Web services for application development in next generation telecommunications
networks: An architecture for the common functions

Fatna Belgasmi

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montréal, Québec, Canada

August 2004

© Fatna Belqasmi, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94693-2
Our file Notre référence
ISBN: 0-612-94693-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Web services for application development in next generation telecommunications
networks: An architecture for the common functions

Fatna Belqgasmi

Next generation telecommunications networks aim to provide new value added services
to customers. To facilitate the creation of such services, network operators have to open
up their networks to applications developers. The service architectures that can be used to
develop new services are either signaling protocol neutral or signaling protocol specific.
The associated frameworks to each of these architectures share the drawback of requiring
knowledge which non-experts may not have. A good way to open up telecommunications
networks is to use web services, seen that web services paradigm ease new services
development and a wide range of developers are getting acquainted with the technology.

This thesis proposes a novel web services based - architecture that provides
functions required for developing, deploying and wusing web services in
telecommunications networks (e.g. security and charging). These functions are called
common functions. The proposed architecture is based on requirements that we have
identified using as basis the Open Mobile Alliance (OMA) ones, which we have
extended. It presents each common function as a web service. The architecture
components inter-communicate using functions calls. The execution of the common
functions is optimized using the execution scope concept that we have defined. It gives
the possibility to execute a given common function just when needed.

A proof of concept prototype has also been built and tested using a call control
scenario. The taken performance measurements have shown that the overhead induced by

using the new proposed architecture is reasonable.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors Dr. Rachida Dssouli and Dr. Roch
Glitho for their support, their guidance and their motivation. I thank Dr. Dssouli for her
kindness, here encouragement and her good advices. 1 thank Dr. Glitho for his continuous
assistance and for always being their when i1 need him. I learned a lot from working with

him.

I’'m grateful to Ericsson and SNERS (The Natural Sciences and Engineering Research
Council of Canada) for their financial support. I thank Ericsson for giving me the
opportunity to work in its Research and Development department. I thank Concordia

University for giving me the chance to follow one of its interesting programs.
I would like to thank all my colleagues at the TSE lab at Ericsson Canada for their help
and their suggestions. It has been a good pleasure to work with all of you. I also thank my

friend Saloua Ouassil for her support.

I would also like to express my gratitude to my parents, my brothers and my sisters for

encouraging me and for always having confidence in me.

v

Table of Contents

LIST OF FIGURES ...ttt ittt snnssnssns st saa s sas s saas s nnesanenas vii

LIST OF TABLES.ottt entteseetettesiessie et eseeeeseseesssesneeesrtesessrasssaeesanesnnassrasssbassnes X
LIST OF ACRONYMS AND ABBREVIATIONS ...ttt ceinieecssreen s X
Chapter 11 INtroQUCHIONeceverrereeriiieietiecerentee ettt s st eas 1
1.1 APPLICATION DEVELOPMENT IN NEXT GENERATION TELECOMMUNICATIONS NETWORKScccccou. 1
L1 L DEJIIILIONScoeciieeisineiine ettt et sttt et st s s b e nesa e s sas b e ss e s r et e st en e nsstsabesaa s 1

L1.2 - SiGRALIAG PPOOCOISc.eeceoeeiriiiniiiiiiiiiiniiiiiiiccri sttt s sa st r s saa s eaens 2

L 1.3 SrViICe QFCRILECIUFESooceveeeeenereerrieeee ettt ettt et se et n e are s eaes st e st s b e s b e aesaaean 4

1.2 GOALS ASSIGNED TO THE THESIS .eteteeeereeransetreenseiaranmereeetaseannmaeissonsesesseososrnssss sessassasntsssssosssssassssssssans 7
1.3 ORGANIZATION OF THE THESIScocttirterrerintiisnienresionisiensimesiestossssssstosssssstanssamssesnsssssessnsassssssssssessense 8
Chapter 2: Requirements for common functions..........cccccoceviiivcniniiniinnicninn, 10
0.1 INTRODUCTION TO WEB SERVICES ...cvcrtiniiiiinieiiiintnnscnsiesieisiessessssssrisesesrssssestessssssesssssesmsssnsess 10
ILI L DEfIEtION. ..ottt et st r s er s sttt b s re s 10
IL1.2 Fundamental PriRCIPALScoocueeevievieeinreinesreirersesensscseesiesessseeeesesessesesnesssensesesssossenesosnan 11
IL1.3 APCRITECHUYE.......cuoeeeeeeereerrereeseniescnieseeecnie et enesae st eseest e e bbb e st st sre b s sr e b s e rerats 12
IL1.4 Web services teChNOlOQIES..............ouoouioieeeueeeeiineineecinrierncresncceenersrssessissssss st nansns 13

1.2 APPLICATION AREASuutiiiieiiiiiiereeetiresitteeeerasaaasassseasrassrasasaeessssessessssessesessssnseasasasessnseesesssssessnns 20
I1.2.]1 TeleCOMMUNICALION ...co.coeeeeeeiinieainiieeeee ettt et e st e e sesebe st restesesasene s st essenassusasasassaseis 20
IL2.2 DiGUALIMAGEFY ..oveeeeeniieeceeeinerieireetrcinenete e sereeenesentnensecn et tsss sttt e n st bebb s eas 21
I1.2.3 Geographic information SYSIEMS............c.ccccoreeereurivecrcieeicsisiraressensonsiessesssssnissersssnsassssssanes 22

I1.3 REQUIREMENTS ..ccouuiteseneneereeirusseseeiessesionsessnesesssstuetaesessssaessmsesssosisssonissetsssnsossssssssssasssssssssssanes 22
I1.3.1 Common functions requirements...............ccccccooiicieveiociiinieiiicisieni e saeesres e bt eireasran 23
I1.3.2 OUREr FEQUIPEIMENLSooevoeeeerereesieeieetieeee et etaes st e e s et s tae s esinesse e e e aesinssate st esassreas 28

114 SUMMARY .cvimiemeenrenieseteeeteiseenersasenesessssesssesensentnsssssesmassscasssseneserssstsssssonses ettt etneaeaes 30
Chapter 3: Parlay and existing web services standards: State of the art.............c.ccocenie. 31
1111 OVERVIEW OF PARLAY FRAMEWORKooviieiiiieeeriaieeaeetneeesieesaeesesesteeseesasssensesesnneesassasessarseesssns 31
i1 Pariay QreRiteCture............cc..ovveercniceericieiieinieieniesne ettt en e 31
1r1.2 Parlay framework iterfacesoooivevicccnniioiniiniiiiiiininie s 32
mari1.3 ARGLPSIS <ottt ettt e e et st ean s 36

I11.2 EXISTING WEB SERVICES STANDARDS AND SOLUTIONS.......ccoiinivinininiineininineseesinenesiesiasssssesins 37
2.1 SEOUFLY .ottt ettt ettt e ettt ee et s et aa et et rs e sn s b e e anen 38
2.2 Web Services Level AGFre@ment..............ccoccouiiioiiiiieiisieiesiereeeeeee ettt ieiesanere s sesaes 52
123 Network identity MANAGEMENLoocecierieraorinieireeneeerierseeere e seresarasaesaesssessesssesaesas 54
HI.2.4 ARQIYSIS .coveeeieriieinnietiee ettt ettt s s e r s 57

L3 SUMMARY ..ottt bt et st s s e et sa st s s sa e st e e e re s e sae st a it st et eaasasbasbsusaasases 58
Chapter 4: Proposed architeCture...........ovueviiirriererineeieieeieee e seeereerecresresrssnsens 60
V.1 GENERAL ASSUMPTIONSteiureuteerieerientenrestctiesimstsesseestestatsstestesssssesssssssssasssamsnessssssessossensanssnen 60
IV.2 NEW WEB SERVICES ARCHITECTUREc.ctvtterereieuemraeriatstnemmeseaescstassccasnanrmssesssesesesesesesenencrsensns 61
.21 MOBIVALIONS ...ttt ettt er e st s s aae sa s ses st san s 61
2.2 INEW QFCRIECIUPE ...ttt ettt st st see s e st sas s neanens 62
V.23 DELEGALION ISSUESeeoeeeeiiiiieinii ettt ettt b ettt st s e sas et eassan s saneanons 63

IV.3 FRAMEWORK FUNCTIONAL ENTITIES ...coviiviiniineiiiiniiniiiiieneresaassssrensssionsssssesnsssosessnssessnsssssnsas 68
V3.1 SCCUPTLY SEFVEF ...ttt sttt ettt toe ettt b et ae et s an e e b snasne st e nastsnain 69
v.3.2 Network identity MANGGEMENT SEFVEFcccuovverereeeirireieeseerseneieraseseasesseseseenesenes 73
1V.3.3 Service Level Agreement MANAZEMENL SEFVEFc.ccveceeeeereearioreescsisiriesesssissesesesanes 75
V.34 CRAFGING SCHVETeenenveirereeeeierentitestaeateeeiese e ee s seae s et eata e rsa e et seseanessaereesssarennen 78

V3.5 POLicy SEFVEF ...t et 79

V.36 REGISIIY SEHVEE ...ttt ettt et et aa s st r s e ns s 80
w37 Privacy Management SEPVEFcceecemeeeniiissimisiiosisssisssiossissssesssssssssessssesninns 82
V3.8 Framework iNEErACEccvuovveviineiieineininieceeeereeecre e esiee e s saesssassss s 83

V4 FRAMEWORK ARCHITECTUREcuutieeiierresreeeseseeesassusnsesioraesesersastneessessesssonssesssssesssresssosans sasssssss 83
V4.1 SEIVICE EXCCULION SCENATIO ... eveerviirieeverinieseteienteseseseseeneesesresteneerencarensencareneseenseessasstsne 84
4.2 AFCRIECCHUTE ...ttt ettt s nee et e st e b et s see st esaens et enaensens 85

V.5 FRAMEWORK FUNCTIONAL ENTITIES INTERACTIONucvimiiciinreeeriesessrmsorecesssnoreocscamsesacseesessnsnsess 86
Iv.6 CONCLUSION .ettieieieiiiriereeressseseresasseraassessssnssesesssesssssssssssrsesesssssessetsssessasssasssissossssossesessssssssssssrnse 89
Chapter 5: OptimiZationcc.cocceeiviiiiiiiiiiiiiiin e s erees 90
V.1 PARTICULAR CASE STUDIEScevtttiiiieirireeanienserreceseseacamsineesseseeseses osssssssesessesssssessesasssnsensssssssssniens 90
V.11 FiFSt CASE SEUAY c.vevveveereneriaeeieceereeeeterieen e sstaatestesasess st et esaeras st cesa s tesssossnsenssanasssrasssoasenssnsaness 90

V1.2 Second case SHUp..........cocuieioveiiiieeneeeineeceecnsencacieeneseesecnanesas e ses e nes e et s sas 92

VI3 THIFA CASE STUAY ..ottt se e et s as e e saa st e s bensensesnssnessenssnsen 94

V.2 TUSE CASES ANALYSIS 1 uteeertersreretrerrseesierastessssssssessssasssstssssessassseessansesssesssssessnssorsossansseasassesensessns 97
V3 FUNCTIONAL ENTITIES EXECUTION OPTIMIZATIONccviiiiniiiniiensiiacerenresssesassssessesessassssaesncssn 98
V.3.1 Common fUnCLIONS @XECULION SCOPE............ccceevuercuironineariceerausanmesmaeareamsaesanesoaesemsssssssesisesons 98

V.3.2 General rules about the framework eXeCUtIONcoccoeeueieeeeeneenececninrecnenesnessensessies 99

V.3.3 Partial and total communicQtion FedireCtioncc..ccuvivuerinecvenrseeaennrseinessiessnsinasens 100

V4 CLIENT APPLICATION EXECUTION MONITORINGccoerrureiemrenersreesssnnersansesnsvoreasescsasssaceessaessnnnen 103
V.5 CONCLUSION ...ovreaeerentisessesstesteseesssisieiosisssesmestismisssentosmosesssrssssssssssissesessesnsssssssssessensssassonsests 104
Chapter 6: Implementation ... 105
VL1 PROTOTYPE....oeuovireereeemsesesseessesssssssesssssssssssssesssssssssssssessssessssssssssssssssessssssssssssessssssssnssssssasessocs 105
Vil.1 Prototype QrCRItECIHUTe. ... c...ococeveiieietiieeeteecteee ettt sveesasae et saesasseaesaenaasnios 105
Vil.2 Database SCREMA............cc.oooveiiiiiriiiieiesieeieeee ettt st ettt e re e setetenne st esaa e sreas 106
VI13 Function scopes and parameters format USed................ccocueeecneveneercnenineneaiesesncsions 109
VI1.4 IMPIemERnIATION CLASSES..........coovvvieincniienieineiierre e a bbb saens 111
VL15 Session management implementation...................coooeeiviiniiniiiiciisenieinissrinecanneens 113
VI16 PLALfOFI USEU ...ttt ettt et et ab s s eeenonennsin 115

VL2 TESTING SCENARIO ...coutrtiiiiiiiaitetiacoresieseetesiestsanesaesseesesiossarsesessesss s soss aressosssesssssntessonssstossans 116
Vi2.1 APDIICALIONS USEU..........ccooniiiiiiiteieiicctceeeete ettt cn e sr s 116
Vi2.2 Database dat@ USEdccococoiiiiniiiiriiiiiiisiises ettt et 117
Vi2.3 Client application execution SCERArIo USEd...............ccccvvviiniiiiiinniniiiiisiienaes 119

VL3 SOME PERFORMANCE MEASUREMENTS!ccoreuurienriumeienenomnreererenmenmesensiomsnesesnsonssinsossssenssssssones 121
Vi3.1 Time delay OVEFrREAA.ocooveeeieiiieiciiit ettt oot te e reenessbes s sssiens 121
Vi3.2 Network 10ad OVErRead..............cccoecuvceeceiicaiiiiiiiciininiinis et s vesraes 125
Vi3.3 Measurement QRALYSISc...oooeeceiinieiiciiiieee et esae e e eas 127
Chapter 7: Conclusion and future Worki.........c..cccccooivviininniniiinie 129
VIL.L1 CONTRIBUTIONS OF THIS THESISucoviririinriiniiinntieieisiistiisnesiossseesanstesasiasasessesssssstessssnsstnsions 129
VIL2 ITEMS FOR FUTURE WORKcccvuiiiiiiimiiiimiiietiieiiessis e tesssasns st sassasss i nssessssstssenassssnssasanees 131
REFERENCES ...ttt ettt te e e e e ete s e s e bbbt e e e eeseeanteaeeesenannneeens 132

vi

LIST OF FIGURES

Figure I1.1: Web services roles.......c..oooiiiiiiiiiiiiiiiiiiiiiiiiiiiic i 12

Figure I1.2: Web services technologies.............c...cociiiiiiiiiiiii e 13

Figure I11.1: Parlay/OSA Architectural Model...............covvviiiernninnnnnnn. e 32
Figure I11.2: Parlay framework interfaces..............cooooiiiiiiiiiiiiiiiiiiiiiniinnn. 33
Figure II1.3: Parlay subscription business model...................cocciii. 36
Figure I11.4: SAML Conceptual Model.........c.cooiiiiiiiiiiiiiiiiiiiiie i, 44
Figure II1.5: SAML browser/POST profile sequence diagramccooeeieininennnn 48
Figure II1.6: Authentication in WS-DBC...........cociiiiiiiiiiiiiii 52
Figure II1.7: WSLA Services and their interactions...............c.cooviiiviiiiiininnne 54
Figure I11.8: High-Level Overview of the Liberty Alliance Architecture................... 56
Figure IV.1a: Traditional web services architecture................ccocoviiiiiiniiiiini 62
Figure IV.1b: New web services architecture.coeveiiiiiiiiiiiieniieieanenns 62
Figure IV.2: No functions is delegated to the framework use case................ e 63
Figure IV.3: No functions is delegated to the framework sequence diagram................ 64
Figure IV.4: All functions are delegated to the framework use case.................oooeeie. 65
Figure IV.5: All functions are delegated to the framework sequence diagram............. 66
Figure IV.6: Some functions are delegated to the framework use case..................... 67
Figure IV.7: Some functions are delegated to the framework sequence diagram......... 68
Figure IV.8: General SECUIILY USE CASC. .. .uutiuietinertenteeententententraeerneeieanseeneens 70
Figure IV.9: “Manage SCCUILY” USE CASC...uuuutenererrnreereneenrennerarsennersesnennesneeanon 71
Figure IV.10: “Manage security” sequence diagram...........coouveurvinereenneiieinerneenns 72
Figure IV.11: Network identity management US€ Case..........cceverueiieiiieniaereianiaenn 73
Figure IV.12: Network identity management sequence diagram..................ocoeeennn 74
Figure IV.13: Service Level Agreement use case............ccccoeeeenenen.. e 76
Figure IV.14: Service Level Agreement sequence diagram................ccoeeeiiiiinnine 77
Figure IV.15: Charging USE CASE.ciuiuiitit et anenan 78
Figure IV.16: Charging sequence diagraml............coeeiuiieieiiiienieeneeneeneenneaneannes 79
Figure IV.17: Open policy access interface.c..ouiviiiniiiiiariiiirieieeneneieanenn 80
Figure IV.18: Service registration SCENAIIO. v.uviueiuernittatirreiterrereeateneneeneaaenenne 81
Figure IV.19: Service diSCOVETY SCONATIO. .. vt iuiuittenenttiitinenteeneeeneneatenenenen 82

vii

Figure IV.20: Framework eXecution SCeMATiO.o.vueueniniereneiiieeeeneneaereanenennens 84

Figure IV.21: Framework architecture.o.oooiiiiiiiiniiiiiiiiiiiiiiiiiinn e 86
Figure V.1: First case study of web services eXecution.............coeveveiiiiineieaninennnn. 91
Figure V.2: Sequence diagram of the first case study of web services execution.......... 92
Figure V.3: Second case study of web services eXecution..........cc.coeiveieeiiiiinennnnn 92

Figure V.4: Sequence diagram of the second case study of web services execution.......93
Figure V.5: Third case study of web services eXecution..........ccvevveveiviinenieiinennnn. 94
Figure V.6a: Sequence diagram of the third case study: interacting with the same SP.....95
Figure V.6b: Sequence diagram of the third case study: interacting with a different SP..96

Figure IV.7: The service end-point is the framework...............c.cooiiiiiiii.. 101
Figure V.8: No SR intervention is required for common functions execution............ 102
Figure V.9: The SR intervention is required for the common function execution........ 103
Figure VIL.1: General prototype architecture...........ooooeiiiiiiiiiiiiiiiiiii i, 106
Figure VI.2: Delegation rules database............covuiiivuiiiiiiiiiiiniiiiiniieien e 107
Figure VI.3: Delegation rule table..........ooviiiiiiiiiiiiiiiiii e rieeneeae 108
Figure VI.4: Implementation classes..............c.cocoiiiiiiiiiii 112
Figure VI.5: Session management table................cooiiiiiiiiiiiiiiiiiiiiiiii 113
Figure V1.6: Average time delay and time delay overhead........................o 124
Figure VI.7: Average framework intern processing delay..............ccooooiiiiiiiiinn 125

Figure VI.8: Exchanged messages during the conferencing web service execution......125

Figure VI.9: Example of exchanged messages in distributed environment............... 127

viil

LIST OF TABLES

Page
Table II1.1: Parlay framework analysis............cocoiiiiiiiiiiiiiiiiiiiiiiiin i 37
Table II1.2: Web services existing standards and solutions analysis............ccccceeneee. 58
Table VI.1: Common Function execution scopes Used..........ccceoevieiiiiinenniniinennn 109
Table VI.2: Time period condition attributes format.................coooviiiiiiiniin 110
Table VI.3: Common functions execution conditions............cceeevuiiiineiieneeinenn 115
Table VI.4: Conferencing web service information................coooiiiiiiiiiiin 117
Table VI.5: Conferencing web service methods...............ooooiiiiiiiiiiiiiinii 117
Table V1.6: Conferencing web service provider information..................c.cooeenen 118
Table VI.7: Conferencing web service customer information...........c.occevvivnennennee. 118
Table V1.8: Delegation rule associated to the conferencing web service usage........... 118

Table V1.9: Time period condition associated to the Conferencing web service usage..119
Table VI.10: Common functions info..............c..c.oooiiii e 119

Table VI.11: Common fUncCtionS €XECULIOM. ... vuuurrerenieieeeeeeeereeeneneneeetsesnnnnemn 121

X

LIST OF ACRONYMS AND ABBREVIATIONS

OMA: Open Mobile Alliance

QoS: Quality of Service

PSTN: Public Switched Telephone Network

PSDN: Public Switched Digital Network

VolIP: Voice over IP

IP: Internet Protocol

SIP: Session Initiation Protocol

ITU-T: International Telecommunication Union - Telecommunication
IETF: Internet Engineering Task Force

LAN: Local Area Networks

RSVP: Resource reSerVation Protocol

RTP: Real-time Transport Protocol

SDP: Session Description Protocol

HTTP : Hyper Text Transfer Protocol

IN : Intelligent Network

PBX: Private Branch eXchange

CGI: Common gateway Interface

API: Application Programming Interface

JAIN: Java APIs for Integrated Networks

JCC/JCAT: Java Call Control/Java Coordination and Translation
OSA: Open Service Architecture

NGN: Next Generation Network

WSDL: Web Services Description Language

SOAP: Simple Object Access Protocol

XML: Extensible Markup Language

HTML: HyperText Markup Language

RPC: Remote Procedure Call

UDDI: Universal Description, Discovery and Integration
CPXe: Common Picture eXchange environment

HP: Hewlett-Packard

GIS: Geographic information systems

SSL: Secure Session Layer

TLS: Transport Layer Security

WS-Security: Web Service Security

SAML: Security Assertion Markup Language
WS-DBC: Services Domain Boundary Controller
P3P: Platform Privacy Preferences

SLA: Service Level Agreement

WS-I: Web Services Interoperability forum
UML: Unified Modeling Language

IDL: Interface Description Language

CORBA: Common Object Request Broker Architecture
SSP: Service switching point

HLR: Home Location Registry

SCF: Service Capability Features

WSLA: Web Services Level Agreement

SSO: Single Sign On

OASIS: : Organization for the Advancement of Structured Information Standards
URL: Uniform Resource Locator

W3C: World Wide Web Consortium

WSE: Web Services Enhancements

WSLA: Web Service Level Agreement

ID-FF: Identity Federation Framework

ID-WSF: Identity Web Services Framework

ID-SIS: Identity Services Interfaces Specifications

X1

Chapter 1:

Introduction

This chapter gives an introduction to the research area. It starts by introducing the next
generation telecommunications networks. It presents the relating protocols and service
architectures and introduces the use of web services in next generation networks. Then, it

presents the goals of the thesis and ends with the presentation of the thesis organization.

1.1 Application development in next generation telecommunications networks

This section is about next generation telecommunications networks. It starts by a
definition of the next generation networks. Then, it presents the next generation signaling
protocols. After that, it presents the service architectures for next generation networks

and introduces the use of web services in these networks.

I.1.1 Definitions

Next generation networks refer to networks with internet telephony capabilities, third
generation networks and beyond [1]. They are especially packet switching based, QoS
enabled and integrate voice and data applications. They seamlessly blends the public
switched telephone network (PSTN) and the public switched data network (PSDN) to

create a single multi-service network.

The internet telephony (VoIP) uses the Internet Protocol (IP) to transmit voice as packets
over an IP network [2]. There are mainly two sets of standards for internet telephony:

H.323 and Session Initiation Protocol (SIP).

I.1.2 Signaling protocols

Next generation signaling protocols include mainly H.323 from the ITU-T [3] and
Session Initiation Protocol (SIP) from IETF [4]. This section gives an overview of each

of them.

1.1.2.1 H.323

H.323 is an ITU-T standard [3]. It was initially targeted to multimedia conferencing over
Local Area Networks (LANs) that do not provide guaranteed quality of service (QoS). It

provides a foundation for audio, video and data communications over Ip-Networks.

H.323 is an umbrella recommendation since it includes various other ITU-T standards. It
includes signaling and call control standards (e.g., H.245, Q.931, and H.225), video
processing standards (e.g. H.261), data conferencing standards (e.g. T.120), media

transportation standards (e.g. H.235) and other supplementary standards (e.g., H.450).

H.323 architecture is composed of the terminal, the gatekeeper, the gateway and the
multipoint control unit. The terminal is an end-point that provides real-time two-way
communications with another H.323 end-point, gatekeeper or multipoint control unit. The

gatekeeper is the entity that provides address translation and controls how a terminal

accesses the network. The gateway is used to provide real-time communications between
H.323 terminals on the packet-based networks and terminals in the Public Switched
Telephony Network (PSTN). The multipoint control unit provides multipoint

conferencing capabilities.

1.1.2.2 Session Initiation Protocol (SIP)

The session initiation protocol (SIP) is an IETF signaling protocol for the establishment,
modification and tear down of multimedia sessions [4]. These sessions include
multimedia conferences, internet phone calls and multimedia distribution. SIP can also be
used to invite participants or add media to existing sessions. It can be used in conjunction
with other IETF protocols such as RSVP [5] for QoS management, RTP for media

transportation [6] and others (e.g. SDP for multimedia sessions description [7]).

SIP uses a textual encoding for its messages; it is based on HTTP and is a
request/response protocol. Its functional entities are user agents, proxy servers, redirect
servers and registrars [8]. User agents are the end-points that initiate requests and are
usually their destination. Proxy servers are application level routers. Redirect servers
redirect clients to an alternate server, and registrars keep track of users within their

assigned network domain.

I.1.3 Service architectures

There are three types of service architectures for developing applications for next
generation networks. We have the today’s signaling protocol neutral and signaling
protocol specific architectures and the emerging web services based architecture. These

architectures are presented here after.

1.1.3.1 Signaling protocol specific architectures

Signaling protocol specific service architectures are used with specific signaling
protocols. There are two categories of these architectures: H.323 specific architecture and

SIP specific architecture.

The H.323 specific architecture is based on pre-IN (Intelligent Network) and PBX
thinking. It is based on a supplementary service approach and it includes no service
creation framework. It is concerned with the standardization of services instead of
services capabilities. The mainly supplementary services standardized so far are included

in the H.450 recommendations (e.g. call transfer, call diversion, and call forwarding).

The H.323 specific architecture is highly unsuitable for next generation networks, since it
provides only a limited range of services and it does not allow third parties. It is more

suitable for PBX environments with low expectations of services.

For the SIP specific architecture, two service creation frameworks exist: SIP Common

gateway Interface (CGI) and SIP servlet API. SIP CGI [9] is similar to HTTP CGI which

makes it appealing to web programmers. It is language independent and it gives full
access to all fields of SIP request. It also provides access to environment variables.
Therefore, it allows the development of a wide range of services. However, SIP CGI is
not exactly the same concept as HTTP CGI and the use of CGl is less and less used in the

web world.

SIP Servlet [10] relies on HTTP Servlet that is widely used in the internet world. It
primarily targets experienced and trusted developers. Just like SIP CGlI, it provides the
possibility to create a wide range of services. It can be used to create services that
.combine HTTP and SIP. Nevertheless, it is JAVA dependent and it is not exactly the
same thing as HTTP Servlet. Its APIs are more complicated and their usage requires

more knowledge.

1.1.3.2 Signaling protocol neutral Architectures

They are service architectures that can be applied to networks using any signaling
protocol, including H.323 and SIP. They are applicable to both circuit switched telephony

and next generation networks.

Three main signaling protocol neutral frameworks exist: JAIN’s JCC/JCAT, Parlay and
Call Processing Language (CPL). Java Call Control (JCC)/ Java Coordination and

Translation (JCAT) [11] is a JAIN community product. It’s applicable to

SS7/ISUP/TCAP, SIP and H.323 and it provides access to call control capabilities.

Nowadays, it has lost momentum to Parlay/OSA.

Parlay/OSA [12] open up telecommunications networks to application developers. It
presents two types of APIs: services APIs and framework APIs. The services APls
expose telecommunications network capabilities (e.g. call control, presence) for
application development. Framework APIs make the use of the services APIs secure and
resilient by providing necessary functions such as security management, event

notification and integrity management.

Parlay/OSA gives possibility for creating a wide range of services including those
combining different network capabilities. However, it presents a low level of abstraction

and it is not easy to grasp by people with no circuit switching telephony background.

Call Processing Language [13] specifies an architecture that aims at service creation by
end-users and targets primary un-trusted parties. However, very few end-users are

interested in creating services and the range of services that can be created is limited.

1.1.3.3 Emerging web services based architectures

Web services are becoming the preferred solution for program to program interactions.
They provide standard means to allow interoperability between different software
applications implemented in diverse programming languages and running on various

platforms [14]. Web services technology provides a high level of abstraction. This allows

applications developers to develop and integrate needed functionalities to their

applications easily and rapidly.

Web services provide a good way to open up telecommunications networks to application
developers, by supporting new services development and a widely acceptance of the

technology among developers.

When using web services in the telecommunications domain, two issues are to be solved.
The first one is to expose telecommunication capabilities (e.g. call control, presence,
messaging) as web services. We have to define web services for making
telecommunications capabilities available to applications in the same or foreign domain.
The second issue is to identify the common functions to web services when used in
telecommunications settings (e.g. security, charging). This will ensure interoperability
among systems and also help developers to build innovative and robust applications in a

minimum time by focusing only on the application development.

I.2 Goals assigned to the thesis

This thesis focuses on the second issue relating to the usage of web services in the
telecommunications domain. It is concerned with the common issues encountered by

developers when using web services in telecommunications networks.

Many functions are common to web services when used in telecommunications settings

(e.g. security, charging). The goals of this thesis are:

o Identifying the set of the common functions

e Identifying the requirements to be fulfilled by the solution providing these
functions

e Proposing an architecture for providing the common functions in
telecommunications networks

e Implementing a proof of concept prototype

e Taking some performance measurements.

The architecture we are proposing is based on web services and we call the resulting
solution- a framework. This framework can be defined as a consistent environment for
building and running web services applications. It provides a set of technologies and
functions that can be used to publish, discover and use web services in a secure,
controlled and auditable manner. It provides the common functions needed to facilitate

the development and usage of web services.

I.3 Organization of the thesis

The rest of this thesis is organized as follows: Chapter 2 introduces the requirements for
common functions. It starts with a global overview of web services principals,

architecture, technologies and some application areas. It also presents the identified

requirements.

Chapter 3 gives an overview of the state of the art. It presents the Parlay framework
solution and the existing web services standards and solutions. It also provides an

analysis of these solutions in light of the identified requirements.

Chapter 4 is dedicated to the proposed solution. It starts by stating some assumptions on
which the solution architecture relies. Then, it describes the novel architecture we are

proposing and shows how client applications can be executed using this architecture.

Chapter 5 is about the proposed architecture optimization. It specifies how to optimize

the framework execution and the execution of each of its functional entities.

Chapter 6 presents the implemented prototype and some performance measurements. It

includes also an analysis of these measurements.

Chapter 7 concludes the thesis by recapitulating the major contributions of the thesis and

discussing some items for future work.

Chapter 2:

Requirements for common functions

This chapter is composed of two sections. The first section gives a general overview of
web services. The second section presents the identified requirements for common

functions.

J1.1 Introduction to Web Services

‘This section gives a global introduction to web services. It starts with a brief definition of
web services. Then, it presents fundamental principals of web services and their
architecture. After that, it outlines the different technologies needed for web services

usage.

11.1.1 Definition

“A web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service in
a manner prescribed by its description using SOAP messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards” [14].

The web service interface description provides necessary information to interact with the

service. It includes service location, message formats, operations description, transport

10

protocols and bindings. The bindings describe how to map the service interface and its

associated operations to a particular concrete message format and transmission protocol.

Web services provide standard means of interoperability between various applications,

running on different platforms. Web service interfaces hide the implementation details of

the service, allowing it to be easily used independently of the platform on which it is

implemented and independently of the programming language used.

I1.1.2 Fundamental principals

- Web services have three fundamental principles [15] that make their usage very

beneficial. These principals are as follow:

1.

Coarse grained approach: The web service technology provides a high level of
abstraction, which allows developers to integrate needed functionalities to
their applications easily and rapidly.

Loose coupling: Applications developed using web services are loosely
coupled, which makes them independent. For instance, if an application “a” is
talking to an application “b” and “b” is modified, the application “a” should
not necessarily be re-written. This loose-coupling between applications

provides more flexibility, scalability, and extensibility.

Synchronous and asynchronous mode of communication: Web service

applications support both synchronous and asynchronous mode of

communication.

11

I1.1.3 Architecture

Web services architecture is based on the interaction between three principal roles:
service provider, service requestor and service registry (Figure:IL.1). The service
provider creates a web service, defines its description and publishes this description to the
web service registry. The service requestor finds out the web service, retrieves its
description from the service registry, and then, using this description, it binds the request

to the service implementation and starts interacting with it.

The service description may also be given directly to the service developer. It can be
provided on a CD with a product, downloaded from the service provider web site or

provided via other means.

Publish

Service Requestor

Bind

Figure IL.1: Web services roles

12

I1.1.4 Web services technologies

The main technologies involved in the web services implementation and usage are shown

in the figure bellow [14]:

SOAP Extensions
Reliabitity, Correlation, Transactions

Fig I1.2: Web services technologies

e XML [16]: Extensible Markup Language is a simple and very flexible text
format. It enables the presentatidn of data in a structured and unambiguous way. It
is platform independent and it plays an important role in the exchange of a wide

variety of data on the Web and elsewhere.

XML makes use of tags just like HTML. However, in HTML, both tag semantics

(<p> means paragraph) and tag set are fixed, contrary to XML. XML is extensible

13

and it uses the tags only to delimit data peaces. The tags interpretation is leaved to
the processing application.

SOAP [17]: Simple Object Access Protocol is a lightweight protocol for
exchanging typed and structured information in a decentralized and distributed
environment. It is based on XML and it consists of three parts: an envelope, a set
of encoding rules and a RPC representation. SOAP messages are fundamentally
one-way transmissions from a sender to a receiver, but they are often combined to

implement patterns such as request/response.

The SOAP message is an XML document and it consists of a mandatory SOAP
envelope, an optional SOAP header, and a mandatory SOAP body. The SOAP
envelope is the top element of the XML document representing the message, and
the SOAP header includes some attributes to indicate who the header recipient is,
how the message should be processed, and whether the header is optional or
mandatory for the recipient to process. The SOAP body element provides a
container for mandatory information intended for the ultimate recipient of the

message.

The SOAP encoding rules define a serialization mechanism that can be used to

exchange instances of application-defined datatypes. The SOAP encoding style is
based on a simple type system that is a generalization of the common features

found in type systems in programming languages, databases and semi-structured

14

data. A type either is a simple type or is a compound type constructed as a

composite of several parts, each with a type

The SOAP RPC representation defines a convention that can be used to represent
remote procedure calls and responses. It relies on the protocol binding to provide
a mechanism for carrying -the information. SOAP can potentially be used in
combination with a variety of other protocols; however, the widespread bindings

defined describe how to use SOAP in combination with HTTP.
Example: SOAP Message Embedded in HTTP Request

This example presents a SAOP message used to connect to the server

www.stockquoteserver.com and get the last trade price:

POST /StockQuote HTTP/1.1

Host: www.stockguoteserver.com

Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

SOAPAction: "Some-URI"
<SOAP-ENV:Envelope

xmlns:SOAP- ENV=http://schemas.xmlsoap.org/soap/envelope/

SOAP- ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

15

<SOAP-ENV:Body>
<m:GetLastTradePrice xmins:m="Some-URI">
<symbol>DIS</symbol>
</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

e WSDL [18]: Web Services Description Language (WSDL) provides a model and
an XML format for describing web services. A WSDL document is a set of
definitions. The top level element of a WSDL document is a definitions element,

that can encapsulate other definitions elements. A definitions element includes:

o Types: provides datatype definitions used to describe the exchanged

messages.

o0 Messages: describes the abstract format of a particular message that a
Web service sends or receives, using the defined types. The format of a

message is typically described in terms of XML element.
o Operation: 1t’s an abstract definition of an action supported by the service.

o Interface: describes a set of messages that a service sends and/or receives.
These messages are grouped into subsets named operations. An operation

is a set of input and output messages, an interface is a set of operations.

16

o Bindings: describes a concrete binding of an interface element and
associated operations to a particular concrete message format and

transmission protocol.

o Endpoint: defines the particulars of a specific end-point at which a given

service is available.

o Service: describes one and only one interface that a service provides, and

the endpoints it is provided over.

WSDL document example:

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="TicketAgent"
targetNamespace="http://airline.wsdl/ticketagent/”
xmlns="http://schemas.xmlsoap.org/wsdl/”
xmlins:tns="http://airline.wsdl/ticketagent/”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmins:xsd1= "http:/airline/">
<import location="TicketAgent.xsd" namespace="http://airline/"/>
<message name="listFlightsRequest">
<part name="depart" type="xs:dateTime"/>
<part name="origin" type="xs:string"/>
<part name="destination" type="xs:string"/>
</message>
<message name="listFlightsResponse">
<part name="result" type="xsd1:ArrayOfString"/>

</message>

17

<message name="reserveFlightRequest">
<part name="depart" type="xs:dateTime"/>
<part name="origin" type="xs:string"/>
<part name="destination" type="xs:string"/>
<part name="flight" type="xs:string"/>
</message>
<message name="reserveFlightResponse">
<part name="result" type="xs:string"/>
</message>
.<interface name="TicketAgent">
<operation name="listFlights" parameterOrder="depart origin destination">
<input message="tns:listFlightsRequest" name="listFlightsRequest"/>
<output message="tns:listFlightsResponse" name="listFlightsResponse"/>
</operation>
<operation name="reserveFlight" parameterOrder="depart origin destination
flight">
<input message="tns:reserveFlightRequest"
name="reserveFlightRequest"/>
<output message="tns:reserveFlightResponse"
name="reserveFlightResponse"/>
</operation>
</interface>

</definitions>

18

[

UDDI [19]: The Universal Description, Discovery and Integration specification

defines the way to publish and discover web services on the net. It provides an

open and independent platform enabling enterprises to easily and dynamically

find commercial partners. The UDDI information model is composed of instances

of the following entity types:

o

businessEntity: Contains descriptive information about the business or
other organizations that typically provide web services, and information
about the web service itself. It includes information such as names and
descriptions in multiple languages, contact information and classification

information, like activity sector and geographic zone.

businessService: Describes a collection of related web services offered by
an organization described by a businessEntity. It represents a logical

grouping of web services under a common rubric.

bindingTemplate: Describes the technical information necessary to use a
particular web service. This concerns the information needed by

applications to bind and interact with the web service being described.

tModel: Describes a “technical model” representing a reusable concept,
such as a web service type, a protocol used by web services, or a category

system.

publisherAssertion: Describes, in the view of one businessEntity, the
relationship that the businessEntity has with another businessEntity.
Indeed, many of the large businesses are represented by more than one

businessEntity, since they may have many subsidiaries, and each

19

subsidiary has a different activity. However, these different businessEntity
belongs to the same business, then it may be preferable to have a

relationship between them

I1.2 Application Areas

Web services can be applied to any area that requires program-to-program interactions

over a network. This section gives some examples of such web services application areas.

I1.2.1 Telecommunication

Web services can be used for value added service engineering in next generation
telecommunications networks. They can be used to expose network capabilities (e.g. call
control, presence, messaging) as web services, in order to make them available to

applications in either the same or foreign domains.

Mainly, two sets of specifications are available in this domain. We have Parlay-X and
Open Mobile Alliance (OMA) specifications. Parlay-X web services [20] are building
blocks of telecommunications capabilities that applications developers can quickly
comprehend and use to generate new and innovative applications. Parlay-X specifications
are in their first version and only a few services are specified so far (e.g. call control,

messaging, and terminal location). They aim to cover all telecommunications capabilities.

20

OMA specifications focus more on mobile services. They aim at providing solutions to
common problems faced by the application designers when using web services in OMA
environments (e.g. practical deployment patterns, security, charging, and tests

requirements).

I1.2.2 Digital imagery

In the digital imagery industry, the Common Picture eXchange environment (CPXe) [21]
uses the web services paradigm to automate the manipulation, printing and sharing of
.digital images over a network. It was created by a large number of companies active in

the digital imaging industry (e.g. Kodak, HP, Konica, Olympus and others).

The CPXe allows providers to register their services in a centralised directory, and gives
them the ability to categorize these services. Its business model consists of three
components: the requestor, the provider and the broker. The requestor is the application
that discovers and uses digital imagery services. The provider is the entity that provides
such services, and the broker is the entity that provides requestors with necessary

information about published services.

There are two types of brokers: UDDI registry and the service locator. The service
locator interacts with the UDDI and/or catalogues to find service(s) meeting specific
criteria. The catalogue is a standardized way for service providers to provide more details
about their services (e.g. pricing information, information about each retail store

including street address and hours of operation). It is kept in the service provider domain.

21

I1.2.3 Geographic information systems

Geographic information systems (GIS) are “computer-based information systems that
enable capture, modeling, manipulation, retrieval, analysis, and presentation of
geographically referenced data” [22]. They use multiple computer-science topics (e.g.
databases, graphics, and computational geometry) to process queries about spatial data

such as which location satisfies given requirements and what is a particular location.

The goal of GIS is to dynamically assemble applications from multiple GIS web services,
for use in a variety of client applications. It provides means for combining results of
complementary services to create customised applications. Used in the geographical
information systems, the service model provides users with just data and functions

needed in that particular application domain

II.3 Requirements

This section is about the web services framework to propose for providing common

functions. It presents the set of requirements that we have identified as requirements to be

fulfilled by this framework.

The requirements we have identified are based on the ones identified by the Open Mobile
Alliance (OMA) [23]. We have extended these OMA requirements in order to make the

use of the framework more flexible.

22

Beside the requirements concerning the common functions to be provided, we have
identified other additional requirements that we have judged necessary for the
consistency and the ease of usage of the proposed framework, and to support

interoperability between applications using this framework.

I1.3.1 Common functions requirements

This section presents the common functions to be provided by the framework and their
relating technologies. The Common functions requirements are especially based on the

OMA requirements.

I1.3.1.1 OMA requirements
The OMA requirements on common functions include:

e Security: It is intended to meet the traditional security goals of reducing
vulnerabilities of assets and resources. The security requirements include:

O Authentication: used to verify who the interacting party is. It can also be
used to identify the message sender, the message recipient and the content
signer. It can be ensured using SSL/TLS authentication with client &
server certificate or using SOAP message security.

o Data Integrity: refers to the ability to detect whether the content has been
changed since creation. It may be provided at different protocol layer:

a. At transport layer using SSL/TLS.

23

b. At Message layer using web service security (WS-Security [24]) to

assure SOAP message integrity.

c. At application layer using XML-Digital signature [25].
Confidentiality: Prevents unauthorized parties from viewing information.
It’s typically provided using SSL/TLS, SOAP Messaging confidentiality
and Application Level Confidentiality.

Key Management. key management functions are to provide secure key
generation, storage, renewal, revocation, exchange and use. The
appropriate standards to key management are Online Certificate Protocol
[26] & XML Key Management Specification [27].

Authorization: used to determine whether an authenticated party is
allowed to access a resource or perform some action. Normative
requirements for authorization are: Security Assertion Markup Language
(SAML [28]), WS-Security and SOAP message security.

Non Repudiation: is used to reduce the risk of repudiation to an
acceptable level Using XML Digital Signature.

Availability: is a denial of service threat mitigation. It is used to assure the
service to be available and not denied by attacks against the server.
SSL/TLS & WS-Security are the mechanisms specified normatively for

availability.

24

¢ Network identity management

Network identity refers to a set of information upon which one may receive
personalized services [29]. This information consists of the overall attributes and
references contained in the various accounts of individuals with different service
providers. It includes personal information such as name, phone number, social
security number and address, commercial information such as public key and
certificate for signing information and other. Network identity can also be associated

to devices and processes.

The widespread practice for network identity management is that each individual
maintains its different accounts. This places a serious burden on the individual
because one must manage the accuracy of multiple accounts information and
remember multiple username/password pairs. Network identity management must

make the identity control easier, while ensuring privacy and information security.

The framework must provide identity management and authentication to make the
interaction between individuals and businesses easier. It must also be compatible with

W3 web services standards like Liberty alliance project [38].

e Privacy management
Privacy has three aspects: personal, territorial and informational. The main issue in
the OMA web services security context is the informational privacy. It is concerned

with the protection of user privacy according to the existing privacy regulations. It is

25

about end user’s rights to determine how, when and to what extent personal
information are communicated to other parties. It states and conveys privacy policies

and enforces these policies.

The proposed framework should not add any additional privacy risks and should be
associated to mechanisms that let the user specify the use of any information

exchanged by mobile web services.

Informational privacy can be assured using the Platform Privacy Preferences (P3P
[30]). Mechanisms designed to ensure confidentiality may also be used to reduce

risks of inappropriate information disclosure.

. Service management
Service management requirements include service registration, service publication,
service discovery, service Level Agreement Management, service delivery and service

Integrity Management.

Service Level Agreement is a contract between the service provider and the service
consumer that defines the rules and the conditions under which the service is supplied
and the constraints on the quality level to be satisfied. Service Level Agreement
management includes:

e Service usage negotiation: the service and the application negotiate the service

capabilities to be supplied and the conditions under which the service is supplied.

26

e Service Level Agreement (SLA) creation: create the SLA according to the
outcome of the previous stage. The SLA created is associated with the particular
application and the particular service.

e Committing to the service level agreement: The consuming application and the
service provider commit to the SLA, for example, by digitally singing and
exchanging the SLA document created.

e Service level agreement provisioning: Agreed SLA is provisioned somewhere in

the system for evaluation during service execution.

The service delivery is concerned by the SLA enforcement during the service usage. The
service integrity management can be done using heartbeat management, load

management and alarm management.

Service registration, publication and discovery may be ensured using a UDDI
implementation. However, the use of UDDI for service management is not necessary, but
when there is a need for distributed metadata publication & discovery, UDDI
specifications are to be used. In this case, UDDI 2.03 Data Structure Schema must be
used for web service description & UDDI 2.04 API is to be used for publishing and

discovery.

27

° Charging
The framework must allow appropriate charging models such as [31]:
o User charging for service usage
o Service and content provider charging for service usage
o Charging of all actors in the value chain of a web service enabler usage (referral

fee).

Furthermore, the framework must support various charging mechanisms, such as pay-per-
usage or instance, pay-per-volume or data rate, and pay-per-subscription. It must also
support various billing models such as percentage of transaction and pre-paid and post-

paid payment types.

I1.3.2 Other requirements

The additional requirements we have identified are composed of some OMA

requirements and some other requirements that we have specified.

11.3.2.1 OMA requirements

OMA requirements relates especially to the common technologies to be supported by the
framework in order to insure applications interoperability. They include the use of:
o XML-based messages for communication between various entities
o SOAP as a basic message format for communication between the service
provider and the service requester.

o WSDL as a service interface description language

28

o HTTP as a recommended transfer mechanism for SOAP messages.

To assure interoperability between these different technologies, Web Services
Interoperability Forum (WS-I) [43] recommends the use of:

o XML 1.0

o SOAP 1.0 & WSDL 1.0 as modified by the WS-I Basic Profile 1.0

o HTTP 1.1 (HTTP 1.0 may be used under certain circumstances).

11.3.2.2 Our requirements

Our additional requirements aim to make the use of the framework more flexible. They
comprise three types of requirements which are:

e As little impact as possible on existing web services application development
environment. This means that the application developers should not have to
learn a new development environment in order to develop telecommunications
applications.

For instance, there are two architectural approaches for implementing
security: Security libraries and security proxies
o The framework have to enable interaction with services developed
within each approach
o In each case, the relevant security implementation must be sufficient to

apply security.

29

¢ Framework functions should be optional: The network operator (i.e. the
Web services provider) can either choose to handle a given common function

by himself or delegate it to the framework

¢ Plug and Play: it should be possible to plug in existing web services products
o Example:
» UDDI may be easily plugged in to the framework without
changing existing applications.
= Security implementations may be automatically added to the

framework.

1.4 Summary

In this chapter, we have seen that the common functions to be provided by the framework
include security, network identity management, privacy management, service
management and charging. We have discussed the meaning of each function and the
required technologies for its implementation. The following chapter will give an

overview of existing standards and solutions that provide some or all of these functions.

30

Chapter 3:

Parlay and existing web services standards: State of the art

This chapter presents an overview of the state of the art. It starts by an overview of the
Parlay framework solution. After that, it presents some existing standards and solutions

for using web services. It ends with discussion of the limitations of existing solutions.

III.1 Overview of Parlay framework

The Parlay/OSA specifications [12] define an architecture and a set of APIs that enable
service and application developers to access the telecom network capabilities through an
open standardized interface (i.e. the Parlay/OSA APIs). They are provided in Unified
Modeling Language (UML) representation. Several mappings and mapping rules are
defined for these specifications in several contexts including CORBA IDL, WSDL/SOAP

and Java.

I11.1.1 Parlay architecture

The Parlay architecture (Figure: III.1) consists of four major components: The
application, the framework, the service capability features and the resources. The Parlay
application is the client application that access the network capabilities (resources) using
Parlay APIs. It is developed and deployed in a network and technologies independent

manner.

31

The Parlay framework is the core of the Parlay architecture. It provides necessary
functions to secure and control access to the service capability features. It also protects
the network from applications misuse and provides functions for incremental introduction

of new service capabilities.

Service capability features are entities that implement the Parlay APIs. They are
composed of a service interface and a service object. A service interface provides access
to the network capabilities exported by the Network Operator, whilst the service object
provides a service interface implementation. Resources are the core network elements

accessed through the Parlay service objects (e.g. SSP, HLR ...).

_ .. w=aw Application Server
) i Application

OSA/ Parlay interface

HR | | MsC . 8sp Servers

E.g. billing servers

Fig II1.1: Parlay/OSA Architectural Model

I11.1.2 Parlay framework interfaces

Parlay/OSA framework provides mechanisms that enable applications to make use of
network capabilities in a secure and controlled manner. It offers mechanisms for security

and service management. Its interfaces are split into three distinct sets (Figure: I11.2):

32

Framework to client application interfaces, framework to service capability features

interfaces and framework to enterprise operator interfaces.

Fig I11.2: Parlay framework interfaces

I11.1.2.1 Framework-to-application interfaces

They provide applications with basic mechanisms that enable them to make use of the
service capability features in the network. They include mechanisms for:

¢ Authentication: The client application must be authenticated before it’s allowed

to use Parlay/OSA interfaces. The Parlay authentication model is a peer-to-peer

model. However, the authentication doesn’t have to be mutual.

The Parlay/APIs support multiple authentication techniques. The authentication
mechanism may be supported by cryptographic process to provide confidentiality
and by digital signature to ensure integrity. Other authentication mechanisms can
be used like the underlying distributed technology mechanism. Application and

framework may also recognise each other as a trusted party.

33

Authorization: It determines what an authenticated application is allowed to do
and which service capability features are allowed to be accessd.

Access control to service capability features: It enables the framework to
control application access to the service capability features (SCF).

Discovery of framework and network service capability features: An
authenticated application can obtain available framework interfaces. Furthermore,
it can use the discovery interface to obtain information on authorized network
service capability features.

Service agreement management: After service discovery, the application
identifies the SCF to use and obtains the service agreement (specifying the way to
use the specified SCF) from the framework. The agreement may consist of an off-
line and an on-line part. The on-line part is signed by the application and the
framework.

Event notification: Enables application notification, so that, subsequent
framework events can be sent to the application. It can be used to notify the
application about a new SCF, about SCFs that are no more available and about
other events.

Integrity management: Enables application integrity management using load

management, heartbeat management and fault management.

34

111.1.2.2 Framework-to-services interfaces

Basic mechanisms between the framework and the service capability server [figure II1.1]

are:

Service registration: Enables the registration and the publication of a new
network service capability feature in the framework.

Service discovery: Provides the service types supported by the framework (e.g.

P_GENERIC_CALL_CONTROL, P_MULTI_PARTY_CALL_CONTROL,

P_CONFERENCE_CALL_CONTROL, P_USER_INTERACTION ...), and the description
of each service type. The description includes the properties associated with the
service type, the super-types of the service type and whether the service type is
available or not.

Event notification: Used to notify the service of generic events that have
occurred.

Integrity management: Enables service integrity management via load

management, heartbeat and fault management.

I11.1.2.3 Framework-to-enterprise operator interfaces

In some cases, the client applications must explicitly subscribe to the service before they

can use it. The subscription may be done by the enterprise operator on behalf of the client

application. The enterprise operator represents an organisation or a company which will

be hosting client applications, whilst, the subscription presents a contractual agreement

between the enterprise operator and the framework operator.

35

To enable enterprise operators to subscribe to specific services before their client
applications can use them, the Parlay framework provides a service subscription
interface. The service subscription is performed on-line by the enterprise operator in the
frame of an existing off-line negotiated contract. The contracted services may be
provided to the enterprise operator directly by a service provider or indirectly through a
retailer, such as a framework. The interaction between the Enterprise Operator, the client

application and the framework is shown in the following figure.

Enterprise Qperator (In the role
of Service Subscriber)

Signs contract about service usage

Framework {In the role
of Service Retailer)

Authorises

P

Py Uses service

Client Application (In the role of
User or Consumer of Services)

Figure II1.3: Parlay subscription business model

IIL.1.3 Analysis

The Parlay framework provides solutions to some of the identified requirements. It
provides support for the common supporting technologies and provides some solution for
security and service management. However, some problems still need to be solved such

as network identity management, privacy management and charging. The following table

36

gives a summary of the analysis of the Parlay framework according to the requirements

identified in the previous chapter.

Requirements provided
Partial (Authorization,
Security Authentication)
Network Id NO
Privacy management NO

Common functions Service registration, | YES (but not using UDDI)

publication &
discovery

Service SLA & Service YES
management | Delivery
Service integrity YES

Charging NO
Common supporting technologies YES
(XML, SOAP,WSDL,HTTP)
As little impact as possible on existing application NO
development environments
Framework functions optional NO
Plug & Play NO

Table IIL.1: Parlay framework analysis

II1.2 Existing web services standards and solutions

This section gives an overview of existing standards and solutions for using web services.
It starts with security standards including WS-Security and SAML. Then, it presents a
Web Services Level Agreement (WSLA) solution. After that, it presents the Liberty

Alliance specifications for network identity management.

37

II1.2.1 Security

This section presents emerging web services security standards and provides an insight

into the most important security models for SOAP.

111.2.1.1 Emerging standards

The emerging web services security standards are Web Services Security (WS-Security)
and Security Assertion Markup Language (SAML). These two standards are presented

here after.

I11.2.1.1.1 Web Services Security (WS-Security)

WS-Security specification [24] proposes an abstract message security model for SOAP
messages. It provides means to protect a message by encrypting and/or digitally signing a
body, a header, an attachment or any part or combination of them. It defines a way of
representing security credentials, such as username, password, public key certificate,
security tickets, security tokens and digital signature using XML-based syntax. It also

defines how to insert these security credentials in the SOAP message.

Technically, SOAP security is provided by the definition of a security header block. The
latter provides a mechanism for attaching security-related information targeted at a

specific receiver. The syntax of this header block is as follow:

<s:Envelope>
<s:Header>

< s:role="...” s:mustUnderstand="...”>

</ wsse:Security>

38

</s:Header>

</s:Envelope>

The s:role attribute identifies the recipient (named SOAP role) of the security block. It
may be the ultimate message recipient or an intermediary. A SOAP message may contain
multiple security headers, each targeted to a specific SOAP role. An intermediary may
either add a new sub-element to the security block addressed to it or add one or more

security header blocks to the SOAP message.

Expected elements to be used within the security block are:
o Username Token element: used to provide a user name and optional password
information. The creation time may also be specified. Username token element

syntax is as follow:

<wsse:UsernameToken wsu:Id="...”>
<wsse:Username> ... </wsse:Username>
<wsse:Password Type="...”> ... </wsse:Password>

<wse:Created> ... </wsse:Created>

</wsse:UsernameToken>

This syntax is extensible and other attributes and elements can be added to this
element.

¢ Binary Security Tokens: used to include binary-encoded security tokens (like
X.509 certificates and Kerberos tickets) and non-XML format tokens. The syntax

used is as follows:

39

<wsse:BinarySecurityToken wsu:Id=...
EncodingType=...
ValueType=.../>

EncodingType attribute specifies how the security token is encoded (e.g.
Base64Binary) while the ValueType attribute indicates what the security token is

(e.g. a Kerberos ticket).

Security Token Reference element: used to reference the security token if it is

not incorporated into the sent message.

<wsse:SecurityTokenReference wsu:Id="...">

</wsse:SecurityTokenReference>

WS-Security specification defines three specific reference mechanisms: direct
references, key identifiers and key names. Direct reference is the most specific
mechanism since it allows referencing security tokens by identifying the URI
location where they can be found. To directly reference security tokens using
URIs, the <wsse:Reference> element is added to the previous syntax. The direct

references syntax corresponds to:

<wsse:SecurityTokenReference wsu:Id="...">

<wsse:Reference URI="..." ValueType="..."/>

</wsse:SecurityTokenReference>

The key identifier allows tokens to be referenced using an opaque value (unique

identifier) that represents the token. Key names mechanism allows tokens to be

referenced using a string that matches an identity assertion within the security
token.

ds-Key Info element: carries the key information and is allowed for different key
types and for future extensibility. However, if the key type contains binary data, it
is recommended to use <wsse:BinarySecurityToken>.

ds-Signature element: It conforms to XML-Signature specification and allows
multiple signatures to be attached to a message. It includes the reference to the
element to be signed, the digest method reference and the signature value.
Encryption element: It leverages XML-Encryption standard. It includes the
reference list of the encrypted elements, the encrypted key (encryption key

encrypted using recipient’s key) and the encrypted data.

When a sender or an active intermediary encrypts one or more portions of a
SOAP message, they must present a <xenc:ReferencelList> sub-element to the
corresponding security header block(s), to specify references to the portion(s)
encrypted. If necessary, they must create a new <wsse:Security> header block,
specify the intended recipient and insert the sub-element. Encrypted elements are

replaced by corresponding <xenc:EncryptedData> according to XML encryption.

WS-Security specification allows different <xenc:EncryptedData> elements
referenced by the same <xenc:ReferenceList> to be encrypted by different keys.
The encryption key can be specified using <ds:KeyInfo> element within the

corresponding <xenc:EncryptedData> element.

41

When the encryption is performed using a symmetric key (e.g a randomly
generated symmetric key), the encryption key must be encrypted by the recipient
public key and prepended to the security header within a <xenc:EncryptedKey>

element.

e Security Timestamps: To prevent replay attacks, a <wsu:Timestamp> element is
used to reference message timestamps. It indicates creation and expiration time of

the message. Its schema is as follows:

<wsu:Timestamp wsu:Id="...">
<wsu:Created ValueType="...”>...</wsu:Created>
<wsu:Expires ValueType="...”>...</wsu:Expires>

</wsu:Timestamp>

The Time type defined in XML-Schema is to be used. However, if other types are
used, they must be specified using the ValueType attribute. The receipt time

reference may also be included using the <wsu:Received> element.

WS-Security is intended to provide end-to-end security. It describes SOAP enhancements
to provide message authentication, integrity and confidentiality. Message authentication
and integrity are provided by XML-Signature in conjunction with security tokens.
Message confidentiality leverages XML Encryption in conjunction with security tokens
to keep portions of SOAP message confidential. Integrity mechanisms are designed to
support multiple signatures (potentially by multiple SOAP roles) and additional signature
format. Encryption mechanisms are designed to support additional encryption processes

and operations by multiple SOAP roles.

42

Security Assertion Markup Language (SAML) assertions may be conveyed within the
<wsse:Security> header block. The SAML token profile [34] specifies how SAML
assertions can be used in the context of WS-Security specification. They are attached to
SOAP messages using WS-Security by placing assertion elements or references to
assertions inside the <wsse:Security> header. They may be referenced from different
elements within a security header, or from the security header element itself. The

preferred method to reference SAML assertions is by key identifier reference.

WS-Security includes other profiles for the use of other tokens within the WS-Security

specification, such as Kerberos tickets.

I1L1.2.1.1.2 Security Assertion Markup Language (SAML)

The Security Assertion Markup Language specification [28] defines an XML-based
syntax for exchanging security information. This security information is expressed in the
form of assertions and is issued by SAML authorities, who can use various information
sources to create responses. They can use either the assertions received as input in request
or information retrieved from external policy stores. The figure II1.6 presents the SAML

conceptual model [32].

43

Figure II1.4: SAML Conceptual Model

A SAML assertion is an XML construct that groups necessary information to describe
one or more data elements made by an issuer. SAML specification defines three types of
assertions:
¢ Authentication assertion: asserts that the specified subject was authenticated by
particular means (specific authentication method and specific authentication
authority) at a particular time.
e Authorization Decision assertion: states whether the specified subject has
granted access to the specified resource or not. The set of authorization actions to
be performed on the specified resource (Read, Write, Execute, Delete and/or

Control) is also specified.

44

o Attribute assertion: states that the specified subject is associated with the

specified attributes and the specified values.

These assertions have a nested structure. A single structure may convey several different
statements about authentication, authorization decision and attributes. The schema of

SAML assertion is as follow:

<element name="Assertion" type="saml:AssertionType"/>
<complexType name="AssertionType">
<sequence>
<element ref="saml:Conditions" minOccurs="0"/>
<element ref="saml:Advice" minOccurs="0"/>
<choice maxOccurs="unbounded">

"

<element ref="saml:Statement"/>
<element ref="saml:SubjectStatement"/>
<element ref="saml: AuthenticationStatement"/>
<element ref="saml: AuthorizationDecisionStatement"/>
<element ref="saml:AttributeStatement"/>
</choice>
<element ref="ds:Signature" minOccurs="0"/>
</sequence>
<attribute name="MajorVersion" type="integer" use="required"/>
<attribute name="MinorVersion" type="integer" use="required"/>
<attribute name="AssertionID" type="saml:IDType" use="required"/>
<attribute name="Issuer" type="string" use="required"/>
<attribute name="Issuelnstant" type="dateTime" use="required"/>

</complexType>

45

The “AssertionType” element has different required attributes. “MajorVersion” and
“MinorVersion” attributes are used to specify the highest and lowest assertion version
supported. The values specified by SAML Core specification [32] for these attributes are
respectively 1 and 0. The “AssertionID” attribute is the assertion unique identifier,
“Issuer” presents the assertion issuer unambiguous name (may be a URI reference) and

the “IssuerInstant” defines the time instant of an assertion issue.

The “AssertionType” element may contain conditions of assessing the assertion validity,
additional information to assist processing (Advice), the XML-Signature to authenticates
the assertion, authentication statement, authorization decision statement and attributes

statement.

The “Conditions” element may provide information about the earliest time instant at
which the assertion is valid, the time instant at which the assertion has expired and the

specific audience to which the assertion is addressed.

“SubjectStatement” element describes the principal that is the subject'” of the statement,
by specifying its name identifier (name and security domain) and information that allow
its authentication (e.g. the protocol to be used, cryptographic key held by the subject and

additional information to be used by the authentication protocol).

@) A subject is an entity (either human or computer) that has an identity in some security domain. A typical

example of a subject is a person, identified by his or her email address in a particular Internet DNS domain.

46

SAML assertions can be exchanged using diver protocols, however, currently, SAML
defines only SAML SOAP binding over HTTP [33]. This protocol binding specifies how
SAML request and response exchanges are mapped into SOAP message exchanges and

how these are mapped into HTTP message exchanges.

To enable communication between requestors and the authorities, SAML defines a
request-response protocol [32]. This protocol consists of the XML-based request
response message format. It may be used by clients to request assertions from SAML
authorities via <request> element and get a <response> element from them. It can be

~bound to different underlying communication and transport protocols, but currently, only

SOAP over HTTP bindings are specified.

SAML assertions, requests and responses may be signed using XML-Signature, to ensure
authentication and message integrity. If a public-private key pair is used for the signature,

non-repudiation of its origin is also provided.

One major goal of SAML is Single-Sign-On (SSO). It is the ability to authenticate only to
one site (called source site) and access a secured resource on another site (named
destination site) without directly authenticating to the latter. Various SAML profiles are

designed to support different SSO scenarios and secure SOAP payload [33].

47

A SAML profile is a set of rules describing how SAML assertions are embedded in or
combined with other objects (such as HTML data forms, files, or protocol data units),
how they are sent to the destination site and how they are processed at the destination.
The OASIS SAML Committee has specified two web browser-based profiles to support

SSO, which are browser/POST profile and browser/artifact profile.

In case of the browser/POST profile, the SAML assertion is uploaded to the browser
using an HTML data form and submitted to the destination site within the same form.

The details of this interaction are shown here after (figure II1.5):

Browser ; Source Site Destination
Site
i ; ;
i ; :
! Step 1 >E i
| | |
i< Step 2 E i
| | |
1 Step 3 :
| ! :

Figure II1.5: SAML browser/POST profile sequence diagram

- In step 1, the user’s browser accesses the source site with information about the
target to reach at the destination site.

- In step 2, the source site generates a SAML response containing an SSO assertion
within an HTTML form data. This form contains the URL of the targeted

resource. The SSO assertion is used to refer to an assertion that;

48

o Has a <saml:Conditions> element with NotBefore and NotOnOrAfter
attributes present.
o Contains one or more authentication statements.
- In step 3, the browser submits the generated form to the destination site.
- In step 4, the destination site responds to the browser request by granting him or

denying him access to the desired resource.

In case of the browser/artifact profile, the user’s authentication assertion is not included
in the request. A small SAML artifact is attached to the URL query string, and then
redirected by the source site to the destination site. This artifact is referencing
unambiguously the user’s authentication assertion. After receiving the request, the
destination site acquires the authentication assertion via SAML protocol message

exchanges with the source site, and sends an HTML response to the browser.

In the two cases, some security measures are taken in order to secure communication and

avoid malicious attacks.

11.2.1.2 Security models

WS-Security and SAML specifies how to secure message exchanges, however, they do
not define nor imply any specific implementation architecture. Therefore, it’s necessary

to have a look at the possible security architecture solutions.

49

There are two architectural approaches for implementing security aspects: libraries and

proxies. This section presents the two approaches and gives an example for each of them.

I11.2.1.2.1 Libraries approach

In case of the libraries approach, the application developer is supplied with appropriate
security libraries that he has to use to program applications that perform security control.
This approach has the drawback of instructing the application developer to correctly

enforce security.

Example: Web Services Enhancements (WSE)

WSE is a class library proposed by Microsoft [35] for applying advanced web services
protocols to SOAP message, including WS-Security, WS-Routing and WS-Attachment.
Its usage entails reading headers from inbound SOAP messages and writing headers to
outbound SOAP messages. It may also involve SOAP message body transforming like

decrypting inbound message body or encrypting the outbound message body.

WSE functionalities are encapsulated by two sets of filters: inbound filters and outbound
filters for respectively inbound and outbound messages. Outbound filters generate
necessary SOAP headers for the message being created whereas inbound filters process

incoming SOAP message headers.

WSE provides a toolset for implementing security within a SOAP message. It gives the
possibility to authenticate SOAP message, verify its integrity and enables encryption

using the mechanisms defined by WS-Security specification. It includes the use of the

50

username token, the digital signature and the message encryption. It allows sending
X.509 certificates as WS-Security Tokens. It can be used to build a wide range of
applications, but it has the disadvantage of delegating much of the work required to
integrate protocols with the application to the developer. To avoid this problem, a

security proxy implementation approach may be used.

111.2.1.2.2 Proxy approach

SOAP security proxy is an application level security gateway. It resolves the libraries
approach problems since it can be easily deployed and transparently integrated into

existing infrastructures.

Operating at the application level, the proxy-based solutions can perform advanced
security checks such as XML-schema validation and content filtering. Furthermore, it

reduces administration overhead by centralizing the management tasks.

Example: Web Services Domain Boundary Controller (WS-DBC)

WS-DBC is an application level security software proposed by Xtradyne [36]. It protects
web services and SOAP messages. It adheres to the WS-Security [24] standards and
relies on the SAML specification to ensure message integrity and confidentiality. For
message authentication, WS-DBC uses SAML assertions located in the message header,
SSL, X.509 certificates or simply HTTP basic authentication. It can also grant
anonymous access or authenticates the message sender according to the IP source

address.

51

In the case of an outgoing message, the WS-DBC inserts the security credentials into the
message header, before forwarding it to the recipient or to another WS-DBC

intermediary. The following example illustrates this process.

WS-DBC » WS-DBC

HTTP Basic Authentication (Authentication
Authentication via SAML assertion via SAML assertion)

Figure II1.6: Authentication in WS-DBC

To provide more protection, WS-DBC can additionally sign SOAP messages by
complying with the XML Digital Signature specification. It also enables authorization
management, auditing and graphical administration (for security policies, audit event

notification, public key management, SAML profile, access control ...).

WS-DBC has the advantage of easily integrating with existing network infrastructure and
applications, since it requires no modifications. It provides a complete A4 solution
(Authentication, Authorization, Audit, Administration) without impairing existing

applications performances.

I11.2.2 Web Services Level Agreement

WSLA Framework of IBM is an example of web Services SLA management solution. It

consists of a flexible and extensible language for describing the different SLLA artifacts

52

and a runtime architecture comprising of several SLA monitoring services [37]. To
provide a higher level of objectivity, the WSLA Framework provides the possibility to

outsource the SLA monitoring to third parties.

The WSLA language is based on an XML-Schema and describes the SLA structure in
three sections: parties, service description and obligations. The parties section identifies
all the involved parties, including the signatory parties (service customer and service
provider) and supporting parties (third parties entrusted with SLA monitoring). The
service description section specifies:

e The SLA parameters (throughput, service availability, response time ...)

¢ Services to which these parameters relate

¢ How these parameters are measured or computed (which functions and which

metrics to use)
¢ How are the metrics of a managed resource accessed (typically by giving the
Uniform Resource Identifier of a hosted computer program, a protocol message or

the command for invoking scripts or compiled programs).

The service level obligations section defines the service level objectives to be guaranteed

and the actions to be performed especially, when the SLA is violated.
The SLA management life cycle provided by the WSLA framework consists of [figure

1IL.7]:

e SLA negotiation and establishment, which generates a signed SLA document

53

e Deployment of the entire or part of the SLA document to the involved parties
¢ Measurement and reporting of the SLA
¢ Execution of the corrective management actions when needed

¢ SLA termination.

1. negotiatelsign

5. terminate

Web Service

Business "
~ Entity

4. act &

: Management

Figure I11.7: WSLA Services and their interactions

111.2.3 Network identity management

The Liberty Alliance is the first open standards organization for federated network
identity management and identity-based services [29]. Its specifications [38] intend to
facilitate the interaction between businesses and their customer and partners, while

respecting the privacy and the security of shared identity information.

54

Federated identity management makes it possible for an authenticated party to be
recognized across multiple domains [38]. It allows users to authenticate only once to one
company or web site, and access personalized content and services in an other location
without having to re-authenticate to this location or sign-on with a separate username and
password. The first web site that authenticates the user is called identity provider and the

target location is called service provider.

The Liberty Alliance architecture is as follow:

Figure II1.8: High-Level Overview of the Liberty Alliance Architecture

55

Within this architecture [figure III.8], the federated identity management may be
provided using account linkage, simplified sign-on or fundamental session management.
This allows users with multiple accounts at different Liberty enabled sites to link these
accounts for future authentication and sign-on. The simplified sign-on allows users to
sign-on once at a Liberty-enabled site, and to be seamlessly singed-on when navigating to
another Liberty-enabled site. This is supported both within a circle of trust® and across
circles of trust. The Liberty Federation Framework (ID-FF) enables also the real-time
exchange of Meta Data, such as X.509 certificates and service endpoints, between

Liberty-compliant entities.

The Fundamental session management features enable global sign-out from all Liberty-
enabled sites that are linked together in a given session, and also enables the associated

entities to communicate the type of required authentication when signing-on.

The Liberty Identity Web Services Framework (ID-WSF) defines a framework for
creating, discovering and consuming identity services”. It defines the fundamental
features for the use of identity services, like identity services SOAP binding (how ID.*

messages are mapped into the <body> element of SOAP messages) and security profiles.

@ The group of service providers that share linked identities and have business agreements in place is
known as a circle of trust

G « An identity service is a particular type of web services that acts upon some resource to either retrieve
information about an identity, update information about an identity, or perform some action for the benefit

of some identity” [44].

56

The Liberty Identity Services Interfaces Specifications (ID-SIS) [38] are a set of
specifications for identity services that can be built. These services might include
registration, contact book, calendar and geo-location services. These specifications are
used to ensure the interoperability among services. For instance, the personal profile
identity service defines a basic schema for user profile. It specifies the most commonly
used attributes and their possible values, including name, legal identity contact
iriformation such as home and work addresses, phone number, email and other online
information. It also includes mechanisms for employment and public key information

inclusion, and service extension to include other arbitrary data [39].

Some protocols have been defined for communication between the three actors in the
Liberty architecture (principal, identity provider, service provider) including protocols for
identity federation, single-sign-on, federation termination, single logout and others [40].
Bindings and profiles of these protocols and Liberty messages to HTTP-based
communication frameworks are also specified [41]. A framework for describing and

discovering identity management is also specified [42].

I11.2.4 Analysis

There are some standards and solutions (or implementations) in the web services domain
that relate to the identified requirements. There are solutions and/or standards for
security, for SLA management [37], for network identity management [29] and others.

However, these solutions and standards tackle just specific requirements and do not

57

provide a comprehensive and integrated solution. The following table gives a summary of

the requirements that are satisfied by each solution and each standard.

Standards & Solutions Satisfied Requirements

Web Services Security (WS-Security) Security (standard)

Security Assertion Markup Language (SAML) Security (standard)

Web Services Enhancements (WSE) Security (solution)

Web Services Domain Boundary Controller (WS- | Security (solution)
DBC)

WSLA Framework SLA management (solution)
Liberty Alliance Project Network identity management
(standard)

Table II1.2: Web services standards and solutions analysis

III.3 Summary

The Parlay/OSA framework provides common functions for accessing
telecommunications networks capabilities. However, it comes as a separate functions
library and its use is not transparent to the application developers. Parlay X [20] is a more
recent initiative that focuses on Web services. However, the specifications do not include

anything on common functions (e.g. security, SLA).

On the other hand, there are standards for some of the common functions of web services.
Examples are the Liberty Alliance Project specification for federated identity
management, WS-Security and SAML for security management and P3P [30] for privacy

management. There are also solutions that meet some of the identified requirements (e.g.

58

WSLA framework of IBM for web services SLA management, WS-DBC of Xtradyne
and web services enhancements 6f Microsoft for security issues). However, these
standards and solutions tackle just specific requirements and do not provide a

comprehensive and integrated solution.

The solution (named framework) we are proposing is based on web services paradigm. It
uses existing web services standards and technologies to provide common functions to
the applications developers'”. The architecture of this solution is presented in the next

chapter.

(*) A paper concerning this solution was published on June 2004 [45].

59

Chapter 4:

Proposed architecture

This chapter is about the framework we are proposing for the common functions. It
presents the architecture of the framework, its functional entities and its execution. It
starts by stating some assumptions made for the proposed architecture. Then, it presents a
general new web services architecture. After that, the general framework usage is
presented, and its different functional entities are described. The chapter ends by a

description of the proposed framework and its functional entities interactions.

IV.1 General assumptions

Depending on the business model, the network operator may choose to implement the

common functions within each web service, use its own framework or use a framework

provided by a third party. This leads to the following assumptions for the architecture:

e The network operator may own the framework or have a business agreement with the
framework operator.

e The network operator may delegate no function, some or all of the required functions
to the framework. For instance, the network operator may prefer to handle the

security issues itself, and delegates all the other common functions execution to the

framework.

e The network operator may have its own policy server that maintains information
about the functions to be delegated to the framework. It may also use the framework

policy server for that.

IV.2 New web services architecture

To give a solution to the common functions, we have defined a new web services
architecture. This architecture allows the use of the common functions framework by
multiple web services simultaneously and easily. This section starts by explaining the
need for a new architecture. Then, it presents the new architecture and discusses some

issues related to its usage for providing common functions.

1V.2.1 Motivations

The architecture we are proposing for providing common functions is based on the web
services paradigm. In fact, this architecture is intended for a web services environment,
then, the use of a different technology in this case will generate some heterogeneity
problems. The second reason of this choice relates to the fundamental principals of web
services. They provide a high level of abstraction, they are loosely coupled and they are
programming language independent. This will make the framework easy to use and

makes its components reusable.

In the current web services architecture, web services execution is done by directly
interacting with services implementations. Executing a web service requires the client

application to bind to the service implementation and communicate directly with it. To

61

use the framework for providing common functions, web services architecture must allow
the service execution to go through an intermediary system. This is not enabled by the

current web services architecture.

1V.2.2 New architecture

Instead of the traditional web services architecture (figure IV.1a), we have defined a new
framework based architecture (figure IV.1b). The framework in figure I'V.1b includes and
extends the service registry functionalities. Furthemore, it implements new common and

additional functal requirements identified eurlierin the second chapter.

Framework
Service
Service registry
registry
alh
ya
M /
/
/
/
/.
/ Bind
Service Service Service 4___1_3._1_13(1 e

provider

requestor requestor

Figure 1V.1b: New web
services architecture

Figure I'V.1a: Traditional web
services architecture

62

IV.2.3 Delegation issues

In the context of this thesis, the web service provider is the network operator. Then, in the
new architecture, three execution scenarios are possible, depending on the common
functions delegated to the framework. The service provider can delegate no function,
some or all of the common functions to the framework. These scenarios are presented
here-after and the relating use cases and sequence diagrams are presented using the UML

(Unified Modeling Language) notation.

-IV.2.3.1 No function is delegated to the framework

In this case, it is better to have a direct communication between the service requestor and
the service provider, since no framework function is needed. However, if the framework
is used, it plays a simple gateway role. It receives a message from its source and sends it

to the destination without any treatments or transformations.

a. Use case

% \ Delegate no function
Service requestor | y/‘"ﬂ T
'9 Transfer message

PN P

g —

Service provider

Figure IV.2: No functions is delegated to the framework use case

63

b. Sequence diagram

% Framework: C}P_

Service requestor:Service requestor Service provider:Service provider
invokeService()
1 invokeService()
| >
response :
response
i

Figure IV.3: No functions is delegated to the framework sequence diagram

Iv.2.3.2 All functions are delegated to the framework

In this case, the framework has to execute all required functions, including security,
service management, network identity management, privacy management and charging.
The following use case illustrates the overall functions to be performed by the

framework.

64

a. Use case

A X

Service requestor Service provider

Manage security
<<},nclude>>

Delegate all functions

s
-
=™

<<ix‘tq1ude>>

y \\anage network identity
r

A —
. @f:n—chargmg
Perform service management

——

e

Figure I'V.4: All functions are delegated to the framework use case

b. Sequence Diagram

Scenario:
1- The service requestor invokes a service.
2- The framework processes the request by executing all the adequate functions.
3- The framework transfers the processing outcome message to the service provider.
4- The service provider sends the response to the framework.
5- The framework processes the response the same way as the request
6- The framework sends the processed response to the service requestor.

65

Iv.2.3.3

X

Service requestor;Service requestor

1: invokeService(request)

Framework:

Service provider:

6: transfertResponse(transformedResp onse)

2: grocessRequest(allFWfuncs) -

= _‘,___‘D

ransformedRequest

:Service provider

3: transfénRequest(transformedRequest) .

4: response

&S

5: processResponse()
>

,:4’—/

o

transformedResponse

Figure I'V.5: All functions are delegated to the framework sequence diagram

framework.

Use case

Some functions are delegated to the framework

In this case, a policy server is used to determine which functions are delegated to the

The request processing includes a preliminary step before executing the delegated

to the framework.

66

common functions. When receiving a service invocation request, the framework starts by

interrogating the policy server to get the list of the common functions that are delegated

% d /Appl;' delegated functions %

Service requestor ! \,\
/
i III
y
y
Il’

Delegate some functions

/

—

e
R

! Service provider

"x
l
o
|

”
J/,/
-
P
—'/
-

A
&

y <<include>> clude>>
Y,

/
/
<<jficlude>> —
;
/

//’ Define delegated functions
‘. II/ B e
: Y :
: Execute FW delegated functions .
i) M anage policies

-

e

Figure IV.6: Some functions are delegated to the framework use case

b. Sequence Diagram

The main scenario for this use case is as follows (figure IV.7):

1-

2-

The service requestor invokes a service.

The framework identifies the set of delegated functions by consulting the
policy server.

The framework processes the request by executing the delegated functions.
The framework transfers the processed request to the service provider and
receives a response from it.

The framework processes the response and sends the processing results to the

service requestor.

This scenario includes the two previous ones. In the first case, the set of delegated

functions is empty; then, the actions “processRequest” and “processResponse” can be

67

removed. In the second case, the “subSetDelegatedFunctions” includes all common

functions.

% ¢ Framework: %

Service requestor:Service requestor Service provider:Service provider

1: invokeService()

2: crdateSubSetDelegatedFunctions()
I —

3: pro¢essRequest(delegatedFunctions)
i B

4: transferRequest()

. 4

response

5: procéssResponse(delegatedFunctions)

response

Figure IV.7: Some functions are delegated to the framework sequence diagram

IV.3 Framework functional entities

In the framework architecture we propose that each common function is provided by a
different functional entity. The functional entities included in the framework are: Security
server, network identity management server, SLA management server, charging server,
policy server, registry server, privacy management server and the framework entry point

that we call framework interface. This section gives the description of each of these

68

entities. It presents each functional entity as an independent use case. The use cases and

the sequence diagrams are presented using the UML notation.

IV.3.1 Security server

The framework may have to perform some or all of the security aspects. The detail of the
security functions to be executed (i.e. authentication, authorization ...) and the related

means (i.e. encryption key, signing certificate ...) are retrieved from the policy server.

Once a request is received, the framework starts by identifying the set of required
security functions by consulting the policy server. Then, it executes them according to the

associated information.

Iv.3.1.1 General security use case

The security functions include authentication, authorization, data integrity,

confidentiality, non-repudiation, availability and key management.

69

X

Service provider

x

Service requestor

Security use case

M anage security e <<include>> :
— S AN \\\ --.-"“'----_____, '
H \\‘\ ~~\\ —— |
3 “\ . 0
A . Manage data integrity ;
_

T 77 .
i =.
g { . 4
! <<include>> N
! \,
\\ \-\
. <<mclude<>
N
/AAQH\\

// (o " <<include>>
‘ M anage availability /’ ."']
| 4 H N
| <sinclude>>/
; V4 ’;' @wuthorization \
! LY B
\<M anage confident iality>
\, o
<<includ&§

#
\,
N,
\,
—

¢
!

N
——

\/

{
i
;
I
{
i
J
I
i
I
i
i

| "
/Man;ge authentication
| \ <,ll<include>>
N
; erform key mma@ Qanage non repudiation

Figure IV.8: General security use case

“Manage security” use case
The “manage security” use case is the core of the security process. It determines the

IV.3.1.2
security functions to be executed, performs adequate security treatments, and inserts

necessary security assertion to the received message.

70

a. Use case

X X

Service requestor Service provider

Security Management

Apply security functions -

- - - //<<include>>

Y

<<incladg>s"

P
.
"
-
-
"
-

.
el
- 2

p——

\\<<1xiclude>>
1
Grform adequat security treatmentS/ ' Insert security credentials
— - ' .
i
[}

1
/
e N

|
|
!

P

@rocessed message to targeted rec@

) I

Figure IV.9: “Manage security” use case

b. Sequence diagram

1- The service requestor invokes a service by sending a SOAP request to the

framework.

2- The framework processes the request (Authenticates the requestor, verifies

resources authorization, digitally sign and/or encrypt the request, ...)

3- The framework inserts the appropriate security credentials into the SOAP
request (such as authentication assertion, authorization assertion,)

4- The new request is transferred to the service provider.

5- The framework receives the service provider response.

71

6- The framework applies to the response the reverse of the treatment applied to
the request.

7- The output response is sent to the requestor

% | Framework: | %

Service requestor:Service requestor Service provider:Service provider

1: invokeService() o

2: procebsRequest(security Functions)
P

3 mfenSecurityCredentials()
<

>

4: transfertRequest(transformedRequest)

5: response

6: processResponse
-

7: processedResponse

Figure IV.10: “Manage security” sequence diagram

In order to ensure the plug-and-play requirement, the security service has to be
implemented using the security proxy model. Furthermore, the security server must
adhere to the WS-Security specification and uses SAML assertions to ensure message

security.

72

1V.3.2 Network identity management server

The most appropriate mechanism for the network identity management is Single Sign On.
So, when attempting to access a web service, the service requestor authenticates to the

framework and the framework communicates the authentication assertion to the entity

that hosts access to the service (the service provider).

This can be achieved by either inserting the entire authentication assertion into the

request to transfer to the service provider or only by inserting its reference.

a. Use case

Network identity management

% f & M anage Network identif
" Service provider

g QI
- et

/

e

<<igclude>>

-
q

,,,,, A
//
Quthent icate rcquestD

Service requestor e
<giriclude>> i
P .

B

\
N
B —

/transfe“ modified reques>

e

<.------.--.

l
u

\

(Modify request
—

/
: Qdd authentication assertion

e T
(Add authentication assertion reference 5
T -

Figure IV.11: Network identity management use case

73

b. Sequence diagram

The service requestor invokes a service
The framework authenticates the service requestor

The framework adds the authentication assertion to the request

(or possibly the authentication assertion reference).

receives the response.

X

Service requestor:Service requestor

1: invokeService()

The framework sends the request to the service provider, and

The framework transfers the response to the service requestor.

X

Scrvice provider:Service provider

2: authenticateRequestor()

i

=

5: response

:addAu

>

thenljg@m\ssertion(request)

WS

4. transferRequest(RequestWithAuthAssert)

response

Figure IV.12: Network identity management sequence diagram

74

1V.3.3 Service Level Agreement management server

To manage the service providing conditions and service quality levels, the framework
must be in charge of the SLA parameters negotiations, and SLA creation. It has also to
enable the web service provider and the consuming application to commit to the created

contract.

The committing function may be delegated to the security server since it implies some
security functions such as signing, integrity and confidentiality insurance of the SLA.
Other security considerations apply to the SLA commitment including the non
repudiation that requires key management. The framework may save the SLA violations

for future use.

Once the SLA is negotiated, created and committed to, the framework must have the

ability to provision the agreed SLA somewhere in the system, so that it can be evaluated

during the service execution. This aims to enable the SLA enforcement.

75

a. Use case

SLA management

X

Service requestor

e — X

<§aiﬁ'(;lud&> N Service provider
2 <<igclude>> P
\

|

Negociate service usage
!
" <<ificlude>>

WV
Provision SLA e '
\\-—\ %
: <<System>>
Enforce SLA '

\ \
N

N~

Figure IV.13: Service Level Agreement use case

b. Sequence diagram

1- The service requestor invokes a service

2- The framework negotiates the SLLA parameters with the service requestor (the

service capabilities to be supplied and under which condition the service is

supplied)

3- The framework creates the SLA

4- The service requestor and the service provider commit to the created SLA (by

digitally signing and exchanging the signed SLA for instance)

5- The framework provision the SLA

76

6- During the execution, the framework verifies if the web service is executed

according to the associated SLA.

% ! Framework: %

Service requestor:Service requestor Service provider:Service provider

1: invokeService()

2: negotiateSLA()

‘A

3i createSLA
R P

4: commitToSLA()

4: commitToSLA()

»
»

SigEASLA(), .. T —
signedSLAQ) e
5{ provisionSLA()
| [P R—
I
executeService()
6: enforceSLA()
I
i executionEnded()
results()

Figure IV.14: Service Level Agreement sequence diagram

77

I1V.3.4 Charging server

In the case of a non-free service, the framework has to be able to charge the service
requestor for the service usage. It must provide the service provider with a mechanism to

enable service usage metering and accounting.

a. Use Case

When receiving a service invocation request, the framework negotiate the charging
contract with the requestor (pre-paid or post-paid charging, service usage or content
based charging, ...) and initiates the charging session. After the service execution, the
framework terminates the charging session and saves the charging information. This

information may be used to compute corresponding charges.

: Charging system
% ,,,,,,_ﬁm/d(Negociate charging m@ —— %
! e
Service requestor 3 Service provider

- ——

We charging session

— T—

. . RN ‘
Terminate charging session /\ \\\\\ : %

~—

(Compute charges \f., - <<System>>

— .

Figure IV.15: Charging use case

78

b. Sequence diagram

% ! Framework: ‘ %

Service requestor:Service requestor Service provider:Service provider
P
invokeService()
} ‘ : « negociateChargingContract()
o
‘ nitiateChargingSession()
-

P R

executeService()

response

response

terminateChargingSession()

A

Figure 1V.16: Charging sequence diagram

IV.3.5 Policy server

The policies governing the execution of the framework functions are captured in policy
server. To identify the appropriate policies, the framework can either use the local policy
server, or the service provider policy server (figure IV.17). A third party policy server
can also be used. In the first case (IV.17a), the service provider must have a complete
access to the framework policy server, in order to maintain policy information accurate

and up to date. In the second case (IV.17b), the framework must have read access to the

79

service provider policy server to get necessary information. In this case, the local policy

server holds only the address of the remote server.

-

Framework b

Service Provider
N

Figure IV.17: Open policy access interface

The policy server holds information about:

o The policy server to use.

o The common functions to be performed by the framework and their execution
order.

o The way to perform each function and the detail of the related means (e.g.
authentication policies, signing certificate, encryption key, authorization policies,
.l)

o Service registration and discovery policies if these are not provided by the registry

SCrver.

IV.3.6 Registry server

For service registration, publication and discovery, the framework can use an existing
UDDI implementation. The registry server database can be used to save other

information such as SLA violations ones.

80

a. Registration scenario

Service provider

Framework l

Entry point Policy server

Registry server

Figure 1V.18: Service registration scenario

1- The service requestor creates a new web service and asks the framework to

register and publish it.

2- The registry server makes the new service accessible for client applications.

3- The entry point asks for new service usage policies (policies may also be given

and registered out of bound).

4- The entry point registers the policies or the service provider policy server

reference if the latter is to be used.

81

b. Discovery scenario

Service requestor

1- Discover request 4- WSDL description

Framework l

Entry point
2- Discovery request

) 3- WSDL description
Registry server

Figure IV.19: Service discovery scenario

For registration and discovery, the registry server can contact the policy server for

authorization policies, if these are not provided by the registry server.

IV.3.7 Privacy management server

The privacy management server has the responsibility of protecting the service
requestor’s privacy. The privacy policies can be saved in the policy server or directly in
the privacy server. These policies can be expressed using the Privacy Preferences Project

(P3P) [30] of W3C.

The P3P specification enables the expression of the privacy practices in a standard format
[30]. It also provides mechanisms for automatic retrieval and easy interpretation of these

practices by user agents.

82

1V.3.8 Framework interface

The framework interface is the entry point to the framework. It federates the other
functional entities execution and communication. It is the unique interface that may be

seen and accessed from outside the framework.

IV.4 Framework Architecture

After describing the different framework components, we will see how these components
are integrated together. Before that, we will have a look at the way a web service can be

executed using the framework.

83

IV.4.1 Service execution scenario

Service requestor Service provider

Framework
) Framework
Registry server interface /\
) Security server
: 3 :
Charging server Policy server 3a
3e <
h4 3 A4
A A A
h 4
3b 3c
Privacy Network ID
Management management Management
Server server Server

Figure I'V.20: Framework execution scenario

The typical execution scenario of the framework when a web service is invoked is as
follow:
1- The service requestor invokes a service by sending a SOAP request message

to the framework.

84

2-

4

(9]
1

(@)
T

~]
1

The framework contacts the policy server to find out the functions that are
delegated to the framework and their execution order.

The framework executes the required functions (3a and/or 3b and/or 3¢ and/or
3d and/or 3e) according to the order specified in the policy server and
modifies the SOAP request accordingly (i.e. add adequate security assertions
to the message). Some functions are only initiated, like SLA enforcement and

charging, and terminated when appropriate during the service execution.

Each functional entity contacts the policy server to identify how to perform its
actions. For instance, the security server contacts the policy server to

determine which security functions are to be performed (e.g. authentication,

. authorization) and via which means (i.e. authentication policies, authorization

policies, signing certificate, encryption key ...).

The framework transfers the processed request to the service provider.

The service provider sends the response to the framework

The framework processes the response according to the delegated functions.

The framework transmits the results to the requestor.

IV.4.2 Architecture

The framework architecture is shown in the figure below (figure IV.21). Each common
function is implemented as a web service. An internal registry is used for these Web
services. They can be accessed only by the framework’s components, except the

framework interface which can be accessed by external components.

85

Service requestor

Service provider

Framework

interface \) /_\
\

Security server

3e 4

3h 3c

Network ID
management
server

Privacy
Management
Server

Management
Server

Execution Registration e Discovery

Figure I'V.21: Framework architecture

IV.S Framework functional entities interaction

The functional entities inter-communication is based on functions calls. Functions

parameters depend on the function to be executed. The basic exchanges during the web

service execution are described hereafter. Other parameters may be exchanged according

to the use case.

86

o Service requestor-Framework interface: The service requestor invocation request
provides the serviceld, the methodld and the providerld parameters. The requestorld
parameter can also be deduced from the request source. The methodld parameter
refers to the web service method to be executed. The providerld parameter refers to

the entity providing the service identified by the serviceld parameter.

o Framework interface-Registry server: Each time the framework interface needs a
given functional entity reference, it is gotten to communicate with the registry server.
It can use the getFunctionalEntityRef(functionDescription) function, where the

JfunctionDescription may be “security”, “charging”, “policy” or any other functional

entity description.

o Framework interface-Policy server: The main parameter supplied by the
framework interface when accessing the policy server is the serviceld. The
requestorld and methodld parameters may also be necessary if the policies
associated to the web service depend on them. These three parameters are the
principal ones provided by the other functional entities when communicating with the

policy server.

o Framework interface-Security server: If only authentication is to be achieved by
the security server, it’s obvious that the required parameters are requestorld and
serviceld. The serviceld is used to determine the authentication policies

(authentication certificate, authentication algorithm ...) associated to the invoked

87

service. These policies may be related to the service provider rather than being related
to a single web service. However, the same parameter is used, since a given web

service is associated to a unique service provider.

In the case authorization function is also delegated to the framework, the methodld
parameter is required as well. In other cases, where data integrity, data confidentiality
and/or non-repudiation are to be ensured, the whole message (inbound or outbound

message) is to be communicated to the security server.

Framework interface-SLA management server: To set up the SLA management,
the framework provides the SLA management entity with the serviceld and

requestorld parameters.

Framework interface-Network ID management server: The only needed

parameter is the requestorld.

Framework interface-Charging server: requestorld and serviceld are
communicated to the charging service to activate the charging session. Moreover, the
execution ended message may have to be transferred to the same server, in order to

terminate the charging session.

88

IV.6 Conclusion

This chapter gave a detailed description of the architecture of the framework we are
proposing for common functions. It presented the global architecture of the framework
and its functional entities. Then, it gave an insight to how these different entities interact

between them.

The following chapter will explain how the framework execution can be optimized. It

starts by looking at some use cases of using the framework in order to come up with a

solution leveraging the most possible cases.

89

Chapter S:

Optimization

This chapter is about the optimization of the common functions execution. It intends to
give an answer to the question: “What is the optimal way to execute the framework
Sfunctional entities during a given client application execution”. It starts with some
particular case studies. After that, it outlines some useful remarks deduced from the
studied cases. Then, it defines the common functions execution scope, and terminates by

some general rules to monitor the framework execution.

V.1 Particular case studies

To help understanding the web services execution scenarios using the framework, we will

start with looking at some case studies of using them.

V.1.1 First case study

Given a web service ws offering three functions f1, f2 and f3. The ws is provided by the
web service provider SP. The SP delegates just the authentication function to the
framework. A service requestor SR wants to execute fl and f2. To model this problem,
we will use the notation given here-after [Figure V.1]. This notation is used in the rest of

this document to modelize this kind of problems.

90

executes provides delegates

1) 2 — > ws(fl,f2) < Sp > FW {Auth}

Figure V.1: First case study of web services execution

In this case, the best solution is to have a direct communication between the service
provider and the service requestor, after the execution of the authentication function. The

scenario of this case is as follows:

1. The SR asks for the execution of the function f1, on the web service ws.
2. The framework authenticates the SR
3. The framework redirects the request to the SP

After that, the SR continues the communication directly with the SP.

91

SR :Service requestor SP:Service provider

1: executeFunction(ws,f1)

2: Authentication
p

3: redirectRequest()

4: executeFunctipbn(ws,f1)

v

5: fl-respdnse

6: executeFunction(ws,f2)

Y

7: f2-respdnse

Figure V.2: Sequence diagram of the first case study of web services execution

V.1.2 Second case study

Now, consider the same problem as in the first case and suppose that even the data
confidentiality is delegated to the framework. In this case, the framework has to process
each message exchanged between the SR and the SP. Then, the whole communication

has to pass through it.

executes provides delegates

o) ¢ — >ws(f1,f2) < SP > FW{Auth, Data Confidentiality}

Figure V.3: Second case study of web services execution

92

The sequence diagram of this case is as follow:

% Framework: %

SR:Service requestor SP:Service provider

1: executeFunction(ws, f1)

2: executkDelegatedFunctions(Auth, Conf)
- >

i =

3: executeFunction(ws, f1)

4: fi-response

-

3: processResponse(Conf)
B P

6: fl-response

7: executeFunction(ws, {2)

8: ex?cuteDelegatedFunctions(Conf)
P T

9: executeFunction(ws, QL

10: f2-response

il p rocessResponse(conf)

R

12: f2-response

Figure V.4: Sequence diagram of the second case study of web services execution

93

The SR asks for the execution of the function f1, on the service ws. The framework
authenticates the SR and processes the request to ensure data confidentiality. In step
three, the framework transfers the processed request to the SP. It receives the SP response
in the 4th step, processes it (always to ensure the confidentiality) and transfers it to the

SR.

When the SR asks for the f2 execution in step 7, the framework executes only the
confidentiality function, which means that it doesn’t re-authenticate the SR. After that,
from step 9 to step 12, the framework continues the interaction the same way as seen for

the f1 execution.

V.1.3 Third case study

Now, consider a more complicated use case. Assume that in the same transaction, the SR
tends to execute three functions, f1, £2 and f3. The three functions are offered by three
different services wsl, ws2 and ws3 respectively. wsl and ws2 are provided by the
service provider SP1, and ws3 is provided by SP2. SP1 delegates authentication,
authorization and network identity management to the framework. SP2 delegates the

data confidentiality function too. The problem modeling is as follows:

executes provides delegates
RS —cmemmmmmmmee > wsl(fl) < SP1 > FW{Auth, Authorization,
NetlD}
RS commmmmmeeeee >ws2(f2) < SP1 > FW{Auth, Authorization,
NetID}
RS ~mmcemmmmeeee > ws3(f3) < SP2 > FW{Auth, Authorization, NetID,
Conf}

Figure V.5: Third case study of web services execution

94

The execution sequence diagram of this case is shown in figure V.6a and V.6b. In the
first figure, the SR asks for fl execution. The framework executes all the delegated
functions associated to the service provider SP1, and redirects the SR to the SP. After
that, the SR asks for f2 execution in step 6. Since the Web Service wsl is provided by the
same service provider as the previous service, the framework executes only the

authorization function.

% . Framework: %

SP:Service Requestor SP1:Service Provider
n 1: executeFunction(wsl1, f1)

2: executeDflegatedFunctions(Auth, AuR NetID)

‘i‘c J—

3: redirectRequest()

4: executeFunétion(wsl1, f1)

" 4

S: fl-regponse

6: executeFunction(ws2,f2)

7: executeDeleg—gedFunctions(Authorization)

8: redirectRequest()

9 executeFundfion(ws2, f2)

o 4

10: f2-response

Figure V.6a: Sequence diagram of the third case study: interacting with the same SP

95

When asked for the f3 execution, and since the two service providers delegate network id
management to the framework, the framework doesn't re-authenticate the SR. Instead, it
uses the network id management function to authenticate the SR to the service provider
SP2. However, the framework has to keep the session history in order to know that the SP

has already been authenticated within the same session.

The framework executes also the data confidentiality function. After that, the framework
transfers the processed request to the SP, processes the received response to ensure data

confidentiality, and sends the processed response to the SR (figure V.6b).

% Framework: . %

SR:Service Requestor SP2:Service Provider

11: executeFunction(ws3, {3)

2: execDglgatedFunc(NetID, Conf)

3: executeFunction(ws3, f3)

4: f3-response

3: processResponse(Conf)

IR T

6: f3-response

Figure V.6b: Sequence diagram of the third case study: interacting with a different SP

96

V.2 Use cases analysis

From the previous three use cases, we can deduce that depending on the use case, a given
common function may be executed many times or only once during a request processing.
For instance, in the second use case, the data confidentiality function is executed each
time a message is received or is to be sent. In the third use case, the authentication
function is executed once during the whole communication between the requestor and the

provider.

We can also point out that in some cases; it is more efficient that the service requestor
communicates with the service provider without going throw the framework, after the
latter has executed the delegated functions. Such a case is for instance when the

framework has just to authenticate the service requestor.

There are two ways to give the requestor the possibility to directly communicate with the
provider. The first one is to firstly make the requestor go throw the framework and
redirect the request to the service provider after the delegated functions have been
executed. The second approach is to send the request directly to the service provider who
will ask the framework to execute the delegated functions for him. The first solution
keeps the use of the framework transparent to the service requestor and the service

provider. The second one requires the service provider to be aware of the process.

97

V.3 Functional entities execution optimization

Based on the analysis of the studied use cases, we will give some solutions on how to

optimize the execution of the framework functional entities.

V.3.1 Common functions execution scope

To ensure that common functions are executed only when needed, we have defined the

function execution scope concept. It is the scope on which a given function is executed

once. Six function execution scopes are defined and they are:

Message Scope (MS): a function f is said to have a message scope if it's executed
once each time the framework has to process a new message (e.g. Data Integrity,
Data confidentiality)

Function Scope (FS): relates to the function that is executed once each time a new
web service function is invoked (e.g. Authorization, if the authorization policies
are related to the functions rather that to the service)

Service Scope (SS): relates to the function that is executed once each time a new
service is invoked (e.g. Authorization, if the authorization policies are related to
the service)

Service Provider Scope (PS): relates to the function that is executed once within
the interaction with the same service provider (e.g. Authentication).

Application Scope (4S): relates to the function that is executed once within the
whole client application execution (e.g. Authentication, in case the network ID
management is used)

Event related Scope (ES): relates to the function whose execution starts and ends

98

when some events arise (e.g. starts with the application beginning and ends with

the application ending (e.g. charging, SLA enforcement)).

V.3.2 General rules about the framework execution

During a client application execution, the framework functional entities are executed
according to theirs scopes. The general rules associated with the functions scopes are:

+ The message scope function (MSF) is applied to each exchanged message. In
situation when a MSF function is delegated to the framework, the whole
communication between the requestor and the provider has to go through the
framework.

+ The function scope function (FSF), the service scope function (SSF), the provider
scope function (PSF) and the application scope function (ASF) have to be
executed once within the same corresponding scope. They are executed once for
each function provided by the web service, web service, service provider and
client application respectively.

* The event scope functions (ESF) have to be executed and/or terminated when the

triggering event arises.

In the case of the two last rules, three possibilities can be considered. The more
appropriate one to use depends on the use case. The first possibility is to make the whole
communication pass through the framework which executes the common functions when
needed. The second possibility is to make the service requestor interact directly with the

service provider, and when a common function has to be executed, the latter asks the

99

framework to perform this function. This possibility may be very efficient for instance

when the charging mechanism used is “pay per use”.

The third possibility is an hybrid of the two previous approaches. The communication
alternates between going through the framework and being redirected for a direct
interaction between the requestor and the provider. In this case the framework executes
some delegated functions and redirects the SR to the SP. The major problem here is how
to know if the SR has to directly interact with the SP for all the remaining client
application execution, or only for a given scope. The second problem is, if the redirection
is total, then how to ensure this total redirection. The next sub-section tries to answer

these questions.

V.3.3 Partial and total communication redirection

To invoke a given web service, the service requestor starts by binding to the web service
end- point. This end-point may be retrieved from the web service WSDL file or given to
the requestor by other means. In case the framework is to be used for common functions,
two solutions are possible. As an end-point, we can either give the framework URL or

simply give the service provider URL.

In the first case (figure V.7), the framework is used as end-point of the service to execute.

Then, the service requestor (SR) starts by binding to the framework. This means that each

new function call passes through the framework. Therefore, for a global redirection of the

100

communication to the service provider (SP), the framework has to change the binding

URL on the fly.

% Framew ork:

SR:Service requestor

bind

start communicating

Figure IV.7: The service end-point is the framework

When the end-point is the service provider, we have to determine if the service requestor
intervention is needed for the execution of the delegated functions or not. If no SR
intervention is needed such as for charging, the SR can bind to the SP and start
communicating directly with it. When a common function needs to be executed, the SP
asks the framework to do it, receives the execution result and continues interacting

directly with the SR (figure V.8).

101

% Framework: %

SR:Service Requestor SP:Service Provider

1: bind

2: start corhmunicatin

i

*[event]3: execDelegFunc(F) . B

4: continue c¢mmunicating

Figure V.8: No SR intervention is required for common functions execution

When a SR intervention is required (e.g. for authentication), the framework has to be
given the possibility to directly interact with the SR for the execution of the concerned
common function (the one that requires SR intervention). When a common function
execution is needed, the service provider redirects the service requestor to the frameWork.
The framework executes the required function by interacting with the SR and redirects

the communication to the SP (figure V.9).

102

% . Framework; /ii

SR:Serviqe Requestor SP:Service Provider
P 1: bind

2: start communication

[event]3: redirdctTo(FW, F)

4: execDelegFunc(F)

5: redirect To(SP)

6: continue cothmunicating

Figure V.9: The SR intervention is required for the common function execution

Now the question is: how to use these different information resources to automatically

monitor a client application execution.

V.4 Client application execution monitoring

To automatically monitor a client application execution, the following steps are to be

followed:

o Specify the execution scope of each common function to be delegated to the

framework.

103

o Configure the session timeout to be used. This time out is used to determine when
a client application execution session has to be terminated. The session timeout
parameter can be different for each service provider and/or web service.

o Specify the service provider and the framework URLs.

o Specify for each common function and service provider combination if the
communication is to be redirected to the service provider after the execution of
this function.

o At execution time, the framework

o Creates a new session when the first invocation of a service is received.

o Executes the delegated functions according to their execution scopes.

o Redirects the communication between the SR and the framework to the SP
if needed.

o Terminates the session after the configured time out.

V.5 Conclusion

The proposed architecture for the common functions framework was introduced and an
approach for optimizing the framework execution was presented. Now we have to prove

that what is proposed is valid. The following chapter presents a proof of concept

prototype.

104

Chapter 6:

Implementation

As a proof of concept, we have built and tested a framework prototype using a call
control scenario. This chapter gives an overall overview of this prototype. It starts by
presenting the implemented prototype. Then, it gives an execution scenario and it ends

with some performance measures.

VL1 Prototype

As a prototype, we have implemented the framework interface and the part of the policy
server related to the delegation. For each other common function (security, SLA,
charging,), a simple web service is implemented to display that the function has been

invoked. For testing, existing web service and client application are used.

VI.1.1 Prototype architecture
The general architecture of the implemented prototype is given in the figure VI.1. The
framework has to:

¢ Get the request

Create new session when necessary

Find out the common functions to be executed and theirs execution scopes

Process the request by executing necessary functions

Call the web service and gets the service execution results

105

e Send results to the client application.

* Terminate the existing sessions after a configurable timeout.

~

Client
application
Client.jws

-~

-

DelegatedFunctions \
ProviderDelegationRulej

Framework

FrameworkInterface

> Web service

Figure VIL.1: General prototype architecture

The whole communication between the service requestor and the service provider goes

through the framework. The framework URL is given as end-point of the used web

service. It replaces the service provider URL in the associated WSDL file. The effective

service provider URL is given in the web service table description in the database. The

framework interface and the delegation rules management function are implemented as

web services.

VI1.1.2 Database schema

The implemented policies are simple and don’t require the use of a policy server. Then, a

relational database is used for policies provisioning. This database is used to keep

106

information about the common functions to be executed by the framework and the

relating delegation information. The delegation information is captured into delegation

rules. The figure VI.2 below gives an overall overview of the tables used and theirs

relationships.

ServiceCustomer

#1d

name
description
address
phone

1,*

ServiceProvider

#1d
name
description

CommonFunction

#1d
functionScope
name

type
description

1,*

address
phone

WebService

#1d
name
description

RuleValidityPeriod

#ruleld
#timePeriodld

N

DelegationRule

#Id
Description
Enabled

1,*

——
——
—
——
-
-
-
| -~

L*

wsdl
url
umn

1,1

1,*

ServiceMethods

#Id
serviceld
methodName

TimePeriodCondition

1,*

#1d

Description
timePeriodMask
monthOfYearMask
dayOfMonthMask
dayOfWeakMask
timeOfDayMask

Figure VI.2: Delegation rules database

107

The delegation rule is an association between the service requestor, the service provider,
the web service and the common function. For each delegation rule at least one
delegation condition is associated. It presents the condition(s) under which the delegation
rule is valid, meaning that the corresponding common function is delegated to the
framework. The conditions taken into account are time period relating. A given function

is executed by the framework if at least one associated time period condition is valid.

From the previous diagram, we can deduce that the DelegationRule table is as follow:

DelegationRule

#1d
description
enabled
wServiceld
providerld
customerld

delegatedFunctionld

Figure V1.3: Delegation rule table
If a given delegation rule is applicable to all customers, the customerld (in
DelegatinRule) is set to null. The same for wServiceld, providerld and
delegatedFunctionld. For a given provider, we can have a delegation rule which can be

applied to all customers and web services, and other specific rules.

However, if for a given provider we have a rule such that:

108

o Enabled = true

o customerld = null

o wServiceld = null

o delegatedFuncld = null

which means that all functions are delegated to the framework, we can’t have another

delegation rule for this provider.

VI.1.3 Function scopes and parameters format used

The execution scopes of the common functions used are presented in the table VI.1 here

after.

Common function Execution Comments
scope
Authentication PS Executed the first time is required AND
ach time a web service belonging to a different
Frovider that doesn’t delegate the Network ID to
he framework is invoked.
Integrity MS Executed once for each exchanged message.
SLA MS Executed once for each exchanged message.
Authorization FS Executed once each time a different function
is called.
Charging ES Executed at each function call: it’s just like
charging the client application for the usage
Inumber.
Privacy AS Executed once during each session.
Network Identity AS Executed once during each session.

Table VI.1: Common function execution scopes used

109

For the time period condition attributes, the used formats are presented in the table V1.2
bellow:

Attribute Format {Default

timePeriodMask |yyyymmddThhmmss/ THISANDPRIOR/
yyyymmddThhmmss THISANDFUTURE

[monthOfY earMask]bbbbbbbbbbbb 111111111111

dayOfMonthMask IEbbbbbbbbbbbbbbbbbbbbbb I111riitirieniirnannantnann

bbbbbbb
dayOfWeakMask [bbbbbbb 1111111
[timeOfDayMask [Thhmmss/Thhmmss [T000000/T235959

Table V1.2: Time period condition attributes format

o timePeriodMask presents the mask of the period during which the delegation rule
is valid. It includes the starting and the ending dates of the period. The default
value is “THISANDPRIOR/THISANDFUTURE” which means that the rule is
valid on every time.

e monthOfYearMask is a sequence of 12 bits. If a bit is set to 1 it means that the
rule is valid on the corresponding month.

¢ dayOfMonthMask is a sequence of 31 bits. If a month has less than 31 day, no
existing days are set to 0. The activated days are those whose corresponding bits
are set to one.

o dayOfWeakMask is a sequence of 7 bits. The day one is Sunday and the activated

days are those whose corresponding bits are set to one.

110

o timeOfDayMask presents the time period of the day on which the rule is valid. By

default, the rule is valid for the whole day.

V1.1.4 Implementation classes
The main implementation classes are presented in the figure VI.4. The framework
interface web service provides methods to process the incoming requests. When a request
is received, the “processRequest” method is invoked. This method:

e Checks if there is a current valid session for the current client

o Gets the list of delegated functions

o Executes these functions according to theirs scopes by calling the corresponding

server (e.g. security server, charging server, ...) using the “callProcessingServer”
3 b

method.

The “IDelegationManagement” interface is the most important part of the delegation
management. It includes the main methods to manage the delegated functions. It provides

necessary means:
e To get and to set the delegated functions list
e To add and to remove a given function to or from the delegated functions list

e Toremove all the delegated functions from the list.

111

The “ProviderDelegationRules” class implements “IDelegationManagement” and
provides additional methods to get the delegated functions according to the associated
delegation rules. A given common function is added to the delegated functions list only if

it is valid at the processing time.

ProviderDelegationRules IDelegationManagement

boolean isSRuleApplicable...) impletents. | DelegatedFunction(]

boolean isTimePeriodValid(...) getDelegatedFunctions(...)

boolean boolean setDelegatedFunctions(...)

isTimePeriodConditionValid(...)
| boolean isMonthOfYearValid(...)
boolean isDayOfMonthValid(...)
boolean isDayOfWeakValid(...)
boolean isTimeOfDayValid(...) boolean
removeAllDelegatedFunctions(...)

boolean addDelegatedFunctions(...)

boolean removeDelegatedFunctions(...)

O
Y extends

FrameworklInterface

String processRequesty(...)

void callProcessingServer(...)
int existeSession(...)

boolean isSessionValid(...)

void getDelegatedFunctions(...)

boolean dbInsertSession(...)

Figure VI1.4: Implementation classes

112

VIL.1.5 Session management implementation

For session management, a session table is used (figure VI.5). This table includes
especially information about the client to which this session belongs, the called service
and the starting date of the session. The table includes also the id of the provider to whom
the invoked service belongs and the name of the called function. When a request is
received, if no valid session exists, a new one is created. The session time out is a

configurable parameter which is set for tests to 30 minutes.

Session .
ApplicationConstants

wServiceld

Providerld

customerld uses > static int sessionTimeOut = 30
//mimutes

functionName

delegatedFunctions void setSessionTimeOut(int
newTimeout)

sessionStart

sessionEnd

Figure VL5: Session management table

To verify if a valid session exists, we use the “existeSession” method of the
“frameworkInterface” web service. This method returns:

o 0 if no session exists for the curtent customer or if a session exists but it is no

more valid.

o 1 if a session exists for the current customer, and the same function has already

been executed within this session.

113

e 2 ifa session exist for the current customer, and another function is executed on

the same service that the current function to be executed belongs to.

e 3 ifasession exist for the current customer, and the invoked service belongs to a

service provider whose different service has been invoked during the same

session.

o 4 if a session exist for the current customer, but no service belonging to the

current provider has been invoked during this session.

These results are used to automatically monitor the common functions execution. For
instance, assume that a PSF function f is included in the delegated functions list. If the
“existeSession” method returns 4, the function f is executed, otherwise, it’s not. The

following table gives a summary of when each delegated common function is executed

according to “existeSession” method results.

Exist session result

Delegated function scope

Function executed

MS

FS

SS

PS

AS

YES

MS

YES

FS

SS

PS

AS

NO

MS

FS

YES

SS

PS

NO

114

AS

MS

FS YES
3 SS

PS

AS NO

MS

FS YES
4 SS

PS YES

AS NO

Table V1.3: Common functions execution conditions

ES functions are not included in this table, seen that their execution is related to some
triggering events. Some of these events can be deduced from the previous results. For
instance, if the charging mechanism used is “pay-per-use”, the charging function is

executed each time a new request is received (whatever the “existSession” result is).

V1.1.6 Platform used

As development platform we are using:
e WeblLogic platform 8.1 with service pack 2. We are especially using:
o The application server
o The development environment (workshop)
o The UDDI server.
o The PointBase database.

e Pentium 4, CPU 2.66 GHz, 512 MB of RAM.

115

VI.2 Testing scenario

For test purposes, we are using an existing web service and an existing client application
that uses this service. The introduction of the use of the framework is transparent to the
web service and the client application. Indeed, the only thing to change is the web service
binding address in the associated WSDL file. This sub-section presents the applications

used for the testing, the database data used and the testing scenario execution.

VI.2.1 Applications used

To test the implemented prototype, a call control scenario is used. The client application
is calling a conferencing web service by going through the framework. This application is
implemented using JBUILDER 9.0, whilst the conferencing web service is implemented
using WebLogic platform 8.1 with service pack 1. The framework application, the

conferencing web service and the client application are running on different machines.

The conferencing web service allows the client application to:
¢ Initiate and/or terminate a conference between a given number of end users.
¢ Create and/or end a sub-conference.
e Move a given user from one sub-conference to another or from the main
conference to a sub-conference and vise-versa.

e Remove a user from the main conference or from a sub-conference.

116

VI1.2.2 Database data used

The database data related to the conferencing web service are given here-after (tables
V14, VL5, V1.6 and VI.7). The conferencing web service WSDL file is changed by
replacing the conferencing web service binding address by the framework binding
address. The conferencing web service binding address is given in the “webService”

table, under the URL column.

1D] 3 g
NAME [ConferenceService |
DESCRIPTION HSynchronous conferencing web service |

http://142.133.72.82:7001/call_control/ConfInt/Service/ConferenceSe
WSDL) -
rvice.wsdl
URL http://142.133.72.82:7001/call_control/Conflnt/Service/ConferenceSe
IVice.jws

Table VI.4: Conferencing web service information

ID[SERVICEID METHODNAME|PROVIDERID
§|3 §{setConﬁguration 2 |
%linitiateConf |2
§]endConf]2
géfaddUse:r HZ
%[removeUser §l2
[initiateSubConf |2
lendSubConf |2
|moveUser 2

Table VL5: Conferencing web service methods

117

3

D] NAME || DESCRIPTION PHONE| ADDRESS |

|

i A Jbuilder application calling the Ericsson
2 % ConferenceClient \conferencing service developed in the Montreal,

| ericsson lab canada

Table V1.6: Conferencing web service provider information

D] NAME | DESCRIPTION | PHONE | ADDRESS |
A Jbuilder application calling the Ericsson

2 {IConferenceClient |conferencing service developed in the Montreal,
ericsson lab canada

Table V1.7: Conferencing web service customer information

When executing the conferencing web service, all the common functions are delegated to
the framework (table VI.8). The time period condition associated with this delegation rule
is always valid (table VI.9). This means that all the common functions needed for the
conferencing web service execution are always delegated to the framework. The
information relating to these common functions and their execution order is given in the

table (VI.10).

l ID |16 %
|CUSTOMERID INULL |
IPROVIDERID - |
[WSERVICEID NULL |
IDELEGATEDFUNCID |NULL |
I[ENABLED TRUE |
DESCRIPTION Delegation rule for provider 3 valid for all web services
and customers

Table VIL.8: Delegation rule associated to the conferencing web service usage

118

] ID | 1 |
lDESCRIPTION ﬁleime Condition which is always valid |
ITIMEPERIODMASK | THISANDPRIOR/THISANDFUTURE |
IMONTHOFYEARMASK 111111111111 |
IDAYOFMONTHMASK [I1TTIII11111118111111111111111 |
IDAYOFWEAKMASK 111111 |
ITIMEOFDAYMASK IT000000/T235959 §

Table VL.9: Time period condition associated to the conferencing web service usage

ID| NAME DESCRIPTION TYPE |[FUNCTION-j EXECUTION-

SCOPE ORDER
[\‘_\\‘l\\é1AuthenticationflAuthenticates customers élSecurity 2] PSF %I 1 E
2 Integrity Ensurg messages exchanged Security MSF 4
integrity
3 ISLA Serv1f:e Level Agreement SLA MSF 6
function
Charge the user for service Charging ESF 7

4 ICharging usage

Protects user privacy
6 .Privacy according to the existing Privacy ASF 5
privacy regulations

[_Z\éiNetworkId aManages Network Identity %[Networkld%

Determines if the customer
8 i|Authorization jjis authorized to execute a |Security FSF 3
given function

ASF | 2 %

Table VI.10: Common functions info

V1.2.3 Client application execution scenario used
One of the testing scenarios used is as follow:
1. The client application asks for conference initiation by invoking the
intiateConf method. The conference is initiated between three users given as

initiateConf parameters.

119

2. A new user is added to the conference using the addUser method.

3. A new sub-conference is created via the initiateSubConf method.

4. - Two users are moved to the created sub-conference using the moveUser
method.

5. One user in the sub-conference is moved back to the main conference using
the moveUser method.

6. The other user in the sub-conference is removed from the sub-conference
using the removeUser method.

7. The sub-conference is ended via the endSubConf method.

8. The main conference is ended via the endConf method.

In the first step, the framework executes all the common functions according to their
execution order. In the other steps, the common functions are executed according to their
execution scopes. The list of the common functions executed at each step is given in the

table here after. They are presented in the order of theirs execution.

Step Common functions executed Description

1 e Authentication
¢ Networkld
e Authorization

e Integrity

e Privacy
e SLA
e Charging

120

2,3, ¢ Authorization
46,78 o Integrity

e SLA

e Charging
5 o Integrity

e SLA

¢ Charging

Table VI.11: Common functions execution

VL3 Some performance measurements:

The performance measurements performed aims to measure the overhead introduced by
the use of the framework for providing common functions. They were taken in the week-
end in order to minimize the overhead of other applications. The machines used are

connected to a 100 Mb/s Ethernet LAN segment.

The taken measurements and their analysis are based on the assumption that the
deployment pattern of the web service and the required common functions is the same

with and without using the framework.

VI1.3.1 Time delay overhead

To get the time delay overhead generated, we have measured the execution time delay of
each function provided by the conferencing web service used (initiateConf, endConf,

addUser, removeUser, initiateSubConf, endSubConf, moveUser). The execution time

121

delay of a given function is calculated as the time duration between the function call and

the reception of the feedback message from the web service.

Two sets of measures were taken. The first one is without using the framework. The
second one is by going through the framework. Each set consists of 17 trials. The
overhead generated by the framework usage is calculated as the delay difference between

the two measurements sets.

For each measurements set, the measurements were taken in three cases. They include
measurements for a conference with three, four and five participants. The measuring
scenario is based on the following conditions: Participants are always online and
available at conference initiation and they always accept the invitation. The sequence of
actions executed for time delay measurements is as follow:

1. The conference is initiated with the corresponding number of users (3, 4 or 5).

2. A participant is removed and added again to the conference

3. A sub-conference is created with random participants

4, A participant is moved from the sub-conference to the main conference

5. The sub-conference is ended.

6. The main conference is ended.
The figure V1.6 here-after presents the collected data and the generated delay overhead

representation. The figure V1.6.a presents the measured average time delay without using

the framework. The figure VL.6.b presents the percentage of the average time delay of

122

each function execution with using the framework, according to the average time delay of
the execution of the same function without using the framework. The figure VI.6.c
presents the time delay overhead introduced by the framework usage for each executed
function. The figure V1.6.d presents the percentage of the time delay overhead introduced
by the framework usage for each function, according to the average time delay of the
same function execution Without using the framework. Another graph [figure VI1.7]
presents the framework intern processing delay, according to the web service function

executed and the number of participants.

123

Time (ms)

Avarage time delay using the framework
(in percentage)

Avarage time delay: without using the

framework
8000 140
7000 120
6000 £ 100
5000 e g
4000 s 60
3000 g
2000 g 40
1000 20
03 0
& &
Time delay overhead introduced by the Time delay overhead introduced by the
framework usage framework (in percentage)
300 30
250 ~25
P
- 200 @ 20
£ o
- 150 g 15
£ @
= 100 g 10
50 a 5
0 0
\<.‘\.\\® \é{b

Figure VL.6: Average time delay and time delay overhead: (a) average time delay of
functions execution without using the framework. (b) Average time delay of functions
execution using the framework (c) time delay overhead generated by the framework
usage (d) percentage of the time delay overhead generated by the framework usage

124

Avarage framework intern processing delay

—e—5 users

Figure V1.7: Average framework intern processing delay

VI1.3.2 Network load overhead

In the implemented prototype, the common functions are not implemented. Each
common function is presented by a simple web service that just prints out that the
function has been called. So, no changes are made to the interchanged messages (figure
VL.7). The framework uses exactly the same received SOAP message to invoke the

conferencing web service. The same thing is done for response messages received from

the web service.

Request message Request message

>
(requestl) (requestI)

Framework

»
Conferencing

Client
application Web service
Response message Response message

responsel) < (responsel)

Figure VL7: Exchanged messages during the conferencing web service execution

125

So, no network overhead is generated in case of the implemented prototype. However, an
additional network load overhead may be generated in case the common functions are
implemented. The generated overhead will depend on the way these functions are

implemented and deployed.

This overhead will be minimized in case the common functions implementations reside in
the same server as the framework implementation. In this case, the only overhead
generated will be due to the modification of the incoming messages, before being
transferred to their destination. For instance, the security server may add some security
‘assertions to the message to transmit. Nevertheless, this overhead will be more and less
the same, if in the initial configuration (without using the framework) the corresponding

function is executed outside the server hosting the web service implementation.

In case the common functions and the framework implementations are deployed in a
distributed environment (figure VI1.8), another type of load overhead will be generated. It
results from the communication between the framework and the common functions

implementations. This will generate also an additional time delay overhead.

126

Framework

Security request
message(ml

Net-1d request
message(m5)

Charging\request
message(m3)

) Security response
Security message(m2)

server

Network-1d
server

Charging
server

Figure V1.8: Example of exchanged messages in distributed environment

V1.3.3 Measurement analysis

As we can notice in the figure (V1.6¢c), the time delay overhead induced is slightly
affected by the function executed or the number of participants. In fact, almost the same
set of actions is performed in the framework side in each case. Indeed, when a request is
received, the framework interrogates the database to execute the same set of operations
(determines if a valid session exists and identifies the delegated functions list), executes
the required web service function and transmits the execution results to the client
application. The taken measurements show that the framework intern processing delay is
almost constant with respect to the function to execute and the number of participant. The

average framework intern processing delay is 154 ms.

The slight variations observed on the time delay overhead result from the variation of the

establishment delays of each TCP connection, and from the differences in database

127

manipulations. The average time delay overhead is 232 ms. This represents 10%
overhead of the average time delay when the framework is not used. This overhead will
not be affected if the common functions are implemented. In fact, the required common

functions have to be executed even if the framework is not used.

The time delay introduced by the framework is barely noticed by the client application’s
users. Therefore, the use of the framework does not penalize the system’s performance.
Furthermore, the use of the framework frees the applications developers of conceiving

and developing solutions for common functions. This will save time and footprint.

128

Chapter 7:

Conclusion and future work

Using web services for applications development in next generation telecommunications
networks raises two main issues. The first one concerns the definition of web services for
making telecommunications capabilities available to applications, and the second one
relates to enabling the use of Web services in telecommunications by providing common
supporting functions. In this chapter, we will summarize the contributions of this thesis
and resume how it handles the issues to be resolved. We will also give some hints about

the future work.

VIL1 Contributions of this thesis

In this thesis, we have focused on the second issue. We have started by identifying the
relating requirements. Then, we have specified a novel architecture that fulfills these
requirements. After that, we have optimized the proposed architecture and we have

implemented a proof of concept prototype.

The requirements we have identified are based on OMA ones. They are of two types. The
first type concerns the common functions of web services when used in
telecommunications settings (e.g. security, charging). The second one is the consistency
and the easy use of the framework to propose for providing the identified common

functions.

129

One of the main assumptions that the proposed framework architecture is based on is that
the network operator may choose to perform some of the common functions itself and

delegate the others to the framework.

The proposed architecture is a web service-based architecture, where each common
function is presented as a web seﬁice. An internal registry is used to keep information
about these web services which inter-communicate using functions calls. Functions
parameters depend on the function to be executed. The policies that govern the execution
of the framework functions are captured into the policy server. To find out the
appropriate policies, the framework can either use the local policy server or the one

belonging to the service provider.

Depending on the use case, a given common function may be executed many times or
only once during a request processing. For instance, the authentication function is
executed once during the whole communication between a given requestor and provider,
where as the data integrity function has to be executed each time a message is received or
has to be sent. To ensure that common functions are executed only when needed, we have
defined the function execution scope. It is the scope on which a given function is
executed once. For instance, the authentication is a provider scope ﬁ;nction and data

integrity is a message scope function.

As a prototype, we have implemented the framework entry point and the part of the

policy server related to the delegation. The most important part of the delegation

130

management is the “IDelegationManagement” interface. It provides necessary means to
get and to set on the fly the delegated functions list, to add and to remove a given
function to or from the delegated functions list and to remove all the delegated functions
from the list. The prototype has been tested using a call control scenario. Some
performance measurements have been taken and they show that the overhead generated

by the use of the framework is acceptable.

VII.2 Items for future Work

The defined architecture gives a global solution for providing common functions for
using web services in telecommunications settings. However, we still need more details

about how each common function can be provided. This can be addressed in future work.

The proposed architecture is more suitable for current centralized telecommunications
networks. The common functions framework must be pre-installed in the networks before
being utilized. This is not compatible with peer-to-peer and ad-hoc networks principals.
In future work, we will look at how to adapt this architecture to peer-to-peer and ad-hoc

networks.

131

(1]
[2]
[3]
(4]
[3]
[6]
(7]
[8]
(9]
[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]

[24]

REFERENCES

Telcordia Technologies, “Next Generation Network (NGN) Services”, White
paper, http://www.mobilein.com/NGN_Svcs WP.pdf

ITU-T Recommendation H.323, “Packet based multimedia communications
systems,” Geneva, 2002

H. Liu and P. Mouchtaris, “Voice over IP Signaling, H.323 and Beyond,”

IEEE Communications Magazine, vol. 38, no.10, pp. 142.148, October 2000

J. Rosenberg et al, “Session Initiation Protocol (SIP)”, RFC 3261, IETF, June
2002.

R. Braden et al, “Resource ReSerVation Protocol (RSVP)”, RFC 2205, Version 1,
Functional Specification, September 1997

H. Schulzrinne et al, “RTP: A Transport Protocol for Real-Time Applications™,
RFC 1889, January 1996

M. Handley and V. Jacobson, “SDP: Session Description Protocol,” RFC 2327,
IETF, April 1998

Henning Schulzrinne, Jonathan Rosenberg, “The session initiation protocol:
Internet-Centric Signaling”, IEEE Communications magazine, October 2000

J. Lennox, J. Rosenberg, and H. Schulzrinne, “Common Gateway Interface for
SIP,” RFC 3050, IETF, January 2001

JCP Java SIP Servlet API, JSR 116 at
http://jcp.org/aboutJava/Communityprocess/review/jsr116/

Java Community Process™ , “JAIN Java Call Control (JCC) Application
Programming Interface (API)”, Version 0.8.4, September 2000.

Parlay 4.1 specifications at http://www.Parlay.org/specs/index.asp

L. Lennox and H. Schulzrinne, “Call Processing Language Framework and
Requirements,” RFC 2824, IETF, May 2000

W3C, “Web Services Architecture”, W3c Working Group Note 11 February 2004.
http://www.w3.org/TR/ws-arch/

Adam Bobsworth in ACM Queue, Voli, Nol

W3C web site for XML at http://www.w3c.org/XML/

W3C web site for SOAP at http://www.w3c.org/TR/SOAP/

W3C web site for WSDL at http://www.w3c.org/TR/wsdl/

OASIS standards consortium web site for UDDI at http://www.uddi.org/
“Parlay APIs 4.0, Parlay X Web Services”, White paper, version 1.0, December
2002 _

T. Thomson et al., CPXe: Web services for Internet Imaging, IEEE Computer
Magazine, October 2003

N. Alameh, “Chaining Geographical Information Web Services,” IEEE Internet
Computing Magazine, vol. 7, no. 5, pp. 22-29, September 2003

The OMA Web Services Enabler core specification v1.1 (16-02-2004) at
http://member.openmobilealliance.org/ftp/public_documents/mws/2003/

“Web Services Security: SOAP Message Security”, Working Draft 18, Friday, 15
July 2003. http://www.oasis-open.org/committees/download.php/1044/WSS.

132

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]

[37]

(38]
{39]
[40]
[41]
(42]
[43]
[44]

[45]

W3C, “XML-Signature Syntax and Processing”, W3C Recommendation 12

February 2002

IETF, “X.509 Internet Public Key Infrastructure Online Certificate Status

Protocol — OCSP”, RFC 2560

W3C, “XML Key Management Specification (XKMS)”, W3C Note 30 March

2001, http://www.w3.0org/TR/xkms/

Official OASIS web site: http://www.oasis-open.org/

Liberty Alliance Project web site, http://www.project-liberty.org/

“The Platform for Privacy Preferences 1.0 Specification”, W3C recommendation,

16 April 2002. http://www.w3c.org/TR/2002/REC-P3P-20020128/

OMA, “OMA Mobile Web Services Requirements”, Draft Version 1.1

“Assertions and Protocol for the OASIS Security Assertion Markup Language

(SAML)”, OASIS Standard, 5 November 2002.

http://www.ouasis-open.org/committees/security/docs/.

OASIS, “Bindings and Profiles for the OASIS Security Assertion Markup

Language (SAML)”, v1.1, Last call working draft 06, 2 May 2003

OASIS, “Web Services Security: SAML Token Profile”, Working Draft 06, 21

February 2003

Web Services Enhancements (WSE)

http://msdn.microsoft.com/webservices/building/wse/default.aspx

“Securing Web Services with the Xtradyne Web Services Domain Boundary

Controller™” http://www.xtradyne.com/documents/whitepapers/WS-DBC-

WhitePaper.pdf

“The WSLA Framework: Specifying and Monitoring Service Level Agreements

for Web Services”. Alexander Keller, Heiko Ludwig. Journal of Network and

Systems Management (JNSM), Vol. 11, No 1, March 2003

Liberty Alliance Project, “Introduction to the Liberty Alliance Identity

Architecture”, Revision 1.0, March, 2003

Liberty Alliance Project, “Liberty Identity Personal Profile Service

Specification”, Version: 1.0-18 ,

Liberty Alliance Project, “Liberty ID-FF Protocols and Schema Specification”,

Version 1.2-08, 11 April 2003

Liberty Alliance Project, “Liberty ID-FF Bindings and Profiles Specification”,

Version 1.2-08, 2003 '

Liberty Alliance Project, “Liberty Discovery Service Specification”, Version:

1.0-06, 2003 '

The Web Services Interoperability organization official website at http://www.ws-

iorg/

Gary Ellison, Sun Microsystems, Inc. Liberty Alliance Project> “Liberty ID-WSF
Security profiles”, version 1.0-08.

F.Belgasmi, R.Glitho, R.Dssouli, “Using web services in telecommunications
networks: An Architecture for the common functions”, NOTERE 2004.

133

