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ABSTRACT

Good Additive Cyclic Quantum Error-Correcting Codes

AiLuo

This thesis is about the quantum error-correcting codes.  Although there are many
methods to construct them, finding a good quantum code is still a complicated and
difficult task, for we do not know which methods to use. To solve this problem, we did
a thorough research on a special class of quantum codes — additive cyclic quantum codes.
A new search algorithm has been designed and a lot of good additive cyclic quantum
codes found by this algorithm are presented in this thesis. By showing the success of
this algorithm and great value of additive cyclic quantum codes, we have greatly reduced

the complexity of finding good quantum codes.

Quantum error-correction theory is key part of quantum information theory. As
quantum information theory is a quite new field which has been developing fast during
the last decade, we spent much time explaining the primary concepts of it. We
introduced linear algebra, quantum mechanics, quantum operations, quantum

error-correction theory and quantum error-correcting codes.

In a word, this thesis serves two functions: 1) an exploration of quantum error-correcting

codes and 2) an introduction to quantum information theory.
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Chapter 1

Introduction

Quantum information theory is a new fast developing theory during the last decade.
Despite the fact that not many practical applications of quantum information theory
have been developed so far, it still appeals us intensely, for it is possible that the
further study in this area may bring about important consequences to our society.

The quantum information theory can enable us to develop applications which are
impossible in classical world. The technologies of telecommunication and
computers have already changed our lives greatly. If, one day, we could realize the
quantum communications and quantum computers, then we would not be surprised to

find that our lives would be changed radically again.

Quantum information theory is a rich subject. It involves many topics, such as
gquantum error-correction, data compression, network information theory,
cryptography, and so on. However, in this thesis we will limit ourselves to quantum
error-correction theory. There are many papers on how to find and construct good
quantum error-correcting codes. Based on these accomplishments, we did a
thorough research on a special kind of quantum error-correcting codes. A new
search algorithm is presented and many good resulted quantum error-correcting codes

are given in this thesis.

As quantum information theory is a new field and it is quite strange to most engineers,
we try to draw a clear picture from the beginning so that it is easy for readers to
follow. Therefore, this thesis serves two functions: introduction to a new field and

our research results.



1.1 Development of quantum mechanics

The modern theory of quantum mechanics is a theory explaining the behaviors of the
micro-particles, such as electrons and atoms. It provides us with a series of axioms
for the world of micro-world. Since its creation in 1920s, the modern theory of
quantum mechanics has been applied successfully in many areas, such as the structure

of the atoms, nuclear fusion in stars, superconductors, etc.

Quantum mechanics is developed for a general use, not for some particular problems.
It is like a skeleton and we need to add flesh and blood to make it fulfill a certain
function. For example, there is an application of quantum mechanics called quantum
electrodynamics, a theory explaining the interaction between the light and the atoms.
In this theory, there are physical models and concepts which are not included in

quantum mechanics, but they all obey the rules of quantum mechanics.

The development of applications of quantum mechanical systems has experienced two
phases. The first phase was from 1920s to 1970s. During that time, scientists did
much research on the control over the mass quantum systems, and we prefer to call
the technologies during that period the “macro-way”. A famous example is the
superb quantum mechanical explanation for the superconductivity, which is a truly
great discovery in the physical science during the course of the twenties century made
by the Dutch physicist Heike Kammerlingh Onnes in 1911: Onnes found that the
sensitivity of a sample of Mercury becomes zero beneath a certain critical temperature.
This discovery brought about radical changes to our understanding of the electrical
properties of materials, and Heike Kammerlingh Onnes received Nobel Prize in
Physics 1913 for his great work on the properties of matter at low temperature. This
remarkable phenomenon is a fundamentally quantum mechanics phenomenon which
is observed on a macroscopic scale, and can only be explained within a quantum

mechanic framework [1].



However, the “macro-way” provides us with a high level control over a huge number
of quantum systems, leaving each single quantum mechanical system inaccessible.
Because of this limitation, this way only allows us to probe a few aspects of quantum

mechanical systems.

The second phase began in 1970s, when scientist shifted their interests to the control
over single quantum systems, such as an atom, an electron, or a photon. We call the
technologies during this period the “micro-way”. So far, many techniques of the
“micro-way” have been developed. A typical example of this technique is the “atom
trap”, which was first developed by Steven Chu, Claude Cohen-Tannoudji and
William D. Phillips [2]. This technique enables us to isolate a single atom from
others. It has great significance, for it opens the way of a deeper understanding of a
single quantum system, and may lead to the appearance of more valuable applications,
like the more precise atomic clocks for use in, e.g., space navigation and accurate
determination of position. Because of this reason, the 1997 Nobel Prize in Physics

was awarded jointly to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips.

The techniques developed during the second phase are extremely important for us to
explore quantum mechanics, for they enable us to understand and control this field
from inside, not just observing from outside. In the history, great discoveries in
science often accompany the advent of new methods for probing new regimes, and
there is no doubt that as more powerful techniques of controlling single quantum
systems are developed, we can make some remarkable discoveries in quantum world

and even learn a great deal about the nature of the universe itself.

1.2 Development of quantum information theory

Quantum information theory is an application of quantum mechanics which is
developed fast during last decade. This theory is attempting to solve almost the

same problem which classical information theorem solves: transmitting information



from one point to another point exactly or approximately. The only difference
between the two theories is the carrier - in quantum information theory, we transmit
information over quantum systems and we call whatever can be transmitted by using
quantum systems quantum information. Therefore, it is not surprising that the
primary questions of quantum information theory are as same as those of classical
information theory: how much quantum information is carried by a given quantum
system or a quantum channel, how can such information be encoded and decoded

efficiently.

In classical information theory, such questions were solved by Claude Shannon [3].
His two famous theorems - noiseless channel coding theorem and noisy channel
coding theorem - have laid the foundations for classical information theory. In the
noiseless channel coding theorem, he solved the problem of how to measure the
information produced from an information source. In the noisy channel coding
theorem, he told us how much information can be transmitted reliably through a noisy
channel. Meanwhile, he pointed out that error-correcting codes could be used to
protect information against the noise in communication channels. Ever since the
appearance of Shannon’s theorems, there have been countless researchers bent on
constructing good error-correcting codes. These efforts, at last, resulted in a
sophisticated theory of error-correcting codes which is being widely used in every

area of communication and computer science.

By comparison, quantum information theory is still in its developing phase. Even its
basic questions have not been completely answered. In 1995, Ben Schumacher [4]
developed a quantum theorem analogous to Shannon’s noiseless channel coding
theorem, and, in the process, he defined the “quantum bit” or qubit as the physical
resource to transmit information. But the analogue quantum theorem to Shannon’s
noisy channel coding theorem has not yet been found. However, it does not prevent

quantum error-correction theory from developing.



As we transmit information over quantum systems or store information in some sort
of “quantum memories”, the quantum systems carrying information will inevitably
interact with their environment, for it is impossible to isolate our quantum systems
absolutely from other quantum systems. Thus, the information will be lost to a less
or greater degree.  Similar problem happens in classical information theory, and we
have already developed a sophisticated error-correction theory to circumvent such
problems. But this theory can not be transferred to quantum regime. In classical
information theory, we protect information against noise by adding redundancy, and a
most simple method is the repetition code: instead of transmitting one bit we transmit
several copies and decide during readout by a majority vote which bit we send. But
quantum mechanics prevents the same procedure happening for quantum systems due
to the not cloning theory discovered by W. K. Wooters and W. H. Zurek [5] in 1982,
in which they pointed out that a single quantum system can not be cloned. What is
more, in classical information theory, it is always possible to measure the value of a
bit, but in quantum information theory, measuring an unknown quantum system will
quite possibly collapse its state, a phenomenon we will explain later.  Yet, despite
these difficulties, it has been proved that quantum error-correction still can be done, of
course not in classical way, but in quantum mechanics’ own way. In 1995, P. W.
Shor [6] found the first quantum error-correcting code.  Since then, quantum

error-correction theory has been developing rapidly.

The research shows that, despite the great differences between classical
error-correction theory and quantum error-correction theory, these two fields are
strongly connected. Indeed, classic coding theory has greatly improved the
development and the understanding of the quantum error-correction. In 1996, two
groups, Robert Calderbank and Peter Shor [7], and Andrew Steane [8], discovered an
important class of quantum error-correcting codes independently. It is now known
as CSS codes representing the initials of its inventors. A little later, a more powerful
class of quantum codes, stabilizer codes, was discovered independently by Robert

Calderbank, Peter Shor, Eric Rains, Neil Sloane [9], and Daniel Gottesman [10], and



CSS codes turned out to be a special case of stabilizer codes. Both CSS codes and

stabilizer codes are strongly connected with classical error-correcting codes.

Quantum information theory is a new branch of information theory, for it involves
something amazing called entanglement which only exists in quantum mechanics.
Entanglement is the correlation between quantum systems. This correlation has very
striking properties impossible in any classical world, and is ubiquitous in quantum
mechanics. If a quantum system is entangled with the other quantum system, then
each of these two quantum systems does not have its own quantum state, and only the
two quantum systems together give a well-defined quantum state. What is more, the
entanglement has nothing to do with local position. No matter how away these two
quantum systems are separated, it always exists and does not wane. In quantum
information theory, entanglement is an essential resource needed to perform otherwise
impossible information processing or computation. A famous operation is
entanglement enhanced teleportation which was first illustrated by Bennett et al [11].
Teleportation means the process of transmitting quantum information on a classical
channel. It is found that teleportation is impossible only by purely classical means,
but if we make use of a pair of entanglement quantum systems and put one of them at
transmitter and the other one at receiver, then the classical channel can be upgraded to
transmit quantum information. This entanglement enhanced teleportation is
described in [11], and first experimental realization also exist [12]. There are also
other famous applications of entanglement, such as quantum cryptography [13], and
super-dense coding [14].  As the research is being carried out, scientists realize that
entanglement is a fundamental resource in Nature, just as other fundamental resources
like energy, entropy, information, etc. It is believed that the study of entanglement
will give us more insights into the mysterious quantum world and lead us to new

applications of quantum information theory.



1.3 Outline of the thesis

This thesis consists of seven chapters. In Chapter 2, we introduce the basic concepts
of linear algebra and Galois Fields, which are necessary to explain quantum
mechanics and quantum error-correction theory. In Chapter 3, we present the
fundamental postulates and primary ideas of quantum mechanics. In Chapter 4, we
introduce open-system dynamics of quantum systems, which is mainly about quantum
channels and quantum noise. In Chapter 5, we give the theorem of quantum
error-correction and an important class of quantum error-correcting code, stabilizer

codes. In Chapter 6, we introduce an important conclusion which connects classical

codes over GF (4) with stabilizer codes, and we then go on to discuss our research

based on this conclusion. Chapter 7 is the conclusion of this thesis.

Summary

The purpose of this chapter is to give readers a simple and general introduction to
quantum mechanics and quantum information theory. Meanwhile, we outlined the
structure of this thesis. As quantum information theory is a quite new field to most
readers, in this thesis we will go to great lengths to explain it, and then present our
research results: a new algorithm for searching a special kind of quantum

error-correcting codes and the search results.

Due to the limited space, our descriptions of quantum mechanics and quantum
information theory are very simple and short. In order to let readers get more
information, we suggest following readings. For the history of quantum mechanics,
we strongly recommend Pais’s great work [15,16,17]; for the development of
technologies based upon quantum mechanics, we recommend Milburn’s work [18,19];
for classical information theory, we suggest MacWilliams and Sloane’s great book on
error-correction theory [20], Cover and Thomas’s excellent text on information theory
[21], the huge collection of classical information papers edited by Sloane and Wyner

[22] and the collection edited by Slepian [23].



Chapter 2

Linear algebra and Galois fields

In this chapter, we will review necessary mathematical knowledge for the study of
quantum mechanics and quantum error-correction theory: linear algebra and Galois
fields.  This chapter is very important, for the results and notations mentioned in

this chapter will be frequently used in the whole thesis.

2.1 Linear algebra
Linear algebra is the main mathematical language for quantum mechanics. In this
Chapter, we will introduce the necessary linear algebra knowledge. In order to make
text easy to read and follow, we only list the conclusions and results, and omit the
proofs, for they could be found in most text books and we do not need to repeat them

here. We do the same way when we introduce Galois Fields.

2.1.1 Vector space

In quantum mechanics, we will limit ourselves to C" vector space, which is the set

Z
of all column vectors z=| : |, withentries z, from the set of complex numbers C.

V4

n

There are two operations defined on C": addition of two vectors, giving z+2z', and

scalar multiplication of a vector z with a complex number A, giving Az. They

are defined as:

z+zZ'=| |+ ¢ |=| ¢ 2.1



Az=A

2.2)

The zero vector 0 1is defined to be the vector with its entries being all zeros.

A subspace of C” is defined to be a subset W < C" which contains the zero vector
0 and is closed under the operations of addition and scalar multiplication. That is,
forany x,yeW andacomplex number A, (x + y) and Ax (and Ay) mustbe

n W.

In quantum mechanics, a vector z is usually represented by the notation l > , called

Z

Dirac notation, |z> =

2.1.2 Linear independence and bases

In vector space C", we say a set of vectors ﬂ P, ), |‘I’2 ), TR |‘I’m )}is linearly

m

independent if the equation Z aA|‘Pi> =0 implies that g, =0, i=1,...,m

i
i=1

Otherwise, this set of vectors is linearly dependent. For example, the two vectors

1 1 2
v, =|: :I and v, ={ } are linearly independent in C?, while the vectors u, =[ }
1 -1 4

1
and u, = [2} are linearly dependent for u, —2u, =0.

Any vector in a vector space can be represented as a linear combination of a certain
set of vectors. Such a set of vectors is called a spanning set for the vector space. A
basis of a vector space is a spanning set whose elements are linearly independent. In

another word, a basis is one of the “smallest” spanning sets. For examples, the set of



1 1
vectors [J and [ J is a basis for C*. The dimension of a vector space is the

number of elements in the basis of this vector space. C’ is a 2-dimensional vector

space.

2.1.3 Matrices and linear operators

An mnxm matrix is an array of numbers of the form:

a, o q
: (2.3)

a a

nl nm

Sometimes, this matrix will be denoted as [aij] , where a; is an arbitrary element in

the matrix, and the i of a; represents the index of the row and the j represents

the index of the column. If »=m, we call such a matrix a square matrix. 1f we

say amatrix M isover C, we mean that the entries of M are all from C.

Two operations are defined for matrices: addition and multiplication. If and only if

two matrices, A= [aij] and B= [bu] ,are both nxm matrices, they can be added

and the result C=A+B isalsoan nxm matrices, with its entries ¢, =a, +b, .

There are two multiplications for matrices. The first one is the scalar multiplication,

which is defined as: given a matrix 4= [aij:l ,and anumber A e C, we have
A4 = [laij] . The second one is the multiplication between matrices. If and only if

two matrices, A= [aij] and B= [by] , have the size nxm and mxk respectively

for some n,m,k,wehave C=A4B= [cy] , where ¢, = Zairbrj . Note that the
r=1

matrix multiplication is not in general commutative, which means that the existence

of AB does not guarantee the existence of BA, and even if it exists, they are not

10



likely to be equal, 4B # BA. There are two special matrices, called zero matrix and
identity matrix. The nxm zero matrix is a matrix with its entries being all zeros

and is denoted as 0. The nxn identity matrix is a square matrix with diagonal

entries being all 1 and all of the other being 0. Itis denotedas 7, . The matrix

multiplication obeys following laws, as long as A4, B, C have the correct size:

(4B)C = 4(BC) 24
A(B+C)=AB+AC 2.5)
(4+B)C=AC+BC (2.6)
04=40=0 @.7)
IA=Al=4 @9

Onits own,an nxm matrix A is just an array of numbers, but in the vector space,

it represents a linear operator mapping a vector |1//> of C” toavector |¢> of C".

To see this, note that |1//> isan mx1 vector, and the result of A]t//) isan nxl

vector of C". Later, if we say that a linear operator A4 is defined on a vector space

V ,wemeanthat 4 isan nmxn square matrix, where » is the dimensionof V,

for A maps a vector of V' to another vector of V. The Equation (2.5) also shows

that A4 is a linear operator, for A(z A !z//i» = Z/liA|t//,.> , where /4, are complex

numbers.

2.1.4 Pauli matrices

The four extremely important matrices in quantum mechanics are Pauli matrices,
which are frequently used in quantum information theory. Here, we list these four

matrices:

11



2.1.5 Inner products and outer products
Inner product is a map taking two vectors to a scalar and in this thesis, we only care

about the inner product over C. In what follows we write o for the complex
conjugate of a complex number a.

‘Definition: If V' is a vector space over C, then the map ( | ) taking any two
vectors in V to a complex number in C is an inner product if the following are
true for all |u),|v),|w)eV,and A, ueC:

1) (Linearity) (u|Av+pw)=A{u|v)+ p(u|w);

2) (Conjugate-symmetry) (u|v)={v|u);

3) (Positive definiteness) (v|v) is areal number and (v|v)=>0, the equality holds if

and only if |v> =0.

A vector space equipped with an inner product function is called an inner product
space. In the study of quantum mechanics, we will often use the term “Hilbert
space”. For finite dimensional case, a Hilbert space is exactly the same as an inner

product space.

v, u,
Let V=C",andlet |v)=| : |, |u)=| : | beanytwo vectorsin V , we define the
Yy
vn un

map:
(vlu)=>"vu, (2.9

It is easy to prove that (2.9) defines an inner product. It is called the standard inner

12



product on C". This inner product is what we will always use in the thesis.

The norm of a Vector|v> is defined as: "| v>|| =, l<v|v> , and we normalize a vector Iv)
by dividing |v> by its norm |v>m v>“ . If "|v>” =1, we say iv) 1S a unit vector or a

normalized vector. 'Two vectors are defined to be orthogonal if their inner product is

zero. An orthonormal basis is defined to be such a basis that all of its elements are

unit vectors and orthogonal to each other. In another word, the basis ﬁvl >, -, ]v . )}

is orthonormal if and only if <v,. | v j> =0, where &, is the Dirac delta function

defined as:

{ (2.10)
z¢_]

1
For example, the basis {] 0 [O]’ [ }} is an orthonormal basis for C?, so is the

basis {]+),| )} {[0) [ IOJQJI }

V2

The orthonormal basis is very useful for C”, and it is necessary to mention an
important means of transforming an arbitrary basis to an orthonormal basis. This

procedure is called the Gram-Schmidt algorithm. Suppose that ﬂwl ), TN |w P )} isa

basis for the space V . Define |v1 "I 1 ” . Then define |vk+,> ,for 1<sk<d,
1
recursively by:

i=k

[Wee) = 2, [ W) 1)

Vi) = - @.11)

| wk+1> - Z(v,. |Wk+1 >| vi>

i=1

It is easy to prove the basis ﬂv,. )} is an orthonormal basis.

13



QOuter product is a useful and convenient way for expressing a linear operator.

Together with inner product, it greatly simplifies our calculation notations. Suppose

v, w,
v)=| : | isavectorinspace ¥V ,and |w)=| : | isa vector in space W ,the outer
b
Vn wm

product |w)(v| is defined to be a linear operator 4 =|w)(v|= [a,-,-:l , where

a; =wy;. This linear operator maps the vectors in ¥ to the vectorsin . Why?

Let us see what happens when we apply this outer product to a Vectorlv’> in V:
() lvy = ol = (1v)w) (212)
The right hand side of the Equation (2.12) is a vector in space W . Therefore, the

outer product |w)(v| is a linear operator mapping vectorsin ¥ to vectorsin W .

If V' isann-dimensional space and W is an m-dimensional space, the outer

product |w>(v| 1Isan mxn matrix. Itis easy to see that the linear combination of

outer products is also an outer product.

With the help of the outer product, we can prove an important result, which is known

as the completeness relation for the orthonormal basis. Let {| 1>} be an orthonormal
basis for the vector space C". A vector Iv) in C" can be expressed as:
|v> = zi v, | i) , where v, = <i !v> . We apply the outer product Z|z><z l to this vector

to get:

(=S =S -wint) @

H

Because Equation (2.13) is true for any vector in C”, we conclude that
20 =1 2.14)

The Equation (2.14) is known as the completeness relation. This equation is very
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useful in quantum mechanics.

2.1.6 Some important operators

In this section, we introduce several important operators that we will use frequently.

At first, we introduce the inverse of a matrix. If A4 is a square matrix, it may be
possible that there is a square matrix B, which satisfies AB=1. B iscalled the
inverse of A, andis denotedas B=A"'. Ifthe inverse of a square matrix exists,

we say this matrix is invertible. A square matrix A and itsinverse A™' have the

properties: AA' =A"'A=1,o0r (A’l )-1 = A, and this inverse is unique.

The transpose operation converts a matrix A4 = [aij] to amatrix B= [a ﬁ] ,and B

isdenotedas A4”. Thus,if 4 isan nxm matrix, 4’ isan mxn matrix. For

square matrices A, B, the transpose operation has the following properties:

(4B) =B 4" (2.15)
if A isinvertible, (47)" =(47) (2.16)
(47) =4 2.17)

Trace operation of a square matrix A, is defined as the sum of its diagonal elements:
n

Tr(4) = Zaﬁ . For any two same size square matrices 4 and B, trace operation
i=1

has the following important properties:
1) eyclic property: Tr (AB) =Tr (BA) ,
2) linear property: Tr (ﬂA + ,uB) = ATlr (A) + uTr (B) , A, ueC

3) Tr(A) = z<i|A|i> , {Il>} is an orthonormal basis.

i
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4) Tr(Aly/)(l//]):<g//|A|l//>, ) isa vector

T
Hermitian operation on a matrix A4, denoted as A, is defined as: A' = (A ) ,

where A" means turning each entry of A to its conjugate. For example,
1+3i 2-i| [1-3i 4-5i
= (2.18)
4+5 7 2+i 7

Hermitian operation is also known as adjoint operation. For square matrices 4,B,

it has the following two properties:
(4B) = B' 4" 2.19)

(4') =4 (2.20)
For the outer products like |v> (vl , it is easy to prove that (|v> (v|)’r = |v> <vl .

A linear operator 4 is called a Hermitian or self-adjoint operator if A= A'. An
important class of the Hermitian operators is projectors. Suppose that W isa

k -dimensional subspace of the d -dimensional space’ . With Gram-Schmidt

procedure, it is always possible to construct an orthonormal basis {I z)} , whose first %

elements: |i),1 <i<k isabasis for. The projector P onto the subspace W is

defined as:

P=>1i) i 2.21)

It is easy to check that P is a Hermitian operator. The projector is very important
in quantum measurement and quantum error-correction. It functions as a “filter’.

To see this, let the vector |v)= ) v,|i) be an arbitrary vector in ¥, and we apply

the projector P toit:
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)= S0 Sl Sl |-l ez

i=1 J=k+1
The part of the vector |v> that is not in the subspace W has been cut off, and only

the part belonging to W remains. The vector |v> has been “filtered”. Though

P seems to consist of the orthonormal basis ﬂ 1>} , 1t is only determined by subspace

W , not by which orthonormal basis we use to span W . Later, we will use the
phrase “vector space” P to represent the space whose projectoris P. Inthis

example, the vector space P 1is the subspace W . The orthogonal complement of

P isdefinedas: Q=7—P. Recalling the completeness relation (2.14), it is

obvious that O = zd: i) (i

i=k+1

Another important and special class of Hermitian operators is positive operators. An

operator A 1is called a positive operator if the inner product <v| A|v> is areal and
non-negative number for any non-zero vector |v) . If the inner product <v| A | v) 15

always greater than 0 for any |v> # 0, the operator A is said to be positive definite.

Hermitian operators are a subclass of a more general kind of operators, normal
operators. A normal operator A is an operator satisfying 44" = A'4. Itis

apparent that when 4 = 4", the equation holds.

There is another important subclass of normal operators, unitary operators. A
square operator U is a unitary operator if it satisfies UU' =1. The point that
makes unitary operator important is that it preserves the inner product of two vectors.

To see this, we apply U to any two vectors |v) and |w) in ¥ and get two new

vectors |v'> =U ‘v), lw’) =U | w) . The inner product of two new vectors is as same
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as the inner product of two original vectors:

(v’lw’>=<leTU|w>:<vlw> (2.23)
Thus, unitary operators do not change the geometric relationship of a space. If two
vectors in this space are orthogonal, after being applied by a unitary operator, these
two vectors are still orthogonal. Conversely, if two spaces have exactly the same

geometric relationship, there must be a unitary operator capable of mapping one space

to the other. This conclusion is very useful and we will use it later.

2.1.7 Eigenvalues and eigenvectors
An eigenvalue of a square matrix A, is a non-zero complex value A such that:
A|(//> = ﬂ] l//) , where [l//) is a non-zero vector. ' The vector |z//> is called an
eigenvector of the linear operator A associated with the eigenvalue 4.
Eigenvalues and eigenvectors are the basic characteristics of a linear operator.

‘Eigen’ is the German for ‘characteristic of” or ‘peculiar to’, and sometimes

eigenvalues and eigenvectors are also called the characteristic values and vectors.

The equation ¢(A) =det(4—-Al) = IA - Al | is called the characteristic equation,

where ‘det’ denotes the determinant of a matrix. According to the polynomial theory,
any polynomial has at least one complex root. The roots of the characteristic

equation are the eigenvalues of the linear operator 4. For example, the

- . . 0 1} .
characteristic equation of the matrix X =L 0] 1s:

-1 1

<:(/1)=|X—,u|=|1 _

’=42—1=(/1—1)(/1+1) (2.24)
The roots are -1 and 1. When A =1, from Xll//> = |w>, we can find the
corresponding eigenvector: | /) = aB] =a|0)+a|1), where a is any non-zero

complex number. In the same way, we can find the eigenvector for the eigenvalue -1
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as Iz//> = a{ 11:| = al O) - all) . The eigenvales of three Pauli matrices, X,Y,Z, are

all 1 and -1.

An eigenspace of a linear operator A associated with an eigenvalue A is the set of
vectors: ﬂl//) : Al l//) = i{w)}u {0} An eigenspace is a subspace of V. An

eigenspace is degenerate when its dimension is greater than one. The eigenspace of
the linear operator X with respective to 1 or -1 is not degenerate, for the dimension
of each eigenspace is one. The eigenspace of a linear operator is the ensemble of the

eigenspaces of all its eigenvalues.

A square linear operator A4 is diagonalizable if it has a diagonal representation:
A= Z/I,.|i><ii (2.25)
where {1} is the set of eigenvalues of A4, and ﬂz)} is the set of corresponding

orthonormal eigenvectors. For example, the operator X has the diagonal

X=[|0>\/_+2l1>)[(0$<1Ij_[|0>\/—§|1>)[<01/—§<1|) (2.26)

Diagonal representations are sometimes also referred to as orthonormal

representation:

decompositions. Not all the linear operators have diagonal representations. It has
been proven that an operator is diagonalizable if and only if it is a normal operator.
Therefore, all of the special types of operators we spoke of in the last section, i.e.,
Hermitian operators, positive operators, projectors, unitary operators, are

diagonalizable.
2.1.8 Tensor product
Tensor product is very important in the study of multi-particle systems, for it merges

small vector spaces into a larger space. Suppose V and W are two Hilbert spaces of
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dimension n and m, respectively. Then V ®W is a Hilbert space of dimension nm.

The notation ¥V ® W reads “¥ tensor W”. If |v> is a vector of ¥ and ‘w} isa

vector of W, then |v> ® | w> isavectorof V®W . For convenience the notation

|v>®|w> is sometimes represented as |v, w>, |vw> or |v>|w> The tensor product

of two matrices 4 and B 1is denoted as A® B, and is defined as:

A®B= (2.27)

Tensor product satisfies the following basic properties:

1) For any scalar z, any element |v> of V and any element |w> of W:

2(4)®|)) = (213)) ®] ) =) © (<]} @29)
2) Forany |v1) and ‘v2> in ¥ and any |w> in W:

([v2)+]2)) @[ w) = %) ®|w) +|1,) ®|w) (2.29)
3) Forany |v) inVandany |w,), |w,) in W

[0 () 1)) =108 )+ ¥y ) @30)
4) Let A and B be two arbitrary linear operators definedon ¥V and W,

respectively. Let |v,.> and |wi> be sets of vectors in ¥ and W, respectively. Then,

(4® B)(Xa,[v)®|w)) =2 a (4]v))®(B|w) (231)

The inner product in the space V ® W can be defined by the inner products in the V'

and W. Suppose Z a |viw,.> and Zb ; |vjwj> are two vectors of V @ W , where

]v,.>,

product of these two vectors is defined as:

v]> are elements of ¥, and |w,.> , lw}> are elements of W. The inner
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<Z a,(vw, ”ij ’v}wj>> = Za:bj <v,. |v'j><w,, ’wj> (2.32)

With this definition, we can solve the problem of finding a basis for the space V QW
from the bases of and W. Suppose that {]vi )} is an orthonormal basis for ¥, and
{|wk >} is an orthonormal basis for W7, then we can prove that {|vi w, >} is an
orthonormal basis for V' ®@W . The inner product of any two vectors |viwm> and

’v jwn> is:

(o |y, = 0|, Yo

The value is equal to 1 if and only if i = j, n =m, and for all other cases, the value is

w,)=6,,6 (2.33)

i,j " m,n

equal to zero. So ﬂviwk )} is an orthonormal basis for the space V QW .

Suppose 4 and B are linear operators defined on spaces V' and W, respectively.

They have the following properties:

(4®B) =4'®B" (2.34)
(4®B) = 4" @B" (2.35)
(4®B) = 4'® B (2.36)

At last, we mention a useful notation a®. ‘a’ could be a linear operator or a state.
This notation means that a linear operator or a state tensor product itself & times.

For example, A% = AQ AR A.

2.1.9 Commute and anti-commute
The commutator of two same size square matrices 4 and B 1is defined as:

[4, B]= AB- B4 (2.37)
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If [A, B] =0,wesay A commutes with B. The anti-communtator of two
matrices of 4 and B is defined as:

{4,B}=4B+BA4 (2.38)

If {A, B} =0,wesay A anti-commutes with B .

Commutators and anti-commutators play an important role in quantum
error-correction theory which we will introduce later. Here, we list the commutators

and anti-commutators of Pauli matrices:
[X,Y]|=2iz; [v,Z]=2iX; [Z,X]=2iY
{0",., aj} =0, where i# j are both chosen from the set /, 2, 3.

The most important result of the commutators may be the simultaneous
diagonalization theorem.

Theorem 2.1: (Simultaneous diagonalization theorem): Consider two Hermitian

operators 4 and B. They satisfy [4,B]=0 if and only if there exists an

orthonormal basis with respect to which both operators are diagonal. In such a case,

we say that 4 and B are simultaneously diagonalizable.

For example, if the Hermitian operator A has the diagonal representation:
A= ali)

B= Z’_bi |z> (i | with respect to the same orthonormal basis Iz) ,then 4 and B are

, and the Hermitian operator B has the diagonal representation:

simultaneously diagonal, and 4 must commute with B.

2.1.10 Singular value decomposition

In this section, we introduce a useful decomposition of square matrices.

Theorem 2.2: (Singular value decomposition) For any square matrix A, there are

unitary matrices U and V, and a diagonal matrix D whose diagonal elements are
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all non-negative, such that 4=UDV . The diagonal elements of D are called the

singular values of A.

2.2 Galois fields

Group theory and Galois fields not only are the foundation for classical
error-correction theory, but are proved great value in quantum error-correction theory
as well. In this section, we introduce the primary definitions and the most important

conclusions which we will use in later chapters.

2.2.1 Basic concepts of groups
A group is defined as a set of elements, G, and an operation *, satisfying:

1) G isclosed under *,thatis, forany g,heG,wehave g*heG;

2) * is associative: (a*b)*c=a*(b*c);

3) There exists an identity element, e, suchthatforany ge G, g*e=e*g=g;

4) For any g € G, there exists another element g’ suchthat g*g'=g'*g=e.
We call g’ theinverseof g.

Ifa group G also satisfies: forany g,he G, g*h=h*g,then G iscalleda

commutative group or abelian group. The groups we will refer to in this thesis are

all abelian groups.

For example, G = (Z ) +) is a group, where Z is the set of integers. The identity

element is 0 and the inverse of an arbitrary integer a is —a.

The groups with finite elements are called finite groups. The number of the elements

of a finite group G is called the order of this group, and is denoted as |G| For

example, the group G = ({O, 1}, @) , where @ is the modulo 2 operation, has the
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order |G‘ =2.

The subgroup H ofagroup G isa group which is contained in G and has the
same operationas G . Associated with the subgroup H, there is an important

concept called Coset. A Cosetof H in G is formed by the following process.

We take any g G, and form the set gH ={gh : h e H}. This setis a Coset of

H in G. Clearly, there may be many Cosets of H. Ifthe element g belongs
to H,the Coset gH isexactly H itself. We denote this Cosetof H as H,

and for other Cosets as H,, where i>1. For a finite group, its subgroups have

finite Cosets, and from now on, what we talk about is all based on finite groups.

There are several important results about a subgroup A and its Cosets H,.

D) |Ho|=|H|=;

2) The elements of two Cosets are either totally identical or totally different. For
example, if there is an element appearing in both Cosets, then these two Cosets ‘are

identical.

3) IG‘ is a multiple of |H0

: N
4) H andits Cosets H, partition G: G =UHo , where N=|GIIH I—l .
i=0 0
The forth result is called the Coset decomposition of G inducedby H. This result

is very useful and will be used later.

2.2.2 Basic concepts of Galois field

Afield F is defined to be a set of elements, together with two operators, addition

and multiplication, satisfying the following properties:

1) (F,+) isan abelian group and the identity element in this group is denoted as 0,

and the inverse of an element « in this group is denoted as —« ;
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2) (F - {0}, ) is an abelian group and the identity element is called unit and denoted

as 1, and the inverse of an element ¢ in this group is denoted as o'
3) Distributive laws for any «,f,y inthe field: « ( P+ ;/) =af+ay;

4) For any element ¢« in the field, 0 =0.

A finite field is defined to be field containing a finite number of elements, and this

number is called the order of this field. Finite fields are called Galois fields. 1f the

order of a Galois field is ¢, we denote this field as GF (q) . GF (q) has many

interesting properties, most of which can be derived from the definition of finite field.

But we do not prove these properties, just list the conclusions directly.

Fora GF (q) , g must be a prime number or a power of a prime number. We
denote g =p",where p isaprimenumberand m>1. p iscalled the
characteristic of a field. The two operations in GF ( p'”) are modulo p addition
and modulo p multiplication. The simplest finite field is GF ( p) , the elements of

which are 0,1,---,p—-1. For example, GF(2) = {0,1} .

In GF ( p"‘) , there are m elements which are linear independent over GF ( p) ,

By, By, B, suchthat any element o in GF ( p”’) can be expressed as a linear

combination of these m elements:

a=afy+a, f,., (2.39)

where a, € GF ( p). Thus, GF ( p’") is an m -dimensional space over GF ( p).

For any non-zero element « in GF ( p'") , consider the sequence 1,a,a7,--,

because GF ( p’") is a finite field, there must be a number j suchthat o’ =1, this
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number is called the order of the element o in GF ( p”’) . The subgroup

-1

La,a?, o’ is called cyclic multiplicative subgroup. The element « is called

the generator of this cyclic multiplicative subgroup. Any non-zero element in

GF ( p”’) has an order.

Every element o in GF ( p'”) satisfies

a? =« : (2.40)

or

X —x= H (x—a) 2.41)

aeGF(p"')

A little change to the equation (2.41) draws the conclusion that all of the non-zero

elements are roots of the equation

-1= [T (x-«) (2.42)

aeGF] ( " ),a#O

In GF ( p”’) , there exists a primitive element whose orderis p” —1. In another

word, this primitive element generates all of the non-zero elements in GF ( p”‘) .

Ifafield GF(p") is contained in a field GF(p")., then GF(p") iscalleda

subfield of GF(p"),and GF(p") is called an extension field of GF(p™).

2.2.3 Galois Field GF(4)
GF (4) is one of the most important extension fields of GF (2) and it is already
widely used in classical communications. GF (4) can be represented as GF (22 ) ,

so the characteristic is 2 and it is a 2-dimensional space over GF (2) Traditionally,
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GF (4) is denoted as {O, L w, wz} , where w is the primitive element and its order
is3, w’=1. The conjugation of an arbitrary element o € GF(4) is defined as
&=a’. Thus,wehave 0=0, 1=1, w=w?, w2 =w. The elements {w, w}
are linear independent, and all of the elements in GF' (4) can be expressed as:

0=0-w+0-w, 1=1-w+1-%, w=1-w+0-w, w=0-w+1-w

Summary

In this chapter, we introduced briefly the necessary mathematics knowledge we need
for this thesis: linear algebra and Galois fields. Linear algebra is the main
mathematic language for quantum mechanics, and Galois fields play an important role
for connecting quantum error-correcting codes to classical error-correcting codes.

As the contents in this chapter can be found in most linear algebra and Galois fields
text books, we only listed conclusions. To find more details about these two fields,
we suggest following readings.  For linear algebra, there are many good books, and
we suggest some of them: Horn and Johnson’s two volumes [24,25], Halmos’s book
[26] and Strang’s book [27]; for the Galois Fields, we suggest MacWilliams and
Sloane’s great book on error-correction theory [20] and Gallager’s book on

information theory [28].
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Chapter 3

Fundamental of quantum mechanics

Quantum mechanics is the fundamental of quantum information theory. In this Chapter,
we will review the carrier for quantum information — qubits, and some basic postulates
and theorems of quantum mechanics. Though some principles seem counter-intuitive,
they are simple themselves. They are rules in a totally different world from our classical
world, and we just need to accept them as axioms, do not ask “why”. Once we learn to
think and understand what happens in quantum mechanics world in its own way,

everything will turn out to be beautiful and manageable.

3.1 Quantum bits

Quantum bits [4], or qubits, are the mathematical models for quantum systems which are
used to store quantum information. A qubit is the smallest unit to carry quantum

information, just as a classical bit. However, unlike the bit, which has only two states, 1

and 0, the state of the qubit is a normalized vector over C°. We define an orthonormal

|0>=m |1)=m G.1)

Thus, any state could be represented as:

lw)=al|0)+ B|1) 3.2)

basis for C?

where «, f are complex numbers and satisfy ‘aﬂ ‘ + ‘ ,82l =1. The state ‘l//> is called

superposition, and the special states |O> and |l> are called the computational basis
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states.

Why the state of a qubit must be a normalized vector? And why the state |l//> is called

superposition? The answers lie in the measurement of quantum mechanics. In
classical information theory, we never have any difficulties in measuring the state of a bit
and no one will consider the measurement as part of classical information theory. Ifa
measurement gives us a result 0, the bit we are measuring is in the state 0. We can
always trust the results. Therefore, the measurements act the role of an apparent
interface between the states of bits and our observations. But things change in quantum
mechanics. Not only can not we trust the measurement results, but measurements
themselves are essential part of quantum information theory. It is one of the
fundamental postulates in quantum mechanics. We will introduce its definition later in

this chapter, and here we only illustrate the phenomenon.

The meaning of «, f is this: when we measure the state |l//> on computational basis

{l0),

with probability Iafz or a measurement result corresponding to the state Il) with

1>} , we may obtain either a measurement result corresponding to the state |0>

probability | p |2 . As the sum of probabilities should be equal to 1, we get the equation
|a|2 + | p ‘2 =1. This is why the state of a qubit must be a normalized vector. The sign
“+” 1n the state |l//> =q I 0) +p |1> means “or’: the state It//> is in the state |0> or in
the state |1> . This is why we call ll//> superposition. For example, there is a state

like:

v)=510) 1) ¢3)
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After we measure this state, with probability of 0.5, it will collapse to the state |0) and

give us a measurement result corresponding to this state, or with probability of 0.5, 1t will

collapse to the state |1) and give us a corresponding result.  This state, denoted as |+),

together with the state |-)= %|O) - %Il) , forms another frequently used orthonormal

basis {|+),|-)}, besides {|0),|1)} .

Now, let’s go back to the classical information theory. When we measure the state of a
bit, we can get 1 or 0, and no matter what we get, the result is exactly what the state is.
There is a direct connection between the measured result and the information itself. But
for qubits, this connection disappears. Then, how do we extract the information from
this carrier? Fortunately, ways have been found to measure the qubit states according to
their properties. Therefore, despite the unavailability of direct access to qubits’ states,

they have the real, experimentally verifiable consequences, which are essential for the

power of the quantum information theory and quantum computation.

The coefficients of the state Il//> =a l O) +p I 1) can be any value as long as they satisfy

the equation |05|2 +| ﬂlz =1. This means that a qubit can be in any of infinite possible

states. Therefore, in principle, we can store infinite amount of classical information in a
qubit. However, the measurement only gives us two possible results - there is no way to
gain the access to the infinite information that seems to be there, so it is incorrect to think
that we can use one qubit to transmit a infinite amount of information. Then, how much
information on earth can be stored in a qubit? Jozsa and Schumacher [29] and

Schumacher [4] gave the answer: one two-state system’s worth!

It seems that Nature is playing a game with us. She hides the most precious treasure and
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set the most difficult obstacles. She wants to test human’s wisdom, diligence and
patience. Maybe one day, our performance makes her satisfied, and she would willingly

tell us how to get that treasure.

Now, we show several quantum systems which may serve as a qubit. In classical

information theory, we can use many physical parameters to realize the states of a bit. For

example, we can define a voltage of +5 volts to represent a “1”, and a voltage of -5 volts

to represent a “0”. In quantum information theory, the frequently used quantum systems

to represent a qubit are:

1) The ground and excited states of ions stored in a linear ion trap, with interactions
between ions provided through a joint vibrational mode [30, 31].

2) Photons in either polarization, with interactions via cavity QED [32].

3) Nuclear spin states in polymers, with interactions provided by nuclear magnetic

resonance techniques [33].

In 1), the ‘ground’ state or the ‘excited’ state corresponds to |0> or |l> , respectively.

Radiating the atom with a ray of light with an appropriate frequency, we can force the

electron to ‘jump’ from the state |0) to the state |1). Quite interestingly, by reducing
the duration of the radiation, the electron in the state |O> could move to a middle state

between |O> and |1>,which is |+>

One useful geometric model for a qubit is the following. As |a'|2 +| /3[2 =1, we can

write the state this way:
lw)=e” (cos(§)| 0)+e” sin(—z-)|l>) (3.4
Because the factor e” has no observable effect, we omit it.

lw) = cos(g)l 0)+e' sin(g)ﬂ} (3.5)
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The parameters @ and ¢ define a point on a three-dimensional sphere, which is called

Bloch Sphere [34], as shown in Figure 3.1. This model provides us with a convenient
visualization tool. But it is not useful for a general quantum mechanical system. Itis

only useful for a single qubit.

Figure 3.1 Bloch Sphere

3.2 Four fundamental postulates of quantum mechanics

Four basic postulates support the huge mansion of quantum mechanics. They describe
essential issues of quantum mechanics in the mathematical forms and, therefore, abstract
a physical world to a mathematical world. These issues are: what objects we are dealing
with, how they change, how to measure them and how to build large systems from small

ones. The descriptions of the four postulates are basically from [34].

State spaces

Postulate 1: Any isolated physical system is associated to a complex vector space with
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inner product (that is, a Hilbert space), which is known as the state space of the system.

The system 1s completely described by its system state, a unit vector in the state space.

Postulate 1 is the foundation for the rest three postulates, for it gives us a mathematical

definition of quantum systems. Though what it says is simple, its significance is great.
A qubit is such a system: its state space is C?, and its system state is a unit vector
|@)=a|0)+b|1), where |a|’ +[p[ =1. “a” is sometimes referred to as the amplitude

for the state |O> and “b ” 1s referred to as the amplitude for the state |1> .

Evolution of closed quantum systems

Postulate 2: The evolution of a closed quantum system is described by unitary operations.

The system state |¢1> at time ¢, and the system state l(p2> at time ¢, are connected

by a unitary operator U, which only depends on the times ¢, and ¢,:

Ulp)=|e,) (3.6)

The Equation (3.6) stems from Schrodinger’s famous equation [35] for physical systems:

ndle)
in i H|(p> (3.7)

where H is a fixed Hermitian operator known as the Hamiltonian of a closed system
and 7 is a physical constant called Planck’s constant.

The unitary operator in (3.6) indicates two things. First, the postulate 2 does not conflict

with postulate 1, because if the vector |@;) is a unit vector, then the state |p,) is also a

unit vector. Second, the evolution of a closed quantum system is invertible, because we

can derive the state |¢,) completely from the state |@,): U'|p,)=|@). Inanother
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word, during the process of the evolution of a closed quantum system, the information of

this system has been preserved without any loss.

The unitary operator U is a function of time ¢. But, in the thesis, we only concern
about the input state ‘g01> and the output state |¢2>. Therefore, we can regard U as an

operator having nothing to do with time.

The Equation (3.6) does not indicate what kind of unitary operators can be used to
describe the evolution of a closed quantum system. It turns out that, in the case of
closed one-qubit systems, any unitary operator defines an evolution that can be realized
in realistic world. Commonly used operators on qubits are Pauli matrices and the

Hadamard operator H , which is defined as:

111 1
HETZ—L _1] (3.9)

Hadamard operator has the properties: H|0)=|+), H|1)=|-).

Quantum measurements

Postulate 3: quantum measurements are described by a collection of quantum operators
{M m} , where m is the index of the measurement outcomes. These operators are
applied on the state space associated with the system being measured. Suppose |1//> 1s

the system state just before the measurement. The probability that the measurement

outcome m occurs is:
p(m)=(w|MIM, |v) (3.9)

The system state Il// '> immediately after the measurement is:
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M,lv)  M,ly)

w')= = =—=L (3.10)
N VT

The collection {M m} satisfies the completeness equation:
MMM, =1 (3.11)

The postulate 3 depicts a clear picture of quantum measurements. It gives us the
probability of the occurrence of a possible outcome, the system state after the
measurement and the property of the measurement operators. The meaning of equations

(3.9) and (3.10) is very clear. Then, what is the meaning of the completeness Equation

3.11)? Suppose is an arbitrary state of the system being measured by a collection
pp 14

{M m} , and we calculate Z P (m) explicitly:

2.p(m)=2 (w|MIM, |v)
={y |2 MM, |v)
={w||y)

Thus, the completeness equation is merely one of the expressions of the fact that

probabilities sum to one.

The most used and important measurement in quantum information theory is the
projective measurement, defined as:

Projective measurement: the measurement operators of a projective measurement are a

collection of orthogonal projectors {Pm} , which satisfies the completeness equation:
ZPM =1 (Notethat P, =P,). “orthogonal” means PP, =5, P.. A, arcthe
measurement outcomes. The operator M = Z AP, 1s called the observable of the

projective measurement.
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In fact, each A4 isthe eigenvalue of M ,and P, is the eigenspace associated to the
eigenvalue 4,. Later, if we say “measure ina basis {|m)}”, where {|m)} isan
orthonormal basis, we mean a projective measurement whose projectors are P, =|m)(m|.

For example, if we measure a qubit |y)=a|0)+b|1) inthebasis {|0),|1)}, then the

projective measurement is {PO = |0> (O , B = |1> <1 |} and we will get the state

hly) _ao) (3.13)
Jwlmly) ld
with the probability Ialz and the state -b—lgl with the probability |b|2 . Ifthe
measurement outcomes are 4, =1, 4, = —1, then the observable
1 0
M=ﬂDPO+ﬂlP1=|O><0|—|l><1|=[O _J (3.14)

is the Pauli matrix Z.

One of the important consequences of quantum measurement is that only orthogonal
states can be reliably distinguished [5]. Two states are distinguishable if and only if

there exists a measurement which can tell them apart certainly. Suppose the states

|1//>, |¢> are orthogonal. We construct a projective measurement, F, = Iw)(y/ l ,
B =I-F,. Ifthestateis Il//>, we get the measurement result: p(O) =1, p(l) =0;if

the state is |p), we get the measurement result: p(0)=0, p(1)=1. Thus, we can

distinguish these two states, and what is more, do not destroy them. If two states are not
orthogonal, then there is no such a measurement that can distinguish them without any

CITOL.
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Now that we have familiarized ourselves with quantum measurements, let’s have a look
at the relationship between the postulate 2 and the postulate 3. Both of two postulates
describe the changes of quantum systems. The difference between these two postulates
is that: the postulate 2 describes the changes of a closed quantum system, where the force
making the system to change is coming from the system itself, while the postulate 3
describes the changes of an open quantum system, where the force making the system to
change is coming from the outside, from scientists’ interference. Although it is possible
to consider the system being measured, the quantum measurement device and some other
quantum systems together as a closed quantum system, whether or not we can derive the
postulate 3 as a consequence of the postulate 2 is still an open problem. Fortunately, the
answer to this problem will not affect us very much. What we care about is when to
apply postulate 2 and when to apply postulate 3, and in this thesis, the circumstances

have always made this point very clear.

Composite systems
Postulate 4: The state space of a composite system is the tensor product of the state

spaces of its constituent physical systems. If we number the component of the systems

from 1 to n,andthe ith component be prepared in the state |1//i> , then the state of the

composite system is: |y;)®|y,)®---®|y,).

A straight conclusion of the postulate 4 is that the state of an # -qubit system is a unit

vector over C* , for:

v =T Twlw) =1 (3.15)

i=1

(] @ s |®- @y, ) (1) ®p.) 8- ®

The basis of a tensor product space may be constructed from its component systems, as

we mentioned in chapter 1. For example, for a two-qubit system, if the basis we select
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for the one-qubit system is {| 0>, 1>} , then the basis of the two-qubit system is

{| 00>,]01>,|10>,ll 1>} . Normally, we often use two bases for an 7n-qubit system. One

takes {|0>,|l>} as the basis for the one-qubit system, and the other one takes {l+>,f—>}

as the basis for the one-qubit system.

The tensor product space contains a very special and important kind of vectors, called
entangled states. These vectors are not tensor products themselves. For example, a

famous and important entangled state is the Bell or EPR [36] state:

|00) +|11)

N

It gets the name after the initials of Einstein, Podolsky and Rosen, who discovered it. It

(3.16)

is easy to check that EPR state cannot be written in the form of a tensor product

|W1>®|‘//2>-

The entangled states are very important, for they are the key in most quantum mechanical
applications. In an entangled state, the component systems are correlated. To see this

correlation, we take the EPR state as an example. Suppose we measure the first qubit of

the EPR state in the basis {l 0>,

1>} . We can get two possible resulted states |00) and
|1 1> with the same probability. In either case, the second qubit is in the same state as

the first qubit. Then, we measure the second qubit in the basis {!0),

l>} too. Of

course, the measurement result is always as same as the measurement result of the first
qubit. This measurement correlation exists no matter how far away these two qubits are
separated or which qubit we measure first. It has been proven that: the measurement
correlation in the EPR state is stronger than could ever exist between classical systems

[37]. The EPR state plays an important role in the entanglement enhanced teleportation
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[11].

A frequently used notation for composite systems is the subscript notation. The

subscript notation, A4,, means that the operator A acts onthe ith system. For

example, Z, is an operator acting on the third qubit.

3.3 Density operator

A quantum system can be described by an ensemble { Dis It//,. >} , which means that the

quantum system may be in a states Iw,.> with its corresponding probability p,. Asall

of the possible states of this quantum system are included in the ensemble, the

probabilities sum to one: Z p; =1. [Ifthere is only one state in the ensemble, we say

the quantum system is in a pure state. Otherwise, we say the quantum system is in a

mixed state. The ensemble { Di

v, >} is called an ensemble of pure states. So far, our

explanation of quantum mechanics is limited in pure state. But more often than not, we
need to treat the quantum systems in mixed states. Density operators or density
matrices, which were first developed in [39], arise naturally to fulfill this purpose. In

this section, we introduce their basic ideas.

3.3.1 The definition of density operators

For an n-dimensional quantum state space, a density operator p isan nxn

Hermitian operator which satisfies the following two conditions:

1) (Trace condition) Tr(p)=1;

2) (Positivity condition) p 1is a positive operator.
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Suppose we have a quantum system described by an ensemble { D |V >} , 1ts density

operator is:
p=.pw) W] (3.17)

It is easy to check that the Equation (3.17) meets the definition of density operators.

The trace:
Tr(p) =2 pTr(jw.)w.]) = 2 p. =1 (3.18)
It satisfies the trace condition. Let ](o} be an arbitrary quantum system state, the inner

product:

(olole)=Y p ol wlo)=3 pllolw.) 20  (3.19)

Thus, it is a positive operator.

There is a simple criterion to judge whether a density operator is in a pure state or in a

mixed state. It is easy to prove that if 7r ( P’ ) =1, p isinapure state; if 7r ( P’ ) <1,

o isin a mixed state.

For a given density operator p, there is always at least one quantum system

corresponding to it, for p must have a diagonal representation [24, 25] p= z A |z> <i

>

1

where {2} are the real and non-negative eigenvalues and {| z>} are orthonormal

eigenvectors, and due to the property of trace one, the system described by the ensemble

(A

1>} has the density operator p. As a matter of fact, we can often find several

quantum systems which give the same density operator. An important fact about these
systems is that we can not distinguish them by experiments, provided that no more extra
side information is given. Thus, the density operator gives as much information as

possible about experiments performed on the system corresponding to it.
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3.3.2 Reformulate the four postulates by density operators

As density operators completely characterize quantum systems, we can reformulate the
four postulates in the language of density operators. By combining the four postulates
in section 3.2 and the Equation (3.17) together, we derive the following results. For the

results which are simple and straight, we omit their reformulating process.

Postulate 1: Any isolated physical system is associated with a complex vector space
equipped with inner product(in another word, a Hilbert space) which is known as the

system space of the system. The system space is uniquely described by its density

operator. If a quantum system is in the state p, with probability p,, the density

operator of the system space is Z pip; -

Postulate 2: The evolution of a closed quantum system is described by a unitary operator

U, which only depends on time # andtime #,. Suppose at time ¢, the system state is
p,and at time ¢,, the system stateis p'. Then

o =UpU’ (3.20)

Postulate 3: The measurement of a quantum system is described by a set of operators

{M,}, where m is the index of the measurement results. Suppose the system state right
before the measurement was p. The probability of getting result m is:

p(m)=Tr (M;Mm p) (3.21)
The system state after the measurement is:

Y (3.22)
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The measurement operators satisfy the completeness equation:
Z MM! =T (3.23)
Reformulating process:

Suppose we perform a measurement described by the measurement operators M,, and
the system was in the initial state |y,) with probability p,. The probability of getting
the result m is:
p(mli)=(w.|MIM, |w,)=Tr (MM, |y,)(w.) (3.24)
According to the probability theory, the total probability p(m) is:
p(m)=3p(m|)p, = 2. Tr (MM, |w)w.|)p, =Tr(MIM,p)  (3.25)

The state after getting the result m is:

lvr) o M?L"’I”J) Wl (3.26)

The density operator after getting the result m is:
2w =2 p(ilm)w ) | (327)

Using the Bayes rule, the probability p(ilm) is:
p(ilm)=p(i.m)/ p(m)= p(m|i) p,/ p(m) (3.28)

We substitute (3.24), (3.25), (3.26) and (3.28) in (3.27) we get:

N =Zp(i|m)%(m)|y,;n><w;n\ (3.29)

=ZpiMm|l//i><l//i|MJ1

3.30
__M.pM,
(1M, 5] (3.31)

The Equation (3.31) is only the density operator after getting result m. What about if we

want to know the post-measurement density operator p’ before we perform the
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measurement? We know that the post-measurement system is described by the

ensemble { p(i,m),

v >} , then the density operator p’ is:

p'= ZP(i,m)}l//Z">(t/f,-'" (3.32)
:Zp(m|i)pi ’l//im><l//iml (3.33)
We substitute (3.24) and (3.26) in (3.33) to get:
' N M)y M, .
p= ;p(m‘l)p,- (] —;MmpMm (3.34)

The Equation (3.34) is a very nice and compact formula for the measurement in the

language of density operators.

Note that there is another way to express the density operator p':
p'= p(mp, (3.35)

The Equations (3.35) and (3.34) are mathematically same, but have different physical
explanations. Thus, by choosing an appropriate form when we tackle a problem, we

would be able to reveal and understand the physical meaning of the problem much easier.

Postulate 4: The state space of a composite physical system is a tensor product of the

state space of its element physical system. Suppose we number the element systems

from 7 to n, and the ith element system is prepared in the state p,, then the state of the

composite systemis: g ®p, ®---Q p, .

3.3.3 The reduced density operator

Recall that two systems in an entangled state have a definite state, or a pure state, when

considered together, but each of them can not be said to be in a definite state on its own.
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Then, what do we get if we only observe one of them? Its behavior is described by its
own reduced density operator. Suppose two systems 4 and B are in the state p*”.
The reduced density operator of A4 is defined as:

pt=Tr, (pAB) (3.36)
On the right hand side of the Equation (3.36), the notation 77, 1s called the partial

trace over system B. Let p** =Y p,p, ® p, ,and the partial trace is defined as:

Tr, (p* )= Y. iy Tr (5, (337)
A very useful and simple case is:

Try (| ){a, | ©]5) (B, ) = (B.|Br)] & Y{a, | (3.38)

Just like a density operator, a subsystem’s reduced density operator gives as much
information as possible about the experiments applied on this subsystem [40]. In fact,

the correlation between two systems is defined by the reduced density operators. Let

p™ bethe joint state of systems 4 and B. The two systems are said to be

|00)+|11)

NG

correlated if and only if p*® # p? ® p®. We take the Bell state as an

example. The density operator o of the Bell state is:

p=[|00>\/_4;|11>)(<00b%(11|j (3.39)

The reduced density operator of the first qubit is:

P =Tr(p) (3.40)

ZTrz(|oo)<oo|+|oo>(1 1|+|11>(00|+|11)<11|) (3.41)

2
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_ 10){0[(0]0)+[0) {t}{0f1)+[1) (0] {1[0) + 1) 1| 1]1) (3.42)

2

1
— 343
) (3.43)
As Tr (( P )2 ) = —; <1, p' is amixed state. In another word, the first qubit is not in a

definite state. It is also clear that p# p' ® p*, which means Bell state is an entangled

state. Both of these conclusions are as we expect.

3.3.4 Unitary freedom in the ensemble for density operators

In the section 3.3.1, we have pointed out that the quantum systems with the same density
operator can not be distinguished by experiments, provided that we are not given extra
side information about them. In this section, we introduce an important theorem about
these systems. This theorem is called unitary freedom in the ensemble for density
operators, which was first discovered by Schrodinger [41], and later rediscovered and

developed by Jaynes [42] and by Hughston, Jozsa and Wootters [40].

Suppose there are two ensembles of pure states {p,,|w,)} and {q,,|¢,)}. Forthe

convenience, we define the un-normalized vectors |1/7,.> = \/;, |(//,.> and |¢i> = \/-q—, | go,.> .

If the number of the vectors in {ll/?,. >} is different from that in {| @, >} , we can add zero

vectors in the smaller set to make them have the same number of vectors.

Theorem 3.1: (Unitary freedom in the ensemble for density operators) two sets {‘1/7, >}

and {

@ >} have the same density operator if and only if:
i*/7f>=2”g$<7’f> (3.44)
j
where the u; is a unitary matrix.

Proof: First, suppose we two sets vectors satisfy Equation (3.44), then:
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Z|¥71><l/71| Uy Ikl¢j> ¢k (345)
=ZkZ( y Ul%) @, | (3.46)

=2.% |3,)(%| (3.47)
=>1,)(5,] (3.48)

This means that the two sets have the same density operator.

Second, suppose two sets have the same density operator p = |17,) (%] = >_|4,)(%-
The density operator has the spectral decomposition: p = ; 2| k)(k|. We define

|£) =& k). {|%)} is an orthogonal basis for the space of p, and satisfies:

Z l/7,~)(t/7,-l=;|15><15| (3.49)

As the set {|l/7, >} is totally in the space of p,

7,) is the linear combination of llg> :

l/7i>=Zk:cik|]€> (3.50)

We substitute (3.50) into the left hand side of (3.49):

RTAD VRIS DCe) LI D

Comparing the Equation (3.51) with the right hand side of the Equation (3.49), we can

get:

Z(c,.kc,.‘,) =5, (3.52)

This condition ensures that if ¢; is not a square matrix, we can append extra columns to

obtain a unitary matrix v; and add zero vectors to {’ E>} at the same time, such that:

|¢pi> = ;vﬂc ‘Ig> . In the same way, we can find a unitary matrix w, such that:

l(ﬁi> = Z Wy, ‘I€> . From the unitary matrices v and Wys there is a unitary matrix
k
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u=vw', which makes |i7,)=> u, ‘¢j>. 0

J

3.4 The Schmidt decomposition and purifications

Entangled states are always a favorite in the research of quantum information theory and
quantum computation, because they are the central resource in many applications. We
have already introduced the surprising fact that while a composite system is in an
entangled state, its subsystems are in mixed states. In this section, we go to more details

about the entangled states.

The nature of the entangled states gives rise to two questions. 1) Do the subsystems of
an entangled state have something in common? In some cases, a pure state is much
easier to handle than a mixed state. Then, 2) can we find a way to purify a mixed-state
into a pure-state? The search for answers to these questions has led to two tools of great
value for entangled states - Schmidt decomposition and purification, which were

developed by Schmidt [43].

Theorem 3.2: (The Schmidt decomposition) Suppose |l//> 1s a pure state of a composite
system AB. There must exist an orthonormal basis {[ i, >} of A4 and an orthonormal
basis {|iB >} of B, such that:

|1//>=Zli|iA>|iB> (3.53)
A, are known as the Schmidt coefficients and satisfy:
1) 4,20 forany i;
2) Y A =1 (3.54)

Proof: Let {| ]>} be any fixed orthonormal basis for 4, and {|k>} be any fixed
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orthonormal basis for B. Then the state |y) can be written as:
) =2 a;]7)|k) (335)
Jk
If {| j >} and {I k>} do not have the same dimension, we can add zero vectors to the

smaller one to make it have the same size as the other one so that @, is a square matrix.

By the singular value decomposition, a =udv,where d is a diagonal matrix with

non-negative entries, and # and v are unitary matrices. Then:

|W>:Zujidiivik IJ>1k> (3.56)

ik

i) = Zv,.k |k> and d; =1, we get the result:
k

If we define |i,)=> u,l/),
j

w) =2 Ai)is) (3.57)

From the theorem 3.2, we can get the reduced density operators of 4 and B
respectively:

Pt =22 i) (i) (3.58)
P’ =Z,13 |is) (i3 | (3.59)

The two reduced density operators have the same eigenvalues! As many properties of a
system are uniquely determined by the eigenvalues of its density operator, this result is
very significant. It seems that, to a certain degree, the pure state of the composite
system is a reflection of the common points between its component systems. For

|00)+|01)+|11)

example, the non-symmetry pure state \/3_

does not give us any apparent

properties. Yet, if we calculate Tr (( p* )2 ) and Tr (( o’ )2 ) , we find that they give the

. 7
same result, 1.e., i
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The bases {|z A>} and {‘i3>} are called the Schmidt bases for A and B respectively.

The number of A4, ’s is called the Schmidt number of the state |l//> . The Schmidt

number is an important parameter to measure the degree of entanglement of an entangled

state. Imagine that if the Schmidt number is only one: |1//AB > = ‘z’ A>|z’3> , obviously,

there is no correlation. If the Schmidt number is more than one, the correlation exists.
The bigger the Schmidt number of a composite system is, the more entanglement this

system involves.

We now introduce the second tool, the Schmidt purification, which, to some degrees, is
the inverse of the Schmidt decomposition. The Schmidt decomposition is from an

entangled state to a mixed state, while the Schmidt purification, on the other hand, is
from a mixed-state to an entangled state. Suppose that p* is the density operator of

A, and its spectral decompositionis p*=>"4i,)(i,|. We mathematically introduce

an ancillary system R that has the same state space as A4, and construct an entangled

state I‘//AR>=Z\/Z|"A>|"R>- |i) is an orthonormal basis of R. The state \y/AR> is

a purification of p*, for Tr, (‘ l//AR> <1//AR i) =p?.

The purification of p* is not unique, for the selection of the orthonormal basis {] ip >}
isnot unique. Let U, be an arbitrary unitary operatorin R. The state

‘WAR’> = (L,®U,)|w™) (3.60)
must be a purification of p*,because U, just turns the orthonormal basis {|i,)} to

another orthonormal basis of R. The Equation (3.60) is called the freedom in

purification.
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Summary

In this chapter, we go to details to introduce the primary ideas of quantum mechanics:
qubits, postulates, density operators and the Schmidt decomposition and the Schmidt
purification. All of these issues are very important for quantum information theory and
quantum computation. Qubits are the mathematical models for quantum systems in
reality, just as bits in classical world. A qubit is the smallest unit we will deal with in
quantum information theory. The four postulates are the fundamental rules which
support the whole mansion of quantum mechanics. Density operators give us as much
of information as possible about the experiments applied on quantum systems. They are
very useful when we study mixed states. The Schmidt decomposition reveals the
common properties of the subsystems in an entangled state, and the Schmidt purification

tells us how to introduce entanglement to purify a mixed state.

There are many excellent books on quantum mechanics and we suggest some of them:
Peres’ superb book [44], Sakurai’s book [45], Volume III of the excellent series by
Feynman, Leighton, and Sands [46], and the book of Cohen-Tannoudji, Diu and Laloe
[47,48]. But all of these books involve too much physics. Therefore, we suggest
readers to take them just as references. The contents in this chapter also appear in many
books on quantum information theory and quantum computation, and we suggest readers
to read these books, for the theory of quantum mechanics in them is easy to understand.
Here, we list some of these books: the books of Lo [49], Gruska [50], Nielsen and
Chuang [34], Bouwmeester et. al. [51], Alber et. al. [52], the lecture notes of Preskill [53]
and the collection of references by Cabello [54] which contains many references to other

reviews.
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Chapter 4

Open-system dynamics

In Chapter 3, we have introduced that the evolution of a closed quantum system is
described by a unitary operator. But, in real life, most quantum systems we are
interested in are open-systems, which interact with other systems. In this Chapter, we
will review the description of open-system dynamics and quantum noise in terms of

quantum operations.

4.1 Quantum operations

Throughout this and following sections, we use a set of inventions introduced by
Schumacher [58]. The primary system is denoted by Q, which is assumed to be a
finite-dimensional, with a Hilbert space H,. The primary system interacts with an
environment E , and there may be an auxiliary system R. Suppose the initial state of
Q is p. Afterinteracting with E, the state of Q becomes p’'. Thereisamap ¢
to describe this process: p'=¢(p). Themap & is called a quantum operation if and
only if it satisfies the following three axiomatic properties [55, 56, 57]:
1) Tr (g ( p)) is the probability that the process represented by £ occurs. Therefore,

0< Tr(a(p)) <1 for any state p.
2) The quantum operation & is a convex-linear map on the set of density operators,

that is, for probabilities {p,}, we have:
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8(Zpip,-j=2pie(pi). 4.1)

3) £ is acompletely positive map. That is, for any positive operator 4 of Q, ¢ (A)

is always a positive operator. What is more, for any joint positive operator A°* of

Q and an arbitrary reference system R, (I, ® g)(AQR) is always a positive

operator as well.

These three axiomatic properties reflect our requirements for a map being a quantum

operation. At first, we need the quantum operation to be able to represent part or entire

whole physical process, so we have the first property, allowing 0 <7r (a( p)) <1.
Since a real density operator is required to meet the condition 77 ( p) =1, we must

normalize & ( p) to get the true state of the primary system. Thus, the density operator

£(p)

Tr (a(p))

operator, for the difference between the true density operator and & ( p) is a mere

after the map is . But more often than not, we say that &(p) is the density

normalization factor.

For example, suppose p is the initial state of the primary system and M, is one of the
operators of a quantum measurement described by the collection {M m} . We define the

quantum operation £, (p)=M,pM], then the probability that the process represented by

M,pM]

g, oceursis Tr(z,(p))= Tr(M,.TM,.p) and the state after &, is p, = W :

The results are exactly same as what we got in Chapter 3. If the primary system is a

closed quantum system associated with a unitary operator U, we can define the quantum
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operation &(p)=UpU", then Tr (s(p)) =1 and the final state is &(p)=UpU".
From these two examples, we can see the flexibility of the quantum operation. To some

degree, we can regard ¢ as arandom variable, and Tr(g)=p(¢).

The second property comes from the physical requirement on quantum operations.

Suppose the initial state of the primary systemis p= z p,p; . Naturally, the state after
£ is:

o) o clo) |
w25 (e(0) “

p(eli)p

. and note that

p(s)

According to the basic probability theory, p (i |8) =

Tr(£)=p(£) and Tr(e(p,.))=p(8|i),

£(p)= p(s)Zij p(‘jl(-)g.)p" ;((§|ii)) = Zpis(pi ) (4.3)

The third property stems from an important requirement on the quantum operation. The
quantum operation is a map from a set of density operators to another set of density
operators. As long as the input is a valid density operator, the output should also be a
valid density operator. This fact gives rise to the third property. This should be true
whether the primary system is an independent system or is a subsystem of a larger
quantum system. The following example will enable the readers to appreciate the

importance of the third property. Suppose the operation 7 performs the transpose

[a b] r l:a c]
N 4.4)
c d b d

Itis clear that T takes any one-qubit density operator into another density operator.

operation:
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|00)+|11)

But when we apply /®T on a two-qubit state I we get:
1 000
0010
1 (4.5)
2101 00
0 001
. . ... 1 1 1 1 .. .
The eigenvalues of this matrix is —, —, 5 and 5 Apparently, it is not a valid

density operator. The result means that 7' can not do its job for a two-qubit system.

Therefore, T isnot a quantum operation.

4.2 Representations of quantum operations

The three axiomatic properties are abstracted so highly in the mathematical form that
they are not convenient to use when we do calculations. We need a more practical form
of the quantum operation. It is quite surprising that these axiomatic properties are
enough to deduce the practical representation of quantum operations, the operator-sum
representation [55, 56, 57]

Theorem 4.1: The map ¢ is a quantum operation if and only if

£(p)=2 E.pE] (4.6)
where the operators {E,} map the input Hilbert space to the output Hilbert space, and
satisfy ZE;’ E<I.

Proof:
Suppose £(p)=> E,pE!. Obviously, £ satisfies the first and the second axiomatic

properties. We only need to check whether it is completely positive. Suppose 4 isa

positive operator of the joint system R(Q, and |1//> is an arbitrary vector of RQ,

(w(I®e)(4)|w)=2(w|(I®E)A(I®E])|w) (4.7)

i
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Defining (y,|=(I®Ef )|y),

(4.7)= 2 (wi|4]w,)=0 (4.8)

So (I®e)(4) is also a positive operator. Thus, we complete the if part of the proof.

Now, we begin to prove the only if part. Suppose & ( p) satisfies the three axiomatic

properties. What we should do is to find out how to express this map in the form of the

operator-sum. We introduce an auxiliary system R, which has the same dimension as

Q. Let {|iR >} and {liQ>} be the orthonormal bases for R and Q, respectively.

Because two systems have the same dimension, we can use the same index i to

represent the two bases. Define a joint state |} of RQ by
oy = 2l (4.9)

Here, we neglect the normalization factor of |a) for notational simplicity. The
positive operator of |a) is:

A=|a><a|=izj|iR><jR|®’iQ><jQ| (4.10)
Then we define a positive operator o of RQ by

o=(I1®¢£)(4)

=Zj|iR)(jR|®e(|iQ>(jQ|) (4.11)

Up to now, we have settled & into a larger system and we have introduced a new
positive operator. Why do we spend time in constructing this new operator? We will
soon see that a very interesting thing happens when we try to recover ¢ from this
operator, and all of the new items introduced become part of the operator-sum

representation of . Let lw) = Zz//i ’iQ> be any state of system Q. Define a

corresponding state |1/7> of system R by
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[7) =2 |ir) (4.12)

Then, we form the following inner product

1ol = (7 Zie) el @ o) 7o )1) 413)
=ZV4W;€ (lie){el) (4.14)
=z(|w)(wl) 4.15)

Let o= |s,)(s;| be some decomposition of o. Note that the vectors |s,) are not
i

necessarily eigenvectors and, obviously, they are not normalized. Then define a map
E|w)=(gls,) (4.16)

It is easy to see that E, is a linear operatoron (0. Combining (4.16) and (4.13), we

get
Wlofz)=21s)s7) (4.17)
=ZE,»IW)<1//!EI (4.18)
=£(|w)iy) (4.19)
So, for any pure state of Q, we have
e(lv)wl)= ZE lv)(w|E! (4.20)

By convex-linearity, we can generalize the formula (4.20) for an arbitrary state p,
e(p)=) EpE] (4.21)

From the first axiomatic property of &, 0<7Tr (8 ( p)) <1, we have the result

D EE <I (4.22)

There are more interesting things in the proof of Theorem 4.1. Let’s look back at the
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Equation (4.16)
B ) ={7]s)

The definition of the operators {E } are based on the vectors |s,.> , which are from a

1

decomposition of o. However, the decomposition of ¢ isnot unique. Naturally,
for each decomposition we can define a new set of operators, and all of these sets of
operators are valid operator-sum representations for £. Now that all of these sets of
operators represent the same quantum operation, is it possible that there is a definite

relation between them? Suppose that o = Z] si><s, | and o= Z | t,><ti l are two

decompositions. Theorem 3.1 in Chapter 3 tells us that if two sets of vectors have the
same density operator, there is a unitary matrix mapping one set of vectors to the other.

Thus, we have
s,y =", |t,) (4.23)
7
Where u, isaunitary matrix. Define two sets of operators E ,=(i7|s,) and

F,=(y|t,). Obviously, £(p)=Y EpE/ =) FpF'. By(4.23), we can find out the

relation between {E,} and {E}
B =(7ls)=2u, <‘/7]’j>=2uvf} (4.24)
J J

We generalize the Equation (4.24) as the following important theorem.

Theorem 4.2: (Unitary freedom in the operator-sum representation) Suppose operators

{E;} and {F} correspond to the quantum operations &£ and f, respectively. By

adding zero operators to the shorter list of two operators, we may ensure that {E } and

{F;} have the same number of elements. Then &= f ifand only if there exist a

unitary matrix u; suchthat E; = u.F,.
j
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Theorem 4.2 is very useful for quantum error-correction. Quantum noise is represented
in terms of operator-sum. Different kinds of noise have different operator-sum
representations. Theorem 4.2 shows that though some kinds of noise are seemingly
different, they give rise to the same dynamics. If we can find a scheme to get rid of one
of them, we can use the same scheme to get rid of all of them. Thus, it provides us with

a simple and useful way to deal with noise.

From Theorem, 4.2 and 4.1, we can deduce easily another useful theorem.

Theorem 4.3: All quantum operations £ on a system of Hilbert space with dimension d

can be expressed by an operator-sum representation having at most d’ elements,
M
e(p)=) EpE] (4.25)
i=1

where 1< M <d*.
The proof of this theorem is simple. The Equation (4.16) shows that the number of

operators in {E} depends on the number of vectors |s,.> . The largest number of

vectors |s;) isthe dimension of o, whichis d?. Therefore, {E,} has atmost d’

operators.

Operator-sum representations are not the only choice to represent quantum operations.

The condition Z E!E, =1 is called trace-preserving condition, for it implies that

H

Tr(e(p))=1. Thecondition Y EfE,<I is called non-trace-preserving condition.

The references [56, 57, 59] provide us an important conclusion that every

trace-preserving quantum operation & has a unitary representation, and now we discuss

this situation. Suppose p is the initial state of the primary system Q, and

pF = Z A [v,)(v, ] 1s the initial state of the environment £, where states ]v,) are the
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eigenstates of p®. Two systems form a closed system. They interact for a time, and

the interaction is described by a unitary operator U . Then the state of primary system

after interaction is:
g(p):TrE(U(p®pE)U*) (4.26)

The equation (4.26) is the unitary representation of the quantum operation &. Note

that:

Tr(g(p))=Tr(U(p®pE)UT)=1 (4.27)

The explicit calculation of the Equation (4.26) gives us an operator-sum representation.

Let {| g )} be an orthonormal basis of E, and we get:

e(p)=§kj<gk|(U(p®21,|v,><v,|jU*Jlgk> (4.28)
=‘k4\/ﬂ—7<gk|U|v,>p(v,|UT|gk>\/Z (4.29)

= ZEklpEle (4.30)
]
where E, Eﬁ(gkw]v,).

Now, we give an example of unitary representation. Let’s find the operator-sum of the

quantum operation & for the system showed in Figure 4.1.

The first qubit
Yol &(p)

The second qubit

0)

S

Figure 4.1. Controlled-NOT gate as an elementary example of a single qubit gate
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The Controlled-Not gate, U, is a two-qubit unitary operator, which is defined as:
U, =|00)(00]+|01){01]+|11){10+|10)(11| (4.31)
In this process, the first qubit is the primary system and we can regard the second qubit as

the environment. Two qubits establish a closed system whose evolution is described by

the Controlled-Not gate. The quantum operation is:
£(p)=Tr (Uc (p®[0)(0))UE) (432)

If we choose {

|0),|1)} as an orthonormal basis for the second-qubit system, we have:

#(0) = (0|(Uc (r®[0) O)UL)0)+ (1] (Us (oB[0) DL @33)
= (01U |0)(p) (0]U2]0) + 1T 0) o) O] 1) (434
Define E, =(0|U.|0) and E, =(1|U.|0), and we get the operator-sum representation,
¢(p)=E,pE +E,pE] (4.35)

To find out the exact forms of E, and E,, we substitute the Equation (4.31) in the

Equation (4.35), and get the final result,

£(p)=[0){0] [ 0){0]+[1)(1[ p[1)1] (4.36)
=EBpF +FpF, (4.37)

where B = |0> <0[ and P, = |1> (1] are projectors.

The way used in unitary representations provides us with some hints to find operator-sum

representations for some non-trace-preserving quantum operations. Consider following

example. Suppose p is the initial state of Q and p* = Zl, ’v,)(v, | is the initial
state of the environment E , where states |v,> are the eigenstates of p®. The joint

system QF is a closed system and is described by a unitary operator U . After U
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acts, we perform a measurement {A, }. The quantum operation of the primary system
is:

£n(P)=Trs (MU (p® p°)U'M]}) (4.38)
and

Tr (2, (p)) =Tr(M,U(p® p* )U'M]) (4.39)
Let {|g, )} be an orthonormal basis of E, and we get the operator-sum representation:

£, (P)= ZEMIOEMJr , Where F, = \/Z(gk |M,Uv,).
K

4.3 Examples of quantum noise

In this section, we present some typical kinds of quantum noise on a single qubit. By
doing so, we not only show the power of the operator-sum representation, but also
introduce several important quantum noise models which are used frequently in our study

of quantum error-correction.

The bit-flip channel
A bit-flip channel flips a qubit from the state |O> to |1> , or from |1> to |O> with
probability p. The bit-flip action is described by the Pauli matrix X. Suppose the

initial state of the qubitis p, the quantum operation is

g(p)=(1-p)p+pXpX (4.40)

Therefore, we have the operation elements:

1 0 0 1
E, = 1~p1=,/1—p[0 J E1=\/};X:\/;|:1 0} (4.41)
Note that Z E/E,=1. The physical meaning of the Equation (4.40) is that with

probability (1— p), the initial state p remains untouched, and with probability p the
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initial state is replaced by XpX .

The phase-flip channel

The phase-flip channel has the operation elements:

10 1 0
E0=w/1——p1=,/1—p[0 J E1=\/;Z=\/1;L) ] (4.42)

-1
Similar to the bit-flip channel, we can see that the physical meaning of this channel is that

with the probability p the phase-flip channel turns the state of a qubit from |1> to
~|1), or from —|1) to |1}, and with the probability (1-p) the channel does nothing to
the state.  As a special case of the phase-flip channel, we consider the quantum
operation when p = —;» . From the freedom in the operator-sum representation, this
operation can be written in the form

e(p)=PRpFR+Epk, (4.43)

where F, =|O><0

, b= Il) (1’ . Equation (4.43) describes a quantum measurement of

. . . P . .
the qubit in the |0), |1) basis. We get the final state _HPh i probability
Tr(Fph)
Tr(BpP,), or the final state _hpeh with probability Tr(FpR).
0 0/> Tr ( P]p R) 1 1

The bit-phase flip channel
By combining the bit-flip channel and the phase-flip channel, we get the bit-phase flip

channel. The operation elements are

1 0 0 —i
E, = 1—p1=,/1—p[0 J E1=\/;Y=JEiXZ=JE[i ol] (4.44)
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The depolarizing channel
The depolarizing channel is an important type of quantum noise. The quantum

operation is defined as:

8(p)=£2]—+(1—p)p (4.45)

The meaning of Equation (4.45) is that with the probability p, the density operator has

been replaced by the completely mixed state, g , and with the probability (1 - p) the

density operator has been left intact. The process of density operator of the qubit being

replaced by é is called depolarization.

Equation (4.45) is not in the operator-sum form. Before we try to find its operator-sum
representation, we give two useful results. First, the state of a single qubit can always

be written in the Bloch representation,
I+7-0
2

p= (4.46)

where 7 is athree component real unit vector, and 7-6 =10, +r,0,+71,0,, where o,

- 0,,and o, arePauli matrices. By calculation, we get the explicit representation,

1| 1+, r, —ir,
p=— ) Y (4.47)

2 rx+zry 7,

Second, we define a map

E(A)EA+XAX+YAY+ZAZ (4.48)
4
It is easy to show that
e(I)=1; e(X)=¢(Y)=¢(Z)=0 (4.49)
Using Equation, (4.47) to (4.49), we can prove that for an arbitrary p
I _p+XpX+YpY+ZpZ (4.50)

2 4
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. I . .
Then we substitute for 5 in (4.45). At last we come to the equation

e(p)=(1—3Tp)p+§(XpX+YpY+ZpZ) 4.51)
Equation (4.51) shows that the elements of the quantum operation are

{, ’ —3Tpl R \/1_) %, \/:5 %, \/; —i—} There is another convenient form for the

depolarizing channel. In Equation (4.51), if we define p'= % p,we have
g(p)=(1-p) p+%(XpX+YpY+ZpZ) (4.52)

The physical meaning of Equation (4.52) is that with probability (1 - p’) the density

’

operator remains intact, and with probability % any one of three operators X, ¥, Z is

applied.

Summary

In this Chapter, we reviewed open-system dynamics and presented two representations of
quantum operations: operator-sum representations and unitary representations.
Operator-sum representations are extremely useful in quantum information theory, for
they are a universal form to describe the dynamics of quantum systems, no matter
open-systems or closed-systems, and they can be put to varied uses. There are many
good texts for quantum operations, and we suggest two of them here, Carlton M. Caves’s
paper [60] and Benjamin Schumacher’s paper [61]. Readers can find many useful

references in these two papers.
Quantum noise is an application of quantum operations and the kinds of noise reviewed

in this chapter are typical ones and are the main concerns in quantum error-correction

theory. Inreal world, quantum noise is very complex. The reason that we can
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establish the simple noise models is that we do not consider the time, just as what we did
to the unitary operators which are associated with the closed quantum systems. There
are a great many papers on quantum noise, and we suggest two of them: Davies paper [62]
provided a rather mathematical perspective on quantum noise, Gardiner’s paper [63]

studied quantum noise from the perspective of quantum optics.

Nielsen, M. and Chuang’s book [34] also provides a vast amount of useful information on

quantum operation and quantum noise.
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Chapter 5

Quantum error-correcting codes

For a long time, the scientists had been puzzled by the problem of how to protect
quantum information from quantum noise, for there were two seemingly insurmountable
obstacles. First, an unknown quantum state cannot be cloned [5]. Second, it is greatly
possible that the measurement of a quantum state may collapse the original state to one of
a series of outcomes, and therefore the useful information be lost. The first fact seems
to make it impossible to add redundant information, and the second fact seems to prevent
us from detecting the quantum states. By comparison, classic information, 0 and 1, has
never been faced with these serious problems. Copying a bit and measuring the value of
a bit are easy to do. However, the discovery of the first quantum error-correcting code
by Shor [6] and Steane [64], which could correct an arbitrary one-qubit error, marked the
prelude to a series of great progresses in quantum error-correcting codes. In this chapter,
we will present some of the most remarkable achievements, including the general
error-correction theory, the construction of quantum error-correcting codes and some

typical examples of quantum error-correcting codes.

5.1 Independent error model

When we transmit a block of qubits over a noisy quantum channel, the qubits will be

affected by noise. The “noise” here means that each qubit being transmitted may, with a

small probability p, become entangled with the channel. We consider the independent

error model. When we say “independent error model”, we mean that the interactions

between the qubits and the channel are\independent from qubit to qubit. In another
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word, each operator of operator-sum representation for quantum noise is a tensor product

of one-qubit operators. For example, an operator E, for a two-qubit system may be

E,=0,®0c,. This error model is analogous to the one used very often in the classical

theory of error-correction, and is physically reasonable in many situations. In this

Chapter, we will always use this model.

5.2 Quantum error-correction theory

At the beginning of this Chapter, we mentioned two seemingly insurmountable obstacles.
However, the reason why these seem to be impossible to overcome is that we think
quantum mechanics in a classical way. Quantum mechanics has its own unique
properties. What is easy in classical information theory becomes almost impossible in
quantum information theory, and vice versa. Therefore, we have to consider the

problems of quantum error-correction in a quantum-mechanical way.

It is true that it is impossible to clone an unknown quantum state, but cloning is not the
only way to add redundancy. Quantum mechanics has already offered us a unique and
peculiar tool to solve this problem, the entanglement. We can introduce some auxiliary
qubits and make them entangled with the qubits we want to transmit. The redundancy is
stored in the new entangled state, which will be sent through the noisy channel. When

we receive the corrupted states at the other end of the channel, we make use of the

auxiliary qubits to recover the original state. Suppose that |(//k> is a k-qubit state that

we would like transmit, and

0, is the state of the auxiliary n—k qubits, which

initially are all in the state |O> , then the following mapping illustrates the encoding
process:

0 Uencading ]
n—k

|‘//k>®

Va) G.1
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where |y, ) is the encoded state of n-qubit. We define an [[n, k]:l quantum code C
to be a unitary mapping of Hf into H, [7], where H; is the Hilbert space for %
qubits and A, is the Hilbert space for » qubits. Strictly speaking, we can see from
(5.1) that the unitary mapping is actually from H) ® H;™ intoa 2*-dimensional
subspace of H,. Later, when we talk about quantum code C, we will use the notation

C itselfto represent the 2*-dimensional subspace associated with it.

Let’s consider the second obstacle: how to measure a quantum state without destroying it.

Although, for most cases, a quantum state is likely to be destroyed by a measurement,

there is an exception. For example, suppose that the state ’1//) = |O> is measured by the
projective measurement Z =F — P, where B = |O><Ol and P, = |l> <1| The

measurement result is 1 with probability 1, and the state is still itself,

w)=|0). Ifthe
state is I(//) = |1> , then the measurement result will be -1 with probability 1, but the state

will be changed, from |1> to —|1> . From this exception, we can see that if a projective

measurement M has a projector with eigenvalue 1, and the code space C happens to
fall into this projector space thoroughly, we are able to detect the codewords of C with
probability one without changing them. In another word, if all of the codewords are the

eigenvectors corresponding to the eigenvalue 1 of M, we can detect this code safely.

A deeper analysis of the above example can lead to the physical approach of the general

quantum error-correction theory. Suppose that M =P, + Z AP 1s a projective

i=0

measurement of code C and the code spaceisin B, where 4 =1. Let {E,}

represent the noise in the channel. If no error acts on C, it is, of course, in the

68



projector B,. Iftheerror {E,} occurs, we hope that the codewords will be scattered in

the projectors {P} in such a way that we would be able to detect them and turn them

back into the code space. Thus, we need to design the code C and the measurement

M according to the noise {E } . Without the knowledge of the noise {Ee} ,itis

e

impossible to build an error-correcting code.

Suppose that p is the state of thecode C, ¢= {E } is the noise in the quantum

e
channel. C is an error-correcting code for & if and only if there is a recovery

operation R={R,} which makes
Rog(p)=ap (5.2)
where @ isacomplex numberand » R'R =I. Thenotation Rog(p) means

R (s ( p)) The reason that we need « in Equation (5.2) is because the operation &

may be a trace-preserving operation or may not. Therefore, weneed « for the
purpose of normalization. Of course, the operation R must be a trace-preserving
operation, for the correction step must succeed. Obviously, the recovery operation R

is the combination of detecting and correcting. Equation (5.2) is equivalent to the

following condition: for any E, €& and R, € R, we have [66, 67]:
RrEe = /’{’reI (5.3)

where /4 isacomplex number.

Two necessary and sufficient conditions for the existence of the recovery operation R
were proven independently by Emanuel Knill, Raymond Laflamme [66] and C. H.

Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wotters [67], who based their work on
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the paper of Artur Ekert and Chiara Macchiavello [65]. Suppose that {l i >} 1§ an

orthonormal basis of the code space C, and {E } is the quantum noise. Then the

e

necessary and sufficient conditions are stated as [66]:

Theorem 5.1: The recovery operation R oncode C exists if and only if for all basis

elements | iL> ,

Ji)» (i#j),and operators E,, E, in {E,}

e
<’L

E'E |i,)={j,|EIE,|}.) (5.4)

and
(&

The proof of this theorem is long and not easy, but very worth reading.  If not interested,

ElE|j,)=0 (5.5)

readers can skip the proof and go on to the next section. The proof is mainly from [66].
Proof:
Partl: Assume that the error-correction scheme R exists. We can calculate Equation

(5.5) explicitly:

(0 |EIE, | ju) =i, | EIE, | ,) (5.6)
= (i, | E! ZRIR,EfIJJ (5.7)
=Z<iL EIRIRE,|j,) (5.8)
=2 (i Aty |12) (5.9)
= a0, (5.10)

It is easy to see that Equation (5.10) is the combination of Equations (5.4) and (5.5).

Part 2: Now we start from Equations (5.4) and (5.5) to deduce the recovery operation R.

For a basis element |iL> ,let V' be the subspace spanned by the vectors {Ee [iL )} (for all

e). Let {

v(i,r)>} be an orthonormal basis of ¥*. From Equation (5.5), it is easy to
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see that any two subspaces, V' and ¥/, are orthogonal to each other. Therefore, all of
the elements in {.v(i,,) >} are mutually orthogonal for all i and r. We define the error

space:

(5.11)

P = ; ‘ v(i,r)> <v(i,r)
=>P (5.12)

where REZIV(,.J)XV([’,) . Both P and V' are subspaces of error space P,. To

see the relation between them, we arrange all of the elements in {‘v(,.yr)» In a square:

-
’V(o,0)> e lv(O,r)>

‘v(i,0)> " "’(i,r>>

(5.13)

P, 1is spanned by all of the elements in {!V(i’r)>} , V' is spanned by all of the elements
in the ith row, P isformedbythe rth column. As the number of rows in the
square (5.13) is as same as the number of elements in the basis {l i )} , we can turn the
rth column of square (5.13) into the basis {|z'L >} by defining the unitary matrix

er = 21 iL > <v(i,r)

v,

V) =1i2) (5.14)
The recovery operaﬁon R is defined as:

R={I-P, R, R, } (5.15)
where

R =V,F, (5.16)

Before we perform R to recover a corrupted codeword, we need to introduce another
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unitary matrix U; which 1) turns the 0th row of ‘v(i’r)> to the ith row:

v,

Yor) =|Yan) (5.17)

and 2) forall £,
UE,|0,)=E,|i,) (5.18)

The existence of U, meeting Equation (5.18) comes from Equation (5.4). Since

%

{E

€

E'E,|0,)=(i,

E'E . |iL> forall e and f, the inner product relationships between

0, )} and {Ee liL >} are identical. So, there must be a unifary matrix U, such that

UiEe

0,)=E,

z'L> [68]. To meet Equation (5.17), we can define !v(i,r)> as

Iv(i,r)> =U, Iv(O,r)> .

Now we show how R recovers a corrupted codeword. Suppose |1//> = Z a, |iL> eC,

after being transmitted through the channel, it becomes:

E|ly)=E. ) ai) (5.19)
=D @k, i) | (5.20)
=i_“.-Uz—Ee|0L> (5.21)
= ;a,-U,ﬂ(ir Vo) (5.22)

=B, |Vun) (5.23)

where, E, v(o,,)>. Equation (5.23) means that the error E, scatters |y)

OL > = Z ﬂ(ir
throughout the error space P,. Applying R on (5.23), we have:

RE|y)=V,2Y af;,
ik

Vi) (5.24)

=7, 2 a5 |Yn) (5.25)
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=>.ap,]i) (5.26)

=P,

7 (5.27)
The physical meaning of Equation (5.24) is that we select the information falling into the

projector P from the whole etror space P, and then apply V. totum P into the

code space. {P } serves as a projective measurement. Because Equation (5.27) is

r

true for all of codewords of C, it indicates that R E, = 5 1. The factthat R isthe

recovery operation for code C follows. [

A very special and useful case is when the condition (5.4) becomes
(i,

Under this condition, the set of vectors {Ee

ElE.|i))=6, (5.28)

i >} (for all e) itself forms a basis for the

space V. By defining lv(i,e)> =F, |iL>, we can re-write some definitions:

P, = Zlv(,.)e)xv(i’e) (5.29)
=>P (5.30)
where P, EZlv(i,e)><v(i,e) .
'|v(0,0)> lv(o’e)> ]
S (5.31)
’v(i,0)> l"(i,e>>
R, =V.F = I/eZIv(i,e)><v(i,e) (5.32)

where V,

"(i,e>> =|i,).

The projector P, corresponds to the error operator E,. The physical meaning of R,
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1s that if a stateisin P, then we apply V, to turn the state back into the code space C.

Equations (5.28) and (5.5) are sufficient conditions for the existence of the recovery

operation R. They were first discovered by Artur Ekert and Chiara Macchiavello [65].

5.3 Stabilizer codes

Theorem 5.1 sets a framework for the study of error-correcting codes, but it does not tell
us how to construct error-correcting codes. In this section, we introduce a very
important way of constructing a class of error-correcting codes, which are called
stabilizer codes. Stabilizer codes were discovered independently by A. R. Calderbank,
E. M. Rains, P. W. Shor, N. N. A. Sloane [9] and D. Gottesman [10]. The content of this

section is mainly from their work.

Theorem 5.1 shows thatifacode C is an error-correcting code for the errors {E } ,

e

there is a definite relationship between the code space C and error operators {E } .

e

On the other hand, the code space C is part of the eigenvector space corresponding to

eigenvalue +1 of a projective measurement M . Therefore, there is a definite

relationship between M and {E,} aswell (Note that the projector P, or P, should

be one of projectors of M ). Ifwe are able to construct the projective measurement

M , it is not a difficult task to find the error-correcting code.

Our discussion is based on the Pauli group, G,,on n qubits, which is defined to

consist of all n-fold tensor products of Pauli matrices with multiplicative factors +1,+i.

The group is closed under the operation of matrix multiplication. For example,

G, ={£1, il ,+ X, +iX +Y,+iY,+Z, +iZ} (5.33)
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If g isanelementof G,,then g isinthe form aw, ®---®w;---®w, , where a is

oneof *1,+i,and w, isoneof /,0,,0,,0,. Obviously, there are 4™ elements in

G,.

n

Andrew Steane [8], and Artur Ekert, Chiara Macchiavello [65] have proven
independently that if a quantum error-correcting code can correct bit-flip error and

phase-flip error on a qubit, this code can correct arbitrary errors on this qubit. Therefore,

we only need to take the Pauli matrices /,0, 0,,0, into account when we consider
errors. o, can be looked as the combination of o, and o,, o, =ic,0,, and identity

matrix [ can be regarded as a special error. In the light of this result, G, 1is actually

the ensemble of all possible errors we need to consider.

Instead of one projective measurement, a stabilizer code uses an ensemble of projective

measurements S to fix itself, and S < G,. Suppose S={g,},thenthecode C is

the intersection of the eigenvector spaces corresponding to eigenvalue +1 of all of the

elements of §. Inanotherword, C = {'l//> : g|t//) = ll//>, Vge S} . This ensemble §

of the projective measurements is called the stabilizer of the code C.

Not any set of elements in G, can be astabilizer. § has to have some special
properties. As any two of Pauli matrices, I,c,, 0,,0,, either commute or
anti-commute, any two elements of G, must either commute or anti-commute. All
elements of § must commute with each other, for if g,, g, €S anti-commute,

Vll//>€ C, we have
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v)=glv)=a8lv)=-g8alv)=-|v) (5.34)
Equation (5.34) is impossible to hold for a non-trivial code C. Therefore, All elements

of § must commute with each other. If g,,g,€S,then g,g, also satisfies
218, [l,u> = |(//> . We define the stabilizer S to contain all of these possible
measurements. Thus, § isan Abelian subgroup of G, (note that an Abelian group

means that for any two elements in the group, g*h=h*g). To guarantee that the code
C isnon-trivial, we still need one more condition: —/ ¢ S, for —/ commutes with any

elements of G, but does not have eigenvalue +1. Now we can generalize the

properties of a stabilizer: a stabilizer is an Abelian subgroup of G, that does not contain

-I.

It is much more convenient to describe a group G by its generators, which is defined to

be a set of independent elements g,,---,g, of G such that every element of G can be
written as a product of elements from g,,---,g,. The word “independent” here means
thatany g, in g,,---,g, cannot be written as a product of the elements from

€ > &i1>&im»+ & - The generators of S is denoted as (g,,---,g,) andif § has /

generators, it is /-dimensional. The generators ( g1 s g,> are enough to measure the

code C,, for other measurements in § do not give us any more information.

Now, let’s discuss how the generators partition the total 2" -dimensional Hilbert space.

Any element g in S hasthe eigenvalues *1 and has the property: g=P,-P,,

I+g

where P, isthe projector of +1 and equal to , P, 1sthe projector of -1 and
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I-g

equal to , for the simple reasons that:

1) for any eigenvector ‘1//) corresponding to eigenvalue +1, P, |l//> = “Tg[t//> = !1//)

I—
md P,Jy)=""E]y)=0;

2) for any eigenvector |y) corresponding to eigenvalue -1, P,|y)= ”Tgh//) =0 and

=
Py =L2E )=l

3) P,P,=0 and P, +P, =1;

Thus, one element of § partitions the 2" -dimensional Hilbert space into two

orthogonal subspaces. What about two elements g, and g,? g, and g, have four

projectors: {Pjp P_‘l,}fl,P_zl} and it is easy to prove that all of them commute with each

other. They partition the total space into four equal size orthogonal subspaces:

P\P2, P P, P\P’,P'P’. Inthe same way, the generators g,,---,g, of S partition

+12 ~ +1
the 2"-dimensional Hilbert space into 2’ subspaces, each of whichis 2" -dimensional

[9,69]. To represent these subspaces, let X =(x,,---x,,---,%, ), x, € {0,1}, and define

1

i ! I+ _1 % :
p Zl:[ (2) g (5.35)

Each vector X represents a subspace. Obviously, the code space C is equal to the
subspace corresponding to the zero vector X = ( 0,--- ,0) :

Ll+g,
PO T2 5.36
]:[ 5 (5.36)
If we use a stabilizer code to encode k qubitsinto »n qubits, the code space C isa
2* -dimensional subspace. Therefore, the relation between the dimension of the code

space and the dimension / of the stabilizeris k£ =n—-1I. The maximum stabilizer has

n generators. In this case, the code C has merely one vector.
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To see what kind of errors a stabilizer code can correct, we still need the following

knowledge. There are some special elements in G, which do not belongto S, but
commute with every elementin S. The centralizer C (S ) of S isdefined to consist
of all elements in G, which commute with every elementin S. Obviously, § is
containedin C(S), S<C(S). Due to the propertiesof S and G, , the centralizer
C(S) is equal to the normalizer N(S) of S in G,, which is defined to consist of
any element 4 in G, suchthatfor Vse S, A'sdeS. To see this [10], suppose that
A isanyelementin G,,and seS§,

A'sA=+A4"As=+s (5.37)
As —J isnotin §, 4 isin N(S) ifand only if 4 isin C(S) . Therefore,
N(S)=C(S). Foran [[n,k]] stabilizer code, the stabilizer S has 2"* elements,

and N (S) has 2" elements [69].

With the conception of normalizer and the properties of stabilizers, we can introduce an
extremely important theorem of stabilizer codes:

Theorem 5.2: (Error-correction conditions for stabilizer codes) Let S be the stabilizer

for a stabilizer code C(S) and {E,} be aset of operationsin G, such that

E'E €N (S)-S forall e and f. Then {E,} isa vcorrectable set of errors for the
stabilizer code C(S).

Proof:Let E=EE ; and {|z>} be a set of orthonormal basis for the code space C (S ).

As EEN(S)—S, E iseitherin § orin Gn—N(S). If £ isin §,then
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(El)=(ils)=4, (5.38)
If E isin G,—N(S), then there is at least one element g in S anti-commuting
withit. Thus:
(i1E7) =i Eg|7) =~ (il gEl j) =~ (1] E|./)= 0 (5.39)
Both Equations (5.38) and (5.39) satisfy Equations (5.4) and (5.5). Thus, we get the

conclusion. [

Why we cannot correct the errors Ee€ N (S ) —S? Suppose ll//) is a state in the code

space C(S), and the operator E isin N(S)-S. Forany geS,
Ely)=Egly)=g(Elv)) (5.40)

Equation (5.40) means that the state £ |1//> is also a valid codeword. The operator E

maps one codeword to another codeword. Because our error-correction theory is
devised for the errors happening outside the code space, we cannot find and correct errors
happening inside the code space. Similar phenomena exist in the error-correction theory

in classic information theory as well [20].

The generators < [+ CTENS- T gn_k> of § partition the 2"-dimensional Hilbert space
into 2" subspaces and the detection of the stabilizer code C(S) is tightly combined
with these subspaces. Each correctable error turns the code space C (S ) =P o
one of the 2"* subspaces {P’—‘} . By measuring the corrupted state !l//) by every
generator g;, we can fix which subspace the state |y} isin. Noting the relation

between the vector X =(x,,--,x,,-X, ;) and the measurement results:
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_o. i glw)=ly) 541
"f‘{l, i &lv)=-lv) oAb

it should not be surprising to the readers if we define the vector X as the error

syndrome.

Now, let’s look at the definition of distance for a quantum code. It is an analogous to

the definition of distance in classical error-correction theory. The weight of an error

E e G, isdefined to be the number of terms in the one-qubit operator tensor product

which are not equal to the identity. For example, the weight of the operator

IRXR®RYRXRZRVIIRI®X®Y is5. The distance of a stabilizer code C(S) is
defined to be the minimum weight of an element in N(S)-S. We denote an [[n, k]:l

code with distance d as [[n, k,d ]:] . Ifthe distance d is atleast 2¢+1, this code

can correct arbitrary errors on any ¢ qubits. It is not difficult to prove this conclusion:

if the weights of the elements of an error set { Ei} are all smaller or equal to ¢, then the
weight of EE;,forall i and j,is surely smaller than d, which means that E[E; is

notin N(S)—S. The result follows.

There 1s a very useful and important way [9] to represent the stabilizer of a stabilizer code

C(S). Suppose the stabilizeris S = <gl,- 8 gn_k> ,wedefinea 1x2n binary
vector (a|b) for each generator, where both a = (al,- gyt -an) and

b= (bl,---,bj,---bn) are 1xn binary vectors. Let g, =w ®:--®@w;®---®@w, bean
arbitrary generator of S = ( g8 &k ) , then the corresponding vector (a|b) 1s

defined as:
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0, ifw, =lorZz
aj:{ S, b, = (5.42)

0, ifw=IorX
L ifw=XorY /

L, ifw=ZorY
Thus, (n—k) independent generators create (n—k) binary vectors, which form an
(n—k)x2n matrix. We call this matrix the check matrix of the stabilizer code C(S).

For example, suppose the stabilizer of a stabilizer code C(S) is (ZZ,,Z,Z,). Then

its check matrix is:

000110
(5.43)
0 00011

(n - k) generators are independent if and only if the rows of the check matrix are

linearly independent.

It is not difficult to prove that any two binary vectors (a!b), (a’ |b’) of a check matrix

must satisfy the following condition:
ab+a-b=0 (5.44)
or Dap,+>ab =0 (5.45)
j j

where “+ ” denotes the modulo two addition. This condition is just the translation of
the commuting relation between any two generators. If two binary vectors do not
satisfy (5.44) or (5.45), their corresponding operators must anti-commute. Therefore,
the check matrix can be used to tell whether the set of elements it represents forms a

stabilizer or not, and that is where its name comes from.

The check matrix has the great advantage of offering the possibility to make use of
classical error-correction theory, for we know more about binary vectors than Pauli
matrices. Furthermore, the check matrix turns the multiplication in S into the modulo

two addition:
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Vg, g'eS,gg' > (a|b) + (a"b’) = (a +d lb + b') (5.46)
where (a lb) is the binary vector representation of g and (a' lb’) 1s the binary vector

representation of g'.

5.4 Examples of stabilizer codes

In this section, we give some examples of stabilizer codes. These include three qubit bit
flip code, Shor code and CSS code. Although these codes were discovered before the

advent of stabilizer codes, it is good to explain them in terms of the stabilizer language.

Three qubit bit flip code
The code given by Equation (5.43) is called three qubit bit flip code for the reason that it

can correct any one-qubit bit-flip errors. It is easy to check that each of the operators
{X,,X,,X;} anti-commutes with at least one of the elements in the stabilizer
< &=42,,8,= ZzZ3>. Two generators divide the 2*-dimensional Hilbert space into

2* subspaces, with each subspace being a 2-dimensional space. Therefore, it is a

[[3,1]] quantum code. The stabilizer fixes the code space spanned by the basis

{loco),

111)}, and we take the map |0) —|000),|1)—|111). Suppose the initial state

|0)+ B|1) has been encoded into the state cr|000)+ 3]111). Table 5.1 lists the

relationship among the errors, measurement results, and the subspaces.
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Table 5.1.  Error Syndromes for the three qubit bit flip code

Error syndrome % | zz | z,z, |Emortype | Projector of the subspace
(0,0) +1 |+ No error P, =|000)(000|+[111)(111]
(1,0) RS Bit | flipped | p =|100)(106|+|011)(011|
(1,1) SIS Bit 2 flipped | P, =|010)(010|+|101)(101]
(0,1) + -1 Bit 3 flipped | p, =]001)(001|+|110)(110|

After detecting the error, we can flip the erroneous bit back to its original state.

A very similar code is the three qubit phase flip code. Noting that the operator Z

changes the state |+> = M to the state |—> = M , and vice versa, it is not

V2 V2

surprising that we take the map |+) —|+++),|-) —>|~——) to encode the qubit. The

phase flip error is actually the “bit flip error” in the basis { | +) , |—>} . As the relationship
between the bases {)+>, |—>} and {'0), !l>} 1s: |+> = H|O>, |—> = H|1>, where H is

1 1

%[1 -1

the Hadamard matrix } , we can easily get the stabilizer of the three qubit

phase flip code:

&1 Z(HIZIHI)(HZZZHz):Xle , & =(H,Z,H,)(H,Z;Hy) = X, X, (5.47)

The Shor code
The three qubit bit flip code and the three qubit phase flip code do not have any practical
values, but by combining them together, we get to the Shor code [6, 64], the first

quantum error-correcting code which is able to correct arbitrary one qubit errors.  This
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code proved the possibility of the quantum error correction, and the quantum

error-correction theory has been developing fast since then.

The generators of the stabilizer of the Shor code are listed in Table 5.2.

Table 5.2. The generators for the Shor code.

g | ZZIII111I1

g |IZZIIIT11

g |\IIIZZIIII

g, \II11ZZ111

g |\IIIIITZZ]

g, |IIIIIIIZZ

g, | XXXXXXIII

g |IIIXXXXXX

As there are eight independent generators and any one qubit error anti-commutes with, at
least, one of these generators, the Shor code is an [[9, 1 3]:| code. The mapping of one

qubit to nine qubits is carried out in two steps. First, we encode the qubit by phase flip

code: |+)—>|+++),

—> - ]—— - —) . Second, we encode the phase flip code by bit flip

_ |0>\/_+2|1) N |000)\/+§|111> 1A= |o)\/_—2{1> N }000)\/_—2|111> . Thus, the mapping

of one qubit to nine qubits is:

code: |+)

(/000)+|111))(]000)+|111))(]000) +|111))
22

10)->

(5.48)
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o (Jooo)—|11 1))([000; 2111))([00())4111)) (549)

Now, let’s have a look at how it works. Suppose a bit flip error occurs on any qubit in

the first block of three qubits, we can use the generators g,, g, to measure this block.

Similar to what we do in the three qubit bit flip code, we can detect the error and correct
it. The generators g,, g, are for the second block, and g,, g, are for the third
block. So, the Shor code can correct one qubit bit flip errors. Suppose a phase flip

error occurs, then no matter in which block it happens, the effect is the same: the sign of

that block has been changed, and become different from the other two blocks.

|000)+|111) — |000)—|111),

000)—|111) —|000)+|111) (5.50)
We can use generators g, g; to measure these three blocks. Table 5.3 lists all

possibilities.

Table 5.3. Phase flip errors for the Shor code.

XX, X, X XX, | XXX.X,X,X, |Errortype

+1 +1 No phase flip errors

-1 +1 Block 1 has been affected
-1 -1 Block 2 has been affected
+1 -1 Block 3 has been affected

Because the Shor code can correct one qubit bit flip error and one qubit phase flip error
on any of nine qubits, it can correct arbitrary one qubit errors. The Shor code is not an
efficient code, but it is a very good example to explain quantum error-correcting codes,

for it is easy to understand.
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CSS (Calderbank-Shor-Steane) codes
The CSS codes [7, 8] are an important subclass of stabilizer codes. It is important not
only because it was the first method which enables us to construct a series of quantum
codes, but also because it proved the connection between the classical error-correcting
codes and the quantum error-correcting codes. The construction of the CSS codes
completely depends on finding some particular classical error-correcting codes. To be

prepared to discuss the CSS codes, we need some knowledge of linear codes [20] (in this

section, we are only concerned about linear codes over GF(2)).

An [n, k,d ] linear code encodes £ -bit messages into 7 -bit codewords. In another

word, it maps the k -dimensional space into a k& -dimensional subspace of the

n -dimensional space. We denote this % -dimensional subspace as the code C. There
are 2* codewords. The (Hamming) weight of a codeword x is the number of ones in
this codeword, and is denoted as wt(x). For example, suppose x =(0,1,1,0,1), then

wt(x)=3. The (Hamming) distance between two codewords is the number of positions

where the two codewords differ. For example, suppose y = (O, 0,1, 1,1) , then distance

between x and y is d(x,y)=2. Itis easy to see that:

d(x,y)=wt(x+y) (5.51)
The (Hamming) distance of a linear code C is the minimum distance between two
codewords in C, and is denoted as d. It is also equal to the minimum weight of the
non-zero codewords in C. A linear code with distance d > 2¢+1, for some integer ¢,

can correct errors on up to ¢ bits.

The relationship between the £ -bit messages and the # -bit codewords is determined by

the generator matrix G ,whichisa kxn matrix. Suppose m is an arbitrary £k -bit
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message, then its corresponding codeword u is generated by u=mG. The k rows
of G are abasis for the k-dimensional subspace. By selecting a different basis to
form G, we map the same message to a different codeword. Therefore, the messages
and codewords themselves are fixed, but the mapping relation between them depends on

the generator matrix we choose.

The scalar product of two vectors u = (u;, -+, u,,---,u,) and v=(v,--,v,,*-,,) is

defined as u-v= Zui -v, , where the addition is modulo two addition. If #-v=0,u

H

and v are called orthogonal. For a linear code C, there are many vectors in the

n -dimensional space which are orthogonal to all of codewordsin C. The dualof C,

denoted C*, is defined as C* = {v vu=0,Vue C} . C* isan (n-k)-dimensional
subspace. The parity check matrix H,an (n—k)xn matrix, of the linear code C is

defined to be any generator matrix of C*. Apparently, for any codeword u € C, we
have:
GH" =0>uH" =0 (5.52)

If a codeword u € C has been corrupted by an error e ¢ C, we can detect this error by
H:

(u+e)H =uH" +eH" =eH" #0 (5.53)
H gets its name from the properties showed in Equations (5.52) and (5.53). Avery
important and useful result from Equation (5.52) is that if the distance of the linear code

C is d,thenany d -1 columnsof H are linearly independent, but there exists a set

of d columns that are linearly dependent.

With this knowledge, we can go on to discuss the CSS codes. For any CSS code, the

check matrix A of'its stabilizer § takes the form:
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0

A{H(c;)

0 5.54
H(CG) >4

where C, and C, are [n,kl], [n,k,] classical linear codes so that C, = C, and both
C, and C; correct t errors. H (Czl) is the parity check matrix of C;,and H(C))

is the parity check matrix of C;. A4 isan (n—k +k,)x2n matrix.

To see why A is a check matrix, we only need to check whether any two rows of A4
satisfy the condition (5.44) or (5.45). Noting that H (Cj) =G(C,), where G(C,) is
a generator matrix of C,,and C, c C, we get:
T T
G(G)(H(G)) =0 H(C3)(H(C)) =0 (5.55)
Thus, A really represents a stabilizer, and fix a stabilizer code. Suppose {E} is a set

of error operations in G, , and the weight of every element of {E,} is less than or equal

to t. Thenforany E,E,e{E}, the weightof EJE, is certainly less than d =2¢+1.

Let (alb) be the binary vector representation for E]E > and the hamming weights of

a and b be, of course, less than ¢ . This indicates that both ¢ and b arenotin
C) or C,. So,

a(H(G)) =0, b(H(C})) %0 (5.56)
Equation (5.56) means that E/E ; anti-commutes with at least one of generatorsin S.
Therefore, EE; ¢ N(S). According to Theorem 5.2, the set of errors {E,} can be

corrected by the CSS code S. So, the CSS code S isan [[n, k —k,, d]] code,

which can correct errors on up to ¢ qubits.
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To encode k qubitsto »n qubits by the CSS code §, we still need to construct an

orthonormal basis {|iL )} for the code space, the 2*-dimensional subspace fixed by S.
The construction of the basis relies on the linear codes C, and C,. The number of

cosets [20] of C, m C, is:
l__l_| =2k ok (5.57)

We denote these 2* cosets as {Coset,.} , 1<i<2*. The number of the elements in

{|i.)} is the same as the number of the cosets {Coset,}. We construct the basis {}i, )}

in the following way:

1 &
z c,.j>, ¢; € Coest, (5.58)

i) = \/|C_2 <

Each element of {| i >} corresponds to a coset in {Coset, } .

Now, we show that Equation (5.58) really constructs an orthonormal basis. First, we

show that |iL> is in the code space. Let g be an arbitrary generator in |:H (C;)IO] ,
the “upper part” of the check matrix 4, and (a]O) be its binary vector representation.

Since g consists only of X operators, we have

e
> |e, +a) (5.59)

)=
gL —\/ic_2|1‘=1

Since aeC,,

S €

Dl +ay=2le;) > gli)=li) (5.60)

2|
j=l J=1

Let g’ be an arbitrary generator in [0 }H (C1 )] , the “lower part” of the check matrix
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A4, and (Olb) be its binary vector representation. Since g’ consists only of Z

operators, we have

1 |C2I c..-b
gl )y=—=)> (-1)" |c; (5.61)
Since be H(C,),c; €C,,
¢,-b=0->g'i,)=|i,) (5.62)

Equations (5.60) and (5.62) have proved that "i) is in the code space. Second,
because any two cosets of {Coseti} are totally different, having no common vectors, we

draw the conclusion that for any two |i,),

jL)e {|1L>} , (iL |jL> =06, ;. Therefore,

{|i.)} is an orthonormal basis for the code space.

The Steane code

The Steane code is an important example of the CSS code. It first appeared in [4,6].
In the check matrix 4, weselect C, asthe [7,4,3] Hamming code [20], whose parity

check matrix is:

0

[a—

0 1
H(C)=|0 0 (5.63)
1 1

S = o
S = =
o —

10
10

This code has the property C;' cC,. Ifwelet C,=C;,then C,cC, andboth C;
and C, can correct one bit error. The parity check matrix of C, is equal to the parity

check matrix of C,, H (Cj) =H(C,)). As C, isa [7,3,3] linear code, the Steane

codeis a [[7,1, 3]] quantum error correcting code, taking the map:
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1
0) >10, )=—10000000)+{1010101)+]|0110011)+|1100110
9) 0= 7 Joouoooo}«otoron) fotsoorsyfutoonto)

+]0001111)+[1011010)+|0111100)+[1101001) |

1
)—>|1,)=-—=||1111111)+{0101010)+{1001100)+|0011001

+|1110000)+]0100101)+|1000011)+]0010110) ]

Summary

In this chapter, we introduced the general quantum error-correction theory, the stabilizer
codes, and some important examples of stabilizer codes. The puzzles and the solutions
for the quantum error-correction lie in the intrinsic properties of quantum mechanics.

We have seen how the basic postulates of quantum mechanics play their own roles. The
stabilizer of a stabilizer code is actually a series of projective measurements, which can
detect certain quantum states without destroying them. The status of the stabilizer codes
in the quantum error-correcting codes is very high, for they brought group theory to the
construction of codes. Group theory is the mathematical foundation for the classical
error-correcting codes as well.  Thus, both kinds of codes grow from the same root.

The CSS codes were the first codes to reveal the connection between the classical
error-correcting codes and the quantum error-correcting codes.  The original proof of the
CSS codes in [7, 8] is not simple. However, as we already have the knowledge of the
stabilizer codes, we explain the principles of the CSS codes in a simple way. Though
we gave some important results in this chapter, much of quantum error-correction theory
and error-correcting codes has not been touched. If interested, readers can go to the

references given in this Chapter.
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Chapter 6

The additive cyclic quantum error-correcting
codes

The stabilizer codes [9, 10] offer us a general description of quantum error-correcting
codes which is based on the independent error model. Howevér, finding the stabilizers,
especially the stabilizers of good quantum codes, has proven to be difficult. Though the
CSS codes [7, 8] can construct a series of quantum codes, they are just small part of the
stabilizer codes. We still needed a more powerful method to find all of the stabilizer
codes. This problem now has been solved. In 1996, A. R. Calderbank, E. M. Rains, P.
W. Shor, and N. J. A. Sloane [70] devised a method which sounds surprisingly simple,

but successfully turns the problem of finding stabilizers into the problem of finding

additive self-orthogonal codes over GF (4) [20] with respect to a certain trace inner

product. In this Chapter, we will first introduce this method. Then based on their work,
we will focus on a particular class of quantum codes, the additive cyclic quantum
error-correcting codes. A new search algorithm will be discussed and a series of good

quantum error-correcting codes obtained from this search algorithm are presented.

6.1 Stabilizer codes and self-orthogonal codes over GF(4)

The key idea of [70] is that a stabilizer code is equivalent to a special code over GF (4) .

In this section, we introduce this idea step by step. The check matrices provide us with
a binary representation for the stabilizers. First, we give some definitions and then

discuss the stabilizer codes completely in the language of binary vectors. Let E

denote a 27 -dimensional binary vector space. Any vectorin E can be written in the
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form (a|b). We define the inner product:
((alp),(a'}p))=a-b'+a"b 6.1)
where a-b' and a'-b are the scalar products defined in Chapter 5. We define the

weight of (a[b)z(al,u-,a,.,---,an bl,---,bi,'--,bn),wﬁtten wt((alb)),tobethenumber

of coordinates i where either a; or b, isnotequalto 0. Note that

((alb), (alb)) =0. We define the distance between two vectors (a|b) and (a’lb’) as

d((ap).(«

orthogonal if their inner product, as defined in (6.1), is zero. The dual of a subspace S

b'))swt((a[b)+(a’|b’)). Two vectors, (alb) and (a’

b’) , are said to be

in E is defined to be:

§L={ueE—:u-v=0forallve§} (6.2)
So far, the definitions of the weight and distance are equivalent to the corresponding
definitions of an element in G, , and the orthogonal and non-orthogonal correspond to
the commute and anti-commute, respectively. The problem of finding a stabilizer §
has therefore been changed into the problem of finding a subspace S in E which is
contained in its dual, S € S*. S is actually the binary representation of §,and S*
is the binary representation of N (S ) . Recalling Theorem 5.2 in Chapter 5, readers will
not find it difficult to understand the following theorem [70]:
Theorem 6.1: Suppose that S isan (n—k)-dimensional subspacein E which is
contained in its dual S*, and the weights of the vectors in St—S areall >d,then
there exists an [[n, k,d ]] quantum error-correcting code.
A quantum error-correcting code obtained from Theorem 6.1 is called an additive code,

for the simple reason that S is closed under the addition. The stabilizer codes and the
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additive codes refer to the same thing.

Describing the stabilizers in the language of a binary space is our first step to introduce

the method of [70]. Now, we take the second step by moving from the binary space E

to the Galois field GF (4). GF(4) isdenotedas {0,1,w,w}. The trace of an
element S GF(4) isdefined as:
Tr(B)=B+B (6.3)
GF (4) is avector space of dimension 2 over GF(2). Ifwe choose {w,W} as abasis,
any element in GF (4) can be expressed as a combination of these two elements over
GF(2): 0=0-w+0-w, 1=1-w+1-w, w=1-w+0-#w and w=0-w+1-w. To make
it simple, we can use a 2-dimensional binary vector space to represent GF (4):
0:(0,0) 1:(L1)  w:(1,0) Ww:(0,1)

In the same way, we can use the 27-dimensional binary vector space E to represent
the vectorsin GF(4)". Therelation @ between avector u € GF(4)" and its binary
vector representation (a|b) is defined as:

u=d((ap))=aw+bw  (ap)=d7 (u) (6.4)
@ has the property:

o((ale)+(a ) = @((ale))+ @((«

For example, the vector (0,1, w,w,w,1,1) in GF (4)7 has the binary representation

b')) (6.5)

(0,1,1,0,1,1,1

0,1,0,1,0,1,1).

The Hamming weight of a vector u & GF (4)", written wt(u), is defined to be the
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number of its nonzero components. The Hamming distance between two vectors

u,u' € GF(4)" is defined as d(u,u’)=wt(u+4'). The minimal Hamming distance
between the vectors of a subset C of GF(4)" will be denoted by d(C). Itis easy to

see that wt (u) = wz‘(CI)'1 (u)) and d(u,u')= d((ID'1 (u), 0™ (u’)).

Suppose u,u' € GF(4)" and @7 (u)= (a|b) , O (u)= (a’lb’) , we define the trace
inner product of u and u' as uxu/=Tr(u-u), where u-w'= uu] isthe
classical Hermitian inner product. After calculating the trace inner product explicitly:
Tr (u-u') = Tr ((wa +Wb)- (Wa' +wb')) (6.6)
=(a-d)Tr(1)+(a-b')Tr(w)+(b-a")Tr(w)+(b-6")Tr (1) (6.7)
—a-b'+b-a’ (6.8)
we draw the conclusion that the trace inner product of u,u'e GF(4)" is equivalent to
the inner product of ®'(u),®™' («')e E withrespect to (6.1). We say that

u,u' e GF (4)" are orthogonal if and only if 7 r(u . ;’) =0, or in another word,

u,u' e GF(4)" are orthogonal if and only if @' (u),®(#)e E are orthogonal.

If C isasubgroupin GF(4),the dual of C is defined to be:
Cl={ueGF(4)":u*v=0forallveC} (6.9)
As C is closed under addition, we will refer to it as an additive code over GF (4) , and
ifithas 2"* vectors, we say that it is an (n, 2"”‘) code. Then, C* isan (n, 2”*")
code. Notethat weuse ( ) to refer to the codes over GF(4), and [[ ]:] to refer to

the quantum codes. If Cc C*,wesay C is aself-orthogonal code, and if C=C",
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we say C 1is aself-dual code. Now, we can reformulate Theorem 6.1.
Theorem 6.2: Suppose C isan (n, 2k ) additive self-orthogonal code of GF (4)",
and there are no vectors of weight <d in C* —C, then there is an [[n, k,d ]] additive

quantum error-correcting code.

We say that C is pureif d(C)=d; otherwise, wesay C isimpure. The associated

quantum error-correcting code is said to be pure if C is pure; otherwise, we call the
quantum code impure. If C is not only closed under addition, but also closed under
multiplication by w as well, we say it is /inear and the associated quantum code is also

linear.

Theorem 6.2 has finished the transformation: turning a stabilizer S into an additive

self-orthogonal code C over GF(4). As we have already accumulated a vast amount

of knowledge about the codes over GF(4), we have therefore found a resourceful source

for the construction of the stabilizers. We should emphasize that the parameters of an

additive self-orthogonal code over GF (4) are not the parameters for an additive

quantum error-correcting code, but are the parameters of the stabilizer of that quantum

code. For example, if an additive self-orthogonal code C isan (n, 2') code, the

corresponding quantum error-correcting code is not an [[n,l ]:| code. The parameter

2" is the number of the elements in the corresponding stabilizer S, and [ is the

number of the independent generators which generate §. These independent
generators divide the total 2" -dimensional Hilbert space into 2’ subspaces, each of

which isa 2" -dimensional subspace, and the quantum code space is one of them.

Thus, the corresponding quantum code is [[n, k=n-1 ]] . The distance of this code is
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found from the set C*—C. In aword, the self-orthogonal codes over GF(4) are just

the representations of the stabilizers: C < S < 8,C* oSt o N (S ) .

6.2 Additive cyclic quantum codes
The paper [70] offers many methods of constructing the additive self-orthogonal codes

and tabulates [[n, k,d ]] additive quantum error-correcting codes for n <30 with the

highest achievable minimal distance d. It also gives the possible upper bounds for the
minimal distance d. Though we are not going to introduce all of these methods, there

is one kind of codes appealing to us very much: the additive cyclic quantum

error-correcting codes. An additive code C over GF(4)" is cyclic if and only if
(2,551, )€ C implies (u,_;,uy,%, -, u, ,)€C. The additive quantum codes

associated with the additive self-orthogonal cyclic codes over GF(4)" are called

additive cyclic quantum error-correcting codes. The reason why we are interested in
this kind of codes is simple and straight. On the one hand, the cyclic codes are the most
studied of all codes in the classical error-correction theory, for they are easy to encode.
The cyclic codes have provided us a great many good codes and, what is more, they are
building blocks for many other codes [20]. They play an extremely important role in the
classical error-correction theory. When we need some codes to meet our requirements,
the cyclic codes will always be the choice with high priority. Inevitably, we wonder if
the additive cyclic quantum codes also play an important role in the quantum
error-correction theory. The table in [70] is an ensemble of good quantum codes which
are found by different methods. It does not point out which method has higher priority
than others. When we need a new quantum code, we would hardly know which method
to select. 'We will have to try these methods one by one. In another word, we will be

looking for a good code by chance. If we can show that the additive cyclic quantum
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codes are of great value, we will be able, at least, to offer researchers a worthy choice
when they begin the search for good codes. On the other hand, the study of cyclic codes
in the classical error-correction theory has accumulated a great deal of knowledge which

is a prized treasure for our exploration of the additive self-orthogonal cyclic codes over

GF(4).

In this section, we will introduce a theorem from [70] and explain a new searching
algorithm different from [70]. In Section 6.3, we will present the best additive cyclic

quantum codes via an exhaustive search for the odd value of n ranging from 5 to 23.

At first, we explain some notations which we will use frequently. The generator matrix

G of a self-orthogonal (n,2") code C,isa kxn matrix, which consists of k&

independent vectorsin C. Therelation between G and the check matrix 4 of the

stabilizer associated with C is G=® (A) . For example, the generator matrix of an

(5, 24) additive self-orthogonal code is:

1 wwlO
01 w w1
1 01 w w
wlO1l w

(6.10)

The corresponding additive quantum code is a [[5,1,3]] code, the smallest quantum

code which can correct one qubit error. It was independently discovered by [67] and
[71]. The additive self-orthogonal cyclic codes have a more concise and convenient
way to represent themselves than the generator matrices. We can use only one or two
vectors to represent the entire generator matrix, for the rest of vectors of the generator

matrix can be obtained by the right-shift operation of the given ones. We still take the

(5, 24) code as an example. This code is a cyclic code, so we only need the vector

98



(1, w,w,1, O) to represent the matrix (6.10).  We will call such vectors the generators
of the cyclic code, and write them in the form { ), for example, (1ww10). We can

also represent a generator in the polynomial form. If u= (uo u - un_l> 1s a generator

of a cyclic code, the polynomial representation is defined as

1

p(x)=u, +ux+---+u,_ x"". Then the generator (Iww10) can be rewritten as

<1+wx+wx2 +x3>.

Now we introduce an important theorem [70] about the additive cyclic codes of GF (4)" .

Theorem 6.3:

a) Any (n, 2") additive cyclic code C has two generators which can be represented

as <wp(x) +q(x),r (x)> ,where p(x),g(x),7(x) are binary polynomials, p(x)
and r(x) divide x"—1 (mod2), r(x) divides 1()( —%x) (mod 2), and

k=2n-degp—degr.
b) If <wp’(x) + q'(x), r'(x)> is another such representation, then
P'(x)=p(x),r'(x)=r(x) and ¢'(x)=q(x) (mod r(x)).
c) C is self-orthogonal if and only if
p(x)r(x"’l)Ep(x""l)r(x)EO (mod x"-1) (6.11)

p(x)q(x"_l)zp(x"'l)q(x) (mod x"-1) (6.12)
The proofis given in [70]. The theorem makes it possible to search all of the additive

cyclic self-orthogonal codes. It is necessary to define the search ranges of the

polynomials p(x),q(x),r(x) before we discuss the search algorithm.
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1) The range for p(x) isbetween 1 and x" -1, notincluding x"-1. p(x) cannot
be 0, forif p(x) is0, the code C will be a binary code.

2) The range for r(x) isbetween 1 and x"-1,including x"—1. When r(x) is
%" ~1, we can also find some valid and good p(x),q(x), but r(x) cannot be
considered as a generator, for r(x) isactually 0 (mod x"-1). In this case, the
generator of the code is simply <wp (x)+q (x)) :

3) The range for g(x) isbetween 1 and r(x), including r(x). Note that
g(x)=r(x) is equivalent to g(x)=0, for the generators (wp(x)+r(x),r(x)) and

(wp(x),r(x)> generate the same code.

The search algorithm consists of two parts. At first, we have to find three polynomials

p(x),q(x),r(x) which meet the requirements of Theorem 6.3. Secondly, we need to
find the parameters of the corresponding [[n, k,d ]] quantum code (Note that for the
self-dual code C, the corresponding quantum code is an [[n, 0,d ]] code, where d 1s

equalto d(C)). Such undertakings are very time-consuming. ~Searching all of the

polynomials with degrees less than #, and finding out d for each self-orthogonal
cyclic code will occupy a great deal of computer resources and take a very long time to

calculate. Great care, therefore, has to be taken to design an efficient algorithm.

An important problem needed to be solved is how to make the process of finding the

appropriate polynomials as simple as possible. As both r (x) and p(x) divide

x" —1, they must be the factors of x" —1. Therefore, we do not need to try all of the
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polynomials. If we can find all of the irreducible binary factors of x" —1, then » (x)
and p(x) are just combinations of these factors. Thus, the process will be greatly
simplified. Now, we begin to discuss the problem of factoring x" -1 over GF (q) .
The following discussion is mainly from [20]. The polynomials over GF (q) are the
polynomials whose coefficients are all from GF (q) . We always assume that » and
q are relatively prime, for example, if g =2, then »n should always be odd. There is
a smallest integer m suchthat n divides g™ —1. This m is called the

multiplicative order of q modulo n. Asthe g™ -1 rootsof x? ' —1 form the
non-zero elements in GF (q'") and the roots of x" —1 are also the roots of x7 ' —1,
all of the roots of x" —1, which are called n” roots of unity, lie in the field GF (q"' ) ,

and in no smaller field. GF (q'”) is therefore called the splitting field of x" —1.

m

Suppose S is the primitive element of GF (q'”) and a=2 , we define o = S°

n

to be the primitive n® roots of unity, for a°,a’,---,a™" formthe n distinct roots of

x"-1:
" =1=]](x-a') (6.13)

Equation (6.13) factors x" -1 over GF (q"’ ) ,forl1and o' are the elements in
GF (q’” ) Let’s move on to see how to factor x" —1 over GF (q) . There is no doubt
that each irreducible polynomial over GF (q) consists of one or several factors of

{(x —-a' )} . Then, by properly partitioning the factors {(x— a' )} into different groups,
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we can make each group an irreducible polynomial over GF (q) . The method of
partitioning is described below. For se {0,1,' A 1} , the cyclotomic coset mod n
over GF(gq) which contains s is defined to be:

C, ={s,5¢,5¢",,5¢"™"} (6.14)

where sq™ =smodn. Thus the integers mod » are partitioned into cyclotomic

cosets, i.e.,

{0,1,--,n-1}=| JC, (6.15)
where s runs through a set of coset representatives mod n. For example, for

n=9,q=2,
Co={0}, € ={1,2,4875}, C; ={36} (6.16)

It has been proven [20] that a irreducible polynomial over GF (q) containing the factor

(x—a*) is:
MY (x)=T(x-<') (6.17)
i<6,
Thus,
" -1=T]MY (x) (6.18)
Where s runs through a set of coset representatives mod n. For example, for
n=9,4=2,
2 -1= M9 (x) MO (x) M® (x) (6.19)
where
MO (x)=x+1 (6.20)
MY (x)=x"+x*+1 (6.21)
M9 (x)=x*+x+1 (6.22)
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Note that the degree of the irreducible polynomial M ) (x) is equal to the number of
elements of C, and the number of the irreducible polynomials is equal to the number of

cyclotomic cosets. Thus, by calculating the cyclotomic cosets mod n over GF (2) ,

we will know how many irreducible binary factors x" +1 has and the degree of each

factors. With these pieces of information, it is not difficult to find all of the irreducible

binary factors of x" +1.

Finding d is another problem we need to solve. It is not difficult to find the code C,
and list all of its vectors, but finding its dual code has proven difficult. The key to the

solution of this problem lies in the relationship between the weight distributions of a code
C and its dual code C*. The weight distribution of acode C is a sequence
Ay 4, A, , where A, is the number of the vectors in C whose weightsare j. The

polynomial

n

We(x,y)=) Ax"7y’ (6.23)

Jj=0
is called the weight enumerator[20] of C. Itis a surprising fact that the weight

enumerator of C* is uniquely determined by the weight enumerator of C.

Theorem 6.4: If C isan (n. 2") additive code with weight enumerator W, (x, y) ,

then the weight enumerator of C* is given by:
WCl (x,y) =2”kW(x+3y,x—y) (6.24)

This theorem follows from the general theory of additive codes developed by Delsarte

[38]. Because the codes we are interested in are self-orthogonal codes, we can find the

minimum distance of C*—C by comparing the coefficients of W, (x,y) with those of
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I/Vcl (x’y)'

With these two problems being solved, we can describe the search algorithm below.

1)

2)

3)

4)

Factor x"~1 over GF(2), find all of the irreducible binary factors.

Consider all of the pairs of p(x) and r(x) which satisfy the equation

p(x)r (x""l)

For each pair of p(x) and r(x) coming from step 2), consider all of the possible

p(x"‘l)r(x)EO (mod x" 1)

g(x) which satisfy

a) q(x)(x” —1) =0 (mod p(x)r(x))

b) p(x)g(x"")=p(x"")g(x) (mod x"-1)

For each set of qualified polynomials p(x),q(x),7(x), calculate the weight

enumerators of the code and its dual code in order to find d .

6.3 Search results

In this section, we present the results from the search algorithm described above. We

have made an exhaustive search, during which » began at 5 and ended at 23 (» is an

odd number). In Table 6.1, we list all of the additive cyclic quantum codes with the

highest minimum distance d. The search has shown that there are many additive

cyclic quantum codes with the same parameters [[n, k,d ]] . Tt is not necessary to list

them all, so we only give one example for each I:[n, k, d]] . Theorem 6.3 tells us that

for additive cyclic quantum codes, there is a certain relationship between the parameters

n and k: k=2n-—degp-degr, which indicates that there is a limitation on the value

of k. To find all of the valid (“valid” means that an [[n,k]] additive quantum code

104



exists) k for n,we made another exhaustive search, during which » is from 5 to 31.

In Table 6.2, we list all of the valid (n,k) pairs.

Table 6.1

Additive cyclic code with highest minimum distance

Parameters | Generators

[[5.0.3]] |(wwo10)(11111)
[s13]] | (@wion)

[[5.4.1]] | (wwwww)

[[7.03]] | (wwwOw00) (1011000)
[[7.13]] | (ww10001)

[[7.3.2]] | (wwowo011)

[[7.42]] | (w1wwiwol)

[[7.61]] | (wwwwwwiw)

[[9.0,4]] | (w#ww101000)(110110110)
[[9.13]] |(ww1000001)
[[9.2.3]] |(www101101)
[[9.33]] |(woow11011)
[[9.62]] |(m11w11w11)
[[9.7.1]] | (®#0%w0ww0)
[[9.81]] |(wwwwwwwww)
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[[11.0,4]]

<
[[1LL3]] | (w#100000001)
[1L101]] | (Wwwwwiwiwwwww)
[[13,0,5]] | (ww00101110100) (1111111111111)
[[13.1,5]] |(w#10011011001)
[[13.12,1]] | (wwwwwwwwwwwww)
[[15.0,6]] | (w1w#ww1w00000000) (101100110100000)
[[1515]] | (##1001100011001)
[[15.2,5]] | (®#®110110011011)
[[15.3,5]] | (w00%01101010110)
[[15.4.4]] | (w10w1001110111)
[[15.5.4]] |(WO0wlw#w001111001)
[[15.6,4]] | (w00®www10101001)
[[15.7.3]] | (##Ow001w0101111)
[[15.83]] |(wW111wO0wHw001101)
[[15.93]] | (ww00Bww1lwl0111)
[[1510,2]] | (W1111w 1111w 1111)
[1511,2]] | (F#w101%w101ww101)
[[1512,2]] | (w11w11w11w11w11)
<

[[15,13.1]]
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[[15.14,1]]

<

[[17,0,7]] | (ww001101111101100) (11111111111111111)

[17.,7]] | (®#101110101011101)

[[17.8,4]] | (W10wWwH01%w11100111)

[[17.9.4]] | (w#W1wllwl#w®#0010100)

[17.161]] | (Ww Fww """ wwwww T » W)

[[19,0.7]] | (ww00000101110100000) (1111111111111111111)

[[19.,7]] | (##10000101010100001)

[[1918.1]] | (wwwwwwwwwwwwwwwwwww)

[[21,0.8]] | (ww010%001110110000000),
(100011001010111110000)

[2117]] (w#w1000010110110100001)

[(212.6]] (Www101111110011111101)

[[21.3.6]] (wO0w00001000011111011)

[[21.4.6]] (WOwww1010010010101101)

[[2156]] (w110ww110011110000101)

[2165]] (Www0w1%00010111010011)

[[2173]] (W0Owwwww0001101010101)

[21.841] (WOw10wOww011100111001)

[[21,9.4]] (@

0011w11w00100000111>
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[[21,10,4]]

WOowlwOww0lw0100110111)

<
[[211,4]] | (#01ww0111wOwW110000011)
[[2112,3]] [(W1w#11w0W00ww00110001)
[[2L13,3]] | (W#wOwW1HwHWOWwOw0010011)
[[2114,3]] | (Ww000wWwwlwwwl1Ow010111)
[[2L153]] | (W1w11w01ww00wlww01101)
[me@ﬂ (WwwwwlwOwl0wwl00w0111)
[[2117,2]] | (WwOBO011wwWOBO11wwWOWO11)
[[2L18,2]] | (W11wW11w11w11w11%11w11)
[[2L19,1]] | (W#W 0w W0 w 0w 0% w 0w 0 i 0)
[[2L201]] | (WwwwHHwwww T DWW W)
[[23,0,8]] | (ww000011100010001110000),

(11111111111111111111111)
[2317] | (wwwwwoowoowow0000000000),

[[23,12,4]]
[[23,22,1]]

e~

11111001001010000000000>

wwWwwOOWOlWOszl110000000),
11111111111111111111111)

P

=
I
2
=
=
o
T
=
s
o
T
o
=
o
=
=
o
=
A
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Table 6.2

All of the valid (n, k) for additive cyclic codes. (“E” means exist)

n\k |0 1 2 3 4 5 6
5 E E

7 E E E E E
9 E E E E E
11 E E

13 E E

15 E E E E E E E
17 E E

19 E E

21 E E E E E E E
23 E E

25 E E E E

27 E E E E E
29 E E

31 E E E E
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Table 6.2 (continued)

All of the valid (n,k) for additive cyclic codes(“E” means exist)

n\k |8 9 10 11 12 13 14
9 E
11 E
13 E
15 E E E E E E E
17 E E
19
21 E E E E E E E
23 E E
25
27 E E
29
31 E E
Table 6.2 (continued)

All of the valid (n,k) for additive cyclic codes(“E” means exist)

n\k |16 17 18 19 20 21 22
17 E

19 E

21 E E E E E

23 E
25 E

27 E E E

29

31 E E E
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Table 6.2 (continued)

All of the valid (n, k) for additive cyclic codes(“E” means exist)

n\k |24 25 26 27 28 29 30
25 E

27 E E E

29 E

31 E E E

6.4 Analysis of the search results

In the last section, we showed our search results. There is something hiding behind

these data, and in this section, we will discuss these results and the algorithm we used.

At first, from Tables 6.1 and 6.2, we can see that for some values of #» we have many

additive cyclic quantum codes, while for some we only have few. For example, for

n =21, there are so many additive cyclic quantum codes, but for n =11,13, there are
only three codes. The reason for this difference is the number of the irreducible factors
of x"-1. The more irreducible factors a number » has, the more additive cyclic
quantum codes it can provide. The number 11 has two cyclotomic cosets mod 2,

C, ={0}

C ={1,2,3,4,5,6,7,8,9,10}
while the number 21 has six cyclotomic cosets mod 2,

G = {0}

C, ={1,2,4,8,11,16}

C, ={3,6,12}
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C, ={5,10,13,17,19,20}

G

Il

{7.14}

Cy = {9,15,18}
Obviously, x* —1 has more irreducible factors than x'' =1 has. Then the
polynomials » (x), p(x) of x* —~1 have more choices than the polynomials of x'' -1
have. Thus, it is not surprising that x*' —1 provides us with so many additive cyclic

quantum codes, while x'' —1 only gives us three.

Second, for any odd number #, there are always [[n,O]], [[n,l]], [[n,n —1]] additive

cyclic quantum codes for the simple reason that x" —1 always has the factors x—1 and

n—1
x'. Ifwelet r(x)=g(x)=x"-1, p(x)=1, we get the [[n,O]] additive cyclic
0

quantum code, if we let r(x)=g(x)=x"-1, p(x)=x-1, we get the [[n, 1]] additive
‘ n—1
cyclic quantum code, if we let r(x)=g(x)=x"-1, p(x)=Y x", we get the [[n,n —l]]
i=0

additive cyclic quantum code. Of course, the codes generated by these polynomials

perhaps are not the best additive cyclic codes, but they prove the existence of the

[[n, 0]] , [[n, 1]] , [[n, n-— 1]] codes.

Third, although it is a good thing that the algorithm can find all of the additive cyclic

quantum codes, it takes a really long time to search them as »n becomes larger and larger.

Suppose that we are searching an [[n, k]] code, in order to find the minimum distance

d , we have to list all of the 2"* codewords to find the weight enumerator. Perhaps
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there are hundreds or thousands of [[n,k]] codes, and we have to list 2"* codewords

for hundreds or thousands times. If n =31,k =1, the calculation will be thousands of

times of 2*°. It is not surprising that the calculation time will increase exponentially.
However, if k is large, the calculation time is still acceptable, for 2" is not a too big

deal for a fast computer. A partial search for n=31 has found the following additive
cyclic quantum codes:
Table 6.3

Some additive cyclic code with highest minimum distance for n =31

Parameters Generators

wwwwOOwlwwlewl1w00wlw000000000>

[[31.15.,5]]

1100101101111010100010011100000)

[[31,16,5]]

1010111011000111110011010010000>

[[31,20,4]]

OOIwWOlWOWwOleWOWwOOOl101001)

{
<
(wwww10wlwwlwlwlOwl0owlw100000000),
<
(w
(w

[[31.21,4]]

OOlewlwwwlwlelwwlwlOl111111>

These codes are not mentioned in [70].

6.5 Conclusion

To see the significance of our results, we compare Tables 6.1, 6.2, 6.3 with the table of

[70] closely. We can see the following two facts:

1) All of the codes listed in Table 6.1, except the codes [[l 1,0,4]],[[1 1,1,3]] , meet the

lower bounds in the table of [70].
2) Additive cyclic quantum codes offer us a great many quantum codes. For each odd

value of 7, we can always find some additive cyclic codes. By comparison, other
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methods in [70] are not so resourceful and flexible. Many codes in the table of [70]
which were found by different methods are now unified under one method.
These facts are very exciting, for they have proved the success of the search algorithm
and the great value of additive cyclic quantum codes. The lower bounds in the table of
[70] are the best codes found until now, while the upper bounds came from the theoretical

calculation, so such codes may exist or may not exist. The fact that all of the best

additive cyclic quantum codes we found, except [[1 1, 0,4]], [[l L1, 3]:| , meet the lower

bounds means that, in most cases, the best additive cyclic quantum codes are also the best
quantum codes we can obtain. It is a very good thing, because, to a great degree,
searching for the best quantum codes can be replaced by searching for the best additive

cyclic quantum codes. The search complexity will therefore be greatly reduced.
Thus, we draw the conclusion that just as the cyclic codes play an extremely important

role in the classical error-correcting codes, the additive cyclic quantum codes are also an

important class of the quantum error-correcting codes and are worth great attention.
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Chapter 7

Contributions and suggestions

Quantum information theory is a new field which has been developed during the last
decade. Although this theory is far from mature for practical applications, it is
developing very fast and appeals to many scientists, for it showed many striking
properties which are greatly different from the classical information theory. It may be
possible that the successful applications of quantum information theory will, one day,
trigger another industrious revolution. However, due to its physical nature, this field
seems closed to most electrical engineers. Acting on the gréat interest in quantum
information theory, we entered into this field, and did some research in the area of
quantum error-correcting codes. We hope that this thesis serves not only as a good
introduction of quantum information theory to electrical engineers, but a valuable
exploration of the quantum error-correcting codes as well.  As there are too many areas
in quantum information theory and the space of the thesis is limited, we only included
some primary concepts and theories relevant to our research in the thesis. In a word, the
thesis has the following contributions:
A) An introduction of quantum information theory:

1) Mathematical foundation of quantum mechanics: linear algebra;

2)  The prime principles of quantum mechanics;

3) Quantum operations and quantum noise;

4) Quantum error-correction theory and the stabilizer codes;

5)  The connection between the additive quantum error-correcting codes and the

classical error-correcting codes.
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B) The exploration of additive cyclic quantum error-correcting codes:

1)

2)

3)

A new algorithm has been designed to search additive cyclic quantum
error-correcting codes;

All of the best additive cyclic quantum error-correcting codes, which range

from n=5 to n=23,have been found; we also gave a list of pairs of (n, k) ,

n<31 for which an [[n, k]] additive cyclic quantum code exists. In

addition, we found some best additive cyclic quantum error-correcting codes for
n=31:[[31,15,5]], [[31.16,5]], [[31,20,4]]. [[3L.2L4]]. Most of the

additive cyclic codes showed in this thesis are not presented in Calderbank’s

paper [70];

The great value of the additive cyclic quantum error-correcting codes was

proven from two aspects:

a) Most of the best additive cyclic quantum error-correcting codes are also the
best additive quantum error-correcting codes obtained up to now. In the
future, we can search for the best additive quantum codes by only searching
for the best additive cyclic quantum codes. Thus, the search complexity
will be greatly reduced.

b) The additive cyclic quantum error-correcting codes offer us a large number
of good additive quantum codes, which means that this class of additive

quantum codes is very resourceful.

Although we made some good progress in our research in the additive cyclic quantum

error-correcting codes, there are many things needed to be done in the future:

1) When n becomes large, say, around 31, the search will become difficult for small

k.

We wonder whether there is any thing we can do to improve the search

algorithm so that we can finish such undertakings faster;
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2) The classical cyclic codes are easily encoded, so we are also interested in the
encoding circuit for the additive cyclic quantum error-correcting codes: is it also
simple?

3) The classical cyclic codes are the building blocks for many other codes, so is it
possible that we can build some additive quantum error-correcting codes from

additive cyclic quantum codes?

Finally, we hope that this thesis can serve its functions well and attract more people to

this new and fantastic field.
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