

if mod(i,2)==0

e()=L();

else

d(j)=L{);

end

J=j+1

end

%Separating the odd n even terms
<

d;

H5=t£(1,[d 0},Ts);
H6=tf(1,c,T5);
H7=(1/H6);

%Generating Hurwitz polynomial
H8=H7*H5;

If g];tfdata(HB,’v’);
N=(f];

NL=length(N);

D=(g];

DL=length(D);

[m nj=tfdata(H8,v’);
r=roots([n]);
r2=r(2)*r(3);
k=m(2)*r2-1
fprintf(>-1>K<%6d\n’ k)
fprintf("The range of K is between -1 and %d’ k)

%%% % % %%% %% % %% Y%o4th ORDER %% % %% %% % % % %% %%%
elseif n==

tl=input('Input the shift in t1=")

t2=input(’Input the shift in t2=")

T1=(pi/8+t1)

T2=(3*pi/8-t2)

if T1<0

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T1>T2

fprintf("Unstability condition,the range of K cannot be determined’)
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break

elseif T2<T1

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T2>=pi/2
fprintf(’Unstability condition,the range of K cannot be determined’)
break

end

a=cos(T1);

b=cos(T2);

HI=tf(1,[1 2*a 1], Ts);

H2=tf(1,{1 2*b 1],Ts);
H3=H1*H2;

H4=1/H3;

[num den}=tfdata(H4,'v');
L=[num};

I=length(L);

=1

for i=1:1

if mod(i,2)==0

c(j)=Li);

else

d(§)=L(i};

end

=ity

end

%Separating the odd n even terms
c; »

d;

H5=tf(1,[c 0},T5);

H6=tf(1,d,Ts);

H7=(1/H6);

%Generating Hurwitz polynomial
H8=HT*HS5;

[f g]=tfdata(H8,'v’);

N={f];

NL=length(N);

D={g};

DL=length(D);

H10=1/ tf{1,{N(3)-D(4)/D(2) 0 1},Ts);
H11=H10*H5;

H12=1/(t£(1,[1 0}, Ts)*D(2));

[m n]=tfdata(H11,’v");
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r=roots([n]);

r2=r(2)*r(3);

ri=1;

k=m(2)-1

fprintf(*-1>K < %6d\n’ k)

fprintf(*The range of K is between -1 and %d’ k)

%% % % %% %% % % %0 % % To5th ORDER %% %% % %% % % % %6 % %% %
elseif n==>5

tl=input(’Input the shift in t1=")

t2=input("Input the shift in t2=")

Ti1=pi/5+t1;

T2=2*%pi/5-t2;

if T1<0

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T1>T2

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T2<T1

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T2>pi/2

fprintf(’Unstability condition,the range of K cannot be determined’)
break

end

a=cos(0);

b=cog(T1);

e=cos(T2);

HO=tf(1,[t a ], Ts);

HI1=tf(1,[1 2*b 1],T5);

H2=tf(1,[1 2%e 1],Ts);

H3=HO*H1*H2;

H4=1/H3;

[num den}=tfdata(H4,v");

L={num];

I=length(L};

=1

for i=1:}

if mod(i,2)==0

c(j)=L();

else

d(§)=L(1);
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end

i=j+4

end

%Separating the odd n even terms
¢

d;

H5=t£(1,{d 0], Ts);

H6=tf(1,c,Ts);

H7=(1/H6);

%Generating Hurwitz polynomial
H8=HT*HS5;

[f g]==tfdata(H8,’v");

N=(f);

NL=length(N);

D=lg};

DL=length(D);

[m n}=tfdata(H8,’v");

r=roots([n});

r2=r(2)*r(3);

rl=r(4)*r(5);
k=(((m(4)*r1*r2)-(rl-++r2)*1)-(r1*(m(2)*(r1*r2)-1)))/r2
fprintf(*-1>K < %6d\n’,k)
fprintf(*The range of K is between -1 and %d’ k)

% %% %% % %% % % % % % Fo6th ORDER% % % % % %% % %% % %% % %
elseif n==6

t1=input('Input the shift in t1=")

t2=input{’Input the shift in t2=")

t3=input(’Input the shift in t3=")

T1=pi/12+tl;

T2=3%pi/12-t2;

T3=5%pi/12+t3;

if T1<0

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T1>T2

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T2<T1

fprintf(’ Unstability condition,the range of K cannot be determined’)
break

elseif T2>T3

fprintf(’ Unstability condition,the range of K cannot be determined’)
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break

elseif T3<T2

fprintf('Unstability condition,the range of X cannot be determined’)
break

elseif T3>=pi/2
fprintf(’Unstability condition,the range of K cannot be determined’)
break

end

a=cos(T1);

b=cos(T2);

e=cos(T3);

H1=tf(1,{1 2*a 1], Ts);

H2=tf(1,[1 2*b 1),Ts);
HO=tf(1,{1 2*e 1],Ts);
H3=H1*H2*HY,

H4=1/H3;

{num den|=tfdata(H4,'v’);
L=[num];

I=length(L);

=1

for i=1:1

if mod(i,2)==0

¢(i)=L(i)

else

d(j)=L({)

end

=it

end

%%Separating the odd n even terms
¢

d;

H5==tf(1,[c 0}, Ts);

H6=t(1,d,Ts);

H7=(1/H6);

%Generating Hurwitz polynomial
H8=HT7*HS5;

{f gj=tfdata(H8,v');

N=[f];

NL=length(N});

D=[g};

DL=length(D);

H10=1/ tf(1,[N(3)-D(4)/D(2) 0 N(5)-D(6)/D(2) 0 1],Ts);
H11=H10*HS5;
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H12=1/(tf(1,[1 0],Ts)*D(2));

[m n]=tfdata(H11,v");

r=roots([n]);

r2=r(2)*r(3);

rl=r(4)*r(5);
k=(((m(4)*r1*r2)-(r1+r2)*1)-(r1*(m(2)*(r1*r2)-1))) /12
fprintf(’-1>K < %6d\n’ k)

fprintf(*The range of K is between -1 and %d’ k)

%%%%%% % % %% %% %% 7th ORDER% %% %% %% % % %% % % %%
elseif n==7

t1=input(’Input the shift in t1=")

t2=input(’Input the shift in t2=")

t3=input('Input the shift in t3=")

T1=pi/7+t1;

T2=2*pi/T-t2;

T3=3*pi/7+13;

if T1<0

fprintf{’Unstability condition,the range of K cannot be determined’j
break

elseif T1>T2

fprintf('Unstability condition,the range of K cannot be determined’)
break

elseif T2<T1

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T2>T3

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T3<T2

fprintf(’Unstability condition,the range of K cannot be determined’)
break

elseif T3>=pi/2

fprintf(’Unstability condition,the range of K cannot be determined’)
break

end

a=cos{T1);

b=cos(T2);

e=cos(T3);

HO=t£(1,[1 1},Ts);

H1=tf(1,[1 2*a 1],Ts);

H2=tf(1,{1 2*b 1],Ts);

H9==t{(1,{1 2*%e 1},Ts);
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H3=HO*H1*H2*HY;

Ha=1/H3;

[num den]=tfdata(H4,’v");

L={num};

I=length(L);

=1

for i=1:1

if mod(i,2)==0

e{j)=L(i);

else

4G)=L{);

end

=it

end

%Seperating the odd n even terms

C5

d;

HS=tf(1,[d 0} ,Ts);

H6=tf(1,c,Ts);

H7=(1/H6);

%Generating Hurwitz polynomial

H8=H7*H5;

[f g]=tfdata(H8,'v");

N=(ff;

NL=length(N);

D=[g};

DL=length(D);

{m n]=tfdata{H8,'v'};

r=roots{[n]);

ri=r(2)*r(3);

r2= r(4)*r(5);

r3=r(6)*r(7);

%% value of F
Pd=((({r1-r2)/(x1*13-r2*r3))*(r1*r2-r2*r3)))-(r1-r3);
Dd=(r1-r2);
FN=m(6)*r1*r2*r3/r3-(r1*r24+r1*r3+r2*r3)/r3 - m(4)*(r1*r2*r3) +(rl+r2+r3) + (m(2)*r1*r2*r3-1)*r3;
FD=(r1*r2+r1*r3+12*r3)/13 - (rl+r2+r3) + r3;
k=FN/FD

fprintf(’-1>K<%6d\n’ k)

fprintf(*The range of K is between -1 and %d’ k)

% %% %% %% %% % % % % %8th ORDER %% %% % %% %% %% %% %%

else n==
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t1=input(’Input the shift in t1=")
t2=input('Input the shift in t2=")
t3=input(’Input the shift in t3=")
t4==input(’Input the shift in t4=")
T1=pi/16+t1;

T2=3%pi/16-t2;
T3=5%pi/16-+t3;
T4=T*pi/16-t4;

if T1<0

fprintf(’Unstability condition’)
break

elseif T1>T2
fprintf(’Unstability condition,the
break

elseif T2<T1

fprintf(’ Unstability condition,the
break

elseif T2>T3

fprintf(’Unstability condition,the
break

elseif T3<T2

fprintf(’Unstability condition,the
break

elseif T3>T4

fprintf(*Unstability condition,the
break

elseif T4<T3

fprintf(*Unstability condition,the
break

elgeif T4>=pi/2
fprintf('Unstability condition,the
break

end

a=cos(T1);

b=cos(T2);

e=cos(T3);

h=cos(T4);

HO=tf(1,[1 2*a 1},Ts);
Hi=tf(1,[1 2*b 1},T5);
H2=4£(1,[1 2% 1],Ts);
HO=t£(1,{1 2*h 1},Ts);
H3=HO*H1*H2*H9;

H4=1/H3;

range of K cannot be determined’)

range of K cannot be determined')

range of K cannot be determined’)

range of K cannot be determined’)

range of K cannot be determined’)

range of K cannot be determined’)

range of K cannot be determined’)
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{num den]=tfdata(H4,’v’);

L={num};

I=length(L);

=4

for i=1:1

if mod(i,2)==0

c(f)=L{)

else

d(j)=L{);

end

=i+

end

YSeparating the odd and even terms

C3

d;

H5=tf(1,[c 0] ,Ts);

H6=tf(1,d,Ts);

H7=(1/H6);

% Generating Hurwitz polynomial

H8=H7*H5;

{f gl=tfdata(H8,'v');

N=(fl;

NL=length(N);

D=(g];

DL=length(D);

H10=1/ tf(1,[N(3)-D(4)/D(2) 0 N(5)-D(6)/D(2) 0 N(7)-D(8)/D(2) 0 1],Ts);
H11=H10*H5;

H12=1/(tf(1,{1 0],T5)*D(2));

{m n}=tfdata(H11,’v');

r=roots(|n]);

ri=r(2)*r(3);

r2= r{4)*r(5);

r3=r(6)*r(7);
FN=(m(6)*r1*r2*r3/r3)-(r1*r2-+r1*r3+r2*r3) /r3-m(4) *(r1*r2*r3)+(r1+r2+r3) + (m(2)*r1*r2*r3-1)*r3;
FD=(r1*r2+r1*r3+r2%r3)/r3 - (r14r24r3) + r3;
k=FN/FD

fprintf(’-1>K<%6d\n’ k)

fprintf(*The range of K is between -1 and %d’ k)
end

%%%End of program
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