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ABSTRACT

DYNAMIC TESTING OF STRUCTURES USING SCALE MODELS

Anshuman Jha

Dynamic testing is very useful in the design and development of products and
systems. Although designers employ most powerful analysis tools, using the most
elaborate electronic computers, actual testing is required in order to ensure the proper
functioning of the designed system. For the structures that are extremely small such as
the Micro Electromechanical Systems (MEMS) or that are very large such as civil and
aerospace structures complex dynamic tests can be carried out on a replica of the system,
called the model, made to larger or smaller scale, respectively, for reasons of economy,
convenience and saving in time.

Similitude theory is employed to develop the necessary similarity conditions
(scaling laws) for dynamic testing of scaled structures. Scaling laws provide relationship
between a full-scale structure and its small scale model, and can be used to predict the
response of the prototype by performing dynamic testing on inexpensive model
conveniently. Such scaled models have been extensively used in wind tunnel testing of
large structures such as automobiles, buildings and aircrafts structures. The difficulty of
making completely similar small scale models often leads to certain types of relaxations
and distortions from exact duplication of the prototype (partial similarity). Both complete

and partial similarities are discussed. These scaling laws are then validated both by
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carrying out finite element analysis using ANSYS 7.1, and by performing experiments in
the laboratory for a simple structures.

The above methodology has also been applied to the design validation of a
shipboard monitor console. The console is required to isolate the monitor from the shock
and vibration inputs and ensure its proper functioning. The shipboard console and its
scale model have been investigated for their dynamic response subjected to sinusoidal
and shock loads and a good correlation has been found between the prototype and the

model.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Engineering analysis, design and research often need simulations, when the direct
observation on the prototype, which is the actual system of interest, is not possible or is
very costly. The steps involved in the simulation of the prototype are schematically
illustrated in Fig. 1.1. In order to define the system precisely, usually many assumptions
are made and the new system is referred to as idealized prototype. The assumptions made
at this initial stage are not restrictive and are imposed only so that the problem can be

well defined.

MATHEMATICAL
MODEL
1
f }
IDEALIZED ANALYSIS ANALOG
PROTOTYPE > PROTOTYPE
SIMILAR MODEL

Fig.1.1 Flow chart for problem analysis [6].

Following the definition of the problem, the type of simulation technique to be used is
decided. If the problem can be solved analytically, the mathematical model must be

developed and subsequently solved either by mathematical analysis or by an analog.



When the analog approach is used, the system or model which is different in appearance
to the original prototype is analyzed experimentally.

For the simulation of the prototype with a mathematical model, the characteristic
equations describing the behavior of the system should be well known. This frequently
adds more assumptions with regard to the behavior of the system. For example, while
considering the deformation of structures, the most common assumption is that the
material behaves elastically. Thus, a thorough understanding of the characteristics of the
system, and the fundamental equations governing the behavior of the system, must be
achieved, to have a well defined mathematical system. The main advantage of solving the
problems in this manner is the possibility to obtain the complete and detailed solution
without having any experimental expenses. The major disadvantage is the large number
of assumptions that are needed to establish a mathematical model. Moreover, in many
instances, it becomes very difficult to obtain a solution analytically due to the complexity
of the governing equations.

The alternative basic simulation technique is one of actually simulating the
prototype, or the idealized prototype, with a similar model. A similar model is defined as
the system which is similar in appearance to the prototype but not identical to it. In
practice, such systems are referred to as models and are usually smaller in size than the
prototype. In some instances, it may be advantageous to have a model that is larger than
the prototype. It is frequently possible, through the use of similar models, to study very
complex problems with relative ease, and this is one of the major advantages of the
technique. In many cases, less number of assumptions are required when similar models

for simulation are used than in simulating with mathematical model. The major



disadvantage of using similar models is that the solution is obtained experimentally
which is expensive. Also the results obtained experimentally are frequently restrictive
and limited in applicability.

A relationship between the model and prototype must be established regardless of
the particular technique chosen to simulate the prototype. Through the development of
mathematical models, this relationship evolves naturally and is readily apparent.
However, when similar models are used, the relationship between model and the
prototype must also be known. The establishment of this relationship and the fulfillment
of the various similarity requirements, or model-design conditions, between the two
systems are sometimes difficult to achieve [6].

For systems that are large and of a complex nature, dynamic testing and
investigations can preferably be carried out on a replica of the system, called the model,
made to a smaller scale for reasons of economy, convenience and savings in time. Such is
the case with the design and development of aircraft, tall structures, oceanic vessels, large
dams, harbors and bridges, and many other technologically advanced systems where
performance and behavior have to be predicted with confidence to a high degree of
accuracy. There are however, also instances such as micro electro mechanical systems
(MEMS) where the original system, called the prototype, is very small and where a
scaled-up model system can be used to advantage [2]. The use of small laboratory models
for simulation of complex engineering problems has been found to be particularly
valuable in three respects: a) To obtain experimental data for quantitative evaluation of a
particular system behavior, b) to explore the fundamental behavior involved in the

occurrence of little-understood and particular type of phenomena, c¢) to obtain



quantitative data for use in prototype design problems, particularly where the
mathematical theory is overly complex or even nonexistent [3].

Those principles which enable the proper design and construction, operation, and
interpretation of test results of these models comprise the theory of similitude. The theory
of similitude includes a consideration of the conditions under which the behavior of two
separate entities or systems will be similar, and the techniques of accurately predicting

results on the one from the observations on the other [4].

1.2 STATE OF THE ART

Engineers and scientists have been profitably using scale models for many years.
Models for vibrating rods and plates were investigated by French mathematician A.L.
Cauchy in 1829[5]. The first water basin model for designing watercraft was made be W.
Froude in 1869[5]. O. Reynolds started using the concept of scaling in fluid machinery
problem and he published classical model experiments on fluid motion in pipes in 1883
[5]. Model tests have many limitations but still they are invaluable for engineers and the

use of model testing is increasing steadily.

1.2.1 Historical Development of Dimensional Analysis

Two methods commonly used to establish the similarity relationship between the
model and prototype are based on 1) the analysis of the characteristic equation of the
system and 2) dimensional analysis [6]. In the former, the system is first described in
terms of a mathematical model and then the scaling laws, model-design conditions, or
similarity requirements are developed from the model on the other hand in the latter,

derivation of the scaling laws by dimensional analysis requires that all system parameters



be listed in and that Buckingham’s Theorem be applied to obtain the functional
relationship between dimensionless quantities [7]. Dimensional analysis is a technique
that enables identification of the fundamental quantities that describes a physical
phenomenon or system, and it has been utilized effectively in engineering modeling. The
principal purpose of dimensional analysis from engineering viewpoint is the arrangement
of the variables of a physical relation so that, without destroying the generality of the
relationship, it may be more easily determined experimentally [8]. Thus, the complexity
and extent of an experiment may be greatly simplified by this approach. The genesis of
the modern theory of dimensional analysis is rooted in the concept of geometric
similitude used first by Galileo for determining elastic properties of a single structural
member as a function of their geometric dimensions. Newton used it in the study of the
Laws of Motion, and Mariotte for work on shock and on fluid flow [9]. Great
contributions were made to the analysis of physical phenomena during the eighteenth
century, and yet very little attention was paid to matters of physical dimensions during
most of that period. Euler broke this trend and showed in several of his numerous
writings the meaning of quantities and the mathematical expression of physical
relationship [10]. In Theoria motus corporum solidorum seu rigidorum (1765), Euler
devoted a chapter to questions of units and homogeneity; although his discussions are
somewhat obscure, it is evident that Euler was aware that there is nothing absolute in the
matter of systems of units and dimensions of physical quantities [10]. Lagrange and
Laplace continued the work that was initiated by Euler and formulated the principles of
dimensional analysis; Fourier, in the last of his three successive versions (1807, 1811,

and 1822) of the Analytical Theory of Heat, established the foundations of dimensional



analysis [10]. Fourier also not only showed exceptional mathematical powers but also
deep concerns about physical aspects of the problem of heat transfer. He concluded that,
to determine numerically most varied movements of heat, it is sufficient to submit each
substance to three fundamental measurements [10]. Although Fourier did not draw most
of the consequences with which we are familiar now, he recognized the existence of
dimensionless groups in his equations. All the basic elements pertaining to the principles
of dimensional analysis are in Fourier’s Théorie Analytique de la Chaleur, but the
derivation of relations between variables involved was not foreseen by him [10]. In the
works of Fourier, consideration is also given to the flow of heat in similar bodies. Much
confusion between similarity and dimensional analysis has now existed for a century, and
Fourier did not establish any connection between the two questions. After Fourier, no
important development in dimensional analysis took place for half a century. There were
considerations and discussions about system of units for old and newly created physical
quantities; moreover- from both analytical treatments and considerations of similarity —
dimensionless groups, or so-called “abstract coefficients”, started to appear in the
literature. In the Index of subjects of Theory of Sound (1877-8) by Lord Rayleigh, an
entry “Method of Dimensions” is found which marks the beginning of application of
principles enunciated by Fourier fifty years ago [10]. The first detailed application of the
method of dimensions is to be found at the beginning of the first volume (1877) after
discussing the theoretical solution of the problem of the vibration of a mass attached to
the center of a stretched string [10]. The corresponding differential equation for
vibrations of small amplitude is

M i+2T (x/a)=0, (1.1)



in which M is the mass, xis the displacement, T is the tension of the spring, and a is

half the length of the string. After expressing the time period as

7=27./(aM [2T) (1.2)

Equation (1.2) expresses the manner in which 7 varies with each of the independent
quantities T,M ,a: results which may all be obtained by considering the dimension of the

quantities involved. After emphasizing the importance of the “argument of dimensions”
in acoustics, the Lord Rayleigh indicated that the solution of the problem may be written
as [10]

t=f(a,M,T) (1.3)
It was explained that the equation must retain its original form unchanged, whatever may
be the fundamental units with which the four quantities are numerically expressed.

Because T, the only variable in the function f that involves time, has dimensions
(mass)(length)(time)'z, Rayleigh concluded that , when a and M are constant, one must

have 7 proportional to T™? as the only way of preventing changes in units from
disturbing the functional relationship (1.3). Rayleigh also indicated in detail the
procedure of assuming the dependent variable to be proportional to a product of unknown
powers of the independent variables and of solving the system of linear algebraic
equations which results from the requirement of the same dimension on both sides of the
original equation. Carvallo and Vaschy were the first to attempt a formulation of a
general theorem for the method of dimensions [10]. Therein Carvallo showed that the
equation for the power of a dynamo could be expressed as a relation between two

dimensionless variables [10]. The dimensionless equation for the powerW ,

W2 =E1? - (4214 [T?) (1.4)



given by Lucas, was transformed by Carvallo into

yi=x"—x* (1.5
in which the terms

x=27LI/ET and y=27LW/E’T (1.6)

are dimensionless groups. In these expressions, E, I, L and T indicate electromotive
force, current intensity, self-inductance and period of alternating current. Much work
was carried out by Carvallo, Vaschy, and Riabouchinsky before Buckingham [11] in
1914 developed the Pi Theorem that forms the basis for investigating physical
relationships within the framework of similarity. If, some physical system called
prototype, about which it is desired to make certain predictions or draw certain
conclusions is considered then for such a system,n physical parameters which are
significant, lead to the relationship of the form

£(0,.0,..0,)=0 (1.7)
If this equation is unique in the sense that only one relation exists between the
parameters, then the need for dimensional homogeneity leads to the requirement that
there exists an equivalent relation

vz, 7y, 7T,)=0 (1.8)
This relation is among m independent dimensionless groups (7z) of the original
dimensional parameters where m=n—-s and s is the minimum number of physical
dimensiohs necessary for the description of the n parameters. This is general statement
of the well known Buckingham 7z theorem [3]. In 1915, Rayleigh [12] published a paper
stimulating the use of his method in dimensions among engineers; he gave several

examples, including an analysis of Boussinesq’s on the steady passage of heat from a



solid conducting body immersed in a stream of fluid moving with a velocity v at
infinity. Rayleigh assumed that the total heat & passing in the unit of time was a function
of only the linear dimension a of the solid, the temperature difference 8, the velocity v,
the specific heat of the fluidc, and the conductivity k. He discarded the density of the
fluid, because it “clearly does not enter into the question”. His analysis led to
h = ka6.F (avc/k). (1.9)

Riabouchinsky commented (Nature July 29, pp. 591) that heat, temperature, length, and
time are treated in the deduction as independent units; and that if it’s supposed that only
three of these units to be “really independent”, different results are obtained [13].
Bridgman [14] also presented his contribution on the methods of dimensional analysis
that he presented in his book of 1922. The past many decades of dimensional analysis
have been studied mainly as the period of increasing application, with the refinement of
techniques that always follows the period of development [10]. In reference [8] an
algorithm has been developed to calculate a complete optimized set of dimensional
products of the variables associated with a physical phenomenon from any complete set
of dimensionless products. The developed algorithm is non exhaustive and is readily
adaptable for digital computers. Alternative formulation of Buckingham’s pi-theorem
was also presented by Pankhurst [15], in which exploitation of *“orthogonal

independence” properties were studied.

1.2.2 Fields of Application

Historically dimensional analysis and similarity theory were first used to study
hydraulics and the flow of fluids in pipes and channels. Empirical rules were developed

through model tests before laws of viscous flow were known. Since many areas of fluid



dynamics are still too complicated and accurate analysis is mathematically very difficult,
lot of effort has been devoted to develop accurate similarity methods for fluid dynamics,
hydraulics, aerodynamics, and naval hydrodynamics [16]. Model test on water wheels
were conducted in the eighteenth century by Smeaton [17]. At the beginning of the
twentieth century model tests again began to be carried out by manufacturers for the
development of modern types of hydraulic turbines and they are still carried out at the
primary stage of the construction when modifications are possible. Hydraulic scaled
models are frequently used in pump, turbine, hydraulic torque converters and other turbo
machines. These scaled models are used to design the sump or intake, to establish head,
flow, efficiency, cavitation characteristics to ensure compliance with specified rated
conditions, obtain flow patterns, and to acquire the best efficiency value [18-22].

The best known and perhaps one of the oldest applications of scale model
experiments is in the field of naval architecture. Historical records show that experiments
with models of ships have been performed since the time of Leonardo da Vinci [23].
However, it was not until W.E. Froude (1874) that model test predictions were
established as a valuable engineering tool. He used it to obtain the resistance of a full-
scale ship from model resistance experiments in a towing tank. The accurate
extrapolation of model test results to full scale was not possible until the principles of
spectral and transfer functions were established, as presented by St Dennis and Pierson
(1953). Over the years, model tests have demonstrated their usefulness in solving
problems relating to both preliminary design and retrofitting. The successful model test
program leads to an optimum hydrodynamic and/or structural design which will enhance

the economic performance of the marine structure. For many decades model-testing tank,
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or water basin have been used for ship designing [3]. Frictional and wave making
resistance, propeller performance, ship maneuverability in smooth and rough water,
cavitation, ship bending vibrations due to wave impact and slamming, seakeeping, and
many other performance would be impossible to predict without model experiments [3].
A 136:1 scale model of 820 feet World War II ESSEX-Class aircraft prototype as shown
in Fig 1.2 was tested at the David Taylor Model Basin in regular and irregular seas [24].
Model test objective required that the measurement of elastic response be permitted at
any point along the hull. A segmented model joined by a continuous beam was developed

and all the scaling laws were found.

Fig. 1.2 Segmented Model of Aircraft Carrier [24].

Transient vibrations of an unexpected severity were found to result from the wave impact
loads on the aircraft carriers. The lack of preliminary knowledge on this type of impact
load prompted model tests and computational studies to examine the hull girder response
to such loads. It was indicated that agreeable correlation with full scale as shown in Fig

1.3 exists and also revealed the need of complementary model tests.
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Fig. 1.3 Deflection Curves Obtained from Vibration Generator Test [24].

Just as the water basin was used in studying structural behavior in fluids, the wind
tunnel was used to study the structural behavior in subsonic, supersonic, hypersonic, and
hypervelocity air flow. Wind tunnels can simulate velocities ranging from a light breeze
to many times the speed of sound. They can accommodate the scaled models of buildings
and structures that are sensitive to winds [25], aircraft, and spacecraft for studies of
turbulence, drag, lift, pressures, buffeting, flutter, and other phenomena [3]. After the
dramatic and catastrophic failure of Tacoma Narrows Bridge in 1940, intensive study of
the aerodynamic stability of suspension bridges was carried out. Investigators used wind
tunnels in order to study the aerodynamics of bridge sections. Use of dynamic “sectional”

models, as opposed to complete or full bridge models, is now commonly accepted [26].
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Larger model scale and lower modeling cost are advantages offered by sectional
approach. The scale ratio for sectional models may be in the region of 1:30 or 1:50, and
for full models in conventional wind tunnels may be 1:200 or higher. A 1/400 - Scale
model shown in Fig. 1.4 of about one mile of downtown Montreal was used in the 6-

ft x9-ft low speed wind tunnel to obtain mean pressures and the spectrum on unsteady

pressures at different locations on a tall building in a simulated wind shear layer [27].

Fig. 1.4 Diffusion of Smoke Above and Within Shear Layer 1/400 Scale Model of Part of
Downtown Montreal in 6-FT X9-FT Wind Tunnel [27].

Again scaled models have been used extensively in the aeronautical field. In the
past decades, dynamic models has made possible many refinements and helped in solving
many problems which otherwise would have been impossible to solve economically.
Dynamic scaled models have also been used extensively in the development of large
launch vehicles in order to study fuel slosh, and the primary natural frequencies of the
vehicle, buffet and response to ground winds, and also the determination of response due
to acoustic excitation [28]. The importance of dynamic scaled models in aerospace

research and development is demonstrated in reference [28]. Much of the work on
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dynamic scaled models in aerospace has been carried out at Langley Research center of
NASA.

In 1950 a one-tenth dynamic scaled model of large helicopter with a rotor
diameter of about 13 feet was tested [29]. This model was designed to study the ground
resonance and flutter problems. However, during the investigation, it was found that at 3
per revolution large vibratory stresses were developed which is unusual for a two-blade
rotor since the blade stresses are usually at the rotor frequency and frequencies which are
integral multiples of the number of blades. These stresses at 3 per revolution were
discounted; however, when the actual prototype was flown they also appeared in the
prototype and proved as high as to severely limit the flight time. The model was then
used in a program to reduce the stresses by changing the mass distribution in the blades.
Scaled models are used in the investigation of flutter problems. A 1/6™ scale model,
equipped with wing tip tanks and representative of unswept fighter-type of conventional
plan form, was tested for flutter [30]. For the design of the model, the model was
dynamically scaled to flutter at the same speed as a full scale; in addition the principles
followed in the scaling required that non-dimensional parameters important in flutter,
such as mass ratio, frequency ratio, and reduced frequency, remain the same on the model
as on the full-scale counter part. No attempt was made to scale the stiffness in the tip-tank
or wing-tip-tank-attachment. The results of the flutter experiments were compared with
the results of flutter calculation performed by utilizing Rayleigh-Ritz analysis. The
propeller whirl flutter was investigated on a model at Langley Transonic Dynamics
Tunnel. The phenomenon of propeller whirl flutter is the instability resulting from the

coupling of the aerodynamic and gyroscopic forces of the propeller with the stiffness and
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inertia forces of the mount [31]. The model test revealed that the weakened mount could
cause accidents. Subsequently the aircrafts were redesigned to provide greater margins
with respect to this type of flutter. A 1/5" scale dynamic replica of Saturn SA-1 launch
vehicle was constructed again at Langley Research Center to establish the feasibility of
obtaining the required experimental vibration data with a model [32]. Since lateral
bending vibrations were of primary interest, exact simulation of effects such as panel
flutter, longitudinal vibrations, and fuel sloshing were neglected. In this case mass-
stiffness ratios were appropriately scaled, with certain masses being treated as
concentrated. For the resulting model which was 32 feet high (as compared to 160 feet
full scale) and weighed about 7,500 pounds (as compared to 935,00 pounds on full scale)
as shown in Fig. 1.5, good agreements were obtained with the prototype results for the
first bending mode as shown in Fig. 1.6. However the first cluster mode results as shown
in Fig. 1.7 show discrepancies between model and prototype indicative of the increased

difficulty of modeling higher modes.

MODEL [FULL SCALE
LENGTH, FT 32 160
BOOSTER DIAMETER, FT| 4 20
LIFTOFF WEIGHT, LB 7500 935000

MODEL FULL SCALE

Fig. 1.5 Model and Full-Scale Saturn Vibration Test Vehicles [32].
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The modeling of concrete structures has received its greatest impetus in the post
World War II years when many structural problems dealing with dynamic loads had to be
resolved. Time dependent loadings, because of their complex nature and effects on
structures, have enabled the experimental technique of using small-scaled models to
compete on an equal basis with more traditional analytical methods. Scaled models have
been used for evaluating the dynamic properties of concrete material [33], response
behavior of multi-storey building structures, dams and bridges due to earthquake [34-37],
response due to wind pressures, soil mechanics, pile foundations, underground
explosions [3]. Scaled models are now being used for wide applications by building
engineers; recently the feasibility study on the application of passive and active stack
systems to enhance natural ventilation in public housing in Singapore was carried out
using 1:5 scale model to effectively simulate the air flow in each room primary [38].
Objective of this work was to assess the status of natural ventilation in a typical four-
room HDB flat using scaled model in the wind tunnel, and to develop an effective passive

or active stack system to enhance natural ventilation in the flat.
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Meteorologists and geophysicists are another group long interested in model experiments.
As early as the late eighteenth century, an attempt was made to construct a laboratory
model for cyclone. Now the study of geophysical phenomena in the laboratory on a
miniature scale is well advanced. A model of extremely slow fluid flow, a miniature

glacier composed of water and kaolin is shown in Fig. 1.8 [3].

Fig. 1.8 Model Glacier Made from Kaolin. Faults and Fields Closely Resemble Those of
Field Observations [3].

There is no limit to scale model experimentation within the realm of quantifiable
physical phenomena. Scaled models are used in every field that needs experimental
results for the approximation of behavior of phenomena. Acoustic models have
contributed to the improvement of auditorium; 1:8 scale model of auditorium was
developed to investigate the effect of clothing worn by people on absorption of sound
shown in Fig. 1.9 [39]. Using 1:7.5 scale, the complete model of aircraft and the outer
section of an A320 full scale wing were made to provided a baseline data set for the

development, of noise (during landing) prediction schemes [40].
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Fig. 1.9 Acoustic Model Designed to Study Audience Absorption in Lecture Halls [39].

1.3 MOTIVATION AND SCOPE OF PRESENT WORK

Scale modeling techniques seem to have lost its luster for past three decades.
Scale modeling was quite popular till the decade of late 70’s, however not much research
work has been carried out since then in the area of scaled modeling as it reached its peak
of the time. Literature review suggests that scale modeling has proved to be very useful in
the fields of naval testing, wind tunnel testing, aerospace applications, earthquake
engineering, and performance testing of hydraulic machines. Scale model principles can
be very effectively used on many occasions to avoid costly full scale experimentation or
just analytical verification of a problem where full scale experiments are not either
feasible or possible. Scaled models are not restrictive to any particular field and can
provide economic, convenient and time saving experimental results in laboratory with
ease. With the development in the field of MEMS, composites scaled modeling can be
effectively used in these new areas. Scaled modeling technique also provides researchers
the opportunity to carry out experiments in the laboratory at universities which often have

limited resources for full scale testing to validate the design requirements. This old
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technique of scaled modeling still has many benefits to offer to the new emerging fields
thus provides the motivation to further explore this area.

Thorough study of scale modeling techniques has been covered in the present
work. Particular scaling laws have been derived for dynamic analysis of structures with
different types of possible relaxations taken into consideration to meet the scaling
conflicts encountered for dynamic analysis. The scaling laws are validated by carrying
out finite element analysis using ANSYS 7.1. The prototype and half scaled model of
simple cantilever beam are experimentally verified to compliment the proposed
relaxation. The methodology has been applied to the design validation of a shipboard
monitor console. The console is required to isolate the monitor from the Shock and
Vibration inputs and ensure its proper functioning. The shipboard console and its scale
model have been investigated for its dynamic response subjected to sinusoidal and Shock

loads and a good correlation has been found between the prototype and the model.

1.4 ORGANIZATION OF THE THESIS

In chapter 1, historical development of Pi theorem which forms the basis of scaled
model experiments and previous works carried out in the use of scaled models have been
studied. It also provides the motivation and scope of the thesis undertaken.

In Chapter 2, detailed dimensional analysis and similitude theory has been
presented. With the sound background of similitude theory discussed, specific scaling
factors for dynamic analysis are derived and verified for a simple cantilever beam by
carrying out finite element analysis. Although scaled modeling is an art, a few guidelines
and possible relaxations are also discussed in chapters 2 which are often required when

complete similarity is not feasible due to practical reasons.
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Chapter 3, discusses experimental verification of scaling laws for dynamic
analysis using a simple cantilever beam derived in chapter 2, and verifies that the
relaxation suggested does not practically affect the response of structure.

In Chapter 4, application of developed methodology has been applied for
dynamic testing of shipboard monitor console. The shipboard console and its half scale
model have been investigated using finite element analysis in ANSYS 7.1 for its dynamic
response subjected to sinusoidal and Shock loads and a good correlation has been found
between the prototype and the model.

Chapter 5 presents the conclusions of the work undertaken and recommendations

for the future work.
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CHAPTER 2

PRINCIPLES OF SCALED MODELING

2.1 MODELING BASED ON THE CONDITION OF SIMILARITY

Experimental modeling is based on the fact that the model and the prototype
systems obey the same physical laws. The model must be constructed so as to embody all
the relevant features and parts of the prototype system. The unique relationship between
the model and prototype is broadly referred to as similarity. The condition of similarity
can be achieved by following the procedure called Dimensional Analysis. This procedure
is based on the fact that all general relationships in physics and engineering are expressed
by dimensionally homogeneous equations. When methods or time for finding a general
valid solution of a problem are not immediately available, dimensional analysis may be
applied with advantage, i.e. use may be made of this property of dimensional
homogeneity which allows a problem to be attacked solely from the ‘outside’.

The technique that provides the relationship between model and a prototype is
called modeling. Modeling is an experimental technique and its application is based on
the dimensional consideration. The technique employs certain dimensional properties of
the variables appearing in the problem which are arranged in the non-dimensional form.
The effectiveness of this technique can be enhanced through the use of information about
the system under investigation that has analytical or empirical origin. When such
information about the system can be found, both model design and experimental work

can be simplified to a degree, depending upon the amount of information available [2].
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2.2 DIMENSIONAL ANALYSIS

Dimensional analysis is a mathematical operation which involves units or
dimensions. It is used for the following reasons:

1) Deduction of laws — physics and engineering demands dimensional consistency in
equations. We can reduce the number of variables by writing them in dimensionless
form.

2) Scale up/down of experimental results

a) It does not require a full understanding of the physical process to be scaled.

b) Suitable (dimensionless) scaling relationships can be easily derived.

2.2.1 Primary and Secondary Quantities in Dimensional Analysis

Any physical situation can be described by certain familiar physical quantities, for
example length, velocity, area, volume, acceleration etc. These are all known as
dimensions. The dimensions are however of no use without a magnitude being attached.
Dimensions are properties which can be measured. Units are the standard elements used
to quantify these dimensions. In dimensional analysis only the nature of the dimension is
of concern, i.e. its quality and not its quantity. Only three physical quantities: Mass,
Length and Time are required to define both dimension and quantity in Mechanics, i.e.
any quantity in Mechanics can be defined by these three basic quantities. The following

common abbreviations are used:

1 Length L
2 Mass M
3 Time T
4 Temperature o
5 Current I
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However, in Mechanics we are only concerned with L, M and T, while 8 and I are
required for problems in thermodynamics, heat and mass transfer, electrostatics,
electrodynamics, electromagnetics and magnetohydrodynamics. Nature or dimension and
magnitude of all the physical quantities in Mechanics can be expressed as the product of
powers of these three basic quantities L, T and M. For example, the nature of physical
quantities velocity, acceleration and force are defined as follows:

Velocity v = Lengthx Time™,

Acceleration a = velocityxTime'1 = Lengtthime'z,
and the dimension of force is give by Newton’s second law as:

Force, F = MassXxacceleration = Mass xLengtthime'z.
These expressions give no indication of the magnitude of the respective physical
quantities, but give solely their relationship to the basic quantities, the latter are also
called the primary quantities. In order to signify that the relationship such as the above
express only the nature or dimension of a physical quantity, regardless of magnitude.
Square bracket symbols are often used, so that the above relationships can be expressed
as

[v]=[LxT"]

[a]=[LxT7]

[F] = [MXLXT"]
These are read as the dimension of velocity is length divided by time and so on. The so

derived quantities like velocity, acceleration, force etc. are called as secondary quantities

[2].
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2.2.2 Dimensional Homogeneity

Any equation describing a physical situation will only be true if both sides have
the same dimensions. In other words it must be dimensionally homogenous. If all the
terms in an equation reduce to the same basic quantities (have the same dimension), the
equation is said to be dimensionally homogeneous. For example, the well known

equation of distance traveled by a freely falling body starting from the rest may be

written as
s=tgr? 2.1)
2
the dimensional equation becomes
L=LT™T?
or L=L (2.2)

which is correct. Hence the coefficient > is dimensionless. Dimensional homogeneity in

any equation expresses a fundamental relationship between a number of different

physical quantities, and each term in the equation must have the same dimensions [4].

2.3 PRINCIPLE OF SCALED MODELING

The general concept of scaled modeling can be visualized by considering small
elements of the prototype and their corresponding elements in the model. In studying the
prototype elements, the physical data of interest such as geometry, pressure, weight,
stress, velocity, acceleration, frequency etc. is accounted. The homologous behavior of
corresponding model elements is secured if each quantity of prototype can be

transformed into the corresponding quantity of the model elements through multiplication
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by a respective constant factor called scale factor [5]. The similarity condition expresses
linearity between the corresponding variables of the prototype and the model which can

be defined by a constant of proportionality named scale factor A, which is the ratio

1= Magnitude of i* variable in prototype

i

Magnitude of i" variable in model

where A, is the scaling factor corresponding for i" physical quantity. Therefore the ratio

of the corresponding dimensional variables of prototype and model at corresponding

points are constant. For instance length scale factor can be defined as

_ (L ) prototype

= = constant
(L) model

(

If length scale factor 4, =2, then all geometrical lengths of model will be half that of

prototype. However measurements or observations on prototype and model are made on
homologous points. Homology deals with the relation between corresponding points,
corresponding events and corresponding variables in each similar systems, i.e. the
homology applies to the geometry as well as other physical characteristics. Therefore, in
a correctly conceived design, there must exist for each point on the model where
measurements are taken, a uniquely defined position on the prototype to which these
measurements apply [2]. For example, consider two structural beams, a prototype and
model subjected to periodically changing load as shown in Fig. 2.1.

If all corresponding lengths are linked by length scale factor,

l_xL _XN _ X Yo _ Yo m
=k = 22 22 22 max

] ]
X, % X Yy Y2 omax

b
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Fig. 2.1 Prototype and Homologous (Scale) Model of Vibrating Beam [5]

all corresponding times, by the time scale factor

and all corresponding forces by the force scaling factor

2 B _F_Fy Fin
) FL' FA' FB' FL'max,

then the shapes, forces and times of the model and prototype will be similar. If the time

axis of model is expanded by time scale factor A, , and model’s deflection by the length
scale factor A,, then the model’s deflection-time axis curve, y,'(t'), measured at a
distance x,', will collapse with prototype’s deflection-time curve, y,(t), measured at
distance x, . Or, if the model’s time axis is expanded by the time scale factor 4, and the

model’s force axis by force scale factor A, then the model’s force-time curve, F,'(?'),
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measured at distance x,', will coincide with the prototype’s force-time curve, F,(z),
measured at distance x, [5].

Similarity in scale modeling generally includes three basic classifications:

(1) Geometric similarity: All linear dimensions of the model are related to the
corresponding dimensions of the prototype by a constant length scale factor 4, .

(2)  Kinematic similarity: The velocities at ‘corresponding' points on the model and

prototype are in the same direction and differ by a constant velocity scale

factor A, .

(3)  Dynamic similarity: This is basically met if model and prototype forces differ by

a constant scale factor at similar points.

2.3.1 Primary and secondary scale factors

In scale modeling, we are concerned only with quantities defined as product of
five (or less) “primary” quantities, each raised to appropriate power. Therefore only the
primary scale factors of these five quantities need to be accounted for; all other,
secondary scale factors are easily derived from them. In dynamic analysis problems, two
primary scale factors need to be decided:

1) Length scale factor /4,

2) Time scale factor 4,

For instance scale factor for velocity A, which is secondary can be easily derived
from primary scale factors of length 4, and time 4, . Speed can be expressed as the first

derivative of length with respect to time, so that
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,1=K"_=dlf’/dt”
v, d,ld,

m
Geometric and temporal homology requires, however, that

l,=Al, and t,=At,

so that

In the same way, any secondary scale factor can be derived from two or more primary

ones such as:

Area scale factor A=A
. ]'l
Acceleration scale factor Ao=—5
ﬂt
Moment scale factor Ay = A,

In general, secondary scale factor may be written as [3]:

Secondary Scale Factor =4," 4, 4," 4, 4,"

2.3.2 Representative quantities and Pi-numbers

In practical problems modeling becomes difficult as every element of reduced or
enlarged model must repeat every instance of prototype on different but constant primary
scales.

If y, and y, represents any two corresponding quantities of the same kind in

prototype and model, respectively then scaling requirement can be written as

Y
v,

A

v
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l
For instance A, =l—” indicates that any corresponding lengths, distance, deformations, or

m

displacements of model and prototype must obey the same length scale factor. Likewise,

w
A, =—2 means that any two corresponding frequency, natural frequency, forcing

L, =—2
wm
frequency must follow the same frequency scale factor.

The quantities, like [ » and lm,Hp and 49m,a)p and w,, that are involved in the study

of prototype and model are called representative quantities and they are very important
in scale modeling. Any scale factor can be expressed in terms of representative quantities.

For instance,

A v, 1,1
A, ==t can be expressed as £ = -~
Vo lnt,

t m

This relation can be easily converted into the statement of

with all representative quantities of the prototype transferred to one side and the
corresponding representative quantities of the model to other. In scale modeling,
dimensionless products of this kind play a key role and they are called “pi-number” and
denoted by the Greek letterz [5]. A pi-number is a pure number without any physical
unit. Such a number is typically defined as a product or ratio of quantities that have units,
in such a way that the product itself is dimensionless [41].

Thus, for instance the fore mentioned relation may be expressed by:
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A representative quantity in a pi-number can be substituted by any similar quantity of the
given phenomenon to be modeled. W. For instance, if the pi-number 7 = vt/l is applied
to the vibrating beam, we can place representative velocity v by the peak velocity of the
imposed external load; representative timet, by the period of vibration; and the
representative length, by the length of the beam. However in practical modeling, these

steps are substantially shortened by converting all quantities of a governing relation
directly into representative quantities. Hence, the governing relation ofv = dl/dt can be
converted intov = dl/dt . The sign "=" (read as equivalent to) indicates that all terms are

representing terms where speed v is a representative speed; the length differential, dlis a
representative length; and the differential timedt, into a representative time. It also
indicates that if all terms are assembled in the product form, it constitutes a pi-number
[51.

Pi-Numbers can be derived in following three ways summarized in fig. 2.2

PARAMETER APPROACH ON APPLICATION OF
GOVERNING PARAMETERS »  DIMENSIONAL
ANALYSIS
N
LAW APPROACH TRANSFORMATION
BASED ON INTO RELATIONS | PI-NUMBERS
GOVERNING > AMONG
PHYSICAL LAWS REPRESENTATIVE
QUANTITIES :
y
EQUATION TRANSFORMATION
APPROACH BASED INTO RELATIONS
ON GOVERNING AMONG SCALE
EQUATIONS FACTORS

Fig. 2.2 Three Approaches to obtaining pi-numbers [5].
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2.3.2.1 Law Approach

To have a scaled model, prototype and model should follow the same governing
law, and pertinent pi-numbers are directly derived from the governing laws. The law
approach can be explained with the example of a vibrating beam model that would
predict the damp-out time of the prototype’s free vibration. Since the phenomenon of the
vibrating beam is one of elasticity, inertia, and internal friction, the model must conform
to three physical laws.

1) Elasticity is described by Hooke’s Law. Assuming negligible influence of

Poisson’s ratio, stress and strain can be related through

o=Ee¢
2) The inertial force on any element is ruled by Newton’s second Law,
dF =dm.a
3) Internal friction, as expressed by energy loss per unit volume and per cycle, is

(hypothetically) proportional to the third power of maximum stress, g,

dU=dvCo,’

To derive pi-numbers from these three laws, governing laws can be first

expressed in representative terms; and then, in the form of pi-numbers [5].

Governing Law In Representative As Pi-Numbers
Terms
o=FEe o= Ee T, = A
Ee
F
dF = dm.a F 2ma T, =—
ma
3 3 U
dU =dVco,, U=Vco Ty = 3
Veo
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In the given form, the three pi-numbers are hardly useful for model design. It

would be useful to have these numbers in terms of length, velocity, and force as

they are easier to work with than in terms of stress, mass, and energy. The

necessary modifications are accomplished with the help of representative relations

among primary and secondary, quantities.

Representative
Representative Modifying relations laws “.l terms of Pi-numbers
laws primary
quantities

Hooke's law F

o=—

2
o= Ee / : yF2I’Ee —p 1, = 2F
I“Ee
Newton's law of m= pV
inertia
Fa b _F
F = ma J 3 > ;2 —» pl4
a=l / t?
Empirical law of
internal damping vall
lZ
UL\‘VCO'3 y ;Fi—:/—_—__» ___F\/Z
J' C d l 2
U=Fl

2.3.2.2 Characteristic Equation Approach

The characteristic equations

describing physical

phenomenon are

often

differential equations and these equations combined with initial conditions and boundary

conditions describe the problem. Essentially, similarity conditions from characteristic
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approach are achieved by rewriting the characteristic equation in non-dimensional form,
and determining from the transformed equations the conditions under which the behavior
of two systems will be similar. For instance consider the spring-mass-damper system as

shown in Fig. 2.3

l Equilibrium Position

m

c ! Y

ANNNNNNNN
Fig. 2.3 Simple spring-mass-dashpot system

The displacement y, as a function of time can be studied by means of model study. The

well known equation of motion of the mass can be represented as:

—+c-dl+ky=0 (2.3)
along with initial conditions of y =y, and % =y, att=0
'3

If we now introduce two dimensionless parameters

y*:-L and t*=£ where 2'=\/E
Y, T k

2

d’y* c dy*

Eqgn (2.3) can be written as +
an (2-3) dt*  \Imk dt*

+y*=0 (2.4)

Y
Subsequently, the initial condition becomes y*=1 and Zy = h\/% . From Eqn (2.4),

r* oy,

it is noted that for any two systems governed by an equation of this form, the solution for
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. . . C c v ,m v m
y* will be the same, ie. y*=y * if =—2— Then—% |— =2 [—/— =>
Nmk  \m,k, Yo VE Yo VK,

t\/z =t, L where subscript mrefers to the model. The last condition specifies the
m \/ m,,

time scale of the problem which can also be converted into pi number, ie., 7= tw/—
m

which is dimensionless.

It is clear that, if the characteristic equation(s) are known for the system, the
procedure described above can be systematically followed to establish necessary
relationships between the prototype and model. However in many problems, the
characteristic equations are more complicated or even unknown and therefore this

method cannot be readily used [6].

2.3.2.3 Parameter Approach

In any problem, there are usually several variables, x,,x,, x; .. x,, required to
describe the physical phenomenon of interest. A number of dimensionless quantities can

ny ny e

be formed by combining the variables of the form x", x,”, x,”. x where
exponentsn,, n,, ny..p, are selected so that the resulting product is dimensionless.
Thus, if we assume one of the variables, say x, has the basic dimension x, =L" T M<

the product can be expressed as(L" T*' M) (L*T” M) ... L*T* M*)™. In
order to have the product dimensionless, the exponents of the various basic dimensions
must combine to give zero value for each basic dimension. Thus

an, +a, o +an, =
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bn +bn, +.......... +bn, =0 (2.5)
Cy ol +cn, =
There will be as many equations as the number of basic dimensions, say m, and k
unknownn's , where k is equal to the number of original variables in the problem. From

the theory of equations, it is known that k —r linearly independent solution to Eqn’s

(2.5) exists where r , is the rank of the matrix of coefficients

a a, . . a
b b, . . b
G ¢ . . G

The matrix is commonly called dimensional matrix. Since the rank of a matrix is the
highest order of non-zero determinant contained in the matrix, it is apparent that the rank
cannot exceed the number of equations but may be smaller. Thus, the number of
independent dimensionless products that can be formed is equal tok —r. Such a set of
dimensionless products is called a complete set. Once a complete set of dimensionless
products are found, all other possible dimensionless combinations can be formed as
products contained in the complete set. Thus Buckingham Pi Theorem can be stated as
follows:

If an equation involving k variables is dimensionally homogeneous,

q, = [(GysGgsereeevmn q.) (2.6)
it can be reduced to a relationship among k —r independent dimensionless products,
7= () Ty T._,) 2.7

where r is the rank of the dimensional matrix [6].
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2.4 TYPES OF MODELS BASED ON SIMILARITY CONDITIONS

Based on the similarity conditions models can be classified as:

a) Completely similar models b) Dissimilar or relaxed models.

2.4.1 Completely Similar Models

Complete similarity between two systems exists if the values of all corresponding
7 -factors for prototype and model are equal. Complete similarity stated above does not
necessarily require geometric similarity. Two systems may appear different in shape and
size, yet may be completely similar. Complete similarity thus requires, according to the

condition stated above, that
(ﬂl)prototype = (ﬂl)model (28)
and (ﬂi)pmwpe = (7;) tmodel i=2,3.4,..... k—-r) 2.9

These conditions are also called as model design parameters [2].

2.4.1.1 Steps in Complete Similarity Modeling

To be able to model a given prototype system, each of the characteristics must be
symbolized as a characteristic variable, which together with other variables, may be
subjected to Dimensional Analysis. Next, the practical decisions have to be made with
regard to model size, model material, model time, manufacturing, assembly and other
issues. They are mainly dictated by the facilities and the resources available for model
making and testing, such as available space, commercially available size and shapes of
materials, power supplies, instrumentation etc. On the basis of these decisions the most

suitable scaling factor values for all the variables involved may then be found.
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To maintain the complete similarity, the modeling procedure may be confined to
the following steps that will lead to scaling factor values, on which the model design may
then be based [2]:

1) List all relevant variables involved in the physical problem.
2) Establish by Dimensional Analysis all 7 -factors.
3) List the given values and/or ranges of prototype variables.

4) Establish the scaling factors for all variables from the condition

(7)) wospe = (71 mae (=1,2,34,... dk—7)

2.4.1.2 Derivation of Scale Factors for Dynamic Analysis using
Dimensional Analysis

The first step in the analysis is to list down all the relevant variables and their
basic dimensions involved by neglecting the effect of Poisons ratio. These variables are
tabulated in table 2.1.

Table 2.1 Dimensions of Measured Quantities for Dynamic Analysis

SYMBOL MEASURED QUANTITY DIMENSION

l Characteristic Length L

P Density ML

E Modulus of Elasticity ML T2

t Characteristic Time T

w Characteristic Frequency T!

o Stresses ML'T?
F Force MLT?

a Characteristic Acceleration LT

c Damping Coefficient MT™

To proceed with Dimensional analysis we form the product
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"o E t @™o F"a®c® (2.10)
Substituting the basic dimension for each variable we obtain
(L)*(ML®)® (ML'T?)® (T)* (T')™* (ML'T?)* (MLT?)* (LT*)* (MT" )
Equating the exponent of the basic dimensions (M, L and T) to zero, we may have the
following equations:
M: O0+x,+x+0+0+x +x, +0+x, =0
L: x-3x-x+0+0-x,+x,+x,+0=0 (2.11)
T: 0+0-2x, +x, —x; =2x, —2x, =2x; —x, =0

The dimensional matrix is

| 1 Y E 1 0, o F a c
M 0 1 1 0 0 1 I 0 1
L 1 3 -1 0 0 -1 1 1 0
T 0 0 -2 1 -1 -2 -2 -2 -1

1 0 1
1 1 0 =1
2 2 -1

Since this is nonzero, it follows that the rank of the dimensional matrix is three and
according to Buckingham’s theorem there are 9 — 3 = 6 dimensionless products required
to describe the problem.

To find the suitable set of dimensionless products called “Pi-Numbers”, suitably

chosen three parameters such as x,, x, and x, are expressed in term of x,, x;, X, X;, Xg

and x, as
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X =—2x, — 2x, —4x;, — x3 —=3x,
X, = — X3 — Xg — X7 — Xy (2.12)
X, = 2%, + x5 +2x5 +2x;, +2x5 + X,

Substituting these values of x;, x, and x, from Eqn (2.12) in Eqn (2.10) we get

] (2% = 2% ~43 = ¥ ~3x) p(—x3 s =g~ ) Fr (2 s #2542 428 4) (0¥ pXe [N % 2.13)

Combining the similar powers in above equation we obtain

2\ 2 *s 2 \*7 2 X3 X9
Etz (tw)xs t 02' FI4 t"a IC3 (214)
pl pl pl l pl

To have one set of dimensionless numbers x;,x;, x4, X,,%; and x,are assumed to be one

which leads to six dimensionless numbers as follows

EZ 2 F2 t2
2=t m=to, m =2 =t g =L and =S (2.15)
pl pl pl l pl

It is apparent that the specific form of the pi terms depends on which of the “x's” are
assigned values and the values themselves. However, it should be emphasized that, once
an independent set is determined, all other possible independent set can be formed as
product of powers of the original set.

Modeling or scaling laws can now be readily developed by applying similarity
condition on these pi numbers. To have the similarity between the prototype and model, it

is assumed that both these systems are described by equations

oIt 75,5 703, 74 5 75y, g, ) = 0 (Prototype) (2.10)

T T s T s Ty s T s s gy ) = 0 (Model) 2.17)
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We further assume that the specific phenomenon under consideration is the same for the

prototype and model. The function, f,, for the prototype is the same as the function, f,,

for the model. Considering this, it can be concluded that:

Ty =MWy Ty = My Wy = Mas Ty, =Wy s Bsy = sy s and 77¢, = 7, (2.18)

Now the scale factors can be extracted (assuming different material for the prototype and

model) as follows:

1)

2)

3)

AA
= A= ’ﬂz”
:>/1w:—1—

ﬂt

vk
=>4, = ;2’
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(2.21)



4) Typ =

4 2 4
2B
m m pm tp t

5) T =

N (LJ_JZ - (l_,,] (“_mJ =, =ik (2.23)

The characteristic acceleration should be same for both model and prototype.
However since prototype and model will be tested in the same environment, the
gravitational acceleration cannot be changed due to practical reasons we are forced to

have A, =1. Consequently Eqn (2.23) can further be reduced to

A=A (2.24)
6) Zop = Tom
INETAREE?:
pl’), \pl’),
1Y A
N I
cm m m P t

By substituting time scale factor from Eqn (2.24) in Eqn’s (2.19, 2.20, 2.21, 2.22, and

2.25) scaling laws can be written as:
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1)
T R
VA
iii. A, =44 (2.26)
iv. A= /113/1/,
v. A =A%A,

2.4.2 Relaxed or Distorted or Dissimilar Models

Often situations are encountered where it is impractical, if not impossible to
maintain complete similarity. Particularly in dealing with dynamic analysis it becomes
impractical to satisfy all the design conditions with only one length scale factor, which is
not unity. Due to lack of availability of materials, or unavailability of specified dimension
of members, it becomes necessary to adopt two or more different length scales and this

leads to distortion of geometry, where we neglect some weak laws [5].

2.4.2.1 Need of Relaxation

Correct scaling becomes cumbersome when more than one principal pi-numbers
are involved in a scaling problem. For instance, consider a case of dynamic analysis,
which proved to have six pi-numbers and yield the scale factor relations written in Eqn
(2.26). The primary scale factors A,,A4,,4, can be chosen arbitrarily. From a

mathematical point of view; it would require to adapt three material properties to the

three given scale factor products.
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For instance, if we decide to use the same material for both model and prototype

then A, =4, =1 and consequently 4, =4, =1, a condition that denies scaling altogether.

Even with dissimilar materials, the scaling law relating modulus of elasticity and

densities A, =44, is very difficult to achieve. If the modulus of elasticity of the model
material is same as the prototype material, the model material density must be A, times

the prototype material density. For any reasonable value of/,, the model density

requirement is impossible to satisfy because of material unavailability. Hence it is not

possible to maintain complete similarity as 7, , # 7,,, .

Fortunately, conflicting problems associated with scale factors can be resolved by
relaxation, a single word meaning the resolution of scaling conflicts by using prior
knowledge of the phenomena to be scaled. Relaxations might consist, for instance, of
studiously neglecting less important laws, or of infusing experiment with analytical
knowledge, or even of dividing the whole phenomena into smaller, manageable parts.

Relaxation is rather an art than a formal process. Each problem must be diagnosed
separately and there are only some general rules. In history of scaled modeling, a number
of relaxation methods have been evolved, not systematically but in rather diverse ways
geared to specific problems. These principles are summarized in Fig. 2.4. The relaxations

applicable to dynamic analysis has been discussed in detail [5].
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2.5 Identifying Weak Laws

As a first step of relaxation, it is helpful to determine whether the laws causing
scaling conflicts are governing the given system with equal or unequal strength. If they
govern it with unequal strength, the weakest law can perhaps be disregarded within
segments of the investigation if not throughout its entire range. If their influences are
equally strong, none can be neglected outright, but correct results may still be obtained by
skillful circumvention of the most disturbing laws.

When the effect of governing law’s on total performance is uncertain, tests with a
pilot model may supply missing information. Suppose that three laws are known to
govern a phenomenon; of the three, two are strong, but the third is allegedly weak. Three
principal pi-numbers can be formulated, with one representing the weak law. In the pilot
model tests, the “weak” pi-numbers will be revealed as weak or strong by checking its
effect on the similarity between model and prototype results. Figure 2.5 shows
hypothetical test to check the effect of 7z, on the phenomena by plotting 7, versusz,,
with constant7z,. If the tests produce curve (1), we conclude that 7, exerts strong
influence; if they produce curve (2), a weak influence; if they produce curve (3), we
conclude that 77, exerts a strong influence at low 7, - values but a weak influence at high
7, - values [5].

LARE (3o FTHUMG BFFECTOF 08y

o+ CONSTANT 77,

CARE 21 o WERAK EFFELY OF T‘\",

g

CAREE (B - NOMED EFFECT OF Ty

Ty

Fig. 2.5 Three Hypothetical Effects of 7z, on 7, [5]
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2.5.1 Disregarding Weak Laws

The technique of disregarding the weak law is perhaps the most common of all
the relaxation methods. In most of vibrating structures, gravity exerts insignificant
influence on the natural frequency that the law of gravitation need not be considered [5].

If the gravity effect is neglected then the scaling conflict in dynamic analysis can
be easily resolved as follows:

ACA

If we do not maintain A4, =1 in Eqn (2.23) , then from Eqn (2.19) we have Ap = —i—z’i

t

and from Eqn (2.20) we have A, = —/%— . Now substituting A, = % in Eqn (2.19) we have

t @

Ar = A AR,

"o

1 ,/1
A, =— |7 2.27
A4, (227)

Therefore time scale factor from Eqn (2.20) becomes

from this we can re-write frequency scale factor A4, as

)”p
A =7 71._ (2.28)
E

Substituting this new time scale factor into Eqn (2.21), the new stress factor can be
obtained as:

A, = A, (2.29)
Substituting Eqn (2.28) in Eqn (2.22) provides new force scale factor as

A =AM, (230)
Now substituting Eqn (2.28) in Eqn (2.23) results in the following acceleration factor

which is not unity as:
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£ (2.31)

Finally substitution of Eqn (2.28) into Eqn (2.25) results in the modified damping scale
factoras A, = A A, (2.32)

To summarize when the gravity effects are neglected, the scaling laws for dynamic

analysis can be written as:

i
A=A (Iﬂ-
E

i 4 =L |te
ANA4,
i A=A, (2.33)
iv. A=A,
v. A, = A,
a AE

vii A=A

2.5.2 Self-modeling tests

In self modeling, the prototype itself becomes the model; here the length scale
factor is clearly unity and the materials are the same because model and prototype are the
same. Any quantity other than length and material properties, however, can be changed in

accordance with the ruling pi-numbers.
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Self-modeling experiments are frequently used in fundamental heat and mass
transfer experiments to clarify the influences of certain laws whose parameters can be

varied without affecting the length and material properties [5].

2.5.3 Sequential Modeling

Sequential modeling plays a major role when one phase follows another. In
modeling automobile crashes, for instance, the crash phase can be clearly distinguished
from the post-crash phase. During the crash phase, which usually lasts only for a fraction
of a second, tire friction forces are negligibly small compared to the large inertial forces
of the impacting cars. Hence, the crash phase is governed by inertial forces and by energy
dissipation in partially elastic and imperfectly smooth bodies. Tire friction forces do not
come into play until the beginning of the post-crash phase, which may last for several
seconds. But then energy dissipation due to impact need no longer be modeled. Thus,
dividing the whole phenomenon into two sequential phases greatly relaxes the modeling

requirements [5].

2.5.4 Regional Modeling

If a phenomenon can be treated as an assembly of separate regions, each governed
by its own set of laws, it can be modeled regionally.

An example of regional modeling in the field of mechanical engineering is the
dynamic response of a wheeled vehicle traversing undulating terrain. In a slowly moving
off-road vehicle, vibrations are confined to frequencies between 1 and 10 Hz. At these
low frequencies, sprung and unsprung masses behave like rigid bodies; consequently,

those masses are subjected only to Newton's laws of inertia and gravitation. Furthermore,
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all springs having negligibly small mass follow only Hooke's law of elasticity, and all
shock absorbers having negligibly small mass also follow only the law of viscous
friction. Hence, the whole vehicle can be partitioned into separate regions where different

laws apply. Under these circumstances, modeling is considerably relaxed [5].

2.5.5 Directional Modeling

When governing laws work in distinct directions instead of distinct regions,
directional modeling can relieve stringent scaling requirements. For example, if the
turbulent flow in rivers and estuaries were faithfully scaled in horizontal dimensions as
well as in depth, river models would be so shallow that turbulent flow would be
suppressed and unwanted surface tension would be exaggerated. With directional
modeling, the depths of river and estuary models are very often disproportionally
magnified or "intentionally distorted" geometrically for the following reasons: fully
turbulent flow in a sloped channel is governed by Newton's law of inertia and the law of
gravitation; but the inertial forces act predominantly in a horizontal direction, while the

gravitational forces act in a vertical direction [S].

2.5.6 Circumventing Strong Laws

If none of the conflicting laws can be disregarded, we must abandon the idea of
modeling the whole phenomenon faithfully. Instead, we can try to circumvent the most

troubling law by anyone of the following devices [5].

49



2.5.7 Restrictions in Generality

The phenomenon is broken up in a number of special cases, each governed by
fewer laws than the entire phenomenon. If enough special cases are investigated, and if
they are all relatively independent of each other, an approximation of the total
phenomenon can be obtained by superimposing results of the special cases
As an example, consider a ship in a severe storm at sea, a phenomenon sufficiently
complex to warrant modeling special cases. Since the ship is operating in two distinctly
different environments (water and wind), we may test two special cases: the ship in still
water but exposed to wind forces, and the ship in still air but exposed to water forces.
Another special case that can be investigated independently of water and wind resistance
is the hull's structural response to wave impact. Each of these special cases allows more

scaling freedom than is allowed by the phenomenon in its entirety [35].

2.5.8 Law Simulation

Sometimes a disturbing but indispensable law can be substituted by a device that
would simulate the desired effects and bypass the undesirable ones. Of the many
possibilities, three are most frequently employed: dummy weight, transition fixing and

dummy springs [5].

2.5.9 Dummy Weights

One of the most practical approaches used in dynamic modeling of reinforced
concrete structures is to augment the density of the structurally effective model material

with high density material which is structurally not effective but permits the fulfillment

of the similitude requirement A, = 4,4, without violating the gravity effects. Practically,
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this requires addition of suitably distributed weights which are attached to the structural
elements in a manner that does not change the strength and stiffness characteristics. Since
addition of weights alters the local stress histories close to attachment points, such
models are not true models but provide satisfactory results. This is done with a series of
equally and closely spaced dummy weights attached rigidly to the model structure. Now
each section of the structure, with extra weight, can be considered to possess a density of

Pn = Pom AA_T'— (2.34)

where p_ is the real density of model structure, Am' is the mass of dummy weight and

om

Av' is the volume per dummy weight. Thus, the original restricting length scale factor
relation that is A, = 44, = 4, = 4, /A, becomes more flexible [5],
A'E t t
A, === (p,, + Am'[AV') (2.35)
D

For instance, for 1:4 scale model using prototype material (4, =4, =1), the density will

have to be increased by a factor of three.
Using dummy mass we can use previous derived scaling laws in Eqn (2.26)
without violating gravity. Thus the scale factors in Eqn (2.26) are true and practically

feasible with dummy mass simulation.

2.5.10 Dummy Spring

For modeling wind-induced vibrations of large elastic structures such as aircraft
or suspension bridges, testing components rather than the entire model is often justifiable.

The component must be scaled in shape and mass but it can be rigid and it must be
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supported by springs that would simulate the elastic interaction of the component with

the rest of the structure [5].

2.5.11 Temporally Integrated Effects

If instantaneous data at a specific time are not needed --that is, if only the
aggregate results of a phenomenon are to be modeled, we can find other means of
relaxation. The scaling of cumulative effects depends very much on the given
phenomenon. For instance, consider one model study focused on the kinematics of two
cars after impact. During the collision, the cars exchange momentum so that, at the end of
the crash phase when the cars separate and start following their own trajectories, each car
is provided with a new set of velocities. These velocities, our sole interest, are fixed by
the total momentum exchanged during the crash phase; therefore, we are not interested in
the history of momentum exchange but only in the end result - the new set of car
velocities. Consequently, only the end effect of the impact phase (the end momentum of
each car) need be scaled. The same philosophy can be used for modeling the effects of
explosions. The time history of the explosion itself is of no concern if the following

events are slow. Thus, only the total amount of explosive energy requires to be modeled

[5].

2.5.12 Use of Analytical Knowledge

Scale model experiments are usually performed when analytical knowledge is
lacking. However, when at least some analytical knowledge is available, it should be
applied, depending on the given problem. The most violent impact suffered by a ship at

sea is probably the heavy blow taken when the bow re-enters the water. After structural
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failure was experienced by an aircraft carrier in rough seas, model tests were conducted
to study the vibratory response of the carrier to wave impact loads. The ship's behavior
was assumed to be governed by inertial forces of the ship and the water (Newton's law of
inertia), by the weight of the ship and the water (law of gravitation), and the elastic forces
of the ship (Hooke's law of elasticity). Since propulsion was of no immediate interest,
resistance due to fluid friction was neglected. The three governing laws were transformed
into the following principal pi-numbers and model rules.

Newton’s law of Inertia

F 2ma 3 » Ne = I; >
L plev
2
m=pl® aAvT
Law of Gravitation
F=mg 4 p 7T, = F 3
pgl
Hooke’s Law of Elasticity — o=~Ee¢
F2ol? v > 7T, = F2
Eel

Froude Number
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~
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Hence, the length scale factor depends on the model's and prototype's material properties.
Since model tests are usually performed in water, p, =p,. The density, o, however,
being a representative quantity, stands not only for the density of water but also for the
density of the ship's structure. The ship model was therefore to be constructed from a

material of the density of steel but with a modulus, E, , vastly smaller than that of steel
(E, / E, =1,/1,). Such a material did not exist. It was therefore decided to restrict the

model study to bending vibrations. Then analytical knowledge could be infused by

expressing Hooke's law as follows:

d’y . EI FI?
2 > e e
dl ! EI

From M =EI

And the Cauchy number would assume the special form of

4 2
Ca=£=l pv
Ne El

With this new Cauchy number, the length scale factor could be selected independent of

material properties. For the same material for model and prototype, for instance,

v 2 I (1] *
Ca | 2| =2
T\, 1,1,

2
Fr » | L =2
vm lm

The selected length scale factor was 136. Therefore, a model had to be built, of the same

material as that of the prototype, whose area moment of inertia was 136° times smaller
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than that of the prototype. Such a model was built by composing the hull of nine
segments, all joined by a continuous beam to allow flexures. The area moment, I, of the

prototype was calculated in a separate computer study. The model's beam was varied to

make it conform to the model rule of 7, = Ip/1365 [5].

2.5.13 Use of the Same Material

Nature rarely provides the materials with the properties needed for scale
modeling, and to synthesize materials having specified properties is a difficult task.

In most cases, attempts to scale material properties end in frustration. The
isotropic Hookean solid, a seemingly easy material to scale, cannot be scaled at all if both
its constitutive properties, Young's modulus, E , and Poisson's ratio, v, must be observed,

as shown below:

For isotropic, homogeneous, energy-conservative materials, Hooke's law results

in the two representative relations of €20/E and e£2vo/E. It is obvious that
geometrical similarity between model and prototype (i.e., £, =€, ) can be satisfied only
if either the same material is used so that E, = E, and v, =0,,; or different materials

are used with different moduli of elasticity but still the same Poisson's ratio so that

o, /Ep =0,/E, and v, =v,. These requirements again suggest use of the same

material for model and prototype.
The condition of "same material" can be relaxed only if transverse deformations

are disregarded. Then the influence of Poisson's ratio becomes less significant, a change

that leaves only the requirement of o, / E,=0,/E, and permits the use of different

materials for model and prototype. Neglecting Poisson's ratio is an important relaxation
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in almost all structural problems. Most material constants are not real constants but
complex functions of many variables. Hence, even if we use the same material in both the
model and the prototype, we cannot ensure identical response of the material unless all
participating variables in the constitutive relation of the material have the scale factor of

unity [5].

2.6 VALIDATION OF SCALING LAWS ON SIMPLE STRUCTURES

Finite element analysis has been carried out using ANSYS on prototype and 1/2
scale model of a simple cantilever beam with rectangular cross section for the validation
of scaling laws. The response obtained from the ¥2 scale model using ANSYS 7.1 is used
to predict the response of the full scale prototype by using scaling laws. The results are
compared with the response obtained for the full scale prototype again using ANSYS 7.1
to validate the scaling laws. Dynamic scaling laws have been verified for the following

relaxations:

2.6.1 Neglecting Gravity Effects

BEAM3 ANSYS element has been used for the analysis which is a uniaxial
element with tension, compression, and bending capabilities. The element has three
degrees of freedom at each node: translations in the nodal x and y directions and rotation
about the nodal z-axis. The x-degrees of freedom have been restrained to have pure
bending modes in the analysis.

The cantilever beam for both model and prototype has been meshed with 40

BEAM3 elements as shown in Fig. 2.6.
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Fig. 2.6 Cantilever Beam Meshed with 40 BEAM3 Elements

The parameters used for the prototype and its %2 scale model is summarized in

Table 2.2 below

Table 2.2 Parameters used for Prototype and Model Beam

PARAMETERS Prototype 12 Scale Model
Length of Beam L,=1000 mm L =500 mm
Material Used 1018-Steel 6061-T6 Aluminium
for Beam
Modulus of E,=2.05¢"" N/m? E, =69¢° N/m’
Elasticity i "
Density 0,=1870 kg/m’ p,,=2700 kg/m’

Poisson’s Ratio

v,=0.29

v, =0.33

Cross Section

—38.17 mm—-+1

1
6.38 mm
L

F—19.085 mm——

T
319 mm
4
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Considering  the  parameters given in  Table 2.2, scale  factors

A, =2, Ay =2.97101449, /1p =2.91481481can be easily obtained. Now other scale

factors for dynamic analysis when the gravity effects are neglected can be calculated as:

2
A =4 /E& = 1.9809937009
E

1
A, =—.|=% =0.5047971629

A, =Ay =2.971014490

Ap =A°A, =11.884057970

A, =—% =1.9621680210

2.6.1.1 Modal Analysis

Modal analysis is first performed to find out the natural frequencies which are the
primary requirement in dynamic analysis. Using %2 scale model of the beam the
fundamental natural frequency has been found to be 10.42 Hz. To predict the
fundamental natural frequency of the full scale prototype from fundamental frequency of
the scaled model using scaling laws, we have

Predicted Natural Frequency of Prototype = A, X Natural Frequency of Model

0.5047971629X10.42

5.259986 Hz.
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To verify this, full scale prototype has also been modeled in ANSYS 7.1 and fundamental
frequency of 5.26 Hz has been found out. Therefore, it can be realized that the predicted
natural frequency using scaling law perfectly agrees with the natural frequency obtained
from using full scale prototype beam parameters.

Table 2.3 summarizes first ten natural frequencies of the cantilever beam under
consideration and it shows good correlation between the analytical and predicted natural
frequencies exists, thus validating the frequency scale factor. Corresponding mode shapes
are also shown in the last column of the Table 2.3. These mode shapes have been found

to be are identical prototype and its ¥z scale model for the corresponding frequencies.
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2.6.1.2 Harmonic Analysis:

Base excitation is applied at the clamped end of the beam in Y direction and the response
is also observed in Y direction near the free end. The input is applied as different amplitude
ranges in different frequency bands. The input for harmonic testing is known for prototype and is
given in Table 2.4

Table 2.4 Harmonic Input for Prototype

Frequency Range (Hz) ), Amplitude in (mm)J, No of Sub-steps
Oto 15 0.762 150
15to 25 0.508 100
25to 33 0.254 80
33 to 40 0.127 70
40 to 50 0.0762 100

It is noted that for testing a scaled model, the above harmonic input has also to be scaled
according to scaling laws. For the model, the harmonic input is scaled both for the frequency

ranges and the corresponding amplitudes and is shown in Table 2.5

Table 2.5 Scaled Harmonic Input for Model

Frequency Range (Hz)

Amplitude in (mm)

No of Sub-steps

w, = a)p//?,w 0, = 5[,/&1
0 to 29.71 0.381 150
29.71 t0 49.52 0.254 100
49.52 to 65.37 0.127 80
65.37 to 79.23 0.0635 70
79.23 t0 99.04 0.0381 100

The amplitude response has been obtained for both model and prototype using ANSYS 7.1 is

plotted in Fig. 2.7 and 2.8 respectively. Constant damping ratio of 0.02 has been assumed for

harmonic analysis in both model and prototype.
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Fig. 2.7 Amplitude Response for %2 Scale Model Beam Under Harmonic Excitation
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Now in Fig 2.7, the frequency of excitation of the model along the x-axis is expanded by A, and
the amplitude response along y-axis is expanded by /4, to obtain the predicted response of

prototype. The Predicted response using model and response obtained from prototype is plotted

in Fig. 2.9.

~%— Prototype Response From ANSYS —«— Predicted Response Using Model

25 -
Response
Observed
20 | w“n
lnputin UY
15 Direction

Amplitude (mm)
o

0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz.)

Fig. 2.9 Amplitude Response to Harmonic Excitation (Analytical & Predicted Response
Using Model)

The maximum amplitude obtained for ¥2 scale model is 11.6178 mm. To predict the maximum

response amplitude of prototype we have

Predicted Amplitude of Prototype A, X Amplitude of Model

2x11.6178

23.2356 mm.

It is shown in Fig. 2.8 for the full scale prototype the maximum amplitude is 23.1732 mm.
Therefore, the predicted response using scaling law is in excellent agreement with the response

obtained from full scale prototype beam parameters.
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The maximum stresses developed for model and prototype are shown in Fig. 2.10 and 2.11.

NODATL SOLUTION 4 ul

STEP=1

8UB =53
FREG=10.458
SEQV (AVG)
DMX =.004586
SMN. =1448

SMX =.756E+07

1448 .168E+07 .336E+Q7 »504E+07 . 672E+07
841032 .252E+Q7 -420B+07 -S88E+07 .7SEE+07

Fig. 2.10 Maximum Stresses (N /m*) Developed During Harmonic in Excitation in %2 Scale Model

NODAL SOLUTION AN

STEP=1

SUB =53
FREQ=5.3

JEQV (AVG)
DMX =.009342
SMN =4372

SMX =.ZZB8E+08

4372 . S08E+07 . 102E+08 _15ZE+08 .203E+08
.254E+07 .762E+07 1278408 .178E+08 .228E+08

Fig. 2.11 Maximum Stresses ( N/m”) Developed During Harmonic in Excitation Prototype
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Maximum stress developed during Harmonic Excitation for %2 scale model is 7.56x10° Pa. To
predict the maximum response stress of prototype we have

Predicted Stress in Prototype = A, x Stress in Model

2.9710144902 x 7.56x10°

2.246x10" Pa.

Conducting the harmonic analysis with full scale parameters, the maximum stress amplitude has

been found to be 2.28x10" Pa which is in good agreement with the predicted stress in prototype.

The error is less than 1.4% which is mainly due to rounding off of the values.

2.6.1.3 Transient Analysis

For transient analysis, the free end of the beam is impacted with an impulse and the
response is taken at the location near the point of impact. Since an ideal impulse excites all the
modes of a structure, the response of the beam should contain all the natural frequencies.
However, we cannot produce an ideal impulse force numerically. We have to apply a load over a

discrete amount of time dt as shown in Fig. 2.12.

Fo

F(Y
‘ Impulse Force

AN AN

T T T T T
_.,_l dt I<_

Fig. 2.12 Rectangular Impulse for Transient Analysis
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The parameters for a rectangular pulse to have a impulse of 0.1 N.s on the prototype are

(F,), =100N and (dr), =0.001sec. For testing a 2 scale model these parameters are scaled

according to force and time scale factors as

F
(F),= S 100 = 8.41463414N
Ar 11.884057970
dt
(an,, = @, _ 0.001 = 5.04797162908 ¢ * sec.

A 1.9809937009

13
Stiffness proportional damping is used for transient analysis. A damping ratio of 0.1 is

considered in the first mode. In general, the mass and the stiffness proportional damping constant

is expressed as {;, = 2_05__ + P, . Since we have only stiffness proportional damping, {; = Sw;. For
,

3

prototype we have({)), = B,(@,),. Therefore for 0.1 damping ratio in first mode, we
have 8, = 0.0060507 . Similarly for %2 scale model stiffness proportional damping constant is
calculated as, (¢)),, = B, (®,),, which gives 8, =0.003054376 .

The amplitude response obtained from model and prototype is shown in Fig. 2.13 and

2.14, respectively.

66



{mm}

Aamplitude

Amplitude (mm)

Maximaum Araplitade = 225453 mun

i

Response in UY

TImpulse in UY

(x10*#*-1}

.52 3
.76 2.28

.04
3.8
Time

.08 7.6
.84

(Sec.)

Fig. 2.13 Amplitude Response for ¥2 Scale Model Beam Under Impulse Excitation
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Fig. 2.14 Amplitude Response for Prototype Beam Under Impulse Excitation
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Time for the model along the x-axis is expanded by A, and the amplitude response along the y-
axis is expanded by A, to obtain the predicted response of prototype. The predicted response

using model and the obtained prototype response are plotted in Fig. 2.15

—6— Prototype (ANSYS) ~-m Predicted Response of Prototype Using Model

4 . Response in UY
37 Fo
E Iinpulse in UY
L
E
2
g
<
-4
-0.1 0.1 0.3 0.5 0.7 0.9 1.1 13 1.5

Time (Seconds)

Fig. 2.15 Amplitude Response for Impulse Excitation (Analytical & Predicted Response
Using Model)

The maximum amplitude obtained for Y2 scale model is 2.25453 mm. To predict the maximum

amplitude of prototype we have

Predicted Amplitude of Prototype A, x Amplitude of Model

2x2.25453

4.50906 mm.

The harmonic analysis of the full scale prototype provides the maximum amplitude of 4.50906

mm which agrees very well with the predicted amplitude.
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2.6.2 Using Dummy Masses to Avoid Violating Gravity Effects

a) Calculation of Length Scale Factor A,

If a series of equally and closely spaced dummy weights are attached rigidly to the model

structure, each section of the structure, with extra weight, can be considered to possess a density

of p, =,00m+A—m7. Thus, the original restricting length scale factor relation given by

Ag =i, >4 =2 [h, > 4 = A—E(pom + Am'/Av') becomes more flexible.
D

P

If aluminum dummy weights are used we get

205¢"

, =—————(2700+2700)=2.038561405
69¢° %7870

= 4 =2.038561405

The scaled parameters used for the 1/2.038561405 scale model is summarized in Table

2.6 below:
Table 2.6 Parameters used for Model Beam with Dummy Masses
PARAMETERS 1/2.038561405 Scale Model
Length of Beam L =490.54500552 mm
Material Used for Beam 6061-T6 Aluminium
Modulus of Elasticity E, =69¢° N/m’
Original Density 0,,=2700 ke/m’
Poisson’s Ratio v, =0.29
—18.723988 mm—
Cross Section _{3 129657 mm
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Scale Factors known are 4, = 2.038561405,4; =2.97101449,4, =1.45707 . Therefore other scale

factors for dynamic analysis when dummy masses are used can be calculated as:

A=A = 1.42778198
Ay =—\/-1/1—— = 07003870398
(
Ay = A = 2.97032666
Ar =42, = 12.3438833659
yl =1

)

b) Dummy Mass Calculation

For a line element such as beam, the amount of mass g, to be added per unit length is given by

[47]:
b=l —1xp, A (2.36)
1 lEll ],pﬂlz p*p .

9 2
fy = [y _2700( 1 ) 1x38.17%6.38x10° X 7870
205¢° X 2038561405 7870\ 2.038561405

4,=0.158219135589 kg/m where u, is define as

_ Mass

1

(2.37)

X Number of Dummy Masses

m

If Number of Dummy Masses Used = 41 Then mass to be added is

Mass =0.158219135589 XO’490241200552 = 0.001893 kg
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BEAM3 ANSYS 7.1 element has been used to model the beam.

For Dummy masses, MASS21 element has been used which a point element, having up
to six degrees of freedom: translations in the nodal x, y, and z directions and rotations about the
nodal x, y, and z axes.

The beam has been meshed with 40 BEAM3 elements and 41 MASS21 elements have

been used as point masses to simulate dummy masses as shown in Fig. 2.16.

Fig. 2.16 Model Clamped Beam Meshed with Beam elements and Dummy Masses

2.6.2.1 Modal Analysis

Modal analysis has been performed to locate the natural frequencies. Using the
1/2.038561405 scale model with dummy masses, the fundamental natural frequency is found to
be 7.4637 Hz. Using the scaling laws the fundamental natural frequency of the full scale
prototype has been predicted as:

Predicted Natural Frequency of Prototype = A, X Natural Frequency of Model

71



0.7003870398x7.4637

5.227479 Hz.

The frequency analysis of the full scale prototype have also been conducted and the fundamental
natural frequency has been found to be 5.26 Hz. Thus the predicted natural frequency using
scaling law agrees with the natural frequency obtained from the full scale prototype beam
parameters.

Table 2.7 summarizes the first ten natural frequencies and demonstrates that good
correlation exists between the analytical and predicted natural  frequencies, validating the
frequency scale factor. Corresponding mode shapes are also shown in the last column of the

Table 2.7 and they were found to be identical for the prototype and its 1/2.038561405 scale

model with dummy masses, for the corresponding natural frequencies.
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2.6.2.2 Harmonic Analysis

Base excitation is applied at the clamped end of the beam in UY direction and the

response is also observed in UY direction near the free end. The input is applied as

different amplitude ranges in different frequency bands as shown in Table 2.4.

For testing a 1/2.038561405 scaled model with dummy masses, this harmonic

input is also scaled according to the scaling laws as shown in Table 2.8.

Table 2.8 Scaled Harmonic Input for Model

Frequency Range (Hz) | Amplitude in (meters) | No of substeps
0to 21.41 0.000374 150
21.41 to 35.69 0.000249 100
35.69 to 47.11 0.000125 80
47.11t0 57.11 6.23E-05 70
57.11t0 71.38 3.74E-05 100

The amplitude response obtained for model using ANSYS 7.1 and is plotted in Fig. 2.17.

Constant damping ratio of 0.02 is used for the harmonic analysis.

12

10.8

Maximum Amplitude = 11.5538 mm

InputinU¥

Direction

Response
Qbsewed {UY)

Amplitude {mm}

kN

14.4 28.8
7.2 21.6 38

Frequenncy (Hz.)

43,

2
50.4

57.¢6 12
64,8

Fig. 2.17 Amplitude Response For Model with Dummy Masses Under Harmonic Excitation
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The frequency axis of the model along the x-axis is expanded by A, and the amplitude
response y-axis is expanded by A, to obtain the predicted response of prototype. The

predicted response using model with dummy masses and response obtained from

prototype are plotted in Fig. 2.18.

r—xe Prototype (ANSYS) —e— Predicted Response of Prototype Using Model i

25 -
Response

20 Observed (UY)
E 5 Inpast in LY
Py Direction
-
2
£ 101
E
<

5 -

0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz.)

Fig. 2.18 Amplitude Response to Harmonic Excitation (Analytical & Predicted
Response Using Model with Dummy Masses)

The maximum amplitude obtained for 1/2.038561405 scale model with dummy masses

is 11.5538 mm. To predict the maximum amplitude of prototype we have

Predicted Amplitude of Prototype A, x Amplitude of Model

2.038561405x11.5538

= 23.5531 mm.
The harmonic analysis of the full scale prototype has also been performed and maximum
amplitude of 23.1732 mm was found confirming the predicted response using model with

dummy masses.
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2.6.2.3 Transient Analysis

For testing a 1/2.038561405 scale model with dummy masses the impulse

parameters are scaled according to force and time scale factors as

F

(F),= o)y _ 100 = 8.10117829N
Ap 12.3438833659
dt

(dr), = (dn, _ 0001 _ 7.0038703 ¢~ sec.

A 1.42778198

1

Stiffness proportional damping is used for transient analysis. In general, the mass and the

. . . . a .
stiffness proportional damping constant is expressed as ¢, = E_+ Pw,. Since we have
(4)

only stiffness proportional damping, ¢, = fw,. For model with dummy masses we
have({,),, =B, (®,), . Therefore for 0.1 damping ratio in first mode, we
have £, = 0.00426422 . The amplitude response obtained for model with dummy masses

is plotted in Fig. 2.19.

Response m UY

1.5 ) 4 Fo
H

H § TImpulse in UY

Amplitude (mm)

0 .25 .5 s 1 1.25
125 .375 .625 .873 1.125
Time (Sec.)

Fig. 2.19 Amplitude Response for Scale Model Beam with Dummy Masses Under
Impulse Excitation
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Again the x-axis which is time axis for the model with dummy masses is
expanded by A and the amplitude response y-axis is expanded by, to obtain the

predicted response of prototype. The predicted response using model and the obtained

prototype response is plotted in Fig. 2.20.

I—o— Prototype (ANSYS) - Predicted Response of Prototype Using Model ’

By, FLesponse in UY

Inpulse in UY

Amplitude (mm)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time (Sec.)

Fig. 2.20 Amplitude Response for Impulse Excitation (Analytical & Predicted
Response Using Model)

The maximum amplitude obtained for the scale model with dummy masses is 2.20043

mm. To predict the maximum amplitude of prototype we have

A, X Amplitude of Model

Predicted Amplitude of Prototype

2.038561405x2.20043

4.85711672 mm.
Performing the transient analysis on full scale prototype, the maximum amplitude has

found to be 4.50906 mm. As it can be seen good agreement exists between the predicted
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amplitude using scaled model with dummy masses and the amplitude of the full scale
prototype.

In the preceding chapter similitude theory has been discussed and scaling laws
have been derived for dynamic analysis of structures. The derived laws are then validated
on a simple beam structure by using ANSYS 7.1 and it has been shown that good
correlation exist between the prototype and the model. In the following chapter, the
scaling laws and simulation results obtained from ANSYS 7.1 are validated by carrying

out experiments on the prototype and the model beam.
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CHAPTER 3

EXPERIMENTAL VERIFICATION OF SCALING LAWS

3.1 INTRODUCTION

It has been analytically shown in the previous chapter that neglecting gravitational
forces have negligible effect in vibrating structures and thus neglecting these forces in
scale modeling is a valid relaxation. In order to verify the simulation and proof-of-
concept of dynamic scaled modeling, as discussed in previous chapter, the prototype of
the cantilever beam and its Y2 scaled model without dummy masses has been
experimentally tested in this chapter.

The prototype beam and its %2 scale model have been fabricated in the Machine
Shop of Concordia University according to the parameters provided in Table 2.2. The
necessary fixtures for the experiment have also been fabricated. An experiment for
finding out the natural frequencies and mode shapes of cantilever prototype beam and its
1 scale model has been performed in order to validate the simulation results in chapter 2.

Dynamic testing typically consists of applying an excitation to the test object and
monitoring the response and monitoring its response. The fundamental test set up for

dynamic testing of an object is shown in Fig. 3.1.

Response And
Test P Operability
Object Monitor

A

Signal Signal - Shaker
Generator Conditioner

A 4

Fig. 3.1 Basic Test Setup in Dynamic Testing [1]
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3.2 FABRICATION OF PROTOTYPE AND MODEL BEAM

The prototype and its ¥2 scaled beam shown in Fig 3.2 were fabricated according to

the specification tabulate Table 2.3.

TEEL PROTOTYPE

Fig. 3.2 Prototype 1018-Steel Beam and its ¥2 Scaled 6061-T6 Aluminium Beam

1018-Steel has been used for the fabrication of effective 1 meter long prototype
beam and 6061-T6 Aluminium has been used for its ¥2 scaled effective 0.5 meter model
beam. Extra length has been provided that was used for clamping the beam at one end for
cantilever boundary condition. Fixture table as shown in Fig. 3.3 has also been designed
and fabricated in order to provided cantilever support and the clearance for the beam to
vibrate freely. Three holes have been drilled to screw the beam with the fixture table.
Measurement lines have been marked on every 100 mm on the prototype beam and on
every 50 mm on the model beam to provide homologous locations for measuring

response.
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Fig. 3.3 Prototype Beam Clamped at One End to Achieve Cantilever Boundary Condition

3.3 EXPERIMENTAL SETUP AND RESULTS

The preliminary impulse hammer tests were performed on prototype and model
beam to verify the natural frequencies with simulation results, and then roving impact test

were performed to verify the mode shapes of prototype and model beam.

3.3.1 Natural Frequency Measurement

In order to verify the simulation results and to validate scaling laws
experimentally, frequency measurement has been conducted on both prototype and its 2
scale model beams with cantilever boundary conditions. A light impulse was applied to
prototype with the impact hammer and the response motion was measured as acceleration
at the free end with the help of an accelerometer as shown in Fig 3.4. The magnitude of
receptence which is acceleration /force FRF was measured using two channels FFT

Signal Analyzer Unit.

82



Accelerometer

Fig. 3.4 Experimental Setup for Vibration Testing of Prototype Beam

The FRF of accelerence/receptence measured for the prototype beam is shown in Fig.

3.5. Examination of Fig. 3.5 reveals that the first three natural frequencies for the

prototype are 5, 33 and 92.25 Hz which are in excellent agreement with those obtained

analytically. The results of the experiment for the prototype and comparison with

simulation are summarized in Table 3.1.

Table 3.1 Prototype Natural Frequencies obtained Experimentally and from Simulation

Nat. Freq.(Hz.) of Full | Nat. Freq.(Hz.) of | Percentage Error in Nat. Freq.
S. No. Scale Prototype Full Scale Prototype Experimental from
(Simulation) (Experiment) Simulation results (%)
1. 5.26 5 5.2
2. 32.962 33 0.1151
3. 92.289 92.25 0.0422
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Fig. 3.5 FRF for Prototype

Since the weight of the accelerometer was found to be considerable for testing of the

model beam, Electro optics Laser Vibrometer was used to measure the response velocity

as shown in Fig. 3.6. Using FFT analyzer, derivative of the response velocity signal was

measured to obtain the Receptence FRF as shown in Fig. 3.7.

Fig. 3.6 Experimental Setup with Laser Vibrometer for Model Beam
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According to Fig. 3.7 the first three natural frequencies of model beam are found to be

10.25, 64.75 and 182 Hz which are again in an excellent agreement with the simulated

results obtained for the model beam. The experimental and simulation results for the first

three natural frequencies are tabulated in Table 3.2.

Table 3.2 Model Natural Frequencies obtained Experimentally and from Simulation

Nat. Freq.(Hz.) of ¥2 | Nat. Freq.(Hz.) of ¥z | Percentage Error in Nat. Freq.
S. No. Scale Model Scale Model Experimental from
(Simulation) (Experiment) Simulation results (%)
1. 10.42 10.25 1.65
. 65.598 64.75 1.309
3. 182.82 182 0.45
5000 -
4000 -
g
Ea 3000 A
g 2000 -
<
1000 -
0 e T S T i 1o WL,) 1
0 50 100 150 200
Frequency (Hz)

Fig. 3.7 FRF for Model

It is observed from this experiment that gravity effects are negligible for these

vibrating structures and can be neglected in dynamic scaling because natural frequency of

prototype predicted using model is found to be the same as the natural frequency
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measured by testing the full scale prototype with a very small marginal error as shown in

Table 3.3. Hence relaxation of neglecting gravity effects is justified.

Table 3.3 Comparison of the Predicted Natural Frequency using Experimental Results of
the Model Beam with Experimental Natural Frequencies for Prototype

Experimental
. Predicted Natural Natural Percentage
Experimental Natural . Error in
Frequency using Frequency of :
S.No. | Frequency of Model |y, g1 Beam(Hz.) Prototype Predicted and
Beam(Hz.) (w,),, A, (@), Beam(Hz.) Simulated Nat.
@), Freq. (%)
1 10.25 5.1741 5 3.482
64.75 32.685 33 0.954
3 182 91.87 92.25 0.411

The marginal percentage errors can be mainly attributed due to the following reasons:

1. The % scaled model is not exactly half in dimension due to manufacturing tolerance
error.

2. The mass of the accelerometer is not accounted while measuring the prototype natural
frequency.

3. The mass of hammer at the instance of the impact is also unaccounted.

4. The clamped boundary condition effects cannot be modeled.

3.3.2 Mode Shape Measurement

In order to verify corresponding mode shapes of prototype and its model beam, an
impact rover test was carried out on the prototype and its 2 scale model beam with
cantilever boundary conditions. The experimental set up and the procedure to obtain
transfer functions is shown in Fig. 3.8. For mode shape measurement, continuous beam

was discretized by taking measurement at 11 different equally spaced locations as shown
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in Fig. 3.8. The imaginary part of FRF was measured on the free end (location 1) when

the impact from hammer was applied at homologous locations (1, 2, 3..., and 11) ie.

after every 100 mm distance for prototype and 50 mm for model as shown in Fig. 3.8.

Hi1
¥ - 4 * —b & —
# 10 9 8 7 5 3 2
H12
[::
& & 4 & & —& 4
0 9 8 7 5 3 2

1

Fig. 3.8 Experimental Set up for Roving Impact Test to Obtain Mode Shape
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There were 11 possible places where impact could be applied and 11 possible places
where the responses could be measured. This means that there are a total of 11x11
possible complex-valued frequency response functions that could have been acquired.
The frequency response functions are usually described with subscripts to denote the

input and output locations as, H (or with respect to typical matrix notation this would

out,in

be h ). At first the beam was driven with a force from an impact hammer at the tip

row,column

of the beam (location 1) and the response was also measured at the same location

enabling to find H,, transfer function. This type of measurement is usually referred to as

a drive point measurement. Some important characteristics of the drive point

measurement are:

e All resonances (peaks) are separated by anti-resonances.

e The phase loses 180 degrees of phase as we pass over a resonance

o The phase gains 180 degrees of phase as we pass over antiresonance.

o The peaks in the imaginary part of the frequency response function must all
point in the same direction.

The imaginary part of FRF of H,, for the prototype beam is shown in Fig. 3.9
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Fig. 3.9 Imaginary part of FRF (H11) for Prototype Beam

Similar measurements were taken by moving the impact force to point 2, 3..., and 11 and
measuring the response at point 1 to obtain one complete row of H transfer function
matrix. It is important to note that the frequency response function matrix is symmetric.

This is due to the fact that the mass, damping and stiffness matrices that describe the

system are symmetric. Hence we can see that h; =h; which is called the property of

reciprocity. It is not required to actually measure all the terms of the frequency response
function matrix later to obtain mode shapes, and only one row or column of the frequency
response function matrix is enough [46]. For prototype the peak imaginary values of FRF
obtained at first three resonant frequencies are tabulated for each H, ; function to obtain
the first three mode shapes as summarized in Table 3.4.

Same procedures were repeated for Y2 scaled model beam and the peak imaginary
values of FRF obtained at first three resonant frequencies are tabulated for each H,;
function to obtain first three mode shapes of model beam as summarized in Table 3.5.

The mode shape is then obtained by plotting each row of Table 3.4 and 3.5

against 11 points (that represents location of impact measurement). The mode shapes

obtained experimentally for model and prototype are shown in Fig. 3.10 which are
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similar to those obtained from simulation in chapter 2. It is seen that both model and

prototype have the same mode shapes for homologous frequency.
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CHAPTER 4

NAVAL SHIPBOARD CONSOLE VIBRATION AND SHOCK
ANALYSIS USING SCALED MODEL

4.1 GENERAL

In the previous chapters the methodology has been developed for dynamic testing
of structures using scaled models. The scaling laws are derived and has been validated
both by carrying out finite element analysis using ANSYS 7.1 and by performing
experiments for a simple structures. In this chapter the methodology has been applied to
the real life structure. This chapter provides the detailed analysis and results of a
thorough study carried out on a real life console for shipboard installation using a half
scaled model. This dynamic analysis on the console was carried out under the specified
shock and vibration levels. The predicted response of prototype from Y2 scale model has

been verified by simulation of full scale prototype.

4.2 DESCRIPTION OF THE SHIPBOARD MONITOR AND CONSOLE

The Naval Shipboard Monitor and Console such as Bridge Control Console
(BCC) shown in Fig. 4.1 and Machinery Control Console (MCC) provides the Man
Machine interface. The main functions of the BCC are to provide the Man Machine
Interface facilities with the capability to control and monitor the propulsion machineries
from the bridge of the ship [42]. The main functions of the MCC are to provide facilities
for one man control and monitoring of the propulsion, ancillary, auxiliary and electrical

machinery on the frigates [43].
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Fig. 4.1 Bridge Control Console Unit

The console under study consisted of three main sections:

1. A base section — where the electronic assemblies for interfacing with internal and
external components of the consoles were housed,

2. A bull nose section — which provides mounting platform for the keyboard operator
interface,

3. A top section — which provides the housing for a CRT based monitor which serves as

the operator interface.
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4.3 SCALING OF SHIPBOARD MONITOR AND CONSOLE

Every equipment, for use in ships, such as shipboard monitor and console, has to
pass variable frequency test and shock test according to the specifications [44, 45].
Instead of testing the full scale prototype it is proposed to test 2 scale model. The
developed scaling laws in Chapter 2 can be used to scale down the prototype into half
size. As it is experimentally verified in Chapter 3 that gravitational effects in this type of
vibrating structures is negligible. Considering this we can neglect the gravitational effects

in scaling procedure and thus the following scaling factors can be employed:

y

i 4=4 /—P
AE
W4 =4 [
A2,

. A, =4,

iv. A, =A%,

L A
ﬂ’E

Since same material is used for %2 scale model (i.e.A, =/1p =1 and 4, =2), the

prototype is scaled according to the following scaling values

A |2
A

1f

ﬂ'F =/11 /1E =
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4.4 FINITE ELEMENT MODELING AND MESHING

The console and the monitor system shown in Fig 4.2 have been modeled using
Beam and Shell elements in ANSYS. The console has been modeled as a box with shell
elements. The monitor has also been modeled as a box with shell elements. Monitor is
made up of shell elements with the total weight being that of the monitor (59.1 kg for
prototype and 7.38 kg for ¥2 scaled model) and with the same size as that of the monitor.

All the edges of the console structure have been modeled using beam elements.

Shell

Fig. 4.2 Part of Bridge Control Console which is modeled for FEM Analysis

The shell part of the structure is meshed using SHELL63 element. This element
has both bending and membrane capabilities and both in-plane and normal loads are
permitted. The element has six degrees of freedom at each node: translations in the nodal
X, ¥, and z directions and rotations about the nodal x, y, and z-axes. The edge of console

is meshed with BEAM189 element which is suitable for analyzing slender to moderately
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stubby/thick beam structures. This element is based on Timoshenko beam theory. Shear
deformation effects are included. BEAM189 is a quadratic (3-node) beam element in 3-D
and has six degrees of freedom per node. These include translations in the x, y, and z
directions and rotations about the x, y, and z directions. Since both the SHELL63 and
BEAM189 elements have same degrees of freedom at each node, they are compatible and
there is no need of writing constraint equations for merging the nodes. Both prototype

and its ¥2 scaled model have been identically meshed with equal number of elements as

shown in Fig. 4.3

Fig. 4.3 FEM Model of Console with CRT Monitor and Beam Cross Section
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4.5 ANALYSIS

Initially the console monitor system is analyzed for its natural frequencies using
the modal analysis option in the ANSYS 7.1. Subsequently, it is analyzed for a harmonic
displacement input at the base. Finally, the system is subjected to a transient input in the
form of an impulse input. The impulse input is in the form of a hammer blow to the base
of the system mounted on an anvil. The frequencies of interest are in the range of 0 — 50
Hz. The total impulse supplied by the hammer through the anvil, is modeled as a
rectangular pulse with force acting through a duration that is calculated using the travel

distance of the hammer, anvil and structure together.

4.5.1 Modal Analysis

Modal analysis is performed initially to determine the natural frequencies and
mode shapes of the structure. The natural frequencies and mode shapes are important
parameters to characterize the structural dynamic behavior. They are also required if
spectrum analysis or a mode superposition harmonic or transient analysis is to be
performed. Several mode extraction methods available in ANSYS 7.1 are: Block Lanczos
(default), subspace, PowerDynamics, reduced, unsymmetric, damped, and QR damped.
The default Block Lanczos modal analysis method has been used for both prototype and
its Y2 scale model. Modal analysis of the Y2 scale model of the structure has been
conducted and the fundamental natural frequency of 112.12 Hz has been identified. To
predict the fundamental natural frequency of the full scale prototype from that of the
scaled model using scaling laws we have:

Predicted Natural Frequency of Prototype = A, X Natural Frequency of Model
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0.5x112.12

56.06 Hz.

Conducting the modal analysis on the full scale prototype has revealed the fundamental
natural frequency of 56.048 Hz which is in excellent agreement with above predicted
frequency.

Table 4.1 summarizes the first 20 natural frequencies of the shipboard console
structure and shows good correlation exists between the analytical and predicted natural

frequencies.

Table 4.1Comparison Between the Predicted Natural Frequencies using Y2 Scale Model

and Natural Frequencies of Full Scale Prototype [ A, = % \/%_—E = 0_5]
0

Nat. Freq. (Hz) of Predicted Nat. Freq. Nat. Freq.(Hz.) of Full
Sr. 1/2 Scale Model (Hz.) of full Scale Scale Prototype
No. ANSYS Prototype ANSYS
(w,)y Ay (@) y (@,)p
1 112.12 56.06 56.048
2 131.9 65.95 65.92
3 138.65 69.325 69.29
4 148.12 74.06 74.021
5 157.19 78.595 78.596
6 158.82 79.41 79.408
7 175.19 87.595 87.594
8 194.02 97.01 97.007
9 198.87 99.435 99.394
10 206.21 103.105 103.04
11 218.38 109.19 109.27
12 220.86 110.43 110.42
13 221.97 110.985 110.96
14 226.63 113.315 113.3
15 247.56 123.78 123.76
16 25491 127.455 127.45
17 260.62 130.31 130.31
18 280.2 140.1 140.05
19 293.26 146.63 146.62
20 310.92 155.46 155.46
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4.5.2 Harmonic Analysis

According to military standard MIL-STD-177-1(SHIPS)[44], the equipment
intended for shipboard application must be capable of withstanding the environmental
vibration conditions which may be encountered aboard naval ships and should undergo
variable frequency test. According to the standard, the prototype equipment should be

vibrated from 4 Hz (or lowest attainable frequency) to 50 Hz. in discrete frequency

intervals of 1 Hz at the amplitudes shown in Table 4.2 and Fig 4.4.

Table 4.2 Harmonic Input for Prototype

0.6

0.5 4
0.4

0.3

Amplitude (mm)

0.2

0.1

B

4t015 151025 251033 33t040 40to50

Frequency Range (Hz.)

Fig. 4.4 Harmonic Input for Prototype

For testing a ¥2 scaled model, this harmonic input is scaled according to the scaling laws.

Frequency Range (Hz) ), Amplitude in (mm)J, No of Sub-steps
4t0 15 0.762 11
15to 25 0.508 10
25t0 33 0.254 8
33 to 40 0.127 7
40 to 50 0.0762 7
Harmonic input

0.9

0.8

0.7

The scaled harmonic input for the model is shown in Table 4.3 and Fig. 4.5.
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Table 4.3 Scaled Harmonic Input for Model

Frequency Range (Hz) Amplitude in (mm) No of Sub.st
w0, =0, |4, 5, =6,/4 o of Sub-steps
8 to 30 0.381 11
30 to 50 0.254 10
50 to 66 0.127 8
66 to 80 0.0635 7
80 to 100 0.0381 10

Harmonic Input

0.45
04
0.35
0.3
0.25
0.2
0.15 1
0.1 1
0.05

Amplitude (mm)

8t030 B30to50 50to66 661080 80to 100
Frequency Range (Hz.)

Fig. 4.5 Scaled Harmonic Input for Model

Variable frequency test is simulated in ANSYS 7.1 for prototype as well for its Y2 scale
model.

Three harmonic response analysis methods available in ANSYS are: full, reduced,
and mode superposition. Full method has been used for harmonic analysis of shipboard
monitor and control structure with the Base excitation applied at four corners of the
console in UY direction according to Table 4.2 and Table 4.3 for prototype and model,
respectively, and the response is observed on top of monitor and on the front of the
console. Constant damping ratio of 0.01 is used for harmonic analysis in both model and
prototype. The amplitude response obtained on top of the monitor for model and

prototype is plotted in fig. 4.6 and Fig 4.7, respectively.
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Fig. 4.6 Amplitude Response for ¥2 Scale Model under Harmonic Excitation
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Fig. 4.7 Amplitude Response for Prototype under Harmonic Excitation

Examination of Fig. 4.6 and 4.7 reveals that, there is no model natural frequency between

8-100 Hz. and no prototype natural frequency between 4-50 Hz., and hence no peak is
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observed in harmonic analysis. The maximum amplitude obtained for 2 scale model is

0.3982 mm. To predict the maximum amplitude of prototype we have

Predicted Amplitude of Prototype A, x Amplitude of Model

2x0.3982

0.7964 mm.

The maximum amplitude obtained from prototype simulation is 0.796397 mm which is
very close to the predicted value. The prototype response can be predicted by expanding
the x-axis of model response which is obtained by multiplying frequency by A, and the
amplitude response along y-axis by 4, . The predicted response using model and response

obtained from prototype is plotted in Fig.4.8.

[-—-— Predicted Response of Prototype using Model —»— Prototye [ANSYS]
2.5~
2 |
E 1.5 4
)
b
2
2 1
<
0.5 WW\AOM“
0 T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz.)

Fig.4.8 Amplitude Response for Harmonic Excitation (Analytical & Predicted
Response using Model)
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4.5.3 Shock Test

The shipboard monitor and console must withstand and satisfy the Specifications
for Design and Test for Shock Resistant Equipment in Naval Ships [45]. It should pass
through the shock machine test and remain operable to the equipment specification. Since
this monitor console unit is between 114-2720 kg range, it has to pass medium weight
test with test height specifications provided in Table 4.4.

This test consists of, two blows from 1360 kg hammer falling from the heights

given in column 2, 3 and 4 of Table 4.4.

Table 4.4 Medium Weight Test Heights

Total Weight of Height of Height of Height of
Equipment and | Hammer drop | Hammer drop | Hammer drop
its mounting with 3 inch with 1%2 inch with 1%2 inch
carried by anvil anvil table anvil table anvil table
table travel travel travel
(Ib) (inch) (inch) (inch)
250-1000 I1 15 24
1000-2000 13 17 28
2000-3000 14 19 31
3000-3500 16 21 34
3500-4000 18 23 38
4000-4400 20 27 45
4400-4600 22 29 48
4600-4800 24 31 51
4800-5000 26 33 55
5000-5200 29 37 62
5200-5400 32 41 69
5400-6000 35 45 72
6000-7500 36 46 72

In order to simulate the shock test in ANSYS 7.1, transient analysis is performed. Since it

is not possible to produce an ideal shock or impulse force numerically, a load over a
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discrete amount of time d¢ which generates the similar impulse has been used.

The required force and discrete amount of time can be calculated by the
formulation as follows. The hammer falls through a height ‘h’, and impacts the base of
the anvil on which the console-monitor assembly is mounted as shown in Fig 4.9. When
the hammer impacts the anvil, the hammer —anvil —structure travels up through a

distance‘d’. The impulse of the hammer is given by

I,=M,V, (4.1)

Fig. 4.9 Hammer Falls Through a Height ‘h’, and Impacts the Base of the Anvil on which
the Console-Monitor Assembly is Mounted

This is equal to the momentum generated by the assembly of hammer-anvil-structure, and
is given by

I,=(M,+M, +M)V. (4.2)
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Ignoring the energy loss during impact, the conservation of energy provides the force,

which is given by

Fd=M,.g(h-d)y-(M,+M;).gd (4.3)
The impulse transmitted to the structure is

I,=1,—-(M,+M,)V, (4.4)

The duration of the shock pulse is obtained as

1
Ar=-% 4.5
F (4.5)
Please refer to APPENDIX-2 regarding detailed calculation of force and time duration of

impulse for Table 4.4.

Three methods are available to do a transient dynamic analysis: full, mode
superposition, and reduced. Mode superposition method is used for simulation of shock
test. The mode superposition method sums factored mode shapes (eigenvectors) from a
modal analysis to calculate the structure's response. The first 50 modes have been used to
calculate the transient response. For transient analysis, impulse force is applied at the
base of the console and the response is taken on the top the monitor and on the bull nose
section of the console.

The parameters for rectangular pulse calculated in APPENDIX-2 for 18” hammer

drop and 3” Anvil travel are (F,), =50500N and (dt), = 0.0001sec.For testing a V2
scale model these parameters are scaled according to force and time scale factors as

_ (F), 50500
/?'F

(F), = 12625N
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_ (d, _0.0001
=

1

= 0.00005sec.

(dr),,

Constant damping ratio of 0.01 is used in the analysis for both prototype and its 2 scale
model. The amplitude response obtained from model and prototype is shown in Fig. 4.10

and Fig. 4.11 respectively.

(x10%#%-1)

6 : : : Response in UY

s MAximum Amplitude = 0.428702 mm

g
g
2

)

o

3

ot 1 Impuise T
2 Force InUY

{x10**-1)

0 ’ 1 2 3 4 5
.5 1.5 2.5 3.5 4.5
Time (Sec.)

Fig. 4.10 Amplitude Response for ¥2 Scale Model under Impulse Excitation
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Response in UY

1] Maximum Amplitude = 0.865399 mm

{mm)

Impuise T
Farce InUY

Amplitude

] .2 .4 .6 .8 1
.1 .3 .5 7 .9

Time (Sec.)

Fig. 4.11 Amplitude Response for Prototype under Impulse Excitation

The maximum amplitude obtained for %2 scale model is 0.428702 mm. To predict the

maximum amplitude of prototype we have

Predicted Amplitude of Prototype A, x Amplitude of Model

2x0.428702

0.857404 mm.

The maximum amplitude obtained from prototype simulation is 0.865399 mm which is
very close to the predicted value. The prototype response can also be predicted by
expanding the frequency along the axis by A, and the amplitude response along y-axis
by 4,. The predicted response using model and response obtained from prototype is

plotted in Fig.4.12.
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Fig. 4.12 Amplitude Response under Impulse Excitation (Analytical & Predicted
Response using Model)

Please refer to the APPENDIX-3 for the result obtained for the bull nose section.
Simulation results of shock test for 23” Hammer Drop, 1.5” Anvil travel and 38”

Hammer Drop, 1.5” Anvil Travel are also presented in the APPENDIX 3.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 SUMMARY

The complete and comprehensive study on the methodology of dynamic scaled
modeling has been treated in this thesis. Previous work on dynamic scaled modeling has
been thoroughly reviewed and necessary modifications have been suggested. The theory
of scaled modeling is studied and has been applied on dynamic testing of benchmark
simple cantilever beam. Simulations of dynamic testing for model and prototype has been
accomplished in ANSYS 7.1 to validate the scaling laws derived. Simulation results are
then confirmed by experimentally testing of beam prototype and its ¥2 scale model.

Maintaining complete similarity becomes cumbersome and impractical in the area
of scaled modeling dynamic scaling and relaxations are required to practically have a
dynamic scaled model. Various relaxations are discussed to have a dynamic scaled model
and it has been suggested that neglecting gravity effects in dynamic scaled model
provides reasonably good results. Concept of using dummy masses has been discussed
for dynamic scale modeling when the gravitational forces are significant and cannot be
neglected and is applied on simple beam.

Finally the developed methodology is then applied on real life structure by
studying the behavior of Naval shipboard Console under vibration and Shock using
Scaled Model. Simulations of dynamic testing for full scale prototype of Naval Shipboard
Monitor and Console and its ¥2 scale model has been carried out and demonstrated that

results of 2 scale model can perfectly predict the behavior of the full scale prototype.
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5.2 CONCLUSIONS

The following important conclusions can be drawn from the analytical and

experimental studies undertaken in this research:

1. The study of scaled model methodology is found to be extremely useful for the
dynamic testing of structures as it is convenient, economic and time saving.

2. Scaling laws are derived for dynamic testing using Buckingham Pi Theorem and
similarity conditions, and good correlation is found between the properties of
prototype and its ¥2 scale model in analytical studies by using finite element analysis
as well as in experimental studies.

3. It is found that maintaining complete similarity for dynamic testing becomes very
difficult due to practical limitations and hence relaxation or distortions are required to
have a practical scaled model.

4. Relaxation of neglecting gravity effects is suggested for dynamic modeling and it is
verified experimentally that the gravity does not significantly affect the model
response.

5. Dummy masses can be attached to the model when the gravitational forces are
significant in the structure.

6. Finite analysis results have found to provide good results and thus can be used

confidently for dynamic analysis with scaled model.
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5.3 FUTURE WORK

Although this thesis has taken an important step towards the understanding of
dynamic scaled modeling both analytically and experimentally, other important aspects
are identified to complement an improved design of dynamic scaled model testing. These
aspects can be summarized as follows:

1. Extending the experimental verification to more complex structures such as plates
and shells.

2. Verifying the concept of dummy masses experimentally and extending the analytical
formulation on complex structures such as plates.

3. Performing experimental verification for vibration excitation such as Harmonic,
Shock and Random.

4. More investigation on the effect of scaling on damping.

5. Extending the idea of dynamic macro scaled modeling to micro electro mechanical

structures (MEMS).
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APPENDIX-1

HARMONIC TEST RESULTS

The amplitude response obtained on bull nose section of the console for model

and prototype from ANSYS 7.1 is plotted in fig. 6.1 and Fig 6.2 respectively.
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Fig 6.1 Amplitude Response for 2 Scale Model under Harmonic Excitation
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Fig 6.2 Amplitude Response for Prototype under Harmonic Excitation
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APPENDIX-2

CALCULATION OF SHOCK PULSE PARAMETERS
Mass of Anvil(M ,)=1820 Kg , Mass of Hammer(M ,)=1360 Kg

Mass of Structure(M ) = Mass of Console + Mass of Monitor =300kg
1.) For 18" Hammer Height, 3" Anvil travel
h=18"=04572m , d=3"=0.0762m
a)l,=M,V,

V, =+2.8.h =2.995m/sec

1,, =4073.2 N.Sec
b)yl,=M,+M, +M;)V,

V. =1.1704597 m/sec
c)Fd=M,.g(h-d)y-M,+M;).gd

F =50423.4 N = 50500N
dylg=1,-M,+M,)V,

I, =351.138154 N.Sec

—{i =0.006953 sec.
F

e) At =
2.) For 23" Hammer Height,11" Anvil travel
h=23"=0.5842m, d =13"=0.0381m
a)l,=M,V,

V, =+/2.8.h =3.3855 m/sec

119



I, =4604.35 N .Sec
b)l, =M, +M,+M;)V,

V. =1.323089 m/sec
c)Fd=M,.g(h-d)y-(M,+M;).gd

F=170432.4 N =170500N
dylg=1,-M,+M, )V,

I; =396.92698 N.Sec

I—S =0.002328 sec.
F

e)At=
3.) For 38" Hammer Height, 13" Anvil travel
h=38"=0.9652m, d=15"=0.0381m
a)l,=M,V,

V, =+/2.8.h =4.351m/sec

I, =5918.3012 N.Sec
b)I,=(M,+M,+M;)V,

V. =1.7006 m/sec
c)Fd=M,.g(h—-d)y-(M,+M;).gd

F =303848.4 N = 303900N
dyI, =1, —(M,+M,)V,

I; =510.3932 N.Sec

s =0.0016794 sec.

e At =—
) F
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APPENDIX-3

SHOCK TEST RESULTS

1.) For 18" Hammer Height, 3" Anvil travel
The amplitude response obtained on bull nose section of the console for model and

prototype from ANSYS 7.1 is plotted in fig. 6.3 and Fig 6.4 respectively.
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Fig 6.3 Amplitude Response for ¥2 Scale Model under Impulse Excitation
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Fig 6.4 Amplitude Response for Prototype under Impulse Excitation
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2.) For 23" Hammer Height, 13" Anvil travel

The amplitude response obtained on top of monitor for model and prototype from

ANSYS 7.1 is plotted in fig. 6.5 and Fig 6.6 respectively
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Fig 6.5 Amplitude Response for 2 Scale Model under Impulse Excitation
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Fig 6.6 Amplitude Response for Prototype under Impulse Excitation
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The amplitude response obtained on bull nose section of the console for model and
prototype from ANSYS 7.1 is plotted in fig. 6.7 and Fig 6.8 respectively.
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Fig 6.7 Amplitude Response for ¥2 Scale Model under Impulse Excitation
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3.) For 38" Hammer Height, 13" Anvil travel
The amplitude response obtained on top of monitor for model and prototype from

ANSYS 7.1 is plotted in fig. 6.9 and Fig 6.10 respectively.
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Fig 6.9 Amplitude Response for ¥2 Scale Model under Impulse Excitation
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Fig 6.10 Amplitude Response for Prototype under Impulse Excitation
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The amplitude response obtained on bull nose section of the console for model and

prototype from ANSYS 7.1 is plotted in fig. 6.11 and Fig 6.12 respectively.
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Fig 6.11 Amplitude Response for ¥2 Scale Model under Impulse Excitation
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